LCOV - code coverage report
Current view: top level - drivers/input - input.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 14 930 1.5 %
Date: 2023-03-27 20:00:47 Functions: 2 105 1.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * The input core
       4             :  *
       5             :  * Copyright (c) 1999-2002 Vojtech Pavlik
       6             :  */
       7             : 
       8             : 
       9             : #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
      10             : 
      11             : #include <linux/init.h>
      12             : #include <linux/types.h>
      13             : #include <linux/idr.h>
      14             : #include <linux/input/mt.h>
      15             : #include <linux/module.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/random.h>
      18             : #include <linux/major.h>
      19             : #include <linux/proc_fs.h>
      20             : #include <linux/sched.h>
      21             : #include <linux/seq_file.h>
      22             : #include <linux/pm.h>
      23             : #include <linux/poll.h>
      24             : #include <linux/device.h>
      25             : #include <linux/kstrtox.h>
      26             : #include <linux/mutex.h>
      27             : #include <linux/rcupdate.h>
      28             : #include "input-compat.h"
      29             : #include "input-core-private.h"
      30             : #include "input-poller.h"
      31             : 
      32             : MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
      33             : MODULE_DESCRIPTION("Input core");
      34             : MODULE_LICENSE("GPL");
      35             : 
      36             : #define INPUT_MAX_CHAR_DEVICES          1024
      37             : #define INPUT_FIRST_DYNAMIC_DEV         256
      38             : static DEFINE_IDA(input_ida);
      39             : 
      40             : static LIST_HEAD(input_dev_list);
      41             : static LIST_HEAD(input_handler_list);
      42             : 
      43             : /*
      44             :  * input_mutex protects access to both input_dev_list and input_handler_list.
      45             :  * This also causes input_[un]register_device and input_[un]register_handler
      46             :  * be mutually exclusive which simplifies locking in drivers implementing
      47             :  * input handlers.
      48             :  */
      49             : static DEFINE_MUTEX(input_mutex);
      50             : 
      51             : static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
      52             : 
      53             : static const unsigned int input_max_code[EV_CNT] = {
      54             :         [EV_KEY] = KEY_MAX,
      55             :         [EV_REL] = REL_MAX,
      56             :         [EV_ABS] = ABS_MAX,
      57             :         [EV_MSC] = MSC_MAX,
      58             :         [EV_SW] = SW_MAX,
      59             :         [EV_LED] = LED_MAX,
      60             :         [EV_SND] = SND_MAX,
      61             :         [EV_FF] = FF_MAX,
      62             : };
      63             : 
      64           0 : static inline int is_event_supported(unsigned int code,
      65             :                                      unsigned long *bm, unsigned int max)
      66             : {
      67           0 :         return code <= max && test_bit(code, bm);
      68             : }
      69             : 
      70           0 : static int input_defuzz_abs_event(int value, int old_val, int fuzz)
      71             : {
      72           0 :         if (fuzz) {
      73           0 :                 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
      74             :                         return old_val;
      75             : 
      76           0 :                 if (value > old_val - fuzz && value < old_val + fuzz)
      77           0 :                         return (old_val * 3 + value) / 4;
      78             : 
      79           0 :                 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
      80           0 :                         return (old_val + value) / 2;
      81             :         }
      82             : 
      83             :         return value;
      84             : }
      85             : 
      86           0 : static void input_start_autorepeat(struct input_dev *dev, int code)
      87             : {
      88           0 :         if (test_bit(EV_REP, dev->evbit) &&
      89           0 :             dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
      90           0 :             dev->timer.function) {
      91           0 :                 dev->repeat_key = code;
      92           0 :                 mod_timer(&dev->timer,
      93           0 :                           jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
      94             :         }
      95           0 : }
      96             : 
      97             : static void input_stop_autorepeat(struct input_dev *dev)
      98             : {
      99           0 :         del_timer(&dev->timer);
     100             : }
     101             : 
     102             : /*
     103             :  * Pass event first through all filters and then, if event has not been
     104             :  * filtered out, through all open handles. This function is called with
     105             :  * dev->event_lock held and interrupts disabled.
     106             :  */
     107           0 : static unsigned int input_to_handler(struct input_handle *handle,
     108             :                         struct input_value *vals, unsigned int count)
     109             : {
     110           0 :         struct input_handler *handler = handle->handler;
     111           0 :         struct input_value *end = vals;
     112             :         struct input_value *v;
     113             : 
     114           0 :         if (handler->filter) {
     115           0 :                 for (v = vals; v != vals + count; v++) {
     116           0 :                         if (handler->filter(handle, v->type, v->code, v->value))
     117           0 :                                 continue;
     118           0 :                         if (end != v)
     119           0 :                                 *end = *v;
     120           0 :                         end++;
     121             :                 }
     122           0 :                 count = end - vals;
     123             :         }
     124             : 
     125           0 :         if (!count)
     126             :                 return 0;
     127             : 
     128           0 :         if (handler->events)
     129           0 :                 handler->events(handle, vals, count);
     130           0 :         else if (handler->event)
     131           0 :                 for (v = vals; v != vals + count; v++)
     132           0 :                         handler->event(handle, v->type, v->code, v->value);
     133             : 
     134             :         return count;
     135             : }
     136             : 
     137             : /*
     138             :  * Pass values first through all filters and then, if event has not been
     139             :  * filtered out, through all open handles. This function is called with
     140             :  * dev->event_lock held and interrupts disabled.
     141             :  */
     142           0 : static void input_pass_values(struct input_dev *dev,
     143             :                               struct input_value *vals, unsigned int count)
     144             : {
     145             :         struct input_handle *handle;
     146             :         struct input_value *v;
     147             : 
     148             :         lockdep_assert_held(&dev->event_lock);
     149             : 
     150           0 :         if (!count)
     151             :                 return;
     152             : 
     153             :         rcu_read_lock();
     154             : 
     155           0 :         handle = rcu_dereference(dev->grab);
     156           0 :         if (handle) {
     157           0 :                 count = input_to_handler(handle, vals, count);
     158             :         } else {
     159           0 :                 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
     160           0 :                         if (handle->open) {
     161           0 :                                 count = input_to_handler(handle, vals, count);
     162           0 :                                 if (!count)
     163             :                                         break;
     164             :                         }
     165             :         }
     166             : 
     167             :         rcu_read_unlock();
     168             : 
     169             :         /* trigger auto repeat for key events */
     170           0 :         if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
     171           0 :                 for (v = vals; v != vals + count; v++) {
     172           0 :                         if (v->type == EV_KEY && v->value != 2) {
     173           0 :                                 if (v->value)
     174           0 :                                         input_start_autorepeat(dev, v->code);
     175             :                                 else
     176             :                                         input_stop_autorepeat(dev);
     177             :                         }
     178             :                 }
     179             :         }
     180             : }
     181             : 
     182             : #define INPUT_IGNORE_EVENT      0
     183             : #define INPUT_PASS_TO_HANDLERS  1
     184             : #define INPUT_PASS_TO_DEVICE    2
     185             : #define INPUT_SLOT              4
     186             : #define INPUT_FLUSH             8
     187             : #define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
     188             : 
     189           0 : static int input_handle_abs_event(struct input_dev *dev,
     190             :                                   unsigned int code, int *pval)
     191             : {
     192           0 :         struct input_mt *mt = dev->mt;
     193             :         bool is_mt_event;
     194             :         int *pold;
     195             : 
     196           0 :         if (code == ABS_MT_SLOT) {
     197             :                 /*
     198             :                  * "Stage" the event; we'll flush it later, when we
     199             :                  * get actual touch data.
     200             :                  */
     201           0 :                 if (mt && *pval >= 0 && *pval < mt->num_slots)
     202           0 :                         mt->slot = *pval;
     203             : 
     204             :                 return INPUT_IGNORE_EVENT;
     205             :         }
     206             : 
     207           0 :         is_mt_event = input_is_mt_value(code);
     208             : 
     209           0 :         if (!is_mt_event) {
     210           0 :                 pold = &dev->absinfo[code].value;
     211           0 :         } else if (mt) {
     212           0 :                 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
     213             :         } else {
     214             :                 /*
     215             :                  * Bypass filtering for multi-touch events when
     216             :                  * not employing slots.
     217             :                  */
     218             :                 pold = NULL;
     219             :         }
     220             : 
     221           0 :         if (pold) {
     222           0 :                 *pval = input_defuzz_abs_event(*pval, *pold,
     223           0 :                                                 dev->absinfo[code].fuzz);
     224           0 :                 if (*pold == *pval)
     225             :                         return INPUT_IGNORE_EVENT;
     226             : 
     227           0 :                 *pold = *pval;
     228             :         }
     229             : 
     230             :         /* Flush pending "slot" event */
     231           0 :         if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
     232           0 :                 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
     233             :                 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
     234             :         }
     235             : 
     236             :         return INPUT_PASS_TO_HANDLERS;
     237             : }
     238             : 
     239           0 : static int input_get_disposition(struct input_dev *dev,
     240             :                           unsigned int type, unsigned int code, int *pval)
     241             : {
     242           0 :         int disposition = INPUT_IGNORE_EVENT;
     243           0 :         int value = *pval;
     244             : 
     245             :         /* filter-out events from inhibited devices */
     246           0 :         if (dev->inhibited)
     247             :                 return INPUT_IGNORE_EVENT;
     248             : 
     249           0 :         switch (type) {
     250             : 
     251             :         case EV_SYN:
     252           0 :                 switch (code) {
     253             :                 case SYN_CONFIG:
     254           0 :                         disposition = INPUT_PASS_TO_ALL;
     255           0 :                         break;
     256             : 
     257             :                 case SYN_REPORT:
     258           0 :                         disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
     259           0 :                         break;
     260             :                 case SYN_MT_REPORT:
     261           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     262           0 :                         break;
     263             :                 }
     264             :                 break;
     265             : 
     266             :         case EV_KEY:
     267           0 :                 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
     268             : 
     269             :                         /* auto-repeat bypasses state updates */
     270           0 :                         if (value == 2) {
     271             :                                 disposition = INPUT_PASS_TO_HANDLERS;
     272             :                                 break;
     273             :                         }
     274             : 
     275           0 :                         if (!!test_bit(code, dev->key) != !!value) {
     276             : 
     277           0 :                                 __change_bit(code, dev->key);
     278             :                                 disposition = INPUT_PASS_TO_HANDLERS;
     279             :                         }
     280             :                 }
     281             :                 break;
     282             : 
     283             :         case EV_SW:
     284           0 :                 if (is_event_supported(code, dev->swbit, SW_MAX) &&
     285           0 :                     !!test_bit(code, dev->sw) != !!value) {
     286             : 
     287           0 :                         __change_bit(code, dev->sw);
     288             :                         disposition = INPUT_PASS_TO_HANDLERS;
     289             :                 }
     290             :                 break;
     291             : 
     292             :         case EV_ABS:
     293           0 :                 if (is_event_supported(code, dev->absbit, ABS_MAX))
     294           0 :                         disposition = input_handle_abs_event(dev, code, &value);
     295             : 
     296             :                 break;
     297             : 
     298             :         case EV_REL:
     299           0 :                 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
     300           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     301             : 
     302             :                 break;
     303             : 
     304             :         case EV_MSC:
     305           0 :                 if (is_event_supported(code, dev->mscbit, MSC_MAX))
     306           0 :                         disposition = INPUT_PASS_TO_ALL;
     307             : 
     308             :                 break;
     309             : 
     310             :         case EV_LED:
     311           0 :                 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
     312           0 :                     !!test_bit(code, dev->led) != !!value) {
     313             : 
     314           0 :                         __change_bit(code, dev->led);
     315             :                         disposition = INPUT_PASS_TO_ALL;
     316             :                 }
     317             :                 break;
     318             : 
     319             :         case EV_SND:
     320           0 :                 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
     321             : 
     322           0 :                         if (!!test_bit(code, dev->snd) != !!value)
     323           0 :                                 __change_bit(code, dev->snd);
     324             :                         disposition = INPUT_PASS_TO_ALL;
     325             :                 }
     326             :                 break;
     327             : 
     328             :         case EV_REP:
     329           0 :                 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
     330           0 :                         dev->rep[code] = value;
     331           0 :                         disposition = INPUT_PASS_TO_ALL;
     332             :                 }
     333             :                 break;
     334             : 
     335             :         case EV_FF:
     336           0 :                 if (value >= 0)
     337           0 :                         disposition = INPUT_PASS_TO_ALL;
     338             :                 break;
     339             : 
     340             :         case EV_PWR:
     341           0 :                 disposition = INPUT_PASS_TO_ALL;
     342           0 :                 break;
     343             :         }
     344             : 
     345           0 :         *pval = value;
     346           0 :         return disposition;
     347             : }
     348             : 
     349           0 : static void input_event_dispose(struct input_dev *dev, int disposition,
     350             :                                 unsigned int type, unsigned int code, int value)
     351             : {
     352           0 :         if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
     353           0 :                 dev->event(dev, type, code, value);
     354             : 
     355           0 :         if (!dev->vals)
     356             :                 return;
     357             : 
     358           0 :         if (disposition & INPUT_PASS_TO_HANDLERS) {
     359             :                 struct input_value *v;
     360             : 
     361           0 :                 if (disposition & INPUT_SLOT) {
     362           0 :                         v = &dev->vals[dev->num_vals++];
     363           0 :                         v->type = EV_ABS;
     364           0 :                         v->code = ABS_MT_SLOT;
     365           0 :                         v->value = dev->mt->slot;
     366             :                 }
     367             : 
     368           0 :                 v = &dev->vals[dev->num_vals++];
     369           0 :                 v->type = type;
     370           0 :                 v->code = code;
     371           0 :                 v->value = value;
     372             :         }
     373             : 
     374           0 :         if (disposition & INPUT_FLUSH) {
     375           0 :                 if (dev->num_vals >= 2)
     376           0 :                         input_pass_values(dev, dev->vals, dev->num_vals);
     377           0 :                 dev->num_vals = 0;
     378             :                 /*
     379             :                  * Reset the timestamp on flush so we won't end up
     380             :                  * with a stale one. Note we only need to reset the
     381             :                  * monolithic one as we use its presence when deciding
     382             :                  * whether to generate a synthetic timestamp.
     383             :                  */
     384           0 :                 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
     385           0 :         } else if (dev->num_vals >= dev->max_vals - 2) {
     386           0 :                 dev->vals[dev->num_vals++] = input_value_sync;
     387           0 :                 input_pass_values(dev, dev->vals, dev->num_vals);
     388           0 :                 dev->num_vals = 0;
     389             :         }
     390             : }
     391             : 
     392           0 : void input_handle_event(struct input_dev *dev,
     393             :                         unsigned int type, unsigned int code, int value)
     394             : {
     395             :         int disposition;
     396             : 
     397             :         lockdep_assert_held(&dev->event_lock);
     398             : 
     399           0 :         disposition = input_get_disposition(dev, type, code, &value);
     400           0 :         if (disposition != INPUT_IGNORE_EVENT) {
     401           0 :                 if (type != EV_SYN)
     402           0 :                         add_input_randomness(type, code, value);
     403             : 
     404           0 :                 input_event_dispose(dev, disposition, type, code, value);
     405             :         }
     406           0 : }
     407             : 
     408             : /**
     409             :  * input_event() - report new input event
     410             :  * @dev: device that generated the event
     411             :  * @type: type of the event
     412             :  * @code: event code
     413             :  * @value: value of the event
     414             :  *
     415             :  * This function should be used by drivers implementing various input
     416             :  * devices to report input events. See also input_inject_event().
     417             :  *
     418             :  * NOTE: input_event() may be safely used right after input device was
     419             :  * allocated with input_allocate_device(), even before it is registered
     420             :  * with input_register_device(), but the event will not reach any of the
     421             :  * input handlers. Such early invocation of input_event() may be used
     422             :  * to 'seed' initial state of a switch or initial position of absolute
     423             :  * axis, etc.
     424             :  */
     425           0 : void input_event(struct input_dev *dev,
     426             :                  unsigned int type, unsigned int code, int value)
     427             : {
     428             :         unsigned long flags;
     429             : 
     430           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     431             : 
     432           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     433           0 :                 input_handle_event(dev, type, code, value);
     434           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     435             :         }
     436           0 : }
     437             : EXPORT_SYMBOL(input_event);
     438             : 
     439             : /**
     440             :  * input_inject_event() - send input event from input handler
     441             :  * @handle: input handle to send event through
     442             :  * @type: type of the event
     443             :  * @code: event code
     444             :  * @value: value of the event
     445             :  *
     446             :  * Similar to input_event() but will ignore event if device is
     447             :  * "grabbed" and handle injecting event is not the one that owns
     448             :  * the device.
     449             :  */
     450           0 : void input_inject_event(struct input_handle *handle,
     451             :                         unsigned int type, unsigned int code, int value)
     452             : {
     453           0 :         struct input_dev *dev = handle->dev;
     454             :         struct input_handle *grab;
     455             :         unsigned long flags;
     456             : 
     457           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     458           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     459             : 
     460             :                 rcu_read_lock();
     461           0 :                 grab = rcu_dereference(dev->grab);
     462           0 :                 if (!grab || grab == handle)
     463           0 :                         input_handle_event(dev, type, code, value);
     464             :                 rcu_read_unlock();
     465             : 
     466           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     467             :         }
     468           0 : }
     469             : EXPORT_SYMBOL(input_inject_event);
     470             : 
     471             : /**
     472             :  * input_alloc_absinfo - allocates array of input_absinfo structs
     473             :  * @dev: the input device emitting absolute events
     474             :  *
     475             :  * If the absinfo struct the caller asked for is already allocated, this
     476             :  * functions will not do anything.
     477             :  */
     478           0 : void input_alloc_absinfo(struct input_dev *dev)
     479             : {
     480           0 :         if (dev->absinfo)
     481             :                 return;
     482             : 
     483           0 :         dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
     484           0 :         if (!dev->absinfo) {
     485           0 :                 dev_err(dev->dev.parent ?: &dev->dev,
     486             :                         "%s: unable to allocate memory\n", __func__);
     487             :                 /*
     488             :                  * We will handle this allocation failure in
     489             :                  * input_register_device() when we refuse to register input
     490             :                  * device with ABS bits but without absinfo.
     491             :                  */
     492             :         }
     493             : }
     494             : EXPORT_SYMBOL(input_alloc_absinfo);
     495             : 
     496           0 : void input_set_abs_params(struct input_dev *dev, unsigned int axis,
     497             :                           int min, int max, int fuzz, int flat)
     498             : {
     499             :         struct input_absinfo *absinfo;
     500             : 
     501           0 :         __set_bit(EV_ABS, dev->evbit);
     502           0 :         __set_bit(axis, dev->absbit);
     503             : 
     504           0 :         input_alloc_absinfo(dev);
     505           0 :         if (!dev->absinfo)
     506             :                 return;
     507             : 
     508           0 :         absinfo = &dev->absinfo[axis];
     509           0 :         absinfo->minimum = min;
     510           0 :         absinfo->maximum = max;
     511           0 :         absinfo->fuzz = fuzz;
     512           0 :         absinfo->flat = flat;
     513             : }
     514             : EXPORT_SYMBOL(input_set_abs_params);
     515             : 
     516             : /**
     517             :  * input_copy_abs - Copy absinfo from one input_dev to another
     518             :  * @dst: Destination input device to copy the abs settings to
     519             :  * @dst_axis: ABS_* value selecting the destination axis
     520             :  * @src: Source input device to copy the abs settings from
     521             :  * @src_axis: ABS_* value selecting the source axis
     522             :  *
     523             :  * Set absinfo for the selected destination axis by copying it from
     524             :  * the specified source input device's source axis.
     525             :  * This is useful to e.g. setup a pen/stylus input-device for combined
     526             :  * touchscreen/pen hardware where the pen uses the same coordinates as
     527             :  * the touchscreen.
     528             :  */
     529           0 : void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
     530             :                     const struct input_dev *src, unsigned int src_axis)
     531             : {
     532             :         /* src must have EV_ABS and src_axis set */
     533           0 :         if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
     534             :                       test_bit(src_axis, src->absbit))))
     535             :                 return;
     536             : 
     537             :         /*
     538             :          * input_alloc_absinfo() may have failed for the source. Our caller is
     539             :          * expected to catch this when registering the input devices, which may
     540             :          * happen after the input_copy_abs() call.
     541             :          */
     542           0 :         if (!src->absinfo)
     543             :                 return;
     544             : 
     545           0 :         input_set_capability(dst, EV_ABS, dst_axis);
     546           0 :         if (!dst->absinfo)
     547             :                 return;
     548             : 
     549           0 :         dst->absinfo[dst_axis] = src->absinfo[src_axis];
     550             : }
     551             : EXPORT_SYMBOL(input_copy_abs);
     552             : 
     553             : /**
     554             :  * input_grab_device - grabs device for exclusive use
     555             :  * @handle: input handle that wants to own the device
     556             :  *
     557             :  * When a device is grabbed by an input handle all events generated by
     558             :  * the device are delivered only to this handle. Also events injected
     559             :  * by other input handles are ignored while device is grabbed.
     560             :  */
     561           0 : int input_grab_device(struct input_handle *handle)
     562             : {
     563           0 :         struct input_dev *dev = handle->dev;
     564             :         int retval;
     565             : 
     566           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     567           0 :         if (retval)
     568             :                 return retval;
     569             : 
     570           0 :         if (dev->grab) {
     571             :                 retval = -EBUSY;
     572             :                 goto out;
     573             :         }
     574             : 
     575           0 :         rcu_assign_pointer(dev->grab, handle);
     576             : 
     577             :  out:
     578           0 :         mutex_unlock(&dev->mutex);
     579           0 :         return retval;
     580             : }
     581             : EXPORT_SYMBOL(input_grab_device);
     582             : 
     583           0 : static void __input_release_device(struct input_handle *handle)
     584             : {
     585           0 :         struct input_dev *dev = handle->dev;
     586             :         struct input_handle *grabber;
     587             : 
     588           0 :         grabber = rcu_dereference_protected(dev->grab,
     589             :                                             lockdep_is_held(&dev->mutex));
     590           0 :         if (grabber == handle) {
     591           0 :                 rcu_assign_pointer(dev->grab, NULL);
     592             :                 /* Make sure input_pass_values() notices that grab is gone */
     593           0 :                 synchronize_rcu();
     594             : 
     595           0 :                 list_for_each_entry(handle, &dev->h_list, d_node)
     596           0 :                         if (handle->open && handle->handler->start)
     597           0 :                                 handle->handler->start(handle);
     598             :         }
     599           0 : }
     600             : 
     601             : /**
     602             :  * input_release_device - release previously grabbed device
     603             :  * @handle: input handle that owns the device
     604             :  *
     605             :  * Releases previously grabbed device so that other input handles can
     606             :  * start receiving input events. Upon release all handlers attached
     607             :  * to the device have their start() method called so they have a change
     608             :  * to synchronize device state with the rest of the system.
     609             :  */
     610           0 : void input_release_device(struct input_handle *handle)
     611             : {
     612           0 :         struct input_dev *dev = handle->dev;
     613             : 
     614           0 :         mutex_lock(&dev->mutex);
     615           0 :         __input_release_device(handle);
     616           0 :         mutex_unlock(&dev->mutex);
     617           0 : }
     618             : EXPORT_SYMBOL(input_release_device);
     619             : 
     620             : /**
     621             :  * input_open_device - open input device
     622             :  * @handle: handle through which device is being accessed
     623             :  *
     624             :  * This function should be called by input handlers when they
     625             :  * want to start receive events from given input device.
     626             :  */
     627           0 : int input_open_device(struct input_handle *handle)
     628             : {
     629           0 :         struct input_dev *dev = handle->dev;
     630             :         int retval;
     631             : 
     632           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     633           0 :         if (retval)
     634             :                 return retval;
     635             : 
     636           0 :         if (dev->going_away) {
     637             :                 retval = -ENODEV;
     638             :                 goto out;
     639             :         }
     640             : 
     641           0 :         handle->open++;
     642             : 
     643           0 :         if (dev->users++ || dev->inhibited) {
     644             :                 /*
     645             :                  * Device is already opened and/or inhibited,
     646             :                  * so we can exit immediately and report success.
     647             :                  */
     648             :                 goto out;
     649             :         }
     650             : 
     651           0 :         if (dev->open) {
     652           0 :                 retval = dev->open(dev);
     653           0 :                 if (retval) {
     654           0 :                         dev->users--;
     655           0 :                         handle->open--;
     656             :                         /*
     657             :                          * Make sure we are not delivering any more events
     658             :                          * through this handle
     659             :                          */
     660           0 :                         synchronize_rcu();
     661           0 :                         goto out;
     662             :                 }
     663             :         }
     664             : 
     665           0 :         if (dev->poller)
     666           0 :                 input_dev_poller_start(dev->poller);
     667             : 
     668             :  out:
     669           0 :         mutex_unlock(&dev->mutex);
     670           0 :         return retval;
     671             : }
     672             : EXPORT_SYMBOL(input_open_device);
     673             : 
     674           0 : int input_flush_device(struct input_handle *handle, struct file *file)
     675             : {
     676           0 :         struct input_dev *dev = handle->dev;
     677             :         int retval;
     678             : 
     679           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     680           0 :         if (retval)
     681             :                 return retval;
     682             : 
     683           0 :         if (dev->flush)
     684           0 :                 retval = dev->flush(dev, file);
     685             : 
     686           0 :         mutex_unlock(&dev->mutex);
     687           0 :         return retval;
     688             : }
     689             : EXPORT_SYMBOL(input_flush_device);
     690             : 
     691             : /**
     692             :  * input_close_device - close input device
     693             :  * @handle: handle through which device is being accessed
     694             :  *
     695             :  * This function should be called by input handlers when they
     696             :  * want to stop receive events from given input device.
     697             :  */
     698           0 : void input_close_device(struct input_handle *handle)
     699             : {
     700           0 :         struct input_dev *dev = handle->dev;
     701             : 
     702           0 :         mutex_lock(&dev->mutex);
     703             : 
     704           0 :         __input_release_device(handle);
     705             : 
     706           0 :         if (!dev->inhibited && !--dev->users) {
     707           0 :                 if (dev->poller)
     708           0 :                         input_dev_poller_stop(dev->poller);
     709           0 :                 if (dev->close)
     710           0 :                         dev->close(dev);
     711             :         }
     712             : 
     713           0 :         if (!--handle->open) {
     714             :                 /*
     715             :                  * synchronize_rcu() makes sure that input_pass_values()
     716             :                  * completed and that no more input events are delivered
     717             :                  * through this handle
     718             :                  */
     719           0 :                 synchronize_rcu();
     720             :         }
     721             : 
     722           0 :         mutex_unlock(&dev->mutex);
     723           0 : }
     724             : EXPORT_SYMBOL(input_close_device);
     725             : 
     726             : /*
     727             :  * Simulate keyup events for all keys that are marked as pressed.
     728             :  * The function must be called with dev->event_lock held.
     729             :  */
     730           0 : static bool input_dev_release_keys(struct input_dev *dev)
     731             : {
     732           0 :         bool need_sync = false;
     733             :         int code;
     734             : 
     735             :         lockdep_assert_held(&dev->event_lock);
     736             : 
     737           0 :         if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
     738           0 :                 for_each_set_bit(code, dev->key, KEY_CNT) {
     739           0 :                         input_handle_event(dev, EV_KEY, code, 0);
     740           0 :                         need_sync = true;
     741             :                 }
     742             :         }
     743             : 
     744           0 :         return need_sync;
     745             : }
     746             : 
     747             : /*
     748             :  * Prepare device for unregistering
     749             :  */
     750           0 : static void input_disconnect_device(struct input_dev *dev)
     751             : {
     752             :         struct input_handle *handle;
     753             : 
     754             :         /*
     755             :          * Mark device as going away. Note that we take dev->mutex here
     756             :          * not to protect access to dev->going_away but rather to ensure
     757             :          * that there are no threads in the middle of input_open_device()
     758             :          */
     759           0 :         mutex_lock(&dev->mutex);
     760           0 :         dev->going_away = true;
     761           0 :         mutex_unlock(&dev->mutex);
     762             : 
     763           0 :         spin_lock_irq(&dev->event_lock);
     764             : 
     765             :         /*
     766             :          * Simulate keyup events for all pressed keys so that handlers
     767             :          * are not left with "stuck" keys. The driver may continue
     768             :          * generate events even after we done here but they will not
     769             :          * reach any handlers.
     770             :          */
     771           0 :         if (input_dev_release_keys(dev))
     772           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
     773             : 
     774           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
     775           0 :                 handle->open = 0;
     776             : 
     777           0 :         spin_unlock_irq(&dev->event_lock);
     778           0 : }
     779             : 
     780             : /**
     781             :  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
     782             :  * @ke: keymap entry containing scancode to be converted.
     783             :  * @scancode: pointer to the location where converted scancode should
     784             :  *      be stored.
     785             :  *
     786             :  * This function is used to convert scancode stored in &struct keymap_entry
     787             :  * into scalar form understood by legacy keymap handling methods. These
     788             :  * methods expect scancodes to be represented as 'unsigned int'.
     789             :  */
     790           0 : int input_scancode_to_scalar(const struct input_keymap_entry *ke,
     791             :                              unsigned int *scancode)
     792             : {
     793           0 :         switch (ke->len) {
     794             :         case 1:
     795           0 :                 *scancode = *((u8 *)ke->scancode);
     796           0 :                 break;
     797             : 
     798             :         case 2:
     799           0 :                 *scancode = *((u16 *)ke->scancode);
     800           0 :                 break;
     801             : 
     802             :         case 4:
     803           0 :                 *scancode = *((u32 *)ke->scancode);
     804           0 :                 break;
     805             : 
     806             :         default:
     807             :                 return -EINVAL;
     808             :         }
     809             : 
     810             :         return 0;
     811             : }
     812             : EXPORT_SYMBOL(input_scancode_to_scalar);
     813             : 
     814             : /*
     815             :  * Those routines handle the default case where no [gs]etkeycode() is
     816             :  * defined. In this case, an array indexed by the scancode is used.
     817             :  */
     818             : 
     819             : static unsigned int input_fetch_keycode(struct input_dev *dev,
     820             :                                         unsigned int index)
     821             : {
     822           0 :         switch (dev->keycodesize) {
     823             :         case 1:
     824           0 :                 return ((u8 *)dev->keycode)[index];
     825             : 
     826             :         case 2:
     827           0 :                 return ((u16 *)dev->keycode)[index];
     828             : 
     829             :         default:
     830           0 :                 return ((u32 *)dev->keycode)[index];
     831             :         }
     832             : }
     833             : 
     834           0 : static int input_default_getkeycode(struct input_dev *dev,
     835             :                                     struct input_keymap_entry *ke)
     836             : {
     837             :         unsigned int index;
     838             :         int error;
     839             : 
     840           0 :         if (!dev->keycodesize)
     841             :                 return -EINVAL;
     842             : 
     843           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX)
     844           0 :                 index = ke->index;
     845             :         else {
     846           0 :                 error = input_scancode_to_scalar(ke, &index);
     847           0 :                 if (error)
     848             :                         return error;
     849             :         }
     850             : 
     851           0 :         if (index >= dev->keycodemax)
     852             :                 return -EINVAL;
     853             : 
     854           0 :         ke->keycode = input_fetch_keycode(dev, index);
     855           0 :         ke->index = index;
     856           0 :         ke->len = sizeof(index);
     857           0 :         memcpy(ke->scancode, &index, sizeof(index));
     858             : 
     859           0 :         return 0;
     860             : }
     861             : 
     862           0 : static int input_default_setkeycode(struct input_dev *dev,
     863             :                                     const struct input_keymap_entry *ke,
     864             :                                     unsigned int *old_keycode)
     865             : {
     866             :         unsigned int index;
     867             :         int error;
     868             :         int i;
     869             : 
     870           0 :         if (!dev->keycodesize)
     871             :                 return -EINVAL;
     872             : 
     873           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
     874           0 :                 index = ke->index;
     875             :         } else {
     876           0 :                 error = input_scancode_to_scalar(ke, &index);
     877           0 :                 if (error)
     878             :                         return error;
     879             :         }
     880             : 
     881           0 :         if (index >= dev->keycodemax)
     882             :                 return -EINVAL;
     883             : 
     884           0 :         if (dev->keycodesize < sizeof(ke->keycode) &&
     885           0 :                         (ke->keycode >> (dev->keycodesize * 8)))
     886             :                 return -EINVAL;
     887             : 
     888           0 :         switch (dev->keycodesize) {
     889             :                 case 1: {
     890           0 :                         u8 *k = (u8 *)dev->keycode;
     891           0 :                         *old_keycode = k[index];
     892           0 :                         k[index] = ke->keycode;
     893           0 :                         break;
     894             :                 }
     895             :                 case 2: {
     896           0 :                         u16 *k = (u16 *)dev->keycode;
     897           0 :                         *old_keycode = k[index];
     898           0 :                         k[index] = ke->keycode;
     899           0 :                         break;
     900             :                 }
     901             :                 default: {
     902           0 :                         u32 *k = (u32 *)dev->keycode;
     903           0 :                         *old_keycode = k[index];
     904           0 :                         k[index] = ke->keycode;
     905           0 :                         break;
     906             :                 }
     907             :         }
     908             : 
     909           0 :         if (*old_keycode <= KEY_MAX) {
     910           0 :                 __clear_bit(*old_keycode, dev->keybit);
     911           0 :                 for (i = 0; i < dev->keycodemax; i++) {
     912           0 :                         if (input_fetch_keycode(dev, i) == *old_keycode) {
     913           0 :                                 __set_bit(*old_keycode, dev->keybit);
     914             :                                 /* Setting the bit twice is useless, so break */
     915             :                                 break;
     916             :                         }
     917             :                 }
     918             :         }
     919             : 
     920           0 :         __set_bit(ke->keycode, dev->keybit);
     921             :         return 0;
     922             : }
     923             : 
     924             : /**
     925             :  * input_get_keycode - retrieve keycode currently mapped to a given scancode
     926             :  * @dev: input device which keymap is being queried
     927             :  * @ke: keymap entry
     928             :  *
     929             :  * This function should be called by anyone interested in retrieving current
     930             :  * keymap. Presently evdev handlers use it.
     931             :  */
     932           0 : int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
     933             : {
     934             :         unsigned long flags;
     935             :         int retval;
     936             : 
     937           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     938           0 :         retval = dev->getkeycode(dev, ke);
     939           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     940             : 
     941           0 :         return retval;
     942             : }
     943             : EXPORT_SYMBOL(input_get_keycode);
     944             : 
     945             : /**
     946             :  * input_set_keycode - attribute a keycode to a given scancode
     947             :  * @dev: input device which keymap is being updated
     948             :  * @ke: new keymap entry
     949             :  *
     950             :  * This function should be called by anyone needing to update current
     951             :  * keymap. Presently keyboard and evdev handlers use it.
     952             :  */
     953           0 : int input_set_keycode(struct input_dev *dev,
     954             :                       const struct input_keymap_entry *ke)
     955             : {
     956             :         unsigned long flags;
     957             :         unsigned int old_keycode;
     958             :         int retval;
     959             : 
     960           0 :         if (ke->keycode > KEY_MAX)
     961             :                 return -EINVAL;
     962             : 
     963           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     964             : 
     965           0 :         retval = dev->setkeycode(dev, ke, &old_keycode);
     966           0 :         if (retval)
     967             :                 goto out;
     968             : 
     969             :         /* Make sure KEY_RESERVED did not get enabled. */
     970           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
     971             : 
     972             :         /*
     973             :          * Simulate keyup event if keycode is not present
     974             :          * in the keymap anymore
     975             :          */
     976           0 :         if (old_keycode > KEY_MAX) {
     977           0 :                 dev_warn(dev->dev.parent ?: &dev->dev,
     978             :                          "%s: got too big old keycode %#x\n",
     979             :                          __func__, old_keycode);
     980           0 :         } else if (test_bit(EV_KEY, dev->evbit) &&
     981           0 :                    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
     982           0 :                    __test_and_clear_bit(old_keycode, dev->key)) {
     983             :                 /*
     984             :                  * We have to use input_event_dispose() here directly instead
     985             :                  * of input_handle_event() because the key we want to release
     986             :                  * here is considered no longer supported by the device and
     987             :                  * input_handle_event() will ignore it.
     988             :                  */
     989           0 :                 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
     990             :                                     EV_KEY, old_keycode, 0);
     991           0 :                 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
     992             :                                     EV_SYN, SYN_REPORT, 1);
     993             :         }
     994             : 
     995             :  out:
     996           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     997             : 
     998           0 :         return retval;
     999             : }
    1000             : EXPORT_SYMBOL(input_set_keycode);
    1001             : 
    1002           0 : bool input_match_device_id(const struct input_dev *dev,
    1003             :                            const struct input_device_id *id)
    1004             : {
    1005           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
    1006           0 :                 if (id->bustype != dev->id.bustype)
    1007             :                         return false;
    1008             : 
    1009           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
    1010           0 :                 if (id->vendor != dev->id.vendor)
    1011             :                         return false;
    1012             : 
    1013           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
    1014           0 :                 if (id->product != dev->id.product)
    1015             :                         return false;
    1016             : 
    1017           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
    1018           0 :                 if (id->version != dev->id.version)
    1019             :                         return false;
    1020             : 
    1021           0 :         if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
    1022           0 :             !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
    1023           0 :             !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
    1024           0 :             !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
    1025           0 :             !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
    1026           0 :             !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
    1027           0 :             !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
    1028           0 :             !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
    1029           0 :             !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
    1030           0 :             !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
    1031             :                 return false;
    1032             :         }
    1033             : 
    1034             :         return true;
    1035             : }
    1036             : EXPORT_SYMBOL(input_match_device_id);
    1037             : 
    1038           0 : static const struct input_device_id *input_match_device(struct input_handler *handler,
    1039             :                                                         struct input_dev *dev)
    1040             : {
    1041             :         const struct input_device_id *id;
    1042             : 
    1043           0 :         for (id = handler->id_table; id->flags || id->driver_info; id++) {
    1044           0 :                 if (input_match_device_id(dev, id) &&
    1045           0 :                     (!handler->match || handler->match(handler, dev))) {
    1046             :                         return id;
    1047             :                 }
    1048             :         }
    1049             : 
    1050             :         return NULL;
    1051             : }
    1052             : 
    1053           0 : static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
    1054             : {
    1055             :         const struct input_device_id *id;
    1056             :         int error;
    1057             : 
    1058           0 :         id = input_match_device(handler, dev);
    1059           0 :         if (!id)
    1060             :                 return -ENODEV;
    1061             : 
    1062           0 :         error = handler->connect(handler, dev, id);
    1063           0 :         if (error && error != -ENODEV)
    1064           0 :                 pr_err("failed to attach handler %s to device %s, error: %d\n",
    1065             :                        handler->name, kobject_name(&dev->dev.kobj), error);
    1066             : 
    1067             :         return error;
    1068             : }
    1069             : 
    1070             : #ifdef CONFIG_COMPAT
    1071             : 
    1072             : static int input_bits_to_string(char *buf, int buf_size,
    1073             :                                 unsigned long bits, bool skip_empty)
    1074             : {
    1075             :         int len = 0;
    1076             : 
    1077             :         if (in_compat_syscall()) {
    1078             :                 u32 dword = bits >> 32;
    1079             :                 if (dword || !skip_empty)
    1080             :                         len += snprintf(buf, buf_size, "%x ", dword);
    1081             : 
    1082             :                 dword = bits & 0xffffffffUL;
    1083             :                 if (dword || !skip_empty || len)
    1084             :                         len += snprintf(buf + len, max(buf_size - len, 0),
    1085             :                                         "%x", dword);
    1086             :         } else {
    1087             :                 if (bits || !skip_empty)
    1088             :                         len += snprintf(buf, buf_size, "%lx", bits);
    1089             :         }
    1090             : 
    1091             :         return len;
    1092             : }
    1093             : 
    1094             : #else /* !CONFIG_COMPAT */
    1095             : 
    1096             : static int input_bits_to_string(char *buf, int buf_size,
    1097             :                                 unsigned long bits, bool skip_empty)
    1098             : {
    1099           0 :         return bits || !skip_empty ?
    1100           0 :                 snprintf(buf, buf_size, "%lx", bits) : 0;
    1101             : }
    1102             : 
    1103             : #endif
    1104             : 
    1105             : #ifdef CONFIG_PROC_FS
    1106             : 
    1107             : static struct proc_dir_entry *proc_bus_input_dir;
    1108             : static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
    1109             : static int input_devices_state;
    1110             : 
    1111             : static inline void input_wakeup_procfs_readers(void)
    1112             : {
    1113           0 :         input_devices_state++;
    1114           0 :         wake_up(&input_devices_poll_wait);
    1115             : }
    1116             : 
    1117           0 : static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
    1118             : {
    1119           0 :         poll_wait(file, &input_devices_poll_wait, wait);
    1120           0 :         if (file->f_version != input_devices_state) {
    1121           0 :                 file->f_version = input_devices_state;
    1122           0 :                 return EPOLLIN | EPOLLRDNORM;
    1123             :         }
    1124             : 
    1125             :         return 0;
    1126             : }
    1127             : 
    1128             : union input_seq_state {
    1129             :         struct {
    1130             :                 unsigned short pos;
    1131             :                 bool mutex_acquired;
    1132             :         };
    1133             :         void *p;
    1134             : };
    1135             : 
    1136           0 : static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
    1137             : {
    1138           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1139             :         int error;
    1140             : 
    1141             :         /* We need to fit into seq->private pointer */
    1142             :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1143             : 
    1144           0 :         error = mutex_lock_interruptible(&input_mutex);
    1145           0 :         if (error) {
    1146           0 :                 state->mutex_acquired = false;
    1147           0 :                 return ERR_PTR(error);
    1148             :         }
    1149             : 
    1150           0 :         state->mutex_acquired = true;
    1151             : 
    1152           0 :         return seq_list_start(&input_dev_list, *pos);
    1153             : }
    1154             : 
    1155           0 : static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1156             : {
    1157           0 :         return seq_list_next(v, &input_dev_list, pos);
    1158             : }
    1159             : 
    1160           0 : static void input_seq_stop(struct seq_file *seq, void *v)
    1161             : {
    1162           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1163             : 
    1164           0 :         if (state->mutex_acquired)
    1165           0 :                 mutex_unlock(&input_mutex);
    1166           0 : }
    1167             : 
    1168           0 : static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
    1169             :                                    unsigned long *bitmap, int max)
    1170             : {
    1171             :         int i;
    1172           0 :         bool skip_empty = true;
    1173             :         char buf[18];
    1174             : 
    1175           0 :         seq_printf(seq, "B: %s=", name);
    1176             : 
    1177           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1178           0 :                 if (input_bits_to_string(buf, sizeof(buf),
    1179           0 :                                          bitmap[i], skip_empty)) {
    1180           0 :                         skip_empty = false;
    1181           0 :                         seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
    1182             :                 }
    1183             :         }
    1184             : 
    1185             :         /*
    1186             :          * If no output was produced print a single 0.
    1187             :          */
    1188           0 :         if (skip_empty)
    1189           0 :                 seq_putc(seq, '0');
    1190             : 
    1191           0 :         seq_putc(seq, '\n');
    1192           0 : }
    1193             : 
    1194           0 : static int input_devices_seq_show(struct seq_file *seq, void *v)
    1195             : {
    1196           0 :         struct input_dev *dev = container_of(v, struct input_dev, node);
    1197           0 :         const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    1198             :         struct input_handle *handle;
    1199             : 
    1200           0 :         seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
    1201           0 :                    dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
    1202             : 
    1203           0 :         seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
    1204           0 :         seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
    1205           0 :         seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
    1206           0 :         seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
    1207           0 :         seq_puts(seq, "H: Handlers=");
    1208             : 
    1209           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
    1210           0 :                 seq_printf(seq, "%s ", handle->name);
    1211           0 :         seq_putc(seq, '\n');
    1212             : 
    1213           0 :         input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
    1214             : 
    1215           0 :         input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
    1216           0 :         if (test_bit(EV_KEY, dev->evbit))
    1217           0 :                 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
    1218           0 :         if (test_bit(EV_REL, dev->evbit))
    1219           0 :                 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
    1220           0 :         if (test_bit(EV_ABS, dev->evbit))
    1221           0 :                 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
    1222           0 :         if (test_bit(EV_MSC, dev->evbit))
    1223           0 :                 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
    1224           0 :         if (test_bit(EV_LED, dev->evbit))
    1225           0 :                 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
    1226           0 :         if (test_bit(EV_SND, dev->evbit))
    1227           0 :                 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
    1228           0 :         if (test_bit(EV_FF, dev->evbit))
    1229           0 :                 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
    1230           0 :         if (test_bit(EV_SW, dev->evbit))
    1231           0 :                 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
    1232             : 
    1233           0 :         seq_putc(seq, '\n');
    1234             : 
    1235           0 :         kfree(path);
    1236           0 :         return 0;
    1237             : }
    1238             : 
    1239             : static const struct seq_operations input_devices_seq_ops = {
    1240             :         .start  = input_devices_seq_start,
    1241             :         .next   = input_devices_seq_next,
    1242             :         .stop   = input_seq_stop,
    1243             :         .show   = input_devices_seq_show,
    1244             : };
    1245             : 
    1246           0 : static int input_proc_devices_open(struct inode *inode, struct file *file)
    1247             : {
    1248           0 :         return seq_open(file, &input_devices_seq_ops);
    1249             : }
    1250             : 
    1251             : static const struct proc_ops input_devices_proc_ops = {
    1252             :         .proc_open      = input_proc_devices_open,
    1253             :         .proc_poll      = input_proc_devices_poll,
    1254             :         .proc_read      = seq_read,
    1255             :         .proc_lseek     = seq_lseek,
    1256             :         .proc_release   = seq_release,
    1257             : };
    1258             : 
    1259           0 : static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
    1260             : {
    1261           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1262             :         int error;
    1263             : 
    1264             :         /* We need to fit into seq->private pointer */
    1265             :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1266             : 
    1267           0 :         error = mutex_lock_interruptible(&input_mutex);
    1268           0 :         if (error) {
    1269           0 :                 state->mutex_acquired = false;
    1270           0 :                 return ERR_PTR(error);
    1271             :         }
    1272             : 
    1273           0 :         state->mutex_acquired = true;
    1274           0 :         state->pos = *pos;
    1275             : 
    1276           0 :         return seq_list_start(&input_handler_list, *pos);
    1277             : }
    1278             : 
    1279           0 : static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1280             : {
    1281           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1282             : 
    1283           0 :         state->pos = *pos + 1;
    1284           0 :         return seq_list_next(v, &input_handler_list, pos);
    1285             : }
    1286             : 
    1287           0 : static int input_handlers_seq_show(struct seq_file *seq, void *v)
    1288             : {
    1289           0 :         struct input_handler *handler = container_of(v, struct input_handler, node);
    1290           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1291             : 
    1292           0 :         seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
    1293           0 :         if (handler->filter)
    1294           0 :                 seq_puts(seq, " (filter)");
    1295           0 :         if (handler->legacy_minors)
    1296           0 :                 seq_printf(seq, " Minor=%d", handler->minor);
    1297           0 :         seq_putc(seq, '\n');
    1298             : 
    1299           0 :         return 0;
    1300             : }
    1301             : 
    1302             : static const struct seq_operations input_handlers_seq_ops = {
    1303             :         .start  = input_handlers_seq_start,
    1304             :         .next   = input_handlers_seq_next,
    1305             :         .stop   = input_seq_stop,
    1306             :         .show   = input_handlers_seq_show,
    1307             : };
    1308             : 
    1309           0 : static int input_proc_handlers_open(struct inode *inode, struct file *file)
    1310             : {
    1311           0 :         return seq_open(file, &input_handlers_seq_ops);
    1312             : }
    1313             : 
    1314             : static const struct proc_ops input_handlers_proc_ops = {
    1315             :         .proc_open      = input_proc_handlers_open,
    1316             :         .proc_read      = seq_read,
    1317             :         .proc_lseek     = seq_lseek,
    1318             :         .proc_release   = seq_release,
    1319             : };
    1320             : 
    1321           1 : static int __init input_proc_init(void)
    1322             : {
    1323             :         struct proc_dir_entry *entry;
    1324             : 
    1325           1 :         proc_bus_input_dir = proc_mkdir("bus/input", NULL);
    1326           1 :         if (!proc_bus_input_dir)
    1327             :                 return -ENOMEM;
    1328             : 
    1329           1 :         entry = proc_create("devices", 0, proc_bus_input_dir,
    1330             :                             &input_devices_proc_ops);
    1331           1 :         if (!entry)
    1332             :                 goto fail1;
    1333             : 
    1334           1 :         entry = proc_create("handlers", 0, proc_bus_input_dir,
    1335             :                             &input_handlers_proc_ops);
    1336           1 :         if (!entry)
    1337             :                 goto fail2;
    1338             : 
    1339             :         return 0;
    1340             : 
    1341           0 :  fail2: remove_proc_entry("devices", proc_bus_input_dir);
    1342           0 :  fail1: remove_proc_entry("bus/input", NULL);
    1343           0 :         return -ENOMEM;
    1344             : }
    1345             : 
    1346           0 : static void input_proc_exit(void)
    1347             : {
    1348           0 :         remove_proc_entry("devices", proc_bus_input_dir);
    1349           0 :         remove_proc_entry("handlers", proc_bus_input_dir);
    1350           0 :         remove_proc_entry("bus/input", NULL);
    1351           0 : }
    1352             : 
    1353             : #else /* !CONFIG_PROC_FS */
    1354             : static inline void input_wakeup_procfs_readers(void) { }
    1355             : static inline int input_proc_init(void) { return 0; }
    1356             : static inline void input_proc_exit(void) { }
    1357             : #endif
    1358             : 
    1359             : #define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
    1360             : static ssize_t input_dev_show_##name(struct device *dev,                \
    1361             :                                      struct device_attribute *attr,     \
    1362             :                                      char *buf)                         \
    1363             : {                                                                       \
    1364             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1365             :                                                                         \
    1366             :         return scnprintf(buf, PAGE_SIZE, "%s\n",                      \
    1367             :                          input_dev->name ? input_dev->name : "");       \
    1368             : }                                                                       \
    1369             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
    1370             : 
    1371           0 : INPUT_DEV_STRING_ATTR_SHOW(name);
    1372           0 : INPUT_DEV_STRING_ATTR_SHOW(phys);
    1373           0 : INPUT_DEV_STRING_ATTR_SHOW(uniq);
    1374             : 
    1375           0 : static int input_print_modalias_bits(char *buf, int size,
    1376             :                                      char name, const unsigned long *bm,
    1377             :                                      unsigned int min_bit, unsigned int max_bit)
    1378             : {
    1379           0 :         int len = 0, i;
    1380             : 
    1381           0 :         len += snprintf(buf, max(size, 0), "%c", name);
    1382           0 :         for (i = min_bit; i < max_bit; i++)
    1383           0 :                 if (bm[BIT_WORD(i)] & BIT_MASK(i))
    1384           0 :                         len += snprintf(buf + len, max(size - len, 0), "%X,", i);
    1385           0 :         return len;
    1386             : }
    1387             : 
    1388           0 : static int input_print_modalias(char *buf, int size, const struct input_dev *id,
    1389             :                                 int add_cr)
    1390             : {
    1391             :         int len;
    1392             : 
    1393           0 :         len = snprintf(buf, max(size, 0),
    1394             :                        "input:b%04Xv%04Xp%04Xe%04X-",
    1395           0 :                        id->id.bustype, id->id.vendor,
    1396           0 :                        id->id.product, id->id.version);
    1397             : 
    1398           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1399           0 :                                 'e', id->evbit, 0, EV_MAX);
    1400           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1401           0 :                                 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
    1402           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1403           0 :                                 'r', id->relbit, 0, REL_MAX);
    1404           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1405           0 :                                 'a', id->absbit, 0, ABS_MAX);
    1406           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1407           0 :                                 'm', id->mscbit, 0, MSC_MAX);
    1408           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1409           0 :                                 'l', id->ledbit, 0, LED_MAX);
    1410           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1411           0 :                                 's', id->sndbit, 0, SND_MAX);
    1412           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1413           0 :                                 'f', id->ffbit, 0, FF_MAX);
    1414           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1415           0 :                                 'w', id->swbit, 0, SW_MAX);
    1416             : 
    1417           0 :         if (add_cr)
    1418           0 :                 len += snprintf(buf + len, max(size - len, 0), "\n");
    1419             : 
    1420           0 :         return len;
    1421             : }
    1422             : 
    1423           0 : static ssize_t input_dev_show_modalias(struct device *dev,
    1424             :                                        struct device_attribute *attr,
    1425             :                                        char *buf)
    1426             : {
    1427           0 :         struct input_dev *id = to_input_dev(dev);
    1428             :         ssize_t len;
    1429             : 
    1430           0 :         len = input_print_modalias(buf, PAGE_SIZE, id, 1);
    1431             : 
    1432           0 :         return min_t(int, len, PAGE_SIZE);
    1433             : }
    1434             : static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
    1435             : 
    1436             : static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
    1437             :                               int max, int add_cr);
    1438             : 
    1439           0 : static ssize_t input_dev_show_properties(struct device *dev,
    1440             :                                          struct device_attribute *attr,
    1441             :                                          char *buf)
    1442             : {
    1443           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1444           0 :         int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
    1445             :                                      INPUT_PROP_MAX, true);
    1446           0 :         return min_t(int, len, PAGE_SIZE);
    1447             : }
    1448             : static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
    1449             : 
    1450             : static int input_inhibit_device(struct input_dev *dev);
    1451             : static int input_uninhibit_device(struct input_dev *dev);
    1452             : 
    1453           0 : static ssize_t inhibited_show(struct device *dev,
    1454             :                               struct device_attribute *attr,
    1455             :                               char *buf)
    1456             : {
    1457           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1458             : 
    1459           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
    1460             : }
    1461             : 
    1462           0 : static ssize_t inhibited_store(struct device *dev,
    1463             :                                struct device_attribute *attr, const char *buf,
    1464             :                                size_t len)
    1465             : {
    1466           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1467             :         ssize_t rv;
    1468             :         bool inhibited;
    1469             : 
    1470           0 :         if (kstrtobool(buf, &inhibited))
    1471             :                 return -EINVAL;
    1472             : 
    1473           0 :         if (inhibited)
    1474           0 :                 rv = input_inhibit_device(input_dev);
    1475             :         else
    1476           0 :                 rv = input_uninhibit_device(input_dev);
    1477             : 
    1478           0 :         if (rv != 0)
    1479             :                 return rv;
    1480             : 
    1481           0 :         return len;
    1482             : }
    1483             : 
    1484             : static DEVICE_ATTR_RW(inhibited);
    1485             : 
    1486             : static struct attribute *input_dev_attrs[] = {
    1487             :         &dev_attr_name.attr,
    1488             :         &dev_attr_phys.attr,
    1489             :         &dev_attr_uniq.attr,
    1490             :         &dev_attr_modalias.attr,
    1491             :         &dev_attr_properties.attr,
    1492             :         &dev_attr_inhibited.attr,
    1493             :         NULL
    1494             : };
    1495             : 
    1496             : static const struct attribute_group input_dev_attr_group = {
    1497             :         .attrs  = input_dev_attrs,
    1498             : };
    1499             : 
    1500             : #define INPUT_DEV_ID_ATTR(name)                                         \
    1501             : static ssize_t input_dev_show_id_##name(struct device *dev,             \
    1502             :                                         struct device_attribute *attr,  \
    1503             :                                         char *buf)                      \
    1504             : {                                                                       \
    1505             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1506             :         return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);    \
    1507             : }                                                                       \
    1508             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
    1509             : 
    1510           0 : INPUT_DEV_ID_ATTR(bustype);
    1511           0 : INPUT_DEV_ID_ATTR(vendor);
    1512           0 : INPUT_DEV_ID_ATTR(product);
    1513           0 : INPUT_DEV_ID_ATTR(version);
    1514             : 
    1515             : static struct attribute *input_dev_id_attrs[] = {
    1516             :         &dev_attr_bustype.attr,
    1517             :         &dev_attr_vendor.attr,
    1518             :         &dev_attr_product.attr,
    1519             :         &dev_attr_version.attr,
    1520             :         NULL
    1521             : };
    1522             : 
    1523             : static const struct attribute_group input_dev_id_attr_group = {
    1524             :         .name   = "id",
    1525             :         .attrs  = input_dev_id_attrs,
    1526             : };
    1527             : 
    1528           0 : static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
    1529             :                               int max, int add_cr)
    1530             : {
    1531             :         int i;
    1532           0 :         int len = 0;
    1533           0 :         bool skip_empty = true;
    1534             : 
    1535           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1536           0 :                 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
    1537           0 :                                             bitmap[i], skip_empty);
    1538           0 :                 if (len) {
    1539           0 :                         skip_empty = false;
    1540           0 :                         if (i > 0)
    1541           0 :                                 len += snprintf(buf + len, max(buf_size - len, 0), " ");
    1542             :                 }
    1543             :         }
    1544             : 
    1545             :         /*
    1546             :          * If no output was produced print a single 0.
    1547             :          */
    1548           0 :         if (len == 0)
    1549           0 :                 len = snprintf(buf, buf_size, "%d", 0);
    1550             : 
    1551           0 :         if (add_cr)
    1552           0 :                 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
    1553             : 
    1554           0 :         return len;
    1555             : }
    1556             : 
    1557             : #define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
    1558             : static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
    1559             :                                        struct device_attribute *attr,   \
    1560             :                                        char *buf)                       \
    1561             : {                                                                       \
    1562             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1563             :         int len = input_print_bitmap(buf, PAGE_SIZE,                    \
    1564             :                                      input_dev->bm##bit, ev##_MAX,   \
    1565             :                                      true);                             \
    1566             :         return min_t(int, len, PAGE_SIZE);                              \
    1567             : }                                                                       \
    1568             : static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
    1569             : 
    1570           0 : INPUT_DEV_CAP_ATTR(EV, ev);
    1571           0 : INPUT_DEV_CAP_ATTR(KEY, key);
    1572           0 : INPUT_DEV_CAP_ATTR(REL, rel);
    1573           0 : INPUT_DEV_CAP_ATTR(ABS, abs);
    1574           0 : INPUT_DEV_CAP_ATTR(MSC, msc);
    1575           0 : INPUT_DEV_CAP_ATTR(LED, led);
    1576           0 : INPUT_DEV_CAP_ATTR(SND, snd);
    1577           0 : INPUT_DEV_CAP_ATTR(FF, ff);
    1578           0 : INPUT_DEV_CAP_ATTR(SW, sw);
    1579             : 
    1580             : static struct attribute *input_dev_caps_attrs[] = {
    1581             :         &dev_attr_ev.attr,
    1582             :         &dev_attr_key.attr,
    1583             :         &dev_attr_rel.attr,
    1584             :         &dev_attr_abs.attr,
    1585             :         &dev_attr_msc.attr,
    1586             :         &dev_attr_led.attr,
    1587             :         &dev_attr_snd.attr,
    1588             :         &dev_attr_ff.attr,
    1589             :         &dev_attr_sw.attr,
    1590             :         NULL
    1591             : };
    1592             : 
    1593             : static const struct attribute_group input_dev_caps_attr_group = {
    1594             :         .name   = "capabilities",
    1595             :         .attrs  = input_dev_caps_attrs,
    1596             : };
    1597             : 
    1598             : static const struct attribute_group *input_dev_attr_groups[] = {
    1599             :         &input_dev_attr_group,
    1600             :         &input_dev_id_attr_group,
    1601             :         &input_dev_caps_attr_group,
    1602             :         &input_poller_attribute_group,
    1603             :         NULL
    1604             : };
    1605             : 
    1606           0 : static void input_dev_release(struct device *device)
    1607             : {
    1608           0 :         struct input_dev *dev = to_input_dev(device);
    1609             : 
    1610           0 :         input_ff_destroy(dev);
    1611           0 :         input_mt_destroy_slots(dev);
    1612           0 :         kfree(dev->poller);
    1613           0 :         kfree(dev->absinfo);
    1614           0 :         kfree(dev->vals);
    1615           0 :         kfree(dev);
    1616             : 
    1617           0 :         module_put(THIS_MODULE);
    1618           0 : }
    1619             : 
    1620             : /*
    1621             :  * Input uevent interface - loading event handlers based on
    1622             :  * device bitfields.
    1623             :  */
    1624           0 : static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
    1625             :                                    const char *name, const unsigned long *bitmap, int max)
    1626             : {
    1627             :         int len;
    1628             : 
    1629           0 :         if (add_uevent_var(env, "%s", name))
    1630             :                 return -ENOMEM;
    1631             : 
    1632           0 :         len = input_print_bitmap(&env->buf[env->buflen - 1],
    1633           0 :                                  sizeof(env->buf) - env->buflen,
    1634             :                                  bitmap, max, false);
    1635           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1636             :                 return -ENOMEM;
    1637             : 
    1638           0 :         env->buflen += len;
    1639           0 :         return 0;
    1640             : }
    1641             : 
    1642           0 : static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
    1643             :                                          const struct input_dev *dev)
    1644             : {
    1645             :         int len;
    1646             : 
    1647           0 :         if (add_uevent_var(env, "MODALIAS="))
    1648             :                 return -ENOMEM;
    1649             : 
    1650           0 :         len = input_print_modalias(&env->buf[env->buflen - 1],
    1651           0 :                                    sizeof(env->buf) - env->buflen,
    1652             :                                    dev, 0);
    1653           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1654             :                 return -ENOMEM;
    1655             : 
    1656           0 :         env->buflen += len;
    1657           0 :         return 0;
    1658             : }
    1659             : 
    1660             : #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
    1661             :         do {                                                            \
    1662             :                 int err = add_uevent_var(env, fmt, val);                \
    1663             :                 if (err)                                                \
    1664             :                         return err;                                     \
    1665             :         } while (0)
    1666             : 
    1667             : #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
    1668             :         do {                                                            \
    1669             :                 int err = input_add_uevent_bm_var(env, name, bm, max);  \
    1670             :                 if (err)                                                \
    1671             :                         return err;                                     \
    1672             :         } while (0)
    1673             : 
    1674             : #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
    1675             :         do {                                                            \
    1676             :                 int err = input_add_uevent_modalias_var(env, dev);      \
    1677             :                 if (err)                                                \
    1678             :                         return err;                                     \
    1679             :         } while (0)
    1680             : 
    1681           0 : static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
    1682             : {
    1683           0 :         const struct input_dev *dev = to_input_dev(device);
    1684             : 
    1685           0 :         INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
    1686             :                                 dev->id.bustype, dev->id.vendor,
    1687             :                                 dev->id.product, dev->id.version);
    1688           0 :         if (dev->name)
    1689           0 :                 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
    1690           0 :         if (dev->phys)
    1691           0 :                 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
    1692           0 :         if (dev->uniq)
    1693           0 :                 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
    1694             : 
    1695           0 :         INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
    1696             : 
    1697           0 :         INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
    1698           0 :         if (test_bit(EV_KEY, dev->evbit))
    1699           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
    1700           0 :         if (test_bit(EV_REL, dev->evbit))
    1701           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
    1702           0 :         if (test_bit(EV_ABS, dev->evbit))
    1703           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
    1704           0 :         if (test_bit(EV_MSC, dev->evbit))
    1705           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
    1706           0 :         if (test_bit(EV_LED, dev->evbit))
    1707           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
    1708           0 :         if (test_bit(EV_SND, dev->evbit))
    1709           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
    1710           0 :         if (test_bit(EV_FF, dev->evbit))
    1711           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
    1712           0 :         if (test_bit(EV_SW, dev->evbit))
    1713           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
    1714             : 
    1715           0 :         INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
    1716             : 
    1717           0 :         return 0;
    1718             : }
    1719             : 
    1720             : #define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
    1721             :         do {                                                            \
    1722             :                 int i;                                                  \
    1723             :                 bool active;                                            \
    1724             :                                                                         \
    1725             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    1726             :                         break;                                          \
    1727             :                                                                         \
    1728             :                 for_each_set_bit(i, dev->bits##bit, type##_CNT) {    \
    1729             :                         active = test_bit(i, dev->bits);             \
    1730             :                         if (!active && !on)                             \
    1731             :                                 continue;                               \
    1732             :                                                                         \
    1733             :                         dev->event(dev, EV_##type, i, on ? active : 0);      \
    1734             :                 }                                                       \
    1735             :         } while (0)
    1736             : 
    1737           0 : static void input_dev_toggle(struct input_dev *dev, bool activate)
    1738             : {
    1739           0 :         if (!dev->event)
    1740             :                 return;
    1741             : 
    1742           0 :         INPUT_DO_TOGGLE(dev, LED, led, activate);
    1743           0 :         INPUT_DO_TOGGLE(dev, SND, snd, activate);
    1744             : 
    1745           0 :         if (activate && test_bit(EV_REP, dev->evbit)) {
    1746           0 :                 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
    1747           0 :                 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
    1748             :         }
    1749             : }
    1750             : 
    1751             : /**
    1752             :  * input_reset_device() - reset/restore the state of input device
    1753             :  * @dev: input device whose state needs to be reset
    1754             :  *
    1755             :  * This function tries to reset the state of an opened input device and
    1756             :  * bring internal state and state if the hardware in sync with each other.
    1757             :  * We mark all keys as released, restore LED state, repeat rate, etc.
    1758             :  */
    1759           0 : void input_reset_device(struct input_dev *dev)
    1760             : {
    1761             :         unsigned long flags;
    1762             : 
    1763           0 :         mutex_lock(&dev->mutex);
    1764           0 :         spin_lock_irqsave(&dev->event_lock, flags);
    1765             : 
    1766           0 :         input_dev_toggle(dev, true);
    1767           0 :         if (input_dev_release_keys(dev))
    1768           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    1769             : 
    1770           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
    1771           0 :         mutex_unlock(&dev->mutex);
    1772           0 : }
    1773             : EXPORT_SYMBOL(input_reset_device);
    1774             : 
    1775           0 : static int input_inhibit_device(struct input_dev *dev)
    1776             : {
    1777           0 :         mutex_lock(&dev->mutex);
    1778             : 
    1779           0 :         if (dev->inhibited)
    1780             :                 goto out;
    1781             : 
    1782           0 :         if (dev->users) {
    1783           0 :                 if (dev->close)
    1784           0 :                         dev->close(dev);
    1785           0 :                 if (dev->poller)
    1786           0 :                         input_dev_poller_stop(dev->poller);
    1787             :         }
    1788             : 
    1789           0 :         spin_lock_irq(&dev->event_lock);
    1790           0 :         input_mt_release_slots(dev);
    1791           0 :         input_dev_release_keys(dev);
    1792           0 :         input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    1793           0 :         input_dev_toggle(dev, false);
    1794           0 :         spin_unlock_irq(&dev->event_lock);
    1795             : 
    1796           0 :         dev->inhibited = true;
    1797             : 
    1798             : out:
    1799           0 :         mutex_unlock(&dev->mutex);
    1800           0 :         return 0;
    1801             : }
    1802             : 
    1803           0 : static int input_uninhibit_device(struct input_dev *dev)
    1804             : {
    1805           0 :         int ret = 0;
    1806             : 
    1807           0 :         mutex_lock(&dev->mutex);
    1808             : 
    1809           0 :         if (!dev->inhibited)
    1810             :                 goto out;
    1811             : 
    1812           0 :         if (dev->users) {
    1813           0 :                 if (dev->open) {
    1814           0 :                         ret = dev->open(dev);
    1815           0 :                         if (ret)
    1816             :                                 goto out;
    1817             :                 }
    1818           0 :                 if (dev->poller)
    1819           0 :                         input_dev_poller_start(dev->poller);
    1820             :         }
    1821             : 
    1822           0 :         dev->inhibited = false;
    1823           0 :         spin_lock_irq(&dev->event_lock);
    1824           0 :         input_dev_toggle(dev, true);
    1825           0 :         spin_unlock_irq(&dev->event_lock);
    1826             : 
    1827             : out:
    1828           0 :         mutex_unlock(&dev->mutex);
    1829           0 :         return ret;
    1830             : }
    1831             : 
    1832           0 : static int input_dev_suspend(struct device *dev)
    1833             : {
    1834           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1835             : 
    1836           0 :         spin_lock_irq(&input_dev->event_lock);
    1837             : 
    1838             :         /*
    1839             :          * Keys that are pressed now are unlikely to be
    1840             :          * still pressed when we resume.
    1841             :          */
    1842           0 :         if (input_dev_release_keys(input_dev))
    1843           0 :                 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
    1844             : 
    1845             :         /* Turn off LEDs and sounds, if any are active. */
    1846           0 :         input_dev_toggle(input_dev, false);
    1847             : 
    1848           0 :         spin_unlock_irq(&input_dev->event_lock);
    1849             : 
    1850           0 :         return 0;
    1851             : }
    1852             : 
    1853           0 : static int input_dev_resume(struct device *dev)
    1854             : {
    1855           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1856             : 
    1857           0 :         spin_lock_irq(&input_dev->event_lock);
    1858             : 
    1859             :         /* Restore state of LEDs and sounds, if any were active. */
    1860           0 :         input_dev_toggle(input_dev, true);
    1861             : 
    1862           0 :         spin_unlock_irq(&input_dev->event_lock);
    1863             : 
    1864           0 :         return 0;
    1865             : }
    1866             : 
    1867           0 : static int input_dev_freeze(struct device *dev)
    1868             : {
    1869           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1870             : 
    1871           0 :         spin_lock_irq(&input_dev->event_lock);
    1872             : 
    1873             :         /*
    1874             :          * Keys that are pressed now are unlikely to be
    1875             :          * still pressed when we resume.
    1876             :          */
    1877           0 :         if (input_dev_release_keys(input_dev))
    1878           0 :                 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
    1879             : 
    1880           0 :         spin_unlock_irq(&input_dev->event_lock);
    1881             : 
    1882           0 :         return 0;
    1883             : }
    1884             : 
    1885           0 : static int input_dev_poweroff(struct device *dev)
    1886             : {
    1887           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1888             : 
    1889           0 :         spin_lock_irq(&input_dev->event_lock);
    1890             : 
    1891             :         /* Turn off LEDs and sounds, if any are active. */
    1892           0 :         input_dev_toggle(input_dev, false);
    1893             : 
    1894           0 :         spin_unlock_irq(&input_dev->event_lock);
    1895             : 
    1896           0 :         return 0;
    1897             : }
    1898             : 
    1899             : static const struct dev_pm_ops input_dev_pm_ops = {
    1900             :         .suspend        = input_dev_suspend,
    1901             :         .resume         = input_dev_resume,
    1902             :         .freeze         = input_dev_freeze,
    1903             :         .poweroff       = input_dev_poweroff,
    1904             :         .restore        = input_dev_resume,
    1905             : };
    1906             : 
    1907             : static const struct device_type input_dev_type = {
    1908             :         .groups         = input_dev_attr_groups,
    1909             :         .release        = input_dev_release,
    1910             :         .uevent         = input_dev_uevent,
    1911             :         .pm             = pm_sleep_ptr(&input_dev_pm_ops),
    1912             : };
    1913             : 
    1914           0 : static char *input_devnode(const struct device *dev, umode_t *mode)
    1915             : {
    1916           0 :         return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
    1917             : }
    1918             : 
    1919             : struct class input_class = {
    1920             :         .name           = "input",
    1921             :         .devnode        = input_devnode,
    1922             : };
    1923             : EXPORT_SYMBOL_GPL(input_class);
    1924             : 
    1925             : /**
    1926             :  * input_allocate_device - allocate memory for new input device
    1927             :  *
    1928             :  * Returns prepared struct input_dev or %NULL.
    1929             :  *
    1930             :  * NOTE: Use input_free_device() to free devices that have not been
    1931             :  * registered; input_unregister_device() should be used for already
    1932             :  * registered devices.
    1933             :  */
    1934           0 : struct input_dev *input_allocate_device(void)
    1935             : {
    1936             :         static atomic_t input_no = ATOMIC_INIT(-1);
    1937             :         struct input_dev *dev;
    1938             : 
    1939           0 :         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    1940           0 :         if (dev) {
    1941           0 :                 dev->dev.type = &input_dev_type;
    1942           0 :                 dev->dev.class = &input_class;
    1943           0 :                 device_initialize(&dev->dev);
    1944           0 :                 mutex_init(&dev->mutex);
    1945           0 :                 spin_lock_init(&dev->event_lock);
    1946           0 :                 timer_setup(&dev->timer, NULL, 0);
    1947           0 :                 INIT_LIST_HEAD(&dev->h_list);
    1948           0 :                 INIT_LIST_HEAD(&dev->node);
    1949             : 
    1950           0 :                 dev_set_name(&dev->dev, "input%lu",
    1951           0 :                              (unsigned long)atomic_inc_return(&input_no));
    1952             : 
    1953           0 :                 __module_get(THIS_MODULE);
    1954             :         }
    1955             : 
    1956           0 :         return dev;
    1957             : }
    1958             : EXPORT_SYMBOL(input_allocate_device);
    1959             : 
    1960             : struct input_devres {
    1961             :         struct input_dev *input;
    1962             : };
    1963             : 
    1964           0 : static int devm_input_device_match(struct device *dev, void *res, void *data)
    1965             : {
    1966           0 :         struct input_devres *devres = res;
    1967             : 
    1968           0 :         return devres->input == data;
    1969             : }
    1970             : 
    1971           0 : static void devm_input_device_release(struct device *dev, void *res)
    1972             : {
    1973           0 :         struct input_devres *devres = res;
    1974           0 :         struct input_dev *input = devres->input;
    1975             : 
    1976             :         dev_dbg(dev, "%s: dropping reference to %s\n",
    1977             :                 __func__, dev_name(&input->dev));
    1978           0 :         input_put_device(input);
    1979           0 : }
    1980             : 
    1981             : /**
    1982             :  * devm_input_allocate_device - allocate managed input device
    1983             :  * @dev: device owning the input device being created
    1984             :  *
    1985             :  * Returns prepared struct input_dev or %NULL.
    1986             :  *
    1987             :  * Managed input devices do not need to be explicitly unregistered or
    1988             :  * freed as it will be done automatically when owner device unbinds from
    1989             :  * its driver (or binding fails). Once managed input device is allocated,
    1990             :  * it is ready to be set up and registered in the same fashion as regular
    1991             :  * input device. There are no special devm_input_device_[un]register()
    1992             :  * variants, regular ones work with both managed and unmanaged devices,
    1993             :  * should you need them. In most cases however, managed input device need
    1994             :  * not be explicitly unregistered or freed.
    1995             :  *
    1996             :  * NOTE: the owner device is set up as parent of input device and users
    1997             :  * should not override it.
    1998             :  */
    1999           0 : struct input_dev *devm_input_allocate_device(struct device *dev)
    2000             : {
    2001             :         struct input_dev *input;
    2002             :         struct input_devres *devres;
    2003             : 
    2004           0 :         devres = devres_alloc(devm_input_device_release,
    2005             :                               sizeof(*devres), GFP_KERNEL);
    2006           0 :         if (!devres)
    2007             :                 return NULL;
    2008             : 
    2009           0 :         input = input_allocate_device();
    2010           0 :         if (!input) {
    2011           0 :                 devres_free(devres);
    2012           0 :                 return NULL;
    2013             :         }
    2014             : 
    2015           0 :         input->dev.parent = dev;
    2016           0 :         input->devres_managed = true;
    2017             : 
    2018           0 :         devres->input = input;
    2019           0 :         devres_add(dev, devres);
    2020             : 
    2021           0 :         return input;
    2022             : }
    2023             : EXPORT_SYMBOL(devm_input_allocate_device);
    2024             : 
    2025             : /**
    2026             :  * input_free_device - free memory occupied by input_dev structure
    2027             :  * @dev: input device to free
    2028             :  *
    2029             :  * This function should only be used if input_register_device()
    2030             :  * was not called yet or if it failed. Once device was registered
    2031             :  * use input_unregister_device() and memory will be freed once last
    2032             :  * reference to the device is dropped.
    2033             :  *
    2034             :  * Device should be allocated by input_allocate_device().
    2035             :  *
    2036             :  * NOTE: If there are references to the input device then memory
    2037             :  * will not be freed until last reference is dropped.
    2038             :  */
    2039           0 : void input_free_device(struct input_dev *dev)
    2040             : {
    2041           0 :         if (dev) {
    2042           0 :                 if (dev->devres_managed)
    2043           0 :                         WARN_ON(devres_destroy(dev->dev.parent,
    2044             :                                                 devm_input_device_release,
    2045             :                                                 devm_input_device_match,
    2046             :                                                 dev));
    2047             :                 input_put_device(dev);
    2048             :         }
    2049           0 : }
    2050             : EXPORT_SYMBOL(input_free_device);
    2051             : 
    2052             : /**
    2053             :  * input_set_timestamp - set timestamp for input events
    2054             :  * @dev: input device to set timestamp for
    2055             :  * @timestamp: the time at which the event has occurred
    2056             :  *   in CLOCK_MONOTONIC
    2057             :  *
    2058             :  * This function is intended to provide to the input system a more
    2059             :  * accurate time of when an event actually occurred. The driver should
    2060             :  * call this function as soon as a timestamp is acquired ensuring
    2061             :  * clock conversions in input_set_timestamp are done correctly.
    2062             :  *
    2063             :  * The system entering suspend state between timestamp acquisition and
    2064             :  * calling input_set_timestamp can result in inaccurate conversions.
    2065             :  */
    2066           0 : void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
    2067             : {
    2068           0 :         dev->timestamp[INPUT_CLK_MONO] = timestamp;
    2069           0 :         dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
    2070           0 :         dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
    2071             :                                                            TK_OFFS_BOOT);
    2072           0 : }
    2073             : EXPORT_SYMBOL(input_set_timestamp);
    2074             : 
    2075             : /**
    2076             :  * input_get_timestamp - get timestamp for input events
    2077             :  * @dev: input device to get timestamp from
    2078             :  *
    2079             :  * A valid timestamp is a timestamp of non-zero value.
    2080             :  */
    2081           0 : ktime_t *input_get_timestamp(struct input_dev *dev)
    2082             : {
    2083           0 :         const ktime_t invalid_timestamp = ktime_set(0, 0);
    2084             : 
    2085           0 :         if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
    2086           0 :                 input_set_timestamp(dev, ktime_get());
    2087             : 
    2088           0 :         return dev->timestamp;
    2089             : }
    2090             : EXPORT_SYMBOL(input_get_timestamp);
    2091             : 
    2092             : /**
    2093             :  * input_set_capability - mark device as capable of a certain event
    2094             :  * @dev: device that is capable of emitting or accepting event
    2095             :  * @type: type of the event (EV_KEY, EV_REL, etc...)
    2096             :  * @code: event code
    2097             :  *
    2098             :  * In addition to setting up corresponding bit in appropriate capability
    2099             :  * bitmap the function also adjusts dev->evbit.
    2100             :  */
    2101           0 : void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
    2102             : {
    2103           0 :         if (type < EV_CNT && input_max_code[type] &&
    2104             :             code > input_max_code[type]) {
    2105           0 :                 pr_err("%s: invalid code %u for type %u\n", __func__, code,
    2106             :                        type);
    2107           0 :                 dump_stack();
    2108           0 :                 return;
    2109             :         }
    2110             : 
    2111           0 :         switch (type) {
    2112             :         case EV_KEY:
    2113           0 :                 __set_bit(code, dev->keybit);
    2114             :                 break;
    2115             : 
    2116             :         case EV_REL:
    2117           0 :                 __set_bit(code, dev->relbit);
    2118             :                 break;
    2119             : 
    2120             :         case EV_ABS:
    2121           0 :                 input_alloc_absinfo(dev);
    2122           0 :                 __set_bit(code, dev->absbit);
    2123             :                 break;
    2124             : 
    2125             :         case EV_MSC:
    2126           0 :                 __set_bit(code, dev->mscbit);
    2127             :                 break;
    2128             : 
    2129             :         case EV_SW:
    2130           0 :                 __set_bit(code, dev->swbit);
    2131             :                 break;
    2132             : 
    2133             :         case EV_LED:
    2134           0 :                 __set_bit(code, dev->ledbit);
    2135             :                 break;
    2136             : 
    2137             :         case EV_SND:
    2138           0 :                 __set_bit(code, dev->sndbit);
    2139             :                 break;
    2140             : 
    2141             :         case EV_FF:
    2142           0 :                 __set_bit(code, dev->ffbit);
    2143             :                 break;
    2144             : 
    2145             :         case EV_PWR:
    2146             :                 /* do nothing */
    2147             :                 break;
    2148             : 
    2149             :         default:
    2150           0 :                 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
    2151           0 :                 dump_stack();
    2152           0 :                 return;
    2153             :         }
    2154             : 
    2155           0 :         __set_bit(type, dev->evbit);
    2156             : }
    2157             : EXPORT_SYMBOL(input_set_capability);
    2158             : 
    2159           0 : static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
    2160             : {
    2161             :         int mt_slots;
    2162             :         int i;
    2163             :         unsigned int events;
    2164             : 
    2165           0 :         if (dev->mt) {
    2166           0 :                 mt_slots = dev->mt->num_slots;
    2167           0 :         } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
    2168           0 :                 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
    2169           0 :                            dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
    2170           0 :                 mt_slots = clamp(mt_slots, 2, 32);
    2171           0 :         } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
    2172             :                 mt_slots = 2;
    2173             :         } else {
    2174           0 :                 mt_slots = 0;
    2175             :         }
    2176             : 
    2177           0 :         events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
    2178             : 
    2179           0 :         if (test_bit(EV_ABS, dev->evbit))
    2180           0 :                 for_each_set_bit(i, dev->absbit, ABS_CNT)
    2181           0 :                         events += input_is_mt_axis(i) ? mt_slots : 1;
    2182             : 
    2183           0 :         if (test_bit(EV_REL, dev->evbit))
    2184           0 :                 events += bitmap_weight(dev->relbit, REL_CNT);
    2185             : 
    2186             :         /* Make room for KEY and MSC events */
    2187           0 :         events += 7;
    2188             : 
    2189           0 :         return events;
    2190             : }
    2191             : 
    2192             : #define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
    2193             :         do {                                                            \
    2194             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    2195             :                         memset(dev->bits##bit, 0,                    \
    2196             :                                 sizeof(dev->bits##bit));             \
    2197             :         } while (0)
    2198             : 
    2199           0 : static void input_cleanse_bitmasks(struct input_dev *dev)
    2200             : {
    2201           0 :         INPUT_CLEANSE_BITMASK(dev, KEY, key);
    2202           0 :         INPUT_CLEANSE_BITMASK(dev, REL, rel);
    2203           0 :         INPUT_CLEANSE_BITMASK(dev, ABS, abs);
    2204           0 :         INPUT_CLEANSE_BITMASK(dev, MSC, msc);
    2205           0 :         INPUT_CLEANSE_BITMASK(dev, LED, led);
    2206           0 :         INPUT_CLEANSE_BITMASK(dev, SND, snd);
    2207           0 :         INPUT_CLEANSE_BITMASK(dev, FF, ff);
    2208           0 :         INPUT_CLEANSE_BITMASK(dev, SW, sw);
    2209           0 : }
    2210             : 
    2211           0 : static void __input_unregister_device(struct input_dev *dev)
    2212             : {
    2213             :         struct input_handle *handle, *next;
    2214             : 
    2215           0 :         input_disconnect_device(dev);
    2216             : 
    2217           0 :         mutex_lock(&input_mutex);
    2218             : 
    2219           0 :         list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
    2220           0 :                 handle->handler->disconnect(handle);
    2221           0 :         WARN_ON(!list_empty(&dev->h_list));
    2222             : 
    2223           0 :         del_timer_sync(&dev->timer);
    2224           0 :         list_del_init(&dev->node);
    2225             : 
    2226             :         input_wakeup_procfs_readers();
    2227             : 
    2228           0 :         mutex_unlock(&input_mutex);
    2229             : 
    2230           0 :         device_del(&dev->dev);
    2231           0 : }
    2232             : 
    2233           0 : static void devm_input_device_unregister(struct device *dev, void *res)
    2234             : {
    2235           0 :         struct input_devres *devres = res;
    2236           0 :         struct input_dev *input = devres->input;
    2237             : 
    2238             :         dev_dbg(dev, "%s: unregistering device %s\n",
    2239             :                 __func__, dev_name(&input->dev));
    2240           0 :         __input_unregister_device(input);
    2241           0 : }
    2242             : 
    2243             : /*
    2244             :  * Generate software autorepeat event. Note that we take
    2245             :  * dev->event_lock here to avoid racing with input_event
    2246             :  * which may cause keys get "stuck".
    2247             :  */
    2248           0 : static void input_repeat_key(struct timer_list *t)
    2249             : {
    2250           0 :         struct input_dev *dev = from_timer(dev, t, timer);
    2251             :         unsigned long flags;
    2252             : 
    2253           0 :         spin_lock_irqsave(&dev->event_lock, flags);
    2254             : 
    2255           0 :         if (!dev->inhibited &&
    2256           0 :             test_bit(dev->repeat_key, dev->key) &&
    2257           0 :             is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
    2258             : 
    2259           0 :                 input_set_timestamp(dev, ktime_get());
    2260           0 :                 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
    2261           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    2262             : 
    2263           0 :                 if (dev->rep[REP_PERIOD])
    2264           0 :                         mod_timer(&dev->timer, jiffies +
    2265           0 :                                         msecs_to_jiffies(dev->rep[REP_PERIOD]));
    2266             :         }
    2267             : 
    2268           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
    2269           0 : }
    2270             : 
    2271             : /**
    2272             :  * input_enable_softrepeat - enable software autorepeat
    2273             :  * @dev: input device
    2274             :  * @delay: repeat delay
    2275             :  * @period: repeat period
    2276             :  *
    2277             :  * Enable software autorepeat on the input device.
    2278             :  */
    2279           0 : void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
    2280             : {
    2281           0 :         dev->timer.function = input_repeat_key;
    2282           0 :         dev->rep[REP_DELAY] = delay;
    2283           0 :         dev->rep[REP_PERIOD] = period;
    2284           0 : }
    2285             : EXPORT_SYMBOL(input_enable_softrepeat);
    2286             : 
    2287           0 : bool input_device_enabled(struct input_dev *dev)
    2288             : {
    2289             :         lockdep_assert_held(&dev->mutex);
    2290             : 
    2291           0 :         return !dev->inhibited && dev->users > 0;
    2292             : }
    2293             : EXPORT_SYMBOL_GPL(input_device_enabled);
    2294             : 
    2295             : /**
    2296             :  * input_register_device - register device with input core
    2297             :  * @dev: device to be registered
    2298             :  *
    2299             :  * This function registers device with input core. The device must be
    2300             :  * allocated with input_allocate_device() and all it's capabilities
    2301             :  * set up before registering.
    2302             :  * If function fails the device must be freed with input_free_device().
    2303             :  * Once device has been successfully registered it can be unregistered
    2304             :  * with input_unregister_device(); input_free_device() should not be
    2305             :  * called in this case.
    2306             :  *
    2307             :  * Note that this function is also used to register managed input devices
    2308             :  * (ones allocated with devm_input_allocate_device()). Such managed input
    2309             :  * devices need not be explicitly unregistered or freed, their tear down
    2310             :  * is controlled by the devres infrastructure. It is also worth noting
    2311             :  * that tear down of managed input devices is internally a 2-step process:
    2312             :  * registered managed input device is first unregistered, but stays in
    2313             :  * memory and can still handle input_event() calls (although events will
    2314             :  * not be delivered anywhere). The freeing of managed input device will
    2315             :  * happen later, when devres stack is unwound to the point where device
    2316             :  * allocation was made.
    2317             :  */
    2318           0 : int input_register_device(struct input_dev *dev)
    2319             : {
    2320           0 :         struct input_devres *devres = NULL;
    2321             :         struct input_handler *handler;
    2322             :         unsigned int packet_size;
    2323             :         const char *path;
    2324             :         int error;
    2325             : 
    2326           0 :         if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
    2327           0 :                 dev_err(&dev->dev,
    2328             :                         "Absolute device without dev->absinfo, refusing to register\n");
    2329           0 :                 return -EINVAL;
    2330             :         }
    2331             : 
    2332           0 :         if (dev->devres_managed) {
    2333           0 :                 devres = devres_alloc(devm_input_device_unregister,
    2334             :                                       sizeof(*devres), GFP_KERNEL);
    2335           0 :                 if (!devres)
    2336             :                         return -ENOMEM;
    2337             : 
    2338           0 :                 devres->input = dev;
    2339             :         }
    2340             : 
    2341             :         /* Every input device generates EV_SYN/SYN_REPORT events. */
    2342           0 :         __set_bit(EV_SYN, dev->evbit);
    2343             : 
    2344             :         /* KEY_RESERVED is not supposed to be transmitted to userspace. */
    2345           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
    2346             : 
    2347             :         /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
    2348           0 :         input_cleanse_bitmasks(dev);
    2349             : 
    2350           0 :         packet_size = input_estimate_events_per_packet(dev);
    2351           0 :         if (dev->hint_events_per_packet < packet_size)
    2352           0 :                 dev->hint_events_per_packet = packet_size;
    2353             : 
    2354           0 :         dev->max_vals = dev->hint_events_per_packet + 2;
    2355           0 :         dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
    2356           0 :         if (!dev->vals) {
    2357             :                 error = -ENOMEM;
    2358             :                 goto err_devres_free;
    2359             :         }
    2360             : 
    2361             :         /*
    2362             :          * If delay and period are pre-set by the driver, then autorepeating
    2363             :          * is handled by the driver itself and we don't do it in input.c.
    2364             :          */
    2365           0 :         if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
    2366             :                 input_enable_softrepeat(dev, 250, 33);
    2367             : 
    2368           0 :         if (!dev->getkeycode)
    2369           0 :                 dev->getkeycode = input_default_getkeycode;
    2370             : 
    2371           0 :         if (!dev->setkeycode)
    2372           0 :                 dev->setkeycode = input_default_setkeycode;
    2373             : 
    2374           0 :         if (dev->poller)
    2375           0 :                 input_dev_poller_finalize(dev->poller);
    2376             : 
    2377           0 :         error = device_add(&dev->dev);
    2378           0 :         if (error)
    2379             :                 goto err_free_vals;
    2380             : 
    2381           0 :         path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    2382           0 :         pr_info("%s as %s\n",
    2383             :                 dev->name ? dev->name : "Unspecified device",
    2384             :                 path ? path : "N/A");
    2385           0 :         kfree(path);
    2386             : 
    2387           0 :         error = mutex_lock_interruptible(&input_mutex);
    2388           0 :         if (error)
    2389             :                 goto err_device_del;
    2390             : 
    2391           0 :         list_add_tail(&dev->node, &input_dev_list);
    2392             : 
    2393           0 :         list_for_each_entry(handler, &input_handler_list, node)
    2394           0 :                 input_attach_handler(dev, handler);
    2395             : 
    2396             :         input_wakeup_procfs_readers();
    2397             : 
    2398           0 :         mutex_unlock(&input_mutex);
    2399             : 
    2400           0 :         if (dev->devres_managed) {
    2401             :                 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
    2402             :                         __func__, dev_name(&dev->dev));
    2403           0 :                 devres_add(dev->dev.parent, devres);
    2404             :         }
    2405             :         return 0;
    2406             : 
    2407             : err_device_del:
    2408           0 :         device_del(&dev->dev);
    2409             : err_free_vals:
    2410           0 :         kfree(dev->vals);
    2411           0 :         dev->vals = NULL;
    2412             : err_devres_free:
    2413           0 :         devres_free(devres);
    2414           0 :         return error;
    2415             : }
    2416             : EXPORT_SYMBOL(input_register_device);
    2417             : 
    2418             : /**
    2419             :  * input_unregister_device - unregister previously registered device
    2420             :  * @dev: device to be unregistered
    2421             :  *
    2422             :  * This function unregisters an input device. Once device is unregistered
    2423             :  * the caller should not try to access it as it may get freed at any moment.
    2424             :  */
    2425           0 : void input_unregister_device(struct input_dev *dev)
    2426             : {
    2427           0 :         if (dev->devres_managed) {
    2428           0 :                 WARN_ON(devres_destroy(dev->dev.parent,
    2429             :                                         devm_input_device_unregister,
    2430             :                                         devm_input_device_match,
    2431             :                                         dev));
    2432           0 :                 __input_unregister_device(dev);
    2433             :                 /*
    2434             :                  * We do not do input_put_device() here because it will be done
    2435             :                  * when 2nd devres fires up.
    2436             :                  */
    2437             :         } else {
    2438           0 :                 __input_unregister_device(dev);
    2439             :                 input_put_device(dev);
    2440             :         }
    2441           0 : }
    2442             : EXPORT_SYMBOL(input_unregister_device);
    2443             : 
    2444             : /**
    2445             :  * input_register_handler - register a new input handler
    2446             :  * @handler: handler to be registered
    2447             :  *
    2448             :  * This function registers a new input handler (interface) for input
    2449             :  * devices in the system and attaches it to all input devices that
    2450             :  * are compatible with the handler.
    2451             :  */
    2452           0 : int input_register_handler(struct input_handler *handler)
    2453             : {
    2454             :         struct input_dev *dev;
    2455             :         int error;
    2456             : 
    2457           0 :         error = mutex_lock_interruptible(&input_mutex);
    2458           0 :         if (error)
    2459             :                 return error;
    2460             : 
    2461           0 :         INIT_LIST_HEAD(&handler->h_list);
    2462             : 
    2463           0 :         list_add_tail(&handler->node, &input_handler_list);
    2464             : 
    2465           0 :         list_for_each_entry(dev, &input_dev_list, node)
    2466           0 :                 input_attach_handler(dev, handler);
    2467             : 
    2468             :         input_wakeup_procfs_readers();
    2469             : 
    2470           0 :         mutex_unlock(&input_mutex);
    2471           0 :         return 0;
    2472             : }
    2473             : EXPORT_SYMBOL(input_register_handler);
    2474             : 
    2475             : /**
    2476             :  * input_unregister_handler - unregisters an input handler
    2477             :  * @handler: handler to be unregistered
    2478             :  *
    2479             :  * This function disconnects a handler from its input devices and
    2480             :  * removes it from lists of known handlers.
    2481             :  */
    2482           0 : void input_unregister_handler(struct input_handler *handler)
    2483             : {
    2484             :         struct input_handle *handle, *next;
    2485             : 
    2486           0 :         mutex_lock(&input_mutex);
    2487             : 
    2488           0 :         list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
    2489           0 :                 handler->disconnect(handle);
    2490           0 :         WARN_ON(!list_empty(&handler->h_list));
    2491             : 
    2492           0 :         list_del_init(&handler->node);
    2493             : 
    2494             :         input_wakeup_procfs_readers();
    2495             : 
    2496           0 :         mutex_unlock(&input_mutex);
    2497           0 : }
    2498             : EXPORT_SYMBOL(input_unregister_handler);
    2499             : 
    2500             : /**
    2501             :  * input_handler_for_each_handle - handle iterator
    2502             :  * @handler: input handler to iterate
    2503             :  * @data: data for the callback
    2504             :  * @fn: function to be called for each handle
    2505             :  *
    2506             :  * Iterate over @bus's list of devices, and call @fn for each, passing
    2507             :  * it @data and stop when @fn returns a non-zero value. The function is
    2508             :  * using RCU to traverse the list and therefore may be using in atomic
    2509             :  * contexts. The @fn callback is invoked from RCU critical section and
    2510             :  * thus must not sleep.
    2511             :  */
    2512           0 : int input_handler_for_each_handle(struct input_handler *handler, void *data,
    2513             :                                   int (*fn)(struct input_handle *, void *))
    2514             : {
    2515             :         struct input_handle *handle;
    2516           0 :         int retval = 0;
    2517             : 
    2518             :         rcu_read_lock();
    2519             : 
    2520           0 :         list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
    2521           0 :                 retval = fn(handle, data);
    2522           0 :                 if (retval)
    2523             :                         break;
    2524             :         }
    2525             : 
    2526             :         rcu_read_unlock();
    2527             : 
    2528           0 :         return retval;
    2529             : }
    2530             : EXPORT_SYMBOL(input_handler_for_each_handle);
    2531             : 
    2532             : /**
    2533             :  * input_register_handle - register a new input handle
    2534             :  * @handle: handle to register
    2535             :  *
    2536             :  * This function puts a new input handle onto device's
    2537             :  * and handler's lists so that events can flow through
    2538             :  * it once it is opened using input_open_device().
    2539             :  *
    2540             :  * This function is supposed to be called from handler's
    2541             :  * connect() method.
    2542             :  */
    2543           0 : int input_register_handle(struct input_handle *handle)
    2544             : {
    2545           0 :         struct input_handler *handler = handle->handler;
    2546           0 :         struct input_dev *dev = handle->dev;
    2547             :         int error;
    2548             : 
    2549             :         /*
    2550             :          * We take dev->mutex here to prevent race with
    2551             :          * input_release_device().
    2552             :          */
    2553           0 :         error = mutex_lock_interruptible(&dev->mutex);
    2554           0 :         if (error)
    2555             :                 return error;
    2556             : 
    2557             :         /*
    2558             :          * Filters go to the head of the list, normal handlers
    2559             :          * to the tail.
    2560             :          */
    2561           0 :         if (handler->filter)
    2562           0 :                 list_add_rcu(&handle->d_node, &dev->h_list);
    2563             :         else
    2564           0 :                 list_add_tail_rcu(&handle->d_node, &dev->h_list);
    2565             : 
    2566           0 :         mutex_unlock(&dev->mutex);
    2567             : 
    2568             :         /*
    2569             :          * Since we are supposed to be called from ->connect()
    2570             :          * which is mutually exclusive with ->disconnect()
    2571             :          * we can't be racing with input_unregister_handle()
    2572             :          * and so separate lock is not needed here.
    2573             :          */
    2574           0 :         list_add_tail_rcu(&handle->h_node, &handler->h_list);
    2575             : 
    2576           0 :         if (handler->start)
    2577           0 :                 handler->start(handle);
    2578             : 
    2579             :         return 0;
    2580             : }
    2581             : EXPORT_SYMBOL(input_register_handle);
    2582             : 
    2583             : /**
    2584             :  * input_unregister_handle - unregister an input handle
    2585             :  * @handle: handle to unregister
    2586             :  *
    2587             :  * This function removes input handle from device's
    2588             :  * and handler's lists.
    2589             :  *
    2590             :  * This function is supposed to be called from handler's
    2591             :  * disconnect() method.
    2592             :  */
    2593           0 : void input_unregister_handle(struct input_handle *handle)
    2594             : {
    2595           0 :         struct input_dev *dev = handle->dev;
    2596             : 
    2597           0 :         list_del_rcu(&handle->h_node);
    2598             : 
    2599             :         /*
    2600             :          * Take dev->mutex to prevent race with input_release_device().
    2601             :          */
    2602           0 :         mutex_lock(&dev->mutex);
    2603           0 :         list_del_rcu(&handle->d_node);
    2604           0 :         mutex_unlock(&dev->mutex);
    2605             : 
    2606           0 :         synchronize_rcu();
    2607           0 : }
    2608             : EXPORT_SYMBOL(input_unregister_handle);
    2609             : 
    2610             : /**
    2611             :  * input_get_new_minor - allocates a new input minor number
    2612             :  * @legacy_base: beginning or the legacy range to be searched
    2613             :  * @legacy_num: size of legacy range
    2614             :  * @allow_dynamic: whether we can also take ID from the dynamic range
    2615             :  *
    2616             :  * This function allocates a new device minor for from input major namespace.
    2617             :  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
    2618             :  * parameters and whether ID can be allocated from dynamic range if there are
    2619             :  * no free IDs in legacy range.
    2620             :  */
    2621           0 : int input_get_new_minor(int legacy_base, unsigned int legacy_num,
    2622             :                         bool allow_dynamic)
    2623             : {
    2624             :         /*
    2625             :          * This function should be called from input handler's ->connect()
    2626             :          * methods, which are serialized with input_mutex, so no additional
    2627             :          * locking is needed here.
    2628             :          */
    2629           0 :         if (legacy_base >= 0) {
    2630           0 :                 int minor = ida_simple_get(&input_ida,
    2631             :                                            legacy_base,
    2632             :                                            legacy_base + legacy_num,
    2633             :                                            GFP_KERNEL);
    2634           0 :                 if (minor >= 0 || !allow_dynamic)
    2635             :                         return minor;
    2636             :         }
    2637             : 
    2638           0 :         return ida_simple_get(&input_ida,
    2639             :                               INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
    2640             :                               GFP_KERNEL);
    2641             : }
    2642             : EXPORT_SYMBOL(input_get_new_minor);
    2643             : 
    2644             : /**
    2645             :  * input_free_minor - release previously allocated minor
    2646             :  * @minor: minor to be released
    2647             :  *
    2648             :  * This function releases previously allocated input minor so that it can be
    2649             :  * reused later.
    2650             :  */
    2651           0 : void input_free_minor(unsigned int minor)
    2652             : {
    2653           0 :         ida_simple_remove(&input_ida, minor);
    2654           0 : }
    2655             : EXPORT_SYMBOL(input_free_minor);
    2656             : 
    2657           1 : static int __init input_init(void)
    2658             : {
    2659             :         int err;
    2660             : 
    2661           1 :         err = class_register(&input_class);
    2662           1 :         if (err) {
    2663           0 :                 pr_err("unable to register input_dev class\n");
    2664           0 :                 return err;
    2665             :         }
    2666             : 
    2667           1 :         err = input_proc_init();
    2668           1 :         if (err)
    2669             :                 goto fail1;
    2670             : 
    2671           1 :         err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2672             :                                      INPUT_MAX_CHAR_DEVICES, "input");
    2673           1 :         if (err) {
    2674           0 :                 pr_err("unable to register char major %d", INPUT_MAJOR);
    2675             :                 goto fail2;
    2676             :         }
    2677             : 
    2678             :         return 0;
    2679             : 
    2680           0 :  fail2: input_proc_exit();
    2681           0 :  fail1: class_unregister(&input_class);
    2682           0 :         return err;
    2683             : }
    2684             : 
    2685           0 : static void __exit input_exit(void)
    2686             : {
    2687           0 :         input_proc_exit();
    2688           0 :         unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2689             :                                  INPUT_MAX_CHAR_DEVICES);
    2690           0 :         class_unregister(&input_class);
    2691           0 : }
    2692             : 
    2693             : subsys_initcall(input_init);
    2694             : module_exit(input_exit);

Generated by: LCOV version 1.14