Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : /*
3 : * fscrypt.h: declarations for per-file encryption
4 : *
5 : * Filesystems that implement per-file encryption must include this header
6 : * file.
7 : *
8 : * Copyright (C) 2015, Google, Inc.
9 : *
10 : * Written by Michael Halcrow, 2015.
11 : * Modified by Jaegeuk Kim, 2015.
12 : */
13 : #ifndef _LINUX_FSCRYPT_H
14 : #define _LINUX_FSCRYPT_H
15 :
16 : #include <linux/fs.h>
17 : #include <linux/mm.h>
18 : #include <linux/slab.h>
19 : #include <uapi/linux/fscrypt.h>
20 :
21 : /*
22 : * The lengths of all file contents blocks must be divisible by this value.
23 : * This is needed to ensure that all contents encryption modes will work, as
24 : * some of the supported modes don't support arbitrarily byte-aligned messages.
25 : *
26 : * Since the needed alignment is 16 bytes, most filesystems will meet this
27 : * requirement naturally, as typical block sizes are powers of 2. However, if a
28 : * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29 : * compression), then it will need to pad to this alignment before encryption.
30 : */
31 : #define FSCRYPT_CONTENTS_ALIGNMENT 16
32 :
33 : union fscrypt_policy;
34 : struct fscrypt_info;
35 : struct fs_parameter;
36 : struct seq_file;
37 :
38 : struct fscrypt_str {
39 : unsigned char *name;
40 : u32 len;
41 : };
42 :
43 : struct fscrypt_name {
44 : const struct qstr *usr_fname;
45 : struct fscrypt_str disk_name;
46 : u32 hash;
47 : u32 minor_hash;
48 : struct fscrypt_str crypto_buf;
49 : bool is_nokey_name;
50 : };
51 :
52 : #define FSTR_INIT(n, l) { .name = n, .len = l }
53 : #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
54 : #define fname_name(p) ((p)->disk_name.name)
55 : #define fname_len(p) ((p)->disk_name.len)
56 :
57 : /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 : #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
59 :
60 : #ifdef CONFIG_FS_ENCRYPTION
61 :
62 : /*
63 : * If set, the fscrypt bounce page pool won't be allocated (unless another
64 : * filesystem needs it). Set this if the filesystem always uses its own bounce
65 : * pages for writes and therefore won't need the fscrypt bounce page pool.
66 : */
67 : #define FS_CFLG_OWN_PAGES (1U << 1)
68 :
69 : /* Crypto operations for filesystems */
70 : struct fscrypt_operations {
71 :
72 : /* Set of optional flags; see above for allowed flags */
73 : unsigned int flags;
74 :
75 : /*
76 : * If set, this is a filesystem-specific key description prefix that
77 : * will be accepted for "logon" keys for v1 fscrypt policies, in
78 : * addition to the generic prefix "fscrypt:". This functionality is
79 : * deprecated, so new filesystems shouldn't set this field.
80 : */
81 : const char *key_prefix;
82 :
83 : /*
84 : * Get the fscrypt context of the given inode.
85 : *
86 : * @inode: the inode whose context to get
87 : * @ctx: the buffer into which to get the context
88 : * @len: length of the @ctx buffer in bytes
89 : *
90 : * Return: On success, returns the length of the context in bytes; this
91 : * may be less than @len. On failure, returns -ENODATA if the
92 : * inode doesn't have a context, -ERANGE if the context is
93 : * longer than @len, or another -errno code.
94 : */
95 : int (*get_context)(struct inode *inode, void *ctx, size_t len);
96 :
97 : /*
98 : * Set an fscrypt context on the given inode.
99 : *
100 : * @inode: the inode whose context to set. The inode won't already have
101 : * an fscrypt context.
102 : * @ctx: the context to set
103 : * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
104 : * @fs_data: If called from fscrypt_set_context(), this will be the
105 : * value the filesystem passed to fscrypt_set_context().
106 : * Otherwise (i.e. when called from
107 : * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
108 : *
109 : * i_rwsem will be held for write.
110 : *
111 : * Return: 0 on success, -errno on failure.
112 : */
113 : int (*set_context)(struct inode *inode, const void *ctx, size_t len,
114 : void *fs_data);
115 :
116 : /*
117 : * Get the dummy fscrypt policy in use on the filesystem (if any).
118 : *
119 : * Filesystems only need to implement this function if they support the
120 : * test_dummy_encryption mount option.
121 : *
122 : * Return: A pointer to the dummy fscrypt policy, if the filesystem is
123 : * mounted with test_dummy_encryption; otherwise NULL.
124 : */
125 : const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
126 :
127 : /*
128 : * Check whether a directory is empty. i_rwsem will be held for write.
129 : */
130 : bool (*empty_dir)(struct inode *inode);
131 :
132 : /*
133 : * Check whether the filesystem's inode numbers and UUID are stable,
134 : * meaning that they will never be changed even by offline operations
135 : * such as filesystem shrinking and therefore can be used in the
136 : * encryption without the possibility of files becoming unreadable.
137 : *
138 : * Filesystems only need to implement this function if they want to
139 : * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
140 : * flags are designed to work around the limitations of UFS and eMMC
141 : * inline crypto hardware, and they shouldn't be used in scenarios where
142 : * such hardware isn't being used.
143 : *
144 : * Leaving this NULL is equivalent to always returning false.
145 : */
146 : bool (*has_stable_inodes)(struct super_block *sb);
147 :
148 : /*
149 : * Get the number of bits that the filesystem uses to represent inode
150 : * numbers and file logical block numbers.
151 : *
152 : * By default, both of these are assumed to be 64-bit. This function
153 : * can be implemented to declare that either or both of these numbers is
154 : * shorter, which may allow the use of the
155 : * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
156 : * inline crypto hardware whose maximum DUN length is less than 64 bits
157 : * (e.g., eMMC v5.2 spec compliant hardware). This function only needs
158 : * to be implemented if support for one of these features is needed.
159 : */
160 : void (*get_ino_and_lblk_bits)(struct super_block *sb,
161 : int *ino_bits_ret, int *lblk_bits_ret);
162 :
163 : /*
164 : * Return an array of pointers to the block devices to which the
165 : * filesystem may write encrypted file contents, NULL if the filesystem
166 : * only has a single such block device, or an ERR_PTR() on error.
167 : *
168 : * On successful non-NULL return, *num_devs is set to the number of
169 : * devices in the returned array. The caller must free the returned
170 : * array using kfree().
171 : *
172 : * If the filesystem can use multiple block devices (other than block
173 : * devices that aren't used for encrypted file contents, such as
174 : * external journal devices), and wants to support inline encryption,
175 : * then it must implement this function. Otherwise it's not needed.
176 : */
177 : struct block_device **(*get_devices)(struct super_block *sb,
178 : unsigned int *num_devs);
179 : };
180 :
181 : static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
182 : {
183 : /*
184 : * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
185 : * I.e., another task may publish ->i_crypt_info concurrently, executing
186 : * a RELEASE barrier. We need to use smp_load_acquire() here to safely
187 : * ACQUIRE the memory the other task published.
188 : */
189 : return smp_load_acquire(&inode->i_crypt_info);
190 : }
191 :
192 : /**
193 : * fscrypt_needs_contents_encryption() - check whether an inode needs
194 : * contents encryption
195 : * @inode: the inode to check
196 : *
197 : * Return: %true iff the inode is an encrypted regular file and the kernel was
198 : * built with fscrypt support.
199 : *
200 : * If you need to know whether the encrypt bit is set even when the kernel was
201 : * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
202 : */
203 : static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
204 : {
205 : return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
206 : }
207 :
208 : /*
209 : * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
210 : * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
211 : * cleared. Note that we don't have to support arbitrary moves of this flag
212 : * because fscrypt doesn't allow no-key names to be the source or target of a
213 : * rename().
214 : */
215 : static inline void fscrypt_handle_d_move(struct dentry *dentry)
216 : {
217 : dentry->d_flags &= ~DCACHE_NOKEY_NAME;
218 : }
219 :
220 : /**
221 : * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
222 : * @dentry: the dentry to check
223 : *
224 : * This returns true if the dentry is a no-key dentry. A no-key dentry is a
225 : * dentry that was created in an encrypted directory that hasn't had its
226 : * encryption key added yet. Such dentries may be either positive or negative.
227 : *
228 : * When a filesystem is asked to create a new filename in an encrypted directory
229 : * and the new filename's dentry is a no-key dentry, it must fail the operation
230 : * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
231 : * ->rename(), and ->link(). (However, ->rename() and ->link() are already
232 : * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
233 : *
234 : * This is necessary because creating a filename requires the directory's
235 : * encryption key, but just checking for the key on the directory inode during
236 : * the final filesystem operation doesn't guarantee that the key was available
237 : * during the preceding dentry lookup. And the key must have already been
238 : * available during the dentry lookup in order for it to have been checked
239 : * whether the filename already exists in the directory and for the new file's
240 : * dentry not to be invalidated due to it incorrectly having the no-key flag.
241 : *
242 : * Return: %true if the dentry is a no-key name
243 : */
244 : static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
245 : {
246 : return dentry->d_flags & DCACHE_NOKEY_NAME;
247 : }
248 :
249 : /* crypto.c */
250 : void fscrypt_enqueue_decrypt_work(struct work_struct *);
251 :
252 : struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
253 : unsigned int len,
254 : unsigned int offs,
255 : gfp_t gfp_flags);
256 : int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
257 : unsigned int len, unsigned int offs,
258 : u64 lblk_num, gfp_t gfp_flags);
259 :
260 : int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
261 : size_t offs);
262 : int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
263 : unsigned int len, unsigned int offs,
264 : u64 lblk_num);
265 :
266 : static inline bool fscrypt_is_bounce_page(struct page *page)
267 : {
268 : return page->mapping == NULL;
269 : }
270 :
271 : static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
272 : {
273 : return (struct page *)page_private(bounce_page);
274 : }
275 :
276 : void fscrypt_free_bounce_page(struct page *bounce_page);
277 :
278 : /* policy.c */
279 : int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
280 : int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
281 : int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
282 : int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
283 : int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
284 : int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
285 : int fscrypt_set_context(struct inode *inode, void *fs_data);
286 :
287 : struct fscrypt_dummy_policy {
288 : const union fscrypt_policy *policy;
289 : };
290 :
291 : int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
292 : struct fscrypt_dummy_policy *dummy_policy);
293 : bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
294 : const struct fscrypt_dummy_policy *p2);
295 : void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
296 : struct super_block *sb);
297 : static inline bool
298 : fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
299 : {
300 : return dummy_policy->policy != NULL;
301 : }
302 : static inline void
303 : fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
304 : {
305 : kfree(dummy_policy->policy);
306 : dummy_policy->policy = NULL;
307 : }
308 :
309 : /* keyring.c */
310 : void fscrypt_destroy_keyring(struct super_block *sb);
311 : int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
312 : int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
313 : int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
314 : int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
315 :
316 : /* keysetup.c */
317 : int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
318 : bool *encrypt_ret);
319 : void fscrypt_put_encryption_info(struct inode *inode);
320 : void fscrypt_free_inode(struct inode *inode);
321 : int fscrypt_drop_inode(struct inode *inode);
322 :
323 : /* fname.c */
324 : int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
325 : u8 *out, unsigned int olen);
326 : bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
327 : u32 max_len, u32 *encrypted_len_ret);
328 : int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
329 : int lookup, struct fscrypt_name *fname);
330 :
331 : static inline void fscrypt_free_filename(struct fscrypt_name *fname)
332 : {
333 : kfree(fname->crypto_buf.name);
334 : }
335 :
336 : int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
337 : struct fscrypt_str *crypto_str);
338 : void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
339 : int fscrypt_fname_disk_to_usr(const struct inode *inode,
340 : u32 hash, u32 minor_hash,
341 : const struct fscrypt_str *iname,
342 : struct fscrypt_str *oname);
343 : bool fscrypt_match_name(const struct fscrypt_name *fname,
344 : const u8 *de_name, u32 de_name_len);
345 : u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
346 : int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
347 :
348 : /* bio.c */
349 : bool fscrypt_decrypt_bio(struct bio *bio);
350 : int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
351 : sector_t pblk, unsigned int len);
352 :
353 : /* hooks.c */
354 : int fscrypt_file_open(struct inode *inode, struct file *filp);
355 : int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
356 : struct dentry *dentry);
357 : int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
358 : struct inode *new_dir, struct dentry *new_dentry,
359 : unsigned int flags);
360 : int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
361 : struct fscrypt_name *fname);
362 : int __fscrypt_prepare_readdir(struct inode *dir);
363 : int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
364 : int fscrypt_prepare_setflags(struct inode *inode,
365 : unsigned int oldflags, unsigned int flags);
366 : int fscrypt_prepare_symlink(struct inode *dir, const char *target,
367 : unsigned int len, unsigned int max_len,
368 : struct fscrypt_str *disk_link);
369 : int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
370 : unsigned int len, struct fscrypt_str *disk_link);
371 : const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
372 : unsigned int max_size,
373 : struct delayed_call *done);
374 : int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
375 : static inline void fscrypt_set_ops(struct super_block *sb,
376 : const struct fscrypt_operations *s_cop)
377 : {
378 : sb->s_cop = s_cop;
379 : }
380 : #else /* !CONFIG_FS_ENCRYPTION */
381 :
382 : static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
383 : {
384 : return NULL;
385 : }
386 :
387 : static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
388 : {
389 : return false;
390 : }
391 :
392 : static inline void fscrypt_handle_d_move(struct dentry *dentry)
393 : {
394 : }
395 :
396 : static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
397 : {
398 : return false;
399 : }
400 :
401 : /* crypto.c */
402 : static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
403 : {
404 : }
405 :
406 : static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
407 : unsigned int len,
408 : unsigned int offs,
409 : gfp_t gfp_flags)
410 : {
411 : return ERR_PTR(-EOPNOTSUPP);
412 : }
413 :
414 : static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
415 : struct page *page,
416 : unsigned int len,
417 : unsigned int offs, u64 lblk_num,
418 : gfp_t gfp_flags)
419 : {
420 : return -EOPNOTSUPP;
421 : }
422 :
423 : static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
424 : size_t len, size_t offs)
425 : {
426 : return -EOPNOTSUPP;
427 : }
428 :
429 : static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
430 : struct page *page,
431 : unsigned int len,
432 : unsigned int offs, u64 lblk_num)
433 : {
434 : return -EOPNOTSUPP;
435 : }
436 :
437 : static inline bool fscrypt_is_bounce_page(struct page *page)
438 : {
439 : return false;
440 : }
441 :
442 : static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
443 : {
444 : WARN_ON_ONCE(1);
445 : return ERR_PTR(-EINVAL);
446 : }
447 :
448 : static inline void fscrypt_free_bounce_page(struct page *bounce_page)
449 : {
450 : }
451 :
452 : /* policy.c */
453 : static inline int fscrypt_ioctl_set_policy(struct file *filp,
454 : const void __user *arg)
455 : {
456 : return -EOPNOTSUPP;
457 : }
458 :
459 : static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
460 : {
461 : return -EOPNOTSUPP;
462 : }
463 :
464 : static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
465 : void __user *arg)
466 : {
467 : return -EOPNOTSUPP;
468 : }
469 :
470 : static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
471 : {
472 : return -EOPNOTSUPP;
473 : }
474 :
475 : static inline int fscrypt_has_permitted_context(struct inode *parent,
476 : struct inode *child)
477 : {
478 : return 0;
479 : }
480 :
481 : static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
482 : {
483 : return -EOPNOTSUPP;
484 : }
485 :
486 : struct fscrypt_dummy_policy {
487 : };
488 :
489 : static inline int
490 : fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
491 : struct fscrypt_dummy_policy *dummy_policy)
492 : {
493 : return -EINVAL;
494 : }
495 :
496 : static inline bool
497 : fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
498 : const struct fscrypt_dummy_policy *p2)
499 : {
500 : return true;
501 : }
502 :
503 : static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
504 : char sep,
505 : struct super_block *sb)
506 : {
507 : }
508 :
509 : static inline bool
510 : fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
511 : {
512 : return false;
513 : }
514 :
515 : static inline void
516 : fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
517 : {
518 : }
519 :
520 : /* keyring.c */
521 : static inline void fscrypt_destroy_keyring(struct super_block *sb)
522 : {
523 : }
524 :
525 : static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
526 : {
527 : return -EOPNOTSUPP;
528 : }
529 :
530 : static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
531 : {
532 : return -EOPNOTSUPP;
533 : }
534 :
535 : static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
536 : void __user *arg)
537 : {
538 : return -EOPNOTSUPP;
539 : }
540 :
541 : static inline int fscrypt_ioctl_get_key_status(struct file *filp,
542 : void __user *arg)
543 : {
544 : return -EOPNOTSUPP;
545 : }
546 :
547 : /* keysetup.c */
548 :
549 : static inline int fscrypt_prepare_new_inode(struct inode *dir,
550 : struct inode *inode,
551 : bool *encrypt_ret)
552 : {
553 : if (IS_ENCRYPTED(dir))
554 : return -EOPNOTSUPP;
555 : return 0;
556 : }
557 :
558 : static inline void fscrypt_put_encryption_info(struct inode *inode)
559 : {
560 : return;
561 : }
562 :
563 : static inline void fscrypt_free_inode(struct inode *inode)
564 : {
565 : }
566 :
567 : static inline int fscrypt_drop_inode(struct inode *inode)
568 : {
569 : return 0;
570 : }
571 :
572 : /* fname.c */
573 : static inline int fscrypt_setup_filename(struct inode *dir,
574 : const struct qstr *iname,
575 : int lookup, struct fscrypt_name *fname)
576 : {
577 : if (IS_ENCRYPTED(dir))
578 : return -EOPNOTSUPP;
579 :
580 : memset(fname, 0, sizeof(*fname));
581 : fname->usr_fname = iname;
582 : fname->disk_name.name = (unsigned char *)iname->name;
583 : fname->disk_name.len = iname->len;
584 : return 0;
585 : }
586 :
587 : static inline void fscrypt_free_filename(struct fscrypt_name *fname)
588 : {
589 : return;
590 : }
591 :
592 : static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
593 : struct fscrypt_str *crypto_str)
594 : {
595 : return -EOPNOTSUPP;
596 : }
597 :
598 : static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
599 : {
600 : return;
601 : }
602 :
603 : static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
604 : u32 hash, u32 minor_hash,
605 : const struct fscrypt_str *iname,
606 : struct fscrypt_str *oname)
607 : {
608 : return -EOPNOTSUPP;
609 : }
610 :
611 : static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
612 : const u8 *de_name, u32 de_name_len)
613 : {
614 : /* Encryption support disabled; use standard comparison */
615 : if (de_name_len != fname->disk_name.len)
616 : return false;
617 : return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
618 : }
619 :
620 : static inline u64 fscrypt_fname_siphash(const struct inode *dir,
621 : const struct qstr *name)
622 : {
623 : WARN_ON_ONCE(1);
624 : return 0;
625 : }
626 :
627 : static inline int fscrypt_d_revalidate(struct dentry *dentry,
628 : unsigned int flags)
629 : {
630 : return 1;
631 : }
632 :
633 : /* bio.c */
634 : static inline bool fscrypt_decrypt_bio(struct bio *bio)
635 : {
636 : return true;
637 : }
638 :
639 : static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
640 : sector_t pblk, unsigned int len)
641 : {
642 : return -EOPNOTSUPP;
643 : }
644 :
645 : /* hooks.c */
646 :
647 : static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
648 : {
649 : if (IS_ENCRYPTED(inode))
650 : return -EOPNOTSUPP;
651 : return 0;
652 : }
653 :
654 : static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
655 : struct dentry *dentry)
656 : {
657 : return -EOPNOTSUPP;
658 : }
659 :
660 : static inline int __fscrypt_prepare_rename(struct inode *old_dir,
661 : struct dentry *old_dentry,
662 : struct inode *new_dir,
663 : struct dentry *new_dentry,
664 : unsigned int flags)
665 : {
666 : return -EOPNOTSUPP;
667 : }
668 :
669 : static inline int __fscrypt_prepare_lookup(struct inode *dir,
670 : struct dentry *dentry,
671 : struct fscrypt_name *fname)
672 : {
673 : return -EOPNOTSUPP;
674 : }
675 :
676 : static inline int __fscrypt_prepare_readdir(struct inode *dir)
677 : {
678 : return -EOPNOTSUPP;
679 : }
680 :
681 : static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
682 : struct iattr *attr)
683 : {
684 : return -EOPNOTSUPP;
685 : }
686 :
687 : static inline int fscrypt_prepare_setflags(struct inode *inode,
688 : unsigned int oldflags,
689 : unsigned int flags)
690 : {
691 : return 0;
692 : }
693 :
694 : static inline int fscrypt_prepare_symlink(struct inode *dir,
695 : const char *target,
696 : unsigned int len,
697 : unsigned int max_len,
698 : struct fscrypt_str *disk_link)
699 : {
700 : if (IS_ENCRYPTED(dir))
701 : return -EOPNOTSUPP;
702 : disk_link->name = (unsigned char *)target;
703 : disk_link->len = len + 1;
704 : if (disk_link->len > max_len)
705 : return -ENAMETOOLONG;
706 : return 0;
707 : }
708 :
709 : static inline int __fscrypt_encrypt_symlink(struct inode *inode,
710 : const char *target,
711 : unsigned int len,
712 : struct fscrypt_str *disk_link)
713 : {
714 : return -EOPNOTSUPP;
715 : }
716 :
717 : static inline const char *fscrypt_get_symlink(struct inode *inode,
718 : const void *caddr,
719 : unsigned int max_size,
720 : struct delayed_call *done)
721 : {
722 : return ERR_PTR(-EOPNOTSUPP);
723 : }
724 :
725 : static inline int fscrypt_symlink_getattr(const struct path *path,
726 : struct kstat *stat)
727 : {
728 : return -EOPNOTSUPP;
729 : }
730 :
731 : static inline void fscrypt_set_ops(struct super_block *sb,
732 : const struct fscrypt_operations *s_cop)
733 : {
734 : }
735 :
736 : #endif /* !CONFIG_FS_ENCRYPTION */
737 :
738 : /* inline_crypt.c */
739 : #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
740 :
741 : bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
742 :
743 : void fscrypt_set_bio_crypt_ctx(struct bio *bio,
744 : const struct inode *inode, u64 first_lblk,
745 : gfp_t gfp_mask);
746 :
747 : void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
748 : const struct buffer_head *first_bh,
749 : gfp_t gfp_mask);
750 :
751 : bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
752 : u64 next_lblk);
753 :
754 : bool fscrypt_mergeable_bio_bh(struct bio *bio,
755 : const struct buffer_head *next_bh);
756 :
757 : bool fscrypt_dio_supported(struct inode *inode);
758 :
759 : u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
760 :
761 : #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
762 :
763 : static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
764 : {
765 : return false;
766 : }
767 :
768 : static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
769 : const struct inode *inode,
770 : u64 first_lblk, gfp_t gfp_mask) { }
771 :
772 : static inline void fscrypt_set_bio_crypt_ctx_bh(
773 : struct bio *bio,
774 : const struct buffer_head *first_bh,
775 : gfp_t gfp_mask) { }
776 :
777 : static inline bool fscrypt_mergeable_bio(struct bio *bio,
778 : const struct inode *inode,
779 : u64 next_lblk)
780 : {
781 : return true;
782 : }
783 :
784 : static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
785 : const struct buffer_head *next_bh)
786 : {
787 : return true;
788 : }
789 :
790 : static inline bool fscrypt_dio_supported(struct inode *inode)
791 : {
792 : return !fscrypt_needs_contents_encryption(inode);
793 : }
794 :
795 : static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
796 : u64 nr_blocks)
797 : {
798 : return nr_blocks;
799 : }
800 : #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
801 :
802 : /**
803 : * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
804 : * encryption
805 : * @inode: an inode. If encrypted, its key must be set up.
806 : *
807 : * Return: true if the inode requires file contents encryption and if the
808 : * encryption should be done in the block layer via blk-crypto rather
809 : * than in the filesystem layer.
810 : */
811 : static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
812 : {
813 : return fscrypt_needs_contents_encryption(inode) &&
814 : __fscrypt_inode_uses_inline_crypto(inode);
815 : }
816 :
817 : /**
818 : * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
819 : * encryption
820 : * @inode: an inode. If encrypted, its key must be set up.
821 : *
822 : * Return: true if the inode requires file contents encryption and if the
823 : * encryption should be done in the filesystem layer rather than in the
824 : * block layer via blk-crypto.
825 : */
826 : static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
827 : {
828 0 : return fscrypt_needs_contents_encryption(inode) &&
829 : !__fscrypt_inode_uses_inline_crypto(inode);
830 : }
831 :
832 : /**
833 : * fscrypt_has_encryption_key() - check whether an inode has had its key set up
834 : * @inode: the inode to check
835 : *
836 : * Return: %true if the inode has had its encryption key set up, else %false.
837 : *
838 : * Usually this should be preceded by fscrypt_get_encryption_info() to try to
839 : * set up the key first.
840 : */
841 : static inline bool fscrypt_has_encryption_key(const struct inode *inode)
842 : {
843 : return fscrypt_get_info(inode) != NULL;
844 : }
845 :
846 : /**
847 : * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
848 : * directory
849 : * @old_dentry: an existing dentry for the inode being linked
850 : * @dir: the target directory
851 : * @dentry: negative dentry for the target filename
852 : *
853 : * A new link can only be added to an encrypted directory if the directory's
854 : * encryption key is available --- since otherwise we'd have no way to encrypt
855 : * the filename.
856 : *
857 : * We also verify that the link will not violate the constraint that all files
858 : * in an encrypted directory tree use the same encryption policy.
859 : *
860 : * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
861 : * -EXDEV if the link would result in an inconsistent encryption policy, or
862 : * another -errno code.
863 : */
864 : static inline int fscrypt_prepare_link(struct dentry *old_dentry,
865 : struct inode *dir,
866 : struct dentry *dentry)
867 : {
868 : if (IS_ENCRYPTED(dir))
869 : return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
870 : return 0;
871 : }
872 :
873 : /**
874 : * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
875 : * directories
876 : * @old_dir: source directory
877 : * @old_dentry: dentry for source file
878 : * @new_dir: target directory
879 : * @new_dentry: dentry for target location (may be negative unless exchanging)
880 : * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
881 : *
882 : * Prepare for ->rename() where the source and/or target directories may be
883 : * encrypted. A new link can only be added to an encrypted directory if the
884 : * directory's encryption key is available --- since otherwise we'd have no way
885 : * to encrypt the filename. A rename to an existing name, on the other hand,
886 : * *is* cryptographically possible without the key. However, we take the more
887 : * conservative approach and just forbid all no-key renames.
888 : *
889 : * We also verify that the rename will not violate the constraint that all files
890 : * in an encrypted directory tree use the same encryption policy.
891 : *
892 : * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
893 : * rename would cause inconsistent encryption policies, or another -errno code.
894 : */
895 : static inline int fscrypt_prepare_rename(struct inode *old_dir,
896 : struct dentry *old_dentry,
897 : struct inode *new_dir,
898 : struct dentry *new_dentry,
899 : unsigned int flags)
900 : {
901 : if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
902 : return __fscrypt_prepare_rename(old_dir, old_dentry,
903 : new_dir, new_dentry, flags);
904 : return 0;
905 : }
906 :
907 : /**
908 : * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
909 : * directory
910 : * @dir: directory being searched
911 : * @dentry: filename being looked up
912 : * @fname: (output) the name to use to search the on-disk directory
913 : *
914 : * Prepare for ->lookup() in a directory which may be encrypted by determining
915 : * the name that will actually be used to search the directory on-disk. If the
916 : * directory's encryption policy is supported by this kernel and its encryption
917 : * key is available, then the lookup is assumed to be by plaintext name;
918 : * otherwise, it is assumed to be by no-key name.
919 : *
920 : * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
921 : * name. In this case the filesystem must assign the dentry a dentry_operations
922 : * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
923 : * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
924 : * directory's encryption key is later added.
925 : *
926 : * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
927 : * filename isn't a valid no-key name, so a negative dentry should be created;
928 : * or another -errno code.
929 : */
930 : static inline int fscrypt_prepare_lookup(struct inode *dir,
931 : struct dentry *dentry,
932 : struct fscrypt_name *fname)
933 : {
934 : if (IS_ENCRYPTED(dir))
935 : return __fscrypt_prepare_lookup(dir, dentry, fname);
936 :
937 : memset(fname, 0, sizeof(*fname));
938 : fname->usr_fname = &dentry->d_name;
939 : fname->disk_name.name = (unsigned char *)dentry->d_name.name;
940 : fname->disk_name.len = dentry->d_name.len;
941 : return 0;
942 : }
943 :
944 : /**
945 : * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
946 : * @dir: the directory inode
947 : *
948 : * If the directory is encrypted and it doesn't already have its encryption key
949 : * set up, try to set it up so that the filenames will be listed in plaintext
950 : * form rather than in no-key form.
951 : *
952 : * Return: 0 on success; -errno on error. Note that the encryption key being
953 : * unavailable is not considered an error. It is also not an error if
954 : * the encryption policy is unsupported by this kernel; that is treated
955 : * like the key being unavailable, so that files can still be deleted.
956 : */
957 : static inline int fscrypt_prepare_readdir(struct inode *dir)
958 : {
959 : if (IS_ENCRYPTED(dir))
960 : return __fscrypt_prepare_readdir(dir);
961 : return 0;
962 : }
963 :
964 : /**
965 : * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
966 : * attributes
967 : * @dentry: dentry through which the inode is being changed
968 : * @attr: attributes to change
969 : *
970 : * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
971 : * most attribute changes are allowed even without the encryption key. However,
972 : * without the encryption key we do have to forbid truncates. This is needed
973 : * because the size being truncated to may not be a multiple of the filesystem
974 : * block size, and in that case we'd have to decrypt the final block, zero the
975 : * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
976 : * filesystem block boundary, but it's simpler to just forbid all truncates ---
977 : * and we already forbid all other contents modifications without the key.)
978 : *
979 : * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
980 : * if a problem occurred while setting up the encryption key.
981 : */
982 : static inline int fscrypt_prepare_setattr(struct dentry *dentry,
983 : struct iattr *attr)
984 : {
985 : if (IS_ENCRYPTED(d_inode(dentry)))
986 : return __fscrypt_prepare_setattr(dentry, attr);
987 : return 0;
988 : }
989 :
990 : /**
991 : * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
992 : * @inode: symlink inode
993 : * @target: plaintext symlink target
994 : * @len: length of @target excluding null terminator
995 : * @disk_link: (in/out) the on-disk symlink target being prepared
996 : *
997 : * If the symlink target needs to be encrypted, then this function encrypts it
998 : * into @disk_link->name. fscrypt_prepare_symlink() must have been called
999 : * previously to compute @disk_link->len. If the filesystem did not allocate a
1000 : * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1001 : * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1002 : *
1003 : * Return: 0 on success, -errno on failure
1004 : */
1005 : static inline int fscrypt_encrypt_symlink(struct inode *inode,
1006 : const char *target,
1007 : unsigned int len,
1008 : struct fscrypt_str *disk_link)
1009 : {
1010 : if (IS_ENCRYPTED(inode))
1011 : return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1012 : return 0;
1013 : }
1014 :
1015 : /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1016 : static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1017 : {
1018 : struct page *page = *pagep;
1019 :
1020 : if (fscrypt_is_bounce_page(page)) {
1021 : *pagep = fscrypt_pagecache_page(page);
1022 : fscrypt_free_bounce_page(page);
1023 : }
1024 : }
1025 :
1026 : #endif /* _LINUX_FSCRYPT_H */
|