LCOV - code coverage report
Current view: top level - fs - buffer.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 9 1097 0.8 %
Date: 2023-03-27 20:00:47 Functions: 2 87 2.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/fs/buffer.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
      10             :  *
      11             :  * Removed a lot of unnecessary code and simplified things now that
      12             :  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
      13             :  *
      14             :  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
      15             :  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
      16             :  *
      17             :  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
      18             :  *
      19             :  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
      20             :  */
      21             : 
      22             : #include <linux/kernel.h>
      23             : #include <linux/sched/signal.h>
      24             : #include <linux/syscalls.h>
      25             : #include <linux/fs.h>
      26             : #include <linux/iomap.h>
      27             : #include <linux/mm.h>
      28             : #include <linux/percpu.h>
      29             : #include <linux/slab.h>
      30             : #include <linux/capability.h>
      31             : #include <linux/blkdev.h>
      32             : #include <linux/file.h>
      33             : #include <linux/quotaops.h>
      34             : #include <linux/highmem.h>
      35             : #include <linux/export.h>
      36             : #include <linux/backing-dev.h>
      37             : #include <linux/writeback.h>
      38             : #include <linux/hash.h>
      39             : #include <linux/suspend.h>
      40             : #include <linux/buffer_head.h>
      41             : #include <linux/task_io_accounting_ops.h>
      42             : #include <linux/bio.h>
      43             : #include <linux/cpu.h>
      44             : #include <linux/bitops.h>
      45             : #include <linux/mpage.h>
      46             : #include <linux/bit_spinlock.h>
      47             : #include <linux/pagevec.h>
      48             : #include <linux/sched/mm.h>
      49             : #include <trace/events/block.h>
      50             : #include <linux/fscrypt.h>
      51             : #include <linux/fsverity.h>
      52             : 
      53             : #include "internal.h"
      54             : 
      55             : static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
      56             : static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
      57             :                           struct writeback_control *wbc);
      58             : 
      59             : #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
      60             : 
      61           0 : inline void touch_buffer(struct buffer_head *bh)
      62             : {
      63           0 :         trace_block_touch_buffer(bh);
      64           0 :         folio_mark_accessed(bh->b_folio);
      65           0 : }
      66             : EXPORT_SYMBOL(touch_buffer);
      67             : 
      68           0 : void __lock_buffer(struct buffer_head *bh)
      69             : {
      70           0 :         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
      71           0 : }
      72             : EXPORT_SYMBOL(__lock_buffer);
      73             : 
      74           0 : void unlock_buffer(struct buffer_head *bh)
      75             : {
      76           0 :         clear_bit_unlock(BH_Lock, &bh->b_state);
      77           0 :         smp_mb__after_atomic();
      78           0 :         wake_up_bit(&bh->b_state, BH_Lock);
      79           0 : }
      80             : EXPORT_SYMBOL(unlock_buffer);
      81             : 
      82             : /*
      83             :  * Returns if the folio has dirty or writeback buffers. If all the buffers
      84             :  * are unlocked and clean then the folio_test_dirty information is stale. If
      85             :  * any of the buffers are locked, it is assumed they are locked for IO.
      86             :  */
      87           0 : void buffer_check_dirty_writeback(struct folio *folio,
      88             :                                      bool *dirty, bool *writeback)
      89             : {
      90             :         struct buffer_head *head, *bh;
      91           0 :         *dirty = false;
      92           0 :         *writeback = false;
      93             : 
      94           0 :         BUG_ON(!folio_test_locked(folio));
      95             : 
      96           0 :         head = folio_buffers(folio);
      97           0 :         if (!head)
      98             :                 return;
      99             : 
     100           0 :         if (folio_test_writeback(folio))
     101           0 :                 *writeback = true;
     102             : 
     103             :         bh = head;
     104             :         do {
     105           0 :                 if (buffer_locked(bh))
     106           0 :                         *writeback = true;
     107             : 
     108           0 :                 if (buffer_dirty(bh))
     109           0 :                         *dirty = true;
     110             : 
     111           0 :                 bh = bh->b_this_page;
     112           0 :         } while (bh != head);
     113             : }
     114             : EXPORT_SYMBOL(buffer_check_dirty_writeback);
     115             : 
     116             : /*
     117             :  * Block until a buffer comes unlocked.  This doesn't stop it
     118             :  * from becoming locked again - you have to lock it yourself
     119             :  * if you want to preserve its state.
     120             :  */
     121           0 : void __wait_on_buffer(struct buffer_head * bh)
     122             : {
     123           0 :         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
     124           0 : }
     125             : EXPORT_SYMBOL(__wait_on_buffer);
     126             : 
     127           0 : static void buffer_io_error(struct buffer_head *bh, char *msg)
     128             : {
     129           0 :         if (!test_bit(BH_Quiet, &bh->b_state))
     130           0 :                 printk_ratelimited(KERN_ERR
     131             :                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
     132             :                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
     133           0 : }
     134             : 
     135             : /*
     136             :  * End-of-IO handler helper function which does not touch the bh after
     137             :  * unlocking it.
     138             :  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
     139             :  * a race there is benign: unlock_buffer() only use the bh's address for
     140             :  * hashing after unlocking the buffer, so it doesn't actually touch the bh
     141             :  * itself.
     142             :  */
     143           0 : static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
     144             : {
     145           0 :         if (uptodate) {
     146             :                 set_buffer_uptodate(bh);
     147             :         } else {
     148             :                 /* This happens, due to failed read-ahead attempts. */
     149             :                 clear_buffer_uptodate(bh);
     150             :         }
     151           0 :         unlock_buffer(bh);
     152           0 : }
     153             : 
     154             : /*
     155             :  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
     156             :  * unlock the buffer.
     157             :  */
     158           0 : void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
     159             : {
     160           0 :         __end_buffer_read_notouch(bh, uptodate);
     161           0 :         put_bh(bh);
     162           0 : }
     163             : EXPORT_SYMBOL(end_buffer_read_sync);
     164             : 
     165           0 : void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
     166             : {
     167           0 :         if (uptodate) {
     168             :                 set_buffer_uptodate(bh);
     169             :         } else {
     170           0 :                 buffer_io_error(bh, ", lost sync page write");
     171           0 :                 mark_buffer_write_io_error(bh);
     172             :                 clear_buffer_uptodate(bh);
     173             :         }
     174           0 :         unlock_buffer(bh);
     175           0 :         put_bh(bh);
     176           0 : }
     177             : EXPORT_SYMBOL(end_buffer_write_sync);
     178             : 
     179             : /*
     180             :  * Various filesystems appear to want __find_get_block to be non-blocking.
     181             :  * But it's the page lock which protects the buffers.  To get around this,
     182             :  * we get exclusion from try_to_free_buffers with the blockdev mapping's
     183             :  * private_lock.
     184             :  *
     185             :  * Hack idea: for the blockdev mapping, private_lock contention
     186             :  * may be quite high.  This code could TryLock the page, and if that
     187             :  * succeeds, there is no need to take private_lock.
     188             :  */
     189             : static struct buffer_head *
     190           0 : __find_get_block_slow(struct block_device *bdev, sector_t block)
     191             : {
     192           0 :         struct inode *bd_inode = bdev->bd_inode;
     193           0 :         struct address_space *bd_mapping = bd_inode->i_mapping;
     194           0 :         struct buffer_head *ret = NULL;
     195             :         pgoff_t index;
     196             :         struct buffer_head *bh;
     197             :         struct buffer_head *head;
     198             :         struct page *page;
     199           0 :         int all_mapped = 1;
     200             :         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
     201             : 
     202           0 :         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
     203           0 :         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
     204           0 :         if (!page)
     205             :                 goto out;
     206             : 
     207           0 :         spin_lock(&bd_mapping->private_lock);
     208           0 :         if (!page_has_buffers(page))
     209             :                 goto out_unlock;
     210           0 :         head = page_buffers(page);
     211           0 :         bh = head;
     212             :         do {
     213           0 :                 if (!buffer_mapped(bh))
     214             :                         all_mapped = 0;
     215           0 :                 else if (bh->b_blocknr == block) {
     216           0 :                         ret = bh;
     217             :                         get_bh(bh);
     218             :                         goto out_unlock;
     219             :                 }
     220           0 :                 bh = bh->b_this_page;
     221           0 :         } while (bh != head);
     222             : 
     223             :         /* we might be here because some of the buffers on this page are
     224             :          * not mapped.  This is due to various races between
     225             :          * file io on the block device and getblk.  It gets dealt with
     226             :          * elsewhere, don't buffer_error if we had some unmapped buffers
     227             :          */
     228           0 :         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
     229           0 :         if (all_mapped && __ratelimit(&last_warned)) {
     230           0 :                 printk("__find_get_block_slow() failed. block=%llu, "
     231             :                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
     232             :                        "device %pg blocksize: %d\n",
     233             :                        (unsigned long long)block,
     234             :                        (unsigned long long)bh->b_blocknr,
     235             :                        bh->b_state, bh->b_size, bdev,
     236             :                        1 << bd_inode->i_blkbits);
     237             :         }
     238             : out_unlock:
     239           0 :         spin_unlock(&bd_mapping->private_lock);
     240           0 :         put_page(page);
     241             : out:
     242           0 :         return ret;
     243             : }
     244             : 
     245           0 : static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
     246             : {
     247             :         unsigned long flags;
     248             :         struct buffer_head *first;
     249             :         struct buffer_head *tmp;
     250             :         struct folio *folio;
     251           0 :         int folio_uptodate = 1;
     252             : 
     253           0 :         BUG_ON(!buffer_async_read(bh));
     254             : 
     255           0 :         folio = bh->b_folio;
     256           0 :         if (uptodate) {
     257             :                 set_buffer_uptodate(bh);
     258             :         } else {
     259           0 :                 clear_buffer_uptodate(bh);
     260           0 :                 buffer_io_error(bh, ", async page read");
     261             :                 folio_set_error(folio);
     262             :         }
     263             : 
     264             :         /*
     265             :          * Be _very_ careful from here on. Bad things can happen if
     266             :          * two buffer heads end IO at almost the same time and both
     267             :          * decide that the page is now completely done.
     268             :          */
     269           0 :         first = folio_buffers(folio);
     270           0 :         spin_lock_irqsave(&first->b_uptodate_lock, flags);
     271           0 :         clear_buffer_async_read(bh);
     272           0 :         unlock_buffer(bh);
     273           0 :         tmp = bh;
     274             :         do {
     275           0 :                 if (!buffer_uptodate(tmp))
     276           0 :                         folio_uptodate = 0;
     277           0 :                 if (buffer_async_read(tmp)) {
     278           0 :                         BUG_ON(!buffer_locked(tmp));
     279             :                         goto still_busy;
     280             :                 }
     281           0 :                 tmp = tmp->b_this_page;
     282           0 :         } while (tmp != bh);
     283           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     284             : 
     285             :         /*
     286             :          * If all of the buffers are uptodate then we can set the page
     287             :          * uptodate.
     288             :          */
     289           0 :         if (folio_uptodate)
     290             :                 folio_mark_uptodate(folio);
     291           0 :         folio_unlock(folio);
     292           0 :         return;
     293             : 
     294             : still_busy:
     295           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     296             :         return;
     297             : }
     298             : 
     299             : struct postprocess_bh_ctx {
     300             :         struct work_struct work;
     301             :         struct buffer_head *bh;
     302             : };
     303             : 
     304             : static void verify_bh(struct work_struct *work)
     305             : {
     306             :         struct postprocess_bh_ctx *ctx =
     307             :                 container_of(work, struct postprocess_bh_ctx, work);
     308             :         struct buffer_head *bh = ctx->bh;
     309             :         bool valid;
     310             : 
     311             :         valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size,
     312             :                                        bh_offset(bh));
     313             :         end_buffer_async_read(bh, valid);
     314             :         kfree(ctx);
     315             : }
     316             : 
     317             : static bool need_fsverity(struct buffer_head *bh)
     318             : {
     319           0 :         struct page *page = bh->b_page;
     320           0 :         struct inode *inode = page->mapping->host;
     321             : 
     322           0 :         return fsverity_active(inode) &&
     323             :                 /* needed by ext4 */
     324             :                 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
     325             : }
     326             : 
     327             : static void decrypt_bh(struct work_struct *work)
     328             : {
     329             :         struct postprocess_bh_ctx *ctx =
     330             :                 container_of(work, struct postprocess_bh_ctx, work);
     331             :         struct buffer_head *bh = ctx->bh;
     332             :         int err;
     333             : 
     334             :         err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page),
     335             :                                                bh->b_size, bh_offset(bh));
     336             :         if (err == 0 && need_fsverity(bh)) {
     337             :                 /*
     338             :                  * We use different work queues for decryption and for verity
     339             :                  * because verity may require reading metadata pages that need
     340             :                  * decryption, and we shouldn't recurse to the same workqueue.
     341             :                  */
     342             :                 INIT_WORK(&ctx->work, verify_bh);
     343             :                 fsverity_enqueue_verify_work(&ctx->work);
     344             :                 return;
     345             :         }
     346             :         end_buffer_async_read(bh, err == 0);
     347             :         kfree(ctx);
     348             : }
     349             : 
     350             : /*
     351             :  * I/O completion handler for block_read_full_folio() - pages
     352             :  * which come unlocked at the end of I/O.
     353             :  */
     354           0 : static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
     355             : {
     356           0 :         struct inode *inode = bh->b_folio->mapping->host;
     357           0 :         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
     358           0 :         bool verify = need_fsverity(bh);
     359             : 
     360             :         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
     361             :         if (uptodate && (decrypt || verify)) {
     362             :                 struct postprocess_bh_ctx *ctx =
     363             :                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
     364             : 
     365             :                 if (ctx) {
     366             :                         ctx->bh = bh;
     367             :                         if (decrypt) {
     368             :                                 INIT_WORK(&ctx->work, decrypt_bh);
     369             :                                 fscrypt_enqueue_decrypt_work(&ctx->work);
     370             :                         } else {
     371             :                                 INIT_WORK(&ctx->work, verify_bh);
     372             :                                 fsverity_enqueue_verify_work(&ctx->work);
     373             :                         }
     374             :                         return;
     375             :                 }
     376             :                 uptodate = 0;
     377             :         }
     378           0 :         end_buffer_async_read(bh, uptodate);
     379             : }
     380             : 
     381             : /*
     382             :  * Completion handler for block_write_full_page() - pages which are unlocked
     383             :  * during I/O, and which have PageWriteback cleared upon I/O completion.
     384             :  */
     385           0 : void end_buffer_async_write(struct buffer_head *bh, int uptodate)
     386             : {
     387             :         unsigned long flags;
     388             :         struct buffer_head *first;
     389             :         struct buffer_head *tmp;
     390             :         struct folio *folio;
     391             : 
     392           0 :         BUG_ON(!buffer_async_write(bh));
     393             : 
     394           0 :         folio = bh->b_folio;
     395           0 :         if (uptodate) {
     396             :                 set_buffer_uptodate(bh);
     397             :         } else {
     398           0 :                 buffer_io_error(bh, ", lost async page write");
     399           0 :                 mark_buffer_write_io_error(bh);
     400           0 :                 clear_buffer_uptodate(bh);
     401             :                 folio_set_error(folio);
     402             :         }
     403             : 
     404           0 :         first = folio_buffers(folio);
     405           0 :         spin_lock_irqsave(&first->b_uptodate_lock, flags);
     406             : 
     407           0 :         clear_buffer_async_write(bh);
     408           0 :         unlock_buffer(bh);
     409           0 :         tmp = bh->b_this_page;
     410           0 :         while (tmp != bh) {
     411           0 :                 if (buffer_async_write(tmp)) {
     412           0 :                         BUG_ON(!buffer_locked(tmp));
     413             :                         goto still_busy;
     414             :                 }
     415           0 :                 tmp = tmp->b_this_page;
     416             :         }
     417           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     418           0 :         folio_end_writeback(folio);
     419           0 :         return;
     420             : 
     421             : still_busy:
     422           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     423             :         return;
     424             : }
     425             : EXPORT_SYMBOL(end_buffer_async_write);
     426             : 
     427             : /*
     428             :  * If a page's buffers are under async readin (end_buffer_async_read
     429             :  * completion) then there is a possibility that another thread of
     430             :  * control could lock one of the buffers after it has completed
     431             :  * but while some of the other buffers have not completed.  This
     432             :  * locked buffer would confuse end_buffer_async_read() into not unlocking
     433             :  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
     434             :  * that this buffer is not under async I/O.
     435             :  *
     436             :  * The page comes unlocked when it has no locked buffer_async buffers
     437             :  * left.
     438             :  *
     439             :  * PageLocked prevents anyone starting new async I/O reads any of
     440             :  * the buffers.
     441             :  *
     442             :  * PageWriteback is used to prevent simultaneous writeout of the same
     443             :  * page.
     444             :  *
     445             :  * PageLocked prevents anyone from starting writeback of a page which is
     446             :  * under read I/O (PageWriteback is only ever set against a locked page).
     447             :  */
     448           0 : static void mark_buffer_async_read(struct buffer_head *bh)
     449             : {
     450           0 :         bh->b_end_io = end_buffer_async_read_io;
     451           0 :         set_buffer_async_read(bh);
     452           0 : }
     453             : 
     454             : static void mark_buffer_async_write_endio(struct buffer_head *bh,
     455             :                                           bh_end_io_t *handler)
     456             : {
     457           0 :         bh->b_end_io = handler;
     458           0 :         set_buffer_async_write(bh);
     459             : }
     460             : 
     461           0 : void mark_buffer_async_write(struct buffer_head *bh)
     462             : {
     463           0 :         mark_buffer_async_write_endio(bh, end_buffer_async_write);
     464           0 : }
     465             : EXPORT_SYMBOL(mark_buffer_async_write);
     466             : 
     467             : 
     468             : /*
     469             :  * fs/buffer.c contains helper functions for buffer-backed address space's
     470             :  * fsync functions.  A common requirement for buffer-based filesystems is
     471             :  * that certain data from the backing blockdev needs to be written out for
     472             :  * a successful fsync().  For example, ext2 indirect blocks need to be
     473             :  * written back and waited upon before fsync() returns.
     474             :  *
     475             :  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
     476             :  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
     477             :  * management of a list of dependent buffers at ->i_mapping->private_list.
     478             :  *
     479             :  * Locking is a little subtle: try_to_free_buffers() will remove buffers
     480             :  * from their controlling inode's queue when they are being freed.  But
     481             :  * try_to_free_buffers() will be operating against the *blockdev* mapping
     482             :  * at the time, not against the S_ISREG file which depends on those buffers.
     483             :  * So the locking for private_list is via the private_lock in the address_space
     484             :  * which backs the buffers.  Which is different from the address_space 
     485             :  * against which the buffers are listed.  So for a particular address_space,
     486             :  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
     487             :  * mapping->private_list will always be protected by the backing blockdev's
     488             :  * ->private_lock.
     489             :  *
     490             :  * Which introduces a requirement: all buffers on an address_space's
     491             :  * ->private_list must be from the same address_space: the blockdev's.
     492             :  *
     493             :  * address_spaces which do not place buffers at ->private_list via these
     494             :  * utility functions are free to use private_lock and private_list for
     495             :  * whatever they want.  The only requirement is that list_empty(private_list)
     496             :  * be true at clear_inode() time.
     497             :  *
     498             :  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
     499             :  * filesystems should do that.  invalidate_inode_buffers() should just go
     500             :  * BUG_ON(!list_empty).
     501             :  *
     502             :  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
     503             :  * take an address_space, not an inode.  And it should be called
     504             :  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
     505             :  * queued up.
     506             :  *
     507             :  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
     508             :  * list if it is already on a list.  Because if the buffer is on a list,
     509             :  * it *must* already be on the right one.  If not, the filesystem is being
     510             :  * silly.  This will save a ton of locking.  But first we have to ensure
     511             :  * that buffers are taken *off* the old inode's list when they are freed
     512             :  * (presumably in truncate).  That requires careful auditing of all
     513             :  * filesystems (do it inside bforget()).  It could also be done by bringing
     514             :  * b_inode back.
     515             :  */
     516             : 
     517             : /*
     518             :  * The buffer's backing address_space's private_lock must be held
     519             :  */
     520           0 : static void __remove_assoc_queue(struct buffer_head *bh)
     521             : {
     522           0 :         list_del_init(&bh->b_assoc_buffers);
     523           0 :         WARN_ON(!bh->b_assoc_map);
     524           0 :         bh->b_assoc_map = NULL;
     525           0 : }
     526             : 
     527          34 : int inode_has_buffers(struct inode *inode)
     528             : {
     529          68 :         return !list_empty(&inode->i_data.private_list);
     530             : }
     531             : 
     532             : /*
     533             :  * osync is designed to support O_SYNC io.  It waits synchronously for
     534             :  * all already-submitted IO to complete, but does not queue any new
     535             :  * writes to the disk.
     536             :  *
     537             :  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
     538             :  * as you dirty the buffers, and then use osync_inode_buffers to wait for
     539             :  * completion.  Any other dirty buffers which are not yet queued for
     540             :  * write will not be flushed to disk by the osync.
     541             :  */
     542           0 : static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
     543             : {
     544             :         struct buffer_head *bh;
     545             :         struct list_head *p;
     546           0 :         int err = 0;
     547             : 
     548             :         spin_lock(lock);
     549             : repeat:
     550           0 :         list_for_each_prev(p, list) {
     551           0 :                 bh = BH_ENTRY(p);
     552           0 :                 if (buffer_locked(bh)) {
     553           0 :                         get_bh(bh);
     554           0 :                         spin_unlock(lock);
     555           0 :                         wait_on_buffer(bh);
     556           0 :                         if (!buffer_uptodate(bh))
     557           0 :                                 err = -EIO;
     558           0 :                         brelse(bh);
     559             :                         spin_lock(lock);
     560             :                         goto repeat;
     561             :                 }
     562             :         }
     563           0 :         spin_unlock(lock);
     564           0 :         return err;
     565             : }
     566             : 
     567           0 : void emergency_thaw_bdev(struct super_block *sb)
     568             : {
     569           0 :         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
     570           0 :                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
     571           0 : }
     572             : 
     573             : /**
     574             :  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
     575             :  * @mapping: the mapping which wants those buffers written
     576             :  *
     577             :  * Starts I/O against the buffers at mapping->private_list, and waits upon
     578             :  * that I/O.
     579             :  *
     580             :  * Basically, this is a convenience function for fsync().
     581             :  * @mapping is a file or directory which needs those buffers to be written for
     582             :  * a successful fsync().
     583             :  */
     584           0 : int sync_mapping_buffers(struct address_space *mapping)
     585             : {
     586           0 :         struct address_space *buffer_mapping = mapping->private_data;
     587             : 
     588           0 :         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
     589             :                 return 0;
     590             : 
     591           0 :         return fsync_buffers_list(&buffer_mapping->private_lock,
     592             :                                         &mapping->private_list);
     593             : }
     594             : EXPORT_SYMBOL(sync_mapping_buffers);
     595             : 
     596             : /*
     597             :  * Called when we've recently written block `bblock', and it is known that
     598             :  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
     599             :  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
     600             :  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
     601             :  */
     602           0 : void write_boundary_block(struct block_device *bdev,
     603             :                         sector_t bblock, unsigned blocksize)
     604             : {
     605           0 :         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
     606           0 :         if (bh) {
     607           0 :                 if (buffer_dirty(bh))
     608           0 :                         write_dirty_buffer(bh, 0);
     609             :                 put_bh(bh);
     610             :         }
     611           0 : }
     612             : 
     613           0 : void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
     614             : {
     615           0 :         struct address_space *mapping = inode->i_mapping;
     616           0 :         struct address_space *buffer_mapping = bh->b_folio->mapping;
     617             : 
     618           0 :         mark_buffer_dirty(bh);
     619           0 :         if (!mapping->private_data) {
     620           0 :                 mapping->private_data = buffer_mapping;
     621             :         } else {
     622           0 :                 BUG_ON(mapping->private_data != buffer_mapping);
     623             :         }
     624           0 :         if (!bh->b_assoc_map) {
     625           0 :                 spin_lock(&buffer_mapping->private_lock);
     626           0 :                 list_move_tail(&bh->b_assoc_buffers,
     627             :                                 &mapping->private_list);
     628           0 :                 bh->b_assoc_map = mapping;
     629           0 :                 spin_unlock(&buffer_mapping->private_lock);
     630             :         }
     631           0 : }
     632             : EXPORT_SYMBOL(mark_buffer_dirty_inode);
     633             : 
     634             : /*
     635             :  * Add a page to the dirty page list.
     636             :  *
     637             :  * It is a sad fact of life that this function is called from several places
     638             :  * deeply under spinlocking.  It may not sleep.
     639             :  *
     640             :  * If the page has buffers, the uptodate buffers are set dirty, to preserve
     641             :  * dirty-state coherency between the page and the buffers.  It the page does
     642             :  * not have buffers then when they are later attached they will all be set
     643             :  * dirty.
     644             :  *
     645             :  * The buffers are dirtied before the page is dirtied.  There's a small race
     646             :  * window in which a writepage caller may see the page cleanness but not the
     647             :  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
     648             :  * before the buffers, a concurrent writepage caller could clear the page dirty
     649             :  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
     650             :  * page on the dirty page list.
     651             :  *
     652             :  * We use private_lock to lock against try_to_free_buffers while using the
     653             :  * page's buffer list.  Also use this to protect against clean buffers being
     654             :  * added to the page after it was set dirty.
     655             :  *
     656             :  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
     657             :  * address_space though.
     658             :  */
     659           0 : bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
     660             : {
     661             :         struct buffer_head *head;
     662             :         bool newly_dirty;
     663             : 
     664           0 :         spin_lock(&mapping->private_lock);
     665           0 :         head = folio_buffers(folio);
     666           0 :         if (head) {
     667             :                 struct buffer_head *bh = head;
     668             : 
     669             :                 do {
     670           0 :                         set_buffer_dirty(bh);
     671           0 :                         bh = bh->b_this_page;
     672           0 :                 } while (bh != head);
     673             :         }
     674             :         /*
     675             :          * Lock out page's memcg migration to keep PageDirty
     676             :          * synchronized with per-memcg dirty page counters.
     677             :          */
     678           0 :         folio_memcg_lock(folio);
     679           0 :         newly_dirty = !folio_test_set_dirty(folio);
     680           0 :         spin_unlock(&mapping->private_lock);
     681             : 
     682           0 :         if (newly_dirty)
     683           0 :                 __folio_mark_dirty(folio, mapping, 1);
     684             : 
     685           0 :         folio_memcg_unlock(folio);
     686             : 
     687           0 :         if (newly_dirty)
     688           0 :                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
     689             : 
     690           0 :         return newly_dirty;
     691             : }
     692             : EXPORT_SYMBOL(block_dirty_folio);
     693             : 
     694             : /*
     695             :  * Write out and wait upon a list of buffers.
     696             :  *
     697             :  * We have conflicting pressures: we want to make sure that all
     698             :  * initially dirty buffers get waited on, but that any subsequently
     699             :  * dirtied buffers don't.  After all, we don't want fsync to last
     700             :  * forever if somebody is actively writing to the file.
     701             :  *
     702             :  * Do this in two main stages: first we copy dirty buffers to a
     703             :  * temporary inode list, queueing the writes as we go.  Then we clean
     704             :  * up, waiting for those writes to complete.
     705             :  * 
     706             :  * During this second stage, any subsequent updates to the file may end
     707             :  * up refiling the buffer on the original inode's dirty list again, so
     708             :  * there is a chance we will end up with a buffer queued for write but
     709             :  * not yet completed on that list.  So, as a final cleanup we go through
     710             :  * the osync code to catch these locked, dirty buffers without requeuing
     711             :  * any newly dirty buffers for write.
     712             :  */
     713           0 : static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
     714             : {
     715             :         struct buffer_head *bh;
     716             :         struct list_head tmp;
     717             :         struct address_space *mapping;
     718           0 :         int err = 0, err2;
     719             :         struct blk_plug plug;
     720             : 
     721           0 :         INIT_LIST_HEAD(&tmp);
     722           0 :         blk_start_plug(&plug);
     723             : 
     724             :         spin_lock(lock);
     725           0 :         while (!list_empty(list)) {
     726           0 :                 bh = BH_ENTRY(list->next);
     727           0 :                 mapping = bh->b_assoc_map;
     728           0 :                 __remove_assoc_queue(bh);
     729             :                 /* Avoid race with mark_buffer_dirty_inode() which does
     730             :                  * a lockless check and we rely on seeing the dirty bit */
     731           0 :                 smp_mb();
     732           0 :                 if (buffer_dirty(bh) || buffer_locked(bh)) {
     733           0 :                         list_add(&bh->b_assoc_buffers, &tmp);
     734           0 :                         bh->b_assoc_map = mapping;
     735           0 :                         if (buffer_dirty(bh)) {
     736           0 :                                 get_bh(bh);
     737           0 :                                 spin_unlock(lock);
     738             :                                 /*
     739             :                                  * Ensure any pending I/O completes so that
     740             :                                  * write_dirty_buffer() actually writes the
     741             :                                  * current contents - it is a noop if I/O is
     742             :                                  * still in flight on potentially older
     743             :                                  * contents.
     744             :                                  */
     745           0 :                                 write_dirty_buffer(bh, REQ_SYNC);
     746             : 
     747             :                                 /*
     748             :                                  * Kick off IO for the previous mapping. Note
     749             :                                  * that we will not run the very last mapping,
     750             :                                  * wait_on_buffer() will do that for us
     751             :                                  * through sync_buffer().
     752             :                                  */
     753           0 :                                 brelse(bh);
     754             :                                 spin_lock(lock);
     755             :                         }
     756             :                 }
     757             :         }
     758             : 
     759           0 :         spin_unlock(lock);
     760           0 :         blk_finish_plug(&plug);
     761             :         spin_lock(lock);
     762             : 
     763           0 :         while (!list_empty(&tmp)) {
     764           0 :                 bh = BH_ENTRY(tmp.prev);
     765           0 :                 get_bh(bh);
     766           0 :                 mapping = bh->b_assoc_map;
     767           0 :                 __remove_assoc_queue(bh);
     768             :                 /* Avoid race with mark_buffer_dirty_inode() which does
     769             :                  * a lockless check and we rely on seeing the dirty bit */
     770           0 :                 smp_mb();
     771           0 :                 if (buffer_dirty(bh)) {
     772           0 :                         list_add(&bh->b_assoc_buffers,
     773             :                                  &mapping->private_list);
     774           0 :                         bh->b_assoc_map = mapping;
     775             :                 }
     776           0 :                 spin_unlock(lock);
     777           0 :                 wait_on_buffer(bh);
     778           0 :                 if (!buffer_uptodate(bh))
     779           0 :                         err = -EIO;
     780           0 :                 brelse(bh);
     781             :                 spin_lock(lock);
     782             :         }
     783             :         
     784           0 :         spin_unlock(lock);
     785           0 :         err2 = osync_buffers_list(lock, list);
     786           0 :         if (err)
     787             :                 return err;
     788             :         else
     789             :                 return err2;
     790             : }
     791             : 
     792             : /*
     793             :  * Invalidate any and all dirty buffers on a given inode.  We are
     794             :  * probably unmounting the fs, but that doesn't mean we have already
     795             :  * done a sync().  Just drop the buffers from the inode list.
     796             :  *
     797             :  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
     798             :  * assumes that all the buffers are against the blockdev.  Not true
     799             :  * for reiserfs.
     800             :  */
     801           0 : void invalidate_inode_buffers(struct inode *inode)
     802             : {
     803           0 :         if (inode_has_buffers(inode)) {
     804           0 :                 struct address_space *mapping = &inode->i_data;
     805           0 :                 struct list_head *list = &mapping->private_list;
     806           0 :                 struct address_space *buffer_mapping = mapping->private_data;
     807             : 
     808           0 :                 spin_lock(&buffer_mapping->private_lock);
     809           0 :                 while (!list_empty(list))
     810           0 :                         __remove_assoc_queue(BH_ENTRY(list->next));
     811           0 :                 spin_unlock(&buffer_mapping->private_lock);
     812             :         }
     813           0 : }
     814             : EXPORT_SYMBOL(invalidate_inode_buffers);
     815             : 
     816             : /*
     817             :  * Remove any clean buffers from the inode's buffer list.  This is called
     818             :  * when we're trying to free the inode itself.  Those buffers can pin it.
     819             :  *
     820             :  * Returns true if all buffers were removed.
     821             :  */
     822           0 : int remove_inode_buffers(struct inode *inode)
     823             : {
     824           0 :         int ret = 1;
     825             : 
     826           0 :         if (inode_has_buffers(inode)) {
     827           0 :                 struct address_space *mapping = &inode->i_data;
     828           0 :                 struct list_head *list = &mapping->private_list;
     829           0 :                 struct address_space *buffer_mapping = mapping->private_data;
     830             : 
     831           0 :                 spin_lock(&buffer_mapping->private_lock);
     832           0 :                 while (!list_empty(list)) {
     833           0 :                         struct buffer_head *bh = BH_ENTRY(list->next);
     834           0 :                         if (buffer_dirty(bh)) {
     835             :                                 ret = 0;
     836             :                                 break;
     837             :                         }
     838           0 :                         __remove_assoc_queue(bh);
     839             :                 }
     840           0 :                 spin_unlock(&buffer_mapping->private_lock);
     841             :         }
     842           0 :         return ret;
     843             : }
     844             : 
     845             : /*
     846             :  * Create the appropriate buffers when given a page for data area and
     847             :  * the size of each buffer.. Use the bh->b_this_page linked list to
     848             :  * follow the buffers created.  Return NULL if unable to create more
     849             :  * buffers.
     850             :  *
     851             :  * The retry flag is used to differentiate async IO (paging, swapping)
     852             :  * which may not fail from ordinary buffer allocations.
     853             :  */
     854           0 : struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
     855             :                 bool retry)
     856             : {
     857             :         struct buffer_head *bh, *head;
     858           0 :         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
     859             :         long offset;
     860             :         struct mem_cgroup *memcg, *old_memcg;
     861             : 
     862           0 :         if (retry)
     863           0 :                 gfp |= __GFP_NOFAIL;
     864             : 
     865             :         /* The page lock pins the memcg */
     866           0 :         memcg = page_memcg(page);
     867           0 :         old_memcg = set_active_memcg(memcg);
     868             : 
     869           0 :         head = NULL;
     870           0 :         offset = PAGE_SIZE;
     871           0 :         while ((offset -= size) >= 0) {
     872           0 :                 bh = alloc_buffer_head(gfp);
     873           0 :                 if (!bh)
     874             :                         goto no_grow;
     875             : 
     876           0 :                 bh->b_this_page = head;
     877           0 :                 bh->b_blocknr = -1;
     878           0 :                 head = bh;
     879             : 
     880           0 :                 bh->b_size = size;
     881             : 
     882             :                 /* Link the buffer to its page */
     883           0 :                 set_bh_page(bh, page, offset);
     884             :         }
     885             : out:
     886             :         set_active_memcg(old_memcg);
     887           0 :         return head;
     888             : /*
     889             :  * In case anything failed, we just free everything we got.
     890             :  */
     891             : no_grow:
     892           0 :         if (head) {
     893             :                 do {
     894           0 :                         bh = head;
     895           0 :                         head = head->b_this_page;
     896           0 :                         free_buffer_head(bh);
     897           0 :                 } while (head);
     898             :         }
     899             : 
     900             :         goto out;
     901             : }
     902             : EXPORT_SYMBOL_GPL(alloc_page_buffers);
     903             : 
     904             : static inline void
     905             : link_dev_buffers(struct page *page, struct buffer_head *head)
     906             : {
     907             :         struct buffer_head *bh, *tail;
     908             : 
     909             :         bh = head;
     910             :         do {
     911           0 :                 tail = bh;
     912           0 :                 bh = bh->b_this_page;
     913           0 :         } while (bh);
     914           0 :         tail->b_this_page = head;
     915           0 :         attach_page_private(page, head);
     916             : }
     917             : 
     918             : static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
     919             : {
     920           0 :         sector_t retval = ~((sector_t)0);
     921           0 :         loff_t sz = bdev_nr_bytes(bdev);
     922             : 
     923           0 :         if (sz) {
     924           0 :                 unsigned int sizebits = blksize_bits(size);
     925           0 :                 retval = (sz >> sizebits);
     926             :         }
     927             :         return retval;
     928             : }
     929             : 
     930             : /*
     931             :  * Initialise the state of a blockdev page's buffers.
     932             :  */ 
     933             : static sector_t
     934           0 : init_page_buffers(struct page *page, struct block_device *bdev,
     935             :                         sector_t block, int size)
     936             : {
     937           0 :         struct buffer_head *head = page_buffers(page);
     938           0 :         struct buffer_head *bh = head;
     939           0 :         int uptodate = PageUptodate(page);
     940           0 :         sector_t end_block = blkdev_max_block(bdev, size);
     941             : 
     942             :         do {
     943           0 :                 if (!buffer_mapped(bh)) {
     944           0 :                         bh->b_end_io = NULL;
     945           0 :                         bh->b_private = NULL;
     946           0 :                         bh->b_bdev = bdev;
     947           0 :                         bh->b_blocknr = block;
     948           0 :                         if (uptodate)
     949             :                                 set_buffer_uptodate(bh);
     950           0 :                         if (block < end_block)
     951             :                                 set_buffer_mapped(bh);
     952             :                 }
     953           0 :                 block++;
     954           0 :                 bh = bh->b_this_page;
     955           0 :         } while (bh != head);
     956             : 
     957             :         /*
     958             :          * Caller needs to validate requested block against end of device.
     959             :          */
     960           0 :         return end_block;
     961             : }
     962             : 
     963             : /*
     964             :  * Create the page-cache page that contains the requested block.
     965             :  *
     966             :  * This is used purely for blockdev mappings.
     967             :  */
     968             : static int
     969           0 : grow_dev_page(struct block_device *bdev, sector_t block,
     970             :               pgoff_t index, int size, int sizebits, gfp_t gfp)
     971             : {
     972           0 :         struct inode *inode = bdev->bd_inode;
     973             :         struct page *page;
     974             :         struct buffer_head *bh;
     975             :         sector_t end_block;
     976           0 :         int ret = 0;
     977             :         gfp_t gfp_mask;
     978             : 
     979           0 :         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
     980             : 
     981             :         /*
     982             :          * XXX: __getblk_slow() can not really deal with failure and
     983             :          * will endlessly loop on improvised global reclaim.  Prefer
     984             :          * looping in the allocator rather than here, at least that
     985             :          * code knows what it's doing.
     986             :          */
     987           0 :         gfp_mask |= __GFP_NOFAIL;
     988             : 
     989           0 :         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
     990             : 
     991           0 :         BUG_ON(!PageLocked(page));
     992             : 
     993           0 :         if (page_has_buffers(page)) {
     994           0 :                 bh = page_buffers(page);
     995           0 :                 if (bh->b_size == size) {
     996           0 :                         end_block = init_page_buffers(page, bdev,
     997             :                                                 (sector_t)index << sizebits,
     998             :                                                 size);
     999           0 :                         goto done;
    1000             :                 }
    1001           0 :                 if (!try_to_free_buffers(page_folio(page)))
    1002             :                         goto failed;
    1003             :         }
    1004             : 
    1005             :         /*
    1006             :          * Allocate some buffers for this page
    1007             :          */
    1008           0 :         bh = alloc_page_buffers(page, size, true);
    1009             : 
    1010             :         /*
    1011             :          * Link the page to the buffers and initialise them.  Take the
    1012             :          * lock to be atomic wrt __find_get_block(), which does not
    1013             :          * run under the page lock.
    1014             :          */
    1015           0 :         spin_lock(&inode->i_mapping->private_lock);
    1016           0 :         link_dev_buffers(page, bh);
    1017           0 :         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
    1018             :                         size);
    1019           0 :         spin_unlock(&inode->i_mapping->private_lock);
    1020             : done:
    1021           0 :         ret = (block < end_block) ? 1 : -ENXIO;
    1022             : failed:
    1023           0 :         unlock_page(page);
    1024           0 :         put_page(page);
    1025           0 :         return ret;
    1026             : }
    1027             : 
    1028             : /*
    1029             :  * Create buffers for the specified block device block's page.  If
    1030             :  * that page was dirty, the buffers are set dirty also.
    1031             :  */
    1032             : static int
    1033           0 : grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
    1034             : {
    1035             :         pgoff_t index;
    1036             :         int sizebits;
    1037             : 
    1038           0 :         sizebits = PAGE_SHIFT - __ffs(size);
    1039           0 :         index = block >> sizebits;
    1040             : 
    1041             :         /*
    1042             :          * Check for a block which wants to lie outside our maximum possible
    1043             :          * pagecache index.  (this comparison is done using sector_t types).
    1044             :          */
    1045             :         if (unlikely(index != block >> sizebits)) {
    1046             :                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
    1047             :                         "device %pg\n",
    1048             :                         __func__, (unsigned long long)block,
    1049             :                         bdev);
    1050             :                 return -EIO;
    1051             :         }
    1052             : 
    1053             :         /* Create a page with the proper size buffers.. */
    1054           0 :         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
    1055             : }
    1056             : 
    1057             : static struct buffer_head *
    1058           0 : __getblk_slow(struct block_device *bdev, sector_t block,
    1059             :              unsigned size, gfp_t gfp)
    1060             : {
    1061             :         /* Size must be multiple of hard sectorsize */
    1062           0 :         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
    1063             :                         (size < 512 || size > PAGE_SIZE))) {
    1064           0 :                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
    1065             :                                         size);
    1066           0 :                 printk(KERN_ERR "logical block size: %d\n",
    1067             :                                         bdev_logical_block_size(bdev));
    1068             : 
    1069           0 :                 dump_stack();
    1070           0 :                 return NULL;
    1071             :         }
    1072             : 
    1073             :         for (;;) {
    1074             :                 struct buffer_head *bh;
    1075             :                 int ret;
    1076             : 
    1077           0 :                 bh = __find_get_block(bdev, block, size);
    1078           0 :                 if (bh)
    1079             :                         return bh;
    1080             : 
    1081           0 :                 ret = grow_buffers(bdev, block, size, gfp);
    1082           0 :                 if (ret < 0)
    1083             :                         return NULL;
    1084             :         }
    1085             : }
    1086             : 
    1087             : /*
    1088             :  * The relationship between dirty buffers and dirty pages:
    1089             :  *
    1090             :  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
    1091             :  * the page is tagged dirty in the page cache.
    1092             :  *
    1093             :  * At all times, the dirtiness of the buffers represents the dirtiness of
    1094             :  * subsections of the page.  If the page has buffers, the page dirty bit is
    1095             :  * merely a hint about the true dirty state.
    1096             :  *
    1097             :  * When a page is set dirty in its entirety, all its buffers are marked dirty
    1098             :  * (if the page has buffers).
    1099             :  *
    1100             :  * When a buffer is marked dirty, its page is dirtied, but the page's other
    1101             :  * buffers are not.
    1102             :  *
    1103             :  * Also.  When blockdev buffers are explicitly read with bread(), they
    1104             :  * individually become uptodate.  But their backing page remains not
    1105             :  * uptodate - even if all of its buffers are uptodate.  A subsequent
    1106             :  * block_read_full_folio() against that folio will discover all the uptodate
    1107             :  * buffers, will set the folio uptodate and will perform no I/O.
    1108             :  */
    1109             : 
    1110             : /**
    1111             :  * mark_buffer_dirty - mark a buffer_head as needing writeout
    1112             :  * @bh: the buffer_head to mark dirty
    1113             :  *
    1114             :  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
    1115             :  * its backing page dirty, then tag the page as dirty in the page cache
    1116             :  * and then attach the address_space's inode to its superblock's dirty
    1117             :  * inode list.
    1118             :  *
    1119             :  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
    1120             :  * i_pages lock and mapping->host->i_lock.
    1121             :  */
    1122           0 : void mark_buffer_dirty(struct buffer_head *bh)
    1123             : {
    1124           0 :         WARN_ON_ONCE(!buffer_uptodate(bh));
    1125             : 
    1126           0 :         trace_block_dirty_buffer(bh);
    1127             : 
    1128             :         /*
    1129             :          * Very *carefully* optimize the it-is-already-dirty case.
    1130             :          *
    1131             :          * Don't let the final "is it dirty" escape to before we
    1132             :          * perhaps modified the buffer.
    1133             :          */
    1134           0 :         if (buffer_dirty(bh)) {
    1135           0 :                 smp_mb();
    1136           0 :                 if (buffer_dirty(bh))
    1137             :                         return;
    1138             :         }
    1139             : 
    1140           0 :         if (!test_set_buffer_dirty(bh)) {
    1141           0 :                 struct folio *folio = bh->b_folio;
    1142           0 :                 struct address_space *mapping = NULL;
    1143             : 
    1144           0 :                 folio_memcg_lock(folio);
    1145           0 :                 if (!folio_test_set_dirty(folio)) {
    1146           0 :                         mapping = folio->mapping;
    1147           0 :                         if (mapping)
    1148           0 :                                 __folio_mark_dirty(folio, mapping, 0);
    1149             :                 }
    1150           0 :                 folio_memcg_unlock(folio);
    1151           0 :                 if (mapping)
    1152           0 :                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    1153             :         }
    1154             : }
    1155             : EXPORT_SYMBOL(mark_buffer_dirty);
    1156             : 
    1157           0 : void mark_buffer_write_io_error(struct buffer_head *bh)
    1158             : {
    1159             :         struct super_block *sb;
    1160             : 
    1161           0 :         set_buffer_write_io_error(bh);
    1162             :         /* FIXME: do we need to set this in both places? */
    1163           0 :         if (bh->b_folio && bh->b_folio->mapping)
    1164           0 :                 mapping_set_error(bh->b_folio->mapping, -EIO);
    1165           0 :         if (bh->b_assoc_map)
    1166           0 :                 mapping_set_error(bh->b_assoc_map, -EIO);
    1167             :         rcu_read_lock();
    1168           0 :         sb = READ_ONCE(bh->b_bdev->bd_super);
    1169           0 :         if (sb)
    1170           0 :                 errseq_set(&sb->s_wb_err, -EIO);
    1171             :         rcu_read_unlock();
    1172           0 : }
    1173             : EXPORT_SYMBOL(mark_buffer_write_io_error);
    1174             : 
    1175             : /*
    1176             :  * Decrement a buffer_head's reference count.  If all buffers against a page
    1177             :  * have zero reference count, are clean and unlocked, and if the page is clean
    1178             :  * and unlocked then try_to_free_buffers() may strip the buffers from the page
    1179             :  * in preparation for freeing it (sometimes, rarely, buffers are removed from
    1180             :  * a page but it ends up not being freed, and buffers may later be reattached).
    1181             :  */
    1182           0 : void __brelse(struct buffer_head * buf)
    1183             : {
    1184           0 :         if (atomic_read(&buf->b_count)) {
    1185             :                 put_bh(buf);
    1186             :                 return;
    1187             :         }
    1188           0 :         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
    1189             : }
    1190             : EXPORT_SYMBOL(__brelse);
    1191             : 
    1192             : /*
    1193             :  * bforget() is like brelse(), except it discards any
    1194             :  * potentially dirty data.
    1195             :  */
    1196           0 : void __bforget(struct buffer_head *bh)
    1197             : {
    1198           0 :         clear_buffer_dirty(bh);
    1199           0 :         if (bh->b_assoc_map) {
    1200           0 :                 struct address_space *buffer_mapping = bh->b_folio->mapping;
    1201             : 
    1202           0 :                 spin_lock(&buffer_mapping->private_lock);
    1203           0 :                 list_del_init(&bh->b_assoc_buffers);
    1204           0 :                 bh->b_assoc_map = NULL;
    1205           0 :                 spin_unlock(&buffer_mapping->private_lock);
    1206             :         }
    1207           0 :         __brelse(bh);
    1208           0 : }
    1209             : EXPORT_SYMBOL(__bforget);
    1210             : 
    1211           0 : static struct buffer_head *__bread_slow(struct buffer_head *bh)
    1212             : {
    1213           0 :         lock_buffer(bh);
    1214           0 :         if (buffer_uptodate(bh)) {
    1215           0 :                 unlock_buffer(bh);
    1216           0 :                 return bh;
    1217             :         } else {
    1218           0 :                 get_bh(bh);
    1219           0 :                 bh->b_end_io = end_buffer_read_sync;
    1220           0 :                 submit_bh(REQ_OP_READ, bh);
    1221           0 :                 wait_on_buffer(bh);
    1222           0 :                 if (buffer_uptodate(bh))
    1223             :                         return bh;
    1224             :         }
    1225           0 :         brelse(bh);
    1226           0 :         return NULL;
    1227             : }
    1228             : 
    1229             : /*
    1230             :  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
    1231             :  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
    1232             :  * refcount elevated by one when they're in an LRU.  A buffer can only appear
    1233             :  * once in a particular CPU's LRU.  A single buffer can be present in multiple
    1234             :  * CPU's LRUs at the same time.
    1235             :  *
    1236             :  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
    1237             :  * sb_find_get_block().
    1238             :  *
    1239             :  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
    1240             :  * a local interrupt disable for that.
    1241             :  */
    1242             : 
    1243             : #define BH_LRU_SIZE     16
    1244             : 
    1245             : struct bh_lru {
    1246             :         struct buffer_head *bhs[BH_LRU_SIZE];
    1247             : };
    1248             : 
    1249             : static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
    1250             : 
    1251             : #ifdef CONFIG_SMP
    1252             : #define bh_lru_lock()   local_irq_disable()
    1253             : #define bh_lru_unlock() local_irq_enable()
    1254             : #else
    1255             : #define bh_lru_lock()   preempt_disable()
    1256             : #define bh_lru_unlock() preempt_enable()
    1257             : #endif
    1258             : 
    1259           0 : static inline void check_irqs_on(void)
    1260             : {
    1261             : #ifdef irqs_disabled
    1262           0 :         BUG_ON(irqs_disabled());
    1263             : #endif
    1264           0 : }
    1265             : 
    1266             : /*
    1267             :  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
    1268             :  * inserted at the front, and the buffer_head at the back if any is evicted.
    1269             :  * Or, if already in the LRU it is moved to the front.
    1270             :  */
    1271           0 : static void bh_lru_install(struct buffer_head *bh)
    1272             : {
    1273           0 :         struct buffer_head *evictee = bh;
    1274             :         struct bh_lru *b;
    1275             :         int i;
    1276             : 
    1277           0 :         check_irqs_on();
    1278           0 :         bh_lru_lock();
    1279             : 
    1280             :         /*
    1281             :          * the refcount of buffer_head in bh_lru prevents dropping the
    1282             :          * attached page(i.e., try_to_free_buffers) so it could cause
    1283             :          * failing page migration.
    1284             :          * Skip putting upcoming bh into bh_lru until migration is done.
    1285             :          */
    1286           0 :         if (lru_cache_disabled()) {
    1287           0 :                 bh_lru_unlock();
    1288           0 :                 return;
    1289             :         }
    1290             : 
    1291             :         b = this_cpu_ptr(&bh_lrus);
    1292           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1293           0 :                 swap(evictee, b->bhs[i]);
    1294           0 :                 if (evictee == bh) {
    1295           0 :                         bh_lru_unlock();
    1296           0 :                         return;
    1297             :                 }
    1298             :         }
    1299             : 
    1300           0 :         get_bh(bh);
    1301           0 :         bh_lru_unlock();
    1302           0 :         brelse(evictee);
    1303             : }
    1304             : 
    1305             : /*
    1306             :  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
    1307             :  */
    1308             : static struct buffer_head *
    1309           0 : lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
    1310             : {
    1311           0 :         struct buffer_head *ret = NULL;
    1312             :         unsigned int i;
    1313             : 
    1314           0 :         check_irqs_on();
    1315           0 :         bh_lru_lock();
    1316           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1317           0 :                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
    1318             : 
    1319           0 :                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
    1320           0 :                     bh->b_size == size) {
    1321           0 :                         if (i) {
    1322           0 :                                 while (i) {
    1323           0 :                                         __this_cpu_write(bh_lrus.bhs[i],
    1324             :                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
    1325           0 :                                         i--;
    1326             :                                 }
    1327           0 :                                 __this_cpu_write(bh_lrus.bhs[0], bh);
    1328             :                         }
    1329           0 :                         get_bh(bh);
    1330           0 :                         ret = bh;
    1331           0 :                         break;
    1332             :                 }
    1333             :         }
    1334           0 :         bh_lru_unlock();
    1335           0 :         return ret;
    1336             : }
    1337             : 
    1338             : /*
    1339             :  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
    1340             :  * it in the LRU and mark it as accessed.  If it is not present then return
    1341             :  * NULL
    1342             :  */
    1343             : struct buffer_head *
    1344           0 : __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
    1345             : {
    1346           0 :         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
    1347             : 
    1348           0 :         if (bh == NULL) {
    1349             :                 /* __find_get_block_slow will mark the page accessed */
    1350           0 :                 bh = __find_get_block_slow(bdev, block);
    1351           0 :                 if (bh)
    1352           0 :                         bh_lru_install(bh);
    1353             :         } else
    1354             :                 touch_buffer(bh);
    1355             : 
    1356           0 :         return bh;
    1357             : }
    1358             : EXPORT_SYMBOL(__find_get_block);
    1359             : 
    1360             : /*
    1361             :  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
    1362             :  * which corresponds to the passed block_device, block and size. The
    1363             :  * returned buffer has its reference count incremented.
    1364             :  *
    1365             :  * __getblk_gfp() will lock up the machine if grow_dev_page's
    1366             :  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
    1367             :  */
    1368             : struct buffer_head *
    1369           0 : __getblk_gfp(struct block_device *bdev, sector_t block,
    1370             :              unsigned size, gfp_t gfp)
    1371             : {
    1372           0 :         struct buffer_head *bh = __find_get_block(bdev, block, size);
    1373             : 
    1374             :         might_sleep();
    1375           0 :         if (bh == NULL)
    1376           0 :                 bh = __getblk_slow(bdev, block, size, gfp);
    1377           0 :         return bh;
    1378             : }
    1379             : EXPORT_SYMBOL(__getblk_gfp);
    1380             : 
    1381             : /*
    1382             :  * Do async read-ahead on a buffer..
    1383             :  */
    1384           0 : void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
    1385             : {
    1386           0 :         struct buffer_head *bh = __getblk(bdev, block, size);
    1387           0 :         if (likely(bh)) {
    1388           0 :                 bh_readahead(bh, REQ_RAHEAD);
    1389           0 :                 brelse(bh);
    1390             :         }
    1391           0 : }
    1392             : EXPORT_SYMBOL(__breadahead);
    1393             : 
    1394             : /**
    1395             :  *  __bread_gfp() - reads a specified block and returns the bh
    1396             :  *  @bdev: the block_device to read from
    1397             :  *  @block: number of block
    1398             :  *  @size: size (in bytes) to read
    1399             :  *  @gfp: page allocation flag
    1400             :  *
    1401             :  *  Reads a specified block, and returns buffer head that contains it.
    1402             :  *  The page cache can be allocated from non-movable area
    1403             :  *  not to prevent page migration if you set gfp to zero.
    1404             :  *  It returns NULL if the block was unreadable.
    1405             :  */
    1406             : struct buffer_head *
    1407           0 : __bread_gfp(struct block_device *bdev, sector_t block,
    1408             :                    unsigned size, gfp_t gfp)
    1409             : {
    1410           0 :         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
    1411             : 
    1412           0 :         if (likely(bh) && !buffer_uptodate(bh))
    1413           0 :                 bh = __bread_slow(bh);
    1414           0 :         return bh;
    1415             : }
    1416             : EXPORT_SYMBOL(__bread_gfp);
    1417             : 
    1418             : static void __invalidate_bh_lrus(struct bh_lru *b)
    1419             : {
    1420             :         int i;
    1421             : 
    1422           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1423           0 :                 brelse(b->bhs[i]);
    1424           0 :                 b->bhs[i] = NULL;
    1425             :         }
    1426             : }
    1427             : /*
    1428             :  * invalidate_bh_lrus() is called rarely - but not only at unmount.
    1429             :  * This doesn't race because it runs in each cpu either in irq
    1430             :  * or with preempt disabled.
    1431             :  */
    1432           0 : static void invalidate_bh_lru(void *arg)
    1433             : {
    1434           0 :         struct bh_lru *b = &get_cpu_var(bh_lrus);
    1435             : 
    1436           0 :         __invalidate_bh_lrus(b);
    1437           0 :         put_cpu_var(bh_lrus);
    1438           0 : }
    1439             : 
    1440           0 : bool has_bh_in_lru(int cpu, void *dummy)
    1441             : {
    1442           0 :         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
    1443             :         int i;
    1444             :         
    1445           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1446           0 :                 if (b->bhs[i])
    1447             :                         return true;
    1448             :         }
    1449             : 
    1450             :         return false;
    1451             : }
    1452             : 
    1453           0 : void invalidate_bh_lrus(void)
    1454             : {
    1455           0 :         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
    1456           0 : }
    1457             : EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
    1458             : 
    1459             : /*
    1460             :  * It's called from workqueue context so we need a bh_lru_lock to close
    1461             :  * the race with preemption/irq.
    1462             :  */
    1463           0 : void invalidate_bh_lrus_cpu(void)
    1464             : {
    1465             :         struct bh_lru *b;
    1466             : 
    1467           0 :         bh_lru_lock();
    1468           0 :         b = this_cpu_ptr(&bh_lrus);
    1469           0 :         __invalidate_bh_lrus(b);
    1470           0 :         bh_lru_unlock();
    1471           0 : }
    1472             : 
    1473           0 : void set_bh_page(struct buffer_head *bh,
    1474             :                 struct page *page, unsigned long offset)
    1475             : {
    1476           0 :         bh->b_page = page;
    1477           0 :         BUG_ON(offset >= PAGE_SIZE);
    1478           0 :         if (PageHighMem(page))
    1479             :                 /*
    1480             :                  * This catches illegal uses and preserves the offset:
    1481             :                  */
    1482             :                 bh->b_data = (char *)(0 + offset);
    1483             :         else
    1484           0 :                 bh->b_data = page_address(page) + offset;
    1485           0 : }
    1486             : EXPORT_SYMBOL(set_bh_page);
    1487             : 
    1488             : /*
    1489             :  * Called when truncating a buffer on a page completely.
    1490             :  */
    1491             : 
    1492             : /* Bits that are cleared during an invalidate */
    1493             : #define BUFFER_FLAGS_DISCARD \
    1494             :         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
    1495             :          1 << BH_Delay | 1 << BH_Unwritten)
    1496             : 
    1497           0 : static void discard_buffer(struct buffer_head * bh)
    1498             : {
    1499             :         unsigned long b_state;
    1500             : 
    1501           0 :         lock_buffer(bh);
    1502           0 :         clear_buffer_dirty(bh);
    1503           0 :         bh->b_bdev = NULL;
    1504           0 :         b_state = READ_ONCE(bh->b_state);
    1505             :         do {
    1506           0 :         } while (!try_cmpxchg(&bh->b_state, &b_state,
    1507             :                               b_state & ~BUFFER_FLAGS_DISCARD));
    1508           0 :         unlock_buffer(bh);
    1509           0 : }
    1510             : 
    1511             : /**
    1512             :  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
    1513             :  * @folio: The folio which is affected.
    1514             :  * @offset: start of the range to invalidate
    1515             :  * @length: length of the range to invalidate
    1516             :  *
    1517             :  * block_invalidate_folio() is called when all or part of the folio has been
    1518             :  * invalidated by a truncate operation.
    1519             :  *
    1520             :  * block_invalidate_folio() does not have to release all buffers, but it must
    1521             :  * ensure that no dirty buffer is left outside @offset and that no I/O
    1522             :  * is underway against any of the blocks which are outside the truncation
    1523             :  * point.  Because the caller is about to free (and possibly reuse) those
    1524             :  * blocks on-disk.
    1525             :  */
    1526           0 : void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
    1527             : {
    1528             :         struct buffer_head *head, *bh, *next;
    1529           0 :         size_t curr_off = 0;
    1530           0 :         size_t stop = length + offset;
    1531             : 
    1532           0 :         BUG_ON(!folio_test_locked(folio));
    1533             : 
    1534             :         /*
    1535             :          * Check for overflow
    1536             :          */
    1537           0 :         BUG_ON(stop > folio_size(folio) || stop < length);
    1538             : 
    1539           0 :         head = folio_buffers(folio);
    1540           0 :         if (!head)
    1541             :                 return;
    1542             : 
    1543             :         bh = head;
    1544             :         do {
    1545           0 :                 size_t next_off = curr_off + bh->b_size;
    1546           0 :                 next = bh->b_this_page;
    1547             : 
    1548             :                 /*
    1549             :                  * Are we still fully in range ?
    1550             :                  */
    1551           0 :                 if (next_off > stop)
    1552             :                         goto out;
    1553             : 
    1554             :                 /*
    1555             :                  * is this block fully invalidated?
    1556             :                  */
    1557           0 :                 if (offset <= curr_off)
    1558           0 :                         discard_buffer(bh);
    1559           0 :                 curr_off = next_off;
    1560           0 :                 bh = next;
    1561           0 :         } while (bh != head);
    1562             : 
    1563             :         /*
    1564             :          * We release buffers only if the entire folio is being invalidated.
    1565             :          * The get_block cached value has been unconditionally invalidated,
    1566             :          * so real IO is not possible anymore.
    1567             :          */
    1568           0 :         if (length == folio_size(folio))
    1569           0 :                 filemap_release_folio(folio, 0);
    1570             : out:
    1571             :         return;
    1572             : }
    1573             : EXPORT_SYMBOL(block_invalidate_folio);
    1574             : 
    1575             : 
    1576             : /*
    1577             :  * We attach and possibly dirty the buffers atomically wrt
    1578             :  * block_dirty_folio() via private_lock.  try_to_free_buffers
    1579             :  * is already excluded via the page lock.
    1580             :  */
    1581           0 : void create_empty_buffers(struct page *page,
    1582             :                         unsigned long blocksize, unsigned long b_state)
    1583             : {
    1584             :         struct buffer_head *bh, *head, *tail;
    1585             : 
    1586           0 :         head = alloc_page_buffers(page, blocksize, true);
    1587           0 :         bh = head;
    1588             :         do {
    1589           0 :                 bh->b_state |= b_state;
    1590           0 :                 tail = bh;
    1591           0 :                 bh = bh->b_this_page;
    1592           0 :         } while (bh);
    1593           0 :         tail->b_this_page = head;
    1594             : 
    1595           0 :         spin_lock(&page->mapping->private_lock);
    1596           0 :         if (PageUptodate(page) || PageDirty(page)) {
    1597             :                 bh = head;
    1598             :                 do {
    1599           0 :                         if (PageDirty(page))
    1600             :                                 set_buffer_dirty(bh);
    1601           0 :                         if (PageUptodate(page))
    1602             :                                 set_buffer_uptodate(bh);
    1603           0 :                         bh = bh->b_this_page;
    1604           0 :                 } while (bh != head);
    1605             :         }
    1606           0 :         attach_page_private(page, head);
    1607           0 :         spin_unlock(&page->mapping->private_lock);
    1608           0 : }
    1609             : EXPORT_SYMBOL(create_empty_buffers);
    1610             : 
    1611             : /**
    1612             :  * clean_bdev_aliases: clean a range of buffers in block device
    1613             :  * @bdev: Block device to clean buffers in
    1614             :  * @block: Start of a range of blocks to clean
    1615             :  * @len: Number of blocks to clean
    1616             :  *
    1617             :  * We are taking a range of blocks for data and we don't want writeback of any
    1618             :  * buffer-cache aliases starting from return from this function and until the
    1619             :  * moment when something will explicitly mark the buffer dirty (hopefully that
    1620             :  * will not happen until we will free that block ;-) We don't even need to mark
    1621             :  * it not-uptodate - nobody can expect anything from a newly allocated buffer
    1622             :  * anyway. We used to use unmap_buffer() for such invalidation, but that was
    1623             :  * wrong. We definitely don't want to mark the alias unmapped, for example - it
    1624             :  * would confuse anyone who might pick it with bread() afterwards...
    1625             :  *
    1626             :  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
    1627             :  * writeout I/O going on against recently-freed buffers.  We don't wait on that
    1628             :  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
    1629             :  * need to.  That happens here.
    1630             :  */
    1631           0 : void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
    1632             : {
    1633           0 :         struct inode *bd_inode = bdev->bd_inode;
    1634           0 :         struct address_space *bd_mapping = bd_inode->i_mapping;
    1635             :         struct folio_batch fbatch;
    1636           0 :         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
    1637             :         pgoff_t end;
    1638             :         int i, count;
    1639             :         struct buffer_head *bh;
    1640             :         struct buffer_head *head;
    1641             : 
    1642           0 :         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
    1643           0 :         folio_batch_init(&fbatch);
    1644           0 :         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
    1645           0 :                 count = folio_batch_count(&fbatch);
    1646           0 :                 for (i = 0; i < count; i++) {
    1647           0 :                         struct folio *folio = fbatch.folios[i];
    1648             : 
    1649           0 :                         if (!folio_buffers(folio))
    1650           0 :                                 continue;
    1651             :                         /*
    1652             :                          * We use folio lock instead of bd_mapping->private_lock
    1653             :                          * to pin buffers here since we can afford to sleep and
    1654             :                          * it scales better than a global spinlock lock.
    1655             :                          */
    1656           0 :                         folio_lock(folio);
    1657             :                         /* Recheck when the folio is locked which pins bhs */
    1658           0 :                         head = folio_buffers(folio);
    1659           0 :                         if (!head)
    1660             :                                 goto unlock_page;
    1661             :                         bh = head;
    1662             :                         do {
    1663           0 :                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
    1664             :                                         goto next;
    1665           0 :                                 if (bh->b_blocknr >= block + len)
    1666             :                                         break;
    1667           0 :                                 clear_buffer_dirty(bh);
    1668           0 :                                 wait_on_buffer(bh);
    1669             :                                 clear_buffer_req(bh);
    1670             : next:
    1671           0 :                                 bh = bh->b_this_page;
    1672           0 :                         } while (bh != head);
    1673             : unlock_page:
    1674           0 :                         folio_unlock(folio);
    1675             :                 }
    1676           0 :                 folio_batch_release(&fbatch);
    1677           0 :                 cond_resched();
    1678             :                 /* End of range already reached? */
    1679           0 :                 if (index > end || !index)
    1680             :                         break;
    1681             :         }
    1682           0 : }
    1683             : EXPORT_SYMBOL(clean_bdev_aliases);
    1684             : 
    1685             : /*
    1686             :  * Size is a power-of-two in the range 512..PAGE_SIZE,
    1687             :  * and the case we care about most is PAGE_SIZE.
    1688             :  *
    1689             :  * So this *could* possibly be written with those
    1690             :  * constraints in mind (relevant mostly if some
    1691             :  * architecture has a slow bit-scan instruction)
    1692             :  */
    1693             : static inline int block_size_bits(unsigned int blocksize)
    1694             : {
    1695           0 :         return ilog2(blocksize);
    1696             : }
    1697             : 
    1698           0 : static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
    1699             : {
    1700           0 :         BUG_ON(!PageLocked(page));
    1701             : 
    1702           0 :         if (!page_has_buffers(page))
    1703           0 :                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
    1704             :                                      b_state);
    1705           0 :         return page_buffers(page);
    1706             : }
    1707             : 
    1708             : /*
    1709             :  * NOTE! All mapped/uptodate combinations are valid:
    1710             :  *
    1711             :  *      Mapped  Uptodate        Meaning
    1712             :  *
    1713             :  *      No      No              "unknown" - must do get_block()
    1714             :  *      No      Yes             "hole" - zero-filled
    1715             :  *      Yes     No              "allocated" - allocated on disk, not read in
    1716             :  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
    1717             :  *
    1718             :  * "Dirty" is valid only with the last case (mapped+uptodate).
    1719             :  */
    1720             : 
    1721             : /*
    1722             :  * While block_write_full_page is writing back the dirty buffers under
    1723             :  * the page lock, whoever dirtied the buffers may decide to clean them
    1724             :  * again at any time.  We handle that by only looking at the buffer
    1725             :  * state inside lock_buffer().
    1726             :  *
    1727             :  * If block_write_full_page() is called for regular writeback
    1728             :  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
    1729             :  * locked buffer.   This only can happen if someone has written the buffer
    1730             :  * directly, with submit_bh().  At the address_space level PageWriteback
    1731             :  * prevents this contention from occurring.
    1732             :  *
    1733             :  * If block_write_full_page() is called with wbc->sync_mode ==
    1734             :  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
    1735             :  * causes the writes to be flagged as synchronous writes.
    1736             :  */
    1737           0 : int __block_write_full_page(struct inode *inode, struct page *page,
    1738             :                         get_block_t *get_block, struct writeback_control *wbc,
    1739             :                         bh_end_io_t *handler)
    1740             : {
    1741             :         int err;
    1742             :         sector_t block;
    1743             :         sector_t last_block;
    1744             :         struct buffer_head *bh, *head;
    1745             :         unsigned int blocksize, bbits;
    1746           0 :         int nr_underway = 0;
    1747           0 :         blk_opf_t write_flags = wbc_to_write_flags(wbc);
    1748             : 
    1749           0 :         head = create_page_buffers(page, inode,
    1750             :                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
    1751             : 
    1752             :         /*
    1753             :          * Be very careful.  We have no exclusion from block_dirty_folio
    1754             :          * here, and the (potentially unmapped) buffers may become dirty at
    1755             :          * any time.  If a buffer becomes dirty here after we've inspected it
    1756             :          * then we just miss that fact, and the page stays dirty.
    1757             :          *
    1758             :          * Buffers outside i_size may be dirtied by block_dirty_folio;
    1759             :          * handle that here by just cleaning them.
    1760             :          */
    1761             : 
    1762           0 :         bh = head;
    1763           0 :         blocksize = bh->b_size;
    1764           0 :         bbits = block_size_bits(blocksize);
    1765             : 
    1766           0 :         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
    1767           0 :         last_block = (i_size_read(inode) - 1) >> bbits;
    1768             : 
    1769             :         /*
    1770             :          * Get all the dirty buffers mapped to disk addresses and
    1771             :          * handle any aliases from the underlying blockdev's mapping.
    1772             :          */
    1773             :         do {
    1774           0 :                 if (block > last_block) {
    1775             :                         /*
    1776             :                          * mapped buffers outside i_size will occur, because
    1777             :                          * this page can be outside i_size when there is a
    1778             :                          * truncate in progress.
    1779             :                          */
    1780             :                         /*
    1781             :                          * The buffer was zeroed by block_write_full_page()
    1782             :                          */
    1783           0 :                         clear_buffer_dirty(bh);
    1784             :                         set_buffer_uptodate(bh);
    1785           0 :                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
    1786           0 :                            buffer_dirty(bh)) {
    1787           0 :                         WARN_ON(bh->b_size != blocksize);
    1788           0 :                         err = get_block(inode, block, bh, 1);
    1789           0 :                         if (err)
    1790             :                                 goto recover;
    1791           0 :                         clear_buffer_delay(bh);
    1792           0 :                         if (buffer_new(bh)) {
    1793             :                                 /* blockdev mappings never come here */
    1794           0 :                                 clear_buffer_new(bh);
    1795           0 :                                 clean_bdev_bh_alias(bh);
    1796             :                         }
    1797             :                 }
    1798           0 :                 bh = bh->b_this_page;
    1799           0 :                 block++;
    1800           0 :         } while (bh != head);
    1801             : 
    1802             :         do {
    1803           0 :                 if (!buffer_mapped(bh))
    1804           0 :                         continue;
    1805             :                 /*
    1806             :                  * If it's a fully non-blocking write attempt and we cannot
    1807             :                  * lock the buffer then redirty the page.  Note that this can
    1808             :                  * potentially cause a busy-wait loop from writeback threads
    1809             :                  * and kswapd activity, but those code paths have their own
    1810             :                  * higher-level throttling.
    1811             :                  */
    1812           0 :                 if (wbc->sync_mode != WB_SYNC_NONE) {
    1813             :                         lock_buffer(bh);
    1814           0 :                 } else if (!trylock_buffer(bh)) {
    1815           0 :                         redirty_page_for_writepage(wbc, page);
    1816           0 :                         continue;
    1817             :                 }
    1818           0 :                 if (test_clear_buffer_dirty(bh)) {
    1819             :                         mark_buffer_async_write_endio(bh, handler);
    1820             :                 } else {
    1821             :                         unlock_buffer(bh);
    1822             :                 }
    1823           0 :         } while ((bh = bh->b_this_page) != head);
    1824             : 
    1825             :         /*
    1826             :          * The page and its buffers are protected by PageWriteback(), so we can
    1827             :          * drop the bh refcounts early.
    1828             :          */
    1829           0 :         BUG_ON(PageWriteback(page));
    1830           0 :         set_page_writeback(page);
    1831             : 
    1832             :         do {
    1833           0 :                 struct buffer_head *next = bh->b_this_page;
    1834           0 :                 if (buffer_async_write(bh)) {
    1835           0 :                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
    1836           0 :                         nr_underway++;
    1837             :                 }
    1838           0 :                 bh = next;
    1839           0 :         } while (bh != head);
    1840           0 :         unlock_page(page);
    1841             : 
    1842           0 :         err = 0;
    1843             : done:
    1844           0 :         if (nr_underway == 0) {
    1845             :                 /*
    1846             :                  * The page was marked dirty, but the buffers were
    1847             :                  * clean.  Someone wrote them back by hand with
    1848             :                  * write_dirty_buffer/submit_bh.  A rare case.
    1849             :                  */
    1850           0 :                 end_page_writeback(page);
    1851             : 
    1852             :                 /*
    1853             :                  * The page and buffer_heads can be released at any time from
    1854             :                  * here on.
    1855             :                  */
    1856             :         }
    1857           0 :         return err;
    1858             : 
    1859             : recover:
    1860             :         /*
    1861             :          * ENOSPC, or some other error.  We may already have added some
    1862             :          * blocks to the file, so we need to write these out to avoid
    1863             :          * exposing stale data.
    1864             :          * The page is currently locked and not marked for writeback
    1865             :          */
    1866             :         bh = head;
    1867             :         /* Recovery: lock and submit the mapped buffers */
    1868             :         do {
    1869           0 :                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
    1870           0 :                     !buffer_delay(bh)) {
    1871           0 :                         lock_buffer(bh);
    1872             :                         mark_buffer_async_write_endio(bh, handler);
    1873             :                 } else {
    1874             :                         /*
    1875             :                          * The buffer may have been set dirty during
    1876             :                          * attachment to a dirty page.
    1877             :                          */
    1878             :                         clear_buffer_dirty(bh);
    1879             :                 }
    1880           0 :         } while ((bh = bh->b_this_page) != head);
    1881           0 :         SetPageError(page);
    1882           0 :         BUG_ON(PageWriteback(page));
    1883           0 :         mapping_set_error(page->mapping, err);
    1884           0 :         set_page_writeback(page);
    1885             :         do {
    1886           0 :                 struct buffer_head *next = bh->b_this_page;
    1887           0 :                 if (buffer_async_write(bh)) {
    1888           0 :                         clear_buffer_dirty(bh);
    1889           0 :                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
    1890           0 :                         nr_underway++;
    1891             :                 }
    1892           0 :                 bh = next;
    1893           0 :         } while (bh != head);
    1894           0 :         unlock_page(page);
    1895           0 :         goto done;
    1896             : }
    1897             : EXPORT_SYMBOL(__block_write_full_page);
    1898             : 
    1899             : /*
    1900             :  * If a page has any new buffers, zero them out here, and mark them uptodate
    1901             :  * and dirty so they'll be written out (in order to prevent uninitialised
    1902             :  * block data from leaking). And clear the new bit.
    1903             :  */
    1904           0 : void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
    1905             : {
    1906             :         unsigned int block_start, block_end;
    1907             :         struct buffer_head *head, *bh;
    1908             : 
    1909           0 :         BUG_ON(!PageLocked(page));
    1910           0 :         if (!page_has_buffers(page))
    1911             :                 return;
    1912             : 
    1913           0 :         bh = head = page_buffers(page);
    1914           0 :         block_start = 0;
    1915             :         do {
    1916           0 :                 block_end = block_start + bh->b_size;
    1917             : 
    1918           0 :                 if (buffer_new(bh)) {
    1919           0 :                         if (block_end > from && block_start < to) {
    1920           0 :                                 if (!PageUptodate(page)) {
    1921             :                                         unsigned start, size;
    1922             : 
    1923           0 :                                         start = max(from, block_start);
    1924           0 :                                         size = min(to, block_end) - start;
    1925             : 
    1926           0 :                                         zero_user(page, start, size);
    1927             :                                         set_buffer_uptodate(bh);
    1928             :                                 }
    1929             : 
    1930           0 :                                 clear_buffer_new(bh);
    1931           0 :                                 mark_buffer_dirty(bh);
    1932             :                         }
    1933             :                 }
    1934             : 
    1935           0 :                 block_start = block_end;
    1936           0 :                 bh = bh->b_this_page;
    1937           0 :         } while (bh != head);
    1938             : }
    1939             : EXPORT_SYMBOL(page_zero_new_buffers);
    1940             : 
    1941             : static void
    1942           0 : iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
    1943             :                 const struct iomap *iomap)
    1944             : {
    1945           0 :         loff_t offset = block << inode->i_blkbits;
    1946             : 
    1947           0 :         bh->b_bdev = iomap->bdev;
    1948             : 
    1949             :         /*
    1950             :          * Block points to offset in file we need to map, iomap contains
    1951             :          * the offset at which the map starts. If the map ends before the
    1952             :          * current block, then do not map the buffer and let the caller
    1953             :          * handle it.
    1954             :          */
    1955           0 :         BUG_ON(offset >= iomap->offset + iomap->length);
    1956             : 
    1957           0 :         switch (iomap->type) {
    1958             :         case IOMAP_HOLE:
    1959             :                 /*
    1960             :                  * If the buffer is not up to date or beyond the current EOF,
    1961             :                  * we need to mark it as new to ensure sub-block zeroing is
    1962             :                  * executed if necessary.
    1963             :                  */
    1964           0 :                 if (!buffer_uptodate(bh) ||
    1965           0 :                     (offset >= i_size_read(inode)))
    1966             :                         set_buffer_new(bh);
    1967             :                 break;
    1968             :         case IOMAP_DELALLOC:
    1969           0 :                 if (!buffer_uptodate(bh) ||
    1970           0 :                     (offset >= i_size_read(inode)))
    1971             :                         set_buffer_new(bh);
    1972           0 :                 set_buffer_uptodate(bh);
    1973           0 :                 set_buffer_mapped(bh);
    1974             :                 set_buffer_delay(bh);
    1975             :                 break;
    1976             :         case IOMAP_UNWRITTEN:
    1977             :                 /*
    1978             :                  * For unwritten regions, we always need to ensure that regions
    1979             :                  * in the block we are not writing to are zeroed. Mark the
    1980             :                  * buffer as new to ensure this.
    1981             :                  */
    1982           0 :                 set_buffer_new(bh);
    1983             :                 set_buffer_unwritten(bh);
    1984             :                 fallthrough;
    1985             :         case IOMAP_MAPPED:
    1986           0 :                 if ((iomap->flags & IOMAP_F_NEW) ||
    1987           0 :                     offset >= i_size_read(inode))
    1988             :                         set_buffer_new(bh);
    1989           0 :                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
    1990           0 :                                 inode->i_blkbits;
    1991             :                 set_buffer_mapped(bh);
    1992             :                 break;
    1993             :         }
    1994           0 : }
    1995             : 
    1996           0 : int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
    1997             :                 get_block_t *get_block, const struct iomap *iomap)
    1998             : {
    1999           0 :         unsigned from = pos & (PAGE_SIZE - 1);
    2000           0 :         unsigned to = from + len;
    2001           0 :         struct inode *inode = folio->mapping->host;
    2002             :         unsigned block_start, block_end;
    2003             :         sector_t block;
    2004           0 :         int err = 0;
    2005             :         unsigned blocksize, bbits;
    2006           0 :         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
    2007             : 
    2008           0 :         BUG_ON(!folio_test_locked(folio));
    2009             :         BUG_ON(from > PAGE_SIZE);
    2010           0 :         BUG_ON(to > PAGE_SIZE);
    2011           0 :         BUG_ON(from > to);
    2012             : 
    2013           0 :         head = create_page_buffers(&folio->page, inode, 0);
    2014           0 :         blocksize = head->b_size;
    2015           0 :         bbits = block_size_bits(blocksize);
    2016             : 
    2017           0 :         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
    2018             : 
    2019           0 :         for(bh = head, block_start = 0; bh != head || !block_start;
    2020           0 :             block++, block_start=block_end, bh = bh->b_this_page) {
    2021           0 :                 block_end = block_start + blocksize;
    2022           0 :                 if (block_end <= from || block_start >= to) {
    2023           0 :                         if (folio_test_uptodate(folio)) {
    2024           0 :                                 if (!buffer_uptodate(bh))
    2025             :                                         set_buffer_uptodate(bh);
    2026             :                         }
    2027           0 :                         continue;
    2028             :                 }
    2029           0 :                 if (buffer_new(bh))
    2030             :                         clear_buffer_new(bh);
    2031           0 :                 if (!buffer_mapped(bh)) {
    2032           0 :                         WARN_ON(bh->b_size != blocksize);
    2033           0 :                         if (get_block) {
    2034           0 :                                 err = get_block(inode, block, bh, 1);
    2035           0 :                                 if (err)
    2036             :                                         break;
    2037             :                         } else {
    2038           0 :                                 iomap_to_bh(inode, block, bh, iomap);
    2039             :                         }
    2040             : 
    2041           0 :                         if (buffer_new(bh)) {
    2042           0 :                                 clean_bdev_bh_alias(bh);
    2043           0 :                                 if (folio_test_uptodate(folio)) {
    2044           0 :                                         clear_buffer_new(bh);
    2045           0 :                                         set_buffer_uptodate(bh);
    2046           0 :                                         mark_buffer_dirty(bh);
    2047           0 :                                         continue;
    2048             :                                 }
    2049           0 :                                 if (block_end > to || block_start < from)
    2050           0 :                                         folio_zero_segments(folio,
    2051             :                                                 to, block_end,
    2052             :                                                 block_start, from);
    2053           0 :                                 continue;
    2054             :                         }
    2055             :                 }
    2056           0 :                 if (folio_test_uptodate(folio)) {
    2057           0 :                         if (!buffer_uptodate(bh))
    2058             :                                 set_buffer_uptodate(bh);
    2059           0 :                         continue; 
    2060             :                 }
    2061           0 :                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
    2062           0 :                     !buffer_unwritten(bh) &&
    2063           0 :                      (block_start < from || block_end > to)) {
    2064           0 :                         bh_read_nowait(bh, 0);
    2065           0 :                         *wait_bh++=bh;
    2066             :                 }
    2067             :         }
    2068             :         /*
    2069             :          * If we issued read requests - let them complete.
    2070             :          */
    2071           0 :         while(wait_bh > wait) {
    2072           0 :                 wait_on_buffer(*--wait_bh);
    2073           0 :                 if (!buffer_uptodate(*wait_bh))
    2074           0 :                         err = -EIO;
    2075             :         }
    2076           0 :         if (unlikely(err))
    2077           0 :                 page_zero_new_buffers(&folio->page, from, to);
    2078           0 :         return err;
    2079             : }
    2080             : 
    2081           0 : int __block_write_begin(struct page *page, loff_t pos, unsigned len,
    2082             :                 get_block_t *get_block)
    2083             : {
    2084           0 :         return __block_write_begin_int(page_folio(page), pos, len, get_block,
    2085             :                                        NULL);
    2086             : }
    2087             : EXPORT_SYMBOL(__block_write_begin);
    2088             : 
    2089           0 : static int __block_commit_write(struct inode *inode, struct page *page,
    2090             :                 unsigned from, unsigned to)
    2091             : {
    2092             :         unsigned block_start, block_end;
    2093           0 :         int partial = 0;
    2094             :         unsigned blocksize;
    2095             :         struct buffer_head *bh, *head;
    2096             : 
    2097           0 :         bh = head = page_buffers(page);
    2098           0 :         blocksize = bh->b_size;
    2099             : 
    2100           0 :         block_start = 0;
    2101             :         do {
    2102           0 :                 block_end = block_start + blocksize;
    2103           0 :                 if (block_end <= from || block_start >= to) {
    2104           0 :                         if (!buffer_uptodate(bh))
    2105           0 :                                 partial = 1;
    2106             :                 } else {
    2107           0 :                         set_buffer_uptodate(bh);
    2108           0 :                         mark_buffer_dirty(bh);
    2109             :                 }
    2110           0 :                 if (buffer_new(bh))
    2111             :                         clear_buffer_new(bh);
    2112             : 
    2113           0 :                 block_start = block_end;
    2114           0 :                 bh = bh->b_this_page;
    2115           0 :         } while (bh != head);
    2116             : 
    2117             :         /*
    2118             :          * If this is a partial write which happened to make all buffers
    2119             :          * uptodate then we can optimize away a bogus read_folio() for
    2120             :          * the next read(). Here we 'discover' whether the page went
    2121             :          * uptodate as a result of this (potentially partial) write.
    2122             :          */
    2123           0 :         if (!partial)
    2124             :                 SetPageUptodate(page);
    2125           0 :         return 0;
    2126             : }
    2127             : 
    2128             : /*
    2129             :  * block_write_begin takes care of the basic task of block allocation and
    2130             :  * bringing partial write blocks uptodate first.
    2131             :  *
    2132             :  * The filesystem needs to handle block truncation upon failure.
    2133             :  */
    2134           0 : int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
    2135             :                 struct page **pagep, get_block_t *get_block)
    2136             : {
    2137           0 :         pgoff_t index = pos >> PAGE_SHIFT;
    2138             :         struct page *page;
    2139             :         int status;
    2140             : 
    2141           0 :         page = grab_cache_page_write_begin(mapping, index);
    2142           0 :         if (!page)
    2143             :                 return -ENOMEM;
    2144             : 
    2145           0 :         status = __block_write_begin(page, pos, len, get_block);
    2146           0 :         if (unlikely(status)) {
    2147           0 :                 unlock_page(page);
    2148           0 :                 put_page(page);
    2149           0 :                 page = NULL;
    2150             :         }
    2151             : 
    2152           0 :         *pagep = page;
    2153           0 :         return status;
    2154             : }
    2155             : EXPORT_SYMBOL(block_write_begin);
    2156             : 
    2157           0 : int block_write_end(struct file *file, struct address_space *mapping,
    2158             :                         loff_t pos, unsigned len, unsigned copied,
    2159             :                         struct page *page, void *fsdata)
    2160             : {
    2161           0 :         struct inode *inode = mapping->host;
    2162             :         unsigned start;
    2163             : 
    2164           0 :         start = pos & (PAGE_SIZE - 1);
    2165             : 
    2166           0 :         if (unlikely(copied < len)) {
    2167             :                 /*
    2168             :                  * The buffers that were written will now be uptodate, so
    2169             :                  * we don't have to worry about a read_folio reading them
    2170             :                  * and overwriting a partial write. However if we have
    2171             :                  * encountered a short write and only partially written
    2172             :                  * into a buffer, it will not be marked uptodate, so a
    2173             :                  * read_folio might come in and destroy our partial write.
    2174             :                  *
    2175             :                  * Do the simplest thing, and just treat any short write to a
    2176             :                  * non uptodate page as a zero-length write, and force the
    2177             :                  * caller to redo the whole thing.
    2178             :                  */
    2179           0 :                 if (!PageUptodate(page))
    2180           0 :                         copied = 0;
    2181             : 
    2182           0 :                 page_zero_new_buffers(page, start+copied, start+len);
    2183             :         }
    2184           0 :         flush_dcache_page(page);
    2185             : 
    2186             :         /* This could be a short (even 0-length) commit */
    2187           0 :         __block_commit_write(inode, page, start, start+copied);
    2188             : 
    2189           0 :         return copied;
    2190             : }
    2191             : EXPORT_SYMBOL(block_write_end);
    2192             : 
    2193           0 : int generic_write_end(struct file *file, struct address_space *mapping,
    2194             :                         loff_t pos, unsigned len, unsigned copied,
    2195             :                         struct page *page, void *fsdata)
    2196             : {
    2197           0 :         struct inode *inode = mapping->host;
    2198           0 :         loff_t old_size = inode->i_size;
    2199           0 :         bool i_size_changed = false;
    2200             : 
    2201           0 :         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
    2202             : 
    2203             :         /*
    2204             :          * No need to use i_size_read() here, the i_size cannot change under us
    2205             :          * because we hold i_rwsem.
    2206             :          *
    2207             :          * But it's important to update i_size while still holding page lock:
    2208             :          * page writeout could otherwise come in and zero beyond i_size.
    2209             :          */
    2210           0 :         if (pos + copied > inode->i_size) {
    2211           0 :                 i_size_write(inode, pos + copied);
    2212           0 :                 i_size_changed = true;
    2213             :         }
    2214             : 
    2215           0 :         unlock_page(page);
    2216           0 :         put_page(page);
    2217             : 
    2218           0 :         if (old_size < pos)
    2219           0 :                 pagecache_isize_extended(inode, old_size, pos);
    2220             :         /*
    2221             :          * Don't mark the inode dirty under page lock. First, it unnecessarily
    2222             :          * makes the holding time of page lock longer. Second, it forces lock
    2223             :          * ordering of page lock and transaction start for journaling
    2224             :          * filesystems.
    2225             :          */
    2226           0 :         if (i_size_changed)
    2227             :                 mark_inode_dirty(inode);
    2228           0 :         return copied;
    2229             : }
    2230             : EXPORT_SYMBOL(generic_write_end);
    2231             : 
    2232             : /*
    2233             :  * block_is_partially_uptodate checks whether buffers within a folio are
    2234             :  * uptodate or not.
    2235             :  *
    2236             :  * Returns true if all buffers which correspond to the specified part
    2237             :  * of the folio are uptodate.
    2238             :  */
    2239           0 : bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
    2240             : {
    2241             :         unsigned block_start, block_end, blocksize;
    2242             :         unsigned to;
    2243             :         struct buffer_head *bh, *head;
    2244           0 :         bool ret = true;
    2245             : 
    2246           0 :         head = folio_buffers(folio);
    2247           0 :         if (!head)
    2248             :                 return false;
    2249           0 :         blocksize = head->b_size;
    2250           0 :         to = min_t(unsigned, folio_size(folio) - from, count);
    2251           0 :         to = from + to;
    2252           0 :         if (from < blocksize && to > folio_size(folio) - blocksize)
    2253             :                 return false;
    2254             : 
    2255             :         bh = head;
    2256             :         block_start = 0;
    2257             :         do {
    2258           0 :                 block_end = block_start + blocksize;
    2259           0 :                 if (block_end > from && block_start < to) {
    2260           0 :                         if (!buffer_uptodate(bh)) {
    2261             :                                 ret = false;
    2262             :                                 break;
    2263             :                         }
    2264           0 :                         if (block_end >= to)
    2265             :                                 break;
    2266             :                 }
    2267           0 :                 block_start = block_end;
    2268           0 :                 bh = bh->b_this_page;
    2269           0 :         } while (bh != head);
    2270             : 
    2271             :         return ret;
    2272             : }
    2273             : EXPORT_SYMBOL(block_is_partially_uptodate);
    2274             : 
    2275             : /*
    2276             :  * Generic "read_folio" function for block devices that have the normal
    2277             :  * get_block functionality. This is most of the block device filesystems.
    2278             :  * Reads the folio asynchronously --- the unlock_buffer() and
    2279             :  * set/clear_buffer_uptodate() functions propagate buffer state into the
    2280             :  * folio once IO has completed.
    2281             :  */
    2282           0 : int block_read_full_folio(struct folio *folio, get_block_t *get_block)
    2283             : {
    2284           0 :         struct inode *inode = folio->mapping->host;
    2285             :         sector_t iblock, lblock;
    2286             :         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
    2287             :         unsigned int blocksize, bbits;
    2288             :         int nr, i;
    2289           0 :         int fully_mapped = 1;
    2290           0 :         bool page_error = false;
    2291           0 :         loff_t limit = i_size_read(inode);
    2292             : 
    2293             :         /* This is needed for ext4. */
    2294             :         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
    2295             :                 limit = inode->i_sb->s_maxbytes;
    2296             : 
    2297             :         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
    2298             : 
    2299           0 :         head = create_page_buffers(&folio->page, inode, 0);
    2300           0 :         blocksize = head->b_size;
    2301           0 :         bbits = block_size_bits(blocksize);
    2302             : 
    2303           0 :         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
    2304           0 :         lblock = (limit+blocksize-1) >> bbits;
    2305           0 :         bh = head;
    2306           0 :         nr = 0;
    2307           0 :         i = 0;
    2308             : 
    2309             :         do {
    2310           0 :                 if (buffer_uptodate(bh))
    2311           0 :                         continue;
    2312             : 
    2313           0 :                 if (!buffer_mapped(bh)) {
    2314           0 :                         int err = 0;
    2315             : 
    2316           0 :                         fully_mapped = 0;
    2317           0 :                         if (iblock < lblock) {
    2318           0 :                                 WARN_ON(bh->b_size != blocksize);
    2319           0 :                                 err = get_block(inode, iblock, bh, 0);
    2320           0 :                                 if (err) {
    2321           0 :                                         folio_set_error(folio);
    2322           0 :                                         page_error = true;
    2323             :                                 }
    2324             :                         }
    2325           0 :                         if (!buffer_mapped(bh)) {
    2326           0 :                                 folio_zero_range(folio, i * blocksize,
    2327             :                                                 blocksize);
    2328           0 :                                 if (!err)
    2329             :                                         set_buffer_uptodate(bh);
    2330           0 :                                 continue;
    2331             :                         }
    2332             :                         /*
    2333             :                          * get_block() might have updated the buffer
    2334             :                          * synchronously
    2335             :                          */
    2336           0 :                         if (buffer_uptodate(bh))
    2337           0 :                                 continue;
    2338             :                 }
    2339           0 :                 arr[nr++] = bh;
    2340           0 :         } while (i++, iblock++, (bh = bh->b_this_page) != head);
    2341             : 
    2342           0 :         if (fully_mapped)
    2343             :                 folio_set_mappedtodisk(folio);
    2344             : 
    2345           0 :         if (!nr) {
    2346             :                 /*
    2347             :                  * All buffers are uptodate - we can set the folio uptodate
    2348             :                  * as well. But not if get_block() returned an error.
    2349             :                  */
    2350           0 :                 if (!page_error)
    2351             :                         folio_mark_uptodate(folio);
    2352           0 :                 folio_unlock(folio);
    2353           0 :                 return 0;
    2354             :         }
    2355             : 
    2356             :         /* Stage two: lock the buffers */
    2357           0 :         for (i = 0; i < nr; i++) {
    2358           0 :                 bh = arr[i];
    2359           0 :                 lock_buffer(bh);
    2360           0 :                 mark_buffer_async_read(bh);
    2361             :         }
    2362             : 
    2363             :         /*
    2364             :          * Stage 3: start the IO.  Check for uptodateness
    2365             :          * inside the buffer lock in case another process reading
    2366             :          * the underlying blockdev brought it uptodate (the sct fix).
    2367             :          */
    2368           0 :         for (i = 0; i < nr; i++) {
    2369           0 :                 bh = arr[i];
    2370           0 :                 if (buffer_uptodate(bh))
    2371           0 :                         end_buffer_async_read(bh, 1);
    2372             :                 else
    2373             :                         submit_bh(REQ_OP_READ, bh);
    2374             :         }
    2375             :         return 0;
    2376             : }
    2377             : EXPORT_SYMBOL(block_read_full_folio);
    2378             : 
    2379             : /* utility function for filesystems that need to do work on expanding
    2380             :  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
    2381             :  * deal with the hole.  
    2382             :  */
    2383           0 : int generic_cont_expand_simple(struct inode *inode, loff_t size)
    2384             : {
    2385           0 :         struct address_space *mapping = inode->i_mapping;
    2386           0 :         const struct address_space_operations *aops = mapping->a_ops;
    2387             :         struct page *page;
    2388           0 :         void *fsdata = NULL;
    2389             :         int err;
    2390             : 
    2391           0 :         err = inode_newsize_ok(inode, size);
    2392           0 :         if (err)
    2393             :                 goto out;
    2394             : 
    2395           0 :         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
    2396           0 :         if (err)
    2397             :                 goto out;
    2398             : 
    2399           0 :         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
    2400           0 :         BUG_ON(err > 0);
    2401             : 
    2402             : out:
    2403           0 :         return err;
    2404             : }
    2405             : EXPORT_SYMBOL(generic_cont_expand_simple);
    2406             : 
    2407           0 : static int cont_expand_zero(struct file *file, struct address_space *mapping,
    2408             :                             loff_t pos, loff_t *bytes)
    2409             : {
    2410           0 :         struct inode *inode = mapping->host;
    2411           0 :         const struct address_space_operations *aops = mapping->a_ops;
    2412           0 :         unsigned int blocksize = i_blocksize(inode);
    2413             :         struct page *page;
    2414           0 :         void *fsdata = NULL;
    2415             :         pgoff_t index, curidx;
    2416             :         loff_t curpos;
    2417             :         unsigned zerofrom, offset, len;
    2418           0 :         int err = 0;
    2419             : 
    2420           0 :         index = pos >> PAGE_SHIFT;
    2421           0 :         offset = pos & ~PAGE_MASK;
    2422             : 
    2423           0 :         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
    2424           0 :                 zerofrom = curpos & ~PAGE_MASK;
    2425           0 :                 if (zerofrom & (blocksize-1)) {
    2426           0 :                         *bytes |= (blocksize-1);
    2427           0 :                         (*bytes)++;
    2428             :                 }
    2429           0 :                 len = PAGE_SIZE - zerofrom;
    2430             : 
    2431           0 :                 err = aops->write_begin(file, mapping, curpos, len,
    2432             :                                             &page, &fsdata);
    2433           0 :                 if (err)
    2434             :                         goto out;
    2435           0 :                 zero_user(page, zerofrom, len);
    2436           0 :                 err = aops->write_end(file, mapping, curpos, len, len,
    2437             :                                                 page, fsdata);
    2438           0 :                 if (err < 0)
    2439             :                         goto out;
    2440           0 :                 BUG_ON(err != len);
    2441           0 :                 err = 0;
    2442             : 
    2443           0 :                 balance_dirty_pages_ratelimited(mapping);
    2444             : 
    2445           0 :                 if (fatal_signal_pending(current)) {
    2446             :                         err = -EINTR;
    2447             :                         goto out;
    2448             :                 }
    2449             :         }
    2450             : 
    2451             :         /* page covers the boundary, find the boundary offset */
    2452           0 :         if (index == curidx) {
    2453           0 :                 zerofrom = curpos & ~PAGE_MASK;
    2454             :                 /* if we will expand the thing last block will be filled */
    2455           0 :                 if (offset <= zerofrom) {
    2456             :                         goto out;
    2457             :                 }
    2458           0 :                 if (zerofrom & (blocksize-1)) {
    2459           0 :                         *bytes |= (blocksize-1);
    2460           0 :                         (*bytes)++;
    2461             :                 }
    2462           0 :                 len = offset - zerofrom;
    2463             : 
    2464           0 :                 err = aops->write_begin(file, mapping, curpos, len,
    2465             :                                             &page, &fsdata);
    2466           0 :                 if (err)
    2467             :                         goto out;
    2468           0 :                 zero_user(page, zerofrom, len);
    2469           0 :                 err = aops->write_end(file, mapping, curpos, len, len,
    2470             :                                                 page, fsdata);
    2471           0 :                 if (err < 0)
    2472             :                         goto out;
    2473           0 :                 BUG_ON(err != len);
    2474             :                 err = 0;
    2475             :         }
    2476             : out:
    2477           0 :         return err;
    2478             : }
    2479             : 
    2480             : /*
    2481             :  * For moronic filesystems that do not allow holes in file.
    2482             :  * We may have to extend the file.
    2483             :  */
    2484           0 : int cont_write_begin(struct file *file, struct address_space *mapping,
    2485             :                         loff_t pos, unsigned len,
    2486             :                         struct page **pagep, void **fsdata,
    2487             :                         get_block_t *get_block, loff_t *bytes)
    2488             : {
    2489           0 :         struct inode *inode = mapping->host;
    2490           0 :         unsigned int blocksize = i_blocksize(inode);
    2491             :         unsigned int zerofrom;
    2492             :         int err;
    2493             : 
    2494           0 :         err = cont_expand_zero(file, mapping, pos, bytes);
    2495           0 :         if (err)
    2496             :                 return err;
    2497             : 
    2498           0 :         zerofrom = *bytes & ~PAGE_MASK;
    2499           0 :         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
    2500           0 :                 *bytes |= (blocksize-1);
    2501           0 :                 (*bytes)++;
    2502             :         }
    2503             : 
    2504           0 :         return block_write_begin(mapping, pos, len, pagep, get_block);
    2505             : }
    2506             : EXPORT_SYMBOL(cont_write_begin);
    2507             : 
    2508           0 : int block_commit_write(struct page *page, unsigned from, unsigned to)
    2509             : {
    2510           0 :         struct inode *inode = page->mapping->host;
    2511           0 :         __block_commit_write(inode,page,from,to);
    2512           0 :         return 0;
    2513             : }
    2514             : EXPORT_SYMBOL(block_commit_write);
    2515             : 
    2516             : /*
    2517             :  * block_page_mkwrite() is not allowed to change the file size as it gets
    2518             :  * called from a page fault handler when a page is first dirtied. Hence we must
    2519             :  * be careful to check for EOF conditions here. We set the page up correctly
    2520             :  * for a written page which means we get ENOSPC checking when writing into
    2521             :  * holes and correct delalloc and unwritten extent mapping on filesystems that
    2522             :  * support these features.
    2523             :  *
    2524             :  * We are not allowed to take the i_mutex here so we have to play games to
    2525             :  * protect against truncate races as the page could now be beyond EOF.  Because
    2526             :  * truncate writes the inode size before removing pages, once we have the
    2527             :  * page lock we can determine safely if the page is beyond EOF. If it is not
    2528             :  * beyond EOF, then the page is guaranteed safe against truncation until we
    2529             :  * unlock the page.
    2530             :  *
    2531             :  * Direct callers of this function should protect against filesystem freezing
    2532             :  * using sb_start_pagefault() - sb_end_pagefault() functions.
    2533             :  */
    2534           0 : int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
    2535             :                          get_block_t get_block)
    2536             : {
    2537           0 :         struct page *page = vmf->page;
    2538           0 :         struct inode *inode = file_inode(vma->vm_file);
    2539             :         unsigned long end;
    2540             :         loff_t size;
    2541             :         int ret;
    2542             : 
    2543           0 :         lock_page(page);
    2544           0 :         size = i_size_read(inode);
    2545           0 :         if ((page->mapping != inode->i_mapping) ||
    2546           0 :             (page_offset(page) > size)) {
    2547             :                 /* We overload EFAULT to mean page got truncated */
    2548             :                 ret = -EFAULT;
    2549             :                 goto out_unlock;
    2550             :         }
    2551             : 
    2552             :         /* page is wholly or partially inside EOF */
    2553           0 :         if (((page->index + 1) << PAGE_SHIFT) > size)
    2554           0 :                 end = size & ~PAGE_MASK;
    2555             :         else
    2556             :                 end = PAGE_SIZE;
    2557             : 
    2558           0 :         ret = __block_write_begin(page, 0, end, get_block);
    2559           0 :         if (!ret)
    2560           0 :                 ret = block_commit_write(page, 0, end);
    2561             : 
    2562           0 :         if (unlikely(ret < 0))
    2563             :                 goto out_unlock;
    2564           0 :         set_page_dirty(page);
    2565           0 :         wait_for_stable_page(page);
    2566           0 :         return 0;
    2567             : out_unlock:
    2568           0 :         unlock_page(page);
    2569           0 :         return ret;
    2570             : }
    2571             : EXPORT_SYMBOL(block_page_mkwrite);
    2572             : 
    2573           0 : int block_truncate_page(struct address_space *mapping,
    2574             :                         loff_t from, get_block_t *get_block)
    2575             : {
    2576           0 :         pgoff_t index = from >> PAGE_SHIFT;
    2577           0 :         unsigned offset = from & (PAGE_SIZE-1);
    2578             :         unsigned blocksize;
    2579             :         sector_t iblock;
    2580             :         unsigned length, pos;
    2581           0 :         struct inode *inode = mapping->host;
    2582             :         struct page *page;
    2583             :         struct buffer_head *bh;
    2584             :         int err;
    2585             : 
    2586           0 :         blocksize = i_blocksize(inode);
    2587           0 :         length = offset & (blocksize - 1);
    2588             : 
    2589             :         /* Block boundary? Nothing to do */
    2590           0 :         if (!length)
    2591             :                 return 0;
    2592             : 
    2593           0 :         length = blocksize - length;
    2594           0 :         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
    2595             :         
    2596           0 :         page = grab_cache_page(mapping, index);
    2597           0 :         err = -ENOMEM;
    2598           0 :         if (!page)
    2599             :                 goto out;
    2600             : 
    2601           0 :         if (!page_has_buffers(page))
    2602           0 :                 create_empty_buffers(page, blocksize, 0);
    2603             : 
    2604             :         /* Find the buffer that contains "offset" */
    2605           0 :         bh = page_buffers(page);
    2606           0 :         pos = blocksize;
    2607           0 :         while (offset >= pos) {
    2608           0 :                 bh = bh->b_this_page;
    2609           0 :                 iblock++;
    2610           0 :                 pos += blocksize;
    2611             :         }
    2612             : 
    2613           0 :         err = 0;
    2614           0 :         if (!buffer_mapped(bh)) {
    2615           0 :                 WARN_ON(bh->b_size != blocksize);
    2616           0 :                 err = get_block(inode, iblock, bh, 0);
    2617           0 :                 if (err)
    2618             :                         goto unlock;
    2619             :                 /* unmapped? It's a hole - nothing to do */
    2620           0 :                 if (!buffer_mapped(bh))
    2621             :                         goto unlock;
    2622             :         }
    2623             : 
    2624             :         /* Ok, it's mapped. Make sure it's up-to-date */
    2625           0 :         if (PageUptodate(page))
    2626             :                 set_buffer_uptodate(bh);
    2627             : 
    2628           0 :         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
    2629           0 :                 err = bh_read(bh, 0);
    2630             :                 /* Uhhuh. Read error. Complain and punt. */
    2631           0 :                 if (err < 0)
    2632             :                         goto unlock;
    2633             :         }
    2634             : 
    2635           0 :         zero_user(page, offset, length);
    2636           0 :         mark_buffer_dirty(bh);
    2637           0 :         err = 0;
    2638             : 
    2639             : unlock:
    2640           0 :         unlock_page(page);
    2641           0 :         put_page(page);
    2642             : out:
    2643             :         return err;
    2644             : }
    2645             : EXPORT_SYMBOL(block_truncate_page);
    2646             : 
    2647             : /*
    2648             :  * The generic ->writepage function for buffer-backed address_spaces
    2649             :  */
    2650           0 : int block_write_full_page(struct page *page, get_block_t *get_block,
    2651             :                         struct writeback_control *wbc)
    2652             : {
    2653           0 :         struct inode * const inode = page->mapping->host;
    2654           0 :         loff_t i_size = i_size_read(inode);
    2655           0 :         const pgoff_t end_index = i_size >> PAGE_SHIFT;
    2656             :         unsigned offset;
    2657             : 
    2658             :         /* Is the page fully inside i_size? */
    2659           0 :         if (page->index < end_index)
    2660           0 :                 return __block_write_full_page(inode, page, get_block, wbc,
    2661             :                                                end_buffer_async_write);
    2662             : 
    2663             :         /* Is the page fully outside i_size? (truncate in progress) */
    2664           0 :         offset = i_size & (PAGE_SIZE-1);
    2665           0 :         if (page->index >= end_index+1 || !offset) {
    2666           0 :                 unlock_page(page);
    2667           0 :                 return 0; /* don't care */
    2668             :         }
    2669             : 
    2670             :         /*
    2671             :          * The page straddles i_size.  It must be zeroed out on each and every
    2672             :          * writepage invocation because it may be mmapped.  "A file is mapped
    2673             :          * in multiples of the page size.  For a file that is not a multiple of
    2674             :          * the  page size, the remaining memory is zeroed when mapped, and
    2675             :          * writes to that region are not written out to the file."
    2676             :          */
    2677           0 :         zero_user_segment(page, offset, PAGE_SIZE);
    2678           0 :         return __block_write_full_page(inode, page, get_block, wbc,
    2679             :                                                         end_buffer_async_write);
    2680             : }
    2681             : EXPORT_SYMBOL(block_write_full_page);
    2682             : 
    2683           0 : sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
    2684             :                             get_block_t *get_block)
    2685             : {
    2686           0 :         struct inode *inode = mapping->host;
    2687           0 :         struct buffer_head tmp = {
    2688           0 :                 .b_size = i_blocksize(inode),
    2689             :         };
    2690             : 
    2691           0 :         get_block(inode, block, &tmp, 0);
    2692           0 :         return tmp.b_blocknr;
    2693             : }
    2694             : EXPORT_SYMBOL(generic_block_bmap);
    2695             : 
    2696           0 : static void end_bio_bh_io_sync(struct bio *bio)
    2697             : {
    2698           0 :         struct buffer_head *bh = bio->bi_private;
    2699             : 
    2700           0 :         if (unlikely(bio_flagged(bio, BIO_QUIET)))
    2701           0 :                 set_bit(BH_Quiet, &bh->b_state);
    2702             : 
    2703           0 :         bh->b_end_io(bh, !bio->bi_status);
    2704           0 :         bio_put(bio);
    2705           0 : }
    2706             : 
    2707           0 : static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
    2708             :                           struct writeback_control *wbc)
    2709             : {
    2710           0 :         const enum req_op op = opf & REQ_OP_MASK;
    2711             :         struct bio *bio;
    2712             : 
    2713           0 :         BUG_ON(!buffer_locked(bh));
    2714           0 :         BUG_ON(!buffer_mapped(bh));
    2715           0 :         BUG_ON(!bh->b_end_io);
    2716           0 :         BUG_ON(buffer_delay(bh));
    2717           0 :         BUG_ON(buffer_unwritten(bh));
    2718             : 
    2719             :         /*
    2720             :          * Only clear out a write error when rewriting
    2721             :          */
    2722           0 :         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
    2723             :                 clear_buffer_write_io_error(bh);
    2724             : 
    2725           0 :         if (buffer_meta(bh))
    2726           0 :                 opf |= REQ_META;
    2727           0 :         if (buffer_prio(bh))
    2728           0 :                 opf |= REQ_PRIO;
    2729             : 
    2730           0 :         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
    2731             : 
    2732           0 :         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
    2733             : 
    2734           0 :         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
    2735             : 
    2736           0 :         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
    2737           0 :         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
    2738             : 
    2739           0 :         bio->bi_end_io = end_bio_bh_io_sync;
    2740           0 :         bio->bi_private = bh;
    2741             : 
    2742             :         /* Take care of bh's that straddle the end of the device */
    2743           0 :         guard_bio_eod(bio);
    2744             : 
    2745             :         if (wbc) {
    2746             :                 wbc_init_bio(wbc, bio);
    2747             :                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
    2748             :         }
    2749             : 
    2750           0 :         submit_bio(bio);
    2751           0 : }
    2752             : 
    2753           0 : void submit_bh(blk_opf_t opf, struct buffer_head *bh)
    2754             : {
    2755           0 :         submit_bh_wbc(opf, bh, NULL);
    2756           0 : }
    2757             : EXPORT_SYMBOL(submit_bh);
    2758             : 
    2759           0 : void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
    2760             : {
    2761           0 :         lock_buffer(bh);
    2762           0 :         if (!test_clear_buffer_dirty(bh)) {
    2763             :                 unlock_buffer(bh);
    2764             :                 return;
    2765             :         }
    2766           0 :         bh->b_end_io = end_buffer_write_sync;
    2767           0 :         get_bh(bh);
    2768           0 :         submit_bh(REQ_OP_WRITE | op_flags, bh);
    2769             : }
    2770             : EXPORT_SYMBOL(write_dirty_buffer);
    2771             : 
    2772             : /*
    2773             :  * For a data-integrity writeout, we need to wait upon any in-progress I/O
    2774             :  * and then start new I/O and then wait upon it.  The caller must have a ref on
    2775             :  * the buffer_head.
    2776             :  */
    2777           0 : int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
    2778             : {
    2779           0 :         WARN_ON(atomic_read(&bh->b_count) < 1);
    2780           0 :         lock_buffer(bh);
    2781           0 :         if (test_clear_buffer_dirty(bh)) {
    2782             :                 /*
    2783             :                  * The bh should be mapped, but it might not be if the
    2784             :                  * device was hot-removed. Not much we can do but fail the I/O.
    2785             :                  */
    2786           0 :                 if (!buffer_mapped(bh)) {
    2787           0 :                         unlock_buffer(bh);
    2788           0 :                         return -EIO;
    2789             :                 }
    2790             : 
    2791           0 :                 get_bh(bh);
    2792           0 :                 bh->b_end_io = end_buffer_write_sync;
    2793           0 :                 submit_bh(REQ_OP_WRITE | op_flags, bh);
    2794           0 :                 wait_on_buffer(bh);
    2795           0 :                 if (!buffer_uptodate(bh))
    2796             :                         return -EIO;
    2797             :         } else {
    2798             :                 unlock_buffer(bh);
    2799             :         }
    2800             :         return 0;
    2801             : }
    2802             : EXPORT_SYMBOL(__sync_dirty_buffer);
    2803             : 
    2804           0 : int sync_dirty_buffer(struct buffer_head *bh)
    2805             : {
    2806           0 :         return __sync_dirty_buffer(bh, REQ_SYNC);
    2807             : }
    2808             : EXPORT_SYMBOL(sync_dirty_buffer);
    2809             : 
    2810             : /*
    2811             :  * try_to_free_buffers() checks if all the buffers on this particular folio
    2812             :  * are unused, and releases them if so.
    2813             :  *
    2814             :  * Exclusion against try_to_free_buffers may be obtained by either
    2815             :  * locking the folio or by holding its mapping's private_lock.
    2816             :  *
    2817             :  * If the folio is dirty but all the buffers are clean then we need to
    2818             :  * be sure to mark the folio clean as well.  This is because the folio
    2819             :  * may be against a block device, and a later reattachment of buffers
    2820             :  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
    2821             :  * filesystem data on the same device.
    2822             :  *
    2823             :  * The same applies to regular filesystem folios: if all the buffers are
    2824             :  * clean then we set the folio clean and proceed.  To do that, we require
    2825             :  * total exclusion from block_dirty_folio().  That is obtained with
    2826             :  * private_lock.
    2827             :  *
    2828             :  * try_to_free_buffers() is non-blocking.
    2829             :  */
    2830             : static inline int buffer_busy(struct buffer_head *bh)
    2831             : {
    2832           0 :         return atomic_read(&bh->b_count) |
    2833           0 :                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
    2834             : }
    2835             : 
    2836             : static bool
    2837           0 : drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
    2838             : {
    2839           0 :         struct buffer_head *head = folio_buffers(folio);
    2840             :         struct buffer_head *bh;
    2841             : 
    2842           0 :         bh = head;
    2843             :         do {
    2844           0 :                 if (buffer_busy(bh))
    2845             :                         goto failed;
    2846           0 :                 bh = bh->b_this_page;
    2847           0 :         } while (bh != head);
    2848             : 
    2849             :         do {
    2850           0 :                 struct buffer_head *next = bh->b_this_page;
    2851             : 
    2852           0 :                 if (bh->b_assoc_map)
    2853           0 :                         __remove_assoc_queue(bh);
    2854           0 :                 bh = next;
    2855           0 :         } while (bh != head);
    2856           0 :         *buffers_to_free = head;
    2857           0 :         folio_detach_private(folio);
    2858           0 :         return true;
    2859             : failed:
    2860             :         return false;
    2861             : }
    2862             : 
    2863           0 : bool try_to_free_buffers(struct folio *folio)
    2864             : {
    2865           0 :         struct address_space * const mapping = folio->mapping;
    2866           0 :         struct buffer_head *buffers_to_free = NULL;
    2867           0 :         bool ret = 0;
    2868             : 
    2869           0 :         BUG_ON(!folio_test_locked(folio));
    2870           0 :         if (folio_test_writeback(folio))
    2871             :                 return false;
    2872             : 
    2873           0 :         if (mapping == NULL) {          /* can this still happen? */
    2874           0 :                 ret = drop_buffers(folio, &buffers_to_free);
    2875           0 :                 goto out;
    2876             :         }
    2877             : 
    2878           0 :         spin_lock(&mapping->private_lock);
    2879           0 :         ret = drop_buffers(folio, &buffers_to_free);
    2880             : 
    2881             :         /*
    2882             :          * If the filesystem writes its buffers by hand (eg ext3)
    2883             :          * then we can have clean buffers against a dirty folio.  We
    2884             :          * clean the folio here; otherwise the VM will never notice
    2885             :          * that the filesystem did any IO at all.
    2886             :          *
    2887             :          * Also, during truncate, discard_buffer will have marked all
    2888             :          * the folio's buffers clean.  We discover that here and clean
    2889             :          * the folio also.
    2890             :          *
    2891             :          * private_lock must be held over this entire operation in order
    2892             :          * to synchronise against block_dirty_folio and prevent the
    2893             :          * dirty bit from being lost.
    2894             :          */
    2895           0 :         if (ret)
    2896             :                 folio_cancel_dirty(folio);
    2897           0 :         spin_unlock(&mapping->private_lock);
    2898             : out:
    2899           0 :         if (buffers_to_free) {
    2900             :                 struct buffer_head *bh = buffers_to_free;
    2901             : 
    2902             :                 do {
    2903           0 :                         struct buffer_head *next = bh->b_this_page;
    2904           0 :                         free_buffer_head(bh);
    2905           0 :                         bh = next;
    2906           0 :                 } while (bh != buffers_to_free);
    2907             :         }
    2908             :         return ret;
    2909             : }
    2910             : EXPORT_SYMBOL(try_to_free_buffers);
    2911             : 
    2912             : /*
    2913             :  * Buffer-head allocation
    2914             :  */
    2915             : static struct kmem_cache *bh_cachep __read_mostly;
    2916             : 
    2917             : /*
    2918             :  * Once the number of bh's in the machine exceeds this level, we start
    2919             :  * stripping them in writeback.
    2920             :  */
    2921             : static unsigned long max_buffer_heads;
    2922             : 
    2923             : int buffer_heads_over_limit;
    2924             : 
    2925             : struct bh_accounting {
    2926             :         int nr;                 /* Number of live bh's */
    2927             :         int ratelimit;          /* Limit cacheline bouncing */
    2928             : };
    2929             : 
    2930             : static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
    2931             : 
    2932             : static void recalc_bh_state(void)
    2933             : {
    2934             :         int i;
    2935           0 :         int tot = 0;
    2936             : 
    2937           0 :         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
    2938             :                 return;
    2939           0 :         __this_cpu_write(bh_accounting.ratelimit, 0);
    2940           0 :         for_each_online_cpu(i)
    2941           0 :                 tot += per_cpu(bh_accounting, i).nr;
    2942           0 :         buffer_heads_over_limit = (tot > max_buffer_heads);
    2943             : }
    2944             : 
    2945           0 : struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
    2946             : {
    2947           0 :         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
    2948           0 :         if (ret) {
    2949           0 :                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
    2950           0 :                 spin_lock_init(&ret->b_uptodate_lock);
    2951           0 :                 preempt_disable();
    2952           0 :                 __this_cpu_inc(bh_accounting.nr);
    2953           0 :                 recalc_bh_state();
    2954           0 :                 preempt_enable();
    2955             :         }
    2956           0 :         return ret;
    2957             : }
    2958             : EXPORT_SYMBOL(alloc_buffer_head);
    2959             : 
    2960           0 : void free_buffer_head(struct buffer_head *bh)
    2961             : {
    2962           0 :         BUG_ON(!list_empty(&bh->b_assoc_buffers));
    2963           0 :         kmem_cache_free(bh_cachep, bh);
    2964           0 :         preempt_disable();
    2965           0 :         __this_cpu_dec(bh_accounting.nr);
    2966           0 :         recalc_bh_state();
    2967           0 :         preempt_enable();
    2968           0 : }
    2969             : EXPORT_SYMBOL(free_buffer_head);
    2970             : 
    2971           0 : static int buffer_exit_cpu_dead(unsigned int cpu)
    2972             : {
    2973             :         int i;
    2974           0 :         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
    2975             : 
    2976           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    2977           0 :                 brelse(b->bhs[i]);
    2978           0 :                 b->bhs[i] = NULL;
    2979             :         }
    2980           0 :         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
    2981           0 :         per_cpu(bh_accounting, cpu).nr = 0;
    2982           0 :         return 0;
    2983             : }
    2984             : 
    2985             : /**
    2986             :  * bh_uptodate_or_lock - Test whether the buffer is uptodate
    2987             :  * @bh: struct buffer_head
    2988             :  *
    2989             :  * Return true if the buffer is up-to-date and false,
    2990             :  * with the buffer locked, if not.
    2991             :  */
    2992           0 : int bh_uptodate_or_lock(struct buffer_head *bh)
    2993             : {
    2994           0 :         if (!buffer_uptodate(bh)) {
    2995           0 :                 lock_buffer(bh);
    2996           0 :                 if (!buffer_uptodate(bh))
    2997             :                         return 0;
    2998             :                 unlock_buffer(bh);
    2999             :         }
    3000             :         return 1;
    3001             : }
    3002             : EXPORT_SYMBOL(bh_uptodate_or_lock);
    3003             : 
    3004             : /**
    3005             :  * __bh_read - Submit read for a locked buffer
    3006             :  * @bh: struct buffer_head
    3007             :  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
    3008             :  * @wait: wait until reading finish
    3009             :  *
    3010             :  * Returns zero on success or don't wait, and -EIO on error.
    3011             :  */
    3012           0 : int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
    3013             : {
    3014           0 :         int ret = 0;
    3015             : 
    3016           0 :         BUG_ON(!buffer_locked(bh));
    3017             : 
    3018           0 :         get_bh(bh);
    3019           0 :         bh->b_end_io = end_buffer_read_sync;
    3020           0 :         submit_bh(REQ_OP_READ | op_flags, bh);
    3021           0 :         if (wait) {
    3022           0 :                 wait_on_buffer(bh);
    3023           0 :                 if (!buffer_uptodate(bh))
    3024           0 :                         ret = -EIO;
    3025             :         }
    3026           0 :         return ret;
    3027             : }
    3028             : EXPORT_SYMBOL(__bh_read);
    3029             : 
    3030             : /**
    3031             :  * __bh_read_batch - Submit read for a batch of unlocked buffers
    3032             :  * @nr: entry number of the buffer batch
    3033             :  * @bhs: a batch of struct buffer_head
    3034             :  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
    3035             :  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
    3036             :  *              buffer that cannot lock.
    3037             :  *
    3038             :  * Returns zero on success or don't wait, and -EIO on error.
    3039             :  */
    3040           0 : void __bh_read_batch(int nr, struct buffer_head *bhs[],
    3041             :                      blk_opf_t op_flags, bool force_lock)
    3042             : {
    3043             :         int i;
    3044             : 
    3045           0 :         for (i = 0; i < nr; i++) {
    3046           0 :                 struct buffer_head *bh = bhs[i];
    3047             : 
    3048           0 :                 if (buffer_uptodate(bh))
    3049           0 :                         continue;
    3050             : 
    3051           0 :                 if (force_lock)
    3052             :                         lock_buffer(bh);
    3053             :                 else
    3054           0 :                         if (!trylock_buffer(bh))
    3055           0 :                                 continue;
    3056             : 
    3057           0 :                 if (buffer_uptodate(bh)) {
    3058           0 :                         unlock_buffer(bh);
    3059           0 :                         continue;
    3060             :                 }
    3061             : 
    3062           0 :                 bh->b_end_io = end_buffer_read_sync;
    3063           0 :                 get_bh(bh);
    3064             :                 submit_bh(REQ_OP_READ | op_flags, bh);
    3065             :         }
    3066           0 : }
    3067             : EXPORT_SYMBOL(__bh_read_batch);
    3068             : 
    3069           1 : void __init buffer_init(void)
    3070             : {
    3071             :         unsigned long nrpages;
    3072             :         int ret;
    3073             : 
    3074           1 :         bh_cachep = kmem_cache_create("buffer_head",
    3075             :                         sizeof(struct buffer_head), 0,
    3076             :                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
    3077             :                                 SLAB_MEM_SPREAD),
    3078             :                                 NULL);
    3079             : 
    3080             :         /*
    3081             :          * Limit the bh occupancy to 10% of ZONE_NORMAL
    3082             :          */
    3083           1 :         nrpages = (nr_free_buffer_pages() * 10) / 100;
    3084           1 :         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
    3085           1 :         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
    3086             :                                         NULL, buffer_exit_cpu_dead);
    3087           1 :         WARN_ON(ret < 0);
    3088           1 : }

Generated by: LCOV version 1.14