Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * fs/eventpoll.c (Efficient event retrieval implementation)
4 : * Copyright (C) 2001,...,2009 Davide Libenzi
5 : *
6 : * Davide Libenzi <davidel@xmailserver.org>
7 : */
8 :
9 : #include <linux/init.h>
10 : #include <linux/kernel.h>
11 : #include <linux/sched/signal.h>
12 : #include <linux/fs.h>
13 : #include <linux/file.h>
14 : #include <linux/signal.h>
15 : #include <linux/errno.h>
16 : #include <linux/mm.h>
17 : #include <linux/slab.h>
18 : #include <linux/poll.h>
19 : #include <linux/string.h>
20 : #include <linux/list.h>
21 : #include <linux/hash.h>
22 : #include <linux/spinlock.h>
23 : #include <linux/syscalls.h>
24 : #include <linux/rbtree.h>
25 : #include <linux/wait.h>
26 : #include <linux/eventpoll.h>
27 : #include <linux/mount.h>
28 : #include <linux/bitops.h>
29 : #include <linux/mutex.h>
30 : #include <linux/anon_inodes.h>
31 : #include <linux/device.h>
32 : #include <linux/uaccess.h>
33 : #include <asm/io.h>
34 : #include <asm/mman.h>
35 : #include <linux/atomic.h>
36 : #include <linux/proc_fs.h>
37 : #include <linux/seq_file.h>
38 : #include <linux/compat.h>
39 : #include <linux/rculist.h>
40 : #include <net/busy_poll.h>
41 :
42 : /*
43 : * LOCKING:
44 : * There are three level of locking required by epoll :
45 : *
46 : * 1) epmutex (mutex)
47 : * 2) ep->mtx (mutex)
48 : * 3) ep->lock (rwlock)
49 : *
50 : * The acquire order is the one listed above, from 1 to 3.
51 : * We need a rwlock (ep->lock) because we manipulate objects
52 : * from inside the poll callback, that might be triggered from
53 : * a wake_up() that in turn might be called from IRQ context.
54 : * So we can't sleep inside the poll callback and hence we need
55 : * a spinlock. During the event transfer loop (from kernel to
56 : * user space) we could end up sleeping due a copy_to_user(), so
57 : * we need a lock that will allow us to sleep. This lock is a
58 : * mutex (ep->mtx). It is acquired during the event transfer loop,
59 : * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 : * Then we also need a global mutex to serialize eventpoll_release_file()
61 : * and ep_free().
62 : * This mutex is acquired by ep_free() during the epoll file
63 : * cleanup path and it is also acquired by eventpoll_release_file()
64 : * if a file has been pushed inside an epoll set and it is then
65 : * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 : * It is also acquired when inserting an epoll fd onto another epoll
67 : * fd. We do this so that we walk the epoll tree and ensure that this
68 : * insertion does not create a cycle of epoll file descriptors, which
69 : * could lead to deadlock. We need a global mutex to prevent two
70 : * simultaneous inserts (A into B and B into A) from racing and
71 : * constructing a cycle without either insert observing that it is
72 : * going to.
73 : * It is necessary to acquire multiple "ep->mtx"es at once in the
74 : * case when one epoll fd is added to another. In this case, we
75 : * always acquire the locks in the order of nesting (i.e. after
76 : * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 : * before e2->mtx). Since we disallow cycles of epoll file
78 : * descriptors, this ensures that the mutexes are well-ordered. In
79 : * order to communicate this nesting to lockdep, when walking a tree
80 : * of epoll file descriptors, we use the current recursion depth as
81 : * the lockdep subkey.
82 : * It is possible to drop the "ep->mtx" and to use the global
83 : * mutex "epmutex" (together with "ep->lock") to have it working,
84 : * but having "ep->mtx" will make the interface more scalable.
85 : * Events that require holding "epmutex" are very rare, while for
86 : * normal operations the epoll private "ep->mtx" will guarantee
87 : * a better scalability.
88 : */
89 :
90 : /* Epoll private bits inside the event mask */
91 : #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 :
93 : #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 :
95 : #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 : EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 :
98 : /* Maximum number of nesting allowed inside epoll sets */
99 : #define EP_MAX_NESTS 4
100 :
101 : #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 :
103 : #define EP_UNACTIVE_PTR ((void *) -1L)
104 :
105 : #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 :
107 : struct epoll_filefd {
108 : struct file *file;
109 : int fd;
110 : } __packed;
111 :
112 : /* Wait structure used by the poll hooks */
113 : struct eppoll_entry {
114 : /* List header used to link this structure to the "struct epitem" */
115 : struct eppoll_entry *next;
116 :
117 : /* The "base" pointer is set to the container "struct epitem" */
118 : struct epitem *base;
119 :
120 : /*
121 : * Wait queue item that will be linked to the target file wait
122 : * queue head.
123 : */
124 : wait_queue_entry_t wait;
125 :
126 : /* The wait queue head that linked the "wait" wait queue item */
127 : wait_queue_head_t *whead;
128 : };
129 :
130 : /*
131 : * Each file descriptor added to the eventpoll interface will
132 : * have an entry of this type linked to the "rbr" RB tree.
133 : * Avoid increasing the size of this struct, there can be many thousands
134 : * of these on a server and we do not want this to take another cache line.
135 : */
136 : struct epitem {
137 : union {
138 : /* RB tree node links this structure to the eventpoll RB tree */
139 : struct rb_node rbn;
140 : /* Used to free the struct epitem */
141 : struct rcu_head rcu;
142 : };
143 :
144 : /* List header used to link this structure to the eventpoll ready list */
145 : struct list_head rdllink;
146 :
147 : /*
148 : * Works together "struct eventpoll"->ovflist in keeping the
149 : * single linked chain of items.
150 : */
151 : struct epitem *next;
152 :
153 : /* The file descriptor information this item refers to */
154 : struct epoll_filefd ffd;
155 :
156 : /* List containing poll wait queues */
157 : struct eppoll_entry *pwqlist;
158 :
159 : /* The "container" of this item */
160 : struct eventpoll *ep;
161 :
162 : /* List header used to link this item to the "struct file" items list */
163 : struct hlist_node fllink;
164 :
165 : /* wakeup_source used when EPOLLWAKEUP is set */
166 : struct wakeup_source __rcu *ws;
167 :
168 : /* The structure that describe the interested events and the source fd */
169 : struct epoll_event event;
170 : };
171 :
172 : /*
173 : * This structure is stored inside the "private_data" member of the file
174 : * structure and represents the main data structure for the eventpoll
175 : * interface.
176 : */
177 : struct eventpoll {
178 : /*
179 : * This mutex is used to ensure that files are not removed
180 : * while epoll is using them. This is held during the event
181 : * collection loop, the file cleanup path, the epoll file exit
182 : * code and the ctl operations.
183 : */
184 : struct mutex mtx;
185 :
186 : /* Wait queue used by sys_epoll_wait() */
187 : wait_queue_head_t wq;
188 :
189 : /* Wait queue used by file->poll() */
190 : wait_queue_head_t poll_wait;
191 :
192 : /* List of ready file descriptors */
193 : struct list_head rdllist;
194 :
195 : /* Lock which protects rdllist and ovflist */
196 : rwlock_t lock;
197 :
198 : /* RB tree root used to store monitored fd structs */
199 : struct rb_root_cached rbr;
200 :
201 : /*
202 : * This is a single linked list that chains all the "struct epitem" that
203 : * happened while transferring ready events to userspace w/out
204 : * holding ->lock.
205 : */
206 : struct epitem *ovflist;
207 :
208 : /* wakeup_source used when ep_scan_ready_list is running */
209 : struct wakeup_source *ws;
210 :
211 : /* The user that created the eventpoll descriptor */
212 : struct user_struct *user;
213 :
214 : struct file *file;
215 :
216 : /* used to optimize loop detection check */
217 : u64 gen;
218 : struct hlist_head refs;
219 :
220 : #ifdef CONFIG_NET_RX_BUSY_POLL
221 : /* used to track busy poll napi_id */
222 : unsigned int napi_id;
223 : #endif
224 :
225 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 : /* tracks wakeup nests for lockdep validation */
227 : u8 nests;
228 : #endif
229 : };
230 :
231 : /* Wrapper struct used by poll queueing */
232 : struct ep_pqueue {
233 : poll_table pt;
234 : struct epitem *epi;
235 : };
236 :
237 : /*
238 : * Configuration options available inside /proc/sys/fs/epoll/
239 : */
240 : /* Maximum number of epoll watched descriptors, per user */
241 : static long max_user_watches __read_mostly;
242 :
243 : /*
244 : * This mutex is used to serialize ep_free() and eventpoll_release_file().
245 : */
246 : static DEFINE_MUTEX(epmutex);
247 :
248 : static u64 loop_check_gen = 0;
249 :
250 : /* Used to check for epoll file descriptor inclusion loops */
251 : static struct eventpoll *inserting_into;
252 :
253 : /* Slab cache used to allocate "struct epitem" */
254 : static struct kmem_cache *epi_cache __read_mostly;
255 :
256 : /* Slab cache used to allocate "struct eppoll_entry" */
257 : static struct kmem_cache *pwq_cache __read_mostly;
258 :
259 : /*
260 : * List of files with newly added links, where we may need to limit the number
261 : * of emanating paths. Protected by the epmutex.
262 : */
263 : struct epitems_head {
264 : struct hlist_head epitems;
265 : struct epitems_head *next;
266 : };
267 : static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 :
269 : static struct kmem_cache *ephead_cache __read_mostly;
270 :
271 : static inline void free_ephead(struct epitems_head *head)
272 : {
273 0 : if (head)
274 0 : kmem_cache_free(ephead_cache, head);
275 : }
276 :
277 : static void list_file(struct file *file)
278 : {
279 : struct epitems_head *head;
280 :
281 0 : head = container_of(file->f_ep, struct epitems_head, epitems);
282 0 : if (!head->next) {
283 0 : head->next = tfile_check_list;
284 0 : tfile_check_list = head;
285 : }
286 : }
287 :
288 0 : static void unlist_file(struct epitems_head *head)
289 : {
290 0 : struct epitems_head *to_free = head;
291 0 : struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 0 : if (p) {
293 0 : struct epitem *epi= container_of(p, struct epitem, fllink);
294 0 : spin_lock(&epi->ffd.file->f_lock);
295 0 : if (!hlist_empty(&head->epitems))
296 0 : to_free = NULL;
297 0 : head->next = NULL;
298 0 : spin_unlock(&epi->ffd.file->f_lock);
299 : }
300 0 : free_ephead(to_free);
301 0 : }
302 :
303 : #ifdef CONFIG_SYSCTL
304 :
305 : #include <linux/sysctl.h>
306 :
307 : static long long_zero;
308 : static long long_max = LONG_MAX;
309 :
310 : static struct ctl_table epoll_table[] = {
311 : {
312 : .procname = "max_user_watches",
313 : .data = &max_user_watches,
314 : .maxlen = sizeof(max_user_watches),
315 : .mode = 0644,
316 : .proc_handler = proc_doulongvec_minmax,
317 : .extra1 = &long_zero,
318 : .extra2 = &long_max,
319 : },
320 : { }
321 : };
322 :
323 1 : static void __init epoll_sysctls_init(void)
324 : {
325 1 : register_sysctl("fs/epoll", epoll_table);
326 1 : }
327 : #else
328 : #define epoll_sysctls_init() do { } while (0)
329 : #endif /* CONFIG_SYSCTL */
330 :
331 : static const struct file_operations eventpoll_fops;
332 :
333 : static inline int is_file_epoll(struct file *f)
334 : {
335 0 : return f->f_op == &eventpoll_fops;
336 : }
337 :
338 : /* Setup the structure that is used as key for the RB tree */
339 : static inline void ep_set_ffd(struct epoll_filefd *ffd,
340 : struct file *file, int fd)
341 : {
342 0 : ffd->file = file;
343 0 : ffd->fd = fd;
344 : }
345 :
346 : /* Compare RB tree keys */
347 : static inline int ep_cmp_ffd(struct epoll_filefd *p1,
348 : struct epoll_filefd *p2)
349 : {
350 0 : return (p1->file > p2->file ? +1:
351 0 : (p1->file < p2->file ? -1 : p1->fd - p2->fd));
352 : }
353 :
354 : /* Tells us if the item is currently linked */
355 : static inline int ep_is_linked(struct epitem *epi)
356 : {
357 0 : return !list_empty(&epi->rdllink);
358 : }
359 :
360 : static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
361 : {
362 0 : return container_of(p, struct eppoll_entry, wait);
363 : }
364 :
365 : /* Get the "struct epitem" from a wait queue pointer */
366 : static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
367 : {
368 0 : return container_of(p, struct eppoll_entry, wait)->base;
369 : }
370 :
371 : /**
372 : * ep_events_available - Checks if ready events might be available.
373 : *
374 : * @ep: Pointer to the eventpoll context.
375 : *
376 : * Return: a value different than %zero if ready events are available,
377 : * or %zero otherwise.
378 : */
379 : static inline int ep_events_available(struct eventpoll *ep)
380 : {
381 0 : return !list_empty_careful(&ep->rdllist) ||
382 0 : READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 : }
384 :
385 : #ifdef CONFIG_NET_RX_BUSY_POLL
386 : static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 : {
388 : struct eventpoll *ep = p;
389 :
390 : return ep_events_available(ep) || busy_loop_timeout(start_time);
391 : }
392 :
393 : /*
394 : * Busy poll if globally on and supporting sockets found && no events,
395 : * busy loop will return if need_resched or ep_events_available.
396 : *
397 : * we must do our busy polling with irqs enabled
398 : */
399 : static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
400 : {
401 : unsigned int napi_id = READ_ONCE(ep->napi_id);
402 :
403 : if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
404 : napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
405 : BUSY_POLL_BUDGET);
406 : if (ep_events_available(ep))
407 : return true;
408 : /*
409 : * Busy poll timed out. Drop NAPI ID for now, we can add
410 : * it back in when we have moved a socket with a valid NAPI
411 : * ID onto the ready list.
412 : */
413 : ep->napi_id = 0;
414 : return false;
415 : }
416 : return false;
417 : }
418 :
419 : /*
420 : * Set epoll busy poll NAPI ID from sk.
421 : */
422 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
423 : {
424 : struct eventpoll *ep;
425 : unsigned int napi_id;
426 : struct socket *sock;
427 : struct sock *sk;
428 :
429 : if (!net_busy_loop_on())
430 : return;
431 :
432 : sock = sock_from_file(epi->ffd.file);
433 : if (!sock)
434 : return;
435 :
436 : sk = sock->sk;
437 : if (!sk)
438 : return;
439 :
440 : napi_id = READ_ONCE(sk->sk_napi_id);
441 : ep = epi->ep;
442 :
443 : /* Non-NAPI IDs can be rejected
444 : * or
445 : * Nothing to do if we already have this ID
446 : */
447 : if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
448 : return;
449 :
450 : /* record NAPI ID for use in next busy poll */
451 : ep->napi_id = napi_id;
452 : }
453 :
454 : #else
455 :
456 : static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
457 : {
458 : return false;
459 : }
460 :
461 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462 : {
463 : }
464 :
465 : #endif /* CONFIG_NET_RX_BUSY_POLL */
466 :
467 : /*
468 : * As described in commit 0ccf831cb lockdep: annotate epoll
469 : * the use of wait queues used by epoll is done in a very controlled
470 : * manner. Wake ups can nest inside each other, but are never done
471 : * with the same locking. For example:
472 : *
473 : * dfd = socket(...);
474 : * efd1 = epoll_create();
475 : * efd2 = epoll_create();
476 : * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
477 : * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
478 : *
479 : * When a packet arrives to the device underneath "dfd", the net code will
480 : * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
481 : * callback wakeup entry on that queue, and the wake_up() performed by the
482 : * "dfd" net code will end up in ep_poll_callback(). At this point epoll
483 : * (efd1) notices that it may have some event ready, so it needs to wake up
484 : * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
485 : * that ends up in another wake_up(), after having checked about the
486 : * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
487 : * avoid stack blasting.
488 : *
489 : * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
490 : * this special case of epoll.
491 : */
492 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
493 :
494 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
495 : unsigned pollflags)
496 : {
497 : struct eventpoll *ep_src;
498 : unsigned long flags;
499 : u8 nests = 0;
500 :
501 : /*
502 : * To set the subclass or nesting level for spin_lock_irqsave_nested()
503 : * it might be natural to create a per-cpu nest count. However, since
504 : * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
505 : * schedule() in the -rt kernel, the per-cpu variable are no longer
506 : * protected. Thus, we are introducing a per eventpoll nest field.
507 : * If we are not being call from ep_poll_callback(), epi is NULL and
508 : * we are at the first level of nesting, 0. Otherwise, we are being
509 : * called from ep_poll_callback() and if a previous wakeup source is
510 : * not an epoll file itself, we are at depth 1 since the wakeup source
511 : * is depth 0. If the wakeup source is a previous epoll file in the
512 : * wakeup chain then we use its nests value and record ours as
513 : * nests + 1. The previous epoll file nests value is stable since its
514 : * already holding its own poll_wait.lock.
515 : */
516 : if (epi) {
517 : if ((is_file_epoll(epi->ffd.file))) {
518 : ep_src = epi->ffd.file->private_data;
519 : nests = ep_src->nests;
520 : } else {
521 : nests = 1;
522 : }
523 : }
524 : spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
525 : ep->nests = nests + 1;
526 : wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
527 : ep->nests = 0;
528 : spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
529 : }
530 :
531 : #else
532 :
533 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
534 : unsigned pollflags)
535 : {
536 0 : wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
537 : }
538 :
539 : #endif
540 :
541 : static void ep_remove_wait_queue(struct eppoll_entry *pwq)
542 : {
543 : wait_queue_head_t *whead;
544 :
545 : rcu_read_lock();
546 : /*
547 : * If it is cleared by POLLFREE, it should be rcu-safe.
548 : * If we read NULL we need a barrier paired with
549 : * smp_store_release() in ep_poll_callback(), otherwise
550 : * we rely on whead->lock.
551 : */
552 0 : whead = smp_load_acquire(&pwq->whead);
553 0 : if (whead)
554 0 : remove_wait_queue(whead, &pwq->wait);
555 : rcu_read_unlock();
556 : }
557 :
558 : /*
559 : * This function unregisters poll callbacks from the associated file
560 : * descriptor. Must be called with "mtx" held (or "epmutex" if called from
561 : * ep_free).
562 : */
563 0 : static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
564 : {
565 0 : struct eppoll_entry **p = &epi->pwqlist;
566 : struct eppoll_entry *pwq;
567 :
568 0 : while ((pwq = *p) != NULL) {
569 0 : *p = pwq->next;
570 0 : ep_remove_wait_queue(pwq);
571 0 : kmem_cache_free(pwq_cache, pwq);
572 : }
573 0 : }
574 :
575 : /* call only when ep->mtx is held */
576 : static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
577 : {
578 0 : return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
579 : }
580 :
581 : /* call only when ep->mtx is held */
582 : static inline void ep_pm_stay_awake(struct epitem *epi)
583 : {
584 0 : struct wakeup_source *ws = ep_wakeup_source(epi);
585 :
586 0 : if (ws)
587 0 : __pm_stay_awake(ws);
588 : }
589 :
590 : static inline bool ep_has_wakeup_source(struct epitem *epi)
591 : {
592 0 : return rcu_access_pointer(epi->ws) ? true : false;
593 : }
594 :
595 : /* call when ep->mtx cannot be held (ep_poll_callback) */
596 : static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
597 : {
598 : struct wakeup_source *ws;
599 :
600 : rcu_read_lock();
601 0 : ws = rcu_dereference(epi->ws);
602 0 : if (ws)
603 0 : __pm_stay_awake(ws);
604 : rcu_read_unlock();
605 : }
606 :
607 :
608 : /*
609 : * ep->mutex needs to be held because we could be hit by
610 : * eventpoll_release_file() and epoll_ctl().
611 : */
612 0 : static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
613 : {
614 : /*
615 : * Steal the ready list, and re-init the original one to the
616 : * empty list. Also, set ep->ovflist to NULL so that events
617 : * happening while looping w/out locks, are not lost. We cannot
618 : * have the poll callback to queue directly on ep->rdllist,
619 : * because we want the "sproc" callback to be able to do it
620 : * in a lockless way.
621 : */
622 : lockdep_assert_irqs_enabled();
623 0 : write_lock_irq(&ep->lock);
624 0 : list_splice_init(&ep->rdllist, txlist);
625 0 : WRITE_ONCE(ep->ovflist, NULL);
626 0 : write_unlock_irq(&ep->lock);
627 0 : }
628 :
629 0 : static void ep_done_scan(struct eventpoll *ep,
630 : struct list_head *txlist)
631 : {
632 : struct epitem *epi, *nepi;
633 :
634 0 : write_lock_irq(&ep->lock);
635 : /*
636 : * During the time we spent inside the "sproc" callback, some
637 : * other events might have been queued by the poll callback.
638 : * We re-insert them inside the main ready-list here.
639 : */
640 0 : for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
641 0 : nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
642 : /*
643 : * We need to check if the item is already in the list.
644 : * During the "sproc" callback execution time, items are
645 : * queued into ->ovflist but the "txlist" might already
646 : * contain them, and the list_splice() below takes care of them.
647 : */
648 0 : if (!ep_is_linked(epi)) {
649 : /*
650 : * ->ovflist is LIFO, so we have to reverse it in order
651 : * to keep in FIFO.
652 : */
653 0 : list_add(&epi->rdllink, &ep->rdllist);
654 : ep_pm_stay_awake(epi);
655 : }
656 : }
657 : /*
658 : * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 : * releasing the lock, events will be queued in the normal way inside
660 : * ep->rdllist.
661 : */
662 0 : WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
663 :
664 : /*
665 : * Quickly re-inject items left on "txlist".
666 : */
667 0 : list_splice(txlist, &ep->rdllist);
668 0 : __pm_relax(ep->ws);
669 :
670 0 : if (!list_empty(&ep->rdllist)) {
671 0 : if (waitqueue_active(&ep->wq))
672 0 : wake_up(&ep->wq);
673 : }
674 :
675 0 : write_unlock_irq(&ep->lock);
676 0 : }
677 :
678 0 : static void epi_rcu_free(struct rcu_head *head)
679 : {
680 0 : struct epitem *epi = container_of(head, struct epitem, rcu);
681 0 : kmem_cache_free(epi_cache, epi);
682 0 : }
683 :
684 : /*
685 : * Removes a "struct epitem" from the eventpoll RB tree and deallocates
686 : * all the associated resources. Must be called with "mtx" held.
687 : */
688 0 : static int ep_remove(struct eventpoll *ep, struct epitem *epi)
689 : {
690 0 : struct file *file = epi->ffd.file;
691 : struct epitems_head *to_free;
692 : struct hlist_head *head;
693 :
694 : lockdep_assert_irqs_enabled();
695 :
696 : /*
697 : * Removes poll wait queue hooks.
698 : */
699 0 : ep_unregister_pollwait(ep, epi);
700 :
701 : /* Remove the current item from the list of epoll hooks */
702 0 : spin_lock(&file->f_lock);
703 0 : to_free = NULL;
704 0 : head = file->f_ep;
705 0 : if (head->first == &epi->fllink && !epi->fllink.next) {
706 0 : file->f_ep = NULL;
707 0 : if (!is_file_epoll(file)) {
708 : struct epitems_head *v;
709 0 : v = container_of(head, struct epitems_head, epitems);
710 0 : if (!smp_load_acquire(&v->next))
711 0 : to_free = v;
712 : }
713 : }
714 0 : hlist_del_rcu(&epi->fllink);
715 0 : spin_unlock(&file->f_lock);
716 0 : free_ephead(to_free);
717 :
718 0 : rb_erase_cached(&epi->rbn, &ep->rbr);
719 :
720 0 : write_lock_irq(&ep->lock);
721 0 : if (ep_is_linked(epi))
722 0 : list_del_init(&epi->rdllink);
723 0 : write_unlock_irq(&ep->lock);
724 :
725 0 : wakeup_source_unregister(ep_wakeup_source(epi));
726 : /*
727 : * At this point it is safe to free the eventpoll item. Use the union
728 : * field epi->rcu, since we are trying to minimize the size of
729 : * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
730 : * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
731 : * use of the rbn field.
732 : */
733 0 : call_rcu(&epi->rcu, epi_rcu_free);
734 :
735 0 : percpu_counter_dec(&ep->user->epoll_watches);
736 :
737 0 : return 0;
738 : }
739 :
740 0 : static void ep_free(struct eventpoll *ep)
741 : {
742 : struct rb_node *rbp;
743 : struct epitem *epi;
744 :
745 : /* We need to release all tasks waiting for these file */
746 0 : if (waitqueue_active(&ep->poll_wait))
747 0 : ep_poll_safewake(ep, NULL, 0);
748 :
749 : /*
750 : * We need to lock this because we could be hit by
751 : * eventpoll_release_file() while we're freeing the "struct eventpoll".
752 : * We do not need to hold "ep->mtx" here because the epoll file
753 : * is on the way to be removed and no one has references to it
754 : * anymore. The only hit might come from eventpoll_release_file() but
755 : * holding "epmutex" is sufficient here.
756 : */
757 0 : mutex_lock(&epmutex);
758 :
759 : /*
760 : * Walks through the whole tree by unregistering poll callbacks.
761 : */
762 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
763 0 : epi = rb_entry(rbp, struct epitem, rbn);
764 :
765 0 : ep_unregister_pollwait(ep, epi);
766 0 : cond_resched();
767 : }
768 :
769 : /*
770 : * Walks through the whole tree by freeing each "struct epitem". At this
771 : * point we are sure no poll callbacks will be lingering around, and also by
772 : * holding "epmutex" we can be sure that no file cleanup code will hit
773 : * us during this operation. So we can avoid the lock on "ep->lock".
774 : * We do not need to lock ep->mtx, either, we only do it to prevent
775 : * a lockdep warning.
776 : */
777 0 : mutex_lock(&ep->mtx);
778 0 : while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
779 0 : epi = rb_entry(rbp, struct epitem, rbn);
780 0 : ep_remove(ep, epi);
781 0 : cond_resched();
782 : }
783 0 : mutex_unlock(&ep->mtx);
784 :
785 0 : mutex_unlock(&epmutex);
786 0 : mutex_destroy(&ep->mtx);
787 0 : free_uid(ep->user);
788 0 : wakeup_source_unregister(ep->ws);
789 0 : kfree(ep);
790 0 : }
791 :
792 0 : static int ep_eventpoll_release(struct inode *inode, struct file *file)
793 : {
794 0 : struct eventpoll *ep = file->private_data;
795 :
796 0 : if (ep)
797 0 : ep_free(ep);
798 :
799 0 : return 0;
800 : }
801 :
802 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
803 :
804 0 : static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
805 : {
806 0 : struct eventpoll *ep = file->private_data;
807 0 : LIST_HEAD(txlist);
808 : struct epitem *epi, *tmp;
809 : poll_table pt;
810 0 : __poll_t res = 0;
811 :
812 0 : init_poll_funcptr(&pt, NULL);
813 :
814 : /* Insert inside our poll wait queue */
815 0 : poll_wait(file, &ep->poll_wait, wait);
816 :
817 : /*
818 : * Proceed to find out if wanted events are really available inside
819 : * the ready list.
820 : */
821 0 : mutex_lock_nested(&ep->mtx, depth);
822 0 : ep_start_scan(ep, &txlist);
823 0 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
824 0 : if (ep_item_poll(epi, &pt, depth + 1)) {
825 : res = EPOLLIN | EPOLLRDNORM;
826 : break;
827 : } else {
828 : /*
829 : * Item has been dropped into the ready list by the poll
830 : * callback, but it's not actually ready, as far as
831 : * caller requested events goes. We can remove it here.
832 : */
833 0 : __pm_relax(ep_wakeup_source(epi));
834 0 : list_del_init(&epi->rdllink);
835 : }
836 : }
837 0 : ep_done_scan(ep, &txlist);
838 0 : mutex_unlock(&ep->mtx);
839 0 : return res;
840 : }
841 :
842 : /*
843 : * Differs from ep_eventpoll_poll() in that internal callers already have
844 : * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
845 : * is correctly annotated.
846 : */
847 0 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
848 : int depth)
849 : {
850 0 : struct file *file = epi->ffd.file;
851 : __poll_t res;
852 :
853 0 : pt->_key = epi->event.events;
854 0 : if (!is_file_epoll(file))
855 : res = vfs_poll(file, pt);
856 : else
857 0 : res = __ep_eventpoll_poll(file, pt, depth);
858 0 : return res & epi->event.events;
859 : }
860 :
861 0 : static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
862 : {
863 0 : return __ep_eventpoll_poll(file, wait, 0);
864 : }
865 :
866 : #ifdef CONFIG_PROC_FS
867 0 : static void ep_show_fdinfo(struct seq_file *m, struct file *f)
868 : {
869 0 : struct eventpoll *ep = f->private_data;
870 : struct rb_node *rbp;
871 :
872 0 : mutex_lock(&ep->mtx);
873 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
874 0 : struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
875 0 : struct inode *inode = file_inode(epi->ffd.file);
876 :
877 0 : seq_printf(m, "tfd: %8d events: %8x data: %16llx "
878 : " pos:%lli ino:%lx sdev:%x\n",
879 : epi->ffd.fd, epi->event.events,
880 0 : (long long)epi->event.data,
881 0 : (long long)epi->ffd.file->f_pos,
882 0 : inode->i_ino, inode->i_sb->s_dev);
883 0 : if (seq_has_overflowed(m))
884 : break;
885 : }
886 0 : mutex_unlock(&ep->mtx);
887 0 : }
888 : #endif
889 :
890 : /* File callbacks that implement the eventpoll file behaviour */
891 : static const struct file_operations eventpoll_fops = {
892 : #ifdef CONFIG_PROC_FS
893 : .show_fdinfo = ep_show_fdinfo,
894 : #endif
895 : .release = ep_eventpoll_release,
896 : .poll = ep_eventpoll_poll,
897 : .llseek = noop_llseek,
898 : };
899 :
900 : /*
901 : * This is called from eventpoll_release() to unlink files from the eventpoll
902 : * interface. We need to have this facility to cleanup correctly files that are
903 : * closed without being removed from the eventpoll interface.
904 : */
905 0 : void eventpoll_release_file(struct file *file)
906 : {
907 : struct eventpoll *ep;
908 : struct epitem *epi;
909 : struct hlist_node *next;
910 :
911 : /*
912 : * We don't want to get "file->f_lock" because it is not
913 : * necessary. It is not necessary because we're in the "struct file"
914 : * cleanup path, and this means that no one is using this file anymore.
915 : * So, for example, epoll_ctl() cannot hit here since if we reach this
916 : * point, the file counter already went to zero and fget() would fail.
917 : * The only hit might come from ep_free() but by holding the mutex
918 : * will correctly serialize the operation. We do need to acquire
919 : * "ep->mtx" after "epmutex" because ep_remove() requires it when called
920 : * from anywhere but ep_free().
921 : *
922 : * Besides, ep_remove() acquires the lock, so we can't hold it here.
923 : */
924 0 : mutex_lock(&epmutex);
925 0 : if (unlikely(!file->f_ep)) {
926 0 : mutex_unlock(&epmutex);
927 0 : return;
928 : }
929 0 : hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
930 0 : ep = epi->ep;
931 0 : mutex_lock_nested(&ep->mtx, 0);
932 0 : ep_remove(ep, epi);
933 0 : mutex_unlock(&ep->mtx);
934 : }
935 0 : mutex_unlock(&epmutex);
936 : }
937 :
938 0 : static int ep_alloc(struct eventpoll **pep)
939 : {
940 : int error;
941 : struct user_struct *user;
942 : struct eventpoll *ep;
943 :
944 0 : user = get_current_user();
945 0 : error = -ENOMEM;
946 0 : ep = kzalloc(sizeof(*ep), GFP_KERNEL);
947 0 : if (unlikely(!ep))
948 : goto free_uid;
949 :
950 0 : mutex_init(&ep->mtx);
951 : rwlock_init(&ep->lock);
952 0 : init_waitqueue_head(&ep->wq);
953 0 : init_waitqueue_head(&ep->poll_wait);
954 0 : INIT_LIST_HEAD(&ep->rdllist);
955 0 : ep->rbr = RB_ROOT_CACHED;
956 0 : ep->ovflist = EP_UNACTIVE_PTR;
957 0 : ep->user = user;
958 :
959 0 : *pep = ep;
960 :
961 0 : return 0;
962 :
963 : free_uid:
964 0 : free_uid(user);
965 0 : return error;
966 : }
967 :
968 : /*
969 : * Search the file inside the eventpoll tree. The RB tree operations
970 : * are protected by the "mtx" mutex, and ep_find() must be called with
971 : * "mtx" held.
972 : */
973 : static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
974 : {
975 : int kcmp;
976 : struct rb_node *rbp;
977 0 : struct epitem *epi, *epir = NULL;
978 : struct epoll_filefd ffd;
979 :
980 0 : ep_set_ffd(&ffd, file, fd);
981 0 : for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
982 0 : epi = rb_entry(rbp, struct epitem, rbn);
983 0 : kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
984 0 : if (kcmp > 0)
985 0 : rbp = rbp->rb_right;
986 0 : else if (kcmp < 0)
987 0 : rbp = rbp->rb_left;
988 : else {
989 : epir = epi;
990 : break;
991 : }
992 : }
993 :
994 : return epir;
995 : }
996 :
997 : #ifdef CONFIG_KCMP
998 0 : static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
999 : {
1000 : struct rb_node *rbp;
1001 : struct epitem *epi;
1002 :
1003 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1004 0 : epi = rb_entry(rbp, struct epitem, rbn);
1005 0 : if (epi->ffd.fd == tfd) {
1006 0 : if (toff == 0)
1007 : return epi;
1008 : else
1009 0 : toff--;
1010 : }
1011 0 : cond_resched();
1012 : }
1013 :
1014 : return NULL;
1015 : }
1016 :
1017 0 : struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1018 : unsigned long toff)
1019 : {
1020 : struct file *file_raw;
1021 : struct eventpoll *ep;
1022 : struct epitem *epi;
1023 :
1024 0 : if (!is_file_epoll(file))
1025 : return ERR_PTR(-EINVAL);
1026 :
1027 0 : ep = file->private_data;
1028 :
1029 0 : mutex_lock(&ep->mtx);
1030 0 : epi = ep_find_tfd(ep, tfd, toff);
1031 0 : if (epi)
1032 0 : file_raw = epi->ffd.file;
1033 : else
1034 : file_raw = ERR_PTR(-ENOENT);
1035 0 : mutex_unlock(&ep->mtx);
1036 :
1037 0 : return file_raw;
1038 : }
1039 : #endif /* CONFIG_KCMP */
1040 :
1041 : /*
1042 : * Adds a new entry to the tail of the list in a lockless way, i.e.
1043 : * multiple CPUs are allowed to call this function concurrently.
1044 : *
1045 : * Beware: it is necessary to prevent any other modifications of the
1046 : * existing list until all changes are completed, in other words
1047 : * concurrent list_add_tail_lockless() calls should be protected
1048 : * with a read lock, where write lock acts as a barrier which
1049 : * makes sure all list_add_tail_lockless() calls are fully
1050 : * completed.
1051 : *
1052 : * Also an element can be locklessly added to the list only in one
1053 : * direction i.e. either to the tail or to the head, otherwise
1054 : * concurrent access will corrupt the list.
1055 : *
1056 : * Return: %false if element has been already added to the list, %true
1057 : * otherwise.
1058 : */
1059 : static inline bool list_add_tail_lockless(struct list_head *new,
1060 : struct list_head *head)
1061 : {
1062 : struct list_head *prev;
1063 :
1064 : /*
1065 : * This is simple 'new->next = head' operation, but cmpxchg()
1066 : * is used in order to detect that same element has been just
1067 : * added to the list from another CPU: the winner observes
1068 : * new->next == new.
1069 : */
1070 0 : if (!try_cmpxchg(&new->next, &new, head))
1071 : return false;
1072 :
1073 : /*
1074 : * Initially ->next of a new element must be updated with the head
1075 : * (we are inserting to the tail) and only then pointers are atomically
1076 : * exchanged. XCHG guarantees memory ordering, thus ->next should be
1077 : * updated before pointers are actually swapped and pointers are
1078 : * swapped before prev->next is updated.
1079 : */
1080 :
1081 0 : prev = xchg(&head->prev, new);
1082 :
1083 : /*
1084 : * It is safe to modify prev->next and new->prev, because a new element
1085 : * is added only to the tail and new->next is updated before XCHG.
1086 : */
1087 :
1088 0 : prev->next = new;
1089 0 : new->prev = prev;
1090 :
1091 : return true;
1092 : }
1093 :
1094 : /*
1095 : * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1096 : * i.e. multiple CPUs are allowed to call this function concurrently.
1097 : *
1098 : * Return: %false if epi element has been already chained, %true otherwise.
1099 : */
1100 : static inline bool chain_epi_lockless(struct epitem *epi)
1101 : {
1102 0 : struct eventpoll *ep = epi->ep;
1103 :
1104 : /* Fast preliminary check */
1105 0 : if (epi->next != EP_UNACTIVE_PTR)
1106 : return false;
1107 :
1108 : /* Check that the same epi has not been just chained from another CPU */
1109 0 : if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1110 : return false;
1111 :
1112 : /* Atomically exchange tail */
1113 0 : epi->next = xchg(&ep->ovflist, epi);
1114 :
1115 : return true;
1116 : }
1117 :
1118 : /*
1119 : * This is the callback that is passed to the wait queue wakeup
1120 : * mechanism. It is called by the stored file descriptors when they
1121 : * have events to report.
1122 : *
1123 : * This callback takes a read lock in order not to contend with concurrent
1124 : * events from another file descriptor, thus all modifications to ->rdllist
1125 : * or ->ovflist are lockless. Read lock is paired with the write lock from
1126 : * ep_scan_ready_list(), which stops all list modifications and guarantees
1127 : * that lists state is seen correctly.
1128 : *
1129 : * Another thing worth to mention is that ep_poll_callback() can be called
1130 : * concurrently for the same @epi from different CPUs if poll table was inited
1131 : * with several wait queues entries. Plural wakeup from different CPUs of a
1132 : * single wait queue is serialized by wq.lock, but the case when multiple wait
1133 : * queues are used should be detected accordingly. This is detected using
1134 : * cmpxchg() operation.
1135 : */
1136 0 : static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1137 : {
1138 0 : int pwake = 0;
1139 0 : struct epitem *epi = ep_item_from_wait(wait);
1140 0 : struct eventpoll *ep = epi->ep;
1141 0 : __poll_t pollflags = key_to_poll(key);
1142 : unsigned long flags;
1143 0 : int ewake = 0;
1144 :
1145 0 : read_lock_irqsave(&ep->lock, flags);
1146 :
1147 : ep_set_busy_poll_napi_id(epi);
1148 :
1149 : /*
1150 : * If the event mask does not contain any poll(2) event, we consider the
1151 : * descriptor to be disabled. This condition is likely the effect of the
1152 : * EPOLLONESHOT bit that disables the descriptor when an event is received,
1153 : * until the next EPOLL_CTL_MOD will be issued.
1154 : */
1155 0 : if (!(epi->event.events & ~EP_PRIVATE_BITS))
1156 : goto out_unlock;
1157 :
1158 : /*
1159 : * Check the events coming with the callback. At this stage, not
1160 : * every device reports the events in the "key" parameter of the
1161 : * callback. We need to be able to handle both cases here, hence the
1162 : * test for "key" != NULL before the event match test.
1163 : */
1164 0 : if (pollflags && !(pollflags & epi->event.events))
1165 : goto out_unlock;
1166 :
1167 : /*
1168 : * If we are transferring events to userspace, we can hold no locks
1169 : * (because we're accessing user memory, and because of linux f_op->poll()
1170 : * semantics). All the events that happen during that period of time are
1171 : * chained in ep->ovflist and requeued later on.
1172 : */
1173 0 : if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1174 0 : if (chain_epi_lockless(epi))
1175 : ep_pm_stay_awake_rcu(epi);
1176 0 : } else if (!ep_is_linked(epi)) {
1177 : /* In the usual case, add event to ready list. */
1178 0 : if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1179 : ep_pm_stay_awake_rcu(epi);
1180 : }
1181 :
1182 : /*
1183 : * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1184 : * wait list.
1185 : */
1186 0 : if (waitqueue_active(&ep->wq)) {
1187 0 : if ((epi->event.events & EPOLLEXCLUSIVE) &&
1188 0 : !(pollflags & POLLFREE)) {
1189 0 : switch (pollflags & EPOLLINOUT_BITS) {
1190 : case EPOLLIN:
1191 0 : if (epi->event.events & EPOLLIN)
1192 0 : ewake = 1;
1193 : break;
1194 : case EPOLLOUT:
1195 0 : if (epi->event.events & EPOLLOUT)
1196 0 : ewake = 1;
1197 : break;
1198 : case 0:
1199 0 : ewake = 1;
1200 0 : break;
1201 : }
1202 : }
1203 0 : wake_up(&ep->wq);
1204 : }
1205 0 : if (waitqueue_active(&ep->poll_wait))
1206 0 : pwake++;
1207 :
1208 : out_unlock:
1209 0 : read_unlock_irqrestore(&ep->lock, flags);
1210 :
1211 : /* We have to call this outside the lock */
1212 0 : if (pwake)
1213 0 : ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1214 :
1215 0 : if (!(epi->event.events & EPOLLEXCLUSIVE))
1216 0 : ewake = 1;
1217 :
1218 0 : if (pollflags & POLLFREE) {
1219 : /*
1220 : * If we race with ep_remove_wait_queue() it can miss
1221 : * ->whead = NULL and do another remove_wait_queue() after
1222 : * us, so we can't use __remove_wait_queue().
1223 : */
1224 0 : list_del_init(&wait->entry);
1225 : /*
1226 : * ->whead != NULL protects us from the race with ep_free()
1227 : * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1228 : * held by the caller. Once we nullify it, nothing protects
1229 : * ep/epi or even wait.
1230 : */
1231 0 : smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1232 : }
1233 :
1234 0 : return ewake;
1235 : }
1236 :
1237 : /*
1238 : * This is the callback that is used to add our wait queue to the
1239 : * target file wakeup lists.
1240 : */
1241 0 : static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1242 : poll_table *pt)
1243 : {
1244 0 : struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1245 0 : struct epitem *epi = epq->epi;
1246 : struct eppoll_entry *pwq;
1247 :
1248 0 : if (unlikely(!epi)) // an earlier allocation has failed
1249 : return;
1250 :
1251 0 : pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1252 0 : if (unlikely(!pwq)) {
1253 0 : epq->epi = NULL;
1254 0 : return;
1255 : }
1256 :
1257 0 : init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1258 0 : pwq->whead = whead;
1259 0 : pwq->base = epi;
1260 0 : if (epi->event.events & EPOLLEXCLUSIVE)
1261 0 : add_wait_queue_exclusive(whead, &pwq->wait);
1262 : else
1263 0 : add_wait_queue(whead, &pwq->wait);
1264 0 : pwq->next = epi->pwqlist;
1265 0 : epi->pwqlist = pwq;
1266 : }
1267 :
1268 0 : static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1269 : {
1270 : int kcmp;
1271 0 : struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1272 : struct epitem *epic;
1273 0 : bool leftmost = true;
1274 :
1275 0 : while (*p) {
1276 0 : parent = *p;
1277 0 : epic = rb_entry(parent, struct epitem, rbn);
1278 0 : kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1279 0 : if (kcmp > 0) {
1280 0 : p = &parent->rb_right;
1281 0 : leftmost = false;
1282 : } else
1283 0 : p = &parent->rb_left;
1284 : }
1285 0 : rb_link_node(&epi->rbn, parent, p);
1286 0 : rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1287 0 : }
1288 :
1289 :
1290 :
1291 : #define PATH_ARR_SIZE 5
1292 : /*
1293 : * These are the number paths of length 1 to 5, that we are allowing to emanate
1294 : * from a single file of interest. For example, we allow 1000 paths of length
1295 : * 1, to emanate from each file of interest. This essentially represents the
1296 : * potential wakeup paths, which need to be limited in order to avoid massive
1297 : * uncontrolled wakeup storms. The common use case should be a single ep which
1298 : * is connected to n file sources. In this case each file source has 1 path
1299 : * of length 1. Thus, the numbers below should be more than sufficient. These
1300 : * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1301 : * and delete can't add additional paths. Protected by the epmutex.
1302 : */
1303 : static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1304 : static int path_count[PATH_ARR_SIZE];
1305 :
1306 : static int path_count_inc(int nests)
1307 : {
1308 : /* Allow an arbitrary number of depth 1 paths */
1309 0 : if (nests == 0)
1310 : return 0;
1311 :
1312 0 : if (++path_count[nests] > path_limits[nests])
1313 : return -1;
1314 : return 0;
1315 : }
1316 :
1317 : static void path_count_init(void)
1318 : {
1319 : int i;
1320 :
1321 0 : for (i = 0; i < PATH_ARR_SIZE; i++)
1322 0 : path_count[i] = 0;
1323 : }
1324 :
1325 0 : static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1326 : {
1327 0 : int error = 0;
1328 : struct epitem *epi;
1329 :
1330 0 : if (depth > EP_MAX_NESTS) /* too deep nesting */
1331 : return -1;
1332 :
1333 : /* CTL_DEL can remove links here, but that can't increase our count */
1334 0 : hlist_for_each_entry_rcu(epi, refs, fllink) {
1335 0 : struct hlist_head *refs = &epi->ep->refs;
1336 0 : if (hlist_empty(refs))
1337 : error = path_count_inc(depth);
1338 : else
1339 0 : error = reverse_path_check_proc(refs, depth + 1);
1340 0 : if (error != 0)
1341 : break;
1342 : }
1343 : return error;
1344 : }
1345 :
1346 : /**
1347 : * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1348 : * links that are proposed to be newly added. We need to
1349 : * make sure that those added links don't add too many
1350 : * paths such that we will spend all our time waking up
1351 : * eventpoll objects.
1352 : *
1353 : * Return: %zero if the proposed links don't create too many paths,
1354 : * %-1 otherwise.
1355 : */
1356 0 : static int reverse_path_check(void)
1357 : {
1358 : struct epitems_head *p;
1359 :
1360 0 : for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1361 : int error;
1362 0 : path_count_init();
1363 : rcu_read_lock();
1364 0 : error = reverse_path_check_proc(&p->epitems, 0);
1365 : rcu_read_unlock();
1366 0 : if (error)
1367 : return error;
1368 : }
1369 : return 0;
1370 : }
1371 :
1372 0 : static int ep_create_wakeup_source(struct epitem *epi)
1373 : {
1374 : struct name_snapshot n;
1375 : struct wakeup_source *ws;
1376 :
1377 0 : if (!epi->ep->ws) {
1378 0 : epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1379 0 : if (!epi->ep->ws)
1380 : return -ENOMEM;
1381 : }
1382 :
1383 0 : take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1384 0 : ws = wakeup_source_register(NULL, n.name.name);
1385 0 : release_dentry_name_snapshot(&n);
1386 :
1387 0 : if (!ws)
1388 : return -ENOMEM;
1389 0 : rcu_assign_pointer(epi->ws, ws);
1390 :
1391 0 : return 0;
1392 : }
1393 :
1394 : /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1395 0 : static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1396 : {
1397 0 : struct wakeup_source *ws = ep_wakeup_source(epi);
1398 :
1399 0 : RCU_INIT_POINTER(epi->ws, NULL);
1400 :
1401 : /*
1402 : * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1403 : * used internally by wakeup_source_remove, too (called by
1404 : * wakeup_source_unregister), so we cannot use call_rcu
1405 : */
1406 0 : synchronize_rcu();
1407 0 : wakeup_source_unregister(ws);
1408 0 : }
1409 :
1410 0 : static int attach_epitem(struct file *file, struct epitem *epi)
1411 : {
1412 0 : struct epitems_head *to_free = NULL;
1413 0 : struct hlist_head *head = NULL;
1414 0 : struct eventpoll *ep = NULL;
1415 :
1416 0 : if (is_file_epoll(file))
1417 0 : ep = file->private_data;
1418 :
1419 0 : if (ep) {
1420 0 : head = &ep->refs;
1421 0 : } else if (!READ_ONCE(file->f_ep)) {
1422 : allocate:
1423 0 : to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1424 0 : if (!to_free)
1425 : return -ENOMEM;
1426 0 : head = &to_free->epitems;
1427 : }
1428 0 : spin_lock(&file->f_lock);
1429 0 : if (!file->f_ep) {
1430 0 : if (unlikely(!head)) {
1431 0 : spin_unlock(&file->f_lock);
1432 : goto allocate;
1433 : }
1434 0 : file->f_ep = head;
1435 0 : to_free = NULL;
1436 : }
1437 0 : hlist_add_head_rcu(&epi->fllink, file->f_ep);
1438 0 : spin_unlock(&file->f_lock);
1439 : free_ephead(to_free);
1440 : return 0;
1441 : }
1442 :
1443 : /*
1444 : * Must be called with "mtx" held.
1445 : */
1446 0 : static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1447 : struct file *tfile, int fd, int full_check)
1448 : {
1449 0 : int error, pwake = 0;
1450 : __poll_t revents;
1451 : struct epitem *epi;
1452 : struct ep_pqueue epq;
1453 0 : struct eventpoll *tep = NULL;
1454 :
1455 0 : if (is_file_epoll(tfile))
1456 0 : tep = tfile->private_data;
1457 :
1458 : lockdep_assert_irqs_enabled();
1459 :
1460 0 : if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1461 : max_user_watches) >= 0))
1462 : return -ENOSPC;
1463 0 : percpu_counter_inc(&ep->user->epoll_watches);
1464 :
1465 0 : if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1466 0 : percpu_counter_dec(&ep->user->epoll_watches);
1467 0 : return -ENOMEM;
1468 : }
1469 :
1470 : /* Item initialization follow here ... */
1471 0 : INIT_LIST_HEAD(&epi->rdllink);
1472 0 : epi->ep = ep;
1473 0 : ep_set_ffd(&epi->ffd, tfile, fd);
1474 0 : epi->event = *event;
1475 0 : epi->next = EP_UNACTIVE_PTR;
1476 :
1477 0 : if (tep)
1478 0 : mutex_lock_nested(&tep->mtx, 1);
1479 : /* Add the current item to the list of active epoll hook for this file */
1480 0 : if (unlikely(attach_epitem(tfile, epi) < 0)) {
1481 0 : if (tep)
1482 0 : mutex_unlock(&tep->mtx);
1483 0 : kmem_cache_free(epi_cache, epi);
1484 0 : percpu_counter_dec(&ep->user->epoll_watches);
1485 0 : return -ENOMEM;
1486 : }
1487 :
1488 0 : if (full_check && !tep)
1489 0 : list_file(tfile);
1490 :
1491 : /*
1492 : * Add the current item to the RB tree. All RB tree operations are
1493 : * protected by "mtx", and ep_insert() is called with "mtx" held.
1494 : */
1495 0 : ep_rbtree_insert(ep, epi);
1496 0 : if (tep)
1497 0 : mutex_unlock(&tep->mtx);
1498 :
1499 : /* now check if we've created too many backpaths */
1500 0 : if (unlikely(full_check && reverse_path_check())) {
1501 0 : ep_remove(ep, epi);
1502 0 : return -EINVAL;
1503 : }
1504 :
1505 0 : if (epi->event.events & EPOLLWAKEUP) {
1506 0 : error = ep_create_wakeup_source(epi);
1507 0 : if (error) {
1508 0 : ep_remove(ep, epi);
1509 0 : return error;
1510 : }
1511 : }
1512 :
1513 : /* Initialize the poll table using the queue callback */
1514 0 : epq.epi = epi;
1515 0 : init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1516 :
1517 : /*
1518 : * Attach the item to the poll hooks and get current event bits.
1519 : * We can safely use the file* here because its usage count has
1520 : * been increased by the caller of this function. Note that after
1521 : * this operation completes, the poll callback can start hitting
1522 : * the new item.
1523 : */
1524 0 : revents = ep_item_poll(epi, &epq.pt, 1);
1525 :
1526 : /*
1527 : * We have to check if something went wrong during the poll wait queue
1528 : * install process. Namely an allocation for a wait queue failed due
1529 : * high memory pressure.
1530 : */
1531 0 : if (unlikely(!epq.epi)) {
1532 0 : ep_remove(ep, epi);
1533 0 : return -ENOMEM;
1534 : }
1535 :
1536 : /* We have to drop the new item inside our item list to keep track of it */
1537 0 : write_lock_irq(&ep->lock);
1538 :
1539 : /* record NAPI ID of new item if present */
1540 : ep_set_busy_poll_napi_id(epi);
1541 :
1542 : /* If the file is already "ready" we drop it inside the ready list */
1543 0 : if (revents && !ep_is_linked(epi)) {
1544 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1545 0 : ep_pm_stay_awake(epi);
1546 :
1547 : /* Notify waiting tasks that events are available */
1548 0 : if (waitqueue_active(&ep->wq))
1549 0 : wake_up(&ep->wq);
1550 0 : if (waitqueue_active(&ep->poll_wait))
1551 0 : pwake++;
1552 : }
1553 :
1554 0 : write_unlock_irq(&ep->lock);
1555 :
1556 : /* We have to call this outside the lock */
1557 0 : if (pwake)
1558 0 : ep_poll_safewake(ep, NULL, 0);
1559 :
1560 : return 0;
1561 : }
1562 :
1563 : /*
1564 : * Modify the interest event mask by dropping an event if the new mask
1565 : * has a match in the current file status. Must be called with "mtx" held.
1566 : */
1567 0 : static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1568 : const struct epoll_event *event)
1569 : {
1570 0 : int pwake = 0;
1571 : poll_table pt;
1572 :
1573 : lockdep_assert_irqs_enabled();
1574 :
1575 0 : init_poll_funcptr(&pt, NULL);
1576 :
1577 : /*
1578 : * Set the new event interest mask before calling f_op->poll();
1579 : * otherwise we might miss an event that happens between the
1580 : * f_op->poll() call and the new event set registering.
1581 : */
1582 0 : epi->event.events = event->events; /* need barrier below */
1583 0 : epi->event.data = event->data; /* protected by mtx */
1584 0 : if (epi->event.events & EPOLLWAKEUP) {
1585 0 : if (!ep_has_wakeup_source(epi))
1586 0 : ep_create_wakeup_source(epi);
1587 0 : } else if (ep_has_wakeup_source(epi)) {
1588 0 : ep_destroy_wakeup_source(epi);
1589 : }
1590 :
1591 : /*
1592 : * The following barrier has two effects:
1593 : *
1594 : * 1) Flush epi changes above to other CPUs. This ensures
1595 : * we do not miss events from ep_poll_callback if an
1596 : * event occurs immediately after we call f_op->poll().
1597 : * We need this because we did not take ep->lock while
1598 : * changing epi above (but ep_poll_callback does take
1599 : * ep->lock).
1600 : *
1601 : * 2) We also need to ensure we do not miss _past_ events
1602 : * when calling f_op->poll(). This barrier also
1603 : * pairs with the barrier in wq_has_sleeper (see
1604 : * comments for wq_has_sleeper).
1605 : *
1606 : * This barrier will now guarantee ep_poll_callback or f_op->poll
1607 : * (or both) will notice the readiness of an item.
1608 : */
1609 0 : smp_mb();
1610 :
1611 : /*
1612 : * Get current event bits. We can safely use the file* here because
1613 : * its usage count has been increased by the caller of this function.
1614 : * If the item is "hot" and it is not registered inside the ready
1615 : * list, push it inside.
1616 : */
1617 0 : if (ep_item_poll(epi, &pt, 1)) {
1618 0 : write_lock_irq(&ep->lock);
1619 0 : if (!ep_is_linked(epi)) {
1620 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1621 0 : ep_pm_stay_awake(epi);
1622 :
1623 : /* Notify waiting tasks that events are available */
1624 0 : if (waitqueue_active(&ep->wq))
1625 0 : wake_up(&ep->wq);
1626 0 : if (waitqueue_active(&ep->poll_wait))
1627 0 : pwake++;
1628 : }
1629 0 : write_unlock_irq(&ep->lock);
1630 : }
1631 :
1632 : /* We have to call this outside the lock */
1633 0 : if (pwake)
1634 0 : ep_poll_safewake(ep, NULL, 0);
1635 :
1636 0 : return 0;
1637 : }
1638 :
1639 0 : static int ep_send_events(struct eventpoll *ep,
1640 : struct epoll_event __user *events, int maxevents)
1641 : {
1642 : struct epitem *epi, *tmp;
1643 0 : LIST_HEAD(txlist);
1644 : poll_table pt;
1645 0 : int res = 0;
1646 :
1647 : /*
1648 : * Always short-circuit for fatal signals to allow threads to make a
1649 : * timely exit without the chance of finding more events available and
1650 : * fetching repeatedly.
1651 : */
1652 0 : if (fatal_signal_pending(current))
1653 : return -EINTR;
1654 :
1655 0 : init_poll_funcptr(&pt, NULL);
1656 :
1657 0 : mutex_lock(&ep->mtx);
1658 0 : ep_start_scan(ep, &txlist);
1659 :
1660 : /*
1661 : * We can loop without lock because we are passed a task private list.
1662 : * Items cannot vanish during the loop we are holding ep->mtx.
1663 : */
1664 0 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1665 : struct wakeup_source *ws;
1666 : __poll_t revents;
1667 :
1668 0 : if (res >= maxevents)
1669 : break;
1670 :
1671 : /*
1672 : * Activate ep->ws before deactivating epi->ws to prevent
1673 : * triggering auto-suspend here (in case we reactive epi->ws
1674 : * below).
1675 : *
1676 : * This could be rearranged to delay the deactivation of epi->ws
1677 : * instead, but then epi->ws would temporarily be out of sync
1678 : * with ep_is_linked().
1679 : */
1680 0 : ws = ep_wakeup_source(epi);
1681 0 : if (ws) {
1682 0 : if (ws->active)
1683 0 : __pm_stay_awake(ep->ws);
1684 0 : __pm_relax(ws);
1685 : }
1686 :
1687 0 : list_del_init(&epi->rdllink);
1688 :
1689 : /*
1690 : * If the event mask intersect the caller-requested one,
1691 : * deliver the event to userspace. Again, we are holding ep->mtx,
1692 : * so no operations coming from userspace can change the item.
1693 : */
1694 0 : revents = ep_item_poll(epi, &pt, 1);
1695 0 : if (!revents)
1696 0 : continue;
1697 :
1698 0 : events = epoll_put_uevent(revents, epi->event.data, events);
1699 0 : if (!events) {
1700 0 : list_add(&epi->rdllink, &txlist);
1701 0 : ep_pm_stay_awake(epi);
1702 0 : if (!res)
1703 0 : res = -EFAULT;
1704 : break;
1705 : }
1706 0 : res++;
1707 0 : if (epi->event.events & EPOLLONESHOT)
1708 0 : epi->event.events &= EP_PRIVATE_BITS;
1709 0 : else if (!(epi->event.events & EPOLLET)) {
1710 : /*
1711 : * If this file has been added with Level
1712 : * Trigger mode, we need to insert back inside
1713 : * the ready list, so that the next call to
1714 : * epoll_wait() will check again the events
1715 : * availability. At this point, no one can insert
1716 : * into ep->rdllist besides us. The epoll_ctl()
1717 : * callers are locked out by
1718 : * ep_scan_ready_list() holding "mtx" and the
1719 : * poll callback will queue them in ep->ovflist.
1720 : */
1721 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1722 : ep_pm_stay_awake(epi);
1723 : }
1724 : }
1725 0 : ep_done_scan(ep, &txlist);
1726 0 : mutex_unlock(&ep->mtx);
1727 :
1728 0 : return res;
1729 : }
1730 :
1731 0 : static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1732 : {
1733 : struct timespec64 now;
1734 :
1735 0 : if (ms < 0)
1736 : return NULL;
1737 :
1738 0 : if (!ms) {
1739 0 : to->tv_sec = 0;
1740 0 : to->tv_nsec = 0;
1741 0 : return to;
1742 : }
1743 :
1744 0 : to->tv_sec = ms / MSEC_PER_SEC;
1745 0 : to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1746 :
1747 0 : ktime_get_ts64(&now);
1748 0 : *to = timespec64_add_safe(now, *to);
1749 0 : return to;
1750 : }
1751 :
1752 : /*
1753 : * autoremove_wake_function, but remove even on failure to wake up, because we
1754 : * know that default_wake_function/ttwu will only fail if the thread is already
1755 : * woken, and in that case the ep_poll loop will remove the entry anyways, not
1756 : * try to reuse it.
1757 : */
1758 0 : static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1759 : unsigned int mode, int sync, void *key)
1760 : {
1761 0 : int ret = default_wake_function(wq_entry, mode, sync, key);
1762 :
1763 0 : list_del_init(&wq_entry->entry);
1764 0 : return ret;
1765 : }
1766 :
1767 : /**
1768 : * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1769 : * event buffer.
1770 : *
1771 : * @ep: Pointer to the eventpoll context.
1772 : * @events: Pointer to the userspace buffer where the ready events should be
1773 : * stored.
1774 : * @maxevents: Size (in terms of number of events) of the caller event buffer.
1775 : * @timeout: Maximum timeout for the ready events fetch operation, in
1776 : * timespec. If the timeout is zero, the function will not block,
1777 : * while if the @timeout ptr is NULL, the function will block
1778 : * until at least one event has been retrieved (or an error
1779 : * occurred).
1780 : *
1781 : * Return: the number of ready events which have been fetched, or an
1782 : * error code, in case of error.
1783 : */
1784 0 : static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1785 : int maxevents, struct timespec64 *timeout)
1786 : {
1787 0 : int res, eavail, timed_out = 0;
1788 0 : u64 slack = 0;
1789 : wait_queue_entry_t wait;
1790 0 : ktime_t expires, *to = NULL;
1791 :
1792 : lockdep_assert_irqs_enabled();
1793 :
1794 0 : if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1795 0 : slack = select_estimate_accuracy(timeout);
1796 0 : to = &expires;
1797 0 : *to = timespec64_to_ktime(*timeout);
1798 0 : } else if (timeout) {
1799 : /*
1800 : * Avoid the unnecessary trip to the wait queue loop, if the
1801 : * caller specified a non blocking operation.
1802 : */
1803 0 : timed_out = 1;
1804 : }
1805 :
1806 : /*
1807 : * This call is racy: We may or may not see events that are being added
1808 : * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1809 : * with a non-zero timeout, this thread will check the ready list under
1810 : * lock and will add to the wait queue. For cases with a zero
1811 : * timeout, the user by definition should not care and will have to
1812 : * recheck again.
1813 : */
1814 : eavail = ep_events_available(ep);
1815 :
1816 : while (1) {
1817 0 : if (eavail) {
1818 : /*
1819 : * Try to transfer events to user space. In case we get
1820 : * 0 events and there's still timeout left over, we go
1821 : * trying again in search of more luck.
1822 : */
1823 0 : res = ep_send_events(ep, events, maxevents);
1824 0 : if (res)
1825 : return res;
1826 : }
1827 :
1828 0 : if (timed_out)
1829 : return 0;
1830 :
1831 0 : eavail = ep_busy_loop(ep, timed_out);
1832 : if (eavail)
1833 : continue;
1834 :
1835 0 : if (signal_pending(current))
1836 : return -EINTR;
1837 :
1838 : /*
1839 : * Internally init_wait() uses autoremove_wake_function(),
1840 : * thus wait entry is removed from the wait queue on each
1841 : * wakeup. Why it is important? In case of several waiters
1842 : * each new wakeup will hit the next waiter, giving it the
1843 : * chance to harvest new event. Otherwise wakeup can be
1844 : * lost. This is also good performance-wise, because on
1845 : * normal wakeup path no need to call __remove_wait_queue()
1846 : * explicitly, thus ep->lock is not taken, which halts the
1847 : * event delivery.
1848 : *
1849 : * In fact, we now use an even more aggressive function that
1850 : * unconditionally removes, because we don't reuse the wait
1851 : * entry between loop iterations. This lets us also avoid the
1852 : * performance issue if a process is killed, causing all of its
1853 : * threads to wake up without being removed normally.
1854 : */
1855 0 : init_wait(&wait);
1856 0 : wait.func = ep_autoremove_wake_function;
1857 :
1858 0 : write_lock_irq(&ep->lock);
1859 : /*
1860 : * Barrierless variant, waitqueue_active() is called under
1861 : * the same lock on wakeup ep_poll_callback() side, so it
1862 : * is safe to avoid an explicit barrier.
1863 : */
1864 0 : __set_current_state(TASK_INTERRUPTIBLE);
1865 :
1866 : /*
1867 : * Do the final check under the lock. ep_scan_ready_list()
1868 : * plays with two lists (->rdllist and ->ovflist) and there
1869 : * is always a race when both lists are empty for short
1870 : * period of time although events are pending, so lock is
1871 : * important.
1872 : */
1873 0 : eavail = ep_events_available(ep);
1874 0 : if (!eavail)
1875 0 : __add_wait_queue_exclusive(&ep->wq, &wait);
1876 :
1877 0 : write_unlock_irq(&ep->lock);
1878 :
1879 0 : if (!eavail)
1880 0 : timed_out = !schedule_hrtimeout_range(to, slack,
1881 : HRTIMER_MODE_ABS);
1882 0 : __set_current_state(TASK_RUNNING);
1883 :
1884 : /*
1885 : * We were woken up, thus go and try to harvest some events.
1886 : * If timed out and still on the wait queue, recheck eavail
1887 : * carefully under lock, below.
1888 : */
1889 0 : eavail = 1;
1890 :
1891 0 : if (!list_empty_careful(&wait.entry)) {
1892 0 : write_lock_irq(&ep->lock);
1893 : /*
1894 : * If the thread timed out and is not on the wait queue,
1895 : * it means that the thread was woken up after its
1896 : * timeout expired before it could reacquire the lock.
1897 : * Thus, when wait.entry is empty, it needs to harvest
1898 : * events.
1899 : */
1900 0 : if (timed_out)
1901 0 : eavail = list_empty(&wait.entry);
1902 0 : __remove_wait_queue(&ep->wq, &wait);
1903 0 : write_unlock_irq(&ep->lock);
1904 : }
1905 : }
1906 : }
1907 :
1908 : /**
1909 : * ep_loop_check_proc - verify that adding an epoll file inside another
1910 : * epoll structure does not violate the constraints, in
1911 : * terms of closed loops, or too deep chains (which can
1912 : * result in excessive stack usage).
1913 : *
1914 : * @ep: the &struct eventpoll to be currently checked.
1915 : * @depth: Current depth of the path being checked.
1916 : *
1917 : * Return: %zero if adding the epoll @file inside current epoll
1918 : * structure @ep does not violate the constraints, or %-1 otherwise.
1919 : */
1920 0 : static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1921 : {
1922 0 : int error = 0;
1923 : struct rb_node *rbp;
1924 : struct epitem *epi;
1925 :
1926 0 : mutex_lock_nested(&ep->mtx, depth + 1);
1927 0 : ep->gen = loop_check_gen;
1928 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1929 0 : epi = rb_entry(rbp, struct epitem, rbn);
1930 0 : if (unlikely(is_file_epoll(epi->ffd.file))) {
1931 : struct eventpoll *ep_tovisit;
1932 0 : ep_tovisit = epi->ffd.file->private_data;
1933 0 : if (ep_tovisit->gen == loop_check_gen)
1934 0 : continue;
1935 0 : if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1936 : error = -1;
1937 : else
1938 0 : error = ep_loop_check_proc(ep_tovisit, depth + 1);
1939 0 : if (error != 0)
1940 : break;
1941 : } else {
1942 : /*
1943 : * If we've reached a file that is not associated with
1944 : * an ep, then we need to check if the newly added
1945 : * links are going to add too many wakeup paths. We do
1946 : * this by adding it to the tfile_check_list, if it's
1947 : * not already there, and calling reverse_path_check()
1948 : * during ep_insert().
1949 : */
1950 0 : list_file(epi->ffd.file);
1951 : }
1952 : }
1953 0 : mutex_unlock(&ep->mtx);
1954 :
1955 0 : return error;
1956 : }
1957 :
1958 : /**
1959 : * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1960 : * into another epoll file (represented by @ep) does not create
1961 : * closed loops or too deep chains.
1962 : *
1963 : * @ep: Pointer to the epoll we are inserting into.
1964 : * @to: Pointer to the epoll to be inserted.
1965 : *
1966 : * Return: %zero if adding the epoll @to inside the epoll @from
1967 : * does not violate the constraints, or %-1 otherwise.
1968 : */
1969 : static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1970 : {
1971 0 : inserting_into = ep;
1972 0 : return ep_loop_check_proc(to, 0);
1973 : }
1974 :
1975 : static void clear_tfile_check_list(void)
1976 : {
1977 : rcu_read_lock();
1978 0 : while (tfile_check_list != EP_UNACTIVE_PTR) {
1979 0 : struct epitems_head *head = tfile_check_list;
1980 0 : tfile_check_list = head->next;
1981 0 : unlist_file(head);
1982 : }
1983 : rcu_read_unlock();
1984 : }
1985 :
1986 : /*
1987 : * Open an eventpoll file descriptor.
1988 : */
1989 0 : static int do_epoll_create(int flags)
1990 : {
1991 : int error, fd;
1992 0 : struct eventpoll *ep = NULL;
1993 : struct file *file;
1994 :
1995 : /* Check the EPOLL_* constant for consistency. */
1996 : BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1997 :
1998 0 : if (flags & ~EPOLL_CLOEXEC)
1999 : return -EINVAL;
2000 : /*
2001 : * Create the internal data structure ("struct eventpoll").
2002 : */
2003 0 : error = ep_alloc(&ep);
2004 0 : if (error < 0)
2005 : return error;
2006 : /*
2007 : * Creates all the items needed to setup an eventpoll file. That is,
2008 : * a file structure and a free file descriptor.
2009 : */
2010 0 : fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2011 0 : if (fd < 0) {
2012 : error = fd;
2013 : goto out_free_ep;
2014 : }
2015 0 : file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2016 : O_RDWR | (flags & O_CLOEXEC));
2017 0 : if (IS_ERR(file)) {
2018 0 : error = PTR_ERR(file);
2019 : goto out_free_fd;
2020 : }
2021 0 : ep->file = file;
2022 0 : fd_install(fd, file);
2023 0 : return fd;
2024 :
2025 : out_free_fd:
2026 0 : put_unused_fd(fd);
2027 : out_free_ep:
2028 0 : ep_free(ep);
2029 0 : return error;
2030 : }
2031 :
2032 0 : SYSCALL_DEFINE1(epoll_create1, int, flags)
2033 : {
2034 0 : return do_epoll_create(flags);
2035 : }
2036 :
2037 0 : SYSCALL_DEFINE1(epoll_create, int, size)
2038 : {
2039 0 : if (size <= 0)
2040 : return -EINVAL;
2041 :
2042 0 : return do_epoll_create(0);
2043 : }
2044 :
2045 : static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2046 : bool nonblock)
2047 : {
2048 0 : if (!nonblock) {
2049 0 : mutex_lock_nested(mutex, depth);
2050 : return 0;
2051 : }
2052 0 : if (mutex_trylock(mutex))
2053 : return 0;
2054 : return -EAGAIN;
2055 : }
2056 :
2057 0 : int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2058 : bool nonblock)
2059 : {
2060 : int error;
2061 0 : int full_check = 0;
2062 : struct fd f, tf;
2063 : struct eventpoll *ep;
2064 : struct epitem *epi;
2065 0 : struct eventpoll *tep = NULL;
2066 :
2067 0 : error = -EBADF;
2068 0 : f = fdget(epfd);
2069 0 : if (!f.file)
2070 : goto error_return;
2071 :
2072 : /* Get the "struct file *" for the target file */
2073 0 : tf = fdget(fd);
2074 0 : if (!tf.file)
2075 : goto error_fput;
2076 :
2077 : /* The target file descriptor must support poll */
2078 0 : error = -EPERM;
2079 0 : if (!file_can_poll(tf.file))
2080 : goto error_tgt_fput;
2081 :
2082 : /* Check if EPOLLWAKEUP is allowed */
2083 0 : if (ep_op_has_event(op))
2084 0 : ep_take_care_of_epollwakeup(epds);
2085 :
2086 : /*
2087 : * We have to check that the file structure underneath the file descriptor
2088 : * the user passed to us _is_ an eventpoll file. And also we do not permit
2089 : * adding an epoll file descriptor inside itself.
2090 : */
2091 0 : error = -EINVAL;
2092 0 : if (f.file == tf.file || !is_file_epoll(f.file))
2093 : goto error_tgt_fput;
2094 :
2095 : /*
2096 : * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2097 : * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2098 : * Also, we do not currently supported nested exclusive wakeups.
2099 : */
2100 0 : if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2101 0 : if (op == EPOLL_CTL_MOD)
2102 : goto error_tgt_fput;
2103 0 : if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2104 0 : (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2105 : goto error_tgt_fput;
2106 : }
2107 :
2108 : /*
2109 : * At this point it is safe to assume that the "private_data" contains
2110 : * our own data structure.
2111 : */
2112 0 : ep = f.file->private_data;
2113 :
2114 : /*
2115 : * When we insert an epoll file descriptor inside another epoll file
2116 : * descriptor, there is the chance of creating closed loops, which are
2117 : * better be handled here, than in more critical paths. While we are
2118 : * checking for loops we also determine the list of files reachable
2119 : * and hang them on the tfile_check_list, so we can check that we
2120 : * haven't created too many possible wakeup paths.
2121 : *
2122 : * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2123 : * the epoll file descriptor is attaching directly to a wakeup source,
2124 : * unless the epoll file descriptor is nested. The purpose of taking the
2125 : * 'epmutex' on add is to prevent complex toplogies such as loops and
2126 : * deep wakeup paths from forming in parallel through multiple
2127 : * EPOLL_CTL_ADD operations.
2128 : */
2129 0 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2130 0 : if (error)
2131 : goto error_tgt_fput;
2132 0 : if (op == EPOLL_CTL_ADD) {
2133 0 : if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2134 0 : is_file_epoll(tf.file)) {
2135 0 : mutex_unlock(&ep->mtx);
2136 0 : error = epoll_mutex_lock(&epmutex, 0, nonblock);
2137 0 : if (error)
2138 : goto error_tgt_fput;
2139 0 : loop_check_gen++;
2140 0 : full_check = 1;
2141 0 : if (is_file_epoll(tf.file)) {
2142 0 : tep = tf.file->private_data;
2143 0 : error = -ELOOP;
2144 0 : if (ep_loop_check(ep, tep) != 0)
2145 : goto error_tgt_fput;
2146 : }
2147 0 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2148 0 : if (error)
2149 : goto error_tgt_fput;
2150 : }
2151 : }
2152 :
2153 : /*
2154 : * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2155 : * above, we can be sure to be able to use the item looked up by
2156 : * ep_find() till we release the mutex.
2157 : */
2158 0 : epi = ep_find(ep, tf.file, fd);
2159 :
2160 0 : error = -EINVAL;
2161 0 : switch (op) {
2162 : case EPOLL_CTL_ADD:
2163 0 : if (!epi) {
2164 0 : epds->events |= EPOLLERR | EPOLLHUP;
2165 0 : error = ep_insert(ep, epds, tf.file, fd, full_check);
2166 : } else
2167 : error = -EEXIST;
2168 : break;
2169 : case EPOLL_CTL_DEL:
2170 0 : if (epi)
2171 0 : error = ep_remove(ep, epi);
2172 : else
2173 : error = -ENOENT;
2174 : break;
2175 : case EPOLL_CTL_MOD:
2176 0 : if (epi) {
2177 0 : if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2178 0 : epds->events |= EPOLLERR | EPOLLHUP;
2179 0 : error = ep_modify(ep, epi, epds);
2180 : }
2181 : } else
2182 : error = -ENOENT;
2183 : break;
2184 : }
2185 0 : mutex_unlock(&ep->mtx);
2186 :
2187 : error_tgt_fput:
2188 0 : if (full_check) {
2189 : clear_tfile_check_list();
2190 0 : loop_check_gen++;
2191 0 : mutex_unlock(&epmutex);
2192 : }
2193 :
2194 0 : fdput(tf);
2195 : error_fput:
2196 0 : fdput(f);
2197 : error_return:
2198 :
2199 0 : return error;
2200 : }
2201 :
2202 : /*
2203 : * The following function implements the controller interface for
2204 : * the eventpoll file that enables the insertion/removal/change of
2205 : * file descriptors inside the interest set.
2206 : */
2207 0 : SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2208 : struct epoll_event __user *, event)
2209 : {
2210 : struct epoll_event epds;
2211 :
2212 0 : if (ep_op_has_event(op) &&
2213 0 : copy_from_user(&epds, event, sizeof(struct epoll_event)))
2214 : return -EFAULT;
2215 :
2216 0 : return do_epoll_ctl(epfd, op, fd, &epds, false);
2217 : }
2218 :
2219 : /*
2220 : * Implement the event wait interface for the eventpoll file. It is the kernel
2221 : * part of the user space epoll_wait(2).
2222 : */
2223 0 : static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2224 : int maxevents, struct timespec64 *to)
2225 : {
2226 : int error;
2227 : struct fd f;
2228 : struct eventpoll *ep;
2229 :
2230 : /* The maximum number of event must be greater than zero */
2231 0 : if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2232 : return -EINVAL;
2233 :
2234 : /* Verify that the area passed by the user is writeable */
2235 0 : if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2236 : return -EFAULT;
2237 :
2238 : /* Get the "struct file *" for the eventpoll file */
2239 0 : f = fdget(epfd);
2240 0 : if (!f.file)
2241 : return -EBADF;
2242 :
2243 : /*
2244 : * We have to check that the file structure underneath the fd
2245 : * the user passed to us _is_ an eventpoll file.
2246 : */
2247 0 : error = -EINVAL;
2248 0 : if (!is_file_epoll(f.file))
2249 : goto error_fput;
2250 :
2251 : /*
2252 : * At this point it is safe to assume that the "private_data" contains
2253 : * our own data structure.
2254 : */
2255 0 : ep = f.file->private_data;
2256 :
2257 : /* Time to fish for events ... */
2258 0 : error = ep_poll(ep, events, maxevents, to);
2259 :
2260 : error_fput:
2261 0 : fdput(f);
2262 : return error;
2263 : }
2264 :
2265 0 : SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2266 : int, maxevents, int, timeout)
2267 : {
2268 : struct timespec64 to;
2269 :
2270 0 : return do_epoll_wait(epfd, events, maxevents,
2271 : ep_timeout_to_timespec(&to, timeout));
2272 : }
2273 :
2274 : /*
2275 : * Implement the event wait interface for the eventpoll file. It is the kernel
2276 : * part of the user space epoll_pwait(2).
2277 : */
2278 0 : static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2279 : int maxevents, struct timespec64 *to,
2280 : const sigset_t __user *sigmask, size_t sigsetsize)
2281 : {
2282 : int error;
2283 :
2284 : /*
2285 : * If the caller wants a certain signal mask to be set during the wait,
2286 : * we apply it here.
2287 : */
2288 0 : error = set_user_sigmask(sigmask, sigsetsize);
2289 0 : if (error)
2290 : return error;
2291 :
2292 0 : error = do_epoll_wait(epfd, events, maxevents, to);
2293 :
2294 0 : restore_saved_sigmask_unless(error == -EINTR);
2295 :
2296 0 : return error;
2297 : }
2298 :
2299 0 : SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2300 : int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2301 : size_t, sigsetsize)
2302 : {
2303 : struct timespec64 to;
2304 :
2305 0 : return do_epoll_pwait(epfd, events, maxevents,
2306 : ep_timeout_to_timespec(&to, timeout),
2307 : sigmask, sigsetsize);
2308 : }
2309 :
2310 0 : SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2311 : int, maxevents, const struct __kernel_timespec __user *, timeout,
2312 : const sigset_t __user *, sigmask, size_t, sigsetsize)
2313 : {
2314 0 : struct timespec64 ts, *to = NULL;
2315 :
2316 0 : if (timeout) {
2317 0 : if (get_timespec64(&ts, timeout))
2318 : return -EFAULT;
2319 0 : to = &ts;
2320 0 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2321 : return -EINVAL;
2322 : }
2323 :
2324 0 : return do_epoll_pwait(epfd, events, maxevents, to,
2325 : sigmask, sigsetsize);
2326 : }
2327 :
2328 : #ifdef CONFIG_COMPAT
2329 : static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2330 : int maxevents, struct timespec64 *timeout,
2331 : const compat_sigset_t __user *sigmask,
2332 : compat_size_t sigsetsize)
2333 : {
2334 : long err;
2335 :
2336 : /*
2337 : * If the caller wants a certain signal mask to be set during the wait,
2338 : * we apply it here.
2339 : */
2340 : err = set_compat_user_sigmask(sigmask, sigsetsize);
2341 : if (err)
2342 : return err;
2343 :
2344 : err = do_epoll_wait(epfd, events, maxevents, timeout);
2345 :
2346 : restore_saved_sigmask_unless(err == -EINTR);
2347 :
2348 : return err;
2349 : }
2350 :
2351 : COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2352 : struct epoll_event __user *, events,
2353 : int, maxevents, int, timeout,
2354 : const compat_sigset_t __user *, sigmask,
2355 : compat_size_t, sigsetsize)
2356 : {
2357 : struct timespec64 to;
2358 :
2359 : return do_compat_epoll_pwait(epfd, events, maxevents,
2360 : ep_timeout_to_timespec(&to, timeout),
2361 : sigmask, sigsetsize);
2362 : }
2363 :
2364 : COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2365 : struct epoll_event __user *, events,
2366 : int, maxevents,
2367 : const struct __kernel_timespec __user *, timeout,
2368 : const compat_sigset_t __user *, sigmask,
2369 : compat_size_t, sigsetsize)
2370 : {
2371 : struct timespec64 ts, *to = NULL;
2372 :
2373 : if (timeout) {
2374 : if (get_timespec64(&ts, timeout))
2375 : return -EFAULT;
2376 : to = &ts;
2377 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2378 : return -EINVAL;
2379 : }
2380 :
2381 : return do_compat_epoll_pwait(epfd, events, maxevents, to,
2382 : sigmask, sigsetsize);
2383 : }
2384 :
2385 : #endif
2386 :
2387 1 : static int __init eventpoll_init(void)
2388 : {
2389 : struct sysinfo si;
2390 :
2391 1 : si_meminfo(&si);
2392 : /*
2393 : * Allows top 4% of lomem to be allocated for epoll watches (per user).
2394 : */
2395 1 : max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2396 : EP_ITEM_COST;
2397 1 : BUG_ON(max_user_watches < 0);
2398 :
2399 : /*
2400 : * We can have many thousands of epitems, so prevent this from
2401 : * using an extra cache line on 64-bit (and smaller) CPUs
2402 : */
2403 : BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2404 :
2405 : /* Allocates slab cache used to allocate "struct epitem" items */
2406 1 : epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2407 : 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2408 :
2409 : /* Allocates slab cache used to allocate "struct eppoll_entry" */
2410 1 : pwq_cache = kmem_cache_create("eventpoll_pwq",
2411 : sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2412 1 : epoll_sysctls_init();
2413 :
2414 1 : ephead_cache = kmem_cache_create("ep_head",
2415 : sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416 :
2417 1 : return 0;
2418 : }
2419 : fs_initcall(eventpoll_init);
|