Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef __LINUX_CPUMASK_H
3 : #define __LINUX_CPUMASK_H
4 :
5 : /*
6 : * Cpumasks provide a bitmap suitable for representing the
7 : * set of CPU's in a system, one bit position per CPU number. In general,
8 : * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 : */
10 : #include <linux/kernel.h>
11 : #include <linux/threads.h>
12 : #include <linux/bitmap.h>
13 : #include <linux/atomic.h>
14 : #include <linux/bug.h>
15 : #include <linux/gfp_types.h>
16 : #include <linux/numa.h>
17 :
18 : /* Don't assign or return these: may not be this big! */
19 : typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
20 :
21 : /**
22 : * cpumask_bits - get the bits in a cpumask
23 : * @maskp: the struct cpumask *
24 : *
25 : * You should only assume nr_cpu_ids bits of this mask are valid. This is
26 : * a macro so it's const-correct.
27 : */
28 : #define cpumask_bits(maskp) ((maskp)->bits)
29 :
30 : /**
31 : * cpumask_pr_args - printf args to output a cpumask
32 : * @maskp: cpumask to be printed
33 : *
34 : * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
35 : */
36 : #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
37 :
38 : #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
39 : #define nr_cpu_ids ((unsigned int)NR_CPUS)
40 : #else
41 : extern unsigned int nr_cpu_ids;
42 : #endif
43 :
44 : static inline void set_nr_cpu_ids(unsigned int nr)
45 : {
46 : #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
47 : WARN_ON(nr != nr_cpu_ids);
48 : #else
49 : nr_cpu_ids = nr;
50 : #endif
51 : }
52 :
53 : /*
54 : * We have several different "preferred sizes" for the cpumask
55 : * operations, depending on operation.
56 : *
57 : * For example, the bitmap scanning and operating operations have
58 : * optimized routines that work for the single-word case, but only when
59 : * the size is constant. So if NR_CPUS fits in one single word, we are
60 : * better off using that small constant, in order to trigger the
61 : * optimized bit finding. That is 'small_cpumask_size'.
62 : *
63 : * The clearing and copying operations will similarly perform better
64 : * with a constant size, but we limit that size arbitrarily to four
65 : * words. We call this 'large_cpumask_size'.
66 : *
67 : * Finally, some operations just want the exact limit, either because
68 : * they set bits or just don't have any faster fixed-sized versions. We
69 : * call this just 'nr_cpumask_size'.
70 : *
71 : * Note that these optional constants are always guaranteed to be at
72 : * least as big as 'nr_cpu_ids' itself is, and all our cpumask
73 : * allocations are at least that size (see cpumask_size()). The
74 : * optimization comes from being able to potentially use a compile-time
75 : * constant instead of a run-time generated exact number of CPUs.
76 : */
77 : #if NR_CPUS <= BITS_PER_LONG
78 : #define small_cpumask_bits ((unsigned int)NR_CPUS)
79 : #define large_cpumask_bits ((unsigned int)NR_CPUS)
80 : #elif NR_CPUS <= 4*BITS_PER_LONG
81 : #define small_cpumask_bits nr_cpu_ids
82 : #define large_cpumask_bits ((unsigned int)NR_CPUS)
83 : #else
84 : #define small_cpumask_bits nr_cpu_ids
85 : #define large_cpumask_bits nr_cpu_ids
86 : #endif
87 : #define nr_cpumask_bits nr_cpu_ids
88 :
89 : /*
90 : * The following particular system cpumasks and operations manage
91 : * possible, present, active and online cpus.
92 : *
93 : * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
94 : * cpu_present_mask - has bit 'cpu' set iff cpu is populated
95 : * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
96 : * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
97 : *
98 : * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
99 : *
100 : * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
101 : * that it is possible might ever be plugged in at anytime during the
102 : * life of that system boot. The cpu_present_mask is dynamic(*),
103 : * representing which CPUs are currently plugged in. And
104 : * cpu_online_mask is the dynamic subset of cpu_present_mask,
105 : * indicating those CPUs available for scheduling.
106 : *
107 : * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
108 : * depending on what ACPI reports as currently plugged in, otherwise
109 : * cpu_present_mask is just a copy of cpu_possible_mask.
110 : *
111 : * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
112 : * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
113 : *
114 : * Subtleties:
115 : * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
116 : * assumption that their single CPU is online. The UP
117 : * cpu_{online,possible,present}_masks are placebos. Changing them
118 : * will have no useful affect on the following num_*_cpus()
119 : * and cpu_*() macros in the UP case. This ugliness is a UP
120 : * optimization - don't waste any instructions or memory references
121 : * asking if you're online or how many CPUs there are if there is
122 : * only one CPU.
123 : */
124 :
125 : extern struct cpumask __cpu_possible_mask;
126 : extern struct cpumask __cpu_online_mask;
127 : extern struct cpumask __cpu_present_mask;
128 : extern struct cpumask __cpu_active_mask;
129 : extern struct cpumask __cpu_dying_mask;
130 : #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
131 : #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
132 : #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
133 : #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
134 : #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
135 :
136 : extern atomic_t __num_online_cpus;
137 :
138 : extern cpumask_t cpus_booted_once_mask;
139 :
140 : static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
141 : {
142 : #ifdef CONFIG_DEBUG_PER_CPU_MAPS
143 : WARN_ON_ONCE(cpu >= bits);
144 : #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
145 : }
146 :
147 : /* verify cpu argument to cpumask_* operators */
148 : static __always_inline unsigned int cpumask_check(unsigned int cpu)
149 : {
150 375 : cpu_max_bits_warn(cpu, nr_cpumask_bits);
151 : return cpu;
152 : }
153 :
154 : /**
155 : * cpumask_first - get the first cpu in a cpumask
156 : * @srcp: the cpumask pointer
157 : *
158 : * Returns >= nr_cpu_ids if no cpus set.
159 : */
160 : static inline unsigned int cpumask_first(const struct cpumask *srcp)
161 : {
162 0 : return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
163 : }
164 :
165 : /**
166 : * cpumask_first_zero - get the first unset cpu in a cpumask
167 : * @srcp: the cpumask pointer
168 : *
169 : * Returns >= nr_cpu_ids if all cpus are set.
170 : */
171 : static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
172 : {
173 : return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
174 : }
175 :
176 : /**
177 : * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
178 : * @src1p: the first input
179 : * @src2p: the second input
180 : *
181 : * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
182 : */
183 : static inline
184 : unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
185 : {
186 0 : return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
187 : }
188 :
189 : /**
190 : * cpumask_last - get the last CPU in a cpumask
191 : * @srcp: - the cpumask pointer
192 : *
193 : * Returns >= nr_cpumask_bits if no CPUs set.
194 : */
195 : static inline unsigned int cpumask_last(const struct cpumask *srcp)
196 : {
197 : return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
198 : }
199 :
200 : /**
201 : * cpumask_next - get the next cpu in a cpumask
202 : * @n: the cpu prior to the place to search (ie. return will be > @n)
203 : * @srcp: the cpumask pointer
204 : *
205 : * Returns >= nr_cpu_ids if no further cpus set.
206 : */
207 : static inline
208 : unsigned int cpumask_next(int n, const struct cpumask *srcp)
209 : {
210 : /* -1 is a legal arg here. */
211 : if (n != -1)
212 : cpumask_check(n);
213 0 : return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
214 : }
215 :
216 : /**
217 : * cpumask_next_zero - get the next unset cpu in a cpumask
218 : * @n: the cpu prior to the place to search (ie. return will be > @n)
219 : * @srcp: the cpumask pointer
220 : *
221 : * Returns >= nr_cpu_ids if no further cpus unset.
222 : */
223 : static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
224 : {
225 : /* -1 is a legal arg here. */
226 : if (n != -1)
227 : cpumask_check(n);
228 : return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
229 : }
230 :
231 : #if NR_CPUS == 1
232 : /* Uniprocessor: there is only one valid CPU */
233 : static inline unsigned int cpumask_local_spread(unsigned int i, int node)
234 : {
235 : return 0;
236 : }
237 :
238 : static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
239 : const struct cpumask *src2p)
240 : {
241 : return cpumask_first_and(src1p, src2p);
242 : }
243 :
244 : static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp)
245 : {
246 : return cpumask_first(srcp);
247 : }
248 : #else
249 : unsigned int cpumask_local_spread(unsigned int i, int node);
250 : unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
251 : const struct cpumask *src2p);
252 : unsigned int cpumask_any_distribute(const struct cpumask *srcp);
253 : #endif /* NR_CPUS */
254 :
255 : /**
256 : * cpumask_next_and - get the next cpu in *src1p & *src2p
257 : * @n: the cpu prior to the place to search (ie. return will be > @n)
258 : * @src1p: the first cpumask pointer
259 : * @src2p: the second cpumask pointer
260 : *
261 : * Returns >= nr_cpu_ids if no further cpus set in both.
262 : */
263 : static inline
264 : unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
265 : const struct cpumask *src2p)
266 : {
267 : /* -1 is a legal arg here. */
268 : if (n != -1)
269 : cpumask_check(n);
270 0 : return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
271 0 : small_cpumask_bits, n + 1);
272 : }
273 :
274 : /**
275 : * for_each_cpu - iterate over every cpu in a mask
276 : * @cpu: the (optionally unsigned) integer iterator
277 : * @mask: the cpumask pointer
278 : *
279 : * After the loop, cpu is >= nr_cpu_ids.
280 : */
281 : #define for_each_cpu(cpu, mask) \
282 : for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
283 :
284 : #if NR_CPUS == 1
285 : static inline
286 : unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap)
287 : {
288 : cpumask_check(start);
289 : if (n != -1)
290 : cpumask_check(n);
291 :
292 : /*
293 : * Return the first available CPU when wrapping, or when starting before cpu0,
294 : * since there is only one valid option.
295 : */
296 : if (wrap && n >= 0)
297 : return nr_cpumask_bits;
298 :
299 : return cpumask_first(mask);
300 : }
301 : #else
302 : unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
303 : #endif
304 :
305 : /**
306 : * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
307 : * @cpu: the (optionally unsigned) integer iterator
308 : * @mask: the cpumask pointer
309 : * @start: the start location
310 : *
311 : * The implementation does not assume any bit in @mask is set (including @start).
312 : *
313 : * After the loop, cpu is >= nr_cpu_ids.
314 : */
315 : #define for_each_cpu_wrap(cpu, mask, start) \
316 : for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
317 :
318 : /**
319 : * for_each_cpu_and - iterate over every cpu in both masks
320 : * @cpu: the (optionally unsigned) integer iterator
321 : * @mask1: the first cpumask pointer
322 : * @mask2: the second cpumask pointer
323 : *
324 : * This saves a temporary CPU mask in many places. It is equivalent to:
325 : * struct cpumask tmp;
326 : * cpumask_and(&tmp, &mask1, &mask2);
327 : * for_each_cpu(cpu, &tmp)
328 : * ...
329 : *
330 : * After the loop, cpu is >= nr_cpu_ids.
331 : */
332 : #define for_each_cpu_and(cpu, mask1, mask2) \
333 : for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
334 :
335 : /**
336 : * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
337 : * those present in another.
338 : * @cpu: the (optionally unsigned) integer iterator
339 : * @mask1: the first cpumask pointer
340 : * @mask2: the second cpumask pointer
341 : *
342 : * This saves a temporary CPU mask in many places. It is equivalent to:
343 : * struct cpumask tmp;
344 : * cpumask_andnot(&tmp, &mask1, &mask2);
345 : * for_each_cpu(cpu, &tmp)
346 : * ...
347 : *
348 : * After the loop, cpu is >= nr_cpu_ids.
349 : */
350 : #define for_each_cpu_andnot(cpu, mask1, mask2) \
351 : for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
352 :
353 : /**
354 : * cpumask_any_but - return a "random" in a cpumask, but not this one.
355 : * @mask: the cpumask to search
356 : * @cpu: the cpu to ignore.
357 : *
358 : * Often used to find any cpu but smp_processor_id() in a mask.
359 : * Returns >= nr_cpu_ids if no cpus set.
360 : */
361 : static inline
362 : unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
363 : {
364 : unsigned int i;
365 :
366 : cpumask_check(cpu);
367 : for_each_cpu(i, mask)
368 : if (i != cpu)
369 : break;
370 : return i;
371 : }
372 :
373 : /**
374 : * cpumask_nth - get the first cpu in a cpumask
375 : * @srcp: the cpumask pointer
376 : * @cpu: the N'th cpu to find, starting from 0
377 : *
378 : * Returns >= nr_cpu_ids if such cpu doesn't exist.
379 : */
380 : static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
381 : {
382 : return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
383 : }
384 :
385 : /**
386 : * cpumask_nth_and - get the first cpu in 2 cpumasks
387 : * @srcp1: the cpumask pointer
388 : * @srcp2: the cpumask pointer
389 : * @cpu: the N'th cpu to find, starting from 0
390 : *
391 : * Returns >= nr_cpu_ids if such cpu doesn't exist.
392 : */
393 : static inline
394 : unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
395 : const struct cpumask *srcp2)
396 : {
397 : return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
398 : small_cpumask_bits, cpumask_check(cpu));
399 : }
400 :
401 : /**
402 : * cpumask_nth_andnot - get the first cpu set in 1st cpumask, and clear in 2nd.
403 : * @srcp1: the cpumask pointer
404 : * @srcp2: the cpumask pointer
405 : * @cpu: the N'th cpu to find, starting from 0
406 : *
407 : * Returns >= nr_cpu_ids if such cpu doesn't exist.
408 : */
409 : static inline
410 : unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
411 : const struct cpumask *srcp2)
412 : {
413 : return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
414 : small_cpumask_bits, cpumask_check(cpu));
415 : }
416 :
417 : /**
418 : * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
419 : * @srcp1: the cpumask pointer
420 : * @srcp2: the cpumask pointer
421 : * @srcp3: the cpumask pointer
422 : * @cpu: the N'th cpu to find, starting from 0
423 : *
424 : * Returns >= nr_cpu_ids if such cpu doesn't exist.
425 : */
426 : static __always_inline
427 : unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
428 : const struct cpumask *srcp2,
429 : const struct cpumask *srcp3)
430 : {
431 : return find_nth_and_andnot_bit(cpumask_bits(srcp1),
432 : cpumask_bits(srcp2),
433 : cpumask_bits(srcp3),
434 : small_cpumask_bits, cpumask_check(cpu));
435 : }
436 :
437 : #define CPU_BITS_NONE \
438 : { \
439 : [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
440 : }
441 :
442 : #define CPU_BITS_CPU0 \
443 : { \
444 : [0] = 1UL \
445 : }
446 :
447 : /**
448 : * cpumask_set_cpu - set a cpu in a cpumask
449 : * @cpu: cpu number (< nr_cpu_ids)
450 : * @dstp: the cpumask pointer
451 : */
452 : static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
453 : {
454 6 : set_bit(cpumask_check(cpu), cpumask_bits(dstp));
455 : }
456 :
457 : static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
458 : {
459 : __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
460 : }
461 :
462 :
463 : /**
464 : * cpumask_clear_cpu - clear a cpu in a cpumask
465 : * @cpu: cpu number (< nr_cpu_ids)
466 : * @dstp: the cpumask pointer
467 : */
468 : static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
469 : {
470 0 : clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
471 : }
472 :
473 : static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
474 : {
475 : __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
476 : }
477 :
478 : /**
479 : * cpumask_test_cpu - test for a cpu in a cpumask
480 : * @cpu: cpu number (< nr_cpu_ids)
481 : * @cpumask: the cpumask pointer
482 : *
483 : * Returns true if @cpu is set in @cpumask, else returns false
484 : */
485 : static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
486 : {
487 1113 : return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
488 : }
489 :
490 : /**
491 : * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
492 : * @cpu: cpu number (< nr_cpu_ids)
493 : * @cpumask: the cpumask pointer
494 : *
495 : * Returns true if @cpu is set in old bitmap of @cpumask, else returns false
496 : *
497 : * test_and_set_bit wrapper for cpumasks.
498 : */
499 : static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
500 : {
501 3 : return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
502 : }
503 :
504 : /**
505 : * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
506 : * @cpu: cpu number (< nr_cpu_ids)
507 : * @cpumask: the cpumask pointer
508 : *
509 : * Returns true if @cpu is set in old bitmap of @cpumask, else returns false
510 : *
511 : * test_and_clear_bit wrapper for cpumasks.
512 : */
513 : static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
514 : {
515 0 : return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
516 : }
517 :
518 : /**
519 : * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
520 : * @dstp: the cpumask pointer
521 : *
522 : * Note: since we set bits, we should use the tighter 'bitmap_set()' with
523 : * the eact number of bits, not 'bitmap_fill()' that will fill past the
524 : * end.
525 : */
526 : static inline void cpumask_setall(struct cpumask *dstp)
527 : {
528 : bitmap_set(cpumask_bits(dstp), 0, nr_cpumask_bits);
529 : }
530 :
531 : /**
532 : * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
533 : * @dstp: the cpumask pointer
534 : */
535 : static inline void cpumask_clear(struct cpumask *dstp)
536 : {
537 2 : bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
538 : }
539 :
540 : /**
541 : * cpumask_and - *dstp = *src1p & *src2p
542 : * @dstp: the cpumask result
543 : * @src1p: the first input
544 : * @src2p: the second input
545 : *
546 : * If *@dstp is empty, returns false, else returns true
547 : */
548 : static inline bool cpumask_and(struct cpumask *dstp,
549 : const struct cpumask *src1p,
550 : const struct cpumask *src2p)
551 : {
552 14 : return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
553 6 : cpumask_bits(src2p), small_cpumask_bits);
554 : }
555 :
556 : /**
557 : * cpumask_or - *dstp = *src1p | *src2p
558 : * @dstp: the cpumask result
559 : * @src1p: the first input
560 : * @src2p: the second input
561 : */
562 : static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
563 : const struct cpumask *src2p)
564 : {
565 : bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
566 : cpumask_bits(src2p), small_cpumask_bits);
567 : }
568 :
569 : /**
570 : * cpumask_xor - *dstp = *src1p ^ *src2p
571 : * @dstp: the cpumask result
572 : * @src1p: the first input
573 : * @src2p: the second input
574 : */
575 : static inline void cpumask_xor(struct cpumask *dstp,
576 : const struct cpumask *src1p,
577 : const struct cpumask *src2p)
578 : {
579 : bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
580 : cpumask_bits(src2p), small_cpumask_bits);
581 : }
582 :
583 : /**
584 : * cpumask_andnot - *dstp = *src1p & ~*src2p
585 : * @dstp: the cpumask result
586 : * @src1p: the first input
587 : * @src2p: the second input
588 : *
589 : * If *@dstp is empty, returns false, else returns true
590 : */
591 : static inline bool cpumask_andnot(struct cpumask *dstp,
592 : const struct cpumask *src1p,
593 : const struct cpumask *src2p)
594 : {
595 0 : return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
596 0 : cpumask_bits(src2p), small_cpumask_bits);
597 : }
598 :
599 : /**
600 : * cpumask_equal - *src1p == *src2p
601 : * @src1p: the first input
602 : * @src2p: the second input
603 : */
604 : static inline bool cpumask_equal(const struct cpumask *src1p,
605 : const struct cpumask *src2p)
606 : {
607 4 : return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
608 : small_cpumask_bits);
609 : }
610 :
611 : /**
612 : * cpumask_or_equal - *src1p | *src2p == *src3p
613 : * @src1p: the first input
614 : * @src2p: the second input
615 : * @src3p: the third input
616 : */
617 : static inline bool cpumask_or_equal(const struct cpumask *src1p,
618 : const struct cpumask *src2p,
619 : const struct cpumask *src3p)
620 : {
621 : return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
622 : cpumask_bits(src3p), small_cpumask_bits);
623 : }
624 :
625 : /**
626 : * cpumask_intersects - (*src1p & *src2p) != 0
627 : * @src1p: the first input
628 : * @src2p: the second input
629 : */
630 : static inline bool cpumask_intersects(const struct cpumask *src1p,
631 : const struct cpumask *src2p)
632 : {
633 0 : return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
634 : small_cpumask_bits);
635 : }
636 :
637 : /**
638 : * cpumask_subset - (*src1p & ~*src2p) == 0
639 : * @src1p: the first input
640 : * @src2p: the second input
641 : *
642 : * Returns true if *@src1p is a subset of *@src2p, else returns false
643 : */
644 : static inline bool cpumask_subset(const struct cpumask *src1p,
645 : const struct cpumask *src2p)
646 : {
647 0 : return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
648 : small_cpumask_bits);
649 : }
650 :
651 : /**
652 : * cpumask_empty - *srcp == 0
653 : * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
654 : */
655 : static inline bool cpumask_empty(const struct cpumask *srcp)
656 : {
657 10 : return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
658 : }
659 :
660 : /**
661 : * cpumask_full - *srcp == 0xFFFFFFFF...
662 : * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
663 : */
664 : static inline bool cpumask_full(const struct cpumask *srcp)
665 : {
666 : return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
667 : }
668 :
669 : /**
670 : * cpumask_weight - Count of bits in *srcp
671 : * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
672 : */
673 : static inline unsigned int cpumask_weight(const struct cpumask *srcp)
674 : {
675 6 : return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
676 : }
677 :
678 : /**
679 : * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
680 : * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
681 : * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
682 : */
683 : static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1,
684 : const struct cpumask *srcp2)
685 : {
686 : return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
687 : }
688 :
689 : /**
690 : * cpumask_shift_right - *dstp = *srcp >> n
691 : * @dstp: the cpumask result
692 : * @srcp: the input to shift
693 : * @n: the number of bits to shift by
694 : */
695 : static inline void cpumask_shift_right(struct cpumask *dstp,
696 : const struct cpumask *srcp, int n)
697 : {
698 : bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
699 : small_cpumask_bits);
700 : }
701 :
702 : /**
703 : * cpumask_shift_left - *dstp = *srcp << n
704 : * @dstp: the cpumask result
705 : * @srcp: the input to shift
706 : * @n: the number of bits to shift by
707 : */
708 : static inline void cpumask_shift_left(struct cpumask *dstp,
709 : const struct cpumask *srcp, int n)
710 : {
711 : bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
712 : nr_cpumask_bits);
713 : }
714 :
715 : /**
716 : * cpumask_copy - *dstp = *srcp
717 : * @dstp: the result
718 : * @srcp: the input cpumask
719 : */
720 : static inline void cpumask_copy(struct cpumask *dstp,
721 : const struct cpumask *srcp)
722 : {
723 70 : bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
724 : }
725 :
726 : /**
727 : * cpumask_any - pick a "random" cpu from *srcp
728 : * @srcp: the input cpumask
729 : *
730 : * Returns >= nr_cpu_ids if no cpus set.
731 : */
732 : #define cpumask_any(srcp) cpumask_first(srcp)
733 :
734 : /**
735 : * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
736 : * @mask1: the first input cpumask
737 : * @mask2: the second input cpumask
738 : *
739 : * Returns >= nr_cpu_ids if no cpus set.
740 : */
741 : #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
742 :
743 : /**
744 : * cpumask_of - the cpumask containing just a given cpu
745 : * @cpu: the cpu (<= nr_cpu_ids)
746 : */
747 : #define cpumask_of(cpu) (get_cpu_mask(cpu))
748 :
749 : /**
750 : * cpumask_parse_user - extract a cpumask from a user string
751 : * @buf: the buffer to extract from
752 : * @len: the length of the buffer
753 : * @dstp: the cpumask to set.
754 : *
755 : * Returns -errno, or 0 for success.
756 : */
757 : static inline int cpumask_parse_user(const char __user *buf, int len,
758 : struct cpumask *dstp)
759 : {
760 : return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
761 : }
762 :
763 : /**
764 : * cpumask_parselist_user - extract a cpumask from a user string
765 : * @buf: the buffer to extract from
766 : * @len: the length of the buffer
767 : * @dstp: the cpumask to set.
768 : *
769 : * Returns -errno, or 0 for success.
770 : */
771 : static inline int cpumask_parselist_user(const char __user *buf, int len,
772 : struct cpumask *dstp)
773 : {
774 : return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
775 : nr_cpumask_bits);
776 : }
777 :
778 : /**
779 : * cpumask_parse - extract a cpumask from a string
780 : * @buf: the buffer to extract from
781 : * @dstp: the cpumask to set.
782 : *
783 : * Returns -errno, or 0 for success.
784 : */
785 : static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
786 : {
787 0 : return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
788 : }
789 :
790 : /**
791 : * cpulist_parse - extract a cpumask from a user string of ranges
792 : * @buf: the buffer to extract from
793 : * @dstp: the cpumask to set.
794 : *
795 : * Returns -errno, or 0 for success.
796 : */
797 : static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
798 : {
799 : return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
800 : }
801 :
802 : /**
803 : * cpumask_size - size to allocate for a 'struct cpumask' in bytes
804 : */
805 : static inline unsigned int cpumask_size(void)
806 : {
807 : return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long);
808 : }
809 :
810 : /*
811 : * cpumask_var_t: struct cpumask for stack usage.
812 : *
813 : * Oh, the wicked games we play! In order to make kernel coding a
814 : * little more difficult, we typedef cpumask_var_t to an array or a
815 : * pointer: doing &mask on an array is a noop, so it still works.
816 : *
817 : * ie.
818 : * cpumask_var_t tmpmask;
819 : * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
820 : * return -ENOMEM;
821 : *
822 : * ... use 'tmpmask' like a normal struct cpumask * ...
823 : *
824 : * free_cpumask_var(tmpmask);
825 : *
826 : *
827 : * However, one notable exception is there. alloc_cpumask_var() allocates
828 : * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
829 : * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
830 : *
831 : * cpumask_var_t tmpmask;
832 : * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
833 : * return -ENOMEM;
834 : *
835 : * var = *tmpmask;
836 : *
837 : * This code makes NR_CPUS length memcopy and brings to a memory corruption.
838 : * cpumask_copy() provide safe copy functionality.
839 : *
840 : * Note that there is another evil here: If you define a cpumask_var_t
841 : * as a percpu variable then the way to obtain the address of the cpumask
842 : * structure differently influences what this_cpu_* operation needs to be
843 : * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
844 : * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
845 : * other type of cpumask_var_t implementation is configured.
846 : *
847 : * Please also note that __cpumask_var_read_mostly can be used to declare
848 : * a cpumask_var_t variable itself (not its content) as read mostly.
849 : */
850 : #ifdef CONFIG_CPUMASK_OFFSTACK
851 : typedef struct cpumask *cpumask_var_t;
852 :
853 : #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
854 : #define __cpumask_var_read_mostly __read_mostly
855 :
856 : bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
857 :
858 : static inline
859 : bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
860 : {
861 : return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
862 : }
863 :
864 : /**
865 : * alloc_cpumask_var - allocate a struct cpumask
866 : * @mask: pointer to cpumask_var_t where the cpumask is returned
867 : * @flags: GFP_ flags
868 : *
869 : * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
870 : * a nop returning a constant 1 (in <linux/cpumask.h>).
871 : *
872 : * See alloc_cpumask_var_node.
873 : */
874 : static inline
875 : bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
876 : {
877 : return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
878 : }
879 :
880 : static inline
881 : bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
882 : {
883 : return alloc_cpumask_var(mask, flags | __GFP_ZERO);
884 : }
885 :
886 : void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
887 : void free_cpumask_var(cpumask_var_t mask);
888 : void free_bootmem_cpumask_var(cpumask_var_t mask);
889 :
890 : static inline bool cpumask_available(cpumask_var_t mask)
891 : {
892 : return mask != NULL;
893 : }
894 :
895 : #else
896 : typedef struct cpumask cpumask_var_t[1];
897 :
898 : #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
899 : #define __cpumask_var_read_mostly
900 :
901 : static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
902 : {
903 : return true;
904 : }
905 :
906 : static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
907 : int node)
908 : {
909 : return true;
910 : }
911 :
912 : static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
913 : {
914 0 : cpumask_clear(*mask);
915 : return true;
916 : }
917 :
918 : static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
919 : int node)
920 : {
921 1 : cpumask_clear(*mask);
922 : return true;
923 : }
924 :
925 : static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
926 : {
927 : }
928 :
929 : static inline void free_cpumask_var(cpumask_var_t mask)
930 : {
931 : }
932 :
933 : static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
934 : {
935 : }
936 :
937 : static inline bool cpumask_available(cpumask_var_t mask)
938 : {
939 : return true;
940 : }
941 : #endif /* CONFIG_CPUMASK_OFFSTACK */
942 :
943 : /* It's common to want to use cpu_all_mask in struct member initializers,
944 : * so it has to refer to an address rather than a pointer. */
945 : extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
946 : #define cpu_all_mask to_cpumask(cpu_all_bits)
947 :
948 : /* First bits of cpu_bit_bitmap are in fact unset. */
949 : #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
950 :
951 : #if NR_CPUS == 1
952 : /* Uniprocessor: the possible/online/present masks are always "1" */
953 : #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
954 : #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
955 : #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
956 : #else
957 : #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
958 : #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
959 : #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
960 : #endif
961 :
962 : /* Wrappers for arch boot code to manipulate normally-constant masks */
963 : void init_cpu_present(const struct cpumask *src);
964 : void init_cpu_possible(const struct cpumask *src);
965 : void init_cpu_online(const struct cpumask *src);
966 :
967 : static inline void reset_cpu_possible_mask(void)
968 : {
969 : bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
970 : }
971 :
972 : static inline void
973 : set_cpu_possible(unsigned int cpu, bool possible)
974 : {
975 : if (possible)
976 : cpumask_set_cpu(cpu, &__cpu_possible_mask);
977 : else
978 : cpumask_clear_cpu(cpu, &__cpu_possible_mask);
979 : }
980 :
981 : static inline void
982 : set_cpu_present(unsigned int cpu, bool present)
983 : {
984 : if (present)
985 : cpumask_set_cpu(cpu, &__cpu_present_mask);
986 : else
987 : cpumask_clear_cpu(cpu, &__cpu_present_mask);
988 : }
989 :
990 : void set_cpu_online(unsigned int cpu, bool online);
991 :
992 : static inline void
993 : set_cpu_active(unsigned int cpu, bool active)
994 : {
995 : if (active)
996 : cpumask_set_cpu(cpu, &__cpu_active_mask);
997 : else
998 : cpumask_clear_cpu(cpu, &__cpu_active_mask);
999 : }
1000 :
1001 : static inline void
1002 : set_cpu_dying(unsigned int cpu, bool dying)
1003 : {
1004 : if (dying)
1005 : cpumask_set_cpu(cpu, &__cpu_dying_mask);
1006 : else
1007 : cpumask_clear_cpu(cpu, &__cpu_dying_mask);
1008 : }
1009 :
1010 : /**
1011 : * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
1012 : * @bitmap: the bitmap
1013 : *
1014 : * There are a few places where cpumask_var_t isn't appropriate and
1015 : * static cpumasks must be used (eg. very early boot), yet we don't
1016 : * expose the definition of 'struct cpumask'.
1017 : *
1018 : * This does the conversion, and can be used as a constant initializer.
1019 : */
1020 : #define to_cpumask(bitmap) \
1021 : ((struct cpumask *)(1 ? (bitmap) \
1022 : : (void *)sizeof(__check_is_bitmap(bitmap))))
1023 :
1024 : static inline int __check_is_bitmap(const unsigned long *bitmap)
1025 : {
1026 : return 1;
1027 : }
1028 :
1029 : /*
1030 : * Special-case data structure for "single bit set only" constant CPU masks.
1031 : *
1032 : * We pre-generate all the 64 (or 32) possible bit positions, with enough
1033 : * padding to the left and the right, and return the constant pointer
1034 : * appropriately offset.
1035 : */
1036 : extern const unsigned long
1037 : cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1038 :
1039 : static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1040 : {
1041 10 : const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1042 10 : p -= cpu / BITS_PER_LONG;
1043 : return to_cpumask(p);
1044 : }
1045 :
1046 : #if NR_CPUS > 1
1047 : /**
1048 : * num_online_cpus() - Read the number of online CPUs
1049 : *
1050 : * Despite the fact that __num_online_cpus is of type atomic_t, this
1051 : * interface gives only a momentary snapshot and is not protected against
1052 : * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1053 : * region.
1054 : */
1055 : static __always_inline unsigned int num_online_cpus(void)
1056 : {
1057 : return arch_atomic_read(&__num_online_cpus);
1058 : }
1059 : #define num_possible_cpus() cpumask_weight(cpu_possible_mask)
1060 : #define num_present_cpus() cpumask_weight(cpu_present_mask)
1061 : #define num_active_cpus() cpumask_weight(cpu_active_mask)
1062 :
1063 : static inline bool cpu_online(unsigned int cpu)
1064 : {
1065 : return cpumask_test_cpu(cpu, cpu_online_mask);
1066 : }
1067 :
1068 : static inline bool cpu_possible(unsigned int cpu)
1069 : {
1070 : return cpumask_test_cpu(cpu, cpu_possible_mask);
1071 : }
1072 :
1073 : static inline bool cpu_present(unsigned int cpu)
1074 : {
1075 : return cpumask_test_cpu(cpu, cpu_present_mask);
1076 : }
1077 :
1078 : static inline bool cpu_active(unsigned int cpu)
1079 : {
1080 : return cpumask_test_cpu(cpu, cpu_active_mask);
1081 : }
1082 :
1083 : static inline bool cpu_dying(unsigned int cpu)
1084 : {
1085 : return cpumask_test_cpu(cpu, cpu_dying_mask);
1086 : }
1087 :
1088 : #else
1089 :
1090 : #define num_online_cpus() 1U
1091 : #define num_possible_cpus() 1U
1092 : #define num_present_cpus() 1U
1093 : #define num_active_cpus() 1U
1094 :
1095 : static inline bool cpu_online(unsigned int cpu)
1096 : {
1097 0 : return cpu == 0;
1098 : }
1099 :
1100 : static inline bool cpu_possible(unsigned int cpu)
1101 : {
1102 : return cpu == 0;
1103 : }
1104 :
1105 : static inline bool cpu_present(unsigned int cpu)
1106 : {
1107 : return cpu == 0;
1108 : }
1109 :
1110 : static inline bool cpu_active(unsigned int cpu)
1111 : {
1112 : return cpu == 0;
1113 : }
1114 :
1115 : static inline bool cpu_dying(unsigned int cpu)
1116 : {
1117 : return false;
1118 : }
1119 :
1120 : #endif /* NR_CPUS > 1 */
1121 :
1122 : #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
1123 :
1124 : #if NR_CPUS <= BITS_PER_LONG
1125 : #define CPU_BITS_ALL \
1126 : { \
1127 : [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1128 : }
1129 :
1130 : #else /* NR_CPUS > BITS_PER_LONG */
1131 :
1132 : #define CPU_BITS_ALL \
1133 : { \
1134 : [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1135 : [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1136 : }
1137 : #endif /* NR_CPUS > BITS_PER_LONG */
1138 :
1139 : /**
1140 : * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
1141 : * as comma-separated list of cpus or hex values of cpumask
1142 : * @list: indicates whether the cpumap must be list
1143 : * @mask: the cpumask to copy
1144 : * @buf: the buffer to copy into
1145 : *
1146 : * Returns the length of the (null-terminated) @buf string, zero if
1147 : * nothing is copied.
1148 : */
1149 : static inline ssize_t
1150 : cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1151 : {
1152 0 : return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1153 : nr_cpu_ids);
1154 : }
1155 :
1156 : /**
1157 : * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
1158 : * hex values of cpumask
1159 : *
1160 : * @buf: the buffer to copy into
1161 : * @mask: the cpumask to copy
1162 : * @off: in the string from which we are copying, we copy to @buf
1163 : * @count: the maximum number of bytes to print
1164 : *
1165 : * The function prints the cpumask into the buffer as hex values of
1166 : * cpumask; Typically used by bin_attribute to export cpumask bitmask
1167 : * ABI.
1168 : *
1169 : * Returns the length of how many bytes have been copied, excluding
1170 : * terminating '\0'.
1171 : */
1172 : static inline ssize_t
1173 : cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1174 : loff_t off, size_t count)
1175 : {
1176 0 : return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1177 0 : nr_cpu_ids, off, count) - 1;
1178 : }
1179 :
1180 : /**
1181 : * cpumap_print_list_to_buf - copies the cpumask into the buffer as
1182 : * comma-separated list of cpus
1183 : *
1184 : * Everything is same with the above cpumap_print_bitmask_to_buf()
1185 : * except the print format.
1186 : */
1187 : static inline ssize_t
1188 : cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1189 : loff_t off, size_t count)
1190 : {
1191 0 : return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1192 0 : nr_cpu_ids, off, count) - 1;
1193 : }
1194 :
1195 : #if NR_CPUS <= BITS_PER_LONG
1196 : #define CPU_MASK_ALL \
1197 : (cpumask_t) { { \
1198 : [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1199 : } }
1200 : #else
1201 : #define CPU_MASK_ALL \
1202 : (cpumask_t) { { \
1203 : [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1204 : [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1205 : } }
1206 : #endif /* NR_CPUS > BITS_PER_LONG */
1207 :
1208 : #define CPU_MASK_NONE \
1209 : (cpumask_t) { { \
1210 : [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
1211 : } }
1212 :
1213 : #define CPU_MASK_CPU0 \
1214 : (cpumask_t) { { \
1215 : [0] = 1UL \
1216 : } }
1217 :
1218 : /*
1219 : * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1220 : * to avoid breaking userspace which may allocate a buffer based on the size
1221 : * reported by e.g. fstat.
1222 : *
1223 : * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1224 : *
1225 : * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1226 : * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1227 : * cover a worst-case of every other cpu being on one of two nodes for a
1228 : * very large NR_CPUS.
1229 : *
1230 : * Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1231 : * unsigned comparison to -1.
1232 : */
1233 : #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1234 : ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1235 : #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1236 :
1237 : #endif /* __LINUX_CPUMASK_H */
|