LCOV - code coverage report
Current view: top level - include/linux/sched - signal.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 18 81 22.2 %
Date: 2023-03-27 20:00:47 Functions: 3 10 30.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_SCHED_SIGNAL_H
       3             : #define _LINUX_SCHED_SIGNAL_H
       4             : 
       5             : #include <linux/rculist.h>
       6             : #include <linux/signal.h>
       7             : #include <linux/sched.h>
       8             : #include <linux/sched/jobctl.h>
       9             : #include <linux/sched/task.h>
      10             : #include <linux/cred.h>
      11             : #include <linux/refcount.h>
      12             : #include <linux/posix-timers.h>
      13             : #include <linux/mm_types.h>
      14             : #include <asm/ptrace.h>
      15             : 
      16             : /*
      17             :  * Types defining task->signal and task->sighand and APIs using them:
      18             :  */
      19             : 
      20             : struct sighand_struct {
      21             :         spinlock_t              siglock;
      22             :         refcount_t              count;
      23             :         wait_queue_head_t       signalfd_wqh;
      24             :         struct k_sigaction      action[_NSIG];
      25             : };
      26             : 
      27             : /*
      28             :  * Per-process accounting stats:
      29             :  */
      30             : struct pacct_struct {
      31             :         int                     ac_flag;
      32             :         long                    ac_exitcode;
      33             :         unsigned long           ac_mem;
      34             :         u64                     ac_utime, ac_stime;
      35             :         unsigned long           ac_minflt, ac_majflt;
      36             : };
      37             : 
      38             : struct cpu_itimer {
      39             :         u64 expires;
      40             :         u64 incr;
      41             : };
      42             : 
      43             : /*
      44             :  * This is the atomic variant of task_cputime, which can be used for
      45             :  * storing and updating task_cputime statistics without locking.
      46             :  */
      47             : struct task_cputime_atomic {
      48             :         atomic64_t utime;
      49             :         atomic64_t stime;
      50             :         atomic64_t sum_exec_runtime;
      51             : };
      52             : 
      53             : #define INIT_CPUTIME_ATOMIC \
      54             :         (struct task_cputime_atomic) {                          \
      55             :                 .utime = ATOMIC64_INIT(0),                      \
      56             :                 .stime = ATOMIC64_INIT(0),                      \
      57             :                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
      58             :         }
      59             : /**
      60             :  * struct thread_group_cputimer - thread group interval timer counts
      61             :  * @cputime_atomic:     atomic thread group interval timers.
      62             :  *
      63             :  * This structure contains the version of task_cputime, above, that is
      64             :  * used for thread group CPU timer calculations.
      65             :  */
      66             : struct thread_group_cputimer {
      67             :         struct task_cputime_atomic cputime_atomic;
      68             : };
      69             : 
      70             : struct multiprocess_signals {
      71             :         sigset_t signal;
      72             :         struct hlist_node node;
      73             : };
      74             : 
      75             : struct core_thread {
      76             :         struct task_struct *task;
      77             :         struct core_thread *next;
      78             : };
      79             : 
      80             : struct core_state {
      81             :         atomic_t nr_threads;
      82             :         struct core_thread dumper;
      83             :         struct completion startup;
      84             : };
      85             : 
      86             : /*
      87             :  * NOTE! "signal_struct" does not have its own
      88             :  * locking, because a shared signal_struct always
      89             :  * implies a shared sighand_struct, so locking
      90             :  * sighand_struct is always a proper superset of
      91             :  * the locking of signal_struct.
      92             :  */
      93             : struct signal_struct {
      94             :         refcount_t              sigcnt;
      95             :         atomic_t                live;
      96             :         int                     nr_threads;
      97             :         int                     quick_threads;
      98             :         struct list_head        thread_head;
      99             : 
     100             :         wait_queue_head_t       wait_chldexit;  /* for wait4() */
     101             : 
     102             :         /* current thread group signal load-balancing target: */
     103             :         struct task_struct      *curr_target;
     104             : 
     105             :         /* shared signal handling: */
     106             :         struct sigpending       shared_pending;
     107             : 
     108             :         /* For collecting multiprocess signals during fork */
     109             :         struct hlist_head       multiprocess;
     110             : 
     111             :         /* thread group exit support */
     112             :         int                     group_exit_code;
     113             :         /* notify group_exec_task when notify_count is less or equal to 0 */
     114             :         int                     notify_count;
     115             :         struct task_struct      *group_exec_task;
     116             : 
     117             :         /* thread group stop support, overloads group_exit_code too */
     118             :         int                     group_stop_count;
     119             :         unsigned int            flags; /* see SIGNAL_* flags below */
     120             : 
     121             :         struct core_state *core_state; /* coredumping support */
     122             : 
     123             :         /*
     124             :          * PR_SET_CHILD_SUBREAPER marks a process, like a service
     125             :          * manager, to re-parent orphan (double-forking) child processes
     126             :          * to this process instead of 'init'. The service manager is
     127             :          * able to receive SIGCHLD signals and is able to investigate
     128             :          * the process until it calls wait(). All children of this
     129             :          * process will inherit a flag if they should look for a
     130             :          * child_subreaper process at exit.
     131             :          */
     132             :         unsigned int            is_child_subreaper:1;
     133             :         unsigned int            has_child_subreaper:1;
     134             : 
     135             : #ifdef CONFIG_POSIX_TIMERS
     136             : 
     137             :         /* POSIX.1b Interval Timers */
     138             :         int                     posix_timer_id;
     139             :         struct list_head        posix_timers;
     140             : 
     141             :         /* ITIMER_REAL timer for the process */
     142             :         struct hrtimer real_timer;
     143             :         ktime_t it_real_incr;
     144             : 
     145             :         /*
     146             :          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
     147             :          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
     148             :          * values are defined to 0 and 1 respectively
     149             :          */
     150             :         struct cpu_itimer it[2];
     151             : 
     152             :         /*
     153             :          * Thread group totals for process CPU timers.
     154             :          * See thread_group_cputimer(), et al, for details.
     155             :          */
     156             :         struct thread_group_cputimer cputimer;
     157             : 
     158             : #endif
     159             :         /* Empty if CONFIG_POSIX_TIMERS=n */
     160             :         struct posix_cputimers posix_cputimers;
     161             : 
     162             :         /* PID/PID hash table linkage. */
     163             :         struct pid *pids[PIDTYPE_MAX];
     164             : 
     165             : #ifdef CONFIG_NO_HZ_FULL
     166             :         atomic_t tick_dep_mask;
     167             : #endif
     168             : 
     169             :         struct pid *tty_old_pgrp;
     170             : 
     171             :         /* boolean value for session group leader */
     172             :         int leader;
     173             : 
     174             :         struct tty_struct *tty; /* NULL if no tty */
     175             : 
     176             : #ifdef CONFIG_SCHED_AUTOGROUP
     177             :         struct autogroup *autogroup;
     178             : #endif
     179             :         /*
     180             :          * Cumulative resource counters for dead threads in the group,
     181             :          * and for reaped dead child processes forked by this group.
     182             :          * Live threads maintain their own counters and add to these
     183             :          * in __exit_signal, except for the group leader.
     184             :          */
     185             :         seqlock_t stats_lock;
     186             :         u64 utime, stime, cutime, cstime;
     187             :         u64 gtime;
     188             :         u64 cgtime;
     189             :         struct prev_cputime prev_cputime;
     190             :         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
     191             :         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
     192             :         unsigned long inblock, oublock, cinblock, coublock;
     193             :         unsigned long maxrss, cmaxrss;
     194             :         struct task_io_accounting ioac;
     195             : 
     196             :         /*
     197             :          * Cumulative ns of schedule CPU time fo dead threads in the
     198             :          * group, not including a zombie group leader, (This only differs
     199             :          * from jiffies_to_ns(utime + stime) if sched_clock uses something
     200             :          * other than jiffies.)
     201             :          */
     202             :         unsigned long long sum_sched_runtime;
     203             : 
     204             :         /*
     205             :          * We don't bother to synchronize most readers of this at all,
     206             :          * because there is no reader checking a limit that actually needs
     207             :          * to get both rlim_cur and rlim_max atomically, and either one
     208             :          * alone is a single word that can safely be read normally.
     209             :          * getrlimit/setrlimit use task_lock(current->group_leader) to
     210             :          * protect this instead of the siglock, because they really
     211             :          * have no need to disable irqs.
     212             :          */
     213             :         struct rlimit rlim[RLIM_NLIMITS];
     214             : 
     215             : #ifdef CONFIG_BSD_PROCESS_ACCT
     216             :         struct pacct_struct pacct;      /* per-process accounting information */
     217             : #endif
     218             : #ifdef CONFIG_TASKSTATS
     219             :         struct taskstats *stats;
     220             : #endif
     221             : #ifdef CONFIG_AUDIT
     222             :         unsigned audit_tty;
     223             :         struct tty_audit_buf *tty_audit_buf;
     224             : #endif
     225             : 
     226             :         /*
     227             :          * Thread is the potential origin of an oom condition; kill first on
     228             :          * oom
     229             :          */
     230             :         bool oom_flag_origin;
     231             :         short oom_score_adj;            /* OOM kill score adjustment */
     232             :         short oom_score_adj_min;        /* OOM kill score adjustment min value.
     233             :                                          * Only settable by CAP_SYS_RESOURCE. */
     234             :         struct mm_struct *oom_mm;       /* recorded mm when the thread group got
     235             :                                          * killed by the oom killer */
     236             : 
     237             :         struct mutex cred_guard_mutex;  /* guard against foreign influences on
     238             :                                          * credential calculations
     239             :                                          * (notably. ptrace)
     240             :                                          * Deprecated do not use in new code.
     241             :                                          * Use exec_update_lock instead.
     242             :                                          */
     243             :         struct rw_semaphore exec_update_lock;   /* Held while task_struct is
     244             :                                                  * being updated during exec,
     245             :                                                  * and may have inconsistent
     246             :                                                  * permissions.
     247             :                                                  */
     248             : } __randomize_layout;
     249             : 
     250             : /*
     251             :  * Bits in flags field of signal_struct.
     252             :  */
     253             : #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
     254             : #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
     255             : #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
     256             : /*
     257             :  * Pending notifications to parent.
     258             :  */
     259             : #define SIGNAL_CLD_STOPPED      0x00000010
     260             : #define SIGNAL_CLD_CONTINUED    0x00000020
     261             : #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
     262             : 
     263             : #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
     264             : 
     265             : #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
     266             :                           SIGNAL_STOP_CONTINUED)
     267             : 
     268           0 : static inline void signal_set_stop_flags(struct signal_struct *sig,
     269             :                                          unsigned int flags)
     270             : {
     271           0 :         WARN_ON(sig->flags & SIGNAL_GROUP_EXIT);
     272           0 :         sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
     273           0 : }
     274             : 
     275             : extern void flush_signals(struct task_struct *);
     276             : extern void ignore_signals(struct task_struct *);
     277             : extern void flush_signal_handlers(struct task_struct *, int force_default);
     278             : extern int dequeue_signal(struct task_struct *task, sigset_t *mask,
     279             :                           kernel_siginfo_t *info, enum pid_type *type);
     280             : 
     281             : static inline int kernel_dequeue_signal(void)
     282             : {
     283             :         struct task_struct *task = current;
     284             :         kernel_siginfo_t __info;
     285             :         enum pid_type __type;
     286             :         int ret;
     287             : 
     288             :         spin_lock_irq(&task->sighand->siglock);
     289             :         ret = dequeue_signal(task, &task->blocked, &__info, &__type);
     290             :         spin_unlock_irq(&task->sighand->siglock);
     291             : 
     292             :         return ret;
     293             : }
     294             : 
     295             : static inline void kernel_signal_stop(void)
     296             : {
     297             :         spin_lock_irq(&current->sighand->siglock);
     298             :         if (current->jobctl & JOBCTL_STOP_DEQUEUED) {
     299             :                 current->jobctl |= JOBCTL_STOPPED;
     300             :                 set_special_state(TASK_STOPPED);
     301             :         }
     302             :         spin_unlock_irq(&current->sighand->siglock);
     303             : 
     304             :         schedule();
     305             : }
     306             : #ifdef __ia64__
     307             : # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
     308             : #else
     309             : # define ___ARCH_SI_IA64(_a1, _a2, _a3)
     310             : #endif
     311             : 
     312             : int force_sig_fault_to_task(int sig, int code, void __user *addr
     313             :         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
     314             :         , struct task_struct *t);
     315             : int force_sig_fault(int sig, int code, void __user *addr
     316             :         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
     317             : int send_sig_fault(int sig, int code, void __user *addr
     318             :         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
     319             :         , struct task_struct *t);
     320             : 
     321             : int force_sig_mceerr(int code, void __user *, short);
     322             : int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
     323             : 
     324             : int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
     325             : int force_sig_pkuerr(void __user *addr, u32 pkey);
     326             : int send_sig_perf(void __user *addr, u32 type, u64 sig_data);
     327             : 
     328             : int force_sig_ptrace_errno_trap(int errno, void __user *addr);
     329             : int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
     330             : int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
     331             :                         struct task_struct *t);
     332             : int force_sig_seccomp(int syscall, int reason, bool force_coredump);
     333             : 
     334             : extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
     335             : extern void force_sigsegv(int sig);
     336             : extern int force_sig_info(struct kernel_siginfo *);
     337             : extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
     338             : extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
     339             : extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
     340             :                                 const struct cred *);
     341             : extern int kill_pgrp(struct pid *pid, int sig, int priv);
     342             : extern int kill_pid(struct pid *pid, int sig, int priv);
     343             : extern __must_check bool do_notify_parent(struct task_struct *, int);
     344             : extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
     345             : extern void force_sig(int);
     346             : extern void force_fatal_sig(int);
     347             : extern void force_exit_sig(int);
     348             : extern int send_sig(int, struct task_struct *, int);
     349             : extern int zap_other_threads(struct task_struct *p);
     350             : extern struct sigqueue *sigqueue_alloc(void);
     351             : extern void sigqueue_free(struct sigqueue *);
     352             : extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
     353             : extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
     354             : 
     355             : static inline void clear_notify_signal(void)
     356             : {
     357           0 :         clear_thread_flag(TIF_NOTIFY_SIGNAL);
     358           0 :         smp_mb__after_atomic();
     359             : }
     360             : 
     361             : /*
     362             :  * Returns 'true' if kick_process() is needed to force a transition from
     363             :  * user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work.
     364             :  */
     365           0 : static inline bool __set_notify_signal(struct task_struct *task)
     366             : {
     367           0 :         return !test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) &&
     368           0 :                !wake_up_state(task, TASK_INTERRUPTIBLE);
     369             : }
     370             : 
     371             : /*
     372             :  * Called to break out of interruptible wait loops, and enter the
     373             :  * exit_to_user_mode_loop().
     374             :  */
     375             : static inline void set_notify_signal(struct task_struct *task)
     376             : {
     377           0 :         if (__set_notify_signal(task))
     378             :                 kick_process(task);
     379             : }
     380             : 
     381             : static inline int restart_syscall(void)
     382             : {
     383           0 :         set_tsk_thread_flag(current, TIF_SIGPENDING);
     384             :         return -ERESTARTNOINTR;
     385             : }
     386             : 
     387             : static inline int task_sigpending(struct task_struct *p)
     388             : {
     389       23622 :         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
     390             : }
     391             : 
     392       11131 : static inline int signal_pending(struct task_struct *p)
     393             : {
     394             :         /*
     395             :          * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
     396             :          * behavior in terms of ensuring that we break out of wait loops
     397             :          * so that notify signal callbacks can be processed.
     398             :          */
     399       22262 :         if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
     400             :                 return 1;
     401       11131 :         return task_sigpending(p);
     402             : }
     403             : 
     404             : static inline int __fatal_signal_pending(struct task_struct *p)
     405             : {
     406           0 :         return unlikely(sigismember(&p->pending.signal, SIGKILL));
     407             : }
     408             : 
     409         340 : static inline int fatal_signal_pending(struct task_struct *p)
     410             : {
     411         340 :         return task_sigpending(p) && __fatal_signal_pending(p);
     412             : }
     413             : 
     414        2897 : static inline int signal_pending_state(unsigned int state, struct task_struct *p)
     415             : {
     416        2897 :         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
     417             :                 return 0;
     418        1516 :         if (!signal_pending(p))
     419             :                 return 0;
     420             : 
     421           0 :         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
     422             : }
     423             : 
     424             : /*
     425             :  * This should only be used in fault handlers to decide whether we
     426             :  * should stop the current fault routine to handle the signals
     427             :  * instead, especially with the case where we've got interrupted with
     428             :  * a VM_FAULT_RETRY.
     429             :  */
     430             : static inline bool fault_signal_pending(vm_fault_t fault_flags,
     431             :                                         struct pt_regs *regs)
     432             : {
     433             :         return unlikely((fault_flags & VM_FAULT_RETRY) &&
     434             :                         (fatal_signal_pending(current) ||
     435             :                          (user_mode(regs) && signal_pending(current))));
     436             : }
     437             : 
     438             : /*
     439             :  * Reevaluate whether the task has signals pending delivery.
     440             :  * Wake the task if so.
     441             :  * This is required every time the blocked sigset_t changes.
     442             :  * callers must hold sighand->siglock.
     443             :  */
     444             : extern void recalc_sigpending_and_wake(struct task_struct *t);
     445             : extern void recalc_sigpending(void);
     446             : extern void calculate_sigpending(void);
     447             : 
     448             : extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
     449             : 
     450           0 : static inline void signal_wake_up(struct task_struct *t, bool fatal)
     451             : {
     452           0 :         unsigned int state = 0;
     453           0 :         if (fatal && !(t->jobctl & JOBCTL_PTRACE_FROZEN)) {
     454           0 :                 t->jobctl &= ~(JOBCTL_STOPPED | JOBCTL_TRACED);
     455           0 :                 state = TASK_WAKEKILL | __TASK_TRACED;
     456             :         }
     457           0 :         signal_wake_up_state(t, state);
     458           0 : }
     459             : static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
     460             : {
     461           0 :         unsigned int state = 0;
     462           0 :         if (resume) {
     463           0 :                 t->jobctl &= ~JOBCTL_TRACED;
     464           0 :                 state = __TASK_TRACED;
     465             :         }
     466           0 :         signal_wake_up_state(t, state);
     467             : }
     468             : 
     469             : void task_join_group_stop(struct task_struct *task);
     470             : 
     471             : #ifdef TIF_RESTORE_SIGMASK
     472             : /*
     473             :  * Legacy restore_sigmask accessors.  These are inefficient on
     474             :  * SMP architectures because they require atomic operations.
     475             :  */
     476             : 
     477             : /**
     478             :  * set_restore_sigmask() - make sure saved_sigmask processing gets done
     479             :  *
     480             :  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
     481             :  * will run before returning to user mode, to process the flag.  For
     482             :  * all callers, TIF_SIGPENDING is already set or it's no harm to set
     483             :  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
     484             :  * arch code will notice on return to user mode, in case those bits
     485             :  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
     486             :  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
     487             :  */
     488             : static inline void set_restore_sigmask(void)
     489             : {
     490           0 :         set_thread_flag(TIF_RESTORE_SIGMASK);
     491             : }
     492             : 
     493             : static inline void clear_tsk_restore_sigmask(struct task_struct *task)
     494             : {
     495           0 :         clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
     496             : }
     497             : 
     498             : static inline void clear_restore_sigmask(void)
     499             : {
     500           0 :         clear_thread_flag(TIF_RESTORE_SIGMASK);
     501             : }
     502             : static inline bool test_tsk_restore_sigmask(struct task_struct *task)
     503             : {
     504           0 :         return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
     505             : }
     506             : static inline bool test_restore_sigmask(void)
     507             : {
     508           0 :         return test_thread_flag(TIF_RESTORE_SIGMASK);
     509             : }
     510             : static inline bool test_and_clear_restore_sigmask(void)
     511             : {
     512           0 :         return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
     513             : }
     514             : 
     515             : #else   /* TIF_RESTORE_SIGMASK */
     516             : 
     517             : /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
     518             : static inline void set_restore_sigmask(void)
     519             : {
     520             :         current->restore_sigmask = true;
     521             : }
     522             : static inline void clear_tsk_restore_sigmask(struct task_struct *task)
     523             : {
     524             :         task->restore_sigmask = false;
     525             : }
     526             : static inline void clear_restore_sigmask(void)
     527             : {
     528             :         current->restore_sigmask = false;
     529             : }
     530             : static inline bool test_restore_sigmask(void)
     531             : {
     532             :         return current->restore_sigmask;
     533             : }
     534             : static inline bool test_tsk_restore_sigmask(struct task_struct *task)
     535             : {
     536             :         return task->restore_sigmask;
     537             : }
     538             : static inline bool test_and_clear_restore_sigmask(void)
     539             : {
     540             :         if (!current->restore_sigmask)
     541             :                 return false;
     542             :         current->restore_sigmask = false;
     543             :         return true;
     544             : }
     545             : #endif
     546             : 
     547           0 : static inline void restore_saved_sigmask(void)
     548             : {
     549           0 :         if (test_and_clear_restore_sigmask())
     550           0 :                 __set_current_blocked(&current->saved_sigmask);
     551           0 : }
     552             : 
     553             : extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
     554             : 
     555           0 : static inline void restore_saved_sigmask_unless(bool interrupted)
     556             : {
     557           0 :         if (interrupted)
     558           0 :                 WARN_ON(!signal_pending(current));
     559             :         else
     560           0 :                 restore_saved_sigmask();
     561           0 : }
     562             : 
     563           0 : static inline sigset_t *sigmask_to_save(void)
     564             : {
     565           0 :         sigset_t *res = &current->blocked;
     566           0 :         if (unlikely(test_restore_sigmask()))
     567           0 :                 res = &current->saved_sigmask;
     568           0 :         return res;
     569             : }
     570             : 
     571             : static inline int kill_cad_pid(int sig, int priv)
     572             : {
     573           0 :         return kill_pid(cad_pid, sig, priv);
     574             : }
     575             : 
     576             : /* These can be the second arg to send_sig_info/send_group_sig_info.  */
     577             : #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
     578             : #define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
     579             : 
     580             : static inline int __on_sig_stack(unsigned long sp)
     581             : {
     582             : #ifdef CONFIG_STACK_GROWSUP
     583             :         return sp >= current->sas_ss_sp &&
     584             :                 sp - current->sas_ss_sp < current->sas_ss_size;
     585             : #else
     586           0 :         return sp > current->sas_ss_sp &&
     587           0 :                 sp - current->sas_ss_sp <= current->sas_ss_size;
     588             : #endif
     589             : }
     590             : 
     591             : /*
     592             :  * True if we are on the alternate signal stack.
     593             :  */
     594           0 : static inline int on_sig_stack(unsigned long sp)
     595             : {
     596             :         /*
     597             :          * If the signal stack is SS_AUTODISARM then, by construction, we
     598             :          * can't be on the signal stack unless user code deliberately set
     599             :          * SS_AUTODISARM when we were already on it.
     600             :          *
     601             :          * This improves reliability: if user state gets corrupted such that
     602             :          * the stack pointer points very close to the end of the signal stack,
     603             :          * then this check will enable the signal to be handled anyway.
     604             :          */
     605           0 :         if (current->sas_ss_flags & SS_AUTODISARM)
     606             :                 return 0;
     607             : 
     608             :         return __on_sig_stack(sp);
     609             : }
     610             : 
     611             : static inline int sas_ss_flags(unsigned long sp)
     612             : {
     613           0 :         if (!current->sas_ss_size)
     614             :                 return SS_DISABLE;
     615             : 
     616           0 :         return on_sig_stack(sp) ? SS_ONSTACK : 0;
     617             : }
     618             : 
     619             : static inline void sas_ss_reset(struct task_struct *p)
     620             : {
     621         340 :         p->sas_ss_sp = 0;
     622         340 :         p->sas_ss_size = 0;
     623         340 :         p->sas_ss_flags = SS_DISABLE;
     624             : }
     625             : 
     626             : static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
     627             : {
     628             :         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
     629             : #ifdef CONFIG_STACK_GROWSUP
     630             :                 return current->sas_ss_sp;
     631             : #else
     632             :                 return current->sas_ss_sp + current->sas_ss_size;
     633             : #endif
     634             :         return sp;
     635             : }
     636             : 
     637             : extern void __cleanup_sighand(struct sighand_struct *);
     638             : extern void flush_itimer_signals(void);
     639             : 
     640             : #define tasklist_empty() \
     641             :         list_empty(&init_task.tasks)
     642             : 
     643             : #define next_task(p) \
     644             :         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
     645             : 
     646             : #define for_each_process(p) \
     647             :         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
     648             : 
     649             : extern bool current_is_single_threaded(void);
     650             : 
     651             : /*
     652             :  * Careful: do_each_thread/while_each_thread is a double loop so
     653             :  *          'break' will not work as expected - use goto instead.
     654             :  */
     655             : #define do_each_thread(g, t) \
     656             :         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
     657             : 
     658             : #define while_each_thread(g, t) \
     659             :         while ((t = next_thread(t)) != g)
     660             : 
     661             : #define __for_each_thread(signal, t)    \
     662             :         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
     663             : 
     664             : #define for_each_thread(p, t)           \
     665             :         __for_each_thread((p)->signal, t)
     666             : 
     667             : /* Careful: this is a double loop, 'break' won't work as expected. */
     668             : #define for_each_process_thread(p, t)   \
     669             :         for_each_process(p) for_each_thread(p, t)
     670             : 
     671             : typedef int (*proc_visitor)(struct task_struct *p, void *data);
     672             : void walk_process_tree(struct task_struct *top, proc_visitor, void *);
     673             : 
     674             : static inline
     675             : struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
     676             : {
     677             :         struct pid *pid;
     678           0 :         if (type == PIDTYPE_PID)
     679           0 :                 pid = task_pid(task);
     680             :         else
     681           0 :                 pid = task->signal->pids[type];
     682             :         return pid;
     683             : }
     684             : 
     685             : static inline struct pid *task_tgid(struct task_struct *task)
     686             : {
     687           0 :         return task->signal->pids[PIDTYPE_TGID];
     688             : }
     689             : 
     690             : /*
     691             :  * Without tasklist or RCU lock it is not safe to dereference
     692             :  * the result of task_pgrp/task_session even if task == current,
     693             :  * we can race with another thread doing sys_setsid/sys_setpgid.
     694             :  */
     695             : static inline struct pid *task_pgrp(struct task_struct *task)
     696             : {
     697         990 :         return task->signal->pids[PIDTYPE_PGID];
     698             : }
     699             : 
     700             : static inline struct pid *task_session(struct task_struct *task)
     701             : {
     702         340 :         return task->signal->pids[PIDTYPE_SID];
     703             : }
     704             : 
     705             : static inline int get_nr_threads(struct task_struct *task)
     706             : {
     707           0 :         return task->signal->nr_threads;
     708             : }
     709             : 
     710             : static inline bool thread_group_leader(struct task_struct *p)
     711             : {
     712         325 :         return p->exit_signal >= 0;
     713             : }
     714             : 
     715             : static inline
     716             : bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
     717             : {
     718           0 :         return p1->signal == p2->signal;
     719             : }
     720             : 
     721             : static inline struct task_struct *next_thread(const struct task_struct *p)
     722             : {
     723           0 :         return list_entry_rcu(p->thread_group.next,
     724             :                               struct task_struct, thread_group);
     725             : }
     726             : 
     727             : static inline int thread_group_empty(struct task_struct *p)
     728             : {
     729        1950 :         return list_empty(&p->thread_group);
     730             : }
     731             : 
     732             : #define delay_group_leader(p) \
     733             :                 (thread_group_leader(p) && !thread_group_empty(p))
     734             : 
     735             : extern bool thread_group_exited(struct pid *pid);
     736             : 
     737             : extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
     738             :                                                         unsigned long *flags);
     739             : 
     740             : static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
     741             :                                                        unsigned long *flags)
     742             : {
     743             :         struct sighand_struct *ret;
     744             : 
     745           0 :         ret = __lock_task_sighand(task, flags);
     746             :         (void)__cond_lock(&task->sighand->siglock, ret);
     747             :         return ret;
     748             : }
     749             : 
     750             : static inline void unlock_task_sighand(struct task_struct *task,
     751             :                                                 unsigned long *flags)
     752             : {
     753           0 :         spin_unlock_irqrestore(&task->sighand->siglock, *flags);
     754             : }
     755             : 
     756             : #ifdef CONFIG_LOCKDEP
     757             : extern void lockdep_assert_task_sighand_held(struct task_struct *task);
     758             : #else
     759             : static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
     760             : #endif
     761             : 
     762             : static inline unsigned long task_rlimit(const struct task_struct *task,
     763             :                 unsigned int limit)
     764             : {
     765         340 :         return READ_ONCE(task->signal->rlim[limit].rlim_cur);
     766             : }
     767             : 
     768             : static inline unsigned long task_rlimit_max(const struct task_struct *task,
     769             :                 unsigned int limit)
     770             : {
     771           0 :         return READ_ONCE(task->signal->rlim[limit].rlim_max);
     772             : }
     773             : 
     774             : static inline unsigned long rlimit(unsigned int limit)
     775             : {
     776         680 :         return task_rlimit(current, limit);
     777             : }
     778             : 
     779             : static inline unsigned long rlimit_max(unsigned int limit)
     780             : {
     781           0 :         return task_rlimit_max(current, limit);
     782             : }
     783             : 
     784             : #endif /* _LINUX_SCHED_SIGNAL_H */

Generated by: LCOV version 1.14