Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /* memcontrol.h - Memory Controller
3 : *
4 : * Copyright IBM Corporation, 2007
5 : * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 : *
7 : * Copyright 2007 OpenVZ SWsoft Inc
8 : * Author: Pavel Emelianov <xemul@openvz.org>
9 : */
10 :
11 : #ifndef _LINUX_MEMCONTROL_H
12 : #define _LINUX_MEMCONTROL_H
13 : #include <linux/cgroup.h>
14 : #include <linux/vm_event_item.h>
15 : #include <linux/hardirq.h>
16 : #include <linux/jump_label.h>
17 : #include <linux/page_counter.h>
18 : #include <linux/vmpressure.h>
19 : #include <linux/eventfd.h>
20 : #include <linux/mm.h>
21 : #include <linux/vmstat.h>
22 : #include <linux/writeback.h>
23 : #include <linux/page-flags.h>
24 :
25 : struct mem_cgroup;
26 : struct obj_cgroup;
27 : struct page;
28 : struct mm_struct;
29 : struct kmem_cache;
30 :
31 : /* Cgroup-specific page state, on top of universal node page state */
32 : enum memcg_stat_item {
33 : MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 : MEMCG_SOCK,
35 : MEMCG_PERCPU_B,
36 : MEMCG_VMALLOC,
37 : MEMCG_KMEM,
38 : MEMCG_ZSWAP_B,
39 : MEMCG_ZSWAPPED,
40 : MEMCG_NR_STAT,
41 : };
42 :
43 : enum memcg_memory_event {
44 : MEMCG_LOW,
45 : MEMCG_HIGH,
46 : MEMCG_MAX,
47 : MEMCG_OOM,
48 : MEMCG_OOM_KILL,
49 : MEMCG_OOM_GROUP_KILL,
50 : MEMCG_SWAP_HIGH,
51 : MEMCG_SWAP_MAX,
52 : MEMCG_SWAP_FAIL,
53 : MEMCG_NR_MEMORY_EVENTS,
54 : };
55 :
56 : struct mem_cgroup_reclaim_cookie {
57 : pg_data_t *pgdat;
58 : unsigned int generation;
59 : };
60 :
61 : #ifdef CONFIG_MEMCG
62 :
63 : #define MEM_CGROUP_ID_SHIFT 16
64 : #define MEM_CGROUP_ID_MAX USHRT_MAX
65 :
66 : struct mem_cgroup_id {
67 : int id;
68 : refcount_t ref;
69 : };
70 :
71 : /*
72 : * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 : * it will be incremented by the number of pages. This counter is used
74 : * to trigger some periodic events. This is straightforward and better
75 : * than using jiffies etc. to handle periodic memcg event.
76 : */
77 : enum mem_cgroup_events_target {
78 : MEM_CGROUP_TARGET_THRESH,
79 : MEM_CGROUP_TARGET_SOFTLIMIT,
80 : MEM_CGROUP_NTARGETS,
81 : };
82 :
83 : struct memcg_vmstats_percpu;
84 : struct memcg_vmstats;
85 :
86 : struct mem_cgroup_reclaim_iter {
87 : struct mem_cgroup *position;
88 : /* scan generation, increased every round-trip */
89 : unsigned int generation;
90 : };
91 :
92 : /*
93 : * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 : * shrinkers, which have elements charged to this memcg.
95 : */
96 : struct shrinker_info {
97 : struct rcu_head rcu;
98 : atomic_long_t *nr_deferred;
99 : unsigned long *map;
100 : };
101 :
102 : struct lruvec_stats_percpu {
103 : /* Local (CPU and cgroup) state */
104 : long state[NR_VM_NODE_STAT_ITEMS];
105 :
106 : /* Delta calculation for lockless upward propagation */
107 : long state_prev[NR_VM_NODE_STAT_ITEMS];
108 : };
109 :
110 : struct lruvec_stats {
111 : /* Aggregated (CPU and subtree) state */
112 : long state[NR_VM_NODE_STAT_ITEMS];
113 :
114 : /* Pending child counts during tree propagation */
115 : long state_pending[NR_VM_NODE_STAT_ITEMS];
116 : };
117 :
118 : /*
119 : * per-node information in memory controller.
120 : */
121 : struct mem_cgroup_per_node {
122 : struct lruvec lruvec;
123 :
124 : struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
125 : struct lruvec_stats lruvec_stats;
126 :
127 : unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 :
129 : struct mem_cgroup_reclaim_iter iter;
130 :
131 : struct shrinker_info __rcu *shrinker_info;
132 :
133 : struct rb_node tree_node; /* RB tree node */
134 : unsigned long usage_in_excess;/* Set to the value by which */
135 : /* the soft limit is exceeded*/
136 : bool on_tree;
137 : struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 : /* use container_of */
139 : };
140 :
141 : struct mem_cgroup_threshold {
142 : struct eventfd_ctx *eventfd;
143 : unsigned long threshold;
144 : };
145 :
146 : /* For threshold */
147 : struct mem_cgroup_threshold_ary {
148 : /* An array index points to threshold just below or equal to usage. */
149 : int current_threshold;
150 : /* Size of entries[] */
151 : unsigned int size;
152 : /* Array of thresholds */
153 : struct mem_cgroup_threshold entries[];
154 : };
155 :
156 : struct mem_cgroup_thresholds {
157 : /* Primary thresholds array */
158 : struct mem_cgroup_threshold_ary *primary;
159 : /*
160 : * Spare threshold array.
161 : * This is needed to make mem_cgroup_unregister_event() "never fail".
162 : * It must be able to store at least primary->size - 1 entries.
163 : */
164 : struct mem_cgroup_threshold_ary *spare;
165 : };
166 :
167 : /*
168 : * Remember four most recent foreign writebacks with dirty pages in this
169 : * cgroup. Inode sharing is expected to be uncommon and, even if we miss
170 : * one in a given round, we're likely to catch it later if it keeps
171 : * foreign-dirtying, so a fairly low count should be enough.
172 : *
173 : * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174 : */
175 : #define MEMCG_CGWB_FRN_CNT 4
176 :
177 : struct memcg_cgwb_frn {
178 : u64 bdi_id; /* bdi->id of the foreign inode */
179 : int memcg_id; /* memcg->css.id of foreign inode */
180 : u64 at; /* jiffies_64 at the time of dirtying */
181 : struct wb_completion done; /* tracks in-flight foreign writebacks */
182 : };
183 :
184 : /*
185 : * Bucket for arbitrarily byte-sized objects charged to a memory
186 : * cgroup. The bucket can be reparented in one piece when the cgroup
187 : * is destroyed, without having to round up the individual references
188 : * of all live memory objects in the wild.
189 : */
190 : struct obj_cgroup {
191 : struct percpu_ref refcnt;
192 : struct mem_cgroup *memcg;
193 : atomic_t nr_charged_bytes;
194 : union {
195 : struct list_head list; /* protected by objcg_lock */
196 : struct rcu_head rcu;
197 : };
198 : };
199 :
200 : /*
201 : * The memory controller data structure. The memory controller controls both
202 : * page cache and RSS per cgroup. We would eventually like to provide
203 : * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204 : * to help the administrator determine what knobs to tune.
205 : */
206 : struct mem_cgroup {
207 : struct cgroup_subsys_state css;
208 :
209 : /* Private memcg ID. Used to ID objects that outlive the cgroup */
210 : struct mem_cgroup_id id;
211 :
212 : /* Accounted resources */
213 : struct page_counter memory; /* Both v1 & v2 */
214 :
215 : union {
216 : struct page_counter swap; /* v2 only */
217 : struct page_counter memsw; /* v1 only */
218 : };
219 :
220 : /* Legacy consumer-oriented counters */
221 : struct page_counter kmem; /* v1 only */
222 : struct page_counter tcpmem; /* v1 only */
223 :
224 : /* Range enforcement for interrupt charges */
225 : struct work_struct high_work;
226 :
227 : #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 : unsigned long zswap_max;
229 : #endif
230 :
231 : unsigned long soft_limit;
232 :
233 : /* vmpressure notifications */
234 : struct vmpressure vmpressure;
235 :
236 : /*
237 : * Should the OOM killer kill all belonging tasks, had it kill one?
238 : */
239 : bool oom_group;
240 :
241 : /* protected by memcg_oom_lock */
242 : bool oom_lock;
243 : int under_oom;
244 :
245 : int swappiness;
246 : /* OOM-Killer disable */
247 : int oom_kill_disable;
248 :
249 : /* memory.events and memory.events.local */
250 : struct cgroup_file events_file;
251 : struct cgroup_file events_local_file;
252 :
253 : /* handle for "memory.swap.events" */
254 : struct cgroup_file swap_events_file;
255 :
256 : /* protect arrays of thresholds */
257 : struct mutex thresholds_lock;
258 :
259 : /* thresholds for memory usage. RCU-protected */
260 : struct mem_cgroup_thresholds thresholds;
261 :
262 : /* thresholds for mem+swap usage. RCU-protected */
263 : struct mem_cgroup_thresholds memsw_thresholds;
264 :
265 : /* For oom notifier event fd */
266 : struct list_head oom_notify;
267 :
268 : /*
269 : * Should we move charges of a task when a task is moved into this
270 : * mem_cgroup ? And what type of charges should we move ?
271 : */
272 : unsigned long move_charge_at_immigrate;
273 : /* taken only while moving_account > 0 */
274 : spinlock_t move_lock;
275 : unsigned long move_lock_flags;
276 :
277 : CACHELINE_PADDING(_pad1_);
278 :
279 : /* memory.stat */
280 : struct memcg_vmstats *vmstats;
281 :
282 : /* memory.events */
283 : atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 : atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 :
286 : unsigned long socket_pressure;
287 :
288 : /* Legacy tcp memory accounting */
289 : bool tcpmem_active;
290 : int tcpmem_pressure;
291 :
292 : #ifdef CONFIG_MEMCG_KMEM
293 : int kmemcg_id;
294 : struct obj_cgroup __rcu *objcg;
295 : /* list of inherited objcgs, protected by objcg_lock */
296 : struct list_head objcg_list;
297 : #endif
298 :
299 : CACHELINE_PADDING(_pad2_);
300 :
301 : /*
302 : * set > 0 if pages under this cgroup are moving to other cgroup.
303 : */
304 : atomic_t moving_account;
305 : struct task_struct *move_lock_task;
306 :
307 : struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308 :
309 : #ifdef CONFIG_CGROUP_WRITEBACK
310 : struct list_head cgwb_list;
311 : struct wb_domain cgwb_domain;
312 : struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 : #endif
314 :
315 : /* List of events which userspace want to receive */
316 : struct list_head event_list;
317 : spinlock_t event_list_lock;
318 :
319 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 : struct deferred_split deferred_split_queue;
321 : #endif
322 :
323 : #ifdef CONFIG_LRU_GEN
324 : /* per-memcg mm_struct list */
325 : struct lru_gen_mm_list mm_list;
326 : #endif
327 :
328 : struct mem_cgroup_per_node *nodeinfo[];
329 : };
330 :
331 : /*
332 : * size of first charge trial.
333 : * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334 : * workload.
335 : */
336 : #define MEMCG_CHARGE_BATCH 64U
337 :
338 : extern struct mem_cgroup *root_mem_cgroup;
339 :
340 : enum page_memcg_data_flags {
341 : /* page->memcg_data is a pointer to an objcgs vector */
342 : MEMCG_DATA_OBJCGS = (1UL << 0),
343 : /* page has been accounted as a non-slab kernel page */
344 : MEMCG_DATA_KMEM = (1UL << 1),
345 : /* the next bit after the last actual flag */
346 : __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347 : };
348 :
349 : #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350 :
351 : static inline bool folio_memcg_kmem(struct folio *folio);
352 :
353 : /*
354 : * After the initialization objcg->memcg is always pointing at
355 : * a valid memcg, but can be atomically swapped to the parent memcg.
356 : *
357 : * The caller must ensure that the returned memcg won't be released:
358 : * e.g. acquire the rcu_read_lock or css_set_lock.
359 : */
360 : static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 : {
362 : return READ_ONCE(objcg->memcg);
363 : }
364 :
365 : /*
366 : * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 : * @folio: Pointer to the folio.
368 : *
369 : * Returns a pointer to the memory cgroup associated with the folio,
370 : * or NULL. This function assumes that the folio is known to have a
371 : * proper memory cgroup pointer. It's not safe to call this function
372 : * against some type of folios, e.g. slab folios or ex-slab folios or
373 : * kmem folios.
374 : */
375 : static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 : {
377 : unsigned long memcg_data = folio->memcg_data;
378 :
379 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 :
383 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 : }
385 :
386 : /*
387 : * __folio_objcg - get the object cgroup associated with a kmem folio.
388 : * @folio: Pointer to the folio.
389 : *
390 : * Returns a pointer to the object cgroup associated with the folio,
391 : * or NULL. This function assumes that the folio is known to have a
392 : * proper object cgroup pointer. It's not safe to call this function
393 : * against some type of folios, e.g. slab folios or ex-slab folios or
394 : * LRU folios.
395 : */
396 : static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 : {
398 : unsigned long memcg_data = folio->memcg_data;
399 :
400 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 : VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 :
404 : return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 : }
406 :
407 : /*
408 : * folio_memcg - Get the memory cgroup associated with a folio.
409 : * @folio: Pointer to the folio.
410 : *
411 : * Returns a pointer to the memory cgroup associated with the folio,
412 : * or NULL. This function assumes that the folio is known to have a
413 : * proper memory cgroup pointer. It's not safe to call this function
414 : * against some type of folios, e.g. slab folios or ex-slab folios.
415 : *
416 : * For a non-kmem folio any of the following ensures folio and memcg binding
417 : * stability:
418 : *
419 : * - the folio lock
420 : * - LRU isolation
421 : * - lock_page_memcg()
422 : * - exclusive reference
423 : * - mem_cgroup_trylock_pages()
424 : *
425 : * For a kmem folio a caller should hold an rcu read lock to protect memcg
426 : * associated with a kmem folio from being released.
427 : */
428 : static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 : {
430 : if (folio_memcg_kmem(folio))
431 : return obj_cgroup_memcg(__folio_objcg(folio));
432 : return __folio_memcg(folio);
433 : }
434 :
435 : static inline struct mem_cgroup *page_memcg(struct page *page)
436 : {
437 : return folio_memcg(page_folio(page));
438 : }
439 :
440 : /**
441 : * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442 : * @folio: Pointer to the folio.
443 : *
444 : * This function assumes that the folio is known to have a
445 : * proper memory cgroup pointer. It's not safe to call this function
446 : * against some type of folios, e.g. slab folios or ex-slab folios.
447 : *
448 : * Return: A pointer to the memory cgroup associated with the folio,
449 : * or NULL.
450 : */
451 : static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 : {
453 : unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454 :
455 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 : WARN_ON_ONCE(!rcu_read_lock_held());
457 :
458 : if (memcg_data & MEMCG_DATA_KMEM) {
459 : struct obj_cgroup *objcg;
460 :
461 : objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 : return obj_cgroup_memcg(objcg);
463 : }
464 :
465 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 : }
467 :
468 : /*
469 : * folio_memcg_check - Get the memory cgroup associated with a folio.
470 : * @folio: Pointer to the folio.
471 : *
472 : * Returns a pointer to the memory cgroup associated with the folio,
473 : * or NULL. This function unlike folio_memcg() can take any folio
474 : * as an argument. It has to be used in cases when it's not known if a folio
475 : * has an associated memory cgroup pointer or an object cgroups vector or
476 : * an object cgroup.
477 : *
478 : * For a non-kmem folio any of the following ensures folio and memcg binding
479 : * stability:
480 : *
481 : * - the folio lock
482 : * - LRU isolation
483 : * - lock_folio_memcg()
484 : * - exclusive reference
485 : * - mem_cgroup_trylock_pages()
486 : *
487 : * For a kmem folio a caller should hold an rcu read lock to protect memcg
488 : * associated with a kmem folio from being released.
489 : */
490 : static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
491 : {
492 : /*
493 : * Because folio->memcg_data might be changed asynchronously
494 : * for slabs, READ_ONCE() should be used here.
495 : */
496 : unsigned long memcg_data = READ_ONCE(folio->memcg_data);
497 :
498 : if (memcg_data & MEMCG_DATA_OBJCGS)
499 : return NULL;
500 :
501 : if (memcg_data & MEMCG_DATA_KMEM) {
502 : struct obj_cgroup *objcg;
503 :
504 : objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 : return obj_cgroup_memcg(objcg);
506 : }
507 :
508 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 : }
510 :
511 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
512 : {
513 : if (PageTail(page))
514 : return NULL;
515 : return folio_memcg_check((struct folio *)page);
516 : }
517 :
518 : static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
519 : {
520 : struct mem_cgroup *memcg;
521 :
522 : rcu_read_lock();
523 : retry:
524 : memcg = obj_cgroup_memcg(objcg);
525 : if (unlikely(!css_tryget(&memcg->css)))
526 : goto retry;
527 : rcu_read_unlock();
528 :
529 : return memcg;
530 : }
531 :
532 : #ifdef CONFIG_MEMCG_KMEM
533 : /*
534 : * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
535 : * @folio: Pointer to the folio.
536 : *
537 : * Checks if the folio has MemcgKmem flag set. The caller must ensure
538 : * that the folio has an associated memory cgroup. It's not safe to call
539 : * this function against some types of folios, e.g. slab folios.
540 : */
541 : static inline bool folio_memcg_kmem(struct folio *folio)
542 : {
543 : VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
544 : VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
545 : return folio->memcg_data & MEMCG_DATA_KMEM;
546 : }
547 :
548 :
549 : #else
550 : static inline bool folio_memcg_kmem(struct folio *folio)
551 : {
552 : return false;
553 : }
554 :
555 : #endif
556 :
557 : static inline bool PageMemcgKmem(struct page *page)
558 : {
559 : return folio_memcg_kmem(page_folio(page));
560 : }
561 :
562 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
563 : {
564 : return (memcg == root_mem_cgroup);
565 : }
566 :
567 : static inline bool mem_cgroup_disabled(void)
568 : {
569 : return !cgroup_subsys_enabled(memory_cgrp_subsys);
570 : }
571 :
572 : static inline void mem_cgroup_protection(struct mem_cgroup *root,
573 : struct mem_cgroup *memcg,
574 : unsigned long *min,
575 : unsigned long *low)
576 : {
577 : *min = *low = 0;
578 :
579 : if (mem_cgroup_disabled())
580 : return;
581 :
582 : /*
583 : * There is no reclaim protection applied to a targeted reclaim.
584 : * We are special casing this specific case here because
585 : * mem_cgroup_protected calculation is not robust enough to keep
586 : * the protection invariant for calculated effective values for
587 : * parallel reclaimers with different reclaim target. This is
588 : * especially a problem for tail memcgs (as they have pages on LRU)
589 : * which would want to have effective values 0 for targeted reclaim
590 : * but a different value for external reclaim.
591 : *
592 : * Example
593 : * Let's have global and A's reclaim in parallel:
594 : * |
595 : * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
596 : * |\
597 : * | C (low = 1G, usage = 2.5G)
598 : * B (low = 1G, usage = 0.5G)
599 : *
600 : * For the global reclaim
601 : * A.elow = A.low
602 : * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
603 : * C.elow = min(C.usage, C.low)
604 : *
605 : * With the effective values resetting we have A reclaim
606 : * A.elow = 0
607 : * B.elow = B.low
608 : * C.elow = C.low
609 : *
610 : * If the global reclaim races with A's reclaim then
611 : * B.elow = C.elow = 0 because children_low_usage > A.elow)
612 : * is possible and reclaiming B would be violating the protection.
613 : *
614 : */
615 : if (root == memcg)
616 : return;
617 :
618 : *min = READ_ONCE(memcg->memory.emin);
619 : *low = READ_ONCE(memcg->memory.elow);
620 : }
621 :
622 : void mem_cgroup_calculate_protection(struct mem_cgroup *root,
623 : struct mem_cgroup *memcg);
624 :
625 : static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
626 : struct mem_cgroup *memcg)
627 : {
628 : /*
629 : * The root memcg doesn't account charges, and doesn't support
630 : * protection. The target memcg's protection is ignored, see
631 : * mem_cgroup_calculate_protection() and mem_cgroup_protection()
632 : */
633 : return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
634 : memcg == target;
635 : }
636 :
637 : static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
638 : struct mem_cgroup *memcg)
639 : {
640 : if (mem_cgroup_unprotected(target, memcg))
641 : return false;
642 :
643 : return READ_ONCE(memcg->memory.elow) >=
644 : page_counter_read(&memcg->memory);
645 : }
646 :
647 : static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
648 : struct mem_cgroup *memcg)
649 : {
650 : if (mem_cgroup_unprotected(target, memcg))
651 : return false;
652 :
653 : return READ_ONCE(memcg->memory.emin) >=
654 : page_counter_read(&memcg->memory);
655 : }
656 :
657 : int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
658 :
659 : /**
660 : * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
661 : * @folio: Folio to charge.
662 : * @mm: mm context of the allocating task.
663 : * @gfp: Reclaim mode.
664 : *
665 : * Try to charge @folio to the memcg that @mm belongs to, reclaiming
666 : * pages according to @gfp if necessary. If @mm is NULL, try to
667 : * charge to the active memcg.
668 : *
669 : * Do not use this for folios allocated for swapin.
670 : *
671 : * Return: 0 on success. Otherwise, an error code is returned.
672 : */
673 : static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
674 : gfp_t gfp)
675 : {
676 : if (mem_cgroup_disabled())
677 : return 0;
678 : return __mem_cgroup_charge(folio, mm, gfp);
679 : }
680 :
681 : int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 : gfp_t gfp, swp_entry_t entry);
683 : void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
684 :
685 : void __mem_cgroup_uncharge(struct folio *folio);
686 :
687 : /**
688 : * mem_cgroup_uncharge - Uncharge a folio.
689 : * @folio: Folio to uncharge.
690 : *
691 : * Uncharge a folio previously charged with mem_cgroup_charge().
692 : */
693 : static inline void mem_cgroup_uncharge(struct folio *folio)
694 : {
695 : if (mem_cgroup_disabled())
696 : return;
697 : __mem_cgroup_uncharge(folio);
698 : }
699 :
700 : void __mem_cgroup_uncharge_list(struct list_head *page_list);
701 : static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
702 : {
703 : if (mem_cgroup_disabled())
704 : return;
705 : __mem_cgroup_uncharge_list(page_list);
706 : }
707 :
708 : void mem_cgroup_migrate(struct folio *old, struct folio *new);
709 :
710 : /**
711 : * mem_cgroup_lruvec - get the lru list vector for a memcg & node
712 : * @memcg: memcg of the wanted lruvec
713 : * @pgdat: pglist_data
714 : *
715 : * Returns the lru list vector holding pages for a given @memcg &
716 : * @pgdat combination. This can be the node lruvec, if the memory
717 : * controller is disabled.
718 : */
719 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
720 : struct pglist_data *pgdat)
721 : {
722 : struct mem_cgroup_per_node *mz;
723 : struct lruvec *lruvec;
724 :
725 : if (mem_cgroup_disabled()) {
726 : lruvec = &pgdat->__lruvec;
727 : goto out;
728 : }
729 :
730 : if (!memcg)
731 : memcg = root_mem_cgroup;
732 :
733 : mz = memcg->nodeinfo[pgdat->node_id];
734 : lruvec = &mz->lruvec;
735 : out:
736 : /*
737 : * Since a node can be onlined after the mem_cgroup was created,
738 : * we have to be prepared to initialize lruvec->pgdat here;
739 : * and if offlined then reonlined, we need to reinitialize it.
740 : */
741 : if (unlikely(lruvec->pgdat != pgdat))
742 : lruvec->pgdat = pgdat;
743 : return lruvec;
744 : }
745 :
746 : /**
747 : * folio_lruvec - return lruvec for isolating/putting an LRU folio
748 : * @folio: Pointer to the folio.
749 : *
750 : * This function relies on folio->mem_cgroup being stable.
751 : */
752 : static inline struct lruvec *folio_lruvec(struct folio *folio)
753 : {
754 : struct mem_cgroup *memcg = folio_memcg(folio);
755 :
756 : VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
757 : return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
758 : }
759 :
760 : struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
761 :
762 : struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
763 :
764 : struct lruvec *folio_lruvec_lock(struct folio *folio);
765 : struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
766 : struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
767 : unsigned long *flags);
768 :
769 : #ifdef CONFIG_DEBUG_VM
770 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
771 : #else
772 : static inline
773 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
774 : {
775 : }
776 : #endif
777 :
778 : static inline
779 : struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
780 : return css ? container_of(css, struct mem_cgroup, css) : NULL;
781 : }
782 :
783 : static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
784 : {
785 : return percpu_ref_tryget(&objcg->refcnt);
786 : }
787 :
788 : static inline void obj_cgroup_get(struct obj_cgroup *objcg)
789 : {
790 : percpu_ref_get(&objcg->refcnt);
791 : }
792 :
793 : static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
794 : unsigned long nr)
795 : {
796 : percpu_ref_get_many(&objcg->refcnt, nr);
797 : }
798 :
799 : static inline void obj_cgroup_put(struct obj_cgroup *objcg)
800 : {
801 : percpu_ref_put(&objcg->refcnt);
802 : }
803 :
804 : static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
805 : {
806 : return !memcg || css_tryget(&memcg->css);
807 : }
808 :
809 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810 : {
811 : if (memcg)
812 : css_put(&memcg->css);
813 : }
814 :
815 : #define mem_cgroup_from_counter(counter, member) \
816 : container_of(counter, struct mem_cgroup, member)
817 :
818 : struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 : struct mem_cgroup *,
820 : struct mem_cgroup_reclaim_cookie *);
821 : void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822 : int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 : int (*)(struct task_struct *, void *), void *);
824 :
825 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826 : {
827 : if (mem_cgroup_disabled())
828 : return 0;
829 :
830 : return memcg->id.id;
831 : }
832 : struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833 :
834 : #ifdef CONFIG_SHRINKER_DEBUG
835 : static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
836 : {
837 : return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
838 : }
839 :
840 : struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
841 : #endif
842 :
843 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844 : {
845 : return mem_cgroup_from_css(seq_css(m));
846 : }
847 :
848 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849 : {
850 : struct mem_cgroup_per_node *mz;
851 :
852 : if (mem_cgroup_disabled())
853 : return NULL;
854 :
855 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 : return mz->memcg;
857 : }
858 :
859 : /**
860 : * parent_mem_cgroup - find the accounting parent of a memcg
861 : * @memcg: memcg whose parent to find
862 : *
863 : * Returns the parent memcg, or NULL if this is the root or the memory
864 : * controller is in legacy no-hierarchy mode.
865 : */
866 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867 : {
868 : return mem_cgroup_from_css(memcg->css.parent);
869 : }
870 :
871 : static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
872 : struct mem_cgroup *root)
873 : {
874 : if (root == memcg)
875 : return true;
876 : return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
877 : }
878 :
879 : static inline bool mm_match_cgroup(struct mm_struct *mm,
880 : struct mem_cgroup *memcg)
881 : {
882 : struct mem_cgroup *task_memcg;
883 : bool match = false;
884 :
885 : rcu_read_lock();
886 : task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 : if (task_memcg)
888 : match = mem_cgroup_is_descendant(task_memcg, memcg);
889 : rcu_read_unlock();
890 : return match;
891 : }
892 :
893 : struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
894 : ino_t page_cgroup_ino(struct page *page);
895 :
896 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
897 : {
898 : if (mem_cgroup_disabled())
899 : return true;
900 : return !!(memcg->css.flags & CSS_ONLINE);
901 : }
902 :
903 : void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
904 : int zid, int nr_pages);
905 :
906 : static inline
907 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
908 : enum lru_list lru, int zone_idx)
909 : {
910 : struct mem_cgroup_per_node *mz;
911 :
912 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
913 : return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
914 : }
915 :
916 : void mem_cgroup_handle_over_high(void);
917 :
918 : unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
919 :
920 : unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
921 :
922 : void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
923 : struct task_struct *p);
924 :
925 : void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
926 :
927 : static inline void mem_cgroup_enter_user_fault(void)
928 : {
929 : WARN_ON(current->in_user_fault);
930 : current->in_user_fault = 1;
931 : }
932 :
933 : static inline void mem_cgroup_exit_user_fault(void)
934 : {
935 : WARN_ON(!current->in_user_fault);
936 : current->in_user_fault = 0;
937 : }
938 :
939 : static inline bool task_in_memcg_oom(struct task_struct *p)
940 : {
941 : return p->memcg_in_oom;
942 : }
943 :
944 : bool mem_cgroup_oom_synchronize(bool wait);
945 : struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
946 : struct mem_cgroup *oom_domain);
947 : void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
948 :
949 : void folio_memcg_lock(struct folio *folio);
950 : void folio_memcg_unlock(struct folio *folio);
951 : void lock_page_memcg(struct page *page);
952 : void unlock_page_memcg(struct page *page);
953 :
954 : void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
955 :
956 : /* try to stablize folio_memcg() for all the pages in a memcg */
957 : static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
958 : {
959 : rcu_read_lock();
960 :
961 : if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
962 : return true;
963 :
964 : rcu_read_unlock();
965 : return false;
966 : }
967 :
968 : static inline void mem_cgroup_unlock_pages(void)
969 : {
970 : rcu_read_unlock();
971 : }
972 :
973 : /* idx can be of type enum memcg_stat_item or node_stat_item */
974 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
975 : int idx, int val)
976 : {
977 : unsigned long flags;
978 :
979 : local_irq_save(flags);
980 : __mod_memcg_state(memcg, idx, val);
981 : local_irq_restore(flags);
982 : }
983 :
984 : static inline void mod_memcg_page_state(struct page *page,
985 : int idx, int val)
986 : {
987 : struct mem_cgroup *memcg;
988 :
989 : if (mem_cgroup_disabled())
990 : return;
991 :
992 : rcu_read_lock();
993 : memcg = page_memcg(page);
994 : if (memcg)
995 : mod_memcg_state(memcg, idx, val);
996 : rcu_read_unlock();
997 : }
998 :
999 : unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1000 :
1001 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1002 : enum node_stat_item idx)
1003 : {
1004 : struct mem_cgroup_per_node *pn;
1005 : long x;
1006 :
1007 : if (mem_cgroup_disabled())
1008 : return node_page_state(lruvec_pgdat(lruvec), idx);
1009 :
1010 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1011 : x = READ_ONCE(pn->lruvec_stats.state[idx]);
1012 : #ifdef CONFIG_SMP
1013 : if (x < 0)
1014 : x = 0;
1015 : #endif
1016 : return x;
1017 : }
1018 :
1019 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1020 : enum node_stat_item idx)
1021 : {
1022 : struct mem_cgroup_per_node *pn;
1023 : long x = 0;
1024 : int cpu;
1025 :
1026 : if (mem_cgroup_disabled())
1027 : return node_page_state(lruvec_pgdat(lruvec), idx);
1028 :
1029 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1030 : for_each_possible_cpu(cpu)
1031 : x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1032 : #ifdef CONFIG_SMP
1033 : if (x < 0)
1034 : x = 0;
1035 : #endif
1036 : return x;
1037 : }
1038 :
1039 : void mem_cgroup_flush_stats(void);
1040 : void mem_cgroup_flush_stats_delayed(void);
1041 :
1042 : void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1043 : int val);
1044 : void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1045 :
1046 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1047 : int val)
1048 : {
1049 : unsigned long flags;
1050 :
1051 : local_irq_save(flags);
1052 : __mod_lruvec_kmem_state(p, idx, val);
1053 : local_irq_restore(flags);
1054 : }
1055 :
1056 : static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1057 : enum node_stat_item idx, int val)
1058 : {
1059 : unsigned long flags;
1060 :
1061 : local_irq_save(flags);
1062 : __mod_memcg_lruvec_state(lruvec, idx, val);
1063 : local_irq_restore(flags);
1064 : }
1065 :
1066 : void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1067 : unsigned long count);
1068 :
1069 : static inline void count_memcg_events(struct mem_cgroup *memcg,
1070 : enum vm_event_item idx,
1071 : unsigned long count)
1072 : {
1073 : unsigned long flags;
1074 :
1075 : local_irq_save(flags);
1076 : __count_memcg_events(memcg, idx, count);
1077 : local_irq_restore(flags);
1078 : }
1079 :
1080 : static inline void count_memcg_page_event(struct page *page,
1081 : enum vm_event_item idx)
1082 : {
1083 : struct mem_cgroup *memcg = page_memcg(page);
1084 :
1085 : if (memcg)
1086 : count_memcg_events(memcg, idx, 1);
1087 : }
1088 :
1089 : static inline void count_memcg_folio_events(struct folio *folio,
1090 : enum vm_event_item idx, unsigned long nr)
1091 : {
1092 : struct mem_cgroup *memcg = folio_memcg(folio);
1093 :
1094 : if (memcg)
1095 : count_memcg_events(memcg, idx, nr);
1096 : }
1097 :
1098 : static inline void count_memcg_event_mm(struct mm_struct *mm,
1099 : enum vm_event_item idx)
1100 : {
1101 : struct mem_cgroup *memcg;
1102 :
1103 : if (mem_cgroup_disabled())
1104 : return;
1105 :
1106 : rcu_read_lock();
1107 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1108 : if (likely(memcg))
1109 : count_memcg_events(memcg, idx, 1);
1110 : rcu_read_unlock();
1111 : }
1112 :
1113 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1114 : enum memcg_memory_event event)
1115 : {
1116 : bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1117 : event == MEMCG_SWAP_FAIL;
1118 :
1119 : atomic_long_inc(&memcg->memory_events_local[event]);
1120 : if (!swap_event)
1121 : cgroup_file_notify(&memcg->events_local_file);
1122 :
1123 : do {
1124 : atomic_long_inc(&memcg->memory_events[event]);
1125 : if (swap_event)
1126 : cgroup_file_notify(&memcg->swap_events_file);
1127 : else
1128 : cgroup_file_notify(&memcg->events_file);
1129 :
1130 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1131 : break;
1132 : if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1133 : break;
1134 : } while ((memcg = parent_mem_cgroup(memcg)) &&
1135 : !mem_cgroup_is_root(memcg));
1136 : }
1137 :
1138 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1139 : enum memcg_memory_event event)
1140 : {
1141 : struct mem_cgroup *memcg;
1142 :
1143 : if (mem_cgroup_disabled())
1144 : return;
1145 :
1146 : rcu_read_lock();
1147 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1148 : if (likely(memcg))
1149 : memcg_memory_event(memcg, event);
1150 : rcu_read_unlock();
1151 : }
1152 :
1153 : void split_page_memcg(struct page *head, unsigned int nr);
1154 :
1155 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1156 : gfp_t gfp_mask,
1157 : unsigned long *total_scanned);
1158 :
1159 : #else /* CONFIG_MEMCG */
1160 :
1161 : #define MEM_CGROUP_ID_SHIFT 0
1162 : #define MEM_CGROUP_ID_MAX 0
1163 :
1164 : static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1165 : {
1166 : return NULL;
1167 : }
1168 :
1169 : static inline struct mem_cgroup *page_memcg(struct page *page)
1170 : {
1171 : return NULL;
1172 : }
1173 :
1174 : static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1175 : {
1176 0 : WARN_ON_ONCE(!rcu_read_lock_held());
1177 : return NULL;
1178 : }
1179 :
1180 : static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1181 : {
1182 : return NULL;
1183 : }
1184 :
1185 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
1186 : {
1187 : return NULL;
1188 : }
1189 :
1190 : static inline bool folio_memcg_kmem(struct folio *folio)
1191 : {
1192 : return false;
1193 : }
1194 :
1195 : static inline bool PageMemcgKmem(struct page *page)
1196 : {
1197 : return false;
1198 : }
1199 :
1200 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1201 : {
1202 : return true;
1203 : }
1204 :
1205 : static inline bool mem_cgroup_disabled(void)
1206 : {
1207 : return true;
1208 : }
1209 :
1210 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1211 : enum memcg_memory_event event)
1212 : {
1213 : }
1214 :
1215 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1216 : enum memcg_memory_event event)
1217 : {
1218 : }
1219 :
1220 : static inline void mem_cgroup_protection(struct mem_cgroup *root,
1221 : struct mem_cgroup *memcg,
1222 : unsigned long *min,
1223 : unsigned long *low)
1224 : {
1225 0 : *min = *low = 0;
1226 : }
1227 :
1228 : static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1229 : struct mem_cgroup *memcg)
1230 : {
1231 : }
1232 :
1233 : static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1234 : struct mem_cgroup *memcg)
1235 : {
1236 : return true;
1237 : }
1238 : static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1239 : struct mem_cgroup *memcg)
1240 : {
1241 : return false;
1242 : }
1243 :
1244 : static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1245 : struct mem_cgroup *memcg)
1246 : {
1247 : return false;
1248 : }
1249 :
1250 : static inline int mem_cgroup_charge(struct folio *folio,
1251 : struct mm_struct *mm, gfp_t gfp)
1252 : {
1253 : return 0;
1254 : }
1255 :
1256 : static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1257 : struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1258 : {
1259 : return 0;
1260 : }
1261 :
1262 : static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1263 : {
1264 : }
1265 :
1266 : static inline void mem_cgroup_uncharge(struct folio *folio)
1267 : {
1268 : }
1269 :
1270 : static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1271 : {
1272 : }
1273 :
1274 : static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1275 : {
1276 : }
1277 :
1278 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1279 : struct pglist_data *pgdat)
1280 : {
1281 0 : return &pgdat->__lruvec;
1282 : }
1283 :
1284 : static inline struct lruvec *folio_lruvec(struct folio *folio)
1285 : {
1286 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1287 : return &pgdat->__lruvec;
1288 : }
1289 :
1290 : static inline
1291 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 : {
1293 : }
1294 :
1295 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1296 : {
1297 : return NULL;
1298 : }
1299 :
1300 : static inline bool mm_match_cgroup(struct mm_struct *mm,
1301 : struct mem_cgroup *memcg)
1302 : {
1303 : return true;
1304 : }
1305 :
1306 : static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1307 : {
1308 : return NULL;
1309 : }
1310 :
1311 : static inline
1312 : struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1313 : {
1314 : return NULL;
1315 : }
1316 :
1317 : static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1318 : {
1319 : }
1320 :
1321 : static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1322 : {
1323 : return true;
1324 : }
1325 :
1326 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1327 : {
1328 : }
1329 :
1330 : static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1331 : {
1332 : struct pglist_data *pgdat = folio_pgdat(folio);
1333 :
1334 : spin_lock(&pgdat->__lruvec.lru_lock);
1335 : return &pgdat->__lruvec;
1336 : }
1337 :
1338 : static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1339 : {
1340 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1341 :
1342 0 : spin_lock_irq(&pgdat->__lruvec.lru_lock);
1343 : return &pgdat->__lruvec;
1344 : }
1345 :
1346 : static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1347 : unsigned long *flagsp)
1348 : {
1349 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1350 :
1351 0 : spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1352 : return &pgdat->__lruvec;
1353 : }
1354 :
1355 : static inline struct mem_cgroup *
1356 : mem_cgroup_iter(struct mem_cgroup *root,
1357 : struct mem_cgroup *prev,
1358 : struct mem_cgroup_reclaim_cookie *reclaim)
1359 : {
1360 : return NULL;
1361 : }
1362 :
1363 : static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1364 : struct mem_cgroup *prev)
1365 : {
1366 : }
1367 :
1368 : static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1369 : int (*fn)(struct task_struct *, void *), void *arg)
1370 : {
1371 : return 0;
1372 : }
1373 :
1374 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1375 : {
1376 : return 0;
1377 : }
1378 :
1379 0 : static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1380 : {
1381 0 : WARN_ON_ONCE(id);
1382 : /* XXX: This should always return root_mem_cgroup */
1383 0 : return NULL;
1384 : }
1385 :
1386 : #ifdef CONFIG_SHRINKER_DEBUG
1387 : static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1388 : {
1389 : return 0;
1390 : }
1391 :
1392 : static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1393 : {
1394 : return NULL;
1395 : }
1396 : #endif
1397 :
1398 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1399 : {
1400 : return NULL;
1401 : }
1402 :
1403 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1404 : {
1405 : return NULL;
1406 : }
1407 :
1408 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1409 : {
1410 : return true;
1411 : }
1412 :
1413 : static inline
1414 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1415 : enum lru_list lru, int zone_idx)
1416 : {
1417 : return 0;
1418 : }
1419 :
1420 : static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1421 : {
1422 : return 0;
1423 : }
1424 :
1425 : static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1426 : {
1427 : return 0;
1428 : }
1429 :
1430 : static inline void
1431 : mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1432 : {
1433 : }
1434 :
1435 : static inline void
1436 : mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1437 : {
1438 : }
1439 :
1440 : static inline void lock_page_memcg(struct page *page)
1441 : {
1442 : }
1443 :
1444 : static inline void unlock_page_memcg(struct page *page)
1445 : {
1446 : }
1447 :
1448 : static inline void folio_memcg_lock(struct folio *folio)
1449 : {
1450 : }
1451 :
1452 : static inline void folio_memcg_unlock(struct folio *folio)
1453 : {
1454 : }
1455 :
1456 : static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1457 : {
1458 : /* to match folio_memcg_rcu() */
1459 : rcu_read_lock();
1460 : return true;
1461 : }
1462 :
1463 : static inline void mem_cgroup_unlock_pages(void)
1464 : {
1465 : rcu_read_unlock();
1466 : }
1467 :
1468 : static inline void mem_cgroup_handle_over_high(void)
1469 : {
1470 : }
1471 :
1472 : static inline void mem_cgroup_enter_user_fault(void)
1473 : {
1474 : }
1475 :
1476 : static inline void mem_cgroup_exit_user_fault(void)
1477 : {
1478 : }
1479 :
1480 : static inline bool task_in_memcg_oom(struct task_struct *p)
1481 : {
1482 : return false;
1483 : }
1484 :
1485 : static inline bool mem_cgroup_oom_synchronize(bool wait)
1486 : {
1487 : return false;
1488 : }
1489 :
1490 : static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1491 : struct task_struct *victim, struct mem_cgroup *oom_domain)
1492 : {
1493 : return NULL;
1494 : }
1495 :
1496 : static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1497 : {
1498 : }
1499 :
1500 : static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1501 : int idx,
1502 : int nr)
1503 : {
1504 : }
1505 :
1506 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
1507 : int idx,
1508 : int nr)
1509 : {
1510 : }
1511 :
1512 : static inline void mod_memcg_page_state(struct page *page,
1513 : int idx, int val)
1514 : {
1515 : }
1516 :
1517 : static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1518 : {
1519 : return 0;
1520 : }
1521 :
1522 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1523 : enum node_stat_item idx)
1524 : {
1525 0 : return node_page_state(lruvec_pgdat(lruvec), idx);
1526 : }
1527 :
1528 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1529 : enum node_stat_item idx)
1530 : {
1531 : return node_page_state(lruvec_pgdat(lruvec), idx);
1532 : }
1533 :
1534 : static inline void mem_cgroup_flush_stats(void)
1535 : {
1536 : }
1537 :
1538 : static inline void mem_cgroup_flush_stats_delayed(void)
1539 : {
1540 : }
1541 :
1542 : static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1543 : enum node_stat_item idx, int val)
1544 : {
1545 : }
1546 :
1547 : static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1548 : int val)
1549 : {
1550 0 : struct page *page = virt_to_head_page(p);
1551 :
1552 0 : __mod_node_page_state(page_pgdat(page), idx, val);
1553 : }
1554 :
1555 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1556 : int val)
1557 : {
1558 : struct page *page = virt_to_head_page(p);
1559 :
1560 : mod_node_page_state(page_pgdat(page), idx, val);
1561 : }
1562 :
1563 : static inline void count_memcg_events(struct mem_cgroup *memcg,
1564 : enum vm_event_item idx,
1565 : unsigned long count)
1566 : {
1567 : }
1568 :
1569 : static inline void __count_memcg_events(struct mem_cgroup *memcg,
1570 : enum vm_event_item idx,
1571 : unsigned long count)
1572 : {
1573 : }
1574 :
1575 : static inline void count_memcg_page_event(struct page *page,
1576 : int idx)
1577 : {
1578 : }
1579 :
1580 : static inline void count_memcg_folio_events(struct folio *folio,
1581 : enum vm_event_item idx, unsigned long nr)
1582 : {
1583 : }
1584 :
1585 : static inline
1586 : void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1587 : {
1588 : }
1589 :
1590 : static inline void split_page_memcg(struct page *head, unsigned int nr)
1591 : {
1592 : }
1593 :
1594 : static inline
1595 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1596 : gfp_t gfp_mask,
1597 : unsigned long *total_scanned)
1598 : {
1599 : return 0;
1600 : }
1601 : #endif /* CONFIG_MEMCG */
1602 :
1603 : static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1604 : {
1605 0 : __mod_lruvec_kmem_state(p, idx, 1);
1606 : }
1607 :
1608 : static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1609 : {
1610 0 : __mod_lruvec_kmem_state(p, idx, -1);
1611 : }
1612 :
1613 : static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1614 : {
1615 : struct mem_cgroup *memcg;
1616 :
1617 0 : memcg = lruvec_memcg(lruvec);
1618 : if (!memcg)
1619 : return NULL;
1620 : memcg = parent_mem_cgroup(memcg);
1621 : if (!memcg)
1622 : return NULL;
1623 : return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1624 : }
1625 :
1626 : static inline void unlock_page_lruvec(struct lruvec *lruvec)
1627 : {
1628 : spin_unlock(&lruvec->lru_lock);
1629 : }
1630 :
1631 : static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1632 : {
1633 0 : spin_unlock_irq(&lruvec->lru_lock);
1634 : }
1635 :
1636 : static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1637 : unsigned long flags)
1638 : {
1639 0 : spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1640 : }
1641 :
1642 : /* Test requires a stable page->memcg binding, see page_memcg() */
1643 : static inline bool folio_matches_lruvec(struct folio *folio,
1644 : struct lruvec *lruvec)
1645 : {
1646 0 : return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1647 : lruvec_memcg(lruvec) == folio_memcg(folio);
1648 : }
1649 :
1650 : /* Don't lock again iff page's lruvec locked */
1651 0 : static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1652 : struct lruvec *locked_lruvec)
1653 : {
1654 0 : if (locked_lruvec) {
1655 0 : if (folio_matches_lruvec(folio, locked_lruvec))
1656 : return locked_lruvec;
1657 :
1658 0 : unlock_page_lruvec_irq(locked_lruvec);
1659 : }
1660 :
1661 0 : return folio_lruvec_lock_irq(folio);
1662 : }
1663 :
1664 : /* Don't lock again iff page's lruvec locked */
1665 0 : static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1666 : struct lruvec *locked_lruvec, unsigned long *flags)
1667 : {
1668 0 : if (locked_lruvec) {
1669 0 : if (folio_matches_lruvec(folio, locked_lruvec))
1670 : return locked_lruvec;
1671 :
1672 0 : unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1673 : }
1674 :
1675 0 : return folio_lruvec_lock_irqsave(folio, flags);
1676 : }
1677 :
1678 : #ifdef CONFIG_CGROUP_WRITEBACK
1679 :
1680 : struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1681 : void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1682 : unsigned long *pheadroom, unsigned long *pdirty,
1683 : unsigned long *pwriteback);
1684 :
1685 : void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1686 : struct bdi_writeback *wb);
1687 :
1688 : static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1689 : struct bdi_writeback *wb)
1690 : {
1691 : struct mem_cgroup *memcg;
1692 :
1693 : if (mem_cgroup_disabled())
1694 : return;
1695 :
1696 : memcg = folio_memcg(folio);
1697 : if (unlikely(memcg && &memcg->css != wb->memcg_css))
1698 : mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1699 : }
1700 :
1701 : void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1702 :
1703 : #else /* CONFIG_CGROUP_WRITEBACK */
1704 :
1705 : static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1706 : {
1707 : return NULL;
1708 : }
1709 :
1710 : static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1711 : unsigned long *pfilepages,
1712 : unsigned long *pheadroom,
1713 : unsigned long *pdirty,
1714 : unsigned long *pwriteback)
1715 : {
1716 : }
1717 :
1718 : static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1719 : struct bdi_writeback *wb)
1720 : {
1721 : }
1722 :
1723 : static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1724 : {
1725 : }
1726 :
1727 : #endif /* CONFIG_CGROUP_WRITEBACK */
1728 :
1729 : struct sock;
1730 : bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1731 : gfp_t gfp_mask);
1732 : void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1733 : #ifdef CONFIG_MEMCG
1734 : extern struct static_key_false memcg_sockets_enabled_key;
1735 : #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1736 : void mem_cgroup_sk_alloc(struct sock *sk);
1737 : void mem_cgroup_sk_free(struct sock *sk);
1738 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1739 : {
1740 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1741 : return true;
1742 : do {
1743 : if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1744 : return true;
1745 : } while ((memcg = parent_mem_cgroup(memcg)));
1746 : return false;
1747 : }
1748 :
1749 : int alloc_shrinker_info(struct mem_cgroup *memcg);
1750 : void free_shrinker_info(struct mem_cgroup *memcg);
1751 : void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1752 : void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1753 : #else
1754 : #define mem_cgroup_sockets_enabled 0
1755 : static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1756 : static inline void mem_cgroup_sk_free(struct sock *sk) { };
1757 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1758 : {
1759 : return false;
1760 : }
1761 :
1762 : static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1763 : int nid, int shrinker_id)
1764 : {
1765 : }
1766 : #endif
1767 :
1768 : #ifdef CONFIG_MEMCG_KMEM
1769 : bool mem_cgroup_kmem_disabled(void);
1770 : int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1771 : void __memcg_kmem_uncharge_page(struct page *page, int order);
1772 :
1773 : struct obj_cgroup *get_obj_cgroup_from_current(void);
1774 : struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1775 :
1776 : int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1777 : void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1778 :
1779 : extern struct static_key_false memcg_bpf_enabled_key;
1780 : static inline bool memcg_bpf_enabled(void)
1781 : {
1782 : return static_branch_likely(&memcg_bpf_enabled_key);
1783 : }
1784 :
1785 : extern struct static_key_false memcg_kmem_online_key;
1786 :
1787 : static inline bool memcg_kmem_online(void)
1788 : {
1789 : return static_branch_likely(&memcg_kmem_online_key);
1790 : }
1791 :
1792 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1793 : int order)
1794 : {
1795 : if (memcg_kmem_online())
1796 : return __memcg_kmem_charge_page(page, gfp, order);
1797 : return 0;
1798 : }
1799 :
1800 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1801 : {
1802 : if (memcg_kmem_online())
1803 : __memcg_kmem_uncharge_page(page, order);
1804 : }
1805 :
1806 : /*
1807 : * A helper for accessing memcg's kmem_id, used for getting
1808 : * corresponding LRU lists.
1809 : */
1810 : static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1811 : {
1812 : return memcg ? memcg->kmemcg_id : -1;
1813 : }
1814 :
1815 : struct mem_cgroup *mem_cgroup_from_obj(void *p);
1816 : struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1817 :
1818 : static inline void count_objcg_event(struct obj_cgroup *objcg,
1819 : enum vm_event_item idx)
1820 : {
1821 : struct mem_cgroup *memcg;
1822 :
1823 : if (!memcg_kmem_online())
1824 : return;
1825 :
1826 : rcu_read_lock();
1827 : memcg = obj_cgroup_memcg(objcg);
1828 : count_memcg_events(memcg, idx, 1);
1829 : rcu_read_unlock();
1830 : }
1831 :
1832 : #else
1833 : static inline bool mem_cgroup_kmem_disabled(void)
1834 : {
1835 : return true;
1836 : }
1837 :
1838 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1839 : int order)
1840 : {
1841 : return 0;
1842 : }
1843 :
1844 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1845 : {
1846 : }
1847 :
1848 : static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1849 : int order)
1850 : {
1851 : return 0;
1852 : }
1853 :
1854 : static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1855 : {
1856 : }
1857 :
1858 : static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1859 : {
1860 : return NULL;
1861 : }
1862 :
1863 : static inline bool memcg_bpf_enabled(void)
1864 : {
1865 : return false;
1866 : }
1867 :
1868 : static inline bool memcg_kmem_online(void)
1869 : {
1870 : return false;
1871 : }
1872 :
1873 : static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1874 : {
1875 : return -1;
1876 : }
1877 :
1878 : static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1879 : {
1880 : return NULL;
1881 : }
1882 :
1883 : static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1884 : {
1885 : return NULL;
1886 : }
1887 :
1888 : static inline void count_objcg_event(struct obj_cgroup *objcg,
1889 : enum vm_event_item idx)
1890 : {
1891 : }
1892 :
1893 : #endif /* CONFIG_MEMCG_KMEM */
1894 :
1895 : #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1896 : bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1897 : void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1898 : void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1899 : #else
1900 : static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1901 : {
1902 : return true;
1903 : }
1904 : static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1905 : size_t size)
1906 : {
1907 : }
1908 : static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1909 : size_t size)
1910 : {
1911 : }
1912 : #endif
1913 :
1914 : #endif /* _LINUX_MEMCONTROL_H */
|