Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 2020 Intel
4 : *
5 : * Based on drivers/base/devres.c
6 : */
7 :
8 : #include <drm/drm_managed.h>
9 :
10 : #include <linux/list.h>
11 : #include <linux/mutex.h>
12 : #include <linux/slab.h>
13 : #include <linux/spinlock.h>
14 :
15 : #include <drm/drm_device.h>
16 : #include <drm/drm_print.h>
17 :
18 : #include "drm_internal.h"
19 :
20 : /**
21 : * DOC: managed resources
22 : *
23 : * Inspired by struct &device managed resources, but tied to the lifetime of
24 : * struct &drm_device, which can outlive the underlying physical device, usually
25 : * when userspace has some open files and other handles to resources still open.
26 : *
27 : * Release actions can be added with drmm_add_action(), memory allocations can
28 : * be done directly with drmm_kmalloc() and the related functions. Everything
29 : * will be released on the final drm_dev_put() in reverse order of how the
30 : * release actions have been added and memory has been allocated since driver
31 : * loading started with devm_drm_dev_alloc().
32 : *
33 : * Note that release actions and managed memory can also be added and removed
34 : * during the lifetime of the driver, all the functions are fully concurrent
35 : * safe. But it is recommended to use managed resources only for resources that
36 : * change rarely, if ever, during the lifetime of the &drm_device instance.
37 : */
38 :
39 : struct drmres_node {
40 : struct list_head entry;
41 : drmres_release_t release;
42 : const char *name;
43 : size_t size;
44 : };
45 :
46 : struct drmres {
47 : struct drmres_node node;
48 : /*
49 : * Some archs want to perform DMA into kmalloc caches
50 : * and need a guaranteed alignment larger than
51 : * the alignment of a 64-bit integer.
52 : * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
53 : * buffer alignment as if it was allocated by plain kmalloc().
54 : */
55 : u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
56 : };
57 :
58 : static void free_dr(struct drmres *dr)
59 : {
60 98 : kfree_const(dr->node.name);
61 98 : kfree(dr);
62 : }
63 :
64 17 : void drm_managed_release(struct drm_device *dev)
65 : {
66 : struct drmres *dr, *tmp;
67 :
68 17 : drm_dbg_drmres(dev, "drmres release begin\n");
69 115 : list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
70 98 : drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
71 : dr, dr->node.name, dr->node.size);
72 :
73 98 : if (dr->node.release)
74 64 : dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
75 :
76 196 : list_del(&dr->node.entry);
77 98 : free_dr(dr);
78 : }
79 17 : drm_dbg_drmres(dev, "drmres release end\n");
80 17 : }
81 :
82 : /*
83 : * Always inline so that kmalloc_track_caller tracks the actual interesting
84 : * caller outside of drm_managed.c.
85 : */
86 : static __always_inline struct drmres * alloc_dr(drmres_release_t release,
87 : size_t size, gfp_t gfp, int nid)
88 : {
89 : size_t tot_size;
90 : struct drmres *dr;
91 :
92 : /* We must catch any near-SIZE_MAX cases that could overflow. */
93 196 : if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
94 : return NULL;
95 :
96 98 : dr = kmalloc_node_track_caller(tot_size, gfp, nid);
97 98 : if (unlikely(!dr))
98 : return NULL;
99 :
100 98 : memset(dr, 0, offsetof(struct drmres, data));
101 :
102 196 : INIT_LIST_HEAD(&dr->node.entry);
103 98 : dr->node.release = release;
104 98 : dr->node.size = size;
105 :
106 : return dr;
107 : }
108 :
109 0 : static void del_dr(struct drm_device *dev, struct drmres *dr)
110 : {
111 0 : list_del_init(&dr->node.entry);
112 :
113 0 : drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
114 : dr, dr->node.name, (unsigned long) dr->node.size);
115 0 : }
116 :
117 98 : static void add_dr(struct drm_device *dev, struct drmres *dr)
118 : {
119 : unsigned long flags;
120 :
121 98 : spin_lock_irqsave(&dev->managed.lock, flags);
122 196 : list_add(&dr->node.entry, &dev->managed.resources);
123 196 : spin_unlock_irqrestore(&dev->managed.lock, flags);
124 :
125 98 : drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
126 : dr, dr->node.name, (unsigned long) dr->node.size);
127 98 : }
128 :
129 17 : void drmm_add_final_kfree(struct drm_device *dev, void *container)
130 : {
131 17 : WARN_ON(dev->managed.final_kfree);
132 17 : WARN_ON(dev < (struct drm_device *) container);
133 17 : WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
134 17 : dev->managed.final_kfree = container;
135 17 : }
136 :
137 64 : int __drmm_add_action(struct drm_device *dev,
138 : drmres_release_t action,
139 : void *data, const char *name)
140 : {
141 : struct drmres *dr;
142 : void **void_ptr;
143 :
144 128 : dr = alloc_dr(action, data ? sizeof(void*) : 0,
145 : GFP_KERNEL | __GFP_ZERO,
146 : dev_to_node(dev->dev));
147 64 : if (!dr) {
148 0 : drm_dbg_drmres(dev, "failed to add action %s for %p\n",
149 : name, data);
150 0 : return -ENOMEM;
151 : }
152 :
153 64 : dr->node.name = kstrdup_const(name, GFP_KERNEL);
154 64 : if (data) {
155 30 : void_ptr = (void **)&dr->data;
156 30 : *void_ptr = data;
157 : }
158 :
159 64 : add_dr(dev, dr);
160 :
161 64 : return 0;
162 : }
163 : EXPORT_SYMBOL(__drmm_add_action);
164 :
165 64 : int __drmm_add_action_or_reset(struct drm_device *dev,
166 : drmres_release_t action,
167 : void *data, const char *name)
168 : {
169 : int ret;
170 :
171 64 : ret = __drmm_add_action(dev, action, data, name);
172 64 : if (ret)
173 0 : action(dev, data);
174 :
175 64 : return ret;
176 : }
177 : EXPORT_SYMBOL(__drmm_add_action_or_reset);
178 :
179 : /**
180 : * drmm_kmalloc - &drm_device managed kmalloc()
181 : * @dev: DRM device
182 : * @size: size of the memory allocation
183 : * @gfp: GFP allocation flags
184 : *
185 : * This is a &drm_device managed version of kmalloc(). The allocated memory is
186 : * automatically freed on the final drm_dev_put(). Memory can also be freed
187 : * before the final drm_dev_put() by calling drmm_kfree().
188 : */
189 34 : void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
190 : {
191 : struct drmres *dr;
192 :
193 68 : dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
194 34 : if (!dr) {
195 0 : drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
196 : size, gfp);
197 0 : return NULL;
198 : }
199 34 : dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
200 :
201 34 : add_dr(dev, dr);
202 :
203 34 : return dr->data;
204 : }
205 : EXPORT_SYMBOL(drmm_kmalloc);
206 :
207 : /**
208 : * drmm_kstrdup - &drm_device managed kstrdup()
209 : * @dev: DRM device
210 : * @s: 0-terminated string to be duplicated
211 : * @gfp: GFP allocation flags
212 : *
213 : * This is a &drm_device managed version of kstrdup(). The allocated memory is
214 : * automatically freed on the final drm_dev_put() and works exactly like a
215 : * memory allocation obtained by drmm_kmalloc().
216 : */
217 17 : char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
218 : {
219 : size_t size;
220 : char *buf;
221 :
222 17 : if (!s)
223 : return NULL;
224 :
225 17 : size = strlen(s) + 1;
226 17 : buf = drmm_kmalloc(dev, size, gfp);
227 17 : if (buf)
228 17 : memcpy(buf, s, size);
229 : return buf;
230 : }
231 : EXPORT_SYMBOL_GPL(drmm_kstrdup);
232 :
233 : /**
234 : * drmm_kfree - &drm_device managed kfree()
235 : * @dev: DRM device
236 : * @data: memory allocation to be freed
237 : *
238 : * This is a &drm_device managed version of kfree() which can be used to
239 : * release memory allocated through drmm_kmalloc() or any of its related
240 : * functions before the final drm_dev_put() of @dev.
241 : */
242 0 : void drmm_kfree(struct drm_device *dev, void *data)
243 : {
244 0 : struct drmres *dr_match = NULL, *dr;
245 : unsigned long flags;
246 :
247 0 : if (!data)
248 : return;
249 :
250 0 : spin_lock_irqsave(&dev->managed.lock, flags);
251 0 : list_for_each_entry(dr, &dev->managed.resources, node.entry) {
252 0 : if (dr->data == data) {
253 0 : dr_match = dr;
254 0 : del_dr(dev, dr_match);
255 0 : break;
256 : }
257 : }
258 0 : spin_unlock_irqrestore(&dev->managed.lock, flags);
259 :
260 0 : if (WARN_ON(!dr_match))
261 : return;
262 :
263 : free_dr(dr_match);
264 : }
265 : EXPORT_SYMBOL(drmm_kfree);
266 :
267 0 : static void drmm_mutex_release(struct drm_device *dev, void *res)
268 : {
269 0 : struct mutex *lock = res;
270 :
271 0 : mutex_destroy(lock);
272 0 : }
273 :
274 : /**
275 : * drmm_mutex_init - &drm_device-managed mutex_init()
276 : * @dev: DRM device
277 : * @lock: lock to be initialized
278 : *
279 : * Returns:
280 : * 0 on success, or a negative errno code otherwise.
281 : *
282 : * This is a &drm_device-managed version of mutex_init(). The initialized
283 : * lock is automatically destroyed on the final drm_dev_put().
284 : */
285 0 : int drmm_mutex_init(struct drm_device *dev, struct mutex *lock)
286 : {
287 0 : mutex_init(lock);
288 :
289 0 : return drmm_add_action_or_reset(dev, drmm_mutex_release, lock);
290 : }
291 : EXPORT_SYMBOL(drmm_mutex_init);
|