Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * arch-independent dma-mapping routines
4 : *
5 : * Copyright (c) 2006 SUSE Linux Products GmbH
6 : * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 : */
8 : #include <linux/memblock.h> /* for max_pfn */
9 : #include <linux/acpi.h>
10 : #include <linux/dma-map-ops.h>
11 : #include <linux/export.h>
12 : #include <linux/gfp.h>
13 : #include <linux/kmsan.h>
14 : #include <linux/of_device.h>
15 : #include <linux/slab.h>
16 : #include <linux/vmalloc.h>
17 : #include "debug.h"
18 : #include "direct.h"
19 :
20 : bool dma_default_coherent;
21 :
22 : /*
23 : * Managed DMA API
24 : */
25 : struct dma_devres {
26 : size_t size;
27 : void *vaddr;
28 : dma_addr_t dma_handle;
29 : unsigned long attrs;
30 : };
31 :
32 0 : static void dmam_release(struct device *dev, void *res)
33 : {
34 0 : struct dma_devres *this = res;
35 :
36 0 : dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
37 : this->attrs);
38 0 : }
39 :
40 0 : static int dmam_match(struct device *dev, void *res, void *match_data)
41 : {
42 0 : struct dma_devres *this = res, *match = match_data;
43 :
44 0 : if (this->vaddr == match->vaddr) {
45 0 : WARN_ON(this->size != match->size ||
46 : this->dma_handle != match->dma_handle);
47 : return 1;
48 : }
49 : return 0;
50 : }
51 :
52 : /**
53 : * dmam_free_coherent - Managed dma_free_coherent()
54 : * @dev: Device to free coherent memory for
55 : * @size: Size of allocation
56 : * @vaddr: Virtual address of the memory to free
57 : * @dma_handle: DMA handle of the memory to free
58 : *
59 : * Managed dma_free_coherent().
60 : */
61 0 : void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 : dma_addr_t dma_handle)
63 : {
64 0 : struct dma_devres match_data = { size, vaddr, dma_handle };
65 :
66 0 : dma_free_coherent(dev, size, vaddr, dma_handle);
67 0 : WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
68 0 : }
69 : EXPORT_SYMBOL(dmam_free_coherent);
70 :
71 : /**
72 : * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 : * @dev: Device to allocate non_coherent memory for
74 : * @size: Size of allocation
75 : * @dma_handle: Out argument for allocated DMA handle
76 : * @gfp: Allocation flags
77 : * @attrs: Flags in the DMA_ATTR_* namespace.
78 : *
79 : * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 : * automatically released on driver detach.
81 : *
82 : * RETURNS:
83 : * Pointer to allocated memory on success, NULL on failure.
84 : */
85 0 : void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 : gfp_t gfp, unsigned long attrs)
87 : {
88 : struct dma_devres *dr;
89 : void *vaddr;
90 :
91 0 : dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
92 0 : if (!dr)
93 : return NULL;
94 :
95 0 : vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
96 0 : if (!vaddr) {
97 0 : devres_free(dr);
98 0 : return NULL;
99 : }
100 :
101 0 : dr->vaddr = vaddr;
102 0 : dr->dma_handle = *dma_handle;
103 0 : dr->size = size;
104 0 : dr->attrs = attrs;
105 :
106 0 : devres_add(dev, dr);
107 :
108 0 : return vaddr;
109 : }
110 : EXPORT_SYMBOL(dmam_alloc_attrs);
111 :
112 : static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 : const struct dma_map_ops *ops)
114 : {
115 : if (likely(!ops))
116 : return true;
117 : #ifdef CONFIG_DMA_OPS_BYPASS
118 : if (dev->dma_ops_bypass)
119 : return min_not_zero(mask, dev->bus_dma_limit) >=
120 : dma_direct_get_required_mask(dev);
121 : #endif
122 : return false;
123 : }
124 :
125 :
126 : /*
127 : * Check if the devices uses a direct mapping for streaming DMA operations.
128 : * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 : * enough.
130 : */
131 : static inline bool dma_alloc_direct(struct device *dev,
132 : const struct dma_map_ops *ops)
133 : {
134 0 : return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135 : }
136 :
137 : static inline bool dma_map_direct(struct device *dev,
138 : const struct dma_map_ops *ops)
139 : {
140 0 : return dma_go_direct(dev, *dev->dma_mask, ops);
141 : }
142 :
143 0 : dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 : size_t offset, size_t size, enum dma_data_direction dir,
145 : unsigned long attrs)
146 : {
147 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
148 : dma_addr_t addr;
149 :
150 0 : BUG_ON(!valid_dma_direction(dir));
151 :
152 0 : if (WARN_ON_ONCE(!dev->dma_mask))
153 : return DMA_MAPPING_ERROR;
154 :
155 0 : if (dma_map_direct(dev, ops) ||
156 : arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 0 : addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158 : else
159 : addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 0 : kmsan_handle_dma(page, offset, size, dir);
161 0 : debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162 :
163 0 : return addr;
164 : }
165 : EXPORT_SYMBOL(dma_map_page_attrs);
166 :
167 0 : void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 : enum dma_data_direction dir, unsigned long attrs)
169 : {
170 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
171 :
172 0 : BUG_ON(!valid_dma_direction(dir));
173 0 : if (dma_map_direct(dev, ops) ||
174 : arch_dma_unmap_page_direct(dev, addr + size))
175 0 : dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 : else if (ops->unmap_page)
177 : ops->unmap_page(dev, addr, size, dir, attrs);
178 0 : debug_dma_unmap_page(dev, addr, size, dir);
179 0 : }
180 : EXPORT_SYMBOL(dma_unmap_page_attrs);
181 :
182 0 : static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 : int nents, enum dma_data_direction dir, unsigned long attrs)
184 : {
185 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
186 : int ents;
187 :
188 0 : BUG_ON(!valid_dma_direction(dir));
189 :
190 0 : if (WARN_ON_ONCE(!dev->dma_mask))
191 : return 0;
192 :
193 0 : if (dma_map_direct(dev, ops) ||
194 : arch_dma_map_sg_direct(dev, sg, nents))
195 0 : ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 : else
197 : ents = ops->map_sg(dev, sg, nents, dir, attrs);
198 :
199 0 : if (ents > 0) {
200 : kmsan_handle_dma_sg(sg, nents, dir);
201 : debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 0 : } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 : ents != -EIO && ents != -EREMOTEIO)) {
204 : return -EIO;
205 : }
206 :
207 : return ents;
208 : }
209 :
210 : /**
211 : * dma_map_sg_attrs - Map the given buffer for DMA
212 : * @dev: The device for which to perform the DMA operation
213 : * @sg: The sg_table object describing the buffer
214 : * @nents: Number of entries to map
215 : * @dir: DMA direction
216 : * @attrs: Optional DMA attributes for the map operation
217 : *
218 : * Maps a buffer described by a scatterlist passed in the sg argument with
219 : * nents segments for the @dir DMA operation by the @dev device.
220 : *
221 : * Returns the number of mapped entries (which can be less than nents)
222 : * on success. Zero is returned for any error.
223 : *
224 : * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 : * original sg and original nents (not the value returned by this funciton).
226 : */
227 0 : unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 : int nents, enum dma_data_direction dir, unsigned long attrs)
229 : {
230 : int ret;
231 :
232 0 : ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233 0 : if (ret < 0)
234 : return 0;
235 0 : return ret;
236 : }
237 : EXPORT_SYMBOL(dma_map_sg_attrs);
238 :
239 : /**
240 : * dma_map_sgtable - Map the given buffer for DMA
241 : * @dev: The device for which to perform the DMA operation
242 : * @sgt: The sg_table object describing the buffer
243 : * @dir: DMA direction
244 : * @attrs: Optional DMA attributes for the map operation
245 : *
246 : * Maps a buffer described by a scatterlist stored in the given sg_table
247 : * object for the @dir DMA operation by the @dev device. After success, the
248 : * ownership for the buffer is transferred to the DMA domain. One has to
249 : * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 : * ownership of the buffer back to the CPU domain before touching the
251 : * buffer by the CPU.
252 : *
253 : * Returns 0 on success or a negative error code on error. The following
254 : * error codes are supported with the given meaning:
255 : *
256 : * -EINVAL An invalid argument, unaligned access or other error
257 : * in usage. Will not succeed if retried.
258 : * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 : * complete the mapping. Should succeed if retried later.
260 : * -EIO Legacy error code with an unknown meaning. eg. this is
261 : * returned if a lower level call returned
262 : * DMA_MAPPING_ERROR.
263 : * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 : * in the sg_table. This will not succeed if retried.
265 : */
266 0 : int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 : enum dma_data_direction dir, unsigned long attrs)
268 : {
269 : int nents;
270 :
271 0 : nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272 0 : if (nents < 0)
273 : return nents;
274 0 : sgt->nents = nents;
275 0 : return 0;
276 : }
277 : EXPORT_SYMBOL_GPL(dma_map_sgtable);
278 :
279 0 : void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 : int nents, enum dma_data_direction dir,
281 : unsigned long attrs)
282 : {
283 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
284 :
285 0 : BUG_ON(!valid_dma_direction(dir));
286 0 : debug_dma_unmap_sg(dev, sg, nents, dir);
287 0 : if (dma_map_direct(dev, ops) ||
288 : arch_dma_unmap_sg_direct(dev, sg, nents))
289 : dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 : else if (ops->unmap_sg)
291 : ops->unmap_sg(dev, sg, nents, dir, attrs);
292 0 : }
293 : EXPORT_SYMBOL(dma_unmap_sg_attrs);
294 :
295 0 : dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 : size_t size, enum dma_data_direction dir, unsigned long attrs)
297 : {
298 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
299 0 : dma_addr_t addr = DMA_MAPPING_ERROR;
300 :
301 0 : BUG_ON(!valid_dma_direction(dir));
302 :
303 0 : if (WARN_ON_ONCE(!dev->dma_mask))
304 : return DMA_MAPPING_ERROR;
305 :
306 0 : if (dma_map_direct(dev, ops))
307 0 : addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 : else if (ops->map_resource)
309 : addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310 :
311 0 : debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312 0 : return addr;
313 : }
314 : EXPORT_SYMBOL(dma_map_resource);
315 :
316 0 : void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 : enum dma_data_direction dir, unsigned long attrs)
318 : {
319 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
320 :
321 0 : BUG_ON(!valid_dma_direction(dir));
322 0 : if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 : ops->unmap_resource(dev, addr, size, dir, attrs);
324 0 : debug_dma_unmap_resource(dev, addr, size, dir);
325 0 : }
326 : EXPORT_SYMBOL(dma_unmap_resource);
327 :
328 0 : void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 : enum dma_data_direction dir)
330 : {
331 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
332 :
333 0 : BUG_ON(!valid_dma_direction(dir));
334 0 : if (dma_map_direct(dev, ops))
335 0 : dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 : else if (ops->sync_single_for_cpu)
337 : ops->sync_single_for_cpu(dev, addr, size, dir);
338 0 : debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339 0 : }
340 : EXPORT_SYMBOL(dma_sync_single_for_cpu);
341 :
342 0 : void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 : size_t size, enum dma_data_direction dir)
344 : {
345 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
346 :
347 0 : BUG_ON(!valid_dma_direction(dir));
348 0 : if (dma_map_direct(dev, ops))
349 0 : dma_direct_sync_single_for_device(dev, addr, size, dir);
350 : else if (ops->sync_single_for_device)
351 : ops->sync_single_for_device(dev, addr, size, dir);
352 0 : debug_dma_sync_single_for_device(dev, addr, size, dir);
353 0 : }
354 : EXPORT_SYMBOL(dma_sync_single_for_device);
355 :
356 0 : void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 : int nelems, enum dma_data_direction dir)
358 : {
359 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
360 :
361 0 : BUG_ON(!valid_dma_direction(dir));
362 0 : if (dma_map_direct(dev, ops))
363 : dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 : else if (ops->sync_sg_for_cpu)
365 : ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 0 : debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367 0 : }
368 : EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369 :
370 0 : void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 : int nelems, enum dma_data_direction dir)
372 : {
373 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
374 :
375 0 : BUG_ON(!valid_dma_direction(dir));
376 0 : if (dma_map_direct(dev, ops))
377 : dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 : else if (ops->sync_sg_for_device)
379 : ops->sync_sg_for_device(dev, sg, nelems, dir);
380 0 : debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381 0 : }
382 : EXPORT_SYMBOL(dma_sync_sg_for_device);
383 :
384 : /*
385 : * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 : * that the intention is to allow exporting memory allocated via the
387 : * coherent DMA APIs through the dma_buf API, which only accepts a
388 : * scattertable. This presents a couple of problems:
389 : * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 : * a struct page
391 : * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 : * as we will try to flush the memory through a different alias to that
393 : * actually being used (and the flushes are redundant.)
394 : */
395 0 : int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 : unsigned long attrs)
398 : {
399 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
400 :
401 0 : if (dma_alloc_direct(dev, ops))
402 0 : return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403 : size, attrs);
404 : if (!ops->get_sgtable)
405 : return -ENXIO;
406 : return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407 : }
408 : EXPORT_SYMBOL(dma_get_sgtable_attrs);
409 :
410 : #ifdef CONFIG_MMU
411 : /*
412 : * Return the page attributes used for mapping dma_alloc_* memory, either in
413 : * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 : */
415 0 : pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416 : {
417 0 : if (dev_is_dma_coherent(dev))
418 0 : return prot;
419 : #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 : if (attrs & DMA_ATTR_WRITE_COMBINE)
421 : return pgprot_writecombine(prot);
422 : #endif
423 : return pgprot_dmacoherent(prot);
424 : }
425 : #endif /* CONFIG_MMU */
426 :
427 : /**
428 : * dma_can_mmap - check if a given device supports dma_mmap_*
429 : * @dev: device to check
430 : *
431 : * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 : * map DMA allocations to userspace.
433 : */
434 0 : bool dma_can_mmap(struct device *dev)
435 : {
436 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
437 :
438 0 : if (dma_alloc_direct(dev, ops))
439 0 : return dma_direct_can_mmap(dev);
440 : return ops->mmap != NULL;
441 : }
442 : EXPORT_SYMBOL_GPL(dma_can_mmap);
443 :
444 : /**
445 : * dma_mmap_attrs - map a coherent DMA allocation into user space
446 : * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 : * @vma: vm_area_struct describing requested user mapping
448 : * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 : * @dma_addr: device-view address returned from dma_alloc_attrs
450 : * @size: size of memory originally requested in dma_alloc_attrs
451 : * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 : *
453 : * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 : * space. The coherent DMA buffer must not be freed by the driver until the
455 : * user space mapping has been released.
456 : */
457 0 : int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
459 : unsigned long attrs)
460 : {
461 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
462 :
463 0 : if (dma_alloc_direct(dev, ops))
464 0 : return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465 : attrs);
466 : if (!ops->mmap)
467 : return -ENXIO;
468 : return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469 : }
470 : EXPORT_SYMBOL(dma_mmap_attrs);
471 :
472 0 : u64 dma_get_required_mask(struct device *dev)
473 : {
474 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
475 :
476 0 : if (dma_alloc_direct(dev, ops))
477 0 : return dma_direct_get_required_mask(dev);
478 : if (ops->get_required_mask)
479 : return ops->get_required_mask(dev);
480 :
481 : /*
482 : * We require every DMA ops implementation to at least support a 32-bit
483 : * DMA mask (and use bounce buffering if that isn't supported in
484 : * hardware). As the direct mapping code has its own routine to
485 : * actually report an optimal mask we default to 32-bit here as that
486 : * is the right thing for most IOMMUs, and at least not actively
487 : * harmful in general.
488 : */
489 : return DMA_BIT_MASK(32);
490 : }
491 : EXPORT_SYMBOL_GPL(dma_get_required_mask);
492 :
493 0 : void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 : gfp_t flag, unsigned long attrs)
495 : {
496 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
497 : void *cpu_addr;
498 :
499 0 : WARN_ON_ONCE(!dev->coherent_dma_mask);
500 :
501 : /*
502 : * DMA allocations can never be turned back into a page pointer, so
503 : * requesting compound pages doesn't make sense (and can't even be
504 : * supported at all by various backends).
505 : */
506 0 : if (WARN_ON_ONCE(flag & __GFP_COMP))
507 : return NULL;
508 :
509 : if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510 : return cpu_addr;
511 :
512 : /* let the implementation decide on the zone to allocate from: */
513 0 : flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514 :
515 0 : if (dma_alloc_direct(dev, ops))
516 0 : cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517 : else if (ops->alloc)
518 : cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519 : else
520 : return NULL;
521 :
522 0 : debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523 0 : return cpu_addr;
524 : }
525 : EXPORT_SYMBOL(dma_alloc_attrs);
526 :
527 0 : void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 : dma_addr_t dma_handle, unsigned long attrs)
529 : {
530 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
531 :
532 : if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533 : return;
534 : /*
535 : * On non-coherent platforms which implement DMA-coherent buffers via
536 : * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 : * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 : * sleep on some machines, and b) an indication that the driver is
539 : * probably misusing the coherent API anyway.
540 : */
541 0 : WARN_ON(irqs_disabled());
542 :
543 0 : if (!cpu_addr)
544 : return;
545 :
546 0 : debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 0 : if (dma_alloc_direct(dev, ops))
548 0 : dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549 : else if (ops->free)
550 : ops->free(dev, size, cpu_addr, dma_handle, attrs);
551 : }
552 : EXPORT_SYMBOL(dma_free_attrs);
553 :
554 0 : static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556 : {
557 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
558 :
559 0 : if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560 : return NULL;
561 0 : if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562 : return NULL;
563 0 : if (WARN_ON_ONCE(gfp & __GFP_COMP))
564 : return NULL;
565 :
566 0 : size = PAGE_ALIGN(size);
567 0 : if (dma_alloc_direct(dev, ops))
568 0 : return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 : if (!ops->alloc_pages)
570 : return NULL;
571 : return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572 : }
573 :
574 0 : struct page *dma_alloc_pages(struct device *dev, size_t size,
575 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576 : {
577 0 : struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578 :
579 : if (page)
580 : debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581 0 : return page;
582 : }
583 : EXPORT_SYMBOL_GPL(dma_alloc_pages);
584 :
585 : static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 : dma_addr_t dma_handle, enum dma_data_direction dir)
587 : {
588 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
589 :
590 0 : size = PAGE_ALIGN(size);
591 0 : if (dma_alloc_direct(dev, ops))
592 0 : dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 : else if (ops->free_pages)
594 : ops->free_pages(dev, size, page, dma_handle, dir);
595 : }
596 :
597 0 : void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 : dma_addr_t dma_handle, enum dma_data_direction dir)
599 : {
600 0 : debug_dma_unmap_page(dev, dma_handle, size, dir);
601 0 : __dma_free_pages(dev, size, page, dma_handle, dir);
602 0 : }
603 : EXPORT_SYMBOL_GPL(dma_free_pages);
604 :
605 0 : int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 : size_t size, struct page *page)
607 : {
608 0 : unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609 :
610 0 : if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611 : return -ENXIO;
612 0 : return remap_pfn_range(vma, vma->vm_start,
613 0 : page_to_pfn(page) + vma->vm_pgoff,
614 0 : vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615 : }
616 : EXPORT_SYMBOL_GPL(dma_mmap_pages);
617 :
618 0 : static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 : enum dma_data_direction dir, gfp_t gfp)
620 : {
621 : struct sg_table *sgt;
622 : struct page *page;
623 :
624 0 : sgt = kmalloc(sizeof(*sgt), gfp);
625 0 : if (!sgt)
626 : return NULL;
627 0 : if (sg_alloc_table(sgt, 1, gfp))
628 : goto out_free_sgt;
629 0 : page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630 0 : if (!page)
631 : goto out_free_table;
632 0 : sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 : sg_dma_len(sgt->sgl) = sgt->sgl->length;
634 0 : return sgt;
635 : out_free_table:
636 0 : sg_free_table(sgt);
637 : out_free_sgt:
638 0 : kfree(sgt);
639 0 : return NULL;
640 : }
641 :
642 0 : struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 : enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644 : {
645 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
646 : struct sg_table *sgt;
647 :
648 0 : if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649 : return NULL;
650 0 : if (WARN_ON_ONCE(gfp & __GFP_COMP))
651 : return NULL;
652 :
653 : if (ops && ops->alloc_noncontiguous)
654 : sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655 : else
656 0 : sgt = alloc_single_sgt(dev, size, dir, gfp);
657 :
658 0 : if (sgt) {
659 0 : sgt->nents = 1;
660 0 : debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661 : }
662 : return sgt;
663 : }
664 : EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665 :
666 0 : static void free_single_sgt(struct device *dev, size_t size,
667 : struct sg_table *sgt, enum dma_data_direction dir)
668 : {
669 0 : __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670 : dir);
671 0 : sg_free_table(sgt);
672 0 : kfree(sgt);
673 0 : }
674 :
675 0 : void dma_free_noncontiguous(struct device *dev, size_t size,
676 : struct sg_table *sgt, enum dma_data_direction dir)
677 : {
678 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
679 :
680 0 : debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 : if (ops && ops->free_noncontiguous)
682 : ops->free_noncontiguous(dev, size, sgt, dir);
683 : else
684 0 : free_single_sgt(dev, size, sgt, dir);
685 0 : }
686 : EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687 :
688 0 : void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 : struct sg_table *sgt)
690 : {
691 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
692 0 : unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693 :
694 : if (ops && ops->alloc_noncontiguous)
695 : return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 0 : return page_address(sg_page(sgt->sgl));
697 : }
698 : EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699 :
700 0 : void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701 : {
702 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
703 :
704 : if (ops && ops->alloc_noncontiguous)
705 : vunmap(vaddr);
706 0 : }
707 : EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708 :
709 0 : int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 : size_t size, struct sg_table *sgt)
711 : {
712 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
713 :
714 : if (ops && ops->alloc_noncontiguous) {
715 : unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716 :
717 : if (vma->vm_pgoff >= count ||
718 : vma_pages(vma) > count - vma->vm_pgoff)
719 : return -ENXIO;
720 : return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721 : }
722 0 : return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723 : }
724 : EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725 :
726 : static int dma_supported(struct device *dev, u64 mask)
727 : {
728 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
729 :
730 : /*
731 : * ->dma_supported sets the bypass flag, so we must always call
732 : * into the method here unless the device is truly direct mapped.
733 : */
734 : if (!ops)
735 0 : return dma_direct_supported(dev, mask);
736 : if (!ops->dma_supported)
737 : return 1;
738 : return ops->dma_supported(dev, mask);
739 : }
740 :
741 0 : bool dma_pci_p2pdma_supported(struct device *dev)
742 : {
743 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
744 :
745 : /* if ops is not set, dma direct will be used which supports P2PDMA */
746 : if (!ops)
747 : return true;
748 :
749 : /*
750 : * Note: dma_ops_bypass is not checked here because P2PDMA should
751 : * not be used with dma mapping ops that do not have support even
752 : * if the specific device is bypassing them.
753 : */
754 :
755 : return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756 : }
757 : EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758 :
759 : #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760 : void arch_dma_set_mask(struct device *dev, u64 mask);
761 : #else
762 : #define arch_dma_set_mask(dev, mask) do { } while (0)
763 : #endif
764 :
765 0 : int dma_set_mask(struct device *dev, u64 mask)
766 : {
767 : /*
768 : * Truncate the mask to the actually supported dma_addr_t width to
769 : * avoid generating unsupportable addresses.
770 : */
771 0 : mask = (dma_addr_t)mask;
772 :
773 0 : if (!dev->dma_mask || !dma_supported(dev, mask))
774 : return -EIO;
775 :
776 : arch_dma_set_mask(dev, mask);
777 0 : *dev->dma_mask = mask;
778 0 : return 0;
779 : }
780 : EXPORT_SYMBOL(dma_set_mask);
781 :
782 0 : int dma_set_coherent_mask(struct device *dev, u64 mask)
783 : {
784 : /*
785 : * Truncate the mask to the actually supported dma_addr_t width to
786 : * avoid generating unsupportable addresses.
787 : */
788 0 : mask = (dma_addr_t)mask;
789 :
790 0 : if (!dma_supported(dev, mask))
791 : return -EIO;
792 :
793 0 : dev->coherent_dma_mask = mask;
794 0 : return 0;
795 : }
796 : EXPORT_SYMBOL(dma_set_coherent_mask);
797 :
798 0 : size_t dma_max_mapping_size(struct device *dev)
799 : {
800 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
801 0 : size_t size = SIZE_MAX;
802 :
803 0 : if (dma_map_direct(dev, ops))
804 0 : size = dma_direct_max_mapping_size(dev);
805 : else if (ops && ops->max_mapping_size)
806 : size = ops->max_mapping_size(dev);
807 :
808 0 : return size;
809 : }
810 : EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811 :
812 0 : size_t dma_opt_mapping_size(struct device *dev)
813 : {
814 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
815 0 : size_t size = SIZE_MAX;
816 :
817 : if (ops && ops->opt_mapping_size)
818 : size = ops->opt_mapping_size();
819 :
820 0 : return min(dma_max_mapping_size(dev), size);
821 : }
822 : EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823 :
824 0 : bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825 : {
826 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
827 :
828 0 : if (dma_map_direct(dev, ops))
829 0 : return dma_direct_need_sync(dev, dma_addr);
830 : return ops->sync_single_for_cpu || ops->sync_single_for_device;
831 : }
832 : EXPORT_SYMBOL_GPL(dma_need_sync);
833 :
834 0 : unsigned long dma_get_merge_boundary(struct device *dev)
835 : {
836 0 : const struct dma_map_ops *ops = get_dma_ops(dev);
837 :
838 : if (!ops || !ops->get_merge_boundary)
839 : return 0; /* can't merge */
840 :
841 : return ops->get_merge_boundary(dev);
842 : }
843 : EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
|