Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * main.c - Multi purpose firmware loading support
4 : *
5 : * Copyright (c) 2003 Manuel Estrada Sainz
6 : *
7 : * Please see Documentation/driver-api/firmware/ for more information.
8 : *
9 : */
10 :
11 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 :
13 : #include <linux/capability.h>
14 : #include <linux/device.h>
15 : #include <linux/kernel_read_file.h>
16 : #include <linux/module.h>
17 : #include <linux/init.h>
18 : #include <linux/initrd.h>
19 : #include <linux/timer.h>
20 : #include <linux/vmalloc.h>
21 : #include <linux/interrupt.h>
22 : #include <linux/bitops.h>
23 : #include <linux/mutex.h>
24 : #include <linux/workqueue.h>
25 : #include <linux/highmem.h>
26 : #include <linux/firmware.h>
27 : #include <linux/slab.h>
28 : #include <linux/sched.h>
29 : #include <linux/file.h>
30 : #include <linux/list.h>
31 : #include <linux/fs.h>
32 : #include <linux/async.h>
33 : #include <linux/pm.h>
34 : #include <linux/suspend.h>
35 : #include <linux/syscore_ops.h>
36 : #include <linux/reboot.h>
37 : #include <linux/security.h>
38 : #include <linux/zstd.h>
39 : #include <linux/xz.h>
40 :
41 : #include <generated/utsrelease.h>
42 :
43 : #include "../base.h"
44 : #include "firmware.h"
45 : #include "fallback.h"
46 :
47 : MODULE_AUTHOR("Manuel Estrada Sainz");
48 : MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 : MODULE_LICENSE("GPL");
50 :
51 : struct firmware_cache {
52 : /* firmware_buf instance will be added into the below list */
53 : spinlock_t lock;
54 : struct list_head head;
55 : int state;
56 :
57 : #ifdef CONFIG_FW_CACHE
58 : /*
59 : * Names of firmware images which have been cached successfully
60 : * will be added into the below list so that device uncache
61 : * helper can trace which firmware images have been cached
62 : * before.
63 : */
64 : spinlock_t name_lock;
65 : struct list_head fw_names;
66 :
67 : struct delayed_work work;
68 :
69 : struct notifier_block pm_notify;
70 : #endif
71 : };
72 :
73 : struct fw_cache_entry {
74 : struct list_head list;
75 : const char *name;
76 : };
77 :
78 : struct fw_name_devm {
79 : unsigned long magic;
80 : const char *name;
81 : };
82 :
83 : static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 : {
85 0 : return container_of(ref, struct fw_priv, ref);
86 : }
87 :
88 : #define FW_LOADER_NO_CACHE 0
89 : #define FW_LOADER_START_CACHE 1
90 :
91 : /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 : * guarding for corner cases a global lock should be OK */
93 : DEFINE_MUTEX(fw_lock);
94 :
95 : struct firmware_cache fw_cache;
96 :
97 0 : void fw_state_init(struct fw_priv *fw_priv)
98 : {
99 0 : struct fw_state *fw_st = &fw_priv->fw_st;
100 :
101 0 : init_completion(&fw_st->completion);
102 0 : fw_st->status = FW_STATUS_UNKNOWN;
103 0 : }
104 :
105 : static inline int fw_state_wait(struct fw_priv *fw_priv)
106 : {
107 0 : return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108 : }
109 :
110 : static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111 :
112 0 : static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 : struct firmware_cache *fwc,
114 : void *dbuf,
115 : size_t size,
116 : size_t offset,
117 : u32 opt_flags)
118 : {
119 : struct fw_priv *fw_priv;
120 :
121 : /* For a partial read, the buffer must be preallocated. */
122 0 : if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 : return NULL;
124 :
125 : /* Only partial reads are allowed to use an offset. */
126 0 : if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 : return NULL;
128 :
129 0 : fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 0 : if (!fw_priv)
131 : return NULL;
132 :
133 0 : fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 0 : if (!fw_priv->fw_name) {
135 0 : kfree(fw_priv);
136 0 : return NULL;
137 : }
138 :
139 0 : kref_init(&fw_priv->ref);
140 0 : fw_priv->fwc = fwc;
141 0 : fw_priv->data = dbuf;
142 0 : fw_priv->allocated_size = size;
143 0 : fw_priv->offset = offset;
144 0 : fw_priv->opt_flags = opt_flags;
145 0 : fw_state_init(fw_priv);
146 : #ifdef CONFIG_FW_LOADER_USER_HELPER
147 : INIT_LIST_HEAD(&fw_priv->pending_list);
148 : #endif
149 :
150 : pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151 :
152 0 : return fw_priv;
153 : }
154 :
155 0 : static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156 : {
157 : struct fw_priv *tmp;
158 0 : struct firmware_cache *fwc = &fw_cache;
159 :
160 0 : list_for_each_entry(tmp, &fwc->head, list)
161 0 : if (!strcmp(tmp->fw_name, fw_name))
162 : return tmp;
163 : return NULL;
164 : }
165 :
166 : /* Returns 1 for batching firmware requests with the same name */
167 0 : int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 : struct fw_priv **fw_priv, void *dbuf, size_t size,
169 : size_t offset, u32 opt_flags)
170 : {
171 : struct fw_priv *tmp;
172 :
173 0 : spin_lock(&fwc->lock);
174 : /*
175 : * Do not merge requests that are marked to be non-cached or
176 : * are performing partial reads.
177 : */
178 0 : if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 0 : tmp = __lookup_fw_priv(fw_name);
180 0 : if (tmp) {
181 0 : kref_get(&tmp->ref);
182 0 : spin_unlock(&fwc->lock);
183 0 : *fw_priv = tmp;
184 : pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 0 : return 1;
186 : }
187 : }
188 :
189 0 : tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 0 : if (tmp) {
191 0 : INIT_LIST_HEAD(&tmp->list);
192 0 : if (!(opt_flags & FW_OPT_NOCACHE))
193 0 : list_add(&tmp->list, &fwc->head);
194 : }
195 0 : spin_unlock(&fwc->lock);
196 :
197 0 : *fw_priv = tmp;
198 :
199 0 : return tmp ? 0 : -ENOMEM;
200 : }
201 :
202 0 : static void __free_fw_priv(struct kref *ref)
203 : __releases(&fwc->lock)
204 : {
205 0 : struct fw_priv *fw_priv = to_fw_priv(ref);
206 0 : struct firmware_cache *fwc = fw_priv->fwc;
207 :
208 : pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 : __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 : (unsigned int)fw_priv->size);
211 :
212 0 : list_del(&fw_priv->list);
213 0 : spin_unlock(&fwc->lock);
214 :
215 : if (fw_is_paged_buf(fw_priv))
216 : fw_free_paged_buf(fw_priv);
217 0 : else if (!fw_priv->allocated_size)
218 0 : vfree(fw_priv->data);
219 :
220 0 : kfree_const(fw_priv->fw_name);
221 0 : kfree(fw_priv);
222 0 : }
223 :
224 0 : void free_fw_priv(struct fw_priv *fw_priv)
225 : {
226 0 : struct firmware_cache *fwc = fw_priv->fwc;
227 0 : spin_lock(&fwc->lock);
228 0 : if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 0 : spin_unlock(&fwc->lock);
230 0 : }
231 :
232 : #ifdef CONFIG_FW_LOADER_PAGED_BUF
233 : bool fw_is_paged_buf(struct fw_priv *fw_priv)
234 : {
235 : return fw_priv->is_paged_buf;
236 : }
237 :
238 : void fw_free_paged_buf(struct fw_priv *fw_priv)
239 : {
240 : int i;
241 :
242 : if (!fw_priv->pages)
243 : return;
244 :
245 : vunmap(fw_priv->data);
246 :
247 : for (i = 0; i < fw_priv->nr_pages; i++)
248 : __free_page(fw_priv->pages[i]);
249 : kvfree(fw_priv->pages);
250 : fw_priv->pages = NULL;
251 : fw_priv->page_array_size = 0;
252 : fw_priv->nr_pages = 0;
253 : fw_priv->data = NULL;
254 : fw_priv->size = 0;
255 : }
256 :
257 : int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258 : {
259 : /* If the array of pages is too small, grow it */
260 : if (fw_priv->page_array_size < pages_needed) {
261 : int new_array_size = max(pages_needed,
262 : fw_priv->page_array_size * 2);
263 : struct page **new_pages;
264 :
265 : new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 : GFP_KERNEL);
267 : if (!new_pages)
268 : return -ENOMEM;
269 : memcpy(new_pages, fw_priv->pages,
270 : fw_priv->page_array_size * sizeof(void *));
271 : memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 : (new_array_size - fw_priv->page_array_size));
273 : kvfree(fw_priv->pages);
274 : fw_priv->pages = new_pages;
275 : fw_priv->page_array_size = new_array_size;
276 : }
277 :
278 : while (fw_priv->nr_pages < pages_needed) {
279 : fw_priv->pages[fw_priv->nr_pages] =
280 : alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281 :
282 : if (!fw_priv->pages[fw_priv->nr_pages])
283 : return -ENOMEM;
284 : fw_priv->nr_pages++;
285 : }
286 :
287 : return 0;
288 : }
289 :
290 : int fw_map_paged_buf(struct fw_priv *fw_priv)
291 : {
292 : /* one pages buffer should be mapped/unmapped only once */
293 : if (!fw_priv->pages)
294 : return 0;
295 :
296 : vunmap(fw_priv->data);
297 : fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 : PAGE_KERNEL_RO);
299 : if (!fw_priv->data)
300 : return -ENOMEM;
301 :
302 : return 0;
303 : }
304 : #endif
305 :
306 : /*
307 : * ZSTD-compressed firmware support
308 : */
309 : #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
310 : static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 : size_t in_size, const void *in_buffer)
312 : {
313 : size_t len, out_size, workspace_size;
314 : void *workspace, *out_buf;
315 : zstd_dctx *ctx;
316 : int err;
317 :
318 : if (fw_priv->allocated_size) {
319 : out_size = fw_priv->allocated_size;
320 : out_buf = fw_priv->data;
321 : } else {
322 : zstd_frame_header params;
323 :
324 : if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
325 : params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 : dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 : return -EINVAL;
328 : }
329 : out_size = params.frameContentSize;
330 : out_buf = vzalloc(out_size);
331 : if (!out_buf)
332 : return -ENOMEM;
333 : }
334 :
335 : workspace_size = zstd_dctx_workspace_bound();
336 : workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 : if (!workspace) {
338 : err = -ENOMEM;
339 : goto error;
340 : }
341 :
342 : ctx = zstd_init_dctx(workspace, workspace_size);
343 : if (!ctx) {
344 : dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 : err = -EINVAL;
346 : goto error;
347 : }
348 :
349 : len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 : if (zstd_is_error(len)) {
351 : dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 : zstd_get_error_code(len));
353 : err = -EINVAL;
354 : goto error;
355 : }
356 :
357 : if (!fw_priv->allocated_size)
358 : fw_priv->data = out_buf;
359 : fw_priv->size = len;
360 : err = 0;
361 :
362 : error:
363 : kvfree(workspace);
364 : if (err && !fw_priv->allocated_size)
365 : vfree(out_buf);
366 : return err;
367 : }
368 : #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369 :
370 : /*
371 : * XZ-compressed firmware support
372 : */
373 : #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374 : /* show an error and return the standard error code */
375 : static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376 : {
377 : if (xz_ret != XZ_STREAM_END) {
378 : dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 : return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 : }
381 : return 0;
382 : }
383 :
384 : /* single-shot decompression onto the pre-allocated buffer */
385 : static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 : size_t in_size, const void *in_buffer)
387 : {
388 : struct xz_dec *xz_dec;
389 : struct xz_buf xz_buf;
390 : enum xz_ret xz_ret;
391 :
392 : xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 : if (!xz_dec)
394 : return -ENOMEM;
395 :
396 : xz_buf.in_size = in_size;
397 : xz_buf.in = in_buffer;
398 : xz_buf.in_pos = 0;
399 : xz_buf.out_size = fw_priv->allocated_size;
400 : xz_buf.out = fw_priv->data;
401 : xz_buf.out_pos = 0;
402 :
403 : xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 : xz_dec_end(xz_dec);
405 :
406 : fw_priv->size = xz_buf.out_pos;
407 : return fw_decompress_xz_error(dev, xz_ret);
408 : }
409 :
410 : /* decompression on paged buffer and map it */
411 : static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 : size_t in_size, const void *in_buffer)
413 : {
414 : struct xz_dec *xz_dec;
415 : struct xz_buf xz_buf;
416 : enum xz_ret xz_ret;
417 : struct page *page;
418 : int err = 0;
419 :
420 : xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 : if (!xz_dec)
422 : return -ENOMEM;
423 :
424 : xz_buf.in_size = in_size;
425 : xz_buf.in = in_buffer;
426 : xz_buf.in_pos = 0;
427 :
428 : fw_priv->is_paged_buf = true;
429 : fw_priv->size = 0;
430 : do {
431 : if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 : err = -ENOMEM;
433 : goto out;
434 : }
435 :
436 : /* decompress onto the new allocated page */
437 : page = fw_priv->pages[fw_priv->nr_pages - 1];
438 : xz_buf.out = kmap_local_page(page);
439 : xz_buf.out_pos = 0;
440 : xz_buf.out_size = PAGE_SIZE;
441 : xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 : kunmap_local(xz_buf.out);
443 : fw_priv->size += xz_buf.out_pos;
444 : /* partial decompression means either end or error */
445 : if (xz_buf.out_pos != PAGE_SIZE)
446 : break;
447 : } while (xz_ret == XZ_OK);
448 :
449 : err = fw_decompress_xz_error(dev, xz_ret);
450 : if (!err)
451 : err = fw_map_paged_buf(fw_priv);
452 :
453 : out:
454 : xz_dec_end(xz_dec);
455 : return err;
456 : }
457 :
458 : static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 : size_t in_size, const void *in_buffer)
460 : {
461 : /* if the buffer is pre-allocated, we can perform in single-shot mode */
462 : if (fw_priv->data)
463 : return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 : else
465 : return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466 : }
467 : #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468 :
469 : /* direct firmware loading support */
470 : static char fw_path_para[256];
471 : static const char * const fw_path[] = {
472 : fw_path_para,
473 : "/lib/firmware/updates/" UTS_RELEASE,
474 : "/lib/firmware/updates",
475 : "/lib/firmware/" UTS_RELEASE,
476 : "/lib/firmware"
477 : };
478 :
479 : /*
480 : * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
481 : * from kernel command line because firmware_class is generally built in
482 : * kernel instead of module.
483 : */
484 : module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
485 : MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
486 :
487 : static int
488 0 : fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
489 : const char *suffix,
490 : int (*decompress)(struct device *dev,
491 : struct fw_priv *fw_priv,
492 : size_t in_size,
493 : const void *in_buffer))
494 : {
495 : size_t size;
496 : int i, len;
497 0 : int rc = -ENOENT;
498 : char *path;
499 0 : size_t msize = INT_MAX;
500 0 : void *buffer = NULL;
501 :
502 : /* Already populated data member means we're loading into a buffer */
503 0 : if (!decompress && fw_priv->data) {
504 0 : buffer = fw_priv->data;
505 0 : msize = fw_priv->allocated_size;
506 : }
507 :
508 0 : path = __getname();
509 0 : if (!path)
510 : return -ENOMEM;
511 :
512 : wait_for_initramfs();
513 0 : for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
514 0 : size_t file_size = 0;
515 0 : size_t *file_size_ptr = NULL;
516 :
517 : /* skip the unset customized path */
518 0 : if (!fw_path[i][0])
519 0 : continue;
520 :
521 0 : len = snprintf(path, PATH_MAX, "%s/%s%s",
522 : fw_path[i], fw_priv->fw_name, suffix);
523 0 : if (len >= PATH_MAX) {
524 : rc = -ENAMETOOLONG;
525 0 : break;
526 : }
527 :
528 0 : fw_priv->size = 0;
529 :
530 : /*
531 : * The total file size is only examined when doing a partial
532 : * read; the "full read" case needs to fail if the whole
533 : * firmware was not completely loaded.
534 : */
535 0 : if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
536 0 : file_size_ptr = &file_size;
537 :
538 : /* load firmware files from the mount namespace of init */
539 0 : rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
540 : &buffer, msize,
541 : file_size_ptr,
542 : READING_FIRMWARE);
543 0 : if (rc < 0) {
544 0 : if (rc != -ENOENT)
545 0 : dev_warn(device, "loading %s failed with error %d\n",
546 : path, rc);
547 : else
548 : dev_dbg(device, "loading %s failed for no such file or directory.\n",
549 : path);
550 0 : continue;
551 : }
552 0 : size = rc;
553 0 : rc = 0;
554 :
555 : dev_dbg(device, "Loading firmware from %s\n", path);
556 0 : if (decompress) {
557 : dev_dbg(device, "f/w decompressing %s\n",
558 : fw_priv->fw_name);
559 0 : rc = decompress(device, fw_priv, size, buffer);
560 : /* discard the superfluous original content */
561 0 : vfree(buffer);
562 0 : buffer = NULL;
563 0 : if (rc) {
564 0 : fw_free_paged_buf(fw_priv);
565 0 : continue;
566 : }
567 : } else {
568 : dev_dbg(device, "direct-loading %s\n",
569 : fw_priv->fw_name);
570 0 : if (!fw_priv->data)
571 0 : fw_priv->data = buffer;
572 0 : fw_priv->size = size;
573 : }
574 : fw_state_done(fw_priv);
575 : break;
576 : }
577 0 : __putname(path);
578 :
579 0 : return rc;
580 : }
581 :
582 : /* firmware holds the ownership of pages */
583 : static void firmware_free_data(const struct firmware *fw)
584 : {
585 : /* Loaded directly? */
586 0 : if (!fw->priv) {
587 0 : vfree(fw->data);
588 : return;
589 : }
590 0 : free_fw_priv(fw->priv);
591 : }
592 :
593 : /* store the pages buffer info firmware from buf */
594 : static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
595 : {
596 0 : fw->priv = fw_priv;
597 0 : fw->size = fw_priv->size;
598 0 : fw->data = fw_priv->data;
599 :
600 : pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
601 : __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
602 : (unsigned int)fw_priv->size);
603 : }
604 :
605 : #ifdef CONFIG_FW_CACHE
606 0 : static void fw_name_devm_release(struct device *dev, void *res)
607 : {
608 0 : struct fw_name_devm *fwn = res;
609 :
610 : if (fwn->magic == (unsigned long)&fw_cache)
611 : pr_debug("%s: fw_name-%s devm-%p released\n",
612 : __func__, fwn->name, res);
613 0 : kfree_const(fwn->name);
614 0 : }
615 :
616 0 : static int fw_devm_match(struct device *dev, void *res,
617 : void *match_data)
618 : {
619 0 : struct fw_name_devm *fwn = res;
620 :
621 0 : return (fwn->magic == (unsigned long)&fw_cache) &&
622 0 : !strcmp(fwn->name, match_data);
623 : }
624 :
625 : static struct fw_name_devm *fw_find_devm_name(struct device *dev,
626 : const char *name)
627 : {
628 : struct fw_name_devm *fwn;
629 :
630 0 : fwn = devres_find(dev, fw_name_devm_release,
631 : fw_devm_match, (void *)name);
632 : return fwn;
633 : }
634 :
635 : static bool fw_cache_is_setup(struct device *dev, const char *name)
636 : {
637 : struct fw_name_devm *fwn;
638 :
639 0 : fwn = fw_find_devm_name(dev, name);
640 0 : if (fwn)
641 : return true;
642 :
643 : return false;
644 : }
645 :
646 : /* add firmware name into devres list */
647 0 : static int fw_add_devm_name(struct device *dev, const char *name)
648 : {
649 : struct fw_name_devm *fwn;
650 :
651 0 : if (fw_cache_is_setup(dev, name))
652 : return 0;
653 :
654 0 : fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
655 : GFP_KERNEL);
656 0 : if (!fwn)
657 : return -ENOMEM;
658 0 : fwn->name = kstrdup_const(name, GFP_KERNEL);
659 0 : if (!fwn->name) {
660 0 : devres_free(fwn);
661 0 : return -ENOMEM;
662 : }
663 :
664 0 : fwn->magic = (unsigned long)&fw_cache;
665 0 : devres_add(dev, fwn);
666 :
667 0 : return 0;
668 : }
669 : #else
670 : static bool fw_cache_is_setup(struct device *dev, const char *name)
671 : {
672 : return false;
673 : }
674 :
675 : static int fw_add_devm_name(struct device *dev, const char *name)
676 : {
677 : return 0;
678 : }
679 : #endif
680 :
681 0 : int assign_fw(struct firmware *fw, struct device *device)
682 : {
683 0 : struct fw_priv *fw_priv = fw->priv;
684 : int ret;
685 :
686 0 : mutex_lock(&fw_lock);
687 0 : if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
688 0 : mutex_unlock(&fw_lock);
689 0 : return -ENOENT;
690 : }
691 :
692 : /*
693 : * add firmware name into devres list so that we can auto cache
694 : * and uncache firmware for device.
695 : *
696 : * device may has been deleted already, but the problem
697 : * should be fixed in devres or driver core.
698 : */
699 : /* don't cache firmware handled without uevent */
700 0 : if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
701 : !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
702 0 : ret = fw_add_devm_name(device, fw_priv->fw_name);
703 0 : if (ret) {
704 0 : mutex_unlock(&fw_lock);
705 0 : return ret;
706 : }
707 : }
708 :
709 : /*
710 : * After caching firmware image is started, let it piggyback
711 : * on request firmware.
712 : */
713 0 : if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
714 0 : fw_priv->fwc->state == FW_LOADER_START_CACHE)
715 0 : fw_cache_piggyback_on_request(fw_priv);
716 :
717 : /* pass the pages buffer to driver at the last minute */
718 0 : fw_set_page_data(fw_priv, fw);
719 0 : mutex_unlock(&fw_lock);
720 0 : return 0;
721 : }
722 :
723 : /* prepare firmware and firmware_buf structs;
724 : * return 0 if a firmware is already assigned, 1 if need to load one,
725 : * or a negative error code
726 : */
727 : static int
728 0 : _request_firmware_prepare(struct firmware **firmware_p, const char *name,
729 : struct device *device, void *dbuf, size_t size,
730 : size_t offset, u32 opt_flags)
731 : {
732 : struct firmware *firmware;
733 : struct fw_priv *fw_priv;
734 : int ret;
735 :
736 0 : *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
737 0 : if (!firmware) {
738 0 : dev_err(device, "%s: kmalloc(struct firmware) failed\n",
739 : __func__);
740 0 : return -ENOMEM;
741 : }
742 :
743 0 : if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
744 : dev_dbg(device, "using built-in %s\n", name);
745 : return 0; /* assigned */
746 : }
747 :
748 0 : ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
749 : offset, opt_flags);
750 :
751 : /*
752 : * bind with 'priv' now to avoid warning in failure path
753 : * of requesting firmware.
754 : */
755 0 : firmware->priv = fw_priv;
756 :
757 0 : if (ret > 0) {
758 0 : ret = fw_state_wait(fw_priv);
759 0 : if (!ret) {
760 0 : fw_set_page_data(fw_priv, firmware);
761 0 : return 0; /* assigned */
762 : }
763 : }
764 :
765 0 : if (ret < 0)
766 : return ret;
767 0 : return 1; /* need to load */
768 : }
769 :
770 : /*
771 : * Batched requests need only one wake, we need to do this step last due to the
772 : * fallback mechanism. The buf is protected with kref_get(), and it won't be
773 : * released until the last user calls release_firmware().
774 : *
775 : * Failed batched requests are possible as well, in such cases we just share
776 : * the struct fw_priv and won't release it until all requests are woken
777 : * and have gone through this same path.
778 : */
779 0 : static void fw_abort_batch_reqs(struct firmware *fw)
780 : {
781 : struct fw_priv *fw_priv;
782 :
783 : /* Loaded directly? */
784 0 : if (!fw || !fw->priv)
785 : return;
786 :
787 0 : fw_priv = fw->priv;
788 0 : mutex_lock(&fw_lock);
789 0 : if (!fw_state_is_aborted(fw_priv))
790 : fw_state_aborted(fw_priv);
791 0 : mutex_unlock(&fw_lock);
792 : }
793 :
794 : /* called from request_firmware() and request_firmware_work_func() */
795 : static int
796 0 : _request_firmware(const struct firmware **firmware_p, const char *name,
797 : struct device *device, void *buf, size_t size,
798 : size_t offset, u32 opt_flags)
799 : {
800 0 : struct firmware *fw = NULL;
801 0 : struct cred *kern_cred = NULL;
802 : const struct cred *old_cred;
803 0 : bool nondirect = false;
804 : int ret;
805 :
806 0 : if (!firmware_p)
807 : return -EINVAL;
808 :
809 0 : if (!name || name[0] == '\0') {
810 : ret = -EINVAL;
811 : goto out;
812 : }
813 :
814 0 : ret = _request_firmware_prepare(&fw, name, device, buf, size,
815 : offset, opt_flags);
816 0 : if (ret <= 0) /* error or already assigned */
817 : goto out;
818 :
819 : /*
820 : * We are about to try to access the firmware file. Because we may have been
821 : * called by a driver when serving an unrelated request from userland, we use
822 : * the kernel credentials to read the file.
823 : */
824 0 : kern_cred = prepare_kernel_cred(&init_task);
825 0 : if (!kern_cred) {
826 : ret = -ENOMEM;
827 : goto out;
828 : }
829 0 : old_cred = override_creds(kern_cred);
830 :
831 0 : ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
832 :
833 : /* Only full reads can support decompression, platform, and sysfs. */
834 0 : if (!(opt_flags & FW_OPT_PARTIAL))
835 0 : nondirect = true;
836 :
837 : #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
838 : if (ret == -ENOENT && nondirect)
839 : ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
840 : fw_decompress_zstd);
841 : #endif
842 : #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
843 : if (ret == -ENOENT && nondirect)
844 : ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
845 : fw_decompress_xz);
846 : #endif
847 0 : if (ret == -ENOENT && nondirect)
848 0 : ret = firmware_fallback_platform(fw->priv);
849 :
850 0 : if (ret) {
851 0 : if (!(opt_flags & FW_OPT_NO_WARN))
852 0 : dev_warn(device,
853 : "Direct firmware load for %s failed with error %d\n",
854 : name, ret);
855 : if (nondirect)
856 : ret = firmware_fallback_sysfs(fw, name, device,
857 : opt_flags, ret);
858 : } else
859 0 : ret = assign_fw(fw, device);
860 :
861 0 : revert_creds(old_cred);
862 : put_cred(kern_cred);
863 :
864 : out:
865 0 : if (ret < 0) {
866 0 : fw_abort_batch_reqs(fw);
867 0 : release_firmware(fw);
868 0 : fw = NULL;
869 : }
870 :
871 0 : *firmware_p = fw;
872 0 : return ret;
873 : }
874 :
875 : /**
876 : * request_firmware() - send firmware request and wait for it
877 : * @firmware_p: pointer to firmware image
878 : * @name: name of firmware file
879 : * @device: device for which firmware is being loaded
880 : *
881 : * @firmware_p will be used to return a firmware image by the name
882 : * of @name for device @device.
883 : *
884 : * Should be called from user context where sleeping is allowed.
885 : *
886 : * @name will be used as $FIRMWARE in the uevent environment and
887 : * should be distinctive enough not to be confused with any other
888 : * firmware image for this or any other device.
889 : *
890 : * Caller must hold the reference count of @device.
891 : *
892 : * The function can be called safely inside device's suspend and
893 : * resume callback.
894 : **/
895 : int
896 0 : request_firmware(const struct firmware **firmware_p, const char *name,
897 : struct device *device)
898 : {
899 : int ret;
900 :
901 : /* Need to pin this module until return */
902 0 : __module_get(THIS_MODULE);
903 0 : ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
904 : FW_OPT_UEVENT);
905 0 : module_put(THIS_MODULE);
906 0 : return ret;
907 : }
908 : EXPORT_SYMBOL(request_firmware);
909 :
910 : /**
911 : * firmware_request_nowarn() - request for an optional fw module
912 : * @firmware: pointer to firmware image
913 : * @name: name of firmware file
914 : * @device: device for which firmware is being loaded
915 : *
916 : * This function is similar in behaviour to request_firmware(), except it
917 : * doesn't produce warning messages when the file is not found. The sysfs
918 : * fallback mechanism is enabled if direct filesystem lookup fails. However,
919 : * failures to find the firmware file with it are still suppressed. It is
920 : * therefore up to the driver to check for the return value of this call and to
921 : * decide when to inform the users of errors.
922 : **/
923 0 : int firmware_request_nowarn(const struct firmware **firmware, const char *name,
924 : struct device *device)
925 : {
926 : int ret;
927 :
928 : /* Need to pin this module until return */
929 0 : __module_get(THIS_MODULE);
930 0 : ret = _request_firmware(firmware, name, device, NULL, 0, 0,
931 : FW_OPT_UEVENT | FW_OPT_NO_WARN);
932 0 : module_put(THIS_MODULE);
933 0 : return ret;
934 : }
935 : EXPORT_SYMBOL_GPL(firmware_request_nowarn);
936 :
937 : /**
938 : * request_firmware_direct() - load firmware directly without usermode helper
939 : * @firmware_p: pointer to firmware image
940 : * @name: name of firmware file
941 : * @device: device for which firmware is being loaded
942 : *
943 : * This function works pretty much like request_firmware(), but this doesn't
944 : * fall back to usermode helper even if the firmware couldn't be loaded
945 : * directly from fs. Hence it's useful for loading optional firmwares, which
946 : * aren't always present, without extra long timeouts of udev.
947 : **/
948 0 : int request_firmware_direct(const struct firmware **firmware_p,
949 : const char *name, struct device *device)
950 : {
951 : int ret;
952 :
953 0 : __module_get(THIS_MODULE);
954 0 : ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
955 : FW_OPT_UEVENT | FW_OPT_NO_WARN |
956 : FW_OPT_NOFALLBACK_SYSFS);
957 0 : module_put(THIS_MODULE);
958 0 : return ret;
959 : }
960 : EXPORT_SYMBOL_GPL(request_firmware_direct);
961 :
962 : /**
963 : * firmware_request_platform() - request firmware with platform-fw fallback
964 : * @firmware: pointer to firmware image
965 : * @name: name of firmware file
966 : * @device: device for which firmware is being loaded
967 : *
968 : * This function is similar in behaviour to request_firmware, except that if
969 : * direct filesystem lookup fails, it will fallback to looking for a copy of the
970 : * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
971 : **/
972 0 : int firmware_request_platform(const struct firmware **firmware,
973 : const char *name, struct device *device)
974 : {
975 : int ret;
976 :
977 : /* Need to pin this module until return */
978 0 : __module_get(THIS_MODULE);
979 0 : ret = _request_firmware(firmware, name, device, NULL, 0, 0,
980 : FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
981 0 : module_put(THIS_MODULE);
982 0 : return ret;
983 : }
984 : EXPORT_SYMBOL_GPL(firmware_request_platform);
985 :
986 : /**
987 : * firmware_request_cache() - cache firmware for suspend so resume can use it
988 : * @name: name of firmware file
989 : * @device: device for which firmware should be cached for
990 : *
991 : * There are some devices with an optimization that enables the device to not
992 : * require loading firmware on system reboot. This optimization may still
993 : * require the firmware present on resume from suspend. This routine can be
994 : * used to ensure the firmware is present on resume from suspend in these
995 : * situations. This helper is not compatible with drivers which use
996 : * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
997 : **/
998 0 : int firmware_request_cache(struct device *device, const char *name)
999 : {
1000 : int ret;
1001 :
1002 0 : mutex_lock(&fw_lock);
1003 0 : ret = fw_add_devm_name(device, name);
1004 0 : mutex_unlock(&fw_lock);
1005 :
1006 0 : return ret;
1007 : }
1008 : EXPORT_SYMBOL_GPL(firmware_request_cache);
1009 :
1010 : /**
1011 : * request_firmware_into_buf() - load firmware into a previously allocated buffer
1012 : * @firmware_p: pointer to firmware image
1013 : * @name: name of firmware file
1014 : * @device: device for which firmware is being loaded and DMA region allocated
1015 : * @buf: address of buffer to load firmware into
1016 : * @size: size of buffer
1017 : *
1018 : * This function works pretty much like request_firmware(), but it doesn't
1019 : * allocate a buffer to hold the firmware data. Instead, the firmware
1020 : * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1021 : * data member is pointed at @buf.
1022 : *
1023 : * This function doesn't cache firmware either.
1024 : */
1025 : int
1026 0 : request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1027 : struct device *device, void *buf, size_t size)
1028 : {
1029 : int ret;
1030 :
1031 0 : if (fw_cache_is_setup(device, name))
1032 : return -EOPNOTSUPP;
1033 :
1034 0 : __module_get(THIS_MODULE);
1035 0 : ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1036 : FW_OPT_UEVENT | FW_OPT_NOCACHE);
1037 0 : module_put(THIS_MODULE);
1038 0 : return ret;
1039 : }
1040 : EXPORT_SYMBOL(request_firmware_into_buf);
1041 :
1042 : /**
1043 : * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1044 : * @firmware_p: pointer to firmware image
1045 : * @name: name of firmware file
1046 : * @device: device for which firmware is being loaded and DMA region allocated
1047 : * @buf: address of buffer to load firmware into
1048 : * @size: size of buffer
1049 : * @offset: offset into file to read
1050 : *
1051 : * This function works pretty much like request_firmware_into_buf except
1052 : * it allows a partial read of the file.
1053 : */
1054 : int
1055 0 : request_partial_firmware_into_buf(const struct firmware **firmware_p,
1056 : const char *name, struct device *device,
1057 : void *buf, size_t size, size_t offset)
1058 : {
1059 : int ret;
1060 :
1061 0 : if (fw_cache_is_setup(device, name))
1062 : return -EOPNOTSUPP;
1063 :
1064 0 : __module_get(THIS_MODULE);
1065 0 : ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1066 : FW_OPT_UEVENT | FW_OPT_NOCACHE |
1067 : FW_OPT_PARTIAL);
1068 0 : module_put(THIS_MODULE);
1069 0 : return ret;
1070 : }
1071 : EXPORT_SYMBOL(request_partial_firmware_into_buf);
1072 :
1073 : /**
1074 : * release_firmware() - release the resource associated with a firmware image
1075 : * @fw: firmware resource to release
1076 : **/
1077 0 : void release_firmware(const struct firmware *fw)
1078 : {
1079 0 : if (fw) {
1080 0 : if (!firmware_is_builtin(fw))
1081 0 : firmware_free_data(fw);
1082 0 : kfree(fw);
1083 : }
1084 0 : }
1085 : EXPORT_SYMBOL(release_firmware);
1086 :
1087 : /* Async support */
1088 : struct firmware_work {
1089 : struct work_struct work;
1090 : struct module *module;
1091 : const char *name;
1092 : struct device *device;
1093 : void *context;
1094 : void (*cont)(const struct firmware *fw, void *context);
1095 : u32 opt_flags;
1096 : };
1097 :
1098 0 : static void request_firmware_work_func(struct work_struct *work)
1099 : {
1100 : struct firmware_work *fw_work;
1101 : const struct firmware *fw;
1102 :
1103 0 : fw_work = container_of(work, struct firmware_work, work);
1104 :
1105 0 : _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1106 : fw_work->opt_flags);
1107 0 : fw_work->cont(fw, fw_work->context);
1108 0 : put_device(fw_work->device); /* taken in request_firmware_nowait() */
1109 :
1110 0 : module_put(fw_work->module);
1111 0 : kfree_const(fw_work->name);
1112 0 : kfree(fw_work);
1113 0 : }
1114 :
1115 : /**
1116 : * request_firmware_nowait() - asynchronous version of request_firmware
1117 : * @module: module requesting the firmware
1118 : * @uevent: sends uevent to copy the firmware image if this flag
1119 : * is non-zero else the firmware copy must be done manually.
1120 : * @name: name of firmware file
1121 : * @device: device for which firmware is being loaded
1122 : * @gfp: allocation flags
1123 : * @context: will be passed over to @cont, and
1124 : * @fw may be %NULL if firmware request fails.
1125 : * @cont: function will be called asynchronously when the firmware
1126 : * request is over.
1127 : *
1128 : * Caller must hold the reference count of @device.
1129 : *
1130 : * Asynchronous variant of request_firmware() for user contexts:
1131 : * - sleep for as small periods as possible since it may
1132 : * increase kernel boot time of built-in device drivers
1133 : * requesting firmware in their ->probe() methods, if
1134 : * @gfp is GFP_KERNEL.
1135 : *
1136 : * - can't sleep at all if @gfp is GFP_ATOMIC.
1137 : **/
1138 : int
1139 0 : request_firmware_nowait(
1140 : struct module *module, bool uevent,
1141 : const char *name, struct device *device, gfp_t gfp, void *context,
1142 : void (*cont)(const struct firmware *fw, void *context))
1143 : {
1144 : struct firmware_work *fw_work;
1145 :
1146 0 : fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1147 0 : if (!fw_work)
1148 : return -ENOMEM;
1149 :
1150 0 : fw_work->module = module;
1151 0 : fw_work->name = kstrdup_const(name, gfp);
1152 0 : if (!fw_work->name) {
1153 0 : kfree(fw_work);
1154 0 : return -ENOMEM;
1155 : }
1156 0 : fw_work->device = device;
1157 0 : fw_work->context = context;
1158 0 : fw_work->cont = cont;
1159 0 : fw_work->opt_flags = FW_OPT_NOWAIT |
1160 : (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1161 :
1162 0 : if (!uevent && fw_cache_is_setup(device, name)) {
1163 0 : kfree_const(fw_work->name);
1164 0 : kfree(fw_work);
1165 0 : return -EOPNOTSUPP;
1166 : }
1167 :
1168 0 : if (!try_module_get(module)) {
1169 : kfree_const(fw_work->name);
1170 : kfree(fw_work);
1171 : return -EFAULT;
1172 : }
1173 :
1174 0 : get_device(fw_work->device);
1175 0 : INIT_WORK(&fw_work->work, request_firmware_work_func);
1176 0 : schedule_work(&fw_work->work);
1177 0 : return 0;
1178 : }
1179 : EXPORT_SYMBOL(request_firmware_nowait);
1180 :
1181 : #ifdef CONFIG_FW_CACHE
1182 : static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1183 :
1184 : /**
1185 : * cache_firmware() - cache one firmware image in kernel memory space
1186 : * @fw_name: the firmware image name
1187 : *
1188 : * Cache firmware in kernel memory so that drivers can use it when
1189 : * system isn't ready for them to request firmware image from userspace.
1190 : * Once it returns successfully, driver can use request_firmware or its
1191 : * nowait version to get the cached firmware without any interacting
1192 : * with userspace
1193 : *
1194 : * Return 0 if the firmware image has been cached successfully
1195 : * Return !0 otherwise
1196 : *
1197 : */
1198 0 : static int cache_firmware(const char *fw_name)
1199 : {
1200 : int ret;
1201 : const struct firmware *fw;
1202 :
1203 0 : pr_debug("%s: %s\n", __func__, fw_name);
1204 :
1205 0 : ret = request_firmware(&fw, fw_name, NULL);
1206 0 : if (!ret)
1207 0 : kfree(fw);
1208 :
1209 : pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1210 :
1211 0 : return ret;
1212 : }
1213 :
1214 : static struct fw_priv *lookup_fw_priv(const char *fw_name)
1215 : {
1216 : struct fw_priv *tmp;
1217 0 : struct firmware_cache *fwc = &fw_cache;
1218 :
1219 0 : spin_lock(&fwc->lock);
1220 0 : tmp = __lookup_fw_priv(fw_name);
1221 0 : spin_unlock(&fwc->lock);
1222 :
1223 : return tmp;
1224 : }
1225 :
1226 : /**
1227 : * uncache_firmware() - remove one cached firmware image
1228 : * @fw_name: the firmware image name
1229 : *
1230 : * Uncache one firmware image which has been cached successfully
1231 : * before.
1232 : *
1233 : * Return 0 if the firmware cache has been removed successfully
1234 : * Return !0 otherwise
1235 : *
1236 : */
1237 0 : static int uncache_firmware(const char *fw_name)
1238 : {
1239 : struct fw_priv *fw_priv;
1240 : struct firmware fw;
1241 :
1242 : pr_debug("%s: %s\n", __func__, fw_name);
1243 :
1244 0 : if (firmware_request_builtin(&fw, fw_name))
1245 : return 0;
1246 :
1247 0 : fw_priv = lookup_fw_priv(fw_name);
1248 0 : if (fw_priv) {
1249 0 : free_fw_priv(fw_priv);
1250 0 : return 0;
1251 : }
1252 :
1253 : return -EINVAL;
1254 : }
1255 :
1256 0 : static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1257 : {
1258 : struct fw_cache_entry *fce;
1259 :
1260 0 : fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1261 0 : if (!fce)
1262 : goto exit;
1263 :
1264 0 : fce->name = kstrdup_const(name, GFP_ATOMIC);
1265 0 : if (!fce->name) {
1266 0 : kfree(fce);
1267 0 : fce = NULL;
1268 0 : goto exit;
1269 : }
1270 : exit:
1271 0 : return fce;
1272 : }
1273 :
1274 0 : static int __fw_entry_found(const char *name)
1275 : {
1276 0 : struct firmware_cache *fwc = &fw_cache;
1277 : struct fw_cache_entry *fce;
1278 :
1279 0 : list_for_each_entry(fce, &fwc->fw_names, list) {
1280 0 : if (!strcmp(fce->name, name))
1281 : return 1;
1282 : }
1283 : return 0;
1284 : }
1285 :
1286 0 : static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1287 : {
1288 0 : const char *name = fw_priv->fw_name;
1289 0 : struct firmware_cache *fwc = fw_priv->fwc;
1290 : struct fw_cache_entry *fce;
1291 :
1292 0 : spin_lock(&fwc->name_lock);
1293 0 : if (__fw_entry_found(name))
1294 : goto found;
1295 :
1296 0 : fce = alloc_fw_cache_entry(name);
1297 0 : if (fce) {
1298 0 : list_add(&fce->list, &fwc->fw_names);
1299 0 : kref_get(&fw_priv->ref);
1300 : pr_debug("%s: fw: %s\n", __func__, name);
1301 : }
1302 : found:
1303 0 : spin_unlock(&fwc->name_lock);
1304 0 : }
1305 :
1306 : static void free_fw_cache_entry(struct fw_cache_entry *fce)
1307 : {
1308 0 : kfree_const(fce->name);
1309 0 : kfree(fce);
1310 : }
1311 :
1312 0 : static void __async_dev_cache_fw_image(void *fw_entry,
1313 : async_cookie_t cookie)
1314 : {
1315 0 : struct fw_cache_entry *fce = fw_entry;
1316 0 : struct firmware_cache *fwc = &fw_cache;
1317 : int ret;
1318 :
1319 0 : ret = cache_firmware(fce->name);
1320 0 : if (ret) {
1321 0 : spin_lock(&fwc->name_lock);
1322 0 : list_del(&fce->list);
1323 0 : spin_unlock(&fwc->name_lock);
1324 :
1325 : free_fw_cache_entry(fce);
1326 : }
1327 0 : }
1328 :
1329 : /* called with dev->devres_lock held */
1330 0 : static void dev_create_fw_entry(struct device *dev, void *res,
1331 : void *data)
1332 : {
1333 0 : struct fw_name_devm *fwn = res;
1334 0 : const char *fw_name = fwn->name;
1335 0 : struct list_head *head = data;
1336 : struct fw_cache_entry *fce;
1337 :
1338 0 : fce = alloc_fw_cache_entry(fw_name);
1339 0 : if (fce)
1340 0 : list_add(&fce->list, head);
1341 0 : }
1342 :
1343 0 : static int devm_name_match(struct device *dev, void *res,
1344 : void *match_data)
1345 : {
1346 0 : struct fw_name_devm *fwn = res;
1347 0 : return (fwn->magic == (unsigned long)match_data);
1348 : }
1349 :
1350 0 : static void dev_cache_fw_image(struct device *dev, void *data)
1351 : {
1352 0 : LIST_HEAD(todo);
1353 : struct fw_cache_entry *fce;
1354 : struct fw_cache_entry *fce_next;
1355 0 : struct firmware_cache *fwc = &fw_cache;
1356 :
1357 0 : devres_for_each_res(dev, fw_name_devm_release,
1358 : devm_name_match, &fw_cache,
1359 : dev_create_fw_entry, &todo);
1360 :
1361 0 : list_for_each_entry_safe(fce, fce_next, &todo, list) {
1362 0 : list_del(&fce->list);
1363 :
1364 0 : spin_lock(&fwc->name_lock);
1365 : /* only one cache entry for one firmware */
1366 0 : if (!__fw_entry_found(fce->name)) {
1367 0 : list_add(&fce->list, &fwc->fw_names);
1368 : } else {
1369 0 : free_fw_cache_entry(fce);
1370 0 : fce = NULL;
1371 : }
1372 0 : spin_unlock(&fwc->name_lock);
1373 :
1374 0 : if (fce)
1375 : async_schedule_domain(__async_dev_cache_fw_image,
1376 : (void *)fce,
1377 : &fw_cache_domain);
1378 : }
1379 0 : }
1380 :
1381 0 : static void __device_uncache_fw_images(void)
1382 : {
1383 0 : struct firmware_cache *fwc = &fw_cache;
1384 : struct fw_cache_entry *fce;
1385 :
1386 0 : spin_lock(&fwc->name_lock);
1387 0 : while (!list_empty(&fwc->fw_names)) {
1388 0 : fce = list_entry(fwc->fw_names.next,
1389 : struct fw_cache_entry, list);
1390 0 : list_del(&fce->list);
1391 0 : spin_unlock(&fwc->name_lock);
1392 :
1393 0 : uncache_firmware(fce->name);
1394 0 : free_fw_cache_entry(fce);
1395 :
1396 0 : spin_lock(&fwc->name_lock);
1397 : }
1398 0 : spin_unlock(&fwc->name_lock);
1399 0 : }
1400 :
1401 : /**
1402 : * device_cache_fw_images() - cache devices' firmware
1403 : *
1404 : * If one device called request_firmware or its nowait version
1405 : * successfully before, the firmware names are recored into the
1406 : * device's devres link list, so device_cache_fw_images can call
1407 : * cache_firmware() to cache these firmwares for the device,
1408 : * then the device driver can load its firmwares easily at
1409 : * time when system is not ready to complete loading firmware.
1410 : */
1411 0 : static void device_cache_fw_images(void)
1412 : {
1413 0 : struct firmware_cache *fwc = &fw_cache;
1414 0 : DEFINE_WAIT(wait);
1415 :
1416 : pr_debug("%s\n", __func__);
1417 :
1418 : /* cancel uncache work */
1419 0 : cancel_delayed_work_sync(&fwc->work);
1420 :
1421 : fw_fallback_set_cache_timeout();
1422 :
1423 0 : mutex_lock(&fw_lock);
1424 0 : fwc->state = FW_LOADER_START_CACHE;
1425 0 : dpm_for_each_dev(NULL, dev_cache_fw_image);
1426 0 : mutex_unlock(&fw_lock);
1427 :
1428 : /* wait for completion of caching firmware for all devices */
1429 0 : async_synchronize_full_domain(&fw_cache_domain);
1430 :
1431 : fw_fallback_set_default_timeout();
1432 0 : }
1433 :
1434 : /**
1435 : * device_uncache_fw_images() - uncache devices' firmware
1436 : *
1437 : * uncache all firmwares which have been cached successfully
1438 : * by device_uncache_fw_images earlier
1439 : */
1440 : static void device_uncache_fw_images(void)
1441 : {
1442 : pr_debug("%s\n", __func__);
1443 0 : __device_uncache_fw_images();
1444 : }
1445 :
1446 0 : static void device_uncache_fw_images_work(struct work_struct *work)
1447 : {
1448 : device_uncache_fw_images();
1449 0 : }
1450 :
1451 : /**
1452 : * device_uncache_fw_images_delay() - uncache devices firmwares
1453 : * @delay: number of milliseconds to delay uncache device firmwares
1454 : *
1455 : * uncache all devices's firmwares which has been cached successfully
1456 : * by device_cache_fw_images after @delay milliseconds.
1457 : */
1458 0 : static void device_uncache_fw_images_delay(unsigned long delay)
1459 : {
1460 0 : queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1461 : msecs_to_jiffies(delay));
1462 0 : }
1463 :
1464 0 : static int fw_pm_notify(struct notifier_block *notify_block,
1465 : unsigned long mode, void *unused)
1466 : {
1467 : switch (mode) {
1468 : case PM_HIBERNATION_PREPARE:
1469 : case PM_SUSPEND_PREPARE:
1470 : case PM_RESTORE_PREPARE:
1471 : /*
1472 : * kill pending fallback requests with a custom fallback
1473 : * to avoid stalling suspend.
1474 : */
1475 0 : kill_pending_fw_fallback_reqs(true);
1476 0 : device_cache_fw_images();
1477 0 : break;
1478 :
1479 : case PM_POST_SUSPEND:
1480 : case PM_POST_HIBERNATION:
1481 : case PM_POST_RESTORE:
1482 : /*
1483 : * In case that system sleep failed and syscore_suspend is
1484 : * not called.
1485 : */
1486 0 : mutex_lock(&fw_lock);
1487 0 : fw_cache.state = FW_LOADER_NO_CACHE;
1488 0 : mutex_unlock(&fw_lock);
1489 :
1490 0 : device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1491 0 : break;
1492 : }
1493 :
1494 0 : return 0;
1495 : }
1496 :
1497 : /* stop caching firmware once syscore_suspend is reached */
1498 0 : static int fw_suspend(void)
1499 : {
1500 0 : fw_cache.state = FW_LOADER_NO_CACHE;
1501 0 : return 0;
1502 : }
1503 :
1504 : static struct syscore_ops fw_syscore_ops = {
1505 : .suspend = fw_suspend,
1506 : };
1507 :
1508 1 : static int __init register_fw_pm_ops(void)
1509 : {
1510 : int ret;
1511 :
1512 1 : spin_lock_init(&fw_cache.name_lock);
1513 1 : INIT_LIST_HEAD(&fw_cache.fw_names);
1514 :
1515 2 : INIT_DELAYED_WORK(&fw_cache.work,
1516 : device_uncache_fw_images_work);
1517 :
1518 1 : fw_cache.pm_notify.notifier_call = fw_pm_notify;
1519 1 : ret = register_pm_notifier(&fw_cache.pm_notify);
1520 1 : if (ret)
1521 : return ret;
1522 :
1523 1 : register_syscore_ops(&fw_syscore_ops);
1524 :
1525 1 : return ret;
1526 : }
1527 :
1528 : static inline void unregister_fw_pm_ops(void)
1529 : {
1530 0 : unregister_syscore_ops(&fw_syscore_ops);
1531 0 : unregister_pm_notifier(&fw_cache.pm_notify);
1532 : }
1533 : #else
1534 : static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1535 : {
1536 : }
1537 : static inline int register_fw_pm_ops(void)
1538 : {
1539 : return 0;
1540 : }
1541 : static inline void unregister_fw_pm_ops(void)
1542 : {
1543 : }
1544 : #endif
1545 :
1546 1 : static void __init fw_cache_init(void)
1547 : {
1548 1 : spin_lock_init(&fw_cache.lock);
1549 1 : INIT_LIST_HEAD(&fw_cache.head);
1550 1 : fw_cache.state = FW_LOADER_NO_CACHE;
1551 1 : }
1552 :
1553 1 : static int fw_shutdown_notify(struct notifier_block *unused1,
1554 : unsigned long unused2, void *unused3)
1555 : {
1556 : /*
1557 : * Kill all pending fallback requests to avoid both stalling shutdown,
1558 : * and avoid a deadlock with the usermode_lock.
1559 : */
1560 1 : kill_pending_fw_fallback_reqs(false);
1561 :
1562 1 : return NOTIFY_DONE;
1563 : }
1564 :
1565 : static struct notifier_block fw_shutdown_nb = {
1566 : .notifier_call = fw_shutdown_notify,
1567 : };
1568 :
1569 1 : static int __init firmware_class_init(void)
1570 : {
1571 : int ret;
1572 :
1573 : /* No need to unfold these on exit */
1574 1 : fw_cache_init();
1575 :
1576 1 : ret = register_fw_pm_ops();
1577 1 : if (ret)
1578 : return ret;
1579 :
1580 1 : ret = register_reboot_notifier(&fw_shutdown_nb);
1581 1 : if (ret)
1582 : goto out;
1583 :
1584 : return register_sysfs_loader();
1585 :
1586 : out:
1587 : unregister_fw_pm_ops();
1588 0 : return ret;
1589 : }
1590 :
1591 0 : static void __exit firmware_class_exit(void)
1592 : {
1593 : unregister_fw_pm_ops();
1594 0 : unregister_reboot_notifier(&fw_shutdown_nb);
1595 : unregister_sysfs_loader();
1596 0 : }
1597 :
1598 : fs_initcall(firmware_class_init);
1599 : module_exit(firmware_class_exit);
|