Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * HID support for Linux
4 : *
5 : * Copyright (c) 1999 Andreas Gal
6 : * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 : * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 : * Copyright (c) 2006-2012 Jiri Kosina
9 : */
10 :
11 : /*
12 : */
13 :
14 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 :
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/init.h>
19 : #include <linux/kernel.h>
20 : #include <linux/list.h>
21 : #include <linux/mm.h>
22 : #include <linux/spinlock.h>
23 : #include <asm/unaligned.h>
24 : #include <asm/byteorder.h>
25 : #include <linux/input.h>
26 : #include <linux/wait.h>
27 : #include <linux/vmalloc.h>
28 : #include <linux/sched.h>
29 : #include <linux/semaphore.h>
30 :
31 : #include <linux/hid.h>
32 : #include <linux/hiddev.h>
33 : #include <linux/hid-debug.h>
34 : #include <linux/hidraw.h>
35 :
36 : #include "hid-ids.h"
37 :
38 : /*
39 : * Version Information
40 : */
41 :
42 : #define DRIVER_DESC "HID core driver"
43 :
44 : static int hid_ignore_special_drivers = 0;
45 : module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 : MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 :
48 : /*
49 : * Register a new report for a device.
50 : */
51 :
52 0 : struct hid_report *hid_register_report(struct hid_device *device,
53 : enum hid_report_type type, unsigned int id,
54 : unsigned int application)
55 : {
56 0 : struct hid_report_enum *report_enum = device->report_enum + type;
57 : struct hid_report *report;
58 :
59 0 : if (id >= HID_MAX_IDS)
60 : return NULL;
61 0 : if (report_enum->report_id_hash[id])
62 : return report_enum->report_id_hash[id];
63 :
64 0 : report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 0 : if (!report)
66 : return NULL;
67 :
68 0 : if (id != 0)
69 0 : report_enum->numbered = 1;
70 :
71 0 : report->id = id;
72 0 : report->type = type;
73 0 : report->size = 0;
74 0 : report->device = device;
75 0 : report->application = application;
76 0 : report_enum->report_id_hash[id] = report;
77 :
78 0 : list_add_tail(&report->list, &report_enum->report_list);
79 0 : INIT_LIST_HEAD(&report->field_entry_list);
80 :
81 0 : return report;
82 : }
83 : EXPORT_SYMBOL_GPL(hid_register_report);
84 :
85 : /*
86 : * Register a new field for this report.
87 : */
88 :
89 0 : static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 : {
91 : struct hid_field *field;
92 :
93 0 : if (report->maxfield == HID_MAX_FIELDS) {
94 0 : hid_err(report->device, "too many fields in report\n");
95 0 : return NULL;
96 : }
97 :
98 0 : field = kzalloc((sizeof(struct hid_field) +
99 0 : usages * sizeof(struct hid_usage) +
100 0 : 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 0 : if (!field)
102 : return NULL;
103 :
104 0 : field->index = report->maxfield++;
105 0 : report->field[field->index] = field;
106 0 : field->usage = (struct hid_usage *)(field + 1);
107 0 : field->value = (s32 *)(field->usage + usages);
108 0 : field->new_value = (s32 *)(field->value + usages);
109 0 : field->usages_priorities = (s32 *)(field->new_value + usages);
110 0 : field->report = report;
111 :
112 0 : return field;
113 : }
114 :
115 : /*
116 : * Open a collection. The type/usage is pushed on the stack.
117 : */
118 :
119 0 : static int open_collection(struct hid_parser *parser, unsigned type)
120 : {
121 : struct hid_collection *collection;
122 : unsigned usage;
123 : int collection_index;
124 :
125 0 : usage = parser->local.usage[0];
126 :
127 0 : if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 : unsigned int *collection_stack;
129 0 : unsigned int new_size = parser->collection_stack_size +
130 : HID_COLLECTION_STACK_SIZE;
131 :
132 0 : collection_stack = krealloc(parser->collection_stack,
133 : new_size * sizeof(unsigned int),
134 : GFP_KERNEL);
135 0 : if (!collection_stack)
136 : return -ENOMEM;
137 :
138 0 : parser->collection_stack = collection_stack;
139 0 : parser->collection_stack_size = new_size;
140 : }
141 :
142 0 : if (parser->device->maxcollection == parser->device->collection_size) {
143 0 : collection = kmalloc(
144 : array3_size(sizeof(struct hid_collection),
145 : parser->device->collection_size,
146 : 2),
147 : GFP_KERNEL);
148 0 : if (collection == NULL) {
149 0 : hid_err(parser->device, "failed to reallocate collection array\n");
150 0 : return -ENOMEM;
151 : }
152 0 : memcpy(collection, parser->device->collection,
153 : sizeof(struct hid_collection) *
154 0 : parser->device->collection_size);
155 0 : memset(collection + parser->device->collection_size, 0,
156 : sizeof(struct hid_collection) *
157 0 : parser->device->collection_size);
158 0 : kfree(parser->device->collection);
159 0 : parser->device->collection = collection;
160 0 : parser->device->collection_size *= 2;
161 : }
162 :
163 0 : parser->collection_stack[parser->collection_stack_ptr++] =
164 0 : parser->device->maxcollection;
165 :
166 0 : collection_index = parser->device->maxcollection++;
167 0 : collection = parser->device->collection + collection_index;
168 0 : collection->type = type;
169 0 : collection->usage = usage;
170 0 : collection->level = parser->collection_stack_ptr - 1;
171 0 : collection->parent_idx = (collection->level == 0) ? -1 :
172 0 : parser->collection_stack[collection->level - 1];
173 :
174 0 : if (type == HID_COLLECTION_APPLICATION)
175 0 : parser->device->maxapplication++;
176 :
177 : return 0;
178 : }
179 :
180 : /*
181 : * Close a collection.
182 : */
183 :
184 : static int close_collection(struct hid_parser *parser)
185 : {
186 0 : if (!parser->collection_stack_ptr) {
187 0 : hid_err(parser->device, "collection stack underflow\n");
188 : return -EINVAL;
189 : }
190 0 : parser->collection_stack_ptr--;
191 : return 0;
192 : }
193 :
194 : /*
195 : * Climb up the stack, search for the specified collection type
196 : * and return the usage.
197 : */
198 :
199 : static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 : {
201 0 : struct hid_collection *collection = parser->device->collection;
202 : int n;
203 :
204 0 : for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 0 : unsigned index = parser->collection_stack[n];
206 0 : if (collection[index].type == type)
207 0 : return collection[index].usage;
208 : }
209 : return 0; /* we know nothing about this usage type */
210 : }
211 :
212 : /*
213 : * Concatenate usage which defines 16 bits or less with the
214 : * currently defined usage page to form a 32 bit usage
215 : */
216 :
217 : static void complete_usage(struct hid_parser *parser, unsigned int index)
218 : {
219 0 : parser->local.usage[index] &= 0xFFFF;
220 0 : parser->local.usage[index] |=
221 0 : (parser->global.usage_page & 0xFFFF) << 16;
222 : }
223 :
224 : /*
225 : * Add a usage to the temporary parser table.
226 : */
227 :
228 0 : static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 : {
230 0 : if (parser->local.usage_index >= HID_MAX_USAGES) {
231 0 : hid_err(parser->device, "usage index exceeded\n");
232 0 : return -1;
233 : }
234 0 : parser->local.usage[parser->local.usage_index] = usage;
235 :
236 : /*
237 : * If Usage item only includes usage id, concatenate it with
238 : * currently defined usage page
239 : */
240 0 : if (size <= 2)
241 0 : complete_usage(parser, parser->local.usage_index);
242 :
243 0 : parser->local.usage_size[parser->local.usage_index] = size;
244 0 : parser->local.collection_index[parser->local.usage_index] =
245 0 : parser->collection_stack_ptr ?
246 0 : parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 0 : parser->local.usage_index++;
248 0 : return 0;
249 : }
250 :
251 : /*
252 : * Register a new field for this report.
253 : */
254 :
255 0 : static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 : {
257 : struct hid_report *report;
258 : struct hid_field *field;
259 : unsigned int usages;
260 : unsigned int offset;
261 : unsigned int i;
262 : unsigned int application;
263 :
264 0 : application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
265 :
266 0 : report = hid_register_report(parser->device, report_type,
267 : parser->global.report_id, application);
268 0 : if (!report) {
269 0 : hid_err(parser->device, "hid_register_report failed\n");
270 0 : return -1;
271 : }
272 :
273 : /* Handle both signed and unsigned cases properly */
274 0 : if ((parser->global.logical_minimum < 0 &&
275 0 : parser->global.logical_maximum <
276 0 : parser->global.logical_minimum) ||
277 0 : (parser->global.logical_minimum >= 0 &&
278 0 : (__u32)parser->global.logical_maximum <
279 0 : (__u32)parser->global.logical_minimum)) {
280 : dbg_hid("logical range invalid 0x%x 0x%x\n",
281 : parser->global.logical_minimum,
282 : parser->global.logical_maximum);
283 : return -1;
284 : }
285 :
286 0 : offset = report->size;
287 0 : report->size += parser->global.report_size * parser->global.report_count;
288 :
289 : /* Total size check: Allow for possible report index byte */
290 0 : if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
291 0 : hid_err(parser->device, "report is too long\n");
292 0 : return -1;
293 : }
294 :
295 0 : if (!parser->local.usage_index) /* Ignore padding fields */
296 : return 0;
297 :
298 0 : usages = max_t(unsigned, parser->local.usage_index,
299 : parser->global.report_count);
300 :
301 0 : field = hid_register_field(report, usages);
302 0 : if (!field)
303 : return 0;
304 :
305 0 : field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
306 0 : field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
307 0 : field->application = application;
308 :
309 0 : for (i = 0; i < usages; i++) {
310 0 : unsigned j = i;
311 : /* Duplicate the last usage we parsed if we have excess values */
312 0 : if (i >= parser->local.usage_index)
313 0 : j = parser->local.usage_index - 1;
314 0 : field->usage[i].hid = parser->local.usage[j];
315 0 : field->usage[i].collection_index =
316 0 : parser->local.collection_index[j];
317 0 : field->usage[i].usage_index = i;
318 0 : field->usage[i].resolution_multiplier = 1;
319 : }
320 :
321 0 : field->maxusage = usages;
322 0 : field->flags = flags;
323 0 : field->report_offset = offset;
324 0 : field->report_type = report_type;
325 0 : field->report_size = parser->global.report_size;
326 0 : field->report_count = parser->global.report_count;
327 0 : field->logical_minimum = parser->global.logical_minimum;
328 0 : field->logical_maximum = parser->global.logical_maximum;
329 0 : field->physical_minimum = parser->global.physical_minimum;
330 0 : field->physical_maximum = parser->global.physical_maximum;
331 0 : field->unit_exponent = parser->global.unit_exponent;
332 0 : field->unit = parser->global.unit;
333 :
334 0 : return 0;
335 : }
336 :
337 : /*
338 : * Read data value from item.
339 : */
340 :
341 : static u32 item_udata(struct hid_item *item)
342 : {
343 0 : switch (item->size) {
344 0 : case 1: return item->data.u8;
345 0 : case 2: return item->data.u16;
346 0 : case 4: return item->data.u32;
347 : }
348 : return 0;
349 : }
350 :
351 : static s32 item_sdata(struct hid_item *item)
352 : {
353 0 : switch (item->size) {
354 0 : case 1: return item->data.s8;
355 0 : case 2: return item->data.s16;
356 0 : case 4: return item->data.s32;
357 : }
358 : return 0;
359 : }
360 :
361 : /*
362 : * Process a global item.
363 : */
364 :
365 0 : static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
366 : {
367 : __s32 raw_value;
368 0 : switch (item->tag) {
369 : case HID_GLOBAL_ITEM_TAG_PUSH:
370 :
371 0 : if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
372 0 : hid_err(parser->device, "global environment stack overflow\n");
373 0 : return -1;
374 : }
375 :
376 0 : memcpy(parser->global_stack + parser->global_stack_ptr++,
377 0 : &parser->global, sizeof(struct hid_global));
378 0 : return 0;
379 :
380 : case HID_GLOBAL_ITEM_TAG_POP:
381 :
382 0 : if (!parser->global_stack_ptr) {
383 0 : hid_err(parser->device, "global environment stack underflow\n");
384 0 : return -1;
385 : }
386 :
387 0 : memcpy(&parser->global, parser->global_stack +
388 0 : --parser->global_stack_ptr, sizeof(struct hid_global));
389 0 : return 0;
390 :
391 : case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
392 0 : parser->global.usage_page = item_udata(item);
393 0 : return 0;
394 :
395 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
396 0 : parser->global.logical_minimum = item_sdata(item);
397 0 : return 0;
398 :
399 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
400 0 : if (parser->global.logical_minimum < 0)
401 0 : parser->global.logical_maximum = item_sdata(item);
402 : else
403 0 : parser->global.logical_maximum = item_udata(item);
404 : return 0;
405 :
406 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
407 0 : parser->global.physical_minimum = item_sdata(item);
408 0 : return 0;
409 :
410 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
411 0 : if (parser->global.physical_minimum < 0)
412 0 : parser->global.physical_maximum = item_sdata(item);
413 : else
414 0 : parser->global.physical_maximum = item_udata(item);
415 : return 0;
416 :
417 : case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
418 : /* Many devices provide unit exponent as a two's complement
419 : * nibble due to the common misunderstanding of HID
420 : * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
421 : * both this and the standard encoding. */
422 0 : raw_value = item_sdata(item);
423 0 : if (!(raw_value & 0xfffffff0))
424 0 : parser->global.unit_exponent = hid_snto32(raw_value, 4);
425 : else
426 0 : parser->global.unit_exponent = raw_value;
427 : return 0;
428 :
429 : case HID_GLOBAL_ITEM_TAG_UNIT:
430 0 : parser->global.unit = item_udata(item);
431 0 : return 0;
432 :
433 : case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
434 0 : parser->global.report_size = item_udata(item);
435 0 : if (parser->global.report_size > 256) {
436 0 : hid_err(parser->device, "invalid report_size %d\n",
437 : parser->global.report_size);
438 0 : return -1;
439 : }
440 : return 0;
441 :
442 : case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
443 0 : parser->global.report_count = item_udata(item);
444 0 : if (parser->global.report_count > HID_MAX_USAGES) {
445 0 : hid_err(parser->device, "invalid report_count %d\n",
446 : parser->global.report_count);
447 0 : return -1;
448 : }
449 : return 0;
450 :
451 : case HID_GLOBAL_ITEM_TAG_REPORT_ID:
452 0 : parser->global.report_id = item_udata(item);
453 0 : if (parser->global.report_id == 0 ||
454 : parser->global.report_id >= HID_MAX_IDS) {
455 0 : hid_err(parser->device, "report_id %u is invalid\n",
456 : parser->global.report_id);
457 0 : return -1;
458 : }
459 : return 0;
460 :
461 : default:
462 0 : hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
463 0 : return -1;
464 : }
465 : }
466 :
467 : /*
468 : * Process a local item.
469 : */
470 :
471 0 : static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
472 : {
473 : __u32 data;
474 : unsigned n;
475 : __u32 count;
476 :
477 0 : data = item_udata(item);
478 :
479 0 : switch (item->tag) {
480 : case HID_LOCAL_ITEM_TAG_DELIMITER:
481 :
482 0 : if (data) {
483 : /*
484 : * We treat items before the first delimiter
485 : * as global to all usage sets (branch 0).
486 : * In the moment we process only these global
487 : * items and the first delimiter set.
488 : */
489 0 : if (parser->local.delimiter_depth != 0) {
490 0 : hid_err(parser->device, "nested delimiters\n");
491 0 : return -1;
492 : }
493 0 : parser->local.delimiter_depth++;
494 0 : parser->local.delimiter_branch++;
495 : } else {
496 0 : if (parser->local.delimiter_depth < 1) {
497 0 : hid_err(parser->device, "bogus close delimiter\n");
498 0 : return -1;
499 : }
500 0 : parser->local.delimiter_depth--;
501 : }
502 : return 0;
503 :
504 : case HID_LOCAL_ITEM_TAG_USAGE:
505 :
506 0 : if (parser->local.delimiter_branch > 1) {
507 : dbg_hid("alternative usage ignored\n");
508 : return 0;
509 : }
510 :
511 0 : return hid_add_usage(parser, data, item->size);
512 :
513 : case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
514 :
515 0 : if (parser->local.delimiter_branch > 1) {
516 : dbg_hid("alternative usage ignored\n");
517 : return 0;
518 : }
519 :
520 0 : parser->local.usage_minimum = data;
521 0 : return 0;
522 :
523 : case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
524 :
525 0 : if (parser->local.delimiter_branch > 1) {
526 : dbg_hid("alternative usage ignored\n");
527 : return 0;
528 : }
529 :
530 0 : count = data - parser->local.usage_minimum;
531 0 : if (count + parser->local.usage_index >= HID_MAX_USAGES) {
532 : /*
533 : * We do not warn if the name is not set, we are
534 : * actually pre-scanning the device.
535 : */
536 0 : if (dev_name(&parser->device->dev))
537 0 : hid_warn(parser->device,
538 : "ignoring exceeding usage max\n");
539 0 : data = HID_MAX_USAGES - parser->local.usage_index +
540 0 : parser->local.usage_minimum - 1;
541 0 : if (data <= 0) {
542 0 : hid_err(parser->device,
543 : "no more usage index available\n");
544 0 : return -1;
545 : }
546 : }
547 :
548 0 : for (n = parser->local.usage_minimum; n <= data; n++)
549 0 : if (hid_add_usage(parser, n, item->size)) {
550 : dbg_hid("hid_add_usage failed\n");
551 : return -1;
552 : }
553 : return 0;
554 :
555 : default:
556 :
557 : dbg_hid("unknown local item tag 0x%x\n", item->tag);
558 : return 0;
559 : }
560 : return 0;
561 : }
562 :
563 : /*
564 : * Concatenate Usage Pages into Usages where relevant:
565 : * As per specification, 6.2.2.8: "When the parser encounters a main item it
566 : * concatenates the last declared Usage Page with a Usage to form a complete
567 : * usage value."
568 : */
569 :
570 0 : static void hid_concatenate_last_usage_page(struct hid_parser *parser)
571 : {
572 : int i;
573 : unsigned int usage_page;
574 : unsigned int current_page;
575 :
576 0 : if (!parser->local.usage_index)
577 : return;
578 :
579 0 : usage_page = parser->global.usage_page;
580 :
581 : /*
582 : * Concatenate usage page again only if last declared Usage Page
583 : * has not been already used in previous usages concatenation
584 : */
585 0 : for (i = parser->local.usage_index - 1; i >= 0; i--) {
586 0 : if (parser->local.usage_size[i] > 2)
587 : /* Ignore extended usages */
588 0 : continue;
589 :
590 0 : current_page = parser->local.usage[i] >> 16;
591 0 : if (current_page == usage_page)
592 : break;
593 :
594 0 : complete_usage(parser, i);
595 : }
596 : }
597 :
598 : /*
599 : * Process a main item.
600 : */
601 :
602 0 : static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
603 : {
604 : __u32 data;
605 : int ret;
606 :
607 0 : hid_concatenate_last_usage_page(parser);
608 :
609 0 : data = item_udata(item);
610 :
611 0 : switch (item->tag) {
612 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
613 0 : ret = open_collection(parser, data & 0xff);
614 0 : break;
615 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
616 0 : ret = close_collection(parser);
617 : break;
618 : case HID_MAIN_ITEM_TAG_INPUT:
619 0 : ret = hid_add_field(parser, HID_INPUT_REPORT, data);
620 0 : break;
621 : case HID_MAIN_ITEM_TAG_OUTPUT:
622 0 : ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
623 0 : break;
624 : case HID_MAIN_ITEM_TAG_FEATURE:
625 0 : ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
626 0 : break;
627 : default:
628 0 : hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
629 0 : ret = 0;
630 : }
631 :
632 0 : memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
633 :
634 0 : return ret;
635 : }
636 :
637 : /*
638 : * Process a reserved item.
639 : */
640 :
641 0 : static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
642 : {
643 : dbg_hid("reserved item type, tag 0x%x\n", item->tag);
644 0 : return 0;
645 : }
646 :
647 : /*
648 : * Free a report and all registered fields. The field->usage and
649 : * field->value table's are allocated behind the field, so we need
650 : * only to free(field) itself.
651 : */
652 :
653 0 : static void hid_free_report(struct hid_report *report)
654 : {
655 : unsigned n;
656 :
657 0 : kfree(report->field_entries);
658 :
659 0 : for (n = 0; n < report->maxfield; n++)
660 0 : kfree(report->field[n]);
661 0 : kfree(report);
662 0 : }
663 :
664 : /*
665 : * Close report. This function returns the device
666 : * state to the point prior to hid_open_report().
667 : */
668 0 : static void hid_close_report(struct hid_device *device)
669 : {
670 : unsigned i, j;
671 :
672 0 : for (i = 0; i < HID_REPORT_TYPES; i++) {
673 0 : struct hid_report_enum *report_enum = device->report_enum + i;
674 :
675 0 : for (j = 0; j < HID_MAX_IDS; j++) {
676 0 : struct hid_report *report = report_enum->report_id_hash[j];
677 0 : if (report)
678 0 : hid_free_report(report);
679 : }
680 0 : memset(report_enum, 0, sizeof(*report_enum));
681 0 : INIT_LIST_HEAD(&report_enum->report_list);
682 : }
683 :
684 0 : kfree(device->rdesc);
685 0 : device->rdesc = NULL;
686 0 : device->rsize = 0;
687 :
688 0 : kfree(device->collection);
689 0 : device->collection = NULL;
690 0 : device->collection_size = 0;
691 0 : device->maxcollection = 0;
692 0 : device->maxapplication = 0;
693 :
694 0 : device->status &= ~HID_STAT_PARSED;
695 0 : }
696 :
697 : /*
698 : * Free a device structure, all reports, and all fields.
699 : */
700 :
701 0 : static void hid_device_release(struct device *dev)
702 : {
703 0 : struct hid_device *hid = to_hid_device(dev);
704 :
705 0 : hid_close_report(hid);
706 0 : kfree(hid->dev_rdesc);
707 0 : kfree(hid);
708 0 : }
709 :
710 : /*
711 : * Fetch a report description item from the data stream. We support long
712 : * items, though they are not used yet.
713 : */
714 :
715 0 : static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 : {
717 : u8 b;
718 :
719 0 : if ((end - start) <= 0)
720 : return NULL;
721 :
722 0 : b = *start++;
723 :
724 0 : item->type = (b >> 2) & 3;
725 0 : item->tag = (b >> 4) & 15;
726 :
727 0 : if (item->tag == HID_ITEM_TAG_LONG) {
728 :
729 0 : item->format = HID_ITEM_FORMAT_LONG;
730 :
731 0 : if ((end - start) < 2)
732 : return NULL;
733 :
734 0 : item->size = *start++;
735 0 : item->tag = *start++;
736 :
737 0 : if ((end - start) < item->size)
738 : return NULL;
739 :
740 0 : item->data.longdata = start;
741 0 : start += item->size;
742 0 : return start;
743 : }
744 :
745 0 : item->format = HID_ITEM_FORMAT_SHORT;
746 0 : item->size = b & 3;
747 :
748 0 : switch (item->size) {
749 : case 0:
750 : return start;
751 :
752 : case 1:
753 0 : if ((end - start) < 1)
754 : return NULL;
755 0 : item->data.u8 = *start++;
756 0 : return start;
757 :
758 : case 2:
759 0 : if ((end - start) < 2)
760 : return NULL;
761 0 : item->data.u16 = get_unaligned_le16(start);
762 0 : start = (__u8 *)((__le16 *)start + 1);
763 0 : return start;
764 :
765 : case 3:
766 0 : item->size++;
767 0 : if ((end - start) < 4)
768 : return NULL;
769 0 : item->data.u32 = get_unaligned_le32(start);
770 0 : start = (__u8 *)((__le32 *)start + 1);
771 0 : return start;
772 : }
773 :
774 0 : return NULL;
775 : }
776 :
777 : static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 : {
779 0 : struct hid_device *hid = parser->device;
780 :
781 0 : if (usage == HID_DG_CONTACTID)
782 0 : hid->group = HID_GROUP_MULTITOUCH;
783 : }
784 :
785 : static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 : {
787 0 : if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 : parser->global.report_size == 8)
789 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790 :
791 0 : if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 : parser->global.report_size == 8)
793 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 : }
795 :
796 0 : static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 : {
798 0 : struct hid_device *hid = parser->device;
799 : int i;
800 :
801 0 : if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 : (type == HID_COLLECTION_PHYSICAL ||
803 : type == HID_COLLECTION_APPLICATION))
804 0 : hid->group = HID_GROUP_SENSOR_HUB;
805 :
806 0 : if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
807 0 : hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
808 0 : hid->group == HID_GROUP_MULTITOUCH)
809 0 : hid->group = HID_GROUP_GENERIC;
810 :
811 0 : if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
812 0 : for (i = 0; i < parser->local.usage_index; i++)
813 0 : if (parser->local.usage[i] == HID_GD_POINTER)
814 0 : parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
815 :
816 0 : if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
817 0 : parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
818 :
819 0 : if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
820 0 : for (i = 0; i < parser->local.usage_index; i++)
821 0 : if (parser->local.usage[i] ==
822 : (HID_UP_GOOGLEVENDOR | 0x0001))
823 0 : parser->device->group =
824 : HID_GROUP_VIVALDI;
825 0 : }
826 :
827 0 : static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
828 : {
829 : __u32 data;
830 : int i;
831 :
832 0 : hid_concatenate_last_usage_page(parser);
833 :
834 0 : data = item_udata(item);
835 :
836 0 : switch (item->tag) {
837 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
838 0 : hid_scan_collection(parser, data & 0xff);
839 0 : break;
840 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
841 : break;
842 : case HID_MAIN_ITEM_TAG_INPUT:
843 : /* ignore constant inputs, they will be ignored by hid-input */
844 0 : if (data & HID_MAIN_ITEM_CONSTANT)
845 : break;
846 0 : for (i = 0; i < parser->local.usage_index; i++)
847 0 : hid_scan_input_usage(parser, parser->local.usage[i]);
848 : break;
849 : case HID_MAIN_ITEM_TAG_OUTPUT:
850 : break;
851 : case HID_MAIN_ITEM_TAG_FEATURE:
852 0 : for (i = 0; i < parser->local.usage_index; i++)
853 0 : hid_scan_feature_usage(parser, parser->local.usage[i]);
854 : break;
855 : }
856 :
857 : /* Reset the local parser environment */
858 0 : memset(&parser->local, 0, sizeof(parser->local));
859 :
860 0 : return 0;
861 : }
862 :
863 : /*
864 : * Scan a report descriptor before the device is added to the bus.
865 : * Sets device groups and other properties that determine what driver
866 : * to load.
867 : */
868 0 : static int hid_scan_report(struct hid_device *hid)
869 : {
870 : struct hid_parser *parser;
871 : struct hid_item item;
872 0 : __u8 *start = hid->dev_rdesc;
873 0 : __u8 *end = start + hid->dev_rsize;
874 : static int (*dispatch_type[])(struct hid_parser *parser,
875 : struct hid_item *item) = {
876 : hid_scan_main,
877 : hid_parser_global,
878 : hid_parser_local,
879 : hid_parser_reserved
880 : };
881 :
882 0 : parser = vzalloc(sizeof(struct hid_parser));
883 0 : if (!parser)
884 : return -ENOMEM;
885 :
886 0 : parser->device = hid;
887 0 : hid->group = HID_GROUP_GENERIC;
888 :
889 : /*
890 : * The parsing is simpler than the one in hid_open_report() as we should
891 : * be robust against hid errors. Those errors will be raised by
892 : * hid_open_report() anyway.
893 : */
894 0 : while ((start = fetch_item(start, end, &item)) != NULL)
895 0 : dispatch_type[item.type](parser, &item);
896 :
897 : /*
898 : * Handle special flags set during scanning.
899 : */
900 0 : if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
901 0 : (hid->group == HID_GROUP_MULTITOUCH))
902 0 : hid->group = HID_GROUP_MULTITOUCH_WIN_8;
903 :
904 : /*
905 : * Vendor specific handlings
906 : */
907 0 : switch (hid->vendor) {
908 : case USB_VENDOR_ID_WACOM:
909 0 : hid->group = HID_GROUP_WACOM;
910 0 : break;
911 : case USB_VENDOR_ID_SYNAPTICS:
912 0 : if (hid->group == HID_GROUP_GENERIC)
913 0 : if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
914 : && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
915 : /*
916 : * hid-rmi should take care of them,
917 : * not hid-generic
918 : */
919 0 : hid->group = HID_GROUP_RMI;
920 : break;
921 : }
922 :
923 0 : kfree(parser->collection_stack);
924 0 : vfree(parser);
925 0 : return 0;
926 : }
927 :
928 : /**
929 : * hid_parse_report - parse device report
930 : *
931 : * @hid: hid device
932 : * @start: report start
933 : * @size: report size
934 : *
935 : * Allocate the device report as read by the bus driver. This function should
936 : * only be called from parse() in ll drivers.
937 : */
938 0 : int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
939 : {
940 0 : hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
941 0 : if (!hid->dev_rdesc)
942 : return -ENOMEM;
943 0 : hid->dev_rsize = size;
944 0 : return 0;
945 : }
946 : EXPORT_SYMBOL_GPL(hid_parse_report);
947 :
948 : static const char * const hid_report_names[] = {
949 : "HID_INPUT_REPORT",
950 : "HID_OUTPUT_REPORT",
951 : "HID_FEATURE_REPORT",
952 : };
953 : /**
954 : * hid_validate_values - validate existing device report's value indexes
955 : *
956 : * @hid: hid device
957 : * @type: which report type to examine
958 : * @id: which report ID to examine (0 for first)
959 : * @field_index: which report field to examine
960 : * @report_counts: expected number of values
961 : *
962 : * Validate the number of values in a given field of a given report, after
963 : * parsing.
964 : */
965 0 : struct hid_report *hid_validate_values(struct hid_device *hid,
966 : enum hid_report_type type, unsigned int id,
967 : unsigned int field_index,
968 : unsigned int report_counts)
969 : {
970 : struct hid_report *report;
971 :
972 0 : if (type > HID_FEATURE_REPORT) {
973 0 : hid_err(hid, "invalid HID report type %u\n", type);
974 0 : return NULL;
975 : }
976 :
977 0 : if (id >= HID_MAX_IDS) {
978 0 : hid_err(hid, "invalid HID report id %u\n", id);
979 0 : return NULL;
980 : }
981 :
982 : /*
983 : * Explicitly not using hid_get_report() here since it depends on
984 : * ->numbered being checked, which may not always be the case when
985 : * drivers go to access report values.
986 : */
987 0 : if (id == 0) {
988 : /*
989 : * Validating on id 0 means we should examine the first
990 : * report in the list.
991 : */
992 0 : report = list_first_entry_or_null(
993 : &hid->report_enum[type].report_list,
994 : struct hid_report, list);
995 : } else {
996 0 : report = hid->report_enum[type].report_id_hash[id];
997 : }
998 0 : if (!report) {
999 0 : hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1000 0 : return NULL;
1001 : }
1002 0 : if (report->maxfield <= field_index) {
1003 0 : hid_err(hid, "not enough fields in %s %u\n",
1004 : hid_report_names[type], id);
1005 0 : return NULL;
1006 : }
1007 0 : if (report->field[field_index]->report_count < report_counts) {
1008 0 : hid_err(hid, "not enough values in %s %u field %u\n",
1009 : hid_report_names[type], id, field_index);
1010 0 : return NULL;
1011 : }
1012 : return report;
1013 : }
1014 : EXPORT_SYMBOL_GPL(hid_validate_values);
1015 :
1016 0 : static int hid_calculate_multiplier(struct hid_device *hid,
1017 : struct hid_field *multiplier)
1018 : {
1019 : int m;
1020 0 : __s32 v = *multiplier->value;
1021 0 : __s32 lmin = multiplier->logical_minimum;
1022 0 : __s32 lmax = multiplier->logical_maximum;
1023 0 : __s32 pmin = multiplier->physical_minimum;
1024 0 : __s32 pmax = multiplier->physical_maximum;
1025 :
1026 : /*
1027 : * "Because OS implementations will generally divide the control's
1028 : * reported count by the Effective Resolution Multiplier, designers
1029 : * should take care not to establish a potential Effective
1030 : * Resolution Multiplier of zero."
1031 : * HID Usage Table, v1.12, Section 4.3.1, p31
1032 : */
1033 0 : if (lmax - lmin == 0)
1034 : return 1;
1035 : /*
1036 : * Handling the unit exponent is left as an exercise to whoever
1037 : * finds a device where that exponent is not 0.
1038 : */
1039 0 : m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1040 0 : if (unlikely(multiplier->unit_exponent != 0)) {
1041 0 : hid_warn(hid,
1042 : "unsupported Resolution Multiplier unit exponent %d\n",
1043 : multiplier->unit_exponent);
1044 : }
1045 :
1046 : /* There are no devices with an effective multiplier > 255 */
1047 0 : if (unlikely(m == 0 || m > 255 || m < -255)) {
1048 0 : hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1049 0 : m = 1;
1050 : }
1051 :
1052 : return m;
1053 : }
1054 :
1055 0 : static void hid_apply_multiplier_to_field(struct hid_device *hid,
1056 : struct hid_field *field,
1057 : struct hid_collection *multiplier_collection,
1058 : int effective_multiplier)
1059 : {
1060 : struct hid_collection *collection;
1061 : struct hid_usage *usage;
1062 : int i;
1063 :
1064 : /*
1065 : * If multiplier_collection is NULL, the multiplier applies
1066 : * to all fields in the report.
1067 : * Otherwise, it is the Logical Collection the multiplier applies to
1068 : * but our field may be in a subcollection of that collection.
1069 : */
1070 0 : for (i = 0; i < field->maxusage; i++) {
1071 0 : usage = &field->usage[i];
1072 :
1073 0 : collection = &hid->collection[usage->collection_index];
1074 0 : while (collection->parent_idx != -1 &&
1075 : collection != multiplier_collection)
1076 0 : collection = &hid->collection[collection->parent_idx];
1077 :
1078 0 : if (collection->parent_idx != -1 ||
1079 : multiplier_collection == NULL)
1080 0 : usage->resolution_multiplier = effective_multiplier;
1081 :
1082 : }
1083 0 : }
1084 :
1085 0 : static void hid_apply_multiplier(struct hid_device *hid,
1086 : struct hid_field *multiplier)
1087 : {
1088 : struct hid_report_enum *rep_enum;
1089 : struct hid_report *rep;
1090 : struct hid_field *field;
1091 : struct hid_collection *multiplier_collection;
1092 : int effective_multiplier;
1093 : int i;
1094 :
1095 : /*
1096 : * "The Resolution Multiplier control must be contained in the same
1097 : * Logical Collection as the control(s) to which it is to be applied.
1098 : * If no Resolution Multiplier is defined, then the Resolution
1099 : * Multiplier defaults to 1. If more than one control exists in a
1100 : * Logical Collection, the Resolution Multiplier is associated with
1101 : * all controls in the collection. If no Logical Collection is
1102 : * defined, the Resolution Multiplier is associated with all
1103 : * controls in the report."
1104 : * HID Usage Table, v1.12, Section 4.3.1, p30
1105 : *
1106 : * Thus, search from the current collection upwards until we find a
1107 : * logical collection. Then search all fields for that same parent
1108 : * collection. Those are the fields the multiplier applies to.
1109 : *
1110 : * If we have more than one multiplier, it will overwrite the
1111 : * applicable fields later.
1112 : */
1113 0 : multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1114 0 : while (multiplier_collection->parent_idx != -1 &&
1115 0 : multiplier_collection->type != HID_COLLECTION_LOGICAL)
1116 0 : multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1117 :
1118 0 : effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1119 :
1120 0 : rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1121 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1122 0 : for (i = 0; i < rep->maxfield; i++) {
1123 0 : field = rep->field[i];
1124 0 : hid_apply_multiplier_to_field(hid, field,
1125 : multiplier_collection,
1126 : effective_multiplier);
1127 : }
1128 : }
1129 0 : }
1130 :
1131 : /*
1132 : * hid_setup_resolution_multiplier - set up all resolution multipliers
1133 : *
1134 : * @device: hid device
1135 : *
1136 : * Search for all Resolution Multiplier Feature Reports and apply their
1137 : * value to all matching Input items. This only updates the internal struct
1138 : * fields.
1139 : *
1140 : * The Resolution Multiplier is applied by the hardware. If the multiplier
1141 : * is anything other than 1, the hardware will send pre-multiplied events
1142 : * so that the same physical interaction generates an accumulated
1143 : * accumulated_value = value * * multiplier
1144 : * This may be achieved by sending
1145 : * - "value * multiplier" for each event, or
1146 : * - "value" but "multiplier" times as frequently, or
1147 : * - a combination of the above
1148 : * The only guarantee is that the same physical interaction always generates
1149 : * an accumulated 'value * multiplier'.
1150 : *
1151 : * This function must be called before any event processing and after
1152 : * any SetRequest to the Resolution Multiplier.
1153 : */
1154 0 : void hid_setup_resolution_multiplier(struct hid_device *hid)
1155 : {
1156 : struct hid_report_enum *rep_enum;
1157 : struct hid_report *rep;
1158 : struct hid_usage *usage;
1159 : int i, j;
1160 :
1161 0 : rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1162 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1163 0 : for (i = 0; i < rep->maxfield; i++) {
1164 : /* Ignore if report count is out of bounds. */
1165 0 : if (rep->field[i]->report_count < 1)
1166 0 : continue;
1167 :
1168 0 : for (j = 0; j < rep->field[i]->maxusage; j++) {
1169 0 : usage = &rep->field[i]->usage[j];
1170 0 : if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1171 0 : hid_apply_multiplier(hid,
1172 : rep->field[i]);
1173 : }
1174 : }
1175 : }
1176 0 : }
1177 : EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1178 :
1179 : /**
1180 : * hid_open_report - open a driver-specific device report
1181 : *
1182 : * @device: hid device
1183 : *
1184 : * Parse a report description into a hid_device structure. Reports are
1185 : * enumerated, fields are attached to these reports.
1186 : * 0 returned on success, otherwise nonzero error value.
1187 : *
1188 : * This function (or the equivalent hid_parse() macro) should only be
1189 : * called from probe() in drivers, before starting the device.
1190 : */
1191 0 : int hid_open_report(struct hid_device *device)
1192 : {
1193 : struct hid_parser *parser;
1194 : struct hid_item item;
1195 : unsigned int size;
1196 : __u8 *start;
1197 : __u8 *buf;
1198 : __u8 *end;
1199 : __u8 *next;
1200 : int ret;
1201 : int i;
1202 : static int (*dispatch_type[])(struct hid_parser *parser,
1203 : struct hid_item *item) = {
1204 : hid_parser_main,
1205 : hid_parser_global,
1206 : hid_parser_local,
1207 : hid_parser_reserved
1208 : };
1209 :
1210 0 : if (WARN_ON(device->status & HID_STAT_PARSED))
1211 : return -EBUSY;
1212 :
1213 0 : start = device->dev_rdesc;
1214 0 : if (WARN_ON(!start))
1215 : return -ENODEV;
1216 0 : size = device->dev_rsize;
1217 :
1218 : /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1219 0 : buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1220 0 : if (buf == NULL)
1221 : return -ENOMEM;
1222 :
1223 0 : if (device->driver->report_fixup)
1224 0 : start = device->driver->report_fixup(device, buf, &size);
1225 : else
1226 : start = buf;
1227 :
1228 0 : start = kmemdup(start, size, GFP_KERNEL);
1229 0 : kfree(buf);
1230 0 : if (start == NULL)
1231 : return -ENOMEM;
1232 :
1233 0 : device->rdesc = start;
1234 0 : device->rsize = size;
1235 :
1236 0 : parser = vzalloc(sizeof(struct hid_parser));
1237 0 : if (!parser) {
1238 : ret = -ENOMEM;
1239 : goto alloc_err;
1240 : }
1241 :
1242 0 : parser->device = device;
1243 :
1244 0 : end = start + size;
1245 :
1246 0 : device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1247 : sizeof(struct hid_collection), GFP_KERNEL);
1248 0 : if (!device->collection) {
1249 : ret = -ENOMEM;
1250 : goto err;
1251 : }
1252 0 : device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1253 0 : for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1254 0 : device->collection[i].parent_idx = -1;
1255 :
1256 : ret = -EINVAL;
1257 0 : while ((next = fetch_item(start, end, &item)) != NULL) {
1258 0 : start = next;
1259 :
1260 0 : if (item.format != HID_ITEM_FORMAT_SHORT) {
1261 0 : hid_err(device, "unexpected long global item\n");
1262 0 : goto err;
1263 : }
1264 :
1265 0 : if (dispatch_type[item.type](parser, &item)) {
1266 0 : hid_err(device, "item %u %u %u %u parsing failed\n",
1267 : item.format, (unsigned)item.size,
1268 : (unsigned)item.type, (unsigned)item.tag);
1269 0 : goto err;
1270 : }
1271 :
1272 0 : if (start == end) {
1273 0 : if (parser->collection_stack_ptr) {
1274 0 : hid_err(device, "unbalanced collection at end of report description\n");
1275 0 : goto err;
1276 : }
1277 0 : if (parser->local.delimiter_depth) {
1278 0 : hid_err(device, "unbalanced delimiter at end of report description\n");
1279 0 : goto err;
1280 : }
1281 :
1282 : /*
1283 : * fetch initial values in case the device's
1284 : * default multiplier isn't the recommended 1
1285 : */
1286 0 : hid_setup_resolution_multiplier(device);
1287 :
1288 0 : kfree(parser->collection_stack);
1289 0 : vfree(parser);
1290 0 : device->status |= HID_STAT_PARSED;
1291 :
1292 0 : return 0;
1293 : }
1294 : }
1295 :
1296 0 : hid_err(device, "item fetching failed at offset %u/%u\n",
1297 : size - (unsigned int)(end - start), size);
1298 : err:
1299 0 : kfree(parser->collection_stack);
1300 : alloc_err:
1301 0 : vfree(parser);
1302 0 : hid_close_report(device);
1303 0 : return ret;
1304 : }
1305 : EXPORT_SYMBOL_GPL(hid_open_report);
1306 :
1307 : /*
1308 : * Convert a signed n-bit integer to signed 32-bit integer. Common
1309 : * cases are done through the compiler, the screwed things has to be
1310 : * done by hand.
1311 : */
1312 :
1313 0 : static s32 snto32(__u32 value, unsigned n)
1314 : {
1315 0 : if (!value || !n)
1316 : return 0;
1317 :
1318 0 : if (n > 32)
1319 0 : n = 32;
1320 :
1321 0 : switch (n) {
1322 0 : case 8: return ((__s8)value);
1323 0 : case 16: return ((__s16)value);
1324 0 : case 32: return ((__s32)value);
1325 : }
1326 0 : return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1327 : }
1328 :
1329 0 : s32 hid_snto32(__u32 value, unsigned n)
1330 : {
1331 0 : return snto32(value, n);
1332 : }
1333 : EXPORT_SYMBOL_GPL(hid_snto32);
1334 :
1335 : /*
1336 : * Convert a signed 32-bit integer to a signed n-bit integer.
1337 : */
1338 :
1339 : static u32 s32ton(__s32 value, unsigned n)
1340 : {
1341 0 : s32 a = value >> (n - 1);
1342 0 : if (a && a != -1)
1343 0 : return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1344 0 : return value & ((1 << n) - 1);
1345 : }
1346 :
1347 : /*
1348 : * Extract/implement a data field from/to a little endian report (bit array).
1349 : *
1350 : * Code sort-of follows HID spec:
1351 : * http://www.usb.org/developers/hidpage/HID1_11.pdf
1352 : *
1353 : * While the USB HID spec allows unlimited length bit fields in "report
1354 : * descriptors", most devices never use more than 16 bits.
1355 : * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1356 : * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1357 : */
1358 :
1359 : static u32 __extract(u8 *report, unsigned offset, int n)
1360 : {
1361 0 : unsigned int idx = offset / 8;
1362 0 : unsigned int bit_nr = 0;
1363 0 : unsigned int bit_shift = offset % 8;
1364 0 : int bits_to_copy = 8 - bit_shift;
1365 0 : u32 value = 0;
1366 0 : u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1367 :
1368 0 : while (n > 0) {
1369 0 : value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1370 0 : n -= bits_to_copy;
1371 0 : bit_nr += bits_to_copy;
1372 0 : bits_to_copy = 8;
1373 0 : bit_shift = 0;
1374 0 : idx++;
1375 : }
1376 :
1377 0 : return value & mask;
1378 : }
1379 :
1380 0 : u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1381 : unsigned offset, unsigned n)
1382 : {
1383 0 : if (n > 32) {
1384 0 : hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1385 : __func__, n, current->comm);
1386 : n = 32;
1387 : }
1388 :
1389 0 : return __extract(report, offset, n);
1390 : }
1391 : EXPORT_SYMBOL_GPL(hid_field_extract);
1392 :
1393 : /*
1394 : * "implement" : set bits in a little endian bit stream.
1395 : * Same concepts as "extract" (see comments above).
1396 : * The data mangled in the bit stream remains in little endian
1397 : * order the whole time. It make more sense to talk about
1398 : * endianness of register values by considering a register
1399 : * a "cached" copy of the little endian bit stream.
1400 : */
1401 :
1402 0 : static void __implement(u8 *report, unsigned offset, int n, u32 value)
1403 : {
1404 0 : unsigned int idx = offset / 8;
1405 0 : unsigned int bit_shift = offset % 8;
1406 0 : int bits_to_set = 8 - bit_shift;
1407 :
1408 0 : while (n - bits_to_set >= 0) {
1409 0 : report[idx] &= ~(0xff << bit_shift);
1410 0 : report[idx] |= value << bit_shift;
1411 0 : value >>= bits_to_set;
1412 0 : n -= bits_to_set;
1413 0 : bits_to_set = 8;
1414 0 : bit_shift = 0;
1415 0 : idx++;
1416 : }
1417 :
1418 : /* last nibble */
1419 0 : if (n) {
1420 0 : u8 bit_mask = ((1U << n) - 1);
1421 0 : report[idx] &= ~(bit_mask << bit_shift);
1422 0 : report[idx] |= value << bit_shift;
1423 : }
1424 0 : }
1425 :
1426 0 : static void implement(const struct hid_device *hid, u8 *report,
1427 : unsigned offset, unsigned n, u32 value)
1428 : {
1429 0 : if (unlikely(n > 32)) {
1430 0 : hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1431 : __func__, n, current->comm);
1432 0 : n = 32;
1433 0 : } else if (n < 32) {
1434 0 : u32 m = (1U << n) - 1;
1435 :
1436 0 : if (unlikely(value > m)) {
1437 0 : hid_warn(hid,
1438 : "%s() called with too large value %d (n: %d)! (%s)\n",
1439 : __func__, value, n, current->comm);
1440 0 : WARN_ON(1);
1441 0 : value &= m;
1442 : }
1443 : }
1444 :
1445 0 : __implement(report, offset, n, value);
1446 0 : }
1447 :
1448 : /*
1449 : * Search an array for a value.
1450 : */
1451 :
1452 : static int search(__s32 *array, __s32 value, unsigned n)
1453 : {
1454 0 : while (n--) {
1455 0 : if (*array++ == value)
1456 : return 0;
1457 : }
1458 : return -1;
1459 : }
1460 :
1461 : /**
1462 : * hid_match_report - check if driver's raw_event should be called
1463 : *
1464 : * @hid: hid device
1465 : * @report: hid report to match against
1466 : *
1467 : * compare hid->driver->report_table->report_type to report->type
1468 : */
1469 : static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1470 : {
1471 0 : const struct hid_report_id *id = hid->driver->report_table;
1472 :
1473 0 : if (!id) /* NULL means all */
1474 : return 1;
1475 :
1476 0 : for (; id->report_type != HID_TERMINATOR; id++)
1477 0 : if (id->report_type == HID_ANY_ID ||
1478 0 : id->report_type == report->type)
1479 : return 1;
1480 : return 0;
1481 : }
1482 :
1483 : /**
1484 : * hid_match_usage - check if driver's event should be called
1485 : *
1486 : * @hid: hid device
1487 : * @usage: usage to match against
1488 : *
1489 : * compare hid->driver->usage_table->usage_{type,code} to
1490 : * usage->usage_{type,code}
1491 : */
1492 0 : static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1493 : {
1494 0 : const struct hid_usage_id *id = hid->driver->usage_table;
1495 :
1496 0 : if (!id) /* NULL means all */
1497 : return 1;
1498 :
1499 0 : for (; id->usage_type != HID_ANY_ID - 1; id++)
1500 0 : if ((id->usage_hid == HID_ANY_ID ||
1501 0 : id->usage_hid == usage->hid) &&
1502 0 : (id->usage_type == HID_ANY_ID ||
1503 0 : id->usage_type == usage->type) &&
1504 0 : (id->usage_code == HID_ANY_ID ||
1505 0 : id->usage_code == usage->code))
1506 : return 1;
1507 : return 0;
1508 : }
1509 :
1510 0 : static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1511 : struct hid_usage *usage, __s32 value, int interrupt)
1512 : {
1513 0 : struct hid_driver *hdrv = hid->driver;
1514 : int ret;
1515 :
1516 0 : if (!list_empty(&hid->debug_list))
1517 : hid_dump_input(hid, usage, value);
1518 :
1519 0 : if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1520 0 : ret = hdrv->event(hid, field, usage, value);
1521 0 : if (ret != 0) {
1522 0 : if (ret < 0)
1523 0 : hid_err(hid, "%s's event failed with %d\n",
1524 : hdrv->name, ret);
1525 : return;
1526 : }
1527 : }
1528 :
1529 0 : if (hid->claimed & HID_CLAIMED_INPUT)
1530 0 : hidinput_hid_event(hid, field, usage, value);
1531 0 : if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1532 0 : hid->hiddev_hid_event(hid, field, usage, value);
1533 : }
1534 :
1535 : /*
1536 : * Checks if the given value is valid within this field
1537 : */
1538 : static inline int hid_array_value_is_valid(struct hid_field *field,
1539 : __s32 value)
1540 : {
1541 0 : __s32 min = field->logical_minimum;
1542 :
1543 : /*
1544 : * Value needs to be between logical min and max, and
1545 : * (value - min) is used as an index in the usage array.
1546 : * This array is of size field->maxusage
1547 : */
1548 0 : return value >= min &&
1549 0 : value <= field->logical_maximum &&
1550 0 : value - min < field->maxusage;
1551 : }
1552 :
1553 : /*
1554 : * Fetch the field from the data. The field content is stored for next
1555 : * report processing (we do differential reporting to the layer).
1556 : */
1557 0 : static void hid_input_fetch_field(struct hid_device *hid,
1558 : struct hid_field *field,
1559 : __u8 *data)
1560 : {
1561 : unsigned n;
1562 0 : unsigned count = field->report_count;
1563 0 : unsigned offset = field->report_offset;
1564 0 : unsigned size = field->report_size;
1565 0 : __s32 min = field->logical_minimum;
1566 : __s32 *value;
1567 :
1568 0 : value = field->new_value;
1569 0 : memset(value, 0, count * sizeof(__s32));
1570 0 : field->ignored = false;
1571 :
1572 0 : for (n = 0; n < count; n++) {
1573 :
1574 0 : value[n] = min < 0 ?
1575 0 : snto32(hid_field_extract(hid, data, offset + n * size,
1576 0 : size), size) :
1577 0 : hid_field_extract(hid, data, offset + n * size, size);
1578 :
1579 : /* Ignore report if ErrorRollOver */
1580 0 : if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1581 0 : hid_array_value_is_valid(field, value[n]) &&
1582 0 : field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1583 0 : field->ignored = true;
1584 0 : return;
1585 : }
1586 : }
1587 : }
1588 :
1589 : /*
1590 : * Process a received variable field.
1591 : */
1592 :
1593 0 : static void hid_input_var_field(struct hid_device *hid,
1594 : struct hid_field *field,
1595 : int interrupt)
1596 : {
1597 0 : unsigned int count = field->report_count;
1598 0 : __s32 *value = field->new_value;
1599 : unsigned int n;
1600 :
1601 0 : for (n = 0; n < count; n++)
1602 0 : hid_process_event(hid,
1603 : field,
1604 0 : &field->usage[n],
1605 0 : value[n],
1606 : interrupt);
1607 :
1608 0 : memcpy(field->value, value, count * sizeof(__s32));
1609 0 : }
1610 :
1611 : /*
1612 : * Process a received array field. The field content is stored for
1613 : * next report processing (we do differential reporting to the layer).
1614 : */
1615 :
1616 0 : static void hid_input_array_field(struct hid_device *hid,
1617 : struct hid_field *field,
1618 : int interrupt)
1619 : {
1620 : unsigned int n;
1621 0 : unsigned int count = field->report_count;
1622 0 : __s32 min = field->logical_minimum;
1623 : __s32 *value;
1624 :
1625 0 : value = field->new_value;
1626 :
1627 : /* ErrorRollOver */
1628 0 : if (field->ignored)
1629 : return;
1630 :
1631 0 : for (n = 0; n < count; n++) {
1632 0 : if (hid_array_value_is_valid(field, field->value[n]) &&
1633 0 : search(value, field->value[n], count))
1634 0 : hid_process_event(hid,
1635 : field,
1636 0 : &field->usage[field->value[n] - min],
1637 : 0,
1638 : interrupt);
1639 :
1640 0 : if (hid_array_value_is_valid(field, value[n]) &&
1641 0 : search(field->value, value[n], count))
1642 0 : hid_process_event(hid,
1643 : field,
1644 0 : &field->usage[value[n] - min],
1645 : 1,
1646 : interrupt);
1647 : }
1648 :
1649 0 : memcpy(field->value, value, count * sizeof(__s32));
1650 : }
1651 :
1652 : /*
1653 : * Analyse a received report, and fetch the data from it. The field
1654 : * content is stored for next report processing (we do differential
1655 : * reporting to the layer).
1656 : */
1657 0 : static void hid_process_report(struct hid_device *hid,
1658 : struct hid_report *report,
1659 : __u8 *data,
1660 : int interrupt)
1661 : {
1662 : unsigned int a;
1663 : struct hid_field_entry *entry;
1664 : struct hid_field *field;
1665 :
1666 : /* first retrieve all incoming values in data */
1667 0 : for (a = 0; a < report->maxfield; a++)
1668 0 : hid_input_fetch_field(hid, report->field[a], data);
1669 :
1670 0 : if (!list_empty(&report->field_entry_list)) {
1671 : /* INPUT_REPORT, we have a priority list of fields */
1672 0 : list_for_each_entry(entry,
1673 : &report->field_entry_list,
1674 : list) {
1675 0 : field = entry->field;
1676 :
1677 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1678 0 : hid_process_event(hid,
1679 : field,
1680 0 : &field->usage[entry->index],
1681 0 : field->new_value[entry->index],
1682 : interrupt);
1683 : else
1684 0 : hid_input_array_field(hid, field, interrupt);
1685 : }
1686 :
1687 : /* we need to do the memcpy at the end for var items */
1688 0 : for (a = 0; a < report->maxfield; a++) {
1689 0 : field = report->field[a];
1690 :
1691 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1692 0 : memcpy(field->value, field->new_value,
1693 0 : field->report_count * sizeof(__s32));
1694 : }
1695 : } else {
1696 : /* FEATURE_REPORT, regular processing */
1697 0 : for (a = 0; a < report->maxfield; a++) {
1698 0 : field = report->field[a];
1699 :
1700 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1701 0 : hid_input_var_field(hid, field, interrupt);
1702 : else
1703 0 : hid_input_array_field(hid, field, interrupt);
1704 : }
1705 : }
1706 0 : }
1707 :
1708 : /*
1709 : * Insert a given usage_index in a field in the list
1710 : * of processed usages in the report.
1711 : *
1712 : * The elements of lower priority score are processed
1713 : * first.
1714 : */
1715 : static void __hid_insert_field_entry(struct hid_device *hid,
1716 : struct hid_report *report,
1717 : struct hid_field_entry *entry,
1718 : struct hid_field *field,
1719 : unsigned int usage_index)
1720 : {
1721 : struct hid_field_entry *next;
1722 :
1723 0 : entry->field = field;
1724 0 : entry->index = usage_index;
1725 0 : entry->priority = field->usages_priorities[usage_index];
1726 :
1727 : /* insert the element at the correct position */
1728 0 : list_for_each_entry(next,
1729 : &report->field_entry_list,
1730 : list) {
1731 : /*
1732 : * the priority of our element is strictly higher
1733 : * than the next one, insert it before
1734 : */
1735 0 : if (entry->priority > next->priority) {
1736 0 : list_add_tail(&entry->list, &next->list);
1737 : return;
1738 : }
1739 : }
1740 :
1741 : /* lowest priority score: insert at the end */
1742 0 : list_add_tail(&entry->list, &report->field_entry_list);
1743 : }
1744 :
1745 0 : static void hid_report_process_ordering(struct hid_device *hid,
1746 : struct hid_report *report)
1747 : {
1748 : struct hid_field *field;
1749 : struct hid_field_entry *entries;
1750 : unsigned int a, u, usages;
1751 0 : unsigned int count = 0;
1752 :
1753 : /* count the number of individual fields in the report */
1754 0 : for (a = 0; a < report->maxfield; a++) {
1755 0 : field = report->field[a];
1756 :
1757 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1758 0 : count += field->report_count;
1759 : else
1760 0 : count++;
1761 : }
1762 :
1763 : /* allocate the memory to process the fields */
1764 0 : entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1765 0 : if (!entries)
1766 : return;
1767 :
1768 0 : report->field_entries = entries;
1769 :
1770 : /*
1771 : * walk through all fields in the report and
1772 : * store them by priority order in report->field_entry_list
1773 : *
1774 : * - Var elements are individualized (field + usage_index)
1775 : * - Arrays are taken as one, we can not chose an order for them
1776 : */
1777 0 : usages = 0;
1778 0 : for (a = 0; a < report->maxfield; a++) {
1779 0 : field = report->field[a];
1780 :
1781 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1782 0 : for (u = 0; u < field->report_count; u++) {
1783 0 : __hid_insert_field_entry(hid, report,
1784 0 : &entries[usages],
1785 : field, u);
1786 0 : usages++;
1787 : }
1788 : } else {
1789 0 : __hid_insert_field_entry(hid, report, &entries[usages],
1790 : field, 0);
1791 0 : usages++;
1792 : }
1793 : }
1794 : }
1795 :
1796 : static void hid_process_ordering(struct hid_device *hid)
1797 : {
1798 : struct hid_report *report;
1799 0 : struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1800 :
1801 0 : list_for_each_entry(report, &report_enum->report_list, list)
1802 0 : hid_report_process_ordering(hid, report);
1803 : }
1804 :
1805 : /*
1806 : * Output the field into the report.
1807 : */
1808 :
1809 0 : static void hid_output_field(const struct hid_device *hid,
1810 : struct hid_field *field, __u8 *data)
1811 : {
1812 0 : unsigned count = field->report_count;
1813 0 : unsigned offset = field->report_offset;
1814 0 : unsigned size = field->report_size;
1815 : unsigned n;
1816 :
1817 0 : for (n = 0; n < count; n++) {
1818 0 : if (field->logical_minimum < 0) /* signed values */
1819 0 : implement(hid, data, offset + n * size, size,
1820 0 : s32ton(field->value[n], size));
1821 : else /* unsigned values */
1822 0 : implement(hid, data, offset + n * size, size,
1823 0 : field->value[n]);
1824 : }
1825 0 : }
1826 :
1827 : /*
1828 : * Compute the size of a report.
1829 : */
1830 : static size_t hid_compute_report_size(struct hid_report *report)
1831 : {
1832 0 : if (report->size)
1833 0 : return ((report->size - 1) >> 3) + 1;
1834 :
1835 : return 0;
1836 : }
1837 :
1838 : /*
1839 : * Create a report. 'data' has to be allocated using
1840 : * hid_alloc_report_buf() so that it has proper size.
1841 : */
1842 :
1843 0 : void hid_output_report(struct hid_report *report, __u8 *data)
1844 : {
1845 : unsigned n;
1846 :
1847 0 : if (report->id > 0)
1848 0 : *data++ = report->id;
1849 :
1850 0 : memset(data, 0, hid_compute_report_size(report));
1851 0 : for (n = 0; n < report->maxfield; n++)
1852 0 : hid_output_field(report->device, report->field[n], data);
1853 0 : }
1854 : EXPORT_SYMBOL_GPL(hid_output_report);
1855 :
1856 : /*
1857 : * Allocator for buffer that is going to be passed to hid_output_report()
1858 : */
1859 0 : u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1860 : {
1861 : /*
1862 : * 7 extra bytes are necessary to achieve proper functionality
1863 : * of implement() working on 8 byte chunks
1864 : */
1865 :
1866 0 : u32 len = hid_report_len(report) + 7;
1867 :
1868 0 : return kmalloc(len, flags);
1869 : }
1870 : EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1871 :
1872 : /*
1873 : * Set a field value. The report this field belongs to has to be
1874 : * created and transferred to the device, to set this value in the
1875 : * device.
1876 : */
1877 :
1878 0 : int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1879 : {
1880 : unsigned size;
1881 :
1882 0 : if (!field)
1883 : return -1;
1884 :
1885 0 : size = field->report_size;
1886 :
1887 : hid_dump_input(field->report->device, field->usage + offset, value);
1888 :
1889 0 : if (offset >= field->report_count) {
1890 0 : hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1891 : offset, field->report_count);
1892 0 : return -1;
1893 : }
1894 0 : if (field->logical_minimum < 0) {
1895 0 : if (value != snto32(s32ton(value, size), size)) {
1896 0 : hid_err(field->report->device, "value %d is out of range\n", value);
1897 0 : return -1;
1898 : }
1899 : }
1900 0 : field->value[offset] = value;
1901 0 : return 0;
1902 : }
1903 : EXPORT_SYMBOL_GPL(hid_set_field);
1904 :
1905 : static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1906 : const u8 *data)
1907 : {
1908 : struct hid_report *report;
1909 0 : unsigned int n = 0; /* Normally report number is 0 */
1910 :
1911 : /* Device uses numbered reports, data[0] is report number */
1912 0 : if (report_enum->numbered)
1913 0 : n = *data;
1914 :
1915 0 : report = report_enum->report_id_hash[n];
1916 : if (report == NULL)
1917 : dbg_hid("undefined report_id %u received\n", n);
1918 :
1919 : return report;
1920 : }
1921 :
1922 : /*
1923 : * Implement a generic .request() callback, using .raw_request()
1924 : * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1925 : */
1926 0 : int __hid_request(struct hid_device *hid, struct hid_report *report,
1927 : enum hid_class_request reqtype)
1928 : {
1929 : char *buf;
1930 : int ret;
1931 : u32 len;
1932 :
1933 0 : buf = hid_alloc_report_buf(report, GFP_KERNEL);
1934 0 : if (!buf)
1935 : return -ENOMEM;
1936 :
1937 0 : len = hid_report_len(report);
1938 :
1939 0 : if (reqtype == HID_REQ_SET_REPORT)
1940 0 : hid_output_report(report, buf);
1941 :
1942 0 : ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1943 0 : report->type, reqtype);
1944 0 : if (ret < 0) {
1945 : dbg_hid("unable to complete request: %d\n", ret);
1946 : goto out;
1947 : }
1948 :
1949 0 : if (reqtype == HID_REQ_GET_REPORT)
1950 0 : hid_input_report(hid, report->type, buf, ret, 0);
1951 :
1952 : ret = 0;
1953 :
1954 : out:
1955 0 : kfree(buf);
1956 0 : return ret;
1957 : }
1958 : EXPORT_SYMBOL_GPL(__hid_request);
1959 :
1960 0 : int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1961 : int interrupt)
1962 : {
1963 0 : struct hid_report_enum *report_enum = hid->report_enum + type;
1964 : struct hid_report *report;
1965 : struct hid_driver *hdrv;
1966 0 : u32 rsize, csize = size;
1967 0 : u8 *cdata = data;
1968 0 : int ret = 0;
1969 :
1970 0 : report = hid_get_report(report_enum, data);
1971 0 : if (!report)
1972 : goto out;
1973 :
1974 0 : if (report_enum->numbered) {
1975 0 : cdata++;
1976 0 : csize--;
1977 : }
1978 :
1979 0 : rsize = hid_compute_report_size(report);
1980 :
1981 0 : if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1982 : rsize = HID_MAX_BUFFER_SIZE - 1;
1983 0 : else if (rsize > HID_MAX_BUFFER_SIZE)
1984 0 : rsize = HID_MAX_BUFFER_SIZE;
1985 :
1986 0 : if (csize < rsize) {
1987 : dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1988 : csize, rsize);
1989 0 : memset(cdata + csize, 0, rsize - csize);
1990 : }
1991 :
1992 0 : if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1993 0 : hid->hiddev_report_event(hid, report);
1994 0 : if (hid->claimed & HID_CLAIMED_HIDRAW) {
1995 : ret = hidraw_report_event(hid, data, size);
1996 : if (ret)
1997 : goto out;
1998 : }
1999 :
2000 0 : if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2001 0 : hid_process_report(hid, report, cdata, interrupt);
2002 0 : hdrv = hid->driver;
2003 0 : if (hdrv && hdrv->report)
2004 0 : hdrv->report(hid, report);
2005 : }
2006 :
2007 0 : if (hid->claimed & HID_CLAIMED_INPUT)
2008 0 : hidinput_report_event(hid, report);
2009 : out:
2010 0 : return ret;
2011 : }
2012 : EXPORT_SYMBOL_GPL(hid_report_raw_event);
2013 :
2014 : /**
2015 : * hid_input_report - report data from lower layer (usb, bt...)
2016 : *
2017 : * @hid: hid device
2018 : * @type: HID report type (HID_*_REPORT)
2019 : * @data: report contents
2020 : * @size: size of data parameter
2021 : * @interrupt: distinguish between interrupt and control transfers
2022 : *
2023 : * This is data entry for lower layers.
2024 : */
2025 0 : int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2026 : int interrupt)
2027 : {
2028 : struct hid_report_enum *report_enum;
2029 : struct hid_driver *hdrv;
2030 : struct hid_report *report;
2031 0 : int ret = 0;
2032 :
2033 0 : if (!hid)
2034 : return -ENODEV;
2035 :
2036 0 : if (down_trylock(&hid->driver_input_lock))
2037 : return -EBUSY;
2038 :
2039 0 : if (!hid->driver) {
2040 : ret = -ENODEV;
2041 : goto unlock;
2042 : }
2043 0 : report_enum = hid->report_enum + type;
2044 0 : hdrv = hid->driver;
2045 :
2046 0 : data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2047 0 : if (IS_ERR(data)) {
2048 0 : ret = PTR_ERR(data);
2049 0 : goto unlock;
2050 : }
2051 :
2052 0 : if (!size) {
2053 : dbg_hid("empty report\n");
2054 : ret = -1;
2055 : goto unlock;
2056 : }
2057 :
2058 : /* Avoid unnecessary overhead if debugfs is disabled */
2059 0 : if (!list_empty(&hid->debug_list))
2060 : hid_dump_report(hid, type, data, size);
2061 :
2062 0 : report = hid_get_report(report_enum, data);
2063 :
2064 0 : if (!report) {
2065 : ret = -1;
2066 : goto unlock;
2067 : }
2068 :
2069 0 : if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2070 0 : ret = hdrv->raw_event(hid, report, data, size);
2071 0 : if (ret < 0)
2072 : goto unlock;
2073 : }
2074 :
2075 0 : ret = hid_report_raw_event(hid, type, data, size, interrupt);
2076 :
2077 : unlock:
2078 0 : up(&hid->driver_input_lock);
2079 0 : return ret;
2080 : }
2081 : EXPORT_SYMBOL_GPL(hid_input_report);
2082 :
2083 0 : bool hid_match_one_id(const struct hid_device *hdev,
2084 : const struct hid_device_id *id)
2085 : {
2086 0 : return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2087 0 : (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2088 0 : (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2089 0 : (id->product == HID_ANY_ID || id->product == hdev->product);
2090 : }
2091 :
2092 0 : const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2093 : const struct hid_device_id *id)
2094 : {
2095 0 : for (; id->bus; id++)
2096 0 : if (hid_match_one_id(hdev, id))
2097 : return id;
2098 :
2099 : return NULL;
2100 : }
2101 : EXPORT_SYMBOL_GPL(hid_match_id);
2102 :
2103 : static const struct hid_device_id hid_hiddev_list[] = {
2104 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2105 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2106 : { }
2107 : };
2108 :
2109 0 : static bool hid_hiddev(struct hid_device *hdev)
2110 : {
2111 0 : return !!hid_match_id(hdev, hid_hiddev_list);
2112 : }
2113 :
2114 :
2115 : static ssize_t
2116 0 : read_report_descriptor(struct file *filp, struct kobject *kobj,
2117 : struct bin_attribute *attr,
2118 : char *buf, loff_t off, size_t count)
2119 : {
2120 0 : struct device *dev = kobj_to_dev(kobj);
2121 0 : struct hid_device *hdev = to_hid_device(dev);
2122 :
2123 0 : if (off >= hdev->rsize)
2124 : return 0;
2125 :
2126 0 : if (off + count > hdev->rsize)
2127 0 : count = hdev->rsize - off;
2128 :
2129 0 : memcpy(buf, hdev->rdesc + off, count);
2130 :
2131 0 : return count;
2132 : }
2133 :
2134 : static ssize_t
2135 0 : show_country(struct device *dev, struct device_attribute *attr,
2136 : char *buf)
2137 : {
2138 0 : struct hid_device *hdev = to_hid_device(dev);
2139 :
2140 0 : return sprintf(buf, "%02x\n", hdev->country & 0xff);
2141 : }
2142 :
2143 : static struct bin_attribute dev_bin_attr_report_desc = {
2144 : .attr = { .name = "report_descriptor", .mode = 0444 },
2145 : .read = read_report_descriptor,
2146 : .size = HID_MAX_DESCRIPTOR_SIZE,
2147 : };
2148 :
2149 : static const struct device_attribute dev_attr_country = {
2150 : .attr = { .name = "country", .mode = 0444 },
2151 : .show = show_country,
2152 : };
2153 :
2154 0 : int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2155 : {
2156 : static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2157 : "Joystick", "Gamepad", "Keyboard", "Keypad",
2158 : "Multi-Axis Controller"
2159 : };
2160 : const char *type, *bus;
2161 0 : char buf[64] = "";
2162 : unsigned int i;
2163 : int len;
2164 : int ret;
2165 :
2166 0 : ret = hid_bpf_connect_device(hdev);
2167 : if (ret)
2168 : return ret;
2169 :
2170 0 : if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2171 0 : connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2172 0 : if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2173 0 : connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2174 0 : if (hdev->bus != BUS_USB)
2175 0 : connect_mask &= ~HID_CONNECT_HIDDEV;
2176 0 : if (hid_hiddev(hdev))
2177 0 : connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2178 :
2179 0 : if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2180 : connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2181 0 : hdev->claimed |= HID_CLAIMED_INPUT;
2182 :
2183 0 : if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2184 0 : !hdev->hiddev_connect(hdev,
2185 : connect_mask & HID_CONNECT_HIDDEV_FORCE))
2186 0 : hdev->claimed |= HID_CLAIMED_HIDDEV;
2187 : if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2188 : hdev->claimed |= HID_CLAIMED_HIDRAW;
2189 :
2190 0 : if (connect_mask & HID_CONNECT_DRIVER)
2191 0 : hdev->claimed |= HID_CLAIMED_DRIVER;
2192 :
2193 : /* Drivers with the ->raw_event callback set are not required to connect
2194 : * to any other listener. */
2195 0 : if (!hdev->claimed && !hdev->driver->raw_event) {
2196 0 : hid_err(hdev, "device has no listeners, quitting\n");
2197 0 : return -ENODEV;
2198 : }
2199 :
2200 0 : hid_process_ordering(hdev);
2201 :
2202 0 : if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2203 0 : (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2204 0 : hdev->ff_init(hdev);
2205 :
2206 0 : len = 0;
2207 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2208 0 : len += sprintf(buf + len, "input");
2209 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2210 0 : len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2211 0 : ((struct hiddev *)hdev->hiddev)->minor);
2212 0 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2213 0 : len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2214 0 : ((struct hidraw *)hdev->hidraw)->minor);
2215 :
2216 0 : type = "Device";
2217 0 : for (i = 0; i < hdev->maxcollection; i++) {
2218 0 : struct hid_collection *col = &hdev->collection[i];
2219 0 : if (col->type == HID_COLLECTION_APPLICATION &&
2220 0 : (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2221 0 : (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2222 0 : type = types[col->usage & 0xffff];
2223 0 : break;
2224 : }
2225 : }
2226 :
2227 0 : switch (hdev->bus) {
2228 : case BUS_USB:
2229 : bus = "USB";
2230 : break;
2231 : case BUS_BLUETOOTH:
2232 : bus = "BLUETOOTH";
2233 : break;
2234 : case BUS_I2C:
2235 : bus = "I2C";
2236 : break;
2237 : case BUS_VIRTUAL:
2238 : bus = "VIRTUAL";
2239 : break;
2240 : case BUS_INTEL_ISHTP:
2241 : case BUS_AMD_SFH:
2242 : bus = "SENSOR HUB";
2243 : break;
2244 : default:
2245 : bus = "<UNKNOWN>";
2246 : }
2247 :
2248 0 : ret = device_create_file(&hdev->dev, &dev_attr_country);
2249 0 : if (ret)
2250 0 : hid_warn(hdev,
2251 : "can't create sysfs country code attribute err: %d\n", ret);
2252 :
2253 0 : hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2254 : buf, bus, hdev->version >> 8, hdev->version & 0xff,
2255 : type, hdev->name, hdev->phys);
2256 :
2257 0 : return 0;
2258 : }
2259 : EXPORT_SYMBOL_GPL(hid_connect);
2260 :
2261 0 : void hid_disconnect(struct hid_device *hdev)
2262 : {
2263 0 : device_remove_file(&hdev->dev, &dev_attr_country);
2264 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2265 0 : hidinput_disconnect(hdev);
2266 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2267 0 : hdev->hiddev_disconnect(hdev);
2268 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2269 : hidraw_disconnect(hdev);
2270 0 : hdev->claimed = 0;
2271 :
2272 0 : hid_bpf_disconnect_device(hdev);
2273 0 : }
2274 : EXPORT_SYMBOL_GPL(hid_disconnect);
2275 :
2276 : /**
2277 : * hid_hw_start - start underlying HW
2278 : * @hdev: hid device
2279 : * @connect_mask: which outputs to connect, see HID_CONNECT_*
2280 : *
2281 : * Call this in probe function *after* hid_parse. This will setup HW
2282 : * buffers and start the device (if not defeirred to device open).
2283 : * hid_hw_stop must be called if this was successful.
2284 : */
2285 0 : int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2286 : {
2287 : int error;
2288 :
2289 0 : error = hdev->ll_driver->start(hdev);
2290 0 : if (error)
2291 : return error;
2292 :
2293 0 : if (connect_mask) {
2294 0 : error = hid_connect(hdev, connect_mask);
2295 0 : if (error) {
2296 0 : hdev->ll_driver->stop(hdev);
2297 0 : return error;
2298 : }
2299 : }
2300 :
2301 : return 0;
2302 : }
2303 : EXPORT_SYMBOL_GPL(hid_hw_start);
2304 :
2305 : /**
2306 : * hid_hw_stop - stop underlying HW
2307 : * @hdev: hid device
2308 : *
2309 : * This is usually called from remove function or from probe when something
2310 : * failed and hid_hw_start was called already.
2311 : */
2312 0 : void hid_hw_stop(struct hid_device *hdev)
2313 : {
2314 0 : hid_disconnect(hdev);
2315 0 : hdev->ll_driver->stop(hdev);
2316 0 : }
2317 : EXPORT_SYMBOL_GPL(hid_hw_stop);
2318 :
2319 : /**
2320 : * hid_hw_open - signal underlying HW to start delivering events
2321 : * @hdev: hid device
2322 : *
2323 : * Tell underlying HW to start delivering events from the device.
2324 : * This function should be called sometime after successful call
2325 : * to hid_hw_start().
2326 : */
2327 0 : int hid_hw_open(struct hid_device *hdev)
2328 : {
2329 : int ret;
2330 :
2331 0 : ret = mutex_lock_killable(&hdev->ll_open_lock);
2332 0 : if (ret)
2333 : return ret;
2334 :
2335 0 : if (!hdev->ll_open_count++) {
2336 0 : ret = hdev->ll_driver->open(hdev);
2337 0 : if (ret)
2338 0 : hdev->ll_open_count--;
2339 : }
2340 :
2341 0 : mutex_unlock(&hdev->ll_open_lock);
2342 0 : return ret;
2343 : }
2344 : EXPORT_SYMBOL_GPL(hid_hw_open);
2345 :
2346 : /**
2347 : * hid_hw_close - signal underlaying HW to stop delivering events
2348 : *
2349 : * @hdev: hid device
2350 : *
2351 : * This function indicates that we are not interested in the events
2352 : * from this device anymore. Delivery of events may or may not stop,
2353 : * depending on the number of users still outstanding.
2354 : */
2355 0 : void hid_hw_close(struct hid_device *hdev)
2356 : {
2357 0 : mutex_lock(&hdev->ll_open_lock);
2358 0 : if (!--hdev->ll_open_count)
2359 0 : hdev->ll_driver->close(hdev);
2360 0 : mutex_unlock(&hdev->ll_open_lock);
2361 0 : }
2362 : EXPORT_SYMBOL_GPL(hid_hw_close);
2363 :
2364 : /**
2365 : * hid_hw_request - send report request to device
2366 : *
2367 : * @hdev: hid device
2368 : * @report: report to send
2369 : * @reqtype: hid request type
2370 : */
2371 0 : void hid_hw_request(struct hid_device *hdev,
2372 : struct hid_report *report, enum hid_class_request reqtype)
2373 : {
2374 0 : if (hdev->ll_driver->request)
2375 0 : return hdev->ll_driver->request(hdev, report, reqtype);
2376 :
2377 0 : __hid_request(hdev, report, reqtype);
2378 : }
2379 : EXPORT_SYMBOL_GPL(hid_hw_request);
2380 :
2381 : /**
2382 : * hid_hw_raw_request - send report request to device
2383 : *
2384 : * @hdev: hid device
2385 : * @reportnum: report ID
2386 : * @buf: in/out data to transfer
2387 : * @len: length of buf
2388 : * @rtype: HID report type
2389 : * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2390 : *
2391 : * Return: count of data transferred, negative if error
2392 : *
2393 : * Same behavior as hid_hw_request, but with raw buffers instead.
2394 : */
2395 0 : int hid_hw_raw_request(struct hid_device *hdev,
2396 : unsigned char reportnum, __u8 *buf,
2397 : size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2398 : {
2399 0 : if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2400 : return -EINVAL;
2401 :
2402 0 : return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2403 : rtype, reqtype);
2404 : }
2405 : EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2406 :
2407 : /**
2408 : * hid_hw_output_report - send output report to device
2409 : *
2410 : * @hdev: hid device
2411 : * @buf: raw data to transfer
2412 : * @len: length of buf
2413 : *
2414 : * Return: count of data transferred, negative if error
2415 : */
2416 0 : int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2417 : {
2418 0 : if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2419 : return -EINVAL;
2420 :
2421 0 : if (hdev->ll_driver->output_report)
2422 0 : return hdev->ll_driver->output_report(hdev, buf, len);
2423 :
2424 : return -ENOSYS;
2425 : }
2426 : EXPORT_SYMBOL_GPL(hid_hw_output_report);
2427 :
2428 : #ifdef CONFIG_PM
2429 0 : int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2430 : {
2431 0 : if (hdev->driver && hdev->driver->suspend)
2432 0 : return hdev->driver->suspend(hdev, state);
2433 :
2434 : return 0;
2435 : }
2436 : EXPORT_SYMBOL_GPL(hid_driver_suspend);
2437 :
2438 0 : int hid_driver_reset_resume(struct hid_device *hdev)
2439 : {
2440 0 : if (hdev->driver && hdev->driver->reset_resume)
2441 0 : return hdev->driver->reset_resume(hdev);
2442 :
2443 : return 0;
2444 : }
2445 : EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2446 :
2447 0 : int hid_driver_resume(struct hid_device *hdev)
2448 : {
2449 0 : if (hdev->driver && hdev->driver->resume)
2450 0 : return hdev->driver->resume(hdev);
2451 :
2452 : return 0;
2453 : }
2454 : EXPORT_SYMBOL_GPL(hid_driver_resume);
2455 : #endif /* CONFIG_PM */
2456 :
2457 : struct hid_dynid {
2458 : struct list_head list;
2459 : struct hid_device_id id;
2460 : };
2461 :
2462 : /**
2463 : * new_id_store - add a new HID device ID to this driver and re-probe devices
2464 : * @drv: target device driver
2465 : * @buf: buffer for scanning device ID data
2466 : * @count: input size
2467 : *
2468 : * Adds a new dynamic hid device ID to this driver,
2469 : * and causes the driver to probe for all devices again.
2470 : */
2471 0 : static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2472 : size_t count)
2473 : {
2474 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2475 : struct hid_dynid *dynid;
2476 : __u32 bus, vendor, product;
2477 0 : unsigned long driver_data = 0;
2478 : int ret;
2479 :
2480 0 : ret = sscanf(buf, "%x %x %x %lx",
2481 : &bus, &vendor, &product, &driver_data);
2482 0 : if (ret < 3)
2483 : return -EINVAL;
2484 :
2485 0 : dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2486 0 : if (!dynid)
2487 : return -ENOMEM;
2488 :
2489 0 : dynid->id.bus = bus;
2490 0 : dynid->id.group = HID_GROUP_ANY;
2491 0 : dynid->id.vendor = vendor;
2492 0 : dynid->id.product = product;
2493 0 : dynid->id.driver_data = driver_data;
2494 :
2495 0 : spin_lock(&hdrv->dyn_lock);
2496 0 : list_add_tail(&dynid->list, &hdrv->dyn_list);
2497 0 : spin_unlock(&hdrv->dyn_lock);
2498 :
2499 0 : ret = driver_attach(&hdrv->driver);
2500 :
2501 0 : return ret ? : count;
2502 : }
2503 : static DRIVER_ATTR_WO(new_id);
2504 :
2505 : static struct attribute *hid_drv_attrs[] = {
2506 : &driver_attr_new_id.attr,
2507 : NULL,
2508 : };
2509 : ATTRIBUTE_GROUPS(hid_drv);
2510 :
2511 0 : static void hid_free_dynids(struct hid_driver *hdrv)
2512 : {
2513 : struct hid_dynid *dynid, *n;
2514 :
2515 0 : spin_lock(&hdrv->dyn_lock);
2516 0 : list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2517 0 : list_del(&dynid->list);
2518 0 : kfree(dynid);
2519 : }
2520 0 : spin_unlock(&hdrv->dyn_lock);
2521 0 : }
2522 :
2523 0 : const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2524 : struct hid_driver *hdrv)
2525 : {
2526 : struct hid_dynid *dynid;
2527 :
2528 0 : spin_lock(&hdrv->dyn_lock);
2529 0 : list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2530 0 : if (hid_match_one_id(hdev, &dynid->id)) {
2531 0 : spin_unlock(&hdrv->dyn_lock);
2532 0 : return &dynid->id;
2533 : }
2534 : }
2535 0 : spin_unlock(&hdrv->dyn_lock);
2536 :
2537 0 : return hid_match_id(hdev, hdrv->id_table);
2538 : }
2539 : EXPORT_SYMBOL_GPL(hid_match_device);
2540 :
2541 0 : static int hid_bus_match(struct device *dev, struct device_driver *drv)
2542 : {
2543 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2544 0 : struct hid_device *hdev = to_hid_device(dev);
2545 :
2546 0 : return hid_match_device(hdev, hdrv) != NULL;
2547 : }
2548 :
2549 : /**
2550 : * hid_compare_device_paths - check if both devices share the same path
2551 : * @hdev_a: hid device
2552 : * @hdev_b: hid device
2553 : * @separator: char to use as separator
2554 : *
2555 : * Check if two devices share the same path up to the last occurrence of
2556 : * the separator char. Both paths must exist (i.e., zero-length paths
2557 : * don't match).
2558 : */
2559 0 : bool hid_compare_device_paths(struct hid_device *hdev_a,
2560 : struct hid_device *hdev_b, char separator)
2561 : {
2562 0 : int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2563 0 : int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2564 :
2565 0 : if (n1 != n2 || n1 <= 0 || n2 <= 0)
2566 : return false;
2567 :
2568 0 : return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2569 : }
2570 : EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2571 :
2572 0 : static int hid_device_probe(struct device *dev)
2573 : {
2574 0 : struct hid_driver *hdrv = to_hid_driver(dev->driver);
2575 0 : struct hid_device *hdev = to_hid_device(dev);
2576 : const struct hid_device_id *id;
2577 0 : int ret = 0;
2578 :
2579 0 : if (down_interruptible(&hdev->driver_input_lock)) {
2580 : ret = -EINTR;
2581 : goto end;
2582 : }
2583 0 : hdev->io_started = false;
2584 :
2585 0 : clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2586 :
2587 0 : if (!hdev->driver) {
2588 0 : id = hid_match_device(hdev, hdrv);
2589 0 : if (id == NULL) {
2590 : ret = -ENODEV;
2591 : goto unlock;
2592 : }
2593 :
2594 0 : if (hdrv->match) {
2595 0 : if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2596 : ret = -ENODEV;
2597 : goto unlock;
2598 : }
2599 : } else {
2600 : /*
2601 : * hid-generic implements .match(), so if
2602 : * hid_ignore_special_drivers is set, we can safely
2603 : * return.
2604 : */
2605 0 : if (hid_ignore_special_drivers) {
2606 : ret = -ENODEV;
2607 : goto unlock;
2608 : }
2609 : }
2610 :
2611 : /* reset the quirks that has been previously set */
2612 0 : hdev->quirks = hid_lookup_quirk(hdev);
2613 0 : hdev->driver = hdrv;
2614 0 : if (hdrv->probe) {
2615 0 : ret = hdrv->probe(hdev, id);
2616 : } else { /* default probe */
2617 0 : ret = hid_open_report(hdev);
2618 0 : if (!ret)
2619 0 : ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2620 : }
2621 0 : if (ret) {
2622 0 : hid_close_report(hdev);
2623 0 : hdev->driver = NULL;
2624 : }
2625 : }
2626 : unlock:
2627 0 : if (!hdev->io_started)
2628 0 : up(&hdev->driver_input_lock);
2629 : end:
2630 0 : return ret;
2631 : }
2632 :
2633 0 : static void hid_device_remove(struct device *dev)
2634 : {
2635 0 : struct hid_device *hdev = to_hid_device(dev);
2636 : struct hid_driver *hdrv;
2637 :
2638 0 : down(&hdev->driver_input_lock);
2639 0 : hdev->io_started = false;
2640 :
2641 0 : hdrv = hdev->driver;
2642 0 : if (hdrv) {
2643 0 : if (hdrv->remove)
2644 0 : hdrv->remove(hdev);
2645 : else /* default remove */
2646 : hid_hw_stop(hdev);
2647 0 : hid_close_report(hdev);
2648 0 : hdev->driver = NULL;
2649 : }
2650 :
2651 0 : if (!hdev->io_started)
2652 0 : up(&hdev->driver_input_lock);
2653 0 : }
2654 :
2655 0 : static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2656 : char *buf)
2657 : {
2658 0 : struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2659 :
2660 0 : return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2661 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product);
2662 : }
2663 : static DEVICE_ATTR_RO(modalias);
2664 :
2665 : static struct attribute *hid_dev_attrs[] = {
2666 : &dev_attr_modalias.attr,
2667 : NULL,
2668 : };
2669 : static struct bin_attribute *hid_dev_bin_attrs[] = {
2670 : &dev_bin_attr_report_desc,
2671 : NULL
2672 : };
2673 : static const struct attribute_group hid_dev_group = {
2674 : .attrs = hid_dev_attrs,
2675 : .bin_attrs = hid_dev_bin_attrs,
2676 : };
2677 : __ATTRIBUTE_GROUPS(hid_dev);
2678 :
2679 0 : static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2680 : {
2681 0 : const struct hid_device *hdev = to_hid_device(dev);
2682 :
2683 0 : if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2684 0 : hdev->bus, hdev->vendor, hdev->product))
2685 : return -ENOMEM;
2686 :
2687 0 : if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2688 : return -ENOMEM;
2689 :
2690 0 : if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2691 : return -ENOMEM;
2692 :
2693 0 : if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2694 : return -ENOMEM;
2695 :
2696 0 : if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2697 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product))
2698 : return -ENOMEM;
2699 :
2700 0 : return 0;
2701 : }
2702 :
2703 : struct bus_type hid_bus_type = {
2704 : .name = "hid",
2705 : .dev_groups = hid_dev_groups,
2706 : .drv_groups = hid_drv_groups,
2707 : .match = hid_bus_match,
2708 : .probe = hid_device_probe,
2709 : .remove = hid_device_remove,
2710 : .uevent = hid_uevent,
2711 : };
2712 : EXPORT_SYMBOL(hid_bus_type);
2713 :
2714 0 : int hid_add_device(struct hid_device *hdev)
2715 : {
2716 : static atomic_t id = ATOMIC_INIT(0);
2717 : int ret;
2718 :
2719 0 : if (WARN_ON(hdev->status & HID_STAT_ADDED))
2720 : return -EBUSY;
2721 :
2722 0 : hdev->quirks = hid_lookup_quirk(hdev);
2723 :
2724 : /* we need to kill them here, otherwise they will stay allocated to
2725 : * wait for coming driver */
2726 0 : if (hid_ignore(hdev))
2727 : return -ENODEV;
2728 :
2729 : /*
2730 : * Check for the mandatory transport channel.
2731 : */
2732 0 : if (!hdev->ll_driver->raw_request) {
2733 0 : hid_err(hdev, "transport driver missing .raw_request()\n");
2734 0 : return -EINVAL;
2735 : }
2736 :
2737 : /*
2738 : * Read the device report descriptor once and use as template
2739 : * for the driver-specific modifications.
2740 : */
2741 0 : ret = hdev->ll_driver->parse(hdev);
2742 0 : if (ret)
2743 : return ret;
2744 0 : if (!hdev->dev_rdesc)
2745 : return -ENODEV;
2746 :
2747 : /*
2748 : * Scan generic devices for group information
2749 : */
2750 0 : if (hid_ignore_special_drivers) {
2751 0 : hdev->group = HID_GROUP_GENERIC;
2752 0 : } else if (!hdev->group &&
2753 0 : !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2754 0 : ret = hid_scan_report(hdev);
2755 0 : if (ret)
2756 0 : hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2757 : }
2758 :
2759 0 : hdev->id = atomic_inc_return(&id);
2760 :
2761 : /* XXX hack, any other cleaner solution after the driver core
2762 : * is converted to allow more than 20 bytes as the device name? */
2763 0 : dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2764 : hdev->vendor, hdev->product, hdev->id);
2765 :
2766 : hid_debug_register(hdev, dev_name(&hdev->dev));
2767 0 : ret = device_add(&hdev->dev);
2768 0 : if (!ret)
2769 0 : hdev->status |= HID_STAT_ADDED;
2770 : else
2771 : hid_debug_unregister(hdev);
2772 :
2773 : return ret;
2774 : }
2775 : EXPORT_SYMBOL_GPL(hid_add_device);
2776 :
2777 : /**
2778 : * hid_allocate_device - allocate new hid device descriptor
2779 : *
2780 : * Allocate and initialize hid device, so that hid_destroy_device might be
2781 : * used to free it.
2782 : *
2783 : * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2784 : * error value.
2785 : */
2786 0 : struct hid_device *hid_allocate_device(void)
2787 : {
2788 : struct hid_device *hdev;
2789 0 : int ret = -ENOMEM;
2790 :
2791 0 : hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2792 0 : if (hdev == NULL)
2793 : return ERR_PTR(ret);
2794 :
2795 0 : device_initialize(&hdev->dev);
2796 0 : hdev->dev.release = hid_device_release;
2797 0 : hdev->dev.bus = &hid_bus_type;
2798 0 : device_enable_async_suspend(&hdev->dev);
2799 :
2800 0 : hid_close_report(hdev);
2801 :
2802 0 : init_waitqueue_head(&hdev->debug_wait);
2803 0 : INIT_LIST_HEAD(&hdev->debug_list);
2804 0 : spin_lock_init(&hdev->debug_list_lock);
2805 0 : sema_init(&hdev->driver_input_lock, 1);
2806 0 : mutex_init(&hdev->ll_open_lock);
2807 :
2808 0 : hid_bpf_device_init(hdev);
2809 :
2810 0 : return hdev;
2811 : }
2812 : EXPORT_SYMBOL_GPL(hid_allocate_device);
2813 :
2814 0 : static void hid_remove_device(struct hid_device *hdev)
2815 : {
2816 0 : if (hdev->status & HID_STAT_ADDED) {
2817 0 : device_del(&hdev->dev);
2818 : hid_debug_unregister(hdev);
2819 0 : hdev->status &= ~HID_STAT_ADDED;
2820 : }
2821 0 : kfree(hdev->dev_rdesc);
2822 0 : hdev->dev_rdesc = NULL;
2823 0 : hdev->dev_rsize = 0;
2824 0 : }
2825 :
2826 : /**
2827 : * hid_destroy_device - free previously allocated device
2828 : *
2829 : * @hdev: hid device
2830 : *
2831 : * If you allocate hid_device through hid_allocate_device, you should ever
2832 : * free by this function.
2833 : */
2834 0 : void hid_destroy_device(struct hid_device *hdev)
2835 : {
2836 0 : hid_bpf_destroy_device(hdev);
2837 0 : hid_remove_device(hdev);
2838 0 : put_device(&hdev->dev);
2839 0 : }
2840 : EXPORT_SYMBOL_GPL(hid_destroy_device);
2841 :
2842 :
2843 0 : static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2844 : {
2845 0 : struct hid_driver *hdrv = data;
2846 0 : struct hid_device *hdev = to_hid_device(dev);
2847 :
2848 0 : if (hdev->driver == hdrv &&
2849 0 : !hdrv->match(hdev, hid_ignore_special_drivers) &&
2850 0 : !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2851 0 : return device_reprobe(dev);
2852 :
2853 : return 0;
2854 : }
2855 :
2856 66 : static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2857 : {
2858 66 : struct hid_driver *hdrv = to_hid_driver(drv);
2859 :
2860 66 : if (hdrv->match) {
2861 11 : bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2862 : __hid_bus_reprobe_drivers);
2863 : }
2864 :
2865 66 : return 0;
2866 : }
2867 :
2868 0 : static int __bus_removed_driver(struct device_driver *drv, void *data)
2869 : {
2870 0 : return bus_rescan_devices(&hid_bus_type);
2871 : }
2872 :
2873 11 : int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2874 : const char *mod_name)
2875 : {
2876 : int ret;
2877 :
2878 11 : hdrv->driver.name = hdrv->name;
2879 11 : hdrv->driver.bus = &hid_bus_type;
2880 11 : hdrv->driver.owner = owner;
2881 11 : hdrv->driver.mod_name = mod_name;
2882 :
2883 22 : INIT_LIST_HEAD(&hdrv->dyn_list);
2884 11 : spin_lock_init(&hdrv->dyn_lock);
2885 :
2886 11 : ret = driver_register(&hdrv->driver);
2887 :
2888 11 : if (ret == 0)
2889 11 : bus_for_each_drv(&hid_bus_type, NULL, NULL,
2890 : __hid_bus_driver_added);
2891 :
2892 11 : return ret;
2893 : }
2894 : EXPORT_SYMBOL_GPL(__hid_register_driver);
2895 :
2896 0 : void hid_unregister_driver(struct hid_driver *hdrv)
2897 : {
2898 0 : driver_unregister(&hdrv->driver);
2899 0 : hid_free_dynids(hdrv);
2900 :
2901 0 : bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2902 0 : }
2903 : EXPORT_SYMBOL_GPL(hid_unregister_driver);
2904 :
2905 0 : int hid_check_keys_pressed(struct hid_device *hid)
2906 : {
2907 : struct hid_input *hidinput;
2908 : int i;
2909 :
2910 0 : if (!(hid->claimed & HID_CLAIMED_INPUT))
2911 : return 0;
2912 :
2913 0 : list_for_each_entry(hidinput, &hid->inputs, list) {
2914 0 : for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2915 0 : if (hidinput->input->key[i])
2916 : return 1;
2917 : }
2918 :
2919 : return 0;
2920 : }
2921 : EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2922 :
2923 : #ifdef CONFIG_HID_BPF
2924 : static struct hid_bpf_ops hid_ops = {
2925 : .hid_get_report = hid_get_report,
2926 : .hid_hw_raw_request = hid_hw_raw_request,
2927 : .owner = THIS_MODULE,
2928 : .bus_type = &hid_bus_type,
2929 : };
2930 : #endif
2931 :
2932 1 : static int __init hid_init(void)
2933 : {
2934 : int ret;
2935 :
2936 1 : ret = bus_register(&hid_bus_type);
2937 1 : if (ret) {
2938 0 : pr_err("can't register hid bus\n");
2939 : goto err;
2940 : }
2941 :
2942 : #ifdef CONFIG_HID_BPF
2943 : hid_bpf_ops = &hid_ops;
2944 : #endif
2945 :
2946 : ret = hidraw_init();
2947 : if (ret)
2948 : goto err_bus;
2949 :
2950 : hid_debug_init();
2951 :
2952 : return 0;
2953 : err_bus:
2954 : bus_unregister(&hid_bus_type);
2955 : err:
2956 0 : return ret;
2957 : }
2958 :
2959 0 : static void __exit hid_exit(void)
2960 : {
2961 : #ifdef CONFIG_HID_BPF
2962 : hid_bpf_ops = NULL;
2963 : #endif
2964 : hid_debug_exit();
2965 : hidraw_exit();
2966 0 : bus_unregister(&hid_bus_type);
2967 0 : hid_quirks_exit(HID_BUS_ANY);
2968 0 : }
2969 :
2970 : module_init(hid_init);
2971 : module_exit(hid_exit);
2972 :
2973 : MODULE_AUTHOR("Andreas Gal");
2974 : MODULE_AUTHOR("Vojtech Pavlik");
2975 : MODULE_AUTHOR("Jiri Kosina");
2976 : MODULE_LICENSE("GPL");
|