Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/fs/namespace.c
4 : *
5 : * (C) Copyright Al Viro 2000, 2001
6 : *
7 : * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 : * Heavily rewritten.
9 : */
10 :
11 : #include <linux/syscalls.h>
12 : #include <linux/export.h>
13 : #include <linux/capability.h>
14 : #include <linux/mnt_namespace.h>
15 : #include <linux/user_namespace.h>
16 : #include <linux/namei.h>
17 : #include <linux/security.h>
18 : #include <linux/cred.h>
19 : #include <linux/idr.h>
20 : #include <linux/init.h> /* init_rootfs */
21 : #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 : #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 : #include <linux/file.h>
24 : #include <linux/uaccess.h>
25 : #include <linux/proc_ns.h>
26 : #include <linux/magic.h>
27 : #include <linux/memblock.h>
28 : #include <linux/proc_fs.h>
29 : #include <linux/task_work.h>
30 : #include <linux/sched/task.h>
31 : #include <uapi/linux/mount.h>
32 : #include <linux/fs_context.h>
33 : #include <linux/shmem_fs.h>
34 : #include <linux/mnt_idmapping.h>
35 :
36 : #include "pnode.h"
37 : #include "internal.h"
38 :
39 : /* Maximum number of mounts in a mount namespace */
40 : static unsigned int sysctl_mount_max __read_mostly = 100000;
41 :
42 : static unsigned int m_hash_mask __read_mostly;
43 : static unsigned int m_hash_shift __read_mostly;
44 : static unsigned int mp_hash_mask __read_mostly;
45 : static unsigned int mp_hash_shift __read_mostly;
46 :
47 : static __initdata unsigned long mhash_entries;
48 0 : static int __init set_mhash_entries(char *str)
49 : {
50 0 : if (!str)
51 : return 0;
52 0 : mhash_entries = simple_strtoul(str, &str, 0);
53 0 : return 1;
54 : }
55 : __setup("mhash_entries=", set_mhash_entries);
56 :
57 : static __initdata unsigned long mphash_entries;
58 0 : static int __init set_mphash_entries(char *str)
59 : {
60 0 : if (!str)
61 : return 0;
62 0 : mphash_entries = simple_strtoul(str, &str, 0);
63 0 : return 1;
64 : }
65 : __setup("mphash_entries=", set_mphash_entries);
66 :
67 : static u64 event;
68 : static DEFINE_IDA(mnt_id_ida);
69 : static DEFINE_IDA(mnt_group_ida);
70 :
71 : static struct hlist_head *mount_hashtable __read_mostly;
72 : static struct hlist_head *mountpoint_hashtable __read_mostly;
73 : static struct kmem_cache *mnt_cache __read_mostly;
74 : static DECLARE_RWSEM(namespace_sem);
75 : static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 : static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 :
78 : struct mount_kattr {
79 : unsigned int attr_set;
80 : unsigned int attr_clr;
81 : unsigned int propagation;
82 : unsigned int lookup_flags;
83 : bool recurse;
84 : struct user_namespace *mnt_userns;
85 : struct mnt_idmap *mnt_idmap;
86 : };
87 :
88 : /* /sys/fs */
89 : struct kobject *fs_kobj;
90 : EXPORT_SYMBOL_GPL(fs_kobj);
91 :
92 : /*
93 : * vfsmount lock may be taken for read to prevent changes to the
94 : * vfsmount hash, ie. during mountpoint lookups or walking back
95 : * up the tree.
96 : *
97 : * It should be taken for write in all cases where the vfsmount
98 : * tree or hash is modified or when a vfsmount structure is modified.
99 : */
100 : __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 :
102 : static inline void lock_mount_hash(void)
103 : {
104 62 : write_seqlock(&mount_lock);
105 : }
106 :
107 : static inline void unlock_mount_hash(void)
108 : {
109 62 : write_sequnlock(&mount_lock);
110 : }
111 :
112 : static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 : {
114 0 : unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 0 : tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 0 : tmp = tmp + (tmp >> m_hash_shift);
117 0 : return &mount_hashtable[tmp & m_hash_mask];
118 : }
119 :
120 : static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 : {
122 0 : unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 0 : tmp = tmp + (tmp >> mp_hash_shift);
124 0 : return &mountpoint_hashtable[tmp & mp_hash_mask];
125 : }
126 :
127 : static int mnt_alloc_id(struct mount *mnt)
128 : {
129 27 : int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 :
131 27 : if (res < 0)
132 : return res;
133 27 : mnt->mnt_id = res;
134 : return 0;
135 : }
136 :
137 : static void mnt_free_id(struct mount *mnt)
138 : {
139 17 : ida_free(&mnt_id_ida, mnt->mnt_id);
140 : }
141 :
142 : /*
143 : * Allocate a new peer group ID
144 : */
145 : static int mnt_alloc_group_id(struct mount *mnt)
146 : {
147 0 : int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 :
149 0 : if (res < 0)
150 : return res;
151 0 : mnt->mnt_group_id = res;
152 : return 0;
153 : }
154 :
155 : /*
156 : * Release a peer group ID
157 : */
158 0 : void mnt_release_group_id(struct mount *mnt)
159 : {
160 0 : ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 0 : mnt->mnt_group_id = 0;
162 0 : }
163 :
164 : /*
165 : * vfsmount lock must be held for read
166 : */
167 : static inline void mnt_add_count(struct mount *mnt, int n)
168 : {
169 : #ifdef CONFIG_SMP
170 : this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 : #else
172 61 : preempt_disable();
173 61 : mnt->mnt_count += n;
174 61 : preempt_enable();
175 : #endif
176 : }
177 :
178 : /*
179 : * vfsmount lock must be held for write
180 : */
181 0 : int mnt_get_count(struct mount *mnt)
182 : {
183 : #ifdef CONFIG_SMP
184 : int count = 0;
185 : int cpu;
186 :
187 : for_each_possible_cpu(cpu) {
188 : count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 : }
190 :
191 : return count;
192 : #else
193 35 : return mnt->mnt_count;
194 : #endif
195 : }
196 :
197 27 : static struct mount *alloc_vfsmnt(const char *name)
198 : {
199 54 : struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 27 : if (mnt) {
201 : int err;
202 :
203 27 : err = mnt_alloc_id(mnt);
204 27 : if (err)
205 : goto out_free_cache;
206 :
207 27 : if (name) {
208 27 : mnt->mnt_devname = kstrdup_const(name,
209 : GFP_KERNEL_ACCOUNT);
210 27 : if (!mnt->mnt_devname)
211 : goto out_free_id;
212 : }
213 :
214 : #ifdef CONFIG_SMP
215 : mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 : if (!mnt->mnt_pcp)
217 : goto out_free_devname;
218 :
219 : this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 : #else
221 27 : mnt->mnt_count = 1;
222 27 : mnt->mnt_writers = 0;
223 : #endif
224 :
225 54 : INIT_HLIST_NODE(&mnt->mnt_hash);
226 54 : INIT_LIST_HEAD(&mnt->mnt_child);
227 54 : INIT_LIST_HEAD(&mnt->mnt_mounts);
228 54 : INIT_LIST_HEAD(&mnt->mnt_list);
229 54 : INIT_LIST_HEAD(&mnt->mnt_expire);
230 54 : INIT_LIST_HEAD(&mnt->mnt_share);
231 54 : INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 54 : INIT_LIST_HEAD(&mnt->mnt_slave);
233 54 : INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 54 : INIT_LIST_HEAD(&mnt->mnt_umounting);
235 27 : INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 27 : mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 : }
238 : return mnt;
239 :
240 : #ifdef CONFIG_SMP
241 : out_free_devname:
242 : kfree_const(mnt->mnt_devname);
243 : #endif
244 : out_free_id:
245 : mnt_free_id(mnt);
246 : out_free_cache:
247 0 : kmem_cache_free(mnt_cache, mnt);
248 0 : return NULL;
249 : }
250 :
251 : /*
252 : * Most r/o checks on a fs are for operations that take
253 : * discrete amounts of time, like a write() or unlink().
254 : * We must keep track of when those operations start
255 : * (for permission checks) and when they end, so that
256 : * we can determine when writes are able to occur to
257 : * a filesystem.
258 : */
259 : /*
260 : * __mnt_is_readonly: check whether a mount is read-only
261 : * @mnt: the mount to check for its write status
262 : *
263 : * This shouldn't be used directly ouside of the VFS.
264 : * It does not guarantee that the filesystem will stay
265 : * r/w, just that it is right *now*. This can not and
266 : * should not be used in place of IS_RDONLY(inode).
267 : * mnt_want/drop_write() will _keep_ the filesystem
268 : * r/w.
269 : */
270 0 : bool __mnt_is_readonly(struct vfsmount *mnt)
271 : {
272 6 : return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 : }
274 : EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 :
276 : static inline void mnt_inc_writers(struct mount *mnt)
277 : {
278 : #ifdef CONFIG_SMP
279 : this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 : #else
281 3 : mnt->mnt_writers++;
282 : #endif
283 : }
284 :
285 : static inline void mnt_dec_writers(struct mount *mnt)
286 : {
287 : #ifdef CONFIG_SMP
288 : this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 : #else
290 3 : mnt->mnt_writers--;
291 : #endif
292 : }
293 :
294 : static unsigned int mnt_get_writers(struct mount *mnt)
295 : {
296 : #ifdef CONFIG_SMP
297 : unsigned int count = 0;
298 : int cpu;
299 :
300 : for_each_possible_cpu(cpu) {
301 : count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 : }
303 :
304 : return count;
305 : #else
306 : return mnt->mnt_writers;
307 : #endif
308 : }
309 :
310 : static int mnt_is_readonly(struct vfsmount *mnt)
311 : {
312 3 : if (mnt->mnt_sb->s_readonly_remount)
313 : return 1;
314 : /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 3 : smp_rmb();
316 3 : return __mnt_is_readonly(mnt);
317 : }
318 :
319 : /*
320 : * Most r/o & frozen checks on a fs are for operations that take discrete
321 : * amounts of time, like a write() or unlink(). We must keep track of when
322 : * those operations start (for permission checks) and when they end, so that we
323 : * can determine when writes are able to occur to a filesystem.
324 : */
325 : /**
326 : * __mnt_want_write - get write access to a mount without freeze protection
327 : * @m: the mount on which to take a write
328 : *
329 : * This tells the low-level filesystem that a write is about to be performed to
330 : * it, and makes sure that writes are allowed (mnt it read-write) before
331 : * returning success. This operation does not protect against filesystem being
332 : * frozen. When the write operation is finished, __mnt_drop_write() must be
333 : * called. This is effectively a refcount.
334 : */
335 3 : int __mnt_want_write(struct vfsmount *m)
336 : {
337 3 : struct mount *mnt = real_mount(m);
338 3 : int ret = 0;
339 :
340 3 : preempt_disable();
341 : mnt_inc_writers(mnt);
342 : /*
343 : * The store to mnt_inc_writers must be visible before we pass
344 : * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 : * incremented count after it has set MNT_WRITE_HOLD.
346 : */
347 3 : smp_mb();
348 : might_lock(&mount_lock.lock);
349 6 : while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 : if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 : cpu_relax();
352 : } else {
353 : /*
354 : * This prevents priority inversion, if the task
355 : * setting MNT_WRITE_HOLD got preempted on a remote
356 : * CPU, and it prevents life lock if the task setting
357 : * MNT_WRITE_HOLD has a lower priority and is bound to
358 : * the same CPU as the task that is spinning here.
359 : */
360 : preempt_enable();
361 : lock_mount_hash();
362 : unlock_mount_hash();
363 : preempt_disable();
364 : }
365 : }
366 : /*
367 : * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 : * be set to match its requirements. So we must not load that until
369 : * MNT_WRITE_HOLD is cleared.
370 : */
371 3 : smp_rmb();
372 6 : if (mnt_is_readonly(m)) {
373 : mnt_dec_writers(mnt);
374 0 : ret = -EROFS;
375 : }
376 3 : preempt_enable();
377 :
378 3 : return ret;
379 : }
380 :
381 : /**
382 : * mnt_want_write - get write access to a mount
383 : * @m: the mount on which to take a write
384 : *
385 : * This tells the low-level filesystem that a write is about to be performed to
386 : * it, and makes sure that writes are allowed (mount is read-write, filesystem
387 : * is not frozen) before returning success. When the write operation is
388 : * finished, mnt_drop_write() must be called. This is effectively a refcount.
389 : */
390 3 : int mnt_want_write(struct vfsmount *m)
391 : {
392 : int ret;
393 :
394 6 : sb_start_write(m->mnt_sb);
395 3 : ret = __mnt_want_write(m);
396 3 : if (ret)
397 0 : sb_end_write(m->mnt_sb);
398 3 : return ret;
399 : }
400 : EXPORT_SYMBOL_GPL(mnt_want_write);
401 :
402 : /**
403 : * __mnt_want_write_file - get write access to a file's mount
404 : * @file: the file who's mount on which to take a write
405 : *
406 : * This is like __mnt_want_write, but if the file is already open for writing it
407 : * skips incrementing mnt_writers (since the open file already has a reference)
408 : * and instead only does the check for emergency r/o remounts. This must be
409 : * paired with __mnt_drop_write_file.
410 : */
411 0 : int __mnt_want_write_file(struct file *file)
412 : {
413 0 : if (file->f_mode & FMODE_WRITER) {
414 : /*
415 : * Superblock may have become readonly while there are still
416 : * writable fd's, e.g. due to a fs error with errors=remount-ro
417 : */
418 0 : if (__mnt_is_readonly(file->f_path.mnt))
419 : return -EROFS;
420 0 : return 0;
421 : }
422 0 : return __mnt_want_write(file->f_path.mnt);
423 : }
424 :
425 : /**
426 : * mnt_want_write_file - get write access to a file's mount
427 : * @file: the file who's mount on which to take a write
428 : *
429 : * This is like mnt_want_write, but if the file is already open for writing it
430 : * skips incrementing mnt_writers (since the open file already has a reference)
431 : * and instead only does the freeze protection and the check for emergency r/o
432 : * remounts. This must be paired with mnt_drop_write_file.
433 : */
434 0 : int mnt_want_write_file(struct file *file)
435 : {
436 : int ret;
437 :
438 0 : sb_start_write(file_inode(file)->i_sb);
439 0 : ret = __mnt_want_write_file(file);
440 0 : if (ret)
441 0 : sb_end_write(file_inode(file)->i_sb);
442 0 : return ret;
443 : }
444 : EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 :
446 : /**
447 : * __mnt_drop_write - give up write access to a mount
448 : * @mnt: the mount on which to give up write access
449 : *
450 : * Tells the low-level filesystem that we are done
451 : * performing writes to it. Must be matched with
452 : * __mnt_want_write() call above.
453 : */
454 0 : void __mnt_drop_write(struct vfsmount *mnt)
455 : {
456 3 : preempt_disable();
457 3 : mnt_dec_writers(real_mount(mnt));
458 3 : preempt_enable();
459 0 : }
460 :
461 : /**
462 : * mnt_drop_write - give up write access to a mount
463 : * @mnt: the mount on which to give up write access
464 : *
465 : * Tells the low-level filesystem that we are done performing writes to it and
466 : * also allows filesystem to be frozen again. Must be matched with
467 : * mnt_want_write() call above.
468 : */
469 3 : void mnt_drop_write(struct vfsmount *mnt)
470 : {
471 3 : __mnt_drop_write(mnt);
472 6 : sb_end_write(mnt->mnt_sb);
473 3 : }
474 : EXPORT_SYMBOL_GPL(mnt_drop_write);
475 :
476 0 : void __mnt_drop_write_file(struct file *file)
477 : {
478 0 : if (!(file->f_mode & FMODE_WRITER))
479 0 : __mnt_drop_write(file->f_path.mnt);
480 0 : }
481 :
482 0 : void mnt_drop_write_file(struct file *file)
483 : {
484 0 : __mnt_drop_write_file(file);
485 0 : sb_end_write(file_inode(file)->i_sb);
486 0 : }
487 : EXPORT_SYMBOL(mnt_drop_write_file);
488 :
489 : /**
490 : * mnt_hold_writers - prevent write access to the given mount
491 : * @mnt: mnt to prevent write access to
492 : *
493 : * Prevents write access to @mnt if there are no active writers for @mnt.
494 : * This function needs to be called and return successfully before changing
495 : * properties of @mnt that need to remain stable for callers with write access
496 : * to @mnt.
497 : *
498 : * After this functions has been called successfully callers must pair it with
499 : * a call to mnt_unhold_writers() in order to stop preventing write access to
500 : * @mnt.
501 : *
502 : * Context: This function expects lock_mount_hash() to be held serializing
503 : * setting MNT_WRITE_HOLD.
504 : * Return: On success 0 is returned.
505 : * On error, -EBUSY is returned.
506 : */
507 : static inline int mnt_hold_writers(struct mount *mnt)
508 : {
509 0 : mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 : /*
511 : * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 : * should be visible before we do.
513 : */
514 0 : smp_mb();
515 :
516 : /*
517 : * With writers on hold, if this value is zero, then there are
518 : * definitely no active writers (although held writers may subsequently
519 : * increment the count, they'll have to wait, and decrement it after
520 : * seeing MNT_READONLY).
521 : *
522 : * It is OK to have counter incremented on one CPU and decremented on
523 : * another: the sum will add up correctly. The danger would be when we
524 : * sum up each counter, if we read a counter before it is incremented,
525 : * but then read another CPU's count which it has been subsequently
526 : * decremented from -- we would see more decrements than we should.
527 : * MNT_WRITE_HOLD protects against this scenario, because
528 : * mnt_want_write first increments count, then smp_mb, then spins on
529 : * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 : * we're counting up here.
531 : */
532 0 : if (mnt_get_writers(mnt) > 0)
533 : return -EBUSY;
534 :
535 : return 0;
536 : }
537 :
538 : /**
539 : * mnt_unhold_writers - stop preventing write access to the given mount
540 : * @mnt: mnt to stop preventing write access to
541 : *
542 : * Stop preventing write access to @mnt allowing callers to gain write access
543 : * to @mnt again.
544 : *
545 : * This function can only be called after a successful call to
546 : * mnt_hold_writers().
547 : *
548 : * Context: This function expects lock_mount_hash() to be held.
549 : */
550 : static inline void mnt_unhold_writers(struct mount *mnt)
551 : {
552 : /*
553 : * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 : * that become unheld will see MNT_READONLY.
555 : */
556 0 : smp_wmb();
557 0 : mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 : }
559 :
560 : static int mnt_make_readonly(struct mount *mnt)
561 : {
562 : int ret;
563 :
564 0 : ret = mnt_hold_writers(mnt);
565 0 : if (!ret)
566 0 : mnt->mnt.mnt_flags |= MNT_READONLY;
567 0 : mnt_unhold_writers(mnt);
568 : return ret;
569 : }
570 :
571 0 : int sb_prepare_remount_readonly(struct super_block *sb)
572 : {
573 : struct mount *mnt;
574 0 : int err = 0;
575 :
576 : /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
577 0 : if (atomic_long_read(&sb->s_remove_count))
578 : return -EBUSY;
579 :
580 : lock_mount_hash();
581 0 : list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 0 : if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 0 : err = mnt_hold_writers(mnt);
584 0 : if (err)
585 : break;
586 : }
587 : }
588 0 : if (!err && atomic_long_read(&sb->s_remove_count))
589 0 : err = -EBUSY;
590 :
591 0 : if (!err) {
592 0 : sb->s_readonly_remount = 1;
593 0 : smp_wmb();
594 : }
595 0 : list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 0 : if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 0 : mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 : }
599 : unlock_mount_hash();
600 :
601 0 : return err;
602 : }
603 :
604 17 : static void free_vfsmnt(struct mount *mnt)
605 : {
606 34 : mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 17 : kfree_const(mnt->mnt_devname);
608 : #ifdef CONFIG_SMP
609 : free_percpu(mnt->mnt_pcp);
610 : #endif
611 17 : kmem_cache_free(mnt_cache, mnt);
612 17 : }
613 :
614 17 : static void delayed_free_vfsmnt(struct rcu_head *head)
615 : {
616 17 : free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 17 : }
618 :
619 : /* call under rcu_read_lock */
620 3 : int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 : {
622 : struct mount *mnt;
623 3 : if (read_seqretry(&mount_lock, seq))
624 : return 1;
625 3 : if (bastard == NULL)
626 : return 0;
627 3 : mnt = real_mount(bastard);
628 6 : mnt_add_count(mnt, 1);
629 3 : smp_mb(); // see mntput_no_expire()
630 3 : if (likely(!read_seqretry(&mount_lock, seq)))
631 : return 0;
632 0 : if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 0 : mnt_add_count(mnt, -1);
634 0 : return 1;
635 : }
636 : lock_mount_hash();
637 0 : if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 0 : mnt_add_count(mnt, -1);
639 : unlock_mount_hash();
640 0 : return 1;
641 : }
642 : unlock_mount_hash();
643 : /* caller will mntput() */
644 0 : return -1;
645 : }
646 :
647 : /* call under rcu_read_lock */
648 0 : static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 : {
650 0 : int res = __legitimize_mnt(bastard, seq);
651 0 : if (likely(!res))
652 : return true;
653 0 : if (unlikely(res < 0)) {
654 0 : rcu_read_unlock();
655 0 : mntput(bastard);
656 : rcu_read_lock();
657 : }
658 : return false;
659 : }
660 :
661 : /*
662 : * find the first mount at @dentry on vfsmount @mnt.
663 : * call under rcu_read_lock()
664 : */
665 0 : struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 : {
667 0 : struct hlist_head *head = m_hash(mnt, dentry);
668 : struct mount *p;
669 :
670 0 : hlist_for_each_entry_rcu(p, head, mnt_hash)
671 0 : if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 : return p;
673 : return NULL;
674 : }
675 :
676 : /*
677 : * lookup_mnt - Return the first child mount mounted at path
678 : *
679 : * "First" means first mounted chronologically. If you create the
680 : * following mounts:
681 : *
682 : * mount /dev/sda1 /mnt
683 : * mount /dev/sda2 /mnt
684 : * mount /dev/sda3 /mnt
685 : *
686 : * Then lookup_mnt() on the base /mnt dentry in the root mount will
687 : * return successively the root dentry and vfsmount of /dev/sda1, then
688 : * /dev/sda2, then /dev/sda3, then NULL.
689 : *
690 : * lookup_mnt takes a reference to the found vfsmount.
691 : */
692 0 : struct vfsmount *lookup_mnt(const struct path *path)
693 : {
694 : struct mount *child_mnt;
695 : struct vfsmount *m;
696 : unsigned seq;
697 :
698 : rcu_read_lock();
699 : do {
700 0 : seq = read_seqbegin(&mount_lock);
701 0 : child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 0 : m = child_mnt ? &child_mnt->mnt : NULL;
703 0 : } while (!legitimize_mnt(m, seq));
704 : rcu_read_unlock();
705 0 : return m;
706 : }
707 :
708 : static inline void lock_ns_list(struct mnt_namespace *ns)
709 : {
710 0 : spin_lock(&ns->ns_lock);
711 : }
712 :
713 : static inline void unlock_ns_list(struct mnt_namespace *ns)
714 : {
715 0 : spin_unlock(&ns->ns_lock);
716 : }
717 :
718 : static inline bool mnt_is_cursor(struct mount *mnt)
719 : {
720 0 : return mnt->mnt.mnt_flags & MNT_CURSOR;
721 : }
722 :
723 : /*
724 : * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725 : * current mount namespace.
726 : *
727 : * The common case is dentries are not mountpoints at all and that
728 : * test is handled inline. For the slow case when we are actually
729 : * dealing with a mountpoint of some kind, walk through all of the
730 : * mounts in the current mount namespace and test to see if the dentry
731 : * is a mountpoint.
732 : *
733 : * The mount_hashtable is not usable in the context because we
734 : * need to identify all mounts that may be in the current mount
735 : * namespace not just a mount that happens to have some specified
736 : * parent mount.
737 : */
738 0 : bool __is_local_mountpoint(struct dentry *dentry)
739 : {
740 0 : struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 : struct mount *mnt;
742 0 : bool is_covered = false;
743 :
744 0 : down_read(&namespace_sem);
745 0 : lock_ns_list(ns);
746 0 : list_for_each_entry(mnt, &ns->list, mnt_list) {
747 0 : if (mnt_is_cursor(mnt))
748 0 : continue;
749 0 : is_covered = (mnt->mnt_mountpoint == dentry);
750 0 : if (is_covered)
751 : break;
752 : }
753 0 : unlock_ns_list(ns);
754 0 : up_read(&namespace_sem);
755 :
756 0 : return is_covered;
757 : }
758 :
759 0 : static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 : {
761 0 : struct hlist_head *chain = mp_hash(dentry);
762 : struct mountpoint *mp;
763 :
764 0 : hlist_for_each_entry(mp, chain, m_hash) {
765 0 : if (mp->m_dentry == dentry) {
766 0 : mp->m_count++;
767 0 : return mp;
768 : }
769 : }
770 : return NULL;
771 : }
772 :
773 0 : static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 : {
775 0 : struct mountpoint *mp, *new = NULL;
776 : int ret;
777 :
778 0 : if (d_mountpoint(dentry)) {
779 : /* might be worth a WARN_ON() */
780 0 : if (d_unlinked(dentry))
781 : return ERR_PTR(-ENOENT);
782 : mountpoint:
783 0 : read_seqlock_excl(&mount_lock);
784 0 : mp = lookup_mountpoint(dentry);
785 0 : read_sequnlock_excl(&mount_lock);
786 0 : if (mp)
787 : goto done;
788 : }
789 :
790 0 : if (!new)
791 0 : new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 0 : if (!new)
793 : return ERR_PTR(-ENOMEM);
794 :
795 :
796 : /* Exactly one processes may set d_mounted */
797 0 : ret = d_set_mounted(dentry);
798 :
799 : /* Someone else set d_mounted? */
800 0 : if (ret == -EBUSY)
801 : goto mountpoint;
802 :
803 : /* The dentry is not available as a mountpoint? */
804 0 : mp = ERR_PTR(ret);
805 0 : if (ret)
806 : goto done;
807 :
808 : /* Add the new mountpoint to the hash table */
809 0 : read_seqlock_excl(&mount_lock);
810 0 : new->m_dentry = dget(dentry);
811 0 : new->m_count = 1;
812 0 : hlist_add_head(&new->m_hash, mp_hash(dentry));
813 0 : INIT_HLIST_HEAD(&new->m_list);
814 0 : read_sequnlock_excl(&mount_lock);
815 :
816 0 : mp = new;
817 0 : new = NULL;
818 : done:
819 0 : kfree(new);
820 0 : return mp;
821 : }
822 :
823 : /*
824 : * vfsmount lock must be held. Additionally, the caller is responsible
825 : * for serializing calls for given disposal list.
826 : */
827 0 : static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 : {
829 0 : if (!--mp->m_count) {
830 0 : struct dentry *dentry = mp->m_dentry;
831 0 : BUG_ON(!hlist_empty(&mp->m_list));
832 0 : spin_lock(&dentry->d_lock);
833 0 : dentry->d_flags &= ~DCACHE_MOUNTED;
834 0 : spin_unlock(&dentry->d_lock);
835 0 : dput_to_list(dentry, list);
836 0 : hlist_del(&mp->m_hash);
837 0 : kfree(mp);
838 : }
839 0 : }
840 :
841 : /* called with namespace_lock and vfsmount lock */
842 : static void put_mountpoint(struct mountpoint *mp)
843 : {
844 0 : __put_mountpoint(mp, &ex_mountpoints);
845 : }
846 :
847 : static inline int check_mnt(struct mount *mnt)
848 : {
849 0 : return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 : }
851 :
852 : /*
853 : * vfsmount lock must be held for write
854 : */
855 0 : static void touch_mnt_namespace(struct mnt_namespace *ns)
856 : {
857 0 : if (ns) {
858 0 : ns->event = ++event;
859 0 : wake_up_interruptible(&ns->poll);
860 : }
861 0 : }
862 :
863 : /*
864 : * vfsmount lock must be held for write
865 : */
866 0 : static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 : {
868 0 : if (ns && ns->event != event) {
869 0 : ns->event = event;
870 0 : wake_up_interruptible(&ns->poll);
871 : }
872 0 : }
873 :
874 : /*
875 : * vfsmount lock must be held for write
876 : */
877 0 : static struct mountpoint *unhash_mnt(struct mount *mnt)
878 : {
879 : struct mountpoint *mp;
880 0 : mnt->mnt_parent = mnt;
881 0 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 0 : list_del_init(&mnt->mnt_child);
883 0 : hlist_del_init_rcu(&mnt->mnt_hash);
884 0 : hlist_del_init(&mnt->mnt_mp_list);
885 0 : mp = mnt->mnt_mp;
886 0 : mnt->mnt_mp = NULL;
887 0 : return mp;
888 : }
889 :
890 : /*
891 : * vfsmount lock must be held for write
892 : */
893 : static void umount_mnt(struct mount *mnt)
894 : {
895 0 : put_mountpoint(unhash_mnt(mnt));
896 : }
897 :
898 : /*
899 : * vfsmount lock must be held for write
900 : */
901 0 : void mnt_set_mountpoint(struct mount *mnt,
902 : struct mountpoint *mp,
903 : struct mount *child_mnt)
904 : {
905 0 : mp->m_count++;
906 0 : mnt_add_count(mnt, 1); /* essentially, that's mntget */
907 0 : child_mnt->mnt_mountpoint = mp->m_dentry;
908 0 : child_mnt->mnt_parent = mnt;
909 0 : child_mnt->mnt_mp = mp;
910 0 : hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 0 : }
912 :
913 0 : static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 : {
915 0 : hlist_add_head_rcu(&mnt->mnt_hash,
916 : m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 0 : list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 0 : }
919 :
920 : /*
921 : * vfsmount lock must be held for write
922 : */
923 0 : static void attach_mnt(struct mount *mnt,
924 : struct mount *parent,
925 : struct mountpoint *mp)
926 : {
927 0 : mnt_set_mountpoint(parent, mp, mnt);
928 0 : __attach_mnt(mnt, parent);
929 0 : }
930 :
931 0 : void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 : {
933 0 : struct mountpoint *old_mp = mnt->mnt_mp;
934 0 : struct mount *old_parent = mnt->mnt_parent;
935 :
936 0 : list_del_init(&mnt->mnt_child);
937 0 : hlist_del_init(&mnt->mnt_mp_list);
938 0 : hlist_del_init_rcu(&mnt->mnt_hash);
939 :
940 0 : attach_mnt(mnt, parent, mp);
941 :
942 0 : put_mountpoint(old_mp);
943 0 : mnt_add_count(old_parent, -1);
944 0 : }
945 :
946 : /*
947 : * vfsmount lock must be held for write
948 : */
949 0 : static void commit_tree(struct mount *mnt)
950 : {
951 0 : struct mount *parent = mnt->mnt_parent;
952 : struct mount *m;
953 0 : LIST_HEAD(head);
954 0 : struct mnt_namespace *n = parent->mnt_ns;
955 :
956 0 : BUG_ON(parent == mnt);
957 :
958 0 : list_add_tail(&head, &mnt->mnt_list);
959 0 : list_for_each_entry(m, &head, mnt_list)
960 0 : m->mnt_ns = n;
961 :
962 0 : list_splice(&head, n->list.prev);
963 :
964 0 : n->mounts += n->pending_mounts;
965 0 : n->pending_mounts = 0;
966 :
967 0 : __attach_mnt(mnt, parent);
968 0 : touch_mnt_namespace(n);
969 0 : }
970 :
971 : static struct mount *next_mnt(struct mount *p, struct mount *root)
972 : {
973 0 : struct list_head *next = p->mnt_mounts.next;
974 0 : if (next == &p->mnt_mounts) {
975 : while (1) {
976 0 : if (p == root)
977 : return NULL;
978 0 : next = p->mnt_child.next;
979 0 : if (next != &p->mnt_parent->mnt_mounts)
980 : break;
981 : p = p->mnt_parent;
982 : }
983 : }
984 0 : return list_entry(next, struct mount, mnt_child);
985 : }
986 :
987 : static struct mount *skip_mnt_tree(struct mount *p)
988 : {
989 0 : struct list_head *prev = p->mnt_mounts.prev;
990 0 : while (prev != &p->mnt_mounts) {
991 0 : p = list_entry(prev, struct mount, mnt_child);
992 0 : prev = p->mnt_mounts.prev;
993 : }
994 : return p;
995 : }
996 :
997 : /**
998 : * vfs_create_mount - Create a mount for a configured superblock
999 : * @fc: The configuration context with the superblock attached
1000 : *
1001 : * Create a mount to an already configured superblock. If necessary, the
1002 : * caller should invoke vfs_get_tree() before calling this.
1003 : *
1004 : * Note that this does not attach the mount to anything.
1005 : */
1006 27 : struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 : {
1008 : struct mount *mnt;
1009 :
1010 27 : if (!fc->root)
1011 : return ERR_PTR(-EINVAL);
1012 :
1013 27 : mnt = alloc_vfsmnt(fc->source ?: "none");
1014 27 : if (!mnt)
1015 : return ERR_PTR(-ENOMEM);
1016 :
1017 27 : if (fc->sb_flags & SB_KERNMOUNT)
1018 26 : mnt->mnt.mnt_flags = MNT_INTERNAL;
1019 :
1020 54 : atomic_inc(&fc->root->d_sb->s_active);
1021 27 : mnt->mnt.mnt_sb = fc->root->d_sb;
1022 54 : mnt->mnt.mnt_root = dget(fc->root);
1023 27 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1024 27 : mnt->mnt_parent = mnt;
1025 :
1026 : lock_mount_hash();
1027 54 : list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 : unlock_mount_hash();
1029 27 : return &mnt->mnt;
1030 : }
1031 : EXPORT_SYMBOL(vfs_create_mount);
1032 :
1033 27 : struct vfsmount *fc_mount(struct fs_context *fc)
1034 : {
1035 27 : int err = vfs_get_tree(fc);
1036 27 : if (!err) {
1037 27 : up_write(&fc->root->d_sb->s_umount);
1038 27 : return vfs_create_mount(fc);
1039 : }
1040 0 : return ERR_PTR(err);
1041 : }
1042 : EXPORT_SYMBOL(fc_mount);
1043 :
1044 27 : struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 : int flags, const char *name,
1046 : void *data)
1047 : {
1048 : struct fs_context *fc;
1049 : struct vfsmount *mnt;
1050 27 : int ret = 0;
1051 :
1052 27 : if (!type)
1053 : return ERR_PTR(-EINVAL);
1054 :
1055 27 : fc = fs_context_for_mount(type, flags);
1056 27 : if (IS_ERR(fc))
1057 : return ERR_CAST(fc);
1058 :
1059 27 : if (name)
1060 27 : ret = vfs_parse_fs_string(fc, "source",
1061 : name, strlen(name));
1062 27 : if (!ret)
1063 27 : ret = parse_monolithic_mount_data(fc, data);
1064 27 : if (!ret)
1065 27 : mnt = fc_mount(fc);
1066 : else
1067 0 : mnt = ERR_PTR(ret);
1068 :
1069 27 : put_fs_context(fc);
1070 27 : return mnt;
1071 : }
1072 : EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 :
1074 : struct vfsmount *
1075 0 : vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 : const char *name, void *data)
1077 : {
1078 : /* Until it is worked out how to pass the user namespace
1079 : * through from the parent mount to the submount don't support
1080 : * unprivileged mounts with submounts.
1081 : */
1082 0 : if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 : return ERR_PTR(-EPERM);
1084 :
1085 0 : return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 : }
1087 : EXPORT_SYMBOL_GPL(vfs_submount);
1088 :
1089 0 : static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 : int flag)
1091 : {
1092 0 : struct super_block *sb = old->mnt.mnt_sb;
1093 : struct mount *mnt;
1094 : int err;
1095 :
1096 0 : mnt = alloc_vfsmnt(old->mnt_devname);
1097 0 : if (!mnt)
1098 : return ERR_PTR(-ENOMEM);
1099 :
1100 0 : if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 0 : mnt->mnt_group_id = 0; /* not a peer of original */
1102 : else
1103 0 : mnt->mnt_group_id = old->mnt_group_id;
1104 :
1105 0 : if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 0 : err = mnt_alloc_group_id(mnt);
1107 0 : if (err)
1108 : goto out_free;
1109 : }
1110 :
1111 0 : mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 0 : mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113 :
1114 0 : atomic_inc(&sb->s_active);
1115 0 : mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116 :
1117 0 : mnt->mnt.mnt_sb = sb;
1118 0 : mnt->mnt.mnt_root = dget(root);
1119 0 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 0 : mnt->mnt_parent = mnt;
1121 : lock_mount_hash();
1122 0 : list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 : unlock_mount_hash();
1124 :
1125 0 : if ((flag & CL_SLAVE) ||
1126 0 : ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 0 : list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 0 : mnt->mnt_master = old;
1129 0 : CLEAR_MNT_SHARED(mnt);
1130 0 : } else if (!(flag & CL_PRIVATE)) {
1131 0 : if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 0 : list_add(&mnt->mnt_share, &old->mnt_share);
1133 0 : if (IS_MNT_SLAVE(old))
1134 0 : list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 0 : mnt->mnt_master = old->mnt_master;
1136 : } else {
1137 0 : CLEAR_MNT_SHARED(mnt);
1138 : }
1139 0 : if (flag & CL_MAKE_SHARED)
1140 0 : set_mnt_shared(mnt);
1141 :
1142 : /* stick the duplicate mount on the same expiry list
1143 : * as the original if that was on one */
1144 0 : if (flag & CL_EXPIRE) {
1145 0 : if (!list_empty(&old->mnt_expire))
1146 0 : list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 : }
1148 :
1149 : return mnt;
1150 :
1151 : out_free:
1152 0 : mnt_free_id(mnt);
1153 0 : free_vfsmnt(mnt);
1154 0 : return ERR_PTR(err);
1155 : }
1156 :
1157 17 : static void cleanup_mnt(struct mount *mnt)
1158 : {
1159 : struct hlist_node *p;
1160 : struct mount *m;
1161 : /*
1162 : * The warning here probably indicates that somebody messed
1163 : * up a mnt_want/drop_write() pair. If this happens, the
1164 : * filesystem was probably unable to make r/w->r/o transitions.
1165 : * The locking used to deal with mnt_count decrement provides barriers,
1166 : * so mnt_get_writers() below is safe.
1167 : */
1168 17 : WARN_ON(mnt_get_writers(mnt));
1169 17 : if (unlikely(mnt->mnt_pins.first))
1170 0 : mnt_pin_kill(mnt);
1171 17 : hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 0 : hlist_del(&m->mnt_umount);
1173 0 : mntput(&m->mnt);
1174 : }
1175 34 : fsnotify_vfsmount_delete(&mnt->mnt);
1176 17 : dput(mnt->mnt.mnt_root);
1177 17 : deactivate_super(mnt->mnt.mnt_sb);
1178 17 : mnt_free_id(mnt);
1179 17 : call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 17 : }
1181 :
1182 0 : static void __cleanup_mnt(struct rcu_head *head)
1183 : {
1184 0 : cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 0 : }
1186 :
1187 : static LLIST_HEAD(delayed_mntput_list);
1188 0 : static void delayed_mntput(struct work_struct *unused)
1189 : {
1190 0 : struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 : struct mount *m, *t;
1192 :
1193 0 : llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 0 : cleanup_mnt(m);
1195 0 : }
1196 : static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197 :
1198 38 : static void mntput_no_expire(struct mount *mnt)
1199 : {
1200 38 : LIST_HEAD(list);
1201 : int count;
1202 :
1203 : rcu_read_lock();
1204 38 : if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 : /*
1206 : * Since we don't do lock_mount_hash() here,
1207 : * ->mnt_ns can change under us. However, if it's
1208 : * non-NULL, then there's a reference that won't
1209 : * be dropped until after an RCU delay done after
1210 : * turning ->mnt_ns NULL. So if we observe it
1211 : * non-NULL under rcu_read_lock(), the reference
1212 : * we are dropping is not the final one.
1213 : */
1214 6 : mnt_add_count(mnt, -1);
1215 : rcu_read_unlock();
1216 21 : return;
1217 : }
1218 : lock_mount_hash();
1219 : /*
1220 : * make sure that if __legitimize_mnt() has not seen us grab
1221 : * mount_lock, we'll see their refcount increment here.
1222 : */
1223 35 : smp_mb();
1224 70 : mnt_add_count(mnt, -1);
1225 35 : count = mnt_get_count(mnt);
1226 35 : if (count != 0) {
1227 18 : WARN_ON(count < 0);
1228 : rcu_read_unlock();
1229 : unlock_mount_hash();
1230 : return;
1231 : }
1232 17 : if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 : rcu_read_unlock();
1234 : unlock_mount_hash();
1235 : return;
1236 : }
1237 17 : mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 : rcu_read_unlock();
1239 :
1240 34 : list_del(&mnt->mnt_instance);
1241 :
1242 34 : if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 : struct mount *p, *tmp;
1244 0 : list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1245 0 : __put_mountpoint(unhash_mnt(p), &list);
1246 0 : hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 : }
1248 : }
1249 : unlock_mount_hash();
1250 17 : shrink_dentry_list(&list);
1251 :
1252 17 : if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 0 : struct task_struct *task = current;
1254 0 : if (likely(!(task->flags & PF_KTHREAD))) {
1255 0 : init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 0 : if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 : return;
1258 : }
1259 0 : if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 : schedule_delayed_work(&delayed_mntput_work, 1);
1261 : return;
1262 : }
1263 17 : cleanup_mnt(mnt);
1264 : }
1265 :
1266 41 : void mntput(struct vfsmount *mnt)
1267 : {
1268 41 : if (mnt) {
1269 38 : struct mount *m = real_mount(mnt);
1270 : /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 38 : if (unlikely(m->mnt_expiry_mark))
1272 0 : m->mnt_expiry_mark = 0;
1273 38 : mntput_no_expire(m);
1274 : }
1275 41 : }
1276 : EXPORT_SYMBOL(mntput);
1277 :
1278 20 : struct vfsmount *mntget(struct vfsmount *mnt)
1279 : {
1280 20 : if (mnt)
1281 20 : mnt_add_count(real_mount(mnt), 1);
1282 20 : return mnt;
1283 : }
1284 : EXPORT_SYMBOL(mntget);
1285 :
1286 : /*
1287 : * Make a mount point inaccessible to new lookups.
1288 : * Because there may still be current users, the caller MUST WAIT
1289 : * for an RCU grace period before destroying the mount point.
1290 : */
1291 0 : void mnt_make_shortterm(struct vfsmount *mnt)
1292 : {
1293 0 : if (mnt)
1294 0 : real_mount(mnt)->mnt_ns = NULL;
1295 0 : }
1296 :
1297 : /**
1298 : * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299 : * @path: path to check
1300 : *
1301 : * d_mountpoint() can only be used reliably to establish if a dentry is
1302 : * not mounted in any namespace and that common case is handled inline.
1303 : * d_mountpoint() isn't aware of the possibility there may be multiple
1304 : * mounts using a given dentry in a different namespace. This function
1305 : * checks if the passed in path is a mountpoint rather than the dentry
1306 : * alone.
1307 : */
1308 0 : bool path_is_mountpoint(const struct path *path)
1309 : {
1310 : unsigned seq;
1311 : bool res;
1312 :
1313 0 : if (!d_mountpoint(path->dentry))
1314 : return false;
1315 :
1316 : rcu_read_lock();
1317 : do {
1318 0 : seq = read_seqbegin(&mount_lock);
1319 0 : res = __path_is_mountpoint(path);
1320 0 : } while (read_seqretry(&mount_lock, seq));
1321 : rcu_read_unlock();
1322 :
1323 0 : return res;
1324 : }
1325 : EXPORT_SYMBOL(path_is_mountpoint);
1326 :
1327 0 : struct vfsmount *mnt_clone_internal(const struct path *path)
1328 : {
1329 : struct mount *p;
1330 0 : p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 0 : if (IS_ERR(p))
1332 : return ERR_CAST(p);
1333 0 : p->mnt.mnt_flags |= MNT_INTERNAL;
1334 0 : return &p->mnt;
1335 : }
1336 :
1337 : #ifdef CONFIG_PROC_FS
1338 : static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 : struct list_head *p)
1340 : {
1341 0 : struct mount *mnt, *ret = NULL;
1342 :
1343 0 : lock_ns_list(ns);
1344 0 : list_for_each_continue(p, &ns->list) {
1345 0 : mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 0 : if (!mnt_is_cursor(mnt)) {
1347 : ret = mnt;
1348 : break;
1349 : }
1350 : }
1351 0 : unlock_ns_list(ns);
1352 :
1353 : return ret;
1354 : }
1355 :
1356 : /* iterator; we want it to have access to namespace_sem, thus here... */
1357 0 : static void *m_start(struct seq_file *m, loff_t *pos)
1358 : {
1359 0 : struct proc_mounts *p = m->private;
1360 : struct list_head *prev;
1361 :
1362 0 : down_read(&namespace_sem);
1363 0 : if (!*pos) {
1364 0 : prev = &p->ns->list;
1365 : } else {
1366 0 : prev = &p->cursor.mnt_list;
1367 :
1368 : /* Read after we'd reached the end? */
1369 0 : if (list_empty(prev))
1370 : return NULL;
1371 : }
1372 :
1373 0 : return mnt_list_next(p->ns, prev);
1374 : }
1375 :
1376 0 : static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377 : {
1378 0 : struct proc_mounts *p = m->private;
1379 0 : struct mount *mnt = v;
1380 :
1381 0 : ++*pos;
1382 0 : return mnt_list_next(p->ns, &mnt->mnt_list);
1383 : }
1384 :
1385 0 : static void m_stop(struct seq_file *m, void *v)
1386 : {
1387 0 : struct proc_mounts *p = m->private;
1388 0 : struct mount *mnt = v;
1389 :
1390 0 : lock_ns_list(p->ns);
1391 0 : if (mnt)
1392 0 : list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 : else
1394 0 : list_del_init(&p->cursor.mnt_list);
1395 0 : unlock_ns_list(p->ns);
1396 0 : up_read(&namespace_sem);
1397 0 : }
1398 :
1399 0 : static int m_show(struct seq_file *m, void *v)
1400 : {
1401 0 : struct proc_mounts *p = m->private;
1402 0 : struct mount *r = v;
1403 0 : return p->show(m, &r->mnt);
1404 : }
1405 :
1406 : const struct seq_operations mounts_op = {
1407 : .start = m_start,
1408 : .next = m_next,
1409 : .stop = m_stop,
1410 : .show = m_show,
1411 : };
1412 :
1413 0 : void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414 : {
1415 0 : down_read(&namespace_sem);
1416 0 : lock_ns_list(ns);
1417 0 : list_del(&cursor->mnt_list);
1418 0 : unlock_ns_list(ns);
1419 0 : up_read(&namespace_sem);
1420 0 : }
1421 : #endif /* CONFIG_PROC_FS */
1422 :
1423 : /**
1424 : * may_umount_tree - check if a mount tree is busy
1425 : * @m: root of mount tree
1426 : *
1427 : * This is called to check if a tree of mounts has any
1428 : * open files, pwds, chroots or sub mounts that are
1429 : * busy.
1430 : */
1431 0 : int may_umount_tree(struct vfsmount *m)
1432 : {
1433 0 : struct mount *mnt = real_mount(m);
1434 0 : int actual_refs = 0;
1435 0 : int minimum_refs = 0;
1436 : struct mount *p;
1437 0 : BUG_ON(!m);
1438 :
1439 : /* write lock needed for mnt_get_count */
1440 : lock_mount_hash();
1441 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
1442 0 : actual_refs += mnt_get_count(p);
1443 0 : minimum_refs += 2;
1444 : }
1445 : unlock_mount_hash();
1446 :
1447 0 : if (actual_refs > minimum_refs)
1448 : return 0;
1449 :
1450 0 : return 1;
1451 : }
1452 :
1453 : EXPORT_SYMBOL(may_umount_tree);
1454 :
1455 : /**
1456 : * may_umount - check if a mount point is busy
1457 : * @mnt: root of mount
1458 : *
1459 : * This is called to check if a mount point has any
1460 : * open files, pwds, chroots or sub mounts. If the
1461 : * mount has sub mounts this will return busy
1462 : * regardless of whether the sub mounts are busy.
1463 : *
1464 : * Doesn't take quota and stuff into account. IOW, in some cases it will
1465 : * give false negatives. The main reason why it's here is that we need
1466 : * a non-destructive way to look for easily umountable filesystems.
1467 : */
1468 0 : int may_umount(struct vfsmount *mnt)
1469 : {
1470 0 : int ret = 1;
1471 0 : down_read(&namespace_sem);
1472 0 : lock_mount_hash();
1473 0 : if (propagate_mount_busy(real_mount(mnt), 2))
1474 0 : ret = 0;
1475 : unlock_mount_hash();
1476 0 : up_read(&namespace_sem);
1477 0 : return ret;
1478 : }
1479 :
1480 : EXPORT_SYMBOL(may_umount);
1481 :
1482 0 : static void namespace_unlock(void)
1483 : {
1484 : struct hlist_head head;
1485 : struct hlist_node *p;
1486 : struct mount *m;
1487 0 : LIST_HEAD(list);
1488 :
1489 0 : hlist_move_list(&unmounted, &head);
1490 0 : list_splice_init(&ex_mountpoints, &list);
1491 :
1492 0 : up_write(&namespace_sem);
1493 :
1494 0 : shrink_dentry_list(&list);
1495 :
1496 0 : if (likely(hlist_empty(&head)))
1497 0 : return;
1498 :
1499 : synchronize_rcu_expedited();
1500 :
1501 0 : hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 0 : hlist_del(&m->mnt_umount);
1503 0 : mntput(&m->mnt);
1504 : }
1505 : }
1506 :
1507 : static inline void namespace_lock(void)
1508 : {
1509 0 : down_write(&namespace_sem);
1510 : }
1511 :
1512 : enum umount_tree_flags {
1513 : UMOUNT_SYNC = 1,
1514 : UMOUNT_PROPAGATE = 2,
1515 : UMOUNT_CONNECTED = 4,
1516 : };
1517 :
1518 : static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519 : {
1520 : /* Leaving mounts connected is only valid for lazy umounts */
1521 0 : if (how & UMOUNT_SYNC)
1522 : return true;
1523 :
1524 : /* A mount without a parent has nothing to be connected to */
1525 0 : if (!mnt_has_parent(mnt))
1526 : return true;
1527 :
1528 : /* Because the reference counting rules change when mounts are
1529 : * unmounted and connected, umounted mounts may not be
1530 : * connected to mounted mounts.
1531 : */
1532 0 : if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 : return true;
1534 :
1535 : /* Has it been requested that the mount remain connected? */
1536 0 : if (how & UMOUNT_CONNECTED)
1537 : return false;
1538 :
1539 : /* Is the mount locked such that it needs to remain connected? */
1540 0 : if (IS_MNT_LOCKED(mnt))
1541 : return false;
1542 :
1543 : /* By default disconnect the mount */
1544 : return true;
1545 : }
1546 :
1547 : /*
1548 : * mount_lock must be held
1549 : * namespace_sem must be held for write
1550 : */
1551 0 : static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1552 : {
1553 0 : LIST_HEAD(tmp_list);
1554 : struct mount *p;
1555 :
1556 0 : if (how & UMOUNT_PROPAGATE)
1557 0 : propagate_mount_unlock(mnt);
1558 :
1559 : /* Gather the mounts to umount */
1560 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 0 : p->mnt.mnt_flags |= MNT_UMOUNT;
1562 0 : list_move(&p->mnt_list, &tmp_list);
1563 : }
1564 :
1565 : /* Hide the mounts from mnt_mounts */
1566 0 : list_for_each_entry(p, &tmp_list, mnt_list) {
1567 0 : list_del_init(&p->mnt_child);
1568 : }
1569 :
1570 : /* Add propogated mounts to the tmp_list */
1571 0 : if (how & UMOUNT_PROPAGATE)
1572 0 : propagate_umount(&tmp_list);
1573 :
1574 0 : while (!list_empty(&tmp_list)) {
1575 : struct mnt_namespace *ns;
1576 : bool disconnect;
1577 0 : p = list_first_entry(&tmp_list, struct mount, mnt_list);
1578 0 : list_del_init(&p->mnt_expire);
1579 0 : list_del_init(&p->mnt_list);
1580 0 : ns = p->mnt_ns;
1581 0 : if (ns) {
1582 0 : ns->mounts--;
1583 0 : __touch_mnt_namespace(ns);
1584 : }
1585 0 : p->mnt_ns = NULL;
1586 0 : if (how & UMOUNT_SYNC)
1587 0 : p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1588 :
1589 0 : disconnect = disconnect_mount(p, how);
1590 0 : if (mnt_has_parent(p)) {
1591 0 : mnt_add_count(p->mnt_parent, -1);
1592 0 : if (!disconnect) {
1593 : /* Don't forget about p */
1594 0 : list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 : } else {
1596 : umount_mnt(p);
1597 : }
1598 : }
1599 0 : change_mnt_propagation(p, MS_PRIVATE);
1600 0 : if (disconnect)
1601 0 : hlist_add_head(&p->mnt_umount, &unmounted);
1602 : }
1603 0 : }
1604 :
1605 : static void shrink_submounts(struct mount *mnt);
1606 :
1607 0 : static int do_umount_root(struct super_block *sb)
1608 : {
1609 0 : int ret = 0;
1610 :
1611 0 : down_write(&sb->s_umount);
1612 0 : if (!sb_rdonly(sb)) {
1613 : struct fs_context *fc;
1614 :
1615 0 : fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 : SB_RDONLY);
1617 0 : if (IS_ERR(fc)) {
1618 0 : ret = PTR_ERR(fc);
1619 : } else {
1620 0 : ret = parse_monolithic_mount_data(fc, NULL);
1621 0 : if (!ret)
1622 0 : ret = reconfigure_super(fc);
1623 0 : put_fs_context(fc);
1624 : }
1625 : }
1626 0 : up_write(&sb->s_umount);
1627 0 : return ret;
1628 : }
1629 :
1630 0 : static int do_umount(struct mount *mnt, int flags)
1631 : {
1632 0 : struct super_block *sb = mnt->mnt.mnt_sb;
1633 : int retval;
1634 :
1635 0 : retval = security_sb_umount(&mnt->mnt, flags);
1636 : if (retval)
1637 : return retval;
1638 :
1639 : /*
1640 : * Allow userspace to request a mountpoint be expired rather than
1641 : * unmounting unconditionally. Unmount only happens if:
1642 : * (1) the mark is already set (the mark is cleared by mntput())
1643 : * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 : */
1645 0 : if (flags & MNT_EXPIRE) {
1646 0 : if (&mnt->mnt == current->fs->root.mnt ||
1647 0 : flags & (MNT_FORCE | MNT_DETACH))
1648 : return -EINVAL;
1649 :
1650 : /*
1651 : * probably don't strictly need the lock here if we examined
1652 : * all race cases, but it's a slowpath.
1653 : */
1654 0 : lock_mount_hash();
1655 0 : if (mnt_get_count(mnt) != 2) {
1656 : unlock_mount_hash();
1657 0 : return -EBUSY;
1658 : }
1659 : unlock_mount_hash();
1660 :
1661 0 : if (!xchg(&mnt->mnt_expiry_mark, 1))
1662 : return -EAGAIN;
1663 : }
1664 :
1665 : /*
1666 : * If we may have to abort operations to get out of this
1667 : * mount, and they will themselves hold resources we must
1668 : * allow the fs to do things. In the Unix tradition of
1669 : * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 : * might fail to complete on the first run through as other tasks
1671 : * must return, and the like. Thats for the mount program to worry
1672 : * about for the moment.
1673 : */
1674 :
1675 0 : if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1676 0 : sb->s_op->umount_begin(sb);
1677 : }
1678 :
1679 : /*
1680 : * No sense to grab the lock for this test, but test itself looks
1681 : * somewhat bogus. Suggestions for better replacement?
1682 : * Ho-hum... In principle, we might treat that as umount + switch
1683 : * to rootfs. GC would eventually take care of the old vfsmount.
1684 : * Actually it makes sense, especially if rootfs would contain a
1685 : * /reboot - static binary that would close all descriptors and
1686 : * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 : */
1688 0 : if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1689 : /*
1690 : * Special case for "unmounting" root ...
1691 : * we just try to remount it readonly.
1692 : */
1693 0 : if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1694 : return -EPERM;
1695 0 : return do_umount_root(sb);
1696 : }
1697 :
1698 : namespace_lock();
1699 : lock_mount_hash();
1700 :
1701 : /* Recheck MNT_LOCKED with the locks held */
1702 0 : retval = -EINVAL;
1703 0 : if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 : goto out;
1705 :
1706 0 : event++;
1707 0 : if (flags & MNT_DETACH) {
1708 0 : if (!list_empty(&mnt->mnt_list))
1709 0 : umount_tree(mnt, UMOUNT_PROPAGATE);
1710 : retval = 0;
1711 : } else {
1712 0 : shrink_submounts(mnt);
1713 0 : retval = -EBUSY;
1714 0 : if (!propagate_mount_busy(mnt, 2)) {
1715 0 : if (!list_empty(&mnt->mnt_list))
1716 0 : umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1717 : retval = 0;
1718 : }
1719 : }
1720 : out:
1721 : unlock_mount_hash();
1722 0 : namespace_unlock();
1723 0 : return retval;
1724 : }
1725 :
1726 : /*
1727 : * __detach_mounts - lazily unmount all mounts on the specified dentry
1728 : *
1729 : * During unlink, rmdir, and d_drop it is possible to loose the path
1730 : * to an existing mountpoint, and wind up leaking the mount.
1731 : * detach_mounts allows lazily unmounting those mounts instead of
1732 : * leaking them.
1733 : *
1734 : * The caller may hold dentry->d_inode->i_mutex.
1735 : */
1736 0 : void __detach_mounts(struct dentry *dentry)
1737 : {
1738 : struct mountpoint *mp;
1739 : struct mount *mnt;
1740 :
1741 : namespace_lock();
1742 : lock_mount_hash();
1743 0 : mp = lookup_mountpoint(dentry);
1744 0 : if (!mp)
1745 : goto out_unlock;
1746 :
1747 0 : event++;
1748 0 : while (!hlist_empty(&mp->m_list)) {
1749 0 : mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1750 0 : if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1751 0 : umount_mnt(mnt);
1752 0 : hlist_add_head(&mnt->mnt_umount, &unmounted);
1753 : }
1754 0 : else umount_tree(mnt, UMOUNT_CONNECTED);
1755 : }
1756 : put_mountpoint(mp);
1757 : out_unlock:
1758 : unlock_mount_hash();
1759 0 : namespace_unlock();
1760 0 : }
1761 :
1762 : /*
1763 : * Is the caller allowed to modify his namespace?
1764 : */
1765 0 : bool may_mount(void)
1766 : {
1767 0 : return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 : }
1769 :
1770 0 : static void warn_mandlock(void)
1771 : {
1772 0 : pr_warn_once("=======================================================\n"
1773 : "WARNING: The mand mount option has been deprecated and\n"
1774 : " and is ignored by this kernel. Remove the mand\n"
1775 : " option from the mount to silence this warning.\n"
1776 : "=======================================================\n");
1777 0 : }
1778 :
1779 0 : static int can_umount(const struct path *path, int flags)
1780 : {
1781 0 : struct mount *mnt = real_mount(path->mnt);
1782 :
1783 0 : if (!may_mount())
1784 : return -EPERM;
1785 0 : if (path->dentry != path->mnt->mnt_root)
1786 : return -EINVAL;
1787 0 : if (!check_mnt(mnt))
1788 : return -EINVAL;
1789 0 : if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1790 : return -EINVAL;
1791 0 : if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1792 : return -EPERM;
1793 : return 0;
1794 : }
1795 :
1796 : // caller is responsible for flags being sane
1797 0 : int path_umount(struct path *path, int flags)
1798 : {
1799 0 : struct mount *mnt = real_mount(path->mnt);
1800 : int ret;
1801 :
1802 0 : ret = can_umount(path, flags);
1803 0 : if (!ret)
1804 0 : ret = do_umount(mnt, flags);
1805 :
1806 : /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1807 0 : dput(path->dentry);
1808 0 : mntput_no_expire(mnt);
1809 0 : return ret;
1810 : }
1811 :
1812 0 : static int ksys_umount(char __user *name, int flags)
1813 : {
1814 0 : int lookup_flags = LOOKUP_MOUNTPOINT;
1815 : struct path path;
1816 : int ret;
1817 :
1818 : // basic validity checks done first
1819 0 : if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 : return -EINVAL;
1821 :
1822 0 : if (!(flags & UMOUNT_NOFOLLOW))
1823 0 : lookup_flags |= LOOKUP_FOLLOW;
1824 0 : ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 0 : if (ret)
1826 : return ret;
1827 0 : return path_umount(&path, flags);
1828 : }
1829 :
1830 0 : SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1831 : {
1832 0 : return ksys_umount(name, flags);
1833 : }
1834 :
1835 : #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836 :
1837 : /*
1838 : * The 2.0 compatible umount. No flags.
1839 : */
1840 0 : SYSCALL_DEFINE1(oldumount, char __user *, name)
1841 : {
1842 0 : return ksys_umount(name, 0);
1843 : }
1844 :
1845 : #endif
1846 :
1847 : static bool is_mnt_ns_file(struct dentry *dentry)
1848 : {
1849 : /* Is this a proxy for a mount namespace? */
1850 0 : return dentry->d_op == &ns_dentry_operations &&
1851 0 : dentry->d_fsdata == &mntns_operations;
1852 : }
1853 :
1854 : static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1855 : {
1856 0 : return container_of(ns, struct mnt_namespace, ns);
1857 : }
1858 :
1859 0 : struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1860 : {
1861 0 : return &mnt->ns;
1862 : }
1863 :
1864 : static bool mnt_ns_loop(struct dentry *dentry)
1865 : {
1866 : /* Could bind mounting the mount namespace inode cause a
1867 : * mount namespace loop?
1868 : */
1869 : struct mnt_namespace *mnt_ns;
1870 0 : if (!is_mnt_ns_file(dentry))
1871 : return false;
1872 :
1873 0 : mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1874 0 : return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875 : }
1876 :
1877 0 : struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1878 : int flag)
1879 : {
1880 : struct mount *res, *p, *q, *r, *parent;
1881 :
1882 0 : if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1883 : return ERR_PTR(-EINVAL);
1884 :
1885 0 : if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1886 : return ERR_PTR(-EINVAL);
1887 :
1888 0 : res = q = clone_mnt(mnt, dentry, flag);
1889 0 : if (IS_ERR(q))
1890 : return q;
1891 :
1892 0 : q->mnt_mountpoint = mnt->mnt_mountpoint;
1893 :
1894 0 : p = mnt;
1895 0 : list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1896 : struct mount *s;
1897 0 : if (!is_subdir(r->mnt_mountpoint, dentry))
1898 0 : continue;
1899 :
1900 0 : for (s = r; s; s = next_mnt(s, r)) {
1901 0 : if (!(flag & CL_COPY_UNBINDABLE) &&
1902 0 : IS_MNT_UNBINDABLE(s)) {
1903 0 : if (s->mnt.mnt_flags & MNT_LOCKED) {
1904 : /* Both unbindable and locked. */
1905 : q = ERR_PTR(-EPERM);
1906 : goto out;
1907 : } else {
1908 0 : s = skip_mnt_tree(s);
1909 0 : continue;
1910 : }
1911 : }
1912 0 : if (!(flag & CL_COPY_MNT_NS_FILE) &&
1913 0 : is_mnt_ns_file(s->mnt.mnt_root)) {
1914 0 : s = skip_mnt_tree(s);
1915 0 : continue;
1916 : }
1917 0 : while (p != s->mnt_parent) {
1918 0 : p = p->mnt_parent;
1919 0 : q = q->mnt_parent;
1920 : }
1921 0 : p = s;
1922 0 : parent = q;
1923 0 : q = clone_mnt(p, p->mnt.mnt_root, flag);
1924 0 : if (IS_ERR(q))
1925 : goto out;
1926 : lock_mount_hash();
1927 0 : list_add_tail(&q->mnt_list, &res->mnt_list);
1928 0 : attach_mnt(q, parent, p->mnt_mp);
1929 : unlock_mount_hash();
1930 : }
1931 : }
1932 : return res;
1933 : out:
1934 0 : if (res) {
1935 : lock_mount_hash();
1936 0 : umount_tree(res, UMOUNT_SYNC);
1937 : unlock_mount_hash();
1938 : }
1939 : return q;
1940 : }
1941 :
1942 : /* Caller should check returned pointer for errors */
1943 :
1944 0 : struct vfsmount *collect_mounts(const struct path *path)
1945 : {
1946 : struct mount *tree;
1947 : namespace_lock();
1948 0 : if (!check_mnt(real_mount(path->mnt)))
1949 : tree = ERR_PTR(-EINVAL);
1950 : else
1951 0 : tree = copy_tree(real_mount(path->mnt), path->dentry,
1952 : CL_COPY_ALL | CL_PRIVATE);
1953 0 : namespace_unlock();
1954 0 : if (IS_ERR(tree))
1955 : return ERR_CAST(tree);
1956 0 : return &tree->mnt;
1957 : }
1958 :
1959 : static void free_mnt_ns(struct mnt_namespace *);
1960 : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1961 :
1962 0 : void dissolve_on_fput(struct vfsmount *mnt)
1963 : {
1964 : struct mnt_namespace *ns;
1965 : namespace_lock();
1966 0 : lock_mount_hash();
1967 0 : ns = real_mount(mnt)->mnt_ns;
1968 0 : if (ns) {
1969 0 : if (is_anon_ns(ns))
1970 0 : umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1971 : else
1972 : ns = NULL;
1973 : }
1974 : unlock_mount_hash();
1975 0 : namespace_unlock();
1976 0 : if (ns)
1977 0 : free_mnt_ns(ns);
1978 0 : }
1979 :
1980 0 : void drop_collected_mounts(struct vfsmount *mnt)
1981 : {
1982 : namespace_lock();
1983 0 : lock_mount_hash();
1984 0 : umount_tree(real_mount(mnt), 0);
1985 : unlock_mount_hash();
1986 0 : namespace_unlock();
1987 0 : }
1988 :
1989 0 : static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1990 : {
1991 : struct mount *child;
1992 :
1993 0 : list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1994 0 : if (!is_subdir(child->mnt_mountpoint, dentry))
1995 0 : continue;
1996 :
1997 0 : if (child->mnt.mnt_flags & MNT_LOCKED)
1998 : return true;
1999 : }
2000 : return false;
2001 : }
2002 :
2003 : /**
2004 : * clone_private_mount - create a private clone of a path
2005 : * @path: path to clone
2006 : *
2007 : * This creates a new vfsmount, which will be the clone of @path. The new mount
2008 : * will not be attached anywhere in the namespace and will be private (i.e.
2009 : * changes to the originating mount won't be propagated into this).
2010 : *
2011 : * Release with mntput().
2012 : */
2013 0 : struct vfsmount *clone_private_mount(const struct path *path)
2014 : {
2015 0 : struct mount *old_mnt = real_mount(path->mnt);
2016 : struct mount *new_mnt;
2017 :
2018 0 : down_read(&namespace_sem);
2019 0 : if (IS_MNT_UNBINDABLE(old_mnt))
2020 : goto invalid;
2021 :
2022 0 : if (!check_mnt(old_mnt))
2023 : goto invalid;
2024 :
2025 0 : if (has_locked_children(old_mnt, path->dentry))
2026 : goto invalid;
2027 :
2028 0 : new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2029 0 : up_read(&namespace_sem);
2030 :
2031 0 : if (IS_ERR(new_mnt))
2032 : return ERR_CAST(new_mnt);
2033 :
2034 : /* Longterm mount to be removed by kern_unmount*() */
2035 0 : new_mnt->mnt_ns = MNT_NS_INTERNAL;
2036 :
2037 0 : return &new_mnt->mnt;
2038 :
2039 : invalid:
2040 0 : up_read(&namespace_sem);
2041 0 : return ERR_PTR(-EINVAL);
2042 : }
2043 : EXPORT_SYMBOL_GPL(clone_private_mount);
2044 :
2045 0 : int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2046 : struct vfsmount *root)
2047 : {
2048 : struct mount *mnt;
2049 0 : int res = f(root, arg);
2050 0 : if (res)
2051 : return res;
2052 0 : list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2053 0 : res = f(&mnt->mnt, arg);
2054 0 : if (res)
2055 : return res;
2056 : }
2057 : return 0;
2058 : }
2059 :
2060 0 : static void lock_mnt_tree(struct mount *mnt)
2061 : {
2062 : struct mount *p;
2063 :
2064 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2065 0 : int flags = p->mnt.mnt_flags;
2066 : /* Don't allow unprivileged users to change mount flags */
2067 0 : flags |= MNT_LOCK_ATIME;
2068 :
2069 0 : if (flags & MNT_READONLY)
2070 0 : flags |= MNT_LOCK_READONLY;
2071 :
2072 0 : if (flags & MNT_NODEV)
2073 0 : flags |= MNT_LOCK_NODEV;
2074 :
2075 0 : if (flags & MNT_NOSUID)
2076 0 : flags |= MNT_LOCK_NOSUID;
2077 :
2078 0 : if (flags & MNT_NOEXEC)
2079 0 : flags |= MNT_LOCK_NOEXEC;
2080 : /* Don't allow unprivileged users to reveal what is under a mount */
2081 0 : if (list_empty(&p->mnt_expire))
2082 0 : flags |= MNT_LOCKED;
2083 0 : p->mnt.mnt_flags = flags;
2084 : }
2085 0 : }
2086 :
2087 0 : static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2088 : {
2089 : struct mount *p;
2090 :
2091 0 : for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2092 0 : if (p->mnt_group_id && !IS_MNT_SHARED(p))
2093 : mnt_release_group_id(p);
2094 : }
2095 0 : }
2096 :
2097 0 : static int invent_group_ids(struct mount *mnt, bool recurse)
2098 : {
2099 : struct mount *p;
2100 :
2101 0 : for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2102 0 : if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2103 0 : int err = mnt_alloc_group_id(p);
2104 0 : if (err) {
2105 0 : cleanup_group_ids(mnt, p);
2106 0 : return err;
2107 : }
2108 : }
2109 : }
2110 :
2111 : return 0;
2112 : }
2113 :
2114 0 : int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2115 : {
2116 0 : unsigned int max = READ_ONCE(sysctl_mount_max);
2117 0 : unsigned int mounts = 0;
2118 : struct mount *p;
2119 :
2120 0 : if (ns->mounts >= max)
2121 : return -ENOSPC;
2122 0 : max -= ns->mounts;
2123 0 : if (ns->pending_mounts >= max)
2124 : return -ENOSPC;
2125 0 : max -= ns->pending_mounts;
2126 :
2127 0 : for (p = mnt; p; p = next_mnt(p, mnt))
2128 0 : mounts++;
2129 :
2130 0 : if (mounts > max)
2131 : return -ENOSPC;
2132 :
2133 0 : ns->pending_mounts += mounts;
2134 0 : return 0;
2135 : }
2136 :
2137 : /*
2138 : * @source_mnt : mount tree to be attached
2139 : * @nd : place the mount tree @source_mnt is attached
2140 : * @parent_nd : if non-null, detach the source_mnt from its parent and
2141 : * store the parent mount and mountpoint dentry.
2142 : * (done when source_mnt is moved)
2143 : *
2144 : * NOTE: in the table below explains the semantics when a source mount
2145 : * of a given type is attached to a destination mount of a given type.
2146 : * ---------------------------------------------------------------------------
2147 : * | BIND MOUNT OPERATION |
2148 : * |**************************************************************************
2149 : * | source-->| shared | private | slave | unbindable |
2150 : * | dest | | | | |
2151 : * | | | | | | |
2152 : * | v | | | | |
2153 : * |**************************************************************************
2154 : * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2155 : * | | | | | |
2156 : * |non-shared| shared (+) | private | slave (*) | invalid |
2157 : * ***************************************************************************
2158 : * A bind operation clones the source mount and mounts the clone on the
2159 : * destination mount.
2160 : *
2161 : * (++) the cloned mount is propagated to all the mounts in the propagation
2162 : * tree of the destination mount and the cloned mount is added to
2163 : * the peer group of the source mount.
2164 : * (+) the cloned mount is created under the destination mount and is marked
2165 : * as shared. The cloned mount is added to the peer group of the source
2166 : * mount.
2167 : * (+++) the mount is propagated to all the mounts in the propagation tree
2168 : * of the destination mount and the cloned mount is made slave
2169 : * of the same master as that of the source mount. The cloned mount
2170 : * is marked as 'shared and slave'.
2171 : * (*) the cloned mount is made a slave of the same master as that of the
2172 : * source mount.
2173 : *
2174 : * ---------------------------------------------------------------------------
2175 : * | MOVE MOUNT OPERATION |
2176 : * |**************************************************************************
2177 : * | source-->| shared | private | slave | unbindable |
2178 : * | dest | | | | |
2179 : * | | | | | | |
2180 : * | v | | | | |
2181 : * |**************************************************************************
2182 : * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2183 : * | | | | | |
2184 : * |non-shared| shared (+*) | private | slave (*) | unbindable |
2185 : * ***************************************************************************
2186 : *
2187 : * (+) the mount is moved to the destination. And is then propagated to
2188 : * all the mounts in the propagation tree of the destination mount.
2189 : * (+*) the mount is moved to the destination.
2190 : * (+++) the mount is moved to the destination and is then propagated to
2191 : * all the mounts belonging to the destination mount's propagation tree.
2192 : * the mount is marked as 'shared and slave'.
2193 : * (*) the mount continues to be a slave at the new location.
2194 : *
2195 : * if the source mount is a tree, the operations explained above is
2196 : * applied to each mount in the tree.
2197 : * Must be called without spinlocks held, since this function can sleep
2198 : * in allocations.
2199 : */
2200 0 : static int attach_recursive_mnt(struct mount *source_mnt,
2201 : struct mount *dest_mnt,
2202 : struct mountpoint *dest_mp,
2203 : bool moving)
2204 : {
2205 0 : struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2206 0 : HLIST_HEAD(tree_list);
2207 0 : struct mnt_namespace *ns = dest_mnt->mnt_ns;
2208 : struct mountpoint *smp;
2209 : struct mount *child, *p;
2210 : struct hlist_node *n;
2211 : int err;
2212 :
2213 : /* Preallocate a mountpoint in case the new mounts need
2214 : * to be tucked under other mounts.
2215 : */
2216 0 : smp = get_mountpoint(source_mnt->mnt.mnt_root);
2217 0 : if (IS_ERR(smp))
2218 0 : return PTR_ERR(smp);
2219 :
2220 : /* Is there space to add these mounts to the mount namespace? */
2221 0 : if (!moving) {
2222 0 : err = count_mounts(ns, source_mnt);
2223 0 : if (err)
2224 : goto out;
2225 : }
2226 :
2227 0 : if (IS_MNT_SHARED(dest_mnt)) {
2228 0 : err = invent_group_ids(source_mnt, true);
2229 0 : if (err)
2230 : goto out;
2231 0 : err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2232 : lock_mount_hash();
2233 0 : if (err)
2234 : goto out_cleanup_ids;
2235 0 : for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2236 0 : set_mnt_shared(p);
2237 : } else {
2238 : lock_mount_hash();
2239 : }
2240 0 : if (moving) {
2241 0 : unhash_mnt(source_mnt);
2242 0 : attach_mnt(source_mnt, dest_mnt, dest_mp);
2243 0 : touch_mnt_namespace(source_mnt->mnt_ns);
2244 : } else {
2245 0 : if (source_mnt->mnt_ns) {
2246 : /* move from anon - the caller will destroy */
2247 0 : list_del_init(&source_mnt->mnt_ns->list);
2248 : }
2249 0 : mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2250 0 : commit_tree(source_mnt);
2251 : }
2252 :
2253 0 : hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2254 : struct mount *q;
2255 0 : hlist_del_init(&child->mnt_hash);
2256 0 : q = __lookup_mnt(&child->mnt_parent->mnt,
2257 : child->mnt_mountpoint);
2258 0 : if (q)
2259 0 : mnt_change_mountpoint(child, smp, q);
2260 : /* Notice when we are propagating across user namespaces */
2261 0 : if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2262 0 : lock_mnt_tree(child);
2263 0 : child->mnt.mnt_flags &= ~MNT_LOCKED;
2264 0 : commit_tree(child);
2265 : }
2266 0 : put_mountpoint(smp);
2267 : unlock_mount_hash();
2268 :
2269 0 : return 0;
2270 :
2271 : out_cleanup_ids:
2272 0 : while (!hlist_empty(&tree_list)) {
2273 0 : child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2274 0 : child->mnt_parent->mnt_ns->pending_mounts = 0;
2275 0 : umount_tree(child, UMOUNT_SYNC);
2276 : }
2277 : unlock_mount_hash();
2278 0 : cleanup_group_ids(source_mnt, NULL);
2279 : out:
2280 0 : ns->pending_mounts = 0;
2281 :
2282 0 : read_seqlock_excl(&mount_lock);
2283 0 : put_mountpoint(smp);
2284 0 : read_sequnlock_excl(&mount_lock);
2285 :
2286 0 : return err;
2287 : }
2288 :
2289 0 : static struct mountpoint *lock_mount(struct path *path)
2290 : {
2291 : struct vfsmount *mnt;
2292 0 : struct dentry *dentry = path->dentry;
2293 : retry:
2294 0 : inode_lock(dentry->d_inode);
2295 0 : if (unlikely(cant_mount(dentry))) {
2296 0 : inode_unlock(dentry->d_inode);
2297 0 : return ERR_PTR(-ENOENT);
2298 : }
2299 : namespace_lock();
2300 0 : mnt = lookup_mnt(path);
2301 0 : if (likely(!mnt)) {
2302 0 : struct mountpoint *mp = get_mountpoint(dentry);
2303 0 : if (IS_ERR(mp)) {
2304 0 : namespace_unlock();
2305 0 : inode_unlock(dentry->d_inode);
2306 0 : return mp;
2307 : }
2308 : return mp;
2309 : }
2310 0 : namespace_unlock();
2311 0 : inode_unlock(path->dentry->d_inode);
2312 0 : path_put(path);
2313 0 : path->mnt = mnt;
2314 0 : dentry = path->dentry = dget(mnt->mnt_root);
2315 0 : goto retry;
2316 : }
2317 :
2318 0 : static void unlock_mount(struct mountpoint *where)
2319 : {
2320 0 : struct dentry *dentry = where->m_dentry;
2321 :
2322 0 : read_seqlock_excl(&mount_lock);
2323 0 : put_mountpoint(where);
2324 0 : read_sequnlock_excl(&mount_lock);
2325 :
2326 0 : namespace_unlock();
2327 0 : inode_unlock(dentry->d_inode);
2328 0 : }
2329 :
2330 0 : static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2331 : {
2332 0 : if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2333 : return -EINVAL;
2334 :
2335 0 : if (d_is_dir(mp->m_dentry) !=
2336 0 : d_is_dir(mnt->mnt.mnt_root))
2337 : return -ENOTDIR;
2338 :
2339 0 : return attach_recursive_mnt(mnt, p, mp, false);
2340 : }
2341 :
2342 : /*
2343 : * Sanity check the flags to change_mnt_propagation.
2344 : */
2345 :
2346 : static int flags_to_propagation_type(int ms_flags)
2347 : {
2348 0 : int type = ms_flags & ~(MS_REC | MS_SILENT);
2349 :
2350 : /* Fail if any non-propagation flags are set */
2351 0 : if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2352 : return 0;
2353 : /* Only one propagation flag should be set */
2354 0 : if (!is_power_of_2(type))
2355 : return 0;
2356 : return type;
2357 : }
2358 :
2359 : /*
2360 : * recursively change the type of the mountpoint.
2361 : */
2362 0 : static int do_change_type(struct path *path, int ms_flags)
2363 : {
2364 : struct mount *m;
2365 0 : struct mount *mnt = real_mount(path->mnt);
2366 0 : int recurse = ms_flags & MS_REC;
2367 : int type;
2368 0 : int err = 0;
2369 :
2370 0 : if (path->dentry != path->mnt->mnt_root)
2371 : return -EINVAL;
2372 :
2373 0 : type = flags_to_propagation_type(ms_flags);
2374 0 : if (!type)
2375 : return -EINVAL;
2376 :
2377 : namespace_lock();
2378 0 : if (type == MS_SHARED) {
2379 0 : err = invent_group_ids(mnt, recurse);
2380 0 : if (err)
2381 : goto out_unlock;
2382 : }
2383 :
2384 : lock_mount_hash();
2385 0 : for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2386 0 : change_mnt_propagation(m, type);
2387 : unlock_mount_hash();
2388 :
2389 : out_unlock:
2390 0 : namespace_unlock();
2391 0 : return err;
2392 : }
2393 :
2394 0 : static struct mount *__do_loopback(struct path *old_path, int recurse)
2395 : {
2396 0 : struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2397 :
2398 0 : if (IS_MNT_UNBINDABLE(old))
2399 : return mnt;
2400 :
2401 0 : if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2402 : return mnt;
2403 :
2404 0 : if (!recurse && has_locked_children(old, old_path->dentry))
2405 : return mnt;
2406 :
2407 0 : if (recurse)
2408 0 : mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2409 : else
2410 0 : mnt = clone_mnt(old, old_path->dentry, 0);
2411 :
2412 0 : if (!IS_ERR(mnt))
2413 0 : mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2414 :
2415 : return mnt;
2416 : }
2417 :
2418 : /*
2419 : * do loopback mount.
2420 : */
2421 0 : static int do_loopback(struct path *path, const char *old_name,
2422 : int recurse)
2423 : {
2424 : struct path old_path;
2425 0 : struct mount *mnt = NULL, *parent;
2426 : struct mountpoint *mp;
2427 : int err;
2428 0 : if (!old_name || !*old_name)
2429 : return -EINVAL;
2430 0 : err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2431 0 : if (err)
2432 : return err;
2433 :
2434 0 : err = -EINVAL;
2435 0 : if (mnt_ns_loop(old_path.dentry))
2436 : goto out;
2437 :
2438 0 : mp = lock_mount(path);
2439 0 : if (IS_ERR(mp)) {
2440 0 : err = PTR_ERR(mp);
2441 0 : goto out;
2442 : }
2443 :
2444 0 : parent = real_mount(path->mnt);
2445 0 : if (!check_mnt(parent))
2446 : goto out2;
2447 :
2448 0 : mnt = __do_loopback(&old_path, recurse);
2449 0 : if (IS_ERR(mnt)) {
2450 0 : err = PTR_ERR(mnt);
2451 0 : goto out2;
2452 : }
2453 :
2454 0 : err = graft_tree(mnt, parent, mp);
2455 0 : if (err) {
2456 : lock_mount_hash();
2457 0 : umount_tree(mnt, UMOUNT_SYNC);
2458 : unlock_mount_hash();
2459 : }
2460 : out2:
2461 0 : unlock_mount(mp);
2462 : out:
2463 0 : path_put(&old_path);
2464 0 : return err;
2465 : }
2466 :
2467 0 : static struct file *open_detached_copy(struct path *path, bool recursive)
2468 : {
2469 0 : struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2470 0 : struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2471 : struct mount *mnt, *p;
2472 : struct file *file;
2473 :
2474 0 : if (IS_ERR(ns))
2475 : return ERR_CAST(ns);
2476 :
2477 : namespace_lock();
2478 0 : mnt = __do_loopback(path, recursive);
2479 0 : if (IS_ERR(mnt)) {
2480 0 : namespace_unlock();
2481 0 : free_mnt_ns(ns);
2482 0 : return ERR_CAST(mnt);
2483 : }
2484 :
2485 : lock_mount_hash();
2486 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2487 0 : p->mnt_ns = ns;
2488 0 : ns->mounts++;
2489 : }
2490 0 : ns->root = mnt;
2491 0 : list_add_tail(&ns->list, &mnt->mnt_list);
2492 0 : mntget(&mnt->mnt);
2493 : unlock_mount_hash();
2494 0 : namespace_unlock();
2495 :
2496 0 : mntput(path->mnt);
2497 0 : path->mnt = &mnt->mnt;
2498 0 : file = dentry_open(path, O_PATH, current_cred());
2499 0 : if (IS_ERR(file))
2500 0 : dissolve_on_fput(path->mnt);
2501 : else
2502 0 : file->f_mode |= FMODE_NEED_UNMOUNT;
2503 : return file;
2504 : }
2505 :
2506 0 : SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2507 : {
2508 : struct file *file;
2509 : struct path path;
2510 0 : int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2511 0 : bool detached = flags & OPEN_TREE_CLONE;
2512 : int error;
2513 : int fd;
2514 :
2515 : BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2516 :
2517 0 : if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2518 : AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 : OPEN_TREE_CLOEXEC))
2520 : return -EINVAL;
2521 :
2522 0 : if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2523 : return -EINVAL;
2524 :
2525 0 : if (flags & AT_NO_AUTOMOUNT)
2526 0 : lookup_flags &= ~LOOKUP_AUTOMOUNT;
2527 0 : if (flags & AT_SYMLINK_NOFOLLOW)
2528 0 : lookup_flags &= ~LOOKUP_FOLLOW;
2529 0 : if (flags & AT_EMPTY_PATH)
2530 0 : lookup_flags |= LOOKUP_EMPTY;
2531 :
2532 0 : if (detached && !may_mount())
2533 : return -EPERM;
2534 :
2535 0 : fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 0 : if (fd < 0)
2537 0 : return fd;
2538 :
2539 0 : error = user_path_at(dfd, filename, lookup_flags, &path);
2540 0 : if (unlikely(error)) {
2541 0 : file = ERR_PTR(error);
2542 : } else {
2543 0 : if (detached)
2544 0 : file = open_detached_copy(&path, flags & AT_RECURSIVE);
2545 : else
2546 0 : file = dentry_open(&path, O_PATH, current_cred());
2547 0 : path_put(&path);
2548 : }
2549 0 : if (IS_ERR(file)) {
2550 0 : put_unused_fd(fd);
2551 0 : return PTR_ERR(file);
2552 : }
2553 0 : fd_install(fd, file);
2554 0 : return fd;
2555 : }
2556 :
2557 : /*
2558 : * Don't allow locked mount flags to be cleared.
2559 : *
2560 : * No locks need to be held here while testing the various MNT_LOCK
2561 : * flags because those flags can never be cleared once they are set.
2562 : */
2563 0 : static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2564 : {
2565 0 : unsigned int fl = mnt->mnt.mnt_flags;
2566 :
2567 0 : if ((fl & MNT_LOCK_READONLY) &&
2568 0 : !(mnt_flags & MNT_READONLY))
2569 : return false;
2570 :
2571 0 : if ((fl & MNT_LOCK_NODEV) &&
2572 0 : !(mnt_flags & MNT_NODEV))
2573 : return false;
2574 :
2575 0 : if ((fl & MNT_LOCK_NOSUID) &&
2576 0 : !(mnt_flags & MNT_NOSUID))
2577 : return false;
2578 :
2579 0 : if ((fl & MNT_LOCK_NOEXEC) &&
2580 0 : !(mnt_flags & MNT_NOEXEC))
2581 : return false;
2582 :
2583 0 : if ((fl & MNT_LOCK_ATIME) &&
2584 0 : ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2585 : return false;
2586 :
2587 : return true;
2588 : }
2589 :
2590 0 : static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2591 : {
2592 0 : bool readonly_request = (mnt_flags & MNT_READONLY);
2593 :
2594 0 : if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2595 : return 0;
2596 :
2597 0 : if (readonly_request)
2598 0 : return mnt_make_readonly(mnt);
2599 :
2600 0 : mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 0 : return 0;
2602 : }
2603 :
2604 : static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2605 : {
2606 0 : mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2607 0 : mnt->mnt.mnt_flags = mnt_flags;
2608 0 : touch_mnt_namespace(mnt->mnt_ns);
2609 : }
2610 :
2611 0 : static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2612 : {
2613 0 : struct super_block *sb = mnt->mnt_sb;
2614 :
2615 0 : if (!__mnt_is_readonly(mnt) &&
2616 0 : (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2617 0 : (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2618 0 : char *buf = (char *)__get_free_page(GFP_KERNEL);
2619 0 : char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2620 : struct tm tm;
2621 :
2622 0 : time64_to_tm(sb->s_time_max, 0, &tm);
2623 :
2624 0 : pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2625 : sb->s_type->name,
2626 : is_mounted(mnt) ? "remounted" : "mounted",
2627 : mntpath,
2628 : tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2629 :
2630 0 : free_page((unsigned long)buf);
2631 0 : sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2632 : }
2633 0 : }
2634 :
2635 : /*
2636 : * Handle reconfiguration of the mountpoint only without alteration of the
2637 : * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2638 : * to mount(2).
2639 : */
2640 0 : static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2641 : {
2642 0 : struct super_block *sb = path->mnt->mnt_sb;
2643 0 : struct mount *mnt = real_mount(path->mnt);
2644 : int ret;
2645 :
2646 0 : if (!check_mnt(mnt))
2647 : return -EINVAL;
2648 :
2649 0 : if (path->dentry != mnt->mnt.mnt_root)
2650 : return -EINVAL;
2651 :
2652 0 : if (!can_change_locked_flags(mnt, mnt_flags))
2653 : return -EPERM;
2654 :
2655 : /*
2656 : * We're only checking whether the superblock is read-only not
2657 : * changing it, so only take down_read(&sb->s_umount).
2658 : */
2659 0 : down_read(&sb->s_umount);
2660 : lock_mount_hash();
2661 0 : ret = change_mount_ro_state(mnt, mnt_flags);
2662 0 : if (ret == 0)
2663 0 : set_mount_attributes(mnt, mnt_flags);
2664 : unlock_mount_hash();
2665 0 : up_read(&sb->s_umount);
2666 :
2667 0 : mnt_warn_timestamp_expiry(path, &mnt->mnt);
2668 :
2669 0 : return ret;
2670 : }
2671 :
2672 : /*
2673 : * change filesystem flags. dir should be a physical root of filesystem.
2674 : * If you've mounted a non-root directory somewhere and want to do remount
2675 : * on it - tough luck.
2676 : */
2677 0 : static int do_remount(struct path *path, int ms_flags, int sb_flags,
2678 : int mnt_flags, void *data)
2679 : {
2680 : int err;
2681 0 : struct super_block *sb = path->mnt->mnt_sb;
2682 0 : struct mount *mnt = real_mount(path->mnt);
2683 : struct fs_context *fc;
2684 :
2685 0 : if (!check_mnt(mnt))
2686 : return -EINVAL;
2687 :
2688 0 : if (path->dentry != path->mnt->mnt_root)
2689 : return -EINVAL;
2690 :
2691 0 : if (!can_change_locked_flags(mnt, mnt_flags))
2692 : return -EPERM;
2693 :
2694 0 : fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2695 0 : if (IS_ERR(fc))
2696 0 : return PTR_ERR(fc);
2697 :
2698 0 : fc->oldapi = true;
2699 0 : err = parse_monolithic_mount_data(fc, data);
2700 0 : if (!err) {
2701 0 : down_write(&sb->s_umount);
2702 0 : err = -EPERM;
2703 0 : if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2704 0 : err = reconfigure_super(fc);
2705 0 : if (!err) {
2706 : lock_mount_hash();
2707 0 : set_mount_attributes(mnt, mnt_flags);
2708 : unlock_mount_hash();
2709 : }
2710 : }
2711 0 : up_write(&sb->s_umount);
2712 : }
2713 :
2714 0 : mnt_warn_timestamp_expiry(path, &mnt->mnt);
2715 :
2716 0 : put_fs_context(fc);
2717 : return err;
2718 : }
2719 :
2720 : static inline int tree_contains_unbindable(struct mount *mnt)
2721 : {
2722 : struct mount *p;
2723 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2724 0 : if (IS_MNT_UNBINDABLE(p))
2725 : return 1;
2726 : }
2727 : return 0;
2728 : }
2729 :
2730 : /*
2731 : * Check that there aren't references to earlier/same mount namespaces in the
2732 : * specified subtree. Such references can act as pins for mount namespaces
2733 : * that aren't checked by the mount-cycle checking code, thereby allowing
2734 : * cycles to be made.
2735 : */
2736 0 : static bool check_for_nsfs_mounts(struct mount *subtree)
2737 : {
2738 : struct mount *p;
2739 0 : bool ret = false;
2740 :
2741 : lock_mount_hash();
2742 0 : for (p = subtree; p; p = next_mnt(p, subtree))
2743 0 : if (mnt_ns_loop(p->mnt.mnt_root))
2744 : goto out;
2745 :
2746 : ret = true;
2747 : out:
2748 : unlock_mount_hash();
2749 0 : return ret;
2750 : }
2751 :
2752 0 : static int do_set_group(struct path *from_path, struct path *to_path)
2753 : {
2754 : struct mount *from, *to;
2755 : int err;
2756 :
2757 0 : from = real_mount(from_path->mnt);
2758 0 : to = real_mount(to_path->mnt);
2759 :
2760 : namespace_lock();
2761 :
2762 0 : err = -EINVAL;
2763 : /* To and From must be mounted */
2764 0 : if (!is_mounted(&from->mnt))
2765 : goto out;
2766 0 : if (!is_mounted(&to->mnt))
2767 : goto out;
2768 :
2769 0 : err = -EPERM;
2770 : /* We should be allowed to modify mount namespaces of both mounts */
2771 0 : if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772 : goto out;
2773 0 : if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2774 : goto out;
2775 :
2776 0 : err = -EINVAL;
2777 : /* To and From paths should be mount roots */
2778 0 : if (from_path->dentry != from_path->mnt->mnt_root)
2779 : goto out;
2780 0 : if (to_path->dentry != to_path->mnt->mnt_root)
2781 : goto out;
2782 :
2783 : /* Setting sharing groups is only allowed across same superblock */
2784 0 : if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2785 : goto out;
2786 :
2787 : /* From mount root should be wider than To mount root */
2788 0 : if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2789 : goto out;
2790 :
2791 : /* From mount should not have locked children in place of To's root */
2792 0 : if (has_locked_children(from, to->mnt.mnt_root))
2793 : goto out;
2794 :
2795 : /* Setting sharing groups is only allowed on private mounts */
2796 0 : if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2797 : goto out;
2798 :
2799 : /* From should not be private */
2800 0 : if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2801 : goto out;
2802 :
2803 0 : if (IS_MNT_SLAVE(from)) {
2804 0 : struct mount *m = from->mnt_master;
2805 :
2806 0 : list_add(&to->mnt_slave, &m->mnt_slave_list);
2807 0 : to->mnt_master = m;
2808 : }
2809 :
2810 0 : if (IS_MNT_SHARED(from)) {
2811 0 : to->mnt_group_id = from->mnt_group_id;
2812 0 : list_add(&to->mnt_share, &from->mnt_share);
2813 : lock_mount_hash();
2814 : set_mnt_shared(to);
2815 : unlock_mount_hash();
2816 : }
2817 :
2818 : err = 0;
2819 : out:
2820 0 : namespace_unlock();
2821 0 : return err;
2822 : }
2823 :
2824 0 : static int do_move_mount(struct path *old_path, struct path *new_path)
2825 : {
2826 : struct mnt_namespace *ns;
2827 : struct mount *p;
2828 : struct mount *old;
2829 : struct mount *parent;
2830 : struct mountpoint *mp, *old_mp;
2831 : int err;
2832 : bool attached;
2833 :
2834 0 : mp = lock_mount(new_path);
2835 0 : if (IS_ERR(mp))
2836 0 : return PTR_ERR(mp);
2837 :
2838 0 : old = real_mount(old_path->mnt);
2839 0 : p = real_mount(new_path->mnt);
2840 0 : parent = old->mnt_parent;
2841 0 : attached = mnt_has_parent(old);
2842 0 : old_mp = old->mnt_mp;
2843 0 : ns = old->mnt_ns;
2844 :
2845 0 : err = -EINVAL;
2846 : /* The mountpoint must be in our namespace. */
2847 0 : if (!check_mnt(p))
2848 : goto out;
2849 :
2850 : /* The thing moved must be mounted... */
2851 0 : if (!is_mounted(&old->mnt))
2852 : goto out;
2853 :
2854 : /* ... and either ours or the root of anon namespace */
2855 0 : if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2856 : goto out;
2857 :
2858 0 : if (old->mnt.mnt_flags & MNT_LOCKED)
2859 : goto out;
2860 :
2861 0 : if (old_path->dentry != old_path->mnt->mnt_root)
2862 : goto out;
2863 :
2864 0 : if (d_is_dir(new_path->dentry) !=
2865 0 : d_is_dir(old_path->dentry))
2866 : goto out;
2867 : /*
2868 : * Don't move a mount residing in a shared parent.
2869 : */
2870 0 : if (attached && IS_MNT_SHARED(parent))
2871 : goto out;
2872 : /*
2873 : * Don't move a mount tree containing unbindable mounts to a destination
2874 : * mount which is shared.
2875 : */
2876 0 : if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2877 : goto out;
2878 0 : err = -ELOOP;
2879 0 : if (!check_for_nsfs_mounts(old))
2880 : goto out;
2881 0 : for (; mnt_has_parent(p); p = p->mnt_parent)
2882 0 : if (p == old)
2883 : goto out;
2884 :
2885 0 : err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2886 : attached);
2887 0 : if (err)
2888 : goto out;
2889 :
2890 : /* if the mount is moved, it should no longer be expire
2891 : * automatically */
2892 0 : list_del_init(&old->mnt_expire);
2893 0 : if (attached)
2894 : put_mountpoint(old_mp);
2895 : out:
2896 0 : unlock_mount(mp);
2897 0 : if (!err) {
2898 0 : if (attached)
2899 0 : mntput_no_expire(parent);
2900 : else
2901 0 : free_mnt_ns(ns);
2902 : }
2903 : return err;
2904 : }
2905 :
2906 0 : static int do_move_mount_old(struct path *path, const char *old_name)
2907 : {
2908 : struct path old_path;
2909 : int err;
2910 :
2911 0 : if (!old_name || !*old_name)
2912 : return -EINVAL;
2913 :
2914 0 : err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2915 0 : if (err)
2916 : return err;
2917 :
2918 0 : err = do_move_mount(&old_path, path);
2919 0 : path_put(&old_path);
2920 0 : return err;
2921 : }
2922 :
2923 : /*
2924 : * add a mount into a namespace's mount tree
2925 : */
2926 0 : static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2927 : const struct path *path, int mnt_flags)
2928 : {
2929 0 : struct mount *parent = real_mount(path->mnt);
2930 :
2931 0 : mnt_flags &= ~MNT_INTERNAL_FLAGS;
2932 :
2933 0 : if (unlikely(!check_mnt(parent))) {
2934 : /* that's acceptable only for automounts done in private ns */
2935 0 : if (!(mnt_flags & MNT_SHRINKABLE))
2936 : return -EINVAL;
2937 : /* ... and for those we'd better have mountpoint still alive */
2938 0 : if (!parent->mnt_ns)
2939 : return -EINVAL;
2940 : }
2941 :
2942 : /* Refuse the same filesystem on the same mount point */
2943 0 : if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2944 0 : path->mnt->mnt_root == path->dentry)
2945 : return -EBUSY;
2946 :
2947 0 : if (d_is_symlink(newmnt->mnt.mnt_root))
2948 : return -EINVAL;
2949 :
2950 0 : newmnt->mnt.mnt_flags = mnt_flags;
2951 0 : return graft_tree(newmnt, parent, mp);
2952 : }
2953 :
2954 : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2955 :
2956 : /*
2957 : * Create a new mount using a superblock configuration and request it
2958 : * be added to the namespace tree.
2959 : */
2960 0 : static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2961 : unsigned int mnt_flags)
2962 : {
2963 : struct vfsmount *mnt;
2964 : struct mountpoint *mp;
2965 0 : struct super_block *sb = fc->root->d_sb;
2966 : int error;
2967 :
2968 0 : error = security_sb_kern_mount(sb);
2969 0 : if (!error && mount_too_revealing(sb, &mnt_flags))
2970 0 : error = -EPERM;
2971 :
2972 0 : if (unlikely(error)) {
2973 0 : fc_drop_locked(fc);
2974 0 : return error;
2975 : }
2976 :
2977 0 : up_write(&sb->s_umount);
2978 :
2979 0 : mnt = vfs_create_mount(fc);
2980 0 : if (IS_ERR(mnt))
2981 0 : return PTR_ERR(mnt);
2982 :
2983 0 : mnt_warn_timestamp_expiry(mountpoint, mnt);
2984 :
2985 0 : mp = lock_mount(mountpoint);
2986 0 : if (IS_ERR(mp)) {
2987 0 : mntput(mnt);
2988 0 : return PTR_ERR(mp);
2989 : }
2990 0 : error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2991 0 : unlock_mount(mp);
2992 0 : if (error < 0)
2993 : mntput(mnt);
2994 : return error;
2995 : }
2996 :
2997 : /*
2998 : * create a new mount for userspace and request it to be added into the
2999 : * namespace's tree
3000 : */
3001 0 : static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3002 : int mnt_flags, const char *name, void *data)
3003 : {
3004 : struct file_system_type *type;
3005 : struct fs_context *fc;
3006 0 : const char *subtype = NULL;
3007 0 : int err = 0;
3008 :
3009 0 : if (!fstype)
3010 : return -EINVAL;
3011 :
3012 0 : type = get_fs_type(fstype);
3013 0 : if (!type)
3014 : return -ENODEV;
3015 :
3016 0 : if (type->fs_flags & FS_HAS_SUBTYPE) {
3017 0 : subtype = strchr(fstype, '.');
3018 0 : if (subtype) {
3019 0 : subtype++;
3020 0 : if (!*subtype) {
3021 0 : put_filesystem(type);
3022 0 : return -EINVAL;
3023 : }
3024 : }
3025 : }
3026 :
3027 0 : fc = fs_context_for_mount(type, sb_flags);
3028 0 : put_filesystem(type);
3029 0 : if (IS_ERR(fc))
3030 0 : return PTR_ERR(fc);
3031 :
3032 0 : if (subtype)
3033 0 : err = vfs_parse_fs_string(fc, "subtype",
3034 : subtype, strlen(subtype));
3035 0 : if (!err && name)
3036 0 : err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3037 0 : if (!err)
3038 0 : err = parse_monolithic_mount_data(fc, data);
3039 0 : if (!err && !mount_capable(fc))
3040 0 : err = -EPERM;
3041 0 : if (!err)
3042 0 : err = vfs_get_tree(fc);
3043 0 : if (!err)
3044 0 : err = do_new_mount_fc(fc, path, mnt_flags);
3045 :
3046 0 : put_fs_context(fc);
3047 0 : return err;
3048 : }
3049 :
3050 0 : int finish_automount(struct vfsmount *m, const struct path *path)
3051 : {
3052 0 : struct dentry *dentry = path->dentry;
3053 : struct mountpoint *mp;
3054 : struct mount *mnt;
3055 : int err;
3056 :
3057 0 : if (!m)
3058 : return 0;
3059 0 : if (IS_ERR(m))
3060 0 : return PTR_ERR(m);
3061 :
3062 0 : mnt = real_mount(m);
3063 : /* The new mount record should have at least 2 refs to prevent it being
3064 : * expired before we get a chance to add it
3065 : */
3066 0 : BUG_ON(mnt_get_count(mnt) < 2);
3067 :
3068 0 : if (m->mnt_sb == path->mnt->mnt_sb &&
3069 0 : m->mnt_root == dentry) {
3070 : err = -ELOOP;
3071 : goto discard;
3072 : }
3073 :
3074 : /*
3075 : * we don't want to use lock_mount() - in this case finding something
3076 : * that overmounts our mountpoint to be means "quitely drop what we've
3077 : * got", not "try to mount it on top".
3078 : */
3079 0 : inode_lock(dentry->d_inode);
3080 : namespace_lock();
3081 0 : if (unlikely(cant_mount(dentry))) {
3082 : err = -ENOENT;
3083 : goto discard_locked;
3084 : }
3085 : rcu_read_lock();
3086 0 : if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3087 : rcu_read_unlock();
3088 0 : err = 0;
3089 0 : goto discard_locked;
3090 : }
3091 : rcu_read_unlock();
3092 0 : mp = get_mountpoint(dentry);
3093 0 : if (IS_ERR(mp)) {
3094 0 : err = PTR_ERR(mp);
3095 0 : goto discard_locked;
3096 : }
3097 :
3098 0 : err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3099 0 : unlock_mount(mp);
3100 0 : if (unlikely(err))
3101 : goto discard;
3102 0 : mntput(m);
3103 0 : return 0;
3104 :
3105 : discard_locked:
3106 0 : namespace_unlock();
3107 0 : inode_unlock(dentry->d_inode);
3108 : discard:
3109 : /* remove m from any expiration list it may be on */
3110 0 : if (!list_empty(&mnt->mnt_expire)) {
3111 : namespace_lock();
3112 0 : list_del_init(&mnt->mnt_expire);
3113 0 : namespace_unlock();
3114 : }
3115 0 : mntput(m);
3116 0 : mntput(m);
3117 0 : return err;
3118 : }
3119 :
3120 : /**
3121 : * mnt_set_expiry - Put a mount on an expiration list
3122 : * @mnt: The mount to list.
3123 : * @expiry_list: The list to add the mount to.
3124 : */
3125 0 : void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3126 : {
3127 0 : namespace_lock();
3128 :
3129 0 : list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3130 :
3131 0 : namespace_unlock();
3132 0 : }
3133 : EXPORT_SYMBOL(mnt_set_expiry);
3134 :
3135 : /*
3136 : * process a list of expirable mountpoints with the intent of discarding any
3137 : * mountpoints that aren't in use and haven't been touched since last we came
3138 : * here
3139 : */
3140 0 : void mark_mounts_for_expiry(struct list_head *mounts)
3141 : {
3142 : struct mount *mnt, *next;
3143 0 : LIST_HEAD(graveyard);
3144 :
3145 0 : if (list_empty(mounts))
3146 0 : return;
3147 :
3148 : namespace_lock();
3149 : lock_mount_hash();
3150 :
3151 : /* extract from the expiration list every vfsmount that matches the
3152 : * following criteria:
3153 : * - only referenced by its parent vfsmount
3154 : * - still marked for expiry (marked on the last call here; marks are
3155 : * cleared by mntput())
3156 : */
3157 0 : list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3158 0 : if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3159 0 : propagate_mount_busy(mnt, 1))
3160 0 : continue;
3161 0 : list_move(&mnt->mnt_expire, &graveyard);
3162 : }
3163 0 : while (!list_empty(&graveyard)) {
3164 0 : mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3165 0 : touch_mnt_namespace(mnt->mnt_ns);
3166 0 : umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3167 : }
3168 : unlock_mount_hash();
3169 0 : namespace_unlock();
3170 : }
3171 :
3172 : EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3173 :
3174 : /*
3175 : * Ripoff of 'select_parent()'
3176 : *
3177 : * search the list of submounts for a given mountpoint, and move any
3178 : * shrinkable submounts to the 'graveyard' list.
3179 : */
3180 0 : static int select_submounts(struct mount *parent, struct list_head *graveyard)
3181 : {
3182 0 : struct mount *this_parent = parent;
3183 : struct list_head *next;
3184 0 : int found = 0;
3185 :
3186 : repeat:
3187 0 : next = this_parent->mnt_mounts.next;
3188 : resume:
3189 0 : while (next != &this_parent->mnt_mounts) {
3190 0 : struct list_head *tmp = next;
3191 0 : struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3192 :
3193 0 : next = tmp->next;
3194 0 : if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3195 0 : continue;
3196 : /*
3197 : * Descend a level if the d_mounts list is non-empty.
3198 : */
3199 0 : if (!list_empty(&mnt->mnt_mounts)) {
3200 : this_parent = mnt;
3201 : goto repeat;
3202 : }
3203 :
3204 0 : if (!propagate_mount_busy(mnt, 1)) {
3205 0 : list_move_tail(&mnt->mnt_expire, graveyard);
3206 0 : found++;
3207 : }
3208 : }
3209 : /*
3210 : * All done at this level ... ascend and resume the search
3211 : */
3212 0 : if (this_parent != parent) {
3213 0 : next = this_parent->mnt_child.next;
3214 0 : this_parent = this_parent->mnt_parent;
3215 0 : goto resume;
3216 : }
3217 0 : return found;
3218 : }
3219 :
3220 : /*
3221 : * process a list of expirable mountpoints with the intent of discarding any
3222 : * submounts of a specific parent mountpoint
3223 : *
3224 : * mount_lock must be held for write
3225 : */
3226 0 : static void shrink_submounts(struct mount *mnt)
3227 : {
3228 0 : LIST_HEAD(graveyard);
3229 : struct mount *m;
3230 :
3231 : /* extract submounts of 'mountpoint' from the expiration list */
3232 0 : while (select_submounts(mnt, &graveyard)) {
3233 0 : while (!list_empty(&graveyard)) {
3234 0 : m = list_first_entry(&graveyard, struct mount,
3235 : mnt_expire);
3236 0 : touch_mnt_namespace(m->mnt_ns);
3237 0 : umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3238 : }
3239 : }
3240 0 : }
3241 :
3242 0 : static void *copy_mount_options(const void __user * data)
3243 : {
3244 : char *copy;
3245 : unsigned left, offset;
3246 :
3247 0 : if (!data)
3248 : return NULL;
3249 :
3250 0 : copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3251 0 : if (!copy)
3252 : return ERR_PTR(-ENOMEM);
3253 :
3254 0 : left = copy_from_user(copy, data, PAGE_SIZE);
3255 :
3256 : /*
3257 : * Not all architectures have an exact copy_from_user(). Resort to
3258 : * byte at a time.
3259 : */
3260 0 : offset = PAGE_SIZE - left;
3261 0 : while (left) {
3262 : char c;
3263 0 : if (get_user(c, (const char __user *)data + offset))
3264 : break;
3265 0 : copy[offset] = c;
3266 0 : left--;
3267 0 : offset++;
3268 : }
3269 :
3270 0 : if (left == PAGE_SIZE) {
3271 0 : kfree(copy);
3272 0 : return ERR_PTR(-EFAULT);
3273 : }
3274 :
3275 : return copy;
3276 : }
3277 :
3278 : static char *copy_mount_string(const void __user *data)
3279 : {
3280 0 : return data ? strndup_user(data, PATH_MAX) : NULL;
3281 : }
3282 :
3283 : /*
3284 : * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3285 : * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3286 : *
3287 : * data is a (void *) that can point to any structure up to
3288 : * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3289 : * information (or be NULL).
3290 : *
3291 : * Pre-0.97 versions of mount() didn't have a flags word.
3292 : * When the flags word was introduced its top half was required
3293 : * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3294 : * Therefore, if this magic number is present, it carries no information
3295 : * and must be discarded.
3296 : */
3297 0 : int path_mount(const char *dev_name, struct path *path,
3298 : const char *type_page, unsigned long flags, void *data_page)
3299 : {
3300 0 : unsigned int mnt_flags = 0, sb_flags;
3301 : int ret;
3302 :
3303 : /* Discard magic */
3304 0 : if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3305 0 : flags &= ~MS_MGC_MSK;
3306 :
3307 : /* Basic sanity checks */
3308 0 : if (data_page)
3309 0 : ((char *)data_page)[PAGE_SIZE - 1] = 0;
3310 :
3311 0 : if (flags & MS_NOUSER)
3312 : return -EINVAL;
3313 :
3314 0 : ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3315 : if (ret)
3316 : return ret;
3317 0 : if (!may_mount())
3318 : return -EPERM;
3319 0 : if (flags & SB_MANDLOCK)
3320 0 : warn_mandlock();
3321 :
3322 : /* Default to relatime unless overriden */
3323 0 : if (!(flags & MS_NOATIME))
3324 0 : mnt_flags |= MNT_RELATIME;
3325 :
3326 : /* Separate the per-mountpoint flags */
3327 0 : if (flags & MS_NOSUID)
3328 0 : mnt_flags |= MNT_NOSUID;
3329 0 : if (flags & MS_NODEV)
3330 0 : mnt_flags |= MNT_NODEV;
3331 0 : if (flags & MS_NOEXEC)
3332 0 : mnt_flags |= MNT_NOEXEC;
3333 0 : if (flags & MS_NOATIME)
3334 0 : mnt_flags |= MNT_NOATIME;
3335 0 : if (flags & MS_NODIRATIME)
3336 0 : mnt_flags |= MNT_NODIRATIME;
3337 0 : if (flags & MS_STRICTATIME)
3338 0 : mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3339 0 : if (flags & MS_RDONLY)
3340 0 : mnt_flags |= MNT_READONLY;
3341 0 : if (flags & MS_NOSYMFOLLOW)
3342 0 : mnt_flags |= MNT_NOSYMFOLLOW;
3343 :
3344 : /* The default atime for remount is preservation */
3345 0 : if ((flags & MS_REMOUNT) &&
3346 : ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3347 : MS_STRICTATIME)) == 0)) {
3348 0 : mnt_flags &= ~MNT_ATIME_MASK;
3349 0 : mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3350 : }
3351 :
3352 0 : sb_flags = flags & (SB_RDONLY |
3353 : SB_SYNCHRONOUS |
3354 : SB_MANDLOCK |
3355 : SB_DIRSYNC |
3356 : SB_SILENT |
3357 : SB_POSIXACL |
3358 : SB_LAZYTIME |
3359 : SB_I_VERSION);
3360 :
3361 0 : if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3362 0 : return do_reconfigure_mnt(path, mnt_flags);
3363 0 : if (flags & MS_REMOUNT)
3364 0 : return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3365 0 : if (flags & MS_BIND)
3366 0 : return do_loopback(path, dev_name, flags & MS_REC);
3367 0 : if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3368 0 : return do_change_type(path, flags);
3369 0 : if (flags & MS_MOVE)
3370 0 : return do_move_mount_old(path, dev_name);
3371 :
3372 0 : return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3373 : data_page);
3374 : }
3375 :
3376 0 : long do_mount(const char *dev_name, const char __user *dir_name,
3377 : const char *type_page, unsigned long flags, void *data_page)
3378 : {
3379 : struct path path;
3380 : int ret;
3381 :
3382 0 : ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3383 0 : if (ret)
3384 0 : return ret;
3385 0 : ret = path_mount(dev_name, &path, type_page, flags, data_page);
3386 0 : path_put(&path);
3387 0 : return ret;
3388 : }
3389 :
3390 : static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3391 : {
3392 1 : return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3393 : }
3394 :
3395 : static void dec_mnt_namespaces(struct ucounts *ucounts)
3396 : {
3397 0 : dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3398 : }
3399 :
3400 0 : static void free_mnt_ns(struct mnt_namespace *ns)
3401 : {
3402 0 : if (!is_anon_ns(ns))
3403 0 : ns_free_inum(&ns->ns);
3404 0 : dec_mnt_namespaces(ns->ucounts);
3405 0 : put_user_ns(ns->user_ns);
3406 0 : kfree(ns);
3407 0 : }
3408 :
3409 : /*
3410 : * Assign a sequence number so we can detect when we attempt to bind
3411 : * mount a reference to an older mount namespace into the current
3412 : * mount namespace, preventing reference counting loops. A 64bit
3413 : * number incrementing at 10Ghz will take 12,427 years to wrap which
3414 : * is effectively never, so we can ignore the possibility.
3415 : */
3416 : static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3417 :
3418 1 : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3419 : {
3420 : struct mnt_namespace *new_ns;
3421 : struct ucounts *ucounts;
3422 : int ret;
3423 :
3424 1 : ucounts = inc_mnt_namespaces(user_ns);
3425 1 : if (!ucounts)
3426 : return ERR_PTR(-ENOSPC);
3427 :
3428 1 : new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3429 1 : if (!new_ns) {
3430 0 : dec_mnt_namespaces(ucounts);
3431 0 : return ERR_PTR(-ENOMEM);
3432 : }
3433 1 : if (!anon) {
3434 2 : ret = ns_alloc_inum(&new_ns->ns);
3435 1 : if (ret) {
3436 0 : kfree(new_ns);
3437 0 : dec_mnt_namespaces(ucounts);
3438 0 : return ERR_PTR(ret);
3439 : }
3440 : }
3441 1 : new_ns->ns.ops = &mntns_operations;
3442 1 : if (!anon)
3443 1 : new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3444 2 : refcount_set(&new_ns->ns.count, 1);
3445 2 : INIT_LIST_HEAD(&new_ns->list);
3446 1 : init_waitqueue_head(&new_ns->poll);
3447 1 : spin_lock_init(&new_ns->ns_lock);
3448 1 : new_ns->user_ns = get_user_ns(user_ns);
3449 1 : new_ns->ucounts = ucounts;
3450 1 : return new_ns;
3451 : }
3452 :
3453 : __latent_entropy
3454 0 : struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3455 : struct user_namespace *user_ns, struct fs_struct *new_fs)
3456 : {
3457 : struct mnt_namespace *new_ns;
3458 0 : struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3459 : struct mount *p, *q;
3460 : struct mount *old;
3461 : struct mount *new;
3462 : int copy_flags;
3463 :
3464 0 : BUG_ON(!ns);
3465 :
3466 0 : if (likely(!(flags & CLONE_NEWNS))) {
3467 0 : get_mnt_ns(ns);
3468 0 : return ns;
3469 : }
3470 :
3471 0 : old = ns->root;
3472 :
3473 0 : new_ns = alloc_mnt_ns(user_ns, false);
3474 0 : if (IS_ERR(new_ns))
3475 : return new_ns;
3476 :
3477 : namespace_lock();
3478 : /* First pass: copy the tree topology */
3479 0 : copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3480 0 : if (user_ns != ns->user_ns)
3481 0 : copy_flags |= CL_SHARED_TO_SLAVE;
3482 0 : new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3483 0 : if (IS_ERR(new)) {
3484 0 : namespace_unlock();
3485 0 : free_mnt_ns(new_ns);
3486 0 : return ERR_CAST(new);
3487 : }
3488 0 : if (user_ns != ns->user_ns) {
3489 : lock_mount_hash();
3490 0 : lock_mnt_tree(new);
3491 : unlock_mount_hash();
3492 : }
3493 0 : new_ns->root = new;
3494 0 : list_add_tail(&new_ns->list, &new->mnt_list);
3495 :
3496 : /*
3497 : * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3498 : * as belonging to new namespace. We have already acquired a private
3499 : * fs_struct, so tsk->fs->lock is not needed.
3500 : */
3501 0 : p = old;
3502 0 : q = new;
3503 0 : while (p) {
3504 0 : q->mnt_ns = new_ns;
3505 0 : new_ns->mounts++;
3506 0 : if (new_fs) {
3507 0 : if (&p->mnt == new_fs->root.mnt) {
3508 0 : new_fs->root.mnt = mntget(&q->mnt);
3509 0 : rootmnt = &p->mnt;
3510 : }
3511 0 : if (&p->mnt == new_fs->pwd.mnt) {
3512 0 : new_fs->pwd.mnt = mntget(&q->mnt);
3513 0 : pwdmnt = &p->mnt;
3514 : }
3515 : }
3516 0 : p = next_mnt(p, old);
3517 0 : q = next_mnt(q, new);
3518 0 : if (!q)
3519 : break;
3520 : // an mntns binding we'd skipped?
3521 0 : while (p->mnt.mnt_root != q->mnt.mnt_root)
3522 0 : p = next_mnt(skip_mnt_tree(p), old);
3523 : }
3524 0 : namespace_unlock();
3525 :
3526 0 : if (rootmnt)
3527 : mntput(rootmnt);
3528 0 : if (pwdmnt)
3529 : mntput(pwdmnt);
3530 :
3531 : return new_ns;
3532 : }
3533 :
3534 0 : struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3535 : {
3536 0 : struct mount *mnt = real_mount(m);
3537 : struct mnt_namespace *ns;
3538 : struct super_block *s;
3539 : struct path path;
3540 : int err;
3541 :
3542 0 : ns = alloc_mnt_ns(&init_user_ns, true);
3543 0 : if (IS_ERR(ns)) {
3544 : mntput(m);
3545 : return ERR_CAST(ns);
3546 : }
3547 0 : mnt->mnt_ns = ns;
3548 0 : ns->root = mnt;
3549 0 : ns->mounts++;
3550 0 : list_add(&mnt->mnt_list, &ns->list);
3551 :
3552 0 : err = vfs_path_lookup(m->mnt_root, m,
3553 : name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3554 :
3555 0 : put_mnt_ns(ns);
3556 :
3557 0 : if (err)
3558 0 : return ERR_PTR(err);
3559 :
3560 : /* trade a vfsmount reference for active sb one */
3561 0 : s = path.mnt->mnt_sb;
3562 0 : atomic_inc(&s->s_active);
3563 0 : mntput(path.mnt);
3564 : /* lock the sucker */
3565 0 : down_write(&s->s_umount);
3566 : /* ... and return the root of (sub)tree on it */
3567 0 : return path.dentry;
3568 : }
3569 : EXPORT_SYMBOL(mount_subtree);
3570 :
3571 0 : SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3572 : char __user *, type, unsigned long, flags, void __user *, data)
3573 : {
3574 : int ret;
3575 : char *kernel_type;
3576 : char *kernel_dev;
3577 : void *options;
3578 :
3579 0 : kernel_type = copy_mount_string(type);
3580 0 : ret = PTR_ERR(kernel_type);
3581 0 : if (IS_ERR(kernel_type))
3582 : goto out_type;
3583 :
3584 0 : kernel_dev = copy_mount_string(dev_name);
3585 0 : ret = PTR_ERR(kernel_dev);
3586 0 : if (IS_ERR(kernel_dev))
3587 : goto out_dev;
3588 :
3589 0 : options = copy_mount_options(data);
3590 0 : ret = PTR_ERR(options);
3591 0 : if (IS_ERR(options))
3592 : goto out_data;
3593 :
3594 0 : ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3595 :
3596 0 : kfree(options);
3597 : out_data:
3598 0 : kfree(kernel_dev);
3599 : out_dev:
3600 0 : kfree(kernel_type);
3601 : out_type:
3602 0 : return ret;
3603 : }
3604 :
3605 : #define FSMOUNT_VALID_FLAGS \
3606 : (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3607 : MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3608 : MOUNT_ATTR_NOSYMFOLLOW)
3609 :
3610 : #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3611 :
3612 : #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3613 : (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3614 :
3615 0 : static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3616 : {
3617 0 : unsigned int mnt_flags = 0;
3618 :
3619 0 : if (attr_flags & MOUNT_ATTR_RDONLY)
3620 0 : mnt_flags |= MNT_READONLY;
3621 0 : if (attr_flags & MOUNT_ATTR_NOSUID)
3622 0 : mnt_flags |= MNT_NOSUID;
3623 0 : if (attr_flags & MOUNT_ATTR_NODEV)
3624 0 : mnt_flags |= MNT_NODEV;
3625 0 : if (attr_flags & MOUNT_ATTR_NOEXEC)
3626 0 : mnt_flags |= MNT_NOEXEC;
3627 0 : if (attr_flags & MOUNT_ATTR_NODIRATIME)
3628 0 : mnt_flags |= MNT_NODIRATIME;
3629 0 : if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3630 0 : mnt_flags |= MNT_NOSYMFOLLOW;
3631 :
3632 0 : return mnt_flags;
3633 : }
3634 :
3635 : /*
3636 : * Create a kernel mount representation for a new, prepared superblock
3637 : * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3638 : */
3639 0 : SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3640 : unsigned int, attr_flags)
3641 : {
3642 : struct mnt_namespace *ns;
3643 : struct fs_context *fc;
3644 : struct file *file;
3645 : struct path newmount;
3646 : struct mount *mnt;
3647 : struct fd f;
3648 0 : unsigned int mnt_flags = 0;
3649 : long ret;
3650 :
3651 0 : if (!may_mount())
3652 : return -EPERM;
3653 :
3654 0 : if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3655 : return -EINVAL;
3656 :
3657 0 : if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3658 : return -EINVAL;
3659 :
3660 0 : mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3661 :
3662 0 : switch (attr_flags & MOUNT_ATTR__ATIME) {
3663 : case MOUNT_ATTR_STRICTATIME:
3664 : break;
3665 : case MOUNT_ATTR_NOATIME:
3666 0 : mnt_flags |= MNT_NOATIME;
3667 0 : break;
3668 : case MOUNT_ATTR_RELATIME:
3669 0 : mnt_flags |= MNT_RELATIME;
3670 0 : break;
3671 : default:
3672 : return -EINVAL;
3673 : }
3674 :
3675 0 : f = fdget(fs_fd);
3676 0 : if (!f.file)
3677 : return -EBADF;
3678 :
3679 0 : ret = -EINVAL;
3680 0 : if (f.file->f_op != &fscontext_fops)
3681 : goto err_fsfd;
3682 :
3683 0 : fc = f.file->private_data;
3684 :
3685 0 : ret = mutex_lock_interruptible(&fc->uapi_mutex);
3686 0 : if (ret < 0)
3687 : goto err_fsfd;
3688 :
3689 : /* There must be a valid superblock or we can't mount it */
3690 0 : ret = -EINVAL;
3691 0 : if (!fc->root)
3692 : goto err_unlock;
3693 :
3694 0 : ret = -EPERM;
3695 0 : if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3696 0 : pr_warn("VFS: Mount too revealing\n");
3697 0 : goto err_unlock;
3698 : }
3699 :
3700 0 : ret = -EBUSY;
3701 0 : if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3702 : goto err_unlock;
3703 :
3704 0 : if (fc->sb_flags & SB_MANDLOCK)
3705 0 : warn_mandlock();
3706 :
3707 0 : newmount.mnt = vfs_create_mount(fc);
3708 0 : if (IS_ERR(newmount.mnt)) {
3709 0 : ret = PTR_ERR(newmount.mnt);
3710 0 : goto err_unlock;
3711 : }
3712 0 : newmount.dentry = dget(fc->root);
3713 0 : newmount.mnt->mnt_flags = mnt_flags;
3714 :
3715 : /* We've done the mount bit - now move the file context into more or
3716 : * less the same state as if we'd done an fspick(). We don't want to
3717 : * do any memory allocation or anything like that at this point as we
3718 : * don't want to have to handle any errors incurred.
3719 : */
3720 0 : vfs_clean_context(fc);
3721 :
3722 0 : ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3723 0 : if (IS_ERR(ns)) {
3724 0 : ret = PTR_ERR(ns);
3725 0 : goto err_path;
3726 : }
3727 0 : mnt = real_mount(newmount.mnt);
3728 0 : mnt->mnt_ns = ns;
3729 0 : ns->root = mnt;
3730 0 : ns->mounts = 1;
3731 0 : list_add(&mnt->mnt_list, &ns->list);
3732 0 : mntget(newmount.mnt);
3733 :
3734 : /* Attach to an apparent O_PATH fd with a note that we need to unmount
3735 : * it, not just simply put it.
3736 : */
3737 0 : file = dentry_open(&newmount, O_PATH, fc->cred);
3738 0 : if (IS_ERR(file)) {
3739 0 : dissolve_on_fput(newmount.mnt);
3740 0 : ret = PTR_ERR(file);
3741 0 : goto err_path;
3742 : }
3743 0 : file->f_mode |= FMODE_NEED_UNMOUNT;
3744 :
3745 0 : ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3746 0 : if (ret >= 0)
3747 0 : fd_install(ret, file);
3748 : else
3749 0 : fput(file);
3750 :
3751 : err_path:
3752 0 : path_put(&newmount);
3753 : err_unlock:
3754 0 : mutex_unlock(&fc->uapi_mutex);
3755 : err_fsfd:
3756 0 : fdput(f);
3757 : return ret;
3758 : }
3759 :
3760 : /*
3761 : * Move a mount from one place to another. In combination with
3762 : * fsopen()/fsmount() this is used to install a new mount and in combination
3763 : * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3764 : * a mount subtree.
3765 : *
3766 : * Note the flags value is a combination of MOVE_MOUNT_* flags.
3767 : */
3768 0 : SYSCALL_DEFINE5(move_mount,
3769 : int, from_dfd, const char __user *, from_pathname,
3770 : int, to_dfd, const char __user *, to_pathname,
3771 : unsigned int, flags)
3772 : {
3773 : struct path from_path, to_path;
3774 : unsigned int lflags;
3775 0 : int ret = 0;
3776 :
3777 0 : if (!may_mount())
3778 : return -EPERM;
3779 :
3780 0 : if (flags & ~MOVE_MOUNT__MASK)
3781 : return -EINVAL;
3782 :
3783 : /* If someone gives a pathname, they aren't permitted to move
3784 : * from an fd that requires unmount as we can't get at the flag
3785 : * to clear it afterwards.
3786 : */
3787 0 : lflags = 0;
3788 0 : if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3789 0 : if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3790 0 : if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3791 :
3792 0 : ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3793 0 : if (ret < 0)
3794 0 : return ret;
3795 :
3796 0 : lflags = 0;
3797 0 : if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3798 0 : if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3799 0 : if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3800 :
3801 0 : ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3802 0 : if (ret < 0)
3803 : goto out_from;
3804 :
3805 0 : ret = security_move_mount(&from_path, &to_path);
3806 : if (ret < 0)
3807 : goto out_to;
3808 :
3809 0 : if (flags & MOVE_MOUNT_SET_GROUP)
3810 0 : ret = do_set_group(&from_path, &to_path);
3811 : else
3812 0 : ret = do_move_mount(&from_path, &to_path);
3813 :
3814 : out_to:
3815 0 : path_put(&to_path);
3816 : out_from:
3817 0 : path_put(&from_path);
3818 0 : return ret;
3819 : }
3820 :
3821 : /*
3822 : * Return true if path is reachable from root
3823 : *
3824 : * namespace_sem or mount_lock is held
3825 : */
3826 0 : bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3827 : const struct path *root)
3828 : {
3829 0 : while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3830 0 : dentry = mnt->mnt_mountpoint;
3831 0 : mnt = mnt->mnt_parent;
3832 : }
3833 0 : return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3834 : }
3835 :
3836 0 : bool path_is_under(const struct path *path1, const struct path *path2)
3837 : {
3838 : bool res;
3839 0 : read_seqlock_excl(&mount_lock);
3840 0 : res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3841 0 : read_sequnlock_excl(&mount_lock);
3842 0 : return res;
3843 : }
3844 : EXPORT_SYMBOL(path_is_under);
3845 :
3846 : /*
3847 : * pivot_root Semantics:
3848 : * Moves the root file system of the current process to the directory put_old,
3849 : * makes new_root as the new root file system of the current process, and sets
3850 : * root/cwd of all processes which had them on the current root to new_root.
3851 : *
3852 : * Restrictions:
3853 : * The new_root and put_old must be directories, and must not be on the
3854 : * same file system as the current process root. The put_old must be
3855 : * underneath new_root, i.e. adding a non-zero number of /.. to the string
3856 : * pointed to by put_old must yield the same directory as new_root. No other
3857 : * file system may be mounted on put_old. After all, new_root is a mountpoint.
3858 : *
3859 : * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3860 : * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3861 : * in this situation.
3862 : *
3863 : * Notes:
3864 : * - we don't move root/cwd if they are not at the root (reason: if something
3865 : * cared enough to change them, it's probably wrong to force them elsewhere)
3866 : * - it's okay to pick a root that isn't the root of a file system, e.g.
3867 : * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3868 : * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3869 : * first.
3870 : */
3871 0 : SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3872 : const char __user *, put_old)
3873 : {
3874 : struct path new, old, root;
3875 : struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3876 : struct mountpoint *old_mp, *root_mp;
3877 : int error;
3878 :
3879 0 : if (!may_mount())
3880 : return -EPERM;
3881 :
3882 0 : error = user_path_at(AT_FDCWD, new_root,
3883 : LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3884 0 : if (error)
3885 : goto out0;
3886 :
3887 0 : error = user_path_at(AT_FDCWD, put_old,
3888 : LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3889 0 : if (error)
3890 : goto out1;
3891 :
3892 0 : error = security_sb_pivotroot(&old, &new);
3893 : if (error)
3894 : goto out2;
3895 :
3896 0 : get_fs_root(current->fs, &root);
3897 0 : old_mp = lock_mount(&old);
3898 0 : error = PTR_ERR(old_mp);
3899 0 : if (IS_ERR(old_mp))
3900 : goto out3;
3901 :
3902 0 : error = -EINVAL;
3903 0 : new_mnt = real_mount(new.mnt);
3904 0 : root_mnt = real_mount(root.mnt);
3905 0 : old_mnt = real_mount(old.mnt);
3906 0 : ex_parent = new_mnt->mnt_parent;
3907 0 : root_parent = root_mnt->mnt_parent;
3908 0 : if (IS_MNT_SHARED(old_mnt) ||
3909 0 : IS_MNT_SHARED(ex_parent) ||
3910 0 : IS_MNT_SHARED(root_parent))
3911 : goto out4;
3912 0 : if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3913 : goto out4;
3914 0 : if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3915 : goto out4;
3916 0 : error = -ENOENT;
3917 0 : if (d_unlinked(new.dentry))
3918 : goto out4;
3919 0 : error = -EBUSY;
3920 0 : if (new_mnt == root_mnt || old_mnt == root_mnt)
3921 : goto out4; /* loop, on the same file system */
3922 0 : error = -EINVAL;
3923 0 : if (root.mnt->mnt_root != root.dentry)
3924 : goto out4; /* not a mountpoint */
3925 0 : if (!mnt_has_parent(root_mnt))
3926 : goto out4; /* not attached */
3927 0 : if (new.mnt->mnt_root != new.dentry)
3928 : goto out4; /* not a mountpoint */
3929 0 : if (!mnt_has_parent(new_mnt))
3930 : goto out4; /* not attached */
3931 : /* make sure we can reach put_old from new_root */
3932 0 : if (!is_path_reachable(old_mnt, old.dentry, &new))
3933 : goto out4;
3934 : /* make certain new is below the root */
3935 0 : if (!is_path_reachable(new_mnt, new.dentry, &root))
3936 : goto out4;
3937 0 : lock_mount_hash();
3938 0 : umount_mnt(new_mnt);
3939 0 : root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3940 0 : if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3941 0 : new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3942 0 : root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3943 : }
3944 : /* mount old root on put_old */
3945 0 : attach_mnt(root_mnt, old_mnt, old_mp);
3946 : /* mount new_root on / */
3947 0 : attach_mnt(new_mnt, root_parent, root_mp);
3948 0 : mnt_add_count(root_parent, -1);
3949 0 : touch_mnt_namespace(current->nsproxy->mnt_ns);
3950 : /* A moved mount should not expire automatically */
3951 0 : list_del_init(&new_mnt->mnt_expire);
3952 0 : put_mountpoint(root_mp);
3953 : unlock_mount_hash();
3954 0 : chroot_fs_refs(&root, &new);
3955 0 : error = 0;
3956 : out4:
3957 0 : unlock_mount(old_mp);
3958 0 : if (!error)
3959 0 : mntput_no_expire(ex_parent);
3960 : out3:
3961 0 : path_put(&root);
3962 : out2:
3963 0 : path_put(&old);
3964 : out1:
3965 0 : path_put(&new);
3966 : out0:
3967 0 : return error;
3968 : }
3969 :
3970 : static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3971 : {
3972 0 : unsigned int flags = mnt->mnt.mnt_flags;
3973 :
3974 : /* flags to clear */
3975 0 : flags &= ~kattr->attr_clr;
3976 : /* flags to raise */
3977 0 : flags |= kattr->attr_set;
3978 :
3979 : return flags;
3980 : }
3981 :
3982 0 : static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3983 : {
3984 0 : struct vfsmount *m = &mnt->mnt;
3985 0 : struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3986 :
3987 0 : if (!kattr->mnt_idmap)
3988 : return 0;
3989 :
3990 : /*
3991 : * Creating an idmapped mount with the filesystem wide idmapping
3992 : * doesn't make sense so block that. We don't allow mushy semantics.
3993 : */
3994 0 : if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
3995 : return -EINVAL;
3996 :
3997 : /*
3998 : * Once a mount has been idmapped we don't allow it to change its
3999 : * mapping. It makes things simpler and callers can just create
4000 : * another bind-mount they can idmap if they want to.
4001 : */
4002 0 : if (is_idmapped_mnt(m))
4003 : return -EPERM;
4004 :
4005 : /* The underlying filesystem doesn't support idmapped mounts yet. */
4006 0 : if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4007 : return -EINVAL;
4008 :
4009 : /* We're not controlling the superblock. */
4010 0 : if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4011 : return -EPERM;
4012 :
4013 : /* Mount has already been visible in the filesystem hierarchy. */
4014 0 : if (!is_anon_ns(mnt->mnt_ns))
4015 : return -EINVAL;
4016 :
4017 : return 0;
4018 : }
4019 :
4020 : /**
4021 : * mnt_allow_writers() - check whether the attribute change allows writers
4022 : * @kattr: the new mount attributes
4023 : * @mnt: the mount to which @kattr will be applied
4024 : *
4025 : * Check whether thew new mount attributes in @kattr allow concurrent writers.
4026 : *
4027 : * Return: true if writers need to be held, false if not
4028 : */
4029 : static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4030 : const struct mount *mnt)
4031 : {
4032 0 : return (!(kattr->attr_set & MNT_READONLY) ||
4033 0 : (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4034 0 : !kattr->mnt_idmap;
4035 : }
4036 :
4037 0 : static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4038 : {
4039 : struct mount *m;
4040 : int err;
4041 :
4042 0 : for (m = mnt; m; m = next_mnt(m, mnt)) {
4043 0 : if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4044 : err = -EPERM;
4045 : break;
4046 : }
4047 :
4048 0 : err = can_idmap_mount(kattr, m);
4049 0 : if (err)
4050 : break;
4051 :
4052 0 : if (!mnt_allow_writers(kattr, m)) {
4053 0 : err = mnt_hold_writers(m);
4054 0 : if (err)
4055 : break;
4056 : }
4057 :
4058 0 : if (!kattr->recurse)
4059 : return 0;
4060 : }
4061 :
4062 0 : if (err) {
4063 : struct mount *p;
4064 :
4065 : /*
4066 : * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4067 : * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4068 : * mounts and needs to take care to include the first mount.
4069 : */
4070 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
4071 : /* If we had to hold writers unblock them. */
4072 0 : if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4073 0 : mnt_unhold_writers(p);
4074 :
4075 : /*
4076 : * We're done once the first mount we changed got
4077 : * MNT_WRITE_HOLD unset.
4078 : */
4079 0 : if (p == m)
4080 : break;
4081 : }
4082 : }
4083 : return err;
4084 : }
4085 :
4086 : static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4087 : {
4088 0 : if (!kattr->mnt_idmap)
4089 : return;
4090 :
4091 : /*
4092 : * Pairs with smp_load_acquire() in mnt_idmap().
4093 : *
4094 : * Since we only allow a mount to change the idmapping once and
4095 : * verified this in can_idmap_mount() we know that the mount has
4096 : * @nop_mnt_idmap attached to it. So there's no need to drop any
4097 : * references.
4098 : */
4099 0 : smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4100 : }
4101 :
4102 0 : static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4103 : {
4104 : struct mount *m;
4105 :
4106 0 : for (m = mnt; m; m = next_mnt(m, mnt)) {
4107 : unsigned int flags;
4108 :
4109 0 : do_idmap_mount(kattr, m);
4110 0 : flags = recalc_flags(kattr, m);
4111 0 : WRITE_ONCE(m->mnt.mnt_flags, flags);
4112 :
4113 : /* If we had to hold writers unblock them. */
4114 0 : if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4115 0 : mnt_unhold_writers(m);
4116 :
4117 0 : if (kattr->propagation)
4118 0 : change_mnt_propagation(m, kattr->propagation);
4119 0 : if (!kattr->recurse)
4120 : break;
4121 : }
4122 0 : touch_mnt_namespace(mnt->mnt_ns);
4123 0 : }
4124 :
4125 0 : static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4126 : {
4127 0 : struct mount *mnt = real_mount(path->mnt);
4128 0 : int err = 0;
4129 :
4130 0 : if (path->dentry != mnt->mnt.mnt_root)
4131 : return -EINVAL;
4132 :
4133 0 : if (kattr->mnt_userns) {
4134 : struct mnt_idmap *mnt_idmap;
4135 :
4136 0 : mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4137 0 : if (IS_ERR(mnt_idmap))
4138 0 : return PTR_ERR(mnt_idmap);
4139 0 : kattr->mnt_idmap = mnt_idmap;
4140 : }
4141 :
4142 0 : if (kattr->propagation) {
4143 : /*
4144 : * Only take namespace_lock() if we're actually changing
4145 : * propagation.
4146 : */
4147 : namespace_lock();
4148 0 : if (kattr->propagation == MS_SHARED) {
4149 0 : err = invent_group_ids(mnt, kattr->recurse);
4150 0 : if (err) {
4151 0 : namespace_unlock();
4152 0 : return err;
4153 : }
4154 : }
4155 : }
4156 :
4157 0 : err = -EINVAL;
4158 : lock_mount_hash();
4159 :
4160 : /* Ensure that this isn't anything purely vfs internal. */
4161 0 : if (!is_mounted(&mnt->mnt))
4162 : goto out;
4163 :
4164 : /*
4165 : * If this is an attached mount make sure it's located in the callers
4166 : * mount namespace. If it's not don't let the caller interact with it.
4167 : * If this is a detached mount make sure it has an anonymous mount
4168 : * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4169 : */
4170 0 : if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4171 : goto out;
4172 :
4173 : /*
4174 : * First, we get the mount tree in a shape where we can change mount
4175 : * properties without failure. If we succeeded to do so we commit all
4176 : * changes and if we failed we clean up.
4177 : */
4178 0 : err = mount_setattr_prepare(kattr, mnt);
4179 0 : if (!err)
4180 0 : mount_setattr_commit(kattr, mnt);
4181 :
4182 : out:
4183 : unlock_mount_hash();
4184 :
4185 0 : if (kattr->propagation) {
4186 0 : namespace_unlock();
4187 0 : if (err)
4188 0 : cleanup_group_ids(mnt, NULL);
4189 : }
4190 :
4191 : return err;
4192 : }
4193 :
4194 0 : static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4195 : struct mount_kattr *kattr, unsigned int flags)
4196 : {
4197 0 : int err = 0;
4198 : struct ns_common *ns;
4199 : struct user_namespace *mnt_userns;
4200 : struct file *file;
4201 :
4202 0 : if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4203 : return 0;
4204 :
4205 : /*
4206 : * We currently do not support clearing an idmapped mount. If this ever
4207 : * is a use-case we can revisit this but for now let's keep it simple
4208 : * and not allow it.
4209 : */
4210 0 : if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4211 : return -EINVAL;
4212 :
4213 0 : if (attr->userns_fd > INT_MAX)
4214 : return -EINVAL;
4215 :
4216 0 : file = fget(attr->userns_fd);
4217 0 : if (!file)
4218 : return -EBADF;
4219 :
4220 0 : if (!proc_ns_file(file)) {
4221 : err = -EINVAL;
4222 : goto out_fput;
4223 : }
4224 :
4225 0 : ns = get_proc_ns(file_inode(file));
4226 0 : if (ns->ops->type != CLONE_NEWUSER) {
4227 : err = -EINVAL;
4228 : goto out_fput;
4229 : }
4230 :
4231 : /*
4232 : * The initial idmapping cannot be used to create an idmapped
4233 : * mount. We use the initial idmapping as an indicator of a mount
4234 : * that is not idmapped. It can simply be passed into helpers that
4235 : * are aware of idmapped mounts as a convenient shortcut. A user
4236 : * can just create a dedicated identity mapping to achieve the same
4237 : * result.
4238 : */
4239 0 : mnt_userns = container_of(ns, struct user_namespace, ns);
4240 0 : if (mnt_userns == &init_user_ns) {
4241 : err = -EPERM;
4242 : goto out_fput;
4243 : }
4244 :
4245 : /* We're not controlling the target namespace. */
4246 0 : if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4247 : err = -EPERM;
4248 : goto out_fput;
4249 : }
4250 :
4251 0 : kattr->mnt_userns = get_user_ns(mnt_userns);
4252 :
4253 : out_fput:
4254 0 : fput(file);
4255 : return err;
4256 : }
4257 :
4258 0 : static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4259 : struct mount_kattr *kattr, unsigned int flags)
4260 : {
4261 0 : unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4262 :
4263 0 : if (flags & AT_NO_AUTOMOUNT)
4264 0 : lookup_flags &= ~LOOKUP_AUTOMOUNT;
4265 0 : if (flags & AT_SYMLINK_NOFOLLOW)
4266 0 : lookup_flags &= ~LOOKUP_FOLLOW;
4267 0 : if (flags & AT_EMPTY_PATH)
4268 0 : lookup_flags |= LOOKUP_EMPTY;
4269 :
4270 0 : *kattr = (struct mount_kattr) {
4271 : .lookup_flags = lookup_flags,
4272 0 : .recurse = !!(flags & AT_RECURSIVE),
4273 : };
4274 :
4275 0 : if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4276 : return -EINVAL;
4277 0 : if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4278 : return -EINVAL;
4279 0 : kattr->propagation = attr->propagation;
4280 :
4281 0 : if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4282 : return -EINVAL;
4283 :
4284 0 : kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4285 0 : kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4286 :
4287 : /*
4288 : * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4289 : * users wanting to transition to a different atime setting cannot
4290 : * simply specify the atime setting in @attr_set, but must also
4291 : * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4292 : * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4293 : * @attr_clr and that @attr_set can't have any atime bits set if
4294 : * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4295 : */
4296 0 : if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4297 0 : if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4298 : return -EINVAL;
4299 :
4300 : /*
4301 : * Clear all previous time settings as they are mutually
4302 : * exclusive.
4303 : */
4304 0 : kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4305 0 : switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4306 : case MOUNT_ATTR_RELATIME:
4307 0 : kattr->attr_set |= MNT_RELATIME;
4308 : break;
4309 : case MOUNT_ATTR_NOATIME:
4310 0 : kattr->attr_set |= MNT_NOATIME;
4311 : break;
4312 : case MOUNT_ATTR_STRICTATIME:
4313 : break;
4314 : default:
4315 : return -EINVAL;
4316 : }
4317 : } else {
4318 0 : if (attr->attr_set & MOUNT_ATTR__ATIME)
4319 : return -EINVAL;
4320 : }
4321 :
4322 0 : return build_mount_idmapped(attr, usize, kattr, flags);
4323 : }
4324 :
4325 : static void finish_mount_kattr(struct mount_kattr *kattr)
4326 : {
4327 0 : put_user_ns(kattr->mnt_userns);
4328 0 : kattr->mnt_userns = NULL;
4329 :
4330 0 : if (kattr->mnt_idmap)
4331 0 : mnt_idmap_put(kattr->mnt_idmap);
4332 : }
4333 :
4334 0 : SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4335 : unsigned int, flags, struct mount_attr __user *, uattr,
4336 : size_t, usize)
4337 : {
4338 : int err;
4339 : struct path target;
4340 : struct mount_attr attr;
4341 : struct mount_kattr kattr;
4342 :
4343 : BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4344 :
4345 0 : if (flags & ~(AT_EMPTY_PATH |
4346 : AT_RECURSIVE |
4347 : AT_SYMLINK_NOFOLLOW |
4348 : AT_NO_AUTOMOUNT))
4349 : return -EINVAL;
4350 :
4351 0 : if (unlikely(usize > PAGE_SIZE))
4352 : return -E2BIG;
4353 0 : if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4354 : return -EINVAL;
4355 :
4356 0 : if (!may_mount())
4357 : return -EPERM;
4358 :
4359 0 : err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4360 0 : if (err)
4361 0 : return err;
4362 :
4363 : /* Don't bother walking through the mounts if this is a nop. */
4364 0 : if (attr.attr_set == 0 &&
4365 0 : attr.attr_clr == 0 &&
4366 0 : attr.propagation == 0)
4367 : return 0;
4368 :
4369 0 : err = build_mount_kattr(&attr, usize, &kattr, flags);
4370 0 : if (err)
4371 0 : return err;
4372 :
4373 0 : err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4374 0 : if (!err) {
4375 0 : err = do_mount_setattr(&target, &kattr);
4376 0 : path_put(&target);
4377 : }
4378 0 : finish_mount_kattr(&kattr);
4379 0 : return err;
4380 : }
4381 :
4382 1 : static void __init init_mount_tree(void)
4383 : {
4384 : struct vfsmount *mnt;
4385 : struct mount *m;
4386 : struct mnt_namespace *ns;
4387 : struct path root;
4388 :
4389 1 : mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4390 1 : if (IS_ERR(mnt))
4391 0 : panic("Can't create rootfs");
4392 :
4393 1 : ns = alloc_mnt_ns(&init_user_ns, false);
4394 1 : if (IS_ERR(ns))
4395 0 : panic("Can't allocate initial namespace");
4396 1 : m = real_mount(mnt);
4397 1 : m->mnt_ns = ns;
4398 1 : ns->root = m;
4399 1 : ns->mounts = 1;
4400 2 : list_add(&m->mnt_list, &ns->list);
4401 1 : init_task.nsproxy->mnt_ns = ns;
4402 1 : get_mnt_ns(ns);
4403 :
4404 1 : root.mnt = mnt;
4405 1 : root.dentry = mnt->mnt_root;
4406 1 : mnt->mnt_flags |= MNT_LOCKED;
4407 :
4408 1 : set_fs_pwd(current->fs, &root);
4409 1 : set_fs_root(current->fs, &root);
4410 1 : }
4411 :
4412 1 : void __init mnt_init(void)
4413 : {
4414 : int err;
4415 :
4416 1 : mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4417 : 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4418 :
4419 1 : mount_hashtable = alloc_large_system_hash("Mount-cache",
4420 : sizeof(struct hlist_head),
4421 : mhash_entries, 19,
4422 : HASH_ZERO,
4423 : &m_hash_shift, &m_hash_mask, 0, 0);
4424 1 : mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4425 : sizeof(struct hlist_head),
4426 : mphash_entries, 19,
4427 : HASH_ZERO,
4428 : &mp_hash_shift, &mp_hash_mask, 0, 0);
4429 :
4430 1 : if (!mount_hashtable || !mountpoint_hashtable)
4431 0 : panic("Failed to allocate mount hash table\n");
4432 :
4433 1 : kernfs_init();
4434 :
4435 1 : err = sysfs_init();
4436 1 : if (err)
4437 0 : printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4438 : __func__, err);
4439 1 : fs_kobj = kobject_create_and_add("fs", NULL);
4440 1 : if (!fs_kobj)
4441 0 : printk(KERN_WARNING "%s: kobj create error\n", __func__);
4442 1 : shmem_init();
4443 1 : init_rootfs();
4444 1 : init_mount_tree();
4445 1 : }
4446 :
4447 0 : void put_mnt_ns(struct mnt_namespace *ns)
4448 : {
4449 0 : if (!refcount_dec_and_test(&ns->ns.count))
4450 : return;
4451 0 : drop_collected_mounts(&ns->root->mnt);
4452 0 : free_mnt_ns(ns);
4453 : }
4454 :
4455 8 : struct vfsmount *kern_mount(struct file_system_type *type)
4456 : {
4457 : struct vfsmount *mnt;
4458 8 : mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4459 8 : if (!IS_ERR(mnt)) {
4460 : /*
4461 : * it is a longterm mount, don't release mnt until
4462 : * we unmount before file sys is unregistered
4463 : */
4464 8 : real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4465 : }
4466 8 : return mnt;
4467 : }
4468 : EXPORT_SYMBOL_GPL(kern_mount);
4469 :
4470 0 : void kern_unmount(struct vfsmount *mnt)
4471 : {
4472 : /* release long term mount so mount point can be released */
4473 0 : if (!IS_ERR(mnt)) {
4474 0 : mnt_make_shortterm(mnt);
4475 0 : synchronize_rcu(); /* yecchhh... */
4476 : mntput(mnt);
4477 : }
4478 0 : }
4479 : EXPORT_SYMBOL(kern_unmount);
4480 :
4481 0 : void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4482 : {
4483 : unsigned int i;
4484 :
4485 0 : for (i = 0; i < num; i++)
4486 0 : mnt_make_shortterm(mnt[i]);
4487 : synchronize_rcu_expedited();
4488 0 : for (i = 0; i < num; i++)
4489 0 : mntput(mnt[i]);
4490 0 : }
4491 : EXPORT_SYMBOL(kern_unmount_array);
4492 :
4493 0 : bool our_mnt(struct vfsmount *mnt)
4494 : {
4495 0 : return check_mnt(real_mount(mnt));
4496 : }
4497 :
4498 0 : bool current_chrooted(void)
4499 : {
4500 : /* Does the current process have a non-standard root */
4501 : struct path ns_root;
4502 : struct path fs_root;
4503 : bool chrooted;
4504 :
4505 : /* Find the namespace root */
4506 0 : ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4507 0 : ns_root.dentry = ns_root.mnt->mnt_root;
4508 0 : path_get(&ns_root);
4509 0 : while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4510 : ;
4511 :
4512 0 : get_fs_root(current->fs, &fs_root);
4513 :
4514 0 : chrooted = !path_equal(&fs_root, &ns_root);
4515 :
4516 0 : path_put(&fs_root);
4517 0 : path_put(&ns_root);
4518 :
4519 0 : return chrooted;
4520 : }
4521 :
4522 0 : static bool mnt_already_visible(struct mnt_namespace *ns,
4523 : const struct super_block *sb,
4524 : int *new_mnt_flags)
4525 : {
4526 0 : int new_flags = *new_mnt_flags;
4527 : struct mount *mnt;
4528 0 : bool visible = false;
4529 :
4530 0 : down_read(&namespace_sem);
4531 0 : lock_ns_list(ns);
4532 0 : list_for_each_entry(mnt, &ns->list, mnt_list) {
4533 : struct mount *child;
4534 : int mnt_flags;
4535 :
4536 0 : if (mnt_is_cursor(mnt))
4537 0 : continue;
4538 :
4539 0 : if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4540 0 : continue;
4541 :
4542 : /* This mount is not fully visible if it's root directory
4543 : * is not the root directory of the filesystem.
4544 : */
4545 0 : if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4546 0 : continue;
4547 :
4548 : /* A local view of the mount flags */
4549 0 : mnt_flags = mnt->mnt.mnt_flags;
4550 :
4551 : /* Don't miss readonly hidden in the superblock flags */
4552 0 : if (sb_rdonly(mnt->mnt.mnt_sb))
4553 0 : mnt_flags |= MNT_LOCK_READONLY;
4554 :
4555 : /* Verify the mount flags are equal to or more permissive
4556 : * than the proposed new mount.
4557 : */
4558 0 : if ((mnt_flags & MNT_LOCK_READONLY) &&
4559 0 : !(new_flags & MNT_READONLY))
4560 0 : continue;
4561 0 : if ((mnt_flags & MNT_LOCK_ATIME) &&
4562 0 : ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4563 0 : continue;
4564 :
4565 : /* This mount is not fully visible if there are any
4566 : * locked child mounts that cover anything except for
4567 : * empty directories.
4568 : */
4569 0 : list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4570 0 : struct inode *inode = child->mnt_mountpoint->d_inode;
4571 : /* Only worry about locked mounts */
4572 0 : if (!(child->mnt.mnt_flags & MNT_LOCKED))
4573 0 : continue;
4574 : /* Is the directory permanetly empty? */
4575 0 : if (!is_empty_dir_inode(inode))
4576 : goto next;
4577 : }
4578 : /* Preserve the locked attributes */
4579 0 : *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4580 : MNT_LOCK_ATIME);
4581 0 : visible = true;
4582 : goto found;
4583 : next: ;
4584 : }
4585 : found:
4586 0 : unlock_ns_list(ns);
4587 0 : up_read(&namespace_sem);
4588 0 : return visible;
4589 : }
4590 :
4591 0 : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4592 : {
4593 0 : const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4594 0 : struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4595 : unsigned long s_iflags;
4596 :
4597 0 : if (ns->user_ns == &init_user_ns)
4598 : return false;
4599 :
4600 : /* Can this filesystem be too revealing? */
4601 0 : s_iflags = sb->s_iflags;
4602 0 : if (!(s_iflags & SB_I_USERNS_VISIBLE))
4603 : return false;
4604 :
4605 0 : if ((s_iflags & required_iflags) != required_iflags) {
4606 0 : WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4607 : required_iflags);
4608 : return true;
4609 : }
4610 :
4611 0 : return !mnt_already_visible(ns, sb, new_mnt_flags);
4612 : }
4613 :
4614 0 : bool mnt_may_suid(struct vfsmount *mnt)
4615 : {
4616 : /*
4617 : * Foreign mounts (accessed via fchdir or through /proc
4618 : * symlinks) are always treated as if they are nosuid. This
4619 : * prevents namespaces from trusting potentially unsafe
4620 : * suid/sgid bits, file caps, or security labels that originate
4621 : * in other namespaces.
4622 : */
4623 0 : return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4624 0 : current_in_userns(mnt->mnt_sb->s_user_ns);
4625 : }
4626 :
4627 0 : static struct ns_common *mntns_get(struct task_struct *task)
4628 : {
4629 0 : struct ns_common *ns = NULL;
4630 : struct nsproxy *nsproxy;
4631 :
4632 0 : task_lock(task);
4633 0 : nsproxy = task->nsproxy;
4634 0 : if (nsproxy) {
4635 0 : ns = &nsproxy->mnt_ns->ns;
4636 0 : get_mnt_ns(to_mnt_ns(ns));
4637 : }
4638 0 : task_unlock(task);
4639 :
4640 0 : return ns;
4641 : }
4642 :
4643 0 : static void mntns_put(struct ns_common *ns)
4644 : {
4645 0 : put_mnt_ns(to_mnt_ns(ns));
4646 0 : }
4647 :
4648 0 : static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4649 : {
4650 0 : struct nsproxy *nsproxy = nsset->nsproxy;
4651 0 : struct fs_struct *fs = nsset->fs;
4652 0 : struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4653 0 : struct user_namespace *user_ns = nsset->cred->user_ns;
4654 : struct path root;
4655 : int err;
4656 :
4657 0 : if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4658 0 : !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4659 0 : !ns_capable(user_ns, CAP_SYS_ADMIN))
4660 : return -EPERM;
4661 :
4662 0 : if (is_anon_ns(mnt_ns))
4663 : return -EINVAL;
4664 :
4665 0 : if (fs->users != 1)
4666 : return -EINVAL;
4667 :
4668 0 : get_mnt_ns(mnt_ns);
4669 0 : old_mnt_ns = nsproxy->mnt_ns;
4670 0 : nsproxy->mnt_ns = mnt_ns;
4671 :
4672 : /* Find the root */
4673 0 : err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4674 : "/", LOOKUP_DOWN, &root);
4675 0 : if (err) {
4676 : /* revert to old namespace */
4677 0 : nsproxy->mnt_ns = old_mnt_ns;
4678 0 : put_mnt_ns(mnt_ns);
4679 0 : return err;
4680 : }
4681 :
4682 0 : put_mnt_ns(old_mnt_ns);
4683 :
4684 : /* Update the pwd and root */
4685 0 : set_fs_pwd(fs, &root);
4686 0 : set_fs_root(fs, &root);
4687 :
4688 0 : path_put(&root);
4689 0 : return 0;
4690 : }
4691 :
4692 0 : static struct user_namespace *mntns_owner(struct ns_common *ns)
4693 : {
4694 0 : return to_mnt_ns(ns)->user_ns;
4695 : }
4696 :
4697 : const struct proc_ns_operations mntns_operations = {
4698 : .name = "mnt",
4699 : .type = CLONE_NEWNS,
4700 : .get = mntns_get,
4701 : .put = mntns_put,
4702 : .install = mntns_install,
4703 : .owner = mntns_owner,
4704 : };
4705 :
4706 : #ifdef CONFIG_SYSCTL
4707 : static struct ctl_table fs_namespace_sysctls[] = {
4708 : {
4709 : .procname = "mount-max",
4710 : .data = &sysctl_mount_max,
4711 : .maxlen = sizeof(unsigned int),
4712 : .mode = 0644,
4713 : .proc_handler = proc_dointvec_minmax,
4714 : .extra1 = SYSCTL_ONE,
4715 : },
4716 : { }
4717 : };
4718 :
4719 1 : static int __init init_fs_namespace_sysctls(void)
4720 : {
4721 1 : register_sysctl_init("fs", fs_namespace_sysctls);
4722 1 : return 0;
4723 : }
4724 : fs_initcall(init_fs_namespace_sysctls);
4725 :
4726 : #endif /* CONFIG_SYSCTL */
|