Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/kernel/exit.c
4 : *
5 : * Copyright (C) 1991, 1992 Linus Torvalds
6 : */
7 :
8 : #include <linux/mm.h>
9 : #include <linux/slab.h>
10 : #include <linux/sched/autogroup.h>
11 : #include <linux/sched/mm.h>
12 : #include <linux/sched/stat.h>
13 : #include <linux/sched/task.h>
14 : #include <linux/sched/task_stack.h>
15 : #include <linux/sched/cputime.h>
16 : #include <linux/interrupt.h>
17 : #include <linux/module.h>
18 : #include <linux/capability.h>
19 : #include <linux/completion.h>
20 : #include <linux/personality.h>
21 : #include <linux/tty.h>
22 : #include <linux/iocontext.h>
23 : #include <linux/key.h>
24 : #include <linux/cpu.h>
25 : #include <linux/acct.h>
26 : #include <linux/tsacct_kern.h>
27 : #include <linux/file.h>
28 : #include <linux/fdtable.h>
29 : #include <linux/freezer.h>
30 : #include <linux/binfmts.h>
31 : #include <linux/nsproxy.h>
32 : #include <linux/pid_namespace.h>
33 : #include <linux/ptrace.h>
34 : #include <linux/profile.h>
35 : #include <linux/mount.h>
36 : #include <linux/proc_fs.h>
37 : #include <linux/kthread.h>
38 : #include <linux/mempolicy.h>
39 : #include <linux/taskstats_kern.h>
40 : #include <linux/delayacct.h>
41 : #include <linux/cgroup.h>
42 : #include <linux/syscalls.h>
43 : #include <linux/signal.h>
44 : #include <linux/posix-timers.h>
45 : #include <linux/cn_proc.h>
46 : #include <linux/mutex.h>
47 : #include <linux/futex.h>
48 : #include <linux/pipe_fs_i.h>
49 : #include <linux/audit.h> /* for audit_free() */
50 : #include <linux/resource.h>
51 : #include <linux/task_io_accounting_ops.h>
52 : #include <linux/blkdev.h>
53 : #include <linux/task_work.h>
54 : #include <linux/fs_struct.h>
55 : #include <linux/init_task.h>
56 : #include <linux/perf_event.h>
57 : #include <trace/events/sched.h>
58 : #include <linux/hw_breakpoint.h>
59 : #include <linux/oom.h>
60 : #include <linux/writeback.h>
61 : #include <linux/shm.h>
62 : #include <linux/kcov.h>
63 : #include <linux/kmsan.h>
64 : #include <linux/random.h>
65 : #include <linux/rcuwait.h>
66 : #include <linux/compat.h>
67 : #include <linux/io_uring.h>
68 : #include <linux/kprobes.h>
69 : #include <linux/rethook.h>
70 : #include <linux/sysfs.h>
71 :
72 : #include <linux/uaccess.h>
73 : #include <asm/unistd.h>
74 : #include <asm/mmu_context.h>
75 :
76 : /*
77 : * The default value should be high enough to not crash a system that randomly
78 : * crashes its kernel from time to time, but low enough to at least not permit
79 : * overflowing 32-bit refcounts or the ldsem writer count.
80 : */
81 : static unsigned int oops_limit = 10000;
82 :
83 : #ifdef CONFIG_SYSCTL
84 : static struct ctl_table kern_exit_table[] = {
85 : {
86 : .procname = "oops_limit",
87 : .data = &oops_limit,
88 : .maxlen = sizeof(oops_limit),
89 : .mode = 0644,
90 : .proc_handler = proc_douintvec,
91 : },
92 : { }
93 : };
94 :
95 1 : static __init int kernel_exit_sysctls_init(void)
96 : {
97 1 : register_sysctl_init("kernel", kern_exit_table);
98 1 : return 0;
99 : }
100 : late_initcall(kernel_exit_sysctls_init);
101 : #endif
102 :
103 : static atomic_t oops_count = ATOMIC_INIT(0);
104 :
105 : #ifdef CONFIG_SYSFS
106 0 : static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107 : char *page)
108 : {
109 0 : return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 : }
111 :
112 : static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113 :
114 1 : static __init int kernel_exit_sysfs_init(void)
115 : {
116 1 : sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117 1 : return 0;
118 : }
119 : late_initcall(kernel_exit_sysfs_init);
120 : #endif
121 :
122 325 : static void __unhash_process(struct task_struct *p, bool group_dead)
123 : {
124 325 : nr_threads--;
125 325 : detach_pid(p, PIDTYPE_PID);
126 325 : if (group_dead) {
127 325 : detach_pid(p, PIDTYPE_TGID);
128 325 : detach_pid(p, PIDTYPE_PGID);
129 325 : detach_pid(p, PIDTYPE_SID);
130 :
131 650 : list_del_rcu(&p->tasks);
132 650 : list_del_init(&p->sibling);
133 325 : __this_cpu_dec(process_counts);
134 : }
135 650 : list_del_rcu(&p->thread_group);
136 650 : list_del_rcu(&p->thread_node);
137 325 : }
138 :
139 : /*
140 : * This function expects the tasklist_lock write-locked.
141 : */
142 325 : static void __exit_signal(struct task_struct *tsk)
143 : {
144 325 : struct signal_struct *sig = tsk->signal;
145 650 : bool group_dead = thread_group_leader(tsk);
146 : struct sighand_struct *sighand;
147 : struct tty_struct *tty;
148 : u64 utime, stime;
149 :
150 325 : sighand = rcu_dereference_check(tsk->sighand,
151 : lockdep_tasklist_lock_is_held());
152 650 : spin_lock(&sighand->siglock);
153 :
154 : #ifdef CONFIG_POSIX_TIMERS
155 325 : posix_cpu_timers_exit(tsk);
156 325 : if (group_dead)
157 325 : posix_cpu_timers_exit_group(tsk);
158 : #endif
159 :
160 325 : if (group_dead) {
161 325 : tty = sig->tty;
162 325 : sig->tty = NULL;
163 : } else {
164 : /*
165 : * If there is any task waiting for the group exit
166 : * then notify it:
167 : */
168 0 : if (sig->notify_count > 0 && !--sig->notify_count)
169 0 : wake_up_process(sig->group_exec_task);
170 :
171 0 : if (tsk == sig->curr_target)
172 0 : sig->curr_target = next_thread(tsk);
173 : }
174 :
175 325 : add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176 : sizeof(unsigned long long));
177 :
178 : /*
179 : * Accumulate here the counters for all threads as they die. We could
180 : * skip the group leader because it is the last user of signal_struct,
181 : * but we want to avoid the race with thread_group_cputime() which can
182 : * see the empty ->thread_head list.
183 : */
184 650 : task_cputime(tsk, &utime, &stime);
185 650 : write_seqlock(&sig->stats_lock);
186 325 : sig->utime += utime;
187 325 : sig->stime += stime;
188 325 : sig->gtime += task_gtime(tsk);
189 325 : sig->min_flt += tsk->min_flt;
190 325 : sig->maj_flt += tsk->maj_flt;
191 325 : sig->nvcsw += tsk->nvcsw;
192 325 : sig->nivcsw += tsk->nivcsw;
193 325 : sig->inblock += task_io_get_inblock(tsk);
194 325 : sig->oublock += task_io_get_oublock(tsk);
195 325 : task_io_accounting_add(&sig->ioac, &tsk->ioac);
196 325 : sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197 325 : sig->nr_threads--;
198 325 : __unhash_process(tsk, group_dead);
199 650 : write_sequnlock(&sig->stats_lock);
200 :
201 : /*
202 : * Do this under ->siglock, we can race with another thread
203 : * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204 : */
205 325 : flush_sigqueue(&tsk->pending);
206 325 : tsk->sighand = NULL;
207 650 : spin_unlock(&sighand->siglock);
208 :
209 325 : __cleanup_sighand(sighand);
210 650 : clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211 325 : if (group_dead) {
212 325 : flush_sigqueue(&sig->shared_pending);
213 325 : tty_kref_put(tty);
214 : }
215 325 : }
216 :
217 324 : static void delayed_put_task_struct(struct rcu_head *rhp)
218 : {
219 324 : struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220 :
221 324 : kprobe_flush_task(tsk);
222 : rethook_flush_task(tsk);
223 324 : perf_event_delayed_put(tsk);
224 324 : trace_sched_process_free(tsk);
225 324 : put_task_struct(tsk);
226 324 : }
227 :
228 650 : void put_task_struct_rcu_user(struct task_struct *task)
229 : {
230 1300 : if (refcount_dec_and_test(&task->rcu_users))
231 325 : call_rcu(&task->rcu, delayed_put_task_struct);
232 650 : }
233 :
234 325 : void __weak release_thread(struct task_struct *dead_task)
235 : {
236 325 : }
237 :
238 325 : void release_task(struct task_struct *p)
239 : {
240 : struct task_struct *leader;
241 : struct pid *thread_pid;
242 : int zap_leader;
243 : repeat:
244 : /* don't need to get the RCU readlock here - the process is dead and
245 : * can't be modifying its own credentials. But shut RCU-lockdep up */
246 : rcu_read_lock();
247 650 : dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248 : rcu_read_unlock();
249 :
250 325 : cgroup_release(p);
251 :
252 325 : write_lock_irq(&tasklist_lock);
253 325 : ptrace_release_task(p);
254 650 : thread_pid = get_pid(p->thread_pid);
255 325 : __exit_signal(p);
256 :
257 : /*
258 : * If we are the last non-leader member of the thread
259 : * group, and the leader is zombie, then notify the
260 : * group leader's parent process. (if it wants notification.)
261 : */
262 325 : zap_leader = 0;
263 325 : leader = p->group_leader;
264 325 : if (leader != p && thread_group_empty(leader)
265 0 : && leader->exit_state == EXIT_ZOMBIE) {
266 : /*
267 : * If we were the last child thread and the leader has
268 : * exited already, and the leader's parent ignores SIGCHLD,
269 : * then we are the one who should release the leader.
270 : */
271 0 : zap_leader = do_notify_parent(leader, leader->exit_signal);
272 0 : if (zap_leader)
273 0 : leader->exit_state = EXIT_DEAD;
274 : }
275 :
276 325 : write_unlock_irq(&tasklist_lock);
277 325 : seccomp_filter_release(p);
278 325 : proc_flush_pid(thread_pid);
279 325 : put_pid(thread_pid);
280 325 : release_thread(p);
281 325 : put_task_struct_rcu_user(p);
282 :
283 325 : p = leader;
284 325 : if (unlikely(zap_leader))
285 : goto repeat;
286 325 : }
287 :
288 2 : int rcuwait_wake_up(struct rcuwait *w)
289 : {
290 2 : int ret = 0;
291 : struct task_struct *task;
292 :
293 : rcu_read_lock();
294 :
295 : /*
296 : * Order condition vs @task, such that everything prior to the load
297 : * of @task is visible. This is the condition as to why the user called
298 : * rcuwait_wake() in the first place. Pairs with set_current_state()
299 : * barrier (A) in rcuwait_wait_event().
300 : *
301 : * WAIT WAKE
302 : * [S] tsk = current [S] cond = true
303 : * MB (A) MB (B)
304 : * [L] cond [L] tsk
305 : */
306 2 : smp_mb(); /* (B) */
307 :
308 2 : task = rcu_dereference(w->task);
309 2 : if (task)
310 0 : ret = wake_up_process(task);
311 : rcu_read_unlock();
312 :
313 2 : return ret;
314 : }
315 : EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316 :
317 : /*
318 : * Determine if a process group is "orphaned", according to the POSIX
319 : * definition in 2.2.2.52. Orphaned process groups are not to be affected
320 : * by terminal-generated stop signals. Newly orphaned process groups are
321 : * to receive a SIGHUP and a SIGCONT.
322 : *
323 : * "I ask you, have you ever known what it is to be an orphan?"
324 : */
325 0 : static int will_become_orphaned_pgrp(struct pid *pgrp,
326 : struct task_struct *ignored_task)
327 : {
328 : struct task_struct *p;
329 :
330 0 : do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331 0 : if ((p == ignored_task) ||
332 0 : (p->exit_state && thread_group_empty(p)) ||
333 0 : is_global_init(p->real_parent))
334 0 : continue;
335 :
336 0 : if (task_pgrp(p->real_parent) != pgrp &&
337 0 : task_session(p->real_parent) == task_session(p))
338 : return 0;
339 : } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340 :
341 : return 1;
342 : }
343 :
344 0 : int is_current_pgrp_orphaned(void)
345 : {
346 : int retval;
347 :
348 0 : read_lock(&tasklist_lock);
349 0 : retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350 0 : read_unlock(&tasklist_lock);
351 :
352 0 : return retval;
353 : }
354 :
355 : static bool has_stopped_jobs(struct pid *pgrp)
356 : {
357 : struct task_struct *p;
358 :
359 0 : do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360 0 : if (p->signal->flags & SIGNAL_STOP_STOPPED)
361 : return true;
362 : } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363 :
364 : return false;
365 : }
366 :
367 : /*
368 : * Check to see if any process groups have become orphaned as
369 : * a result of our exiting, and if they have any stopped jobs,
370 : * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371 : */
372 : static void
373 325 : kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 : {
375 650 : struct pid *pgrp = task_pgrp(tsk);
376 325 : struct task_struct *ignored_task = tsk;
377 :
378 325 : if (!parent)
379 : /* exit: our father is in a different pgrp than
380 : * we are and we were the only connection outside.
381 : */
382 325 : parent = tsk->real_parent;
383 : else
384 : /* reparent: our child is in a different pgrp than
385 : * we are, and it was the only connection outside.
386 : */
387 : ignored_task = NULL;
388 :
389 650 : if (task_pgrp(parent) != pgrp &&
390 0 : task_session(parent) == task_session(tsk) &&
391 0 : will_become_orphaned_pgrp(pgrp, ignored_task) &&
392 0 : has_stopped_jobs(pgrp)) {
393 0 : __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394 0 : __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395 : }
396 325 : }
397 :
398 325 : static void coredump_task_exit(struct task_struct *tsk)
399 : {
400 : struct core_state *core_state;
401 :
402 : /*
403 : * Serialize with any possible pending coredump.
404 : * We must hold siglock around checking core_state
405 : * and setting PF_POSTCOREDUMP. The core-inducing thread
406 : * will increment ->nr_threads for each thread in the
407 : * group without PF_POSTCOREDUMP set.
408 : */
409 650 : spin_lock_irq(&tsk->sighand->siglock);
410 325 : tsk->flags |= PF_POSTCOREDUMP;
411 325 : core_state = tsk->signal->core_state;
412 650 : spin_unlock_irq(&tsk->sighand->siglock);
413 325 : if (core_state) {
414 : struct core_thread self;
415 :
416 0 : self.task = current;
417 0 : if (self.task->flags & PF_SIGNALED)
418 0 : self.next = xchg(&core_state->dumper.next, &self);
419 : else
420 0 : self.task = NULL;
421 : /*
422 : * Implies mb(), the result of xchg() must be visible
423 : * to core_state->dumper.
424 : */
425 0 : if (atomic_dec_and_test(&core_state->nr_threads))
426 0 : complete(&core_state->startup);
427 :
428 : for (;;) {
429 0 : set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430 0 : if (!self.task) /* see coredump_finish() */
431 : break;
432 0 : schedule();
433 : }
434 0 : __set_current_state(TASK_RUNNING);
435 : }
436 325 : }
437 :
438 : #ifdef CONFIG_MEMCG
439 : /*
440 : * A task is exiting. If it owned this mm, find a new owner for the mm.
441 : */
442 : void mm_update_next_owner(struct mm_struct *mm)
443 : {
444 : struct task_struct *c, *g, *p = current;
445 :
446 : retry:
447 : /*
448 : * If the exiting or execing task is not the owner, it's
449 : * someone else's problem.
450 : */
451 : if (mm->owner != p)
452 : return;
453 : /*
454 : * The current owner is exiting/execing and there are no other
455 : * candidates. Do not leave the mm pointing to a possibly
456 : * freed task structure.
457 : */
458 : if (atomic_read(&mm->mm_users) <= 1) {
459 : WRITE_ONCE(mm->owner, NULL);
460 : return;
461 : }
462 :
463 : read_lock(&tasklist_lock);
464 : /*
465 : * Search in the children
466 : */
467 : list_for_each_entry(c, &p->children, sibling) {
468 : if (c->mm == mm)
469 : goto assign_new_owner;
470 : }
471 :
472 : /*
473 : * Search in the siblings
474 : */
475 : list_for_each_entry(c, &p->real_parent->children, sibling) {
476 : if (c->mm == mm)
477 : goto assign_new_owner;
478 : }
479 :
480 : /*
481 : * Search through everything else, we should not get here often.
482 : */
483 : for_each_process(g) {
484 : if (g->flags & PF_KTHREAD)
485 : continue;
486 : for_each_thread(g, c) {
487 : if (c->mm == mm)
488 : goto assign_new_owner;
489 : if (c->mm)
490 : break;
491 : }
492 : }
493 : read_unlock(&tasklist_lock);
494 : /*
495 : * We found no owner yet mm_users > 1: this implies that we are
496 : * most likely racing with swapoff (try_to_unuse()) or /proc or
497 : * ptrace or page migration (get_task_mm()). Mark owner as NULL.
498 : */
499 : WRITE_ONCE(mm->owner, NULL);
500 : return;
501 :
502 : assign_new_owner:
503 : BUG_ON(c == p);
504 : get_task_struct(c);
505 : /*
506 : * The task_lock protects c->mm from changing.
507 : * We always want mm->owner->mm == mm
508 : */
509 : task_lock(c);
510 : /*
511 : * Delay read_unlock() till we have the task_lock()
512 : * to ensure that c does not slip away underneath us
513 : */
514 : read_unlock(&tasklist_lock);
515 : if (c->mm != mm) {
516 : task_unlock(c);
517 : put_task_struct(c);
518 : goto retry;
519 : }
520 : WRITE_ONCE(mm->owner, c);
521 : lru_gen_migrate_mm(mm);
522 : task_unlock(c);
523 : put_task_struct(c);
524 : }
525 : #endif /* CONFIG_MEMCG */
526 :
527 : /*
528 : * Turn us into a lazy TLB process if we
529 : * aren't already..
530 : */
531 325 : static void exit_mm(void)
532 : {
533 325 : struct mm_struct *mm = current->mm;
534 :
535 325 : exit_mm_release(current, mm);
536 325 : if (!mm)
537 : return;
538 0 : sync_mm_rss(mm);
539 0 : mmap_read_lock(mm);
540 0 : mmgrab(mm);
541 0 : BUG_ON(mm != current->active_mm);
542 : /* more a memory barrier than a real lock */
543 0 : task_lock(current);
544 : /*
545 : * When a thread stops operating on an address space, the loop
546 : * in membarrier_private_expedited() may not observe that
547 : * tsk->mm, and the loop in membarrier_global_expedited() may
548 : * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549 : * rq->membarrier_state, so those would not issue an IPI.
550 : * Membarrier requires a memory barrier after accessing
551 : * user-space memory, before clearing tsk->mm or the
552 : * rq->membarrier_state.
553 : */
554 : smp_mb__after_spinlock();
555 : local_irq_disable();
556 0 : current->mm = NULL;
557 0 : membarrier_update_current_mm(NULL);
558 0 : enter_lazy_tlb(mm, current);
559 : local_irq_enable();
560 0 : task_unlock(current);
561 0 : mmap_read_unlock(mm);
562 0 : mm_update_next_owner(mm);
563 0 : mmput(mm);
564 0 : if (test_thread_flag(TIF_MEMDIE))
565 0 : exit_oom_victim();
566 : }
567 :
568 : static struct task_struct *find_alive_thread(struct task_struct *p)
569 : {
570 : struct task_struct *t;
571 :
572 0 : for_each_thread(p, t) {
573 0 : if (!(t->flags & PF_EXITING))
574 : return t;
575 : }
576 : return NULL;
577 : }
578 :
579 325 : static struct task_struct *find_child_reaper(struct task_struct *father,
580 : struct list_head *dead)
581 : __releases(&tasklist_lock)
582 : __acquires(&tasklist_lock)
583 : {
584 325 : struct pid_namespace *pid_ns = task_active_pid_ns(father);
585 325 : struct task_struct *reaper = pid_ns->child_reaper;
586 : struct task_struct *p, *n;
587 :
588 325 : if (likely(reaper != father))
589 : return reaper;
590 :
591 0 : reaper = find_alive_thread(father);
592 0 : if (reaper) {
593 0 : pid_ns->child_reaper = reaper;
594 0 : return reaper;
595 : }
596 :
597 0 : write_unlock_irq(&tasklist_lock);
598 :
599 0 : list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600 0 : list_del_init(&p->ptrace_entry);
601 0 : release_task(p);
602 : }
603 :
604 0 : zap_pid_ns_processes(pid_ns);
605 0 : write_lock_irq(&tasklist_lock);
606 :
607 0 : return father;
608 : }
609 :
610 : /*
611 : * When we die, we re-parent all our children, and try to:
612 : * 1. give them to another thread in our thread group, if such a member exists
613 : * 2. give it to the first ancestor process which prctl'd itself as a
614 : * child_subreaper for its children (like a service manager)
615 : * 3. give it to the init process (PID 1) in our pid namespace
616 : */
617 0 : static struct task_struct *find_new_reaper(struct task_struct *father,
618 : struct task_struct *child_reaper)
619 : {
620 : struct task_struct *thread, *reaper;
621 :
622 0 : thread = find_alive_thread(father);
623 0 : if (thread)
624 : return thread;
625 :
626 0 : if (father->signal->has_child_subreaper) {
627 0 : unsigned int ns_level = task_pid(father)->level;
628 : /*
629 : * Find the first ->is_child_subreaper ancestor in our pid_ns.
630 : * We can't check reaper != child_reaper to ensure we do not
631 : * cross the namespaces, the exiting parent could be injected
632 : * by setns() + fork().
633 : * We check pid->level, this is slightly more efficient than
634 : * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635 : */
636 0 : for (reaper = father->real_parent;
637 0 : task_pid(reaper)->level == ns_level;
638 0 : reaper = reaper->real_parent) {
639 0 : if (reaper == &init_task)
640 : break;
641 0 : if (!reaper->signal->is_child_subreaper)
642 0 : continue;
643 0 : thread = find_alive_thread(reaper);
644 0 : if (thread)
645 : return thread;
646 : }
647 : }
648 :
649 : return child_reaper;
650 : }
651 :
652 : /*
653 : * Any that need to be release_task'd are put on the @dead list.
654 : */
655 0 : static void reparent_leader(struct task_struct *father, struct task_struct *p,
656 : struct list_head *dead)
657 : {
658 0 : if (unlikely(p->exit_state == EXIT_DEAD))
659 : return;
660 :
661 : /* We don't want people slaying init. */
662 0 : p->exit_signal = SIGCHLD;
663 :
664 : /* If it has exited notify the new parent about this child's death. */
665 0 : if (!p->ptrace &&
666 0 : p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667 0 : if (do_notify_parent(p, p->exit_signal)) {
668 0 : p->exit_state = EXIT_DEAD;
669 0 : list_add(&p->ptrace_entry, dead);
670 : }
671 : }
672 :
673 0 : kill_orphaned_pgrp(p, father);
674 : }
675 :
676 : /*
677 : * This does two things:
678 : *
679 : * A. Make init inherit all the child processes
680 : * B. Check to see if any process groups have become orphaned
681 : * as a result of our exiting, and if they have any stopped
682 : * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
683 : */
684 325 : static void forget_original_parent(struct task_struct *father,
685 : struct list_head *dead)
686 : {
687 : struct task_struct *p, *t, *reaper;
688 :
689 650 : if (unlikely(!list_empty(&father->ptraced)))
690 0 : exit_ptrace(father, dead);
691 :
692 : /* Can drop and reacquire tasklist_lock */
693 325 : reaper = find_child_reaper(father, dead);
694 650 : if (list_empty(&father->children))
695 : return;
696 :
697 0 : reaper = find_new_reaper(father, reaper);
698 0 : list_for_each_entry(p, &father->children, sibling) {
699 0 : for_each_thread(p, t) {
700 0 : RCU_INIT_POINTER(t->real_parent, reaper);
701 0 : BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702 0 : if (likely(!t->ptrace))
703 0 : t->parent = t->real_parent;
704 0 : if (t->pdeath_signal)
705 0 : group_send_sig_info(t->pdeath_signal,
706 : SEND_SIG_NOINFO, t,
707 : PIDTYPE_TGID);
708 : }
709 : /*
710 : * If this is a threaded reparent there is no need to
711 : * notify anyone anything has happened.
712 : */
713 0 : if (!same_thread_group(reaper, father))
714 0 : reparent_leader(father, p, dead);
715 : }
716 0 : list_splice_tail_init(&father->children, &reaper->children);
717 : }
718 :
719 : /*
720 : * Send signals to all our closest relatives so that they know
721 : * to properly mourn us..
722 : */
723 325 : static void exit_notify(struct task_struct *tsk, int group_dead)
724 : {
725 : bool autoreap;
726 : struct task_struct *p, *n;
727 325 : LIST_HEAD(dead);
728 :
729 325 : write_lock_irq(&tasklist_lock);
730 325 : forget_original_parent(tsk, &dead);
731 :
732 325 : if (group_dead)
733 325 : kill_orphaned_pgrp(tsk->group_leader, NULL);
734 :
735 325 : tsk->exit_state = EXIT_ZOMBIE;
736 325 : if (unlikely(tsk->ptrace)) {
737 0 : int sig = thread_group_leader(tsk) &&
738 0 : thread_group_empty(tsk) &&
739 0 : !ptrace_reparented(tsk) ?
740 0 : tsk->exit_signal : SIGCHLD;
741 0 : autoreap = do_notify_parent(tsk, sig);
742 325 : } else if (thread_group_leader(tsk)) {
743 650 : autoreap = thread_group_empty(tsk) &&
744 325 : do_notify_parent(tsk, tsk->exit_signal);
745 : } else {
746 : autoreap = true;
747 : }
748 :
749 325 : if (autoreap) {
750 325 : tsk->exit_state = EXIT_DEAD;
751 325 : list_add(&tsk->ptrace_entry, &dead);
752 : }
753 :
754 : /* mt-exec, de_thread() is waiting for group leader */
755 325 : if (unlikely(tsk->signal->notify_count < 0))
756 0 : wake_up_process(tsk->signal->group_exec_task);
757 325 : write_unlock_irq(&tasklist_lock);
758 :
759 650 : list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760 650 : list_del_init(&p->ptrace_entry);
761 325 : release_task(p);
762 : }
763 325 : }
764 :
765 : #ifdef CONFIG_DEBUG_STACK_USAGE
766 : static void check_stack_usage(void)
767 : {
768 : static DEFINE_SPINLOCK(low_water_lock);
769 : static int lowest_to_date = THREAD_SIZE;
770 : unsigned long free;
771 :
772 : free = stack_not_used(current);
773 :
774 : if (free >= lowest_to_date)
775 : return;
776 :
777 : spin_lock(&low_water_lock);
778 : if (free < lowest_to_date) {
779 : pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780 : current->comm, task_pid_nr(current), free);
781 : lowest_to_date = free;
782 : }
783 : spin_unlock(&low_water_lock);
784 : }
785 : #else
786 : static inline void check_stack_usage(void) {}
787 : #endif
788 :
789 325 : static void synchronize_group_exit(struct task_struct *tsk, long code)
790 : {
791 325 : struct sighand_struct *sighand = tsk->sighand;
792 325 : struct signal_struct *signal = tsk->signal;
793 :
794 650 : spin_lock_irq(&sighand->siglock);
795 325 : signal->quick_threads--;
796 650 : if ((signal->quick_threads == 0) &&
797 325 : !(signal->flags & SIGNAL_GROUP_EXIT)) {
798 325 : signal->flags = SIGNAL_GROUP_EXIT;
799 325 : signal->group_exit_code = code;
800 325 : signal->group_stop_count = 0;
801 : }
802 650 : spin_unlock_irq(&sighand->siglock);
803 325 : }
804 :
805 325 : void __noreturn do_exit(long code)
806 : {
807 325 : struct task_struct *tsk = current;
808 : int group_dead;
809 :
810 650 : WARN_ON(irqs_disabled());
811 :
812 325 : synchronize_group_exit(tsk, code);
813 :
814 325 : WARN_ON(tsk->plug);
815 :
816 325 : kcov_task_exit(tsk);
817 325 : kmsan_task_exit(tsk);
818 :
819 325 : coredump_task_exit(tsk);
820 325 : ptrace_event(PTRACE_EVENT_EXIT, code);
821 :
822 325 : validate_creds_for_do_exit(tsk);
823 :
824 325 : io_uring_files_cancel();
825 325 : exit_signals(tsk); /* sets PF_EXITING */
826 :
827 : /* sync mm's RSS info before statistics gathering */
828 : if (tsk->mm)
829 : sync_mm_rss(tsk->mm);
830 325 : acct_update_integrals(tsk);
831 650 : group_dead = atomic_dec_and_test(&tsk->signal->live);
832 325 : if (group_dead) {
833 : /*
834 : * If the last thread of global init has exited, panic
835 : * immediately to get a useable coredump.
836 : */
837 325 : if (unlikely(is_global_init(tsk)))
838 0 : panic("Attempted to kill init! exitcode=0x%08x\n",
839 0 : tsk->signal->group_exit_code ?: (int)code);
840 :
841 : #ifdef CONFIG_POSIX_TIMERS
842 325 : hrtimer_cancel(&tsk->signal->real_timer);
843 325 : exit_itimers(tsk);
844 : #endif
845 325 : if (tsk->mm)
846 0 : setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 : }
848 : acct_collect(code, group_dead);
849 : if (group_dead)
850 : tty_audit_exit();
851 325 : audit_free(tsk);
852 :
853 325 : tsk->exit_code = code;
854 325 : taskstats_exit(tsk, group_dead);
855 :
856 325 : exit_mm();
857 :
858 : if (group_dead)
859 : acct_process();
860 325 : trace_sched_process_exit(tsk);
861 :
862 325 : exit_sem(tsk);
863 325 : exit_shm(tsk);
864 325 : exit_files(tsk);
865 325 : exit_fs(tsk);
866 325 : if (group_dead)
867 325 : disassociate_ctty(1);
868 325 : exit_task_namespaces(tsk);
869 325 : exit_task_work(tsk);
870 325 : exit_thread(tsk);
871 :
872 : /*
873 : * Flush inherited counters to the parent - before the parent
874 : * gets woken up by child-exit notifications.
875 : *
876 : * because of cgroup mode, must be called before cgroup_exit()
877 : */
878 325 : perf_event_exit_task(tsk);
879 :
880 325 : sched_autogroup_exit_task(tsk);
881 325 : cgroup_exit(tsk);
882 :
883 : /*
884 : * FIXME: do that only when needed, using sched_exit tracepoint
885 : */
886 325 : flush_ptrace_hw_breakpoint(tsk);
887 :
888 : exit_tasks_rcu_start();
889 325 : exit_notify(tsk, group_dead);
890 325 : proc_exit_connector(tsk);
891 325 : mpol_put_task_policy(tsk);
892 : #ifdef CONFIG_FUTEX
893 325 : if (unlikely(current->pi_state_cache))
894 0 : kfree(current->pi_state_cache);
895 : #endif
896 : /*
897 : * Make sure we are holding no locks:
898 : */
899 : debug_check_no_locks_held();
900 :
901 325 : if (tsk->io_context)
902 0 : exit_io_context(tsk);
903 :
904 325 : if (tsk->splice_pipe)
905 0 : free_pipe_info(tsk->splice_pipe);
906 :
907 325 : if (tsk->task_frag.page)
908 0 : put_page(tsk->task_frag.page);
909 :
910 325 : validate_creds_for_do_exit(tsk);
911 325 : exit_task_stack_account(tsk);
912 :
913 : check_stack_usage();
914 325 : preempt_disable();
915 325 : if (tsk->nr_dirtied)
916 0 : __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
917 : exit_rcu();
918 : exit_tasks_rcu_finish();
919 :
920 325 : lockdep_free_task(tsk);
921 325 : do_task_dead();
922 : }
923 :
924 0 : void __noreturn make_task_dead(int signr)
925 : {
926 : /*
927 : * Take the task off the cpu after something catastrophic has
928 : * happened.
929 : *
930 : * We can get here from a kernel oops, sometimes with preemption off.
931 : * Start by checking for critical errors.
932 : * Then fix up important state like USER_DS and preemption.
933 : * Then do everything else.
934 : */
935 0 : struct task_struct *tsk = current;
936 : unsigned int limit;
937 :
938 0 : if (unlikely(in_interrupt()))
939 0 : panic("Aiee, killing interrupt handler!");
940 0 : if (unlikely(!tsk->pid))
941 0 : panic("Attempted to kill the idle task!");
942 :
943 0 : if (unlikely(irqs_disabled())) {
944 0 : pr_info("note: %s[%d] exited with irqs disabled\n",
945 : current->comm, task_pid_nr(current));
946 : local_irq_enable();
947 : }
948 0 : if (unlikely(in_atomic())) {
949 0 : pr_info("note: %s[%d] exited with preempt_count %d\n",
950 : current->comm, task_pid_nr(current),
951 : preempt_count());
952 : preempt_count_set(PREEMPT_ENABLED);
953 : }
954 :
955 : /*
956 : * Every time the system oopses, if the oops happens while a reference
957 : * to an object was held, the reference leaks.
958 : * If the oops doesn't also leak memory, repeated oopsing can cause
959 : * reference counters to wrap around (if they're not using refcount_t).
960 : * This means that repeated oopsing can make unexploitable-looking bugs
961 : * exploitable through repeated oopsing.
962 : * To make sure this can't happen, place an upper bound on how often the
963 : * kernel may oops without panic().
964 : */
965 0 : limit = READ_ONCE(oops_limit);
966 0 : if (atomic_inc_return(&oops_count) >= limit && limit)
967 0 : panic("Oopsed too often (kernel.oops_limit is %d)", limit);
968 :
969 : /*
970 : * We're taking recursive faults here in make_task_dead. Safest is to just
971 : * leave this task alone and wait for reboot.
972 : */
973 0 : if (unlikely(tsk->flags & PF_EXITING)) {
974 0 : pr_alert("Fixing recursive fault but reboot is needed!\n");
975 0 : futex_exit_recursive(tsk);
976 0 : tsk->exit_state = EXIT_DEAD;
977 0 : refcount_inc(&tsk->rcu_users);
978 0 : do_task_dead();
979 : }
980 :
981 0 : do_exit(signr);
982 : }
983 :
984 0 : SYSCALL_DEFINE1(exit, int, error_code)
985 : {
986 0 : do_exit((error_code&0xff)<<8);
987 : }
988 :
989 : /*
990 : * Take down every thread in the group. This is called by fatal signals
991 : * as well as by sys_exit_group (below).
992 : */
993 : void __noreturn
994 0 : do_group_exit(int exit_code)
995 : {
996 0 : struct signal_struct *sig = current->signal;
997 :
998 0 : if (sig->flags & SIGNAL_GROUP_EXIT)
999 0 : exit_code = sig->group_exit_code;
1000 0 : else if (sig->group_exec_task)
1001 : exit_code = 0;
1002 : else {
1003 0 : struct sighand_struct *const sighand = current->sighand;
1004 :
1005 0 : spin_lock_irq(&sighand->siglock);
1006 0 : if (sig->flags & SIGNAL_GROUP_EXIT)
1007 : /* Another thread got here before we took the lock. */
1008 0 : exit_code = sig->group_exit_code;
1009 0 : else if (sig->group_exec_task)
1010 : exit_code = 0;
1011 : else {
1012 0 : sig->group_exit_code = exit_code;
1013 0 : sig->flags = SIGNAL_GROUP_EXIT;
1014 0 : zap_other_threads(current);
1015 : }
1016 0 : spin_unlock_irq(&sighand->siglock);
1017 : }
1018 :
1019 0 : do_exit(exit_code);
1020 : /* NOTREACHED */
1021 : }
1022 :
1023 : /*
1024 : * this kills every thread in the thread group. Note that any externally
1025 : * wait4()-ing process will get the correct exit code - even if this
1026 : * thread is not the thread group leader.
1027 : */
1028 0 : SYSCALL_DEFINE1(exit_group, int, error_code)
1029 : {
1030 0 : do_group_exit((error_code & 0xff) << 8);
1031 : /* NOTREACHED */
1032 : return 0;
1033 : }
1034 :
1035 : struct waitid_info {
1036 : pid_t pid;
1037 : uid_t uid;
1038 : int status;
1039 : int cause;
1040 : };
1041 :
1042 : struct wait_opts {
1043 : enum pid_type wo_type;
1044 : int wo_flags;
1045 : struct pid *wo_pid;
1046 :
1047 : struct waitid_info *wo_info;
1048 : int wo_stat;
1049 : struct rusage *wo_rusage;
1050 :
1051 : wait_queue_entry_t child_wait;
1052 : int notask_error;
1053 : };
1054 :
1055 : static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1056 : {
1057 0 : return wo->wo_type == PIDTYPE_MAX ||
1058 0 : task_pid_type(p, wo->wo_type) == wo->wo_pid;
1059 : }
1060 :
1061 : static int
1062 0 : eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1063 : {
1064 0 : if (!eligible_pid(wo, p))
1065 : return 0;
1066 :
1067 : /*
1068 : * Wait for all children (clone and not) if __WALL is set or
1069 : * if it is traced by us.
1070 : */
1071 0 : if (ptrace || (wo->wo_flags & __WALL))
1072 : return 1;
1073 :
1074 : /*
1075 : * Otherwise, wait for clone children *only* if __WCLONE is set;
1076 : * otherwise, wait for non-clone children *only*.
1077 : *
1078 : * Note: a "clone" child here is one that reports to its parent
1079 : * using a signal other than SIGCHLD, or a non-leader thread which
1080 : * we can only see if it is traced by us.
1081 : */
1082 0 : if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1083 : return 0;
1084 :
1085 0 : return 1;
1086 : }
1087 :
1088 : /*
1089 : * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1090 : * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1091 : * the lock and this task is uninteresting. If we return nonzero, we have
1092 : * released the lock and the system call should return.
1093 : */
1094 0 : static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1095 : {
1096 : int state, status;
1097 0 : pid_t pid = task_pid_vnr(p);
1098 0 : uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1099 : struct waitid_info *infop;
1100 :
1101 0 : if (!likely(wo->wo_flags & WEXITED))
1102 : return 0;
1103 :
1104 0 : if (unlikely(wo->wo_flags & WNOWAIT)) {
1105 0 : status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106 0 : ? p->signal->group_exit_code : p->exit_code;
1107 0 : get_task_struct(p);
1108 0 : read_unlock(&tasklist_lock);
1109 : sched_annotate_sleep();
1110 0 : if (wo->wo_rusage)
1111 0 : getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1112 0 : put_task_struct(p);
1113 0 : goto out_info;
1114 : }
1115 : /*
1116 : * Move the task's state to DEAD/TRACE, only one thread can do this.
1117 : */
1118 0 : state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1119 0 : EXIT_TRACE : EXIT_DEAD;
1120 0 : if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1121 : return 0;
1122 : /*
1123 : * We own this thread, nobody else can reap it.
1124 : */
1125 0 : read_unlock(&tasklist_lock);
1126 : sched_annotate_sleep();
1127 :
1128 : /*
1129 : * Check thread_group_leader() to exclude the traced sub-threads.
1130 : */
1131 0 : if (state == EXIT_DEAD && thread_group_leader(p)) {
1132 0 : struct signal_struct *sig = p->signal;
1133 0 : struct signal_struct *psig = current->signal;
1134 : unsigned long maxrss;
1135 : u64 tgutime, tgstime;
1136 :
1137 : /*
1138 : * The resource counters for the group leader are in its
1139 : * own task_struct. Those for dead threads in the group
1140 : * are in its signal_struct, as are those for the child
1141 : * processes it has previously reaped. All these
1142 : * accumulate in the parent's signal_struct c* fields.
1143 : *
1144 : * We don't bother to take a lock here to protect these
1145 : * p->signal fields because the whole thread group is dead
1146 : * and nobody can change them.
1147 : *
1148 : * psig->stats_lock also protects us from our sub-threads
1149 : * which can reap other children at the same time. Until
1150 : * we change k_getrusage()-like users to rely on this lock
1151 : * we have to take ->siglock as well.
1152 : *
1153 : * We use thread_group_cputime_adjusted() to get times for
1154 : * the thread group, which consolidates times for all threads
1155 : * in the group including the group leader.
1156 : */
1157 0 : thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1158 0 : spin_lock_irq(¤t->sighand->siglock);
1159 0 : write_seqlock(&psig->stats_lock);
1160 0 : psig->cutime += tgutime + sig->cutime;
1161 0 : psig->cstime += tgstime + sig->cstime;
1162 0 : psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1163 0 : psig->cmin_flt +=
1164 0 : p->min_flt + sig->min_flt + sig->cmin_flt;
1165 0 : psig->cmaj_flt +=
1166 0 : p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1167 0 : psig->cnvcsw +=
1168 0 : p->nvcsw + sig->nvcsw + sig->cnvcsw;
1169 0 : psig->cnivcsw +=
1170 0 : p->nivcsw + sig->nivcsw + sig->cnivcsw;
1171 0 : psig->cinblock +=
1172 0 : task_io_get_inblock(p) +
1173 0 : sig->inblock + sig->cinblock;
1174 0 : psig->coublock +=
1175 0 : task_io_get_oublock(p) +
1176 0 : sig->oublock + sig->coublock;
1177 0 : maxrss = max(sig->maxrss, sig->cmaxrss);
1178 0 : if (psig->cmaxrss < maxrss)
1179 0 : psig->cmaxrss = maxrss;
1180 0 : task_io_accounting_add(&psig->ioac, &p->ioac);
1181 0 : task_io_accounting_add(&psig->ioac, &sig->ioac);
1182 0 : write_sequnlock(&psig->stats_lock);
1183 0 : spin_unlock_irq(¤t->sighand->siglock);
1184 : }
1185 :
1186 0 : if (wo->wo_rusage)
1187 0 : getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188 0 : status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1189 0 : ? p->signal->group_exit_code : p->exit_code;
1190 0 : wo->wo_stat = status;
1191 :
1192 0 : if (state == EXIT_TRACE) {
1193 0 : write_lock_irq(&tasklist_lock);
1194 : /* We dropped tasklist, ptracer could die and untrace */
1195 0 : ptrace_unlink(p);
1196 :
1197 : /* If parent wants a zombie, don't release it now */
1198 0 : state = EXIT_ZOMBIE;
1199 0 : if (do_notify_parent(p, p->exit_signal))
1200 0 : state = EXIT_DEAD;
1201 0 : p->exit_state = state;
1202 0 : write_unlock_irq(&tasklist_lock);
1203 : }
1204 0 : if (state == EXIT_DEAD)
1205 0 : release_task(p);
1206 :
1207 : out_info:
1208 0 : infop = wo->wo_info;
1209 0 : if (infop) {
1210 0 : if ((status & 0x7f) == 0) {
1211 0 : infop->cause = CLD_EXITED;
1212 0 : infop->status = status >> 8;
1213 : } else {
1214 0 : infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 0 : infop->status = status & 0x7f;
1216 : }
1217 0 : infop->pid = pid;
1218 0 : infop->uid = uid;
1219 : }
1220 :
1221 : return pid;
1222 : }
1223 :
1224 : static int *task_stopped_code(struct task_struct *p, bool ptrace)
1225 : {
1226 0 : if (ptrace) {
1227 0 : if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1228 0 : return &p->exit_code;
1229 : } else {
1230 0 : if (p->signal->flags & SIGNAL_STOP_STOPPED)
1231 0 : return &p->signal->group_exit_code;
1232 : }
1233 : return NULL;
1234 : }
1235 :
1236 : /**
1237 : * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1238 : * @wo: wait options
1239 : * @ptrace: is the wait for ptrace
1240 : * @p: task to wait for
1241 : *
1242 : * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1243 : *
1244 : * CONTEXT:
1245 : * read_lock(&tasklist_lock), which is released if return value is
1246 : * non-zero. Also, grabs and releases @p->sighand->siglock.
1247 : *
1248 : * RETURNS:
1249 : * 0 if wait condition didn't exist and search for other wait conditions
1250 : * should continue. Non-zero return, -errno on failure and @p's pid on
1251 : * success, implies that tasklist_lock is released and wait condition
1252 : * search should terminate.
1253 : */
1254 0 : static int wait_task_stopped(struct wait_opts *wo,
1255 : int ptrace, struct task_struct *p)
1256 : {
1257 : struct waitid_info *infop;
1258 : int exit_code, *p_code, why;
1259 0 : uid_t uid = 0; /* unneeded, required by compiler */
1260 : pid_t pid;
1261 :
1262 : /*
1263 : * Traditionally we see ptrace'd stopped tasks regardless of options.
1264 : */
1265 0 : if (!ptrace && !(wo->wo_flags & WUNTRACED))
1266 : return 0;
1267 :
1268 0 : if (!task_stopped_code(p, ptrace))
1269 : return 0;
1270 :
1271 0 : exit_code = 0;
1272 0 : spin_lock_irq(&p->sighand->siglock);
1273 :
1274 0 : p_code = task_stopped_code(p, ptrace);
1275 0 : if (unlikely(!p_code))
1276 : goto unlock_sig;
1277 :
1278 0 : exit_code = *p_code;
1279 0 : if (!exit_code)
1280 : goto unlock_sig;
1281 :
1282 0 : if (!unlikely(wo->wo_flags & WNOWAIT))
1283 0 : *p_code = 0;
1284 :
1285 0 : uid = from_kuid_munged(current_user_ns(), task_uid(p));
1286 : unlock_sig:
1287 0 : spin_unlock_irq(&p->sighand->siglock);
1288 0 : if (!exit_code)
1289 : return 0;
1290 :
1291 : /*
1292 : * Now we are pretty sure this task is interesting.
1293 : * Make sure it doesn't get reaped out from under us while we
1294 : * give up the lock and then examine it below. We don't want to
1295 : * keep holding onto the tasklist_lock while we call getrusage and
1296 : * possibly take page faults for user memory.
1297 : */
1298 0 : get_task_struct(p);
1299 0 : pid = task_pid_vnr(p);
1300 0 : why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1301 0 : read_unlock(&tasklist_lock);
1302 : sched_annotate_sleep();
1303 0 : if (wo->wo_rusage)
1304 0 : getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1305 0 : put_task_struct(p);
1306 :
1307 0 : if (likely(!(wo->wo_flags & WNOWAIT)))
1308 0 : wo->wo_stat = (exit_code << 8) | 0x7f;
1309 :
1310 0 : infop = wo->wo_info;
1311 0 : if (infop) {
1312 0 : infop->cause = why;
1313 0 : infop->status = exit_code;
1314 0 : infop->pid = pid;
1315 0 : infop->uid = uid;
1316 : }
1317 : return pid;
1318 : }
1319 :
1320 : /*
1321 : * Handle do_wait work for one task in a live, non-stopped state.
1322 : * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1323 : * the lock and this task is uninteresting. If we return nonzero, we have
1324 : * released the lock and the system call should return.
1325 : */
1326 0 : static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 : {
1328 : struct waitid_info *infop;
1329 : pid_t pid;
1330 : uid_t uid;
1331 :
1332 0 : if (!unlikely(wo->wo_flags & WCONTINUED))
1333 : return 0;
1334 :
1335 0 : if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336 : return 0;
1337 :
1338 0 : spin_lock_irq(&p->sighand->siglock);
1339 : /* Re-check with the lock held. */
1340 0 : if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341 0 : spin_unlock_irq(&p->sighand->siglock);
1342 0 : return 0;
1343 : }
1344 0 : if (!unlikely(wo->wo_flags & WNOWAIT))
1345 0 : p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346 0 : uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347 0 : spin_unlock_irq(&p->sighand->siglock);
1348 :
1349 0 : pid = task_pid_vnr(p);
1350 0 : get_task_struct(p);
1351 0 : read_unlock(&tasklist_lock);
1352 : sched_annotate_sleep();
1353 0 : if (wo->wo_rusage)
1354 0 : getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1355 0 : put_task_struct(p);
1356 :
1357 0 : infop = wo->wo_info;
1358 0 : if (!infop) {
1359 0 : wo->wo_stat = 0xffff;
1360 : } else {
1361 0 : infop->cause = CLD_CONTINUED;
1362 0 : infop->pid = pid;
1363 0 : infop->uid = uid;
1364 0 : infop->status = SIGCONT;
1365 : }
1366 : return pid;
1367 : }
1368 :
1369 : /*
1370 : * Consider @p for a wait by @parent.
1371 : *
1372 : * -ECHILD should be in ->notask_error before the first call.
1373 : * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1374 : * Returns zero if the search for a child should continue;
1375 : * then ->notask_error is 0 if @p is an eligible child,
1376 : * or still -ECHILD.
1377 : */
1378 0 : static int wait_consider_task(struct wait_opts *wo, int ptrace,
1379 : struct task_struct *p)
1380 : {
1381 : /*
1382 : * We can race with wait_task_zombie() from another thread.
1383 : * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1384 : * can't confuse the checks below.
1385 : */
1386 0 : int exit_state = READ_ONCE(p->exit_state);
1387 : int ret;
1388 :
1389 0 : if (unlikely(exit_state == EXIT_DEAD))
1390 : return 0;
1391 :
1392 0 : ret = eligible_child(wo, ptrace, p);
1393 0 : if (!ret)
1394 : return ret;
1395 :
1396 0 : if (unlikely(exit_state == EXIT_TRACE)) {
1397 : /*
1398 : * ptrace == 0 means we are the natural parent. In this case
1399 : * we should clear notask_error, debugger will notify us.
1400 : */
1401 0 : if (likely(!ptrace))
1402 0 : wo->notask_error = 0;
1403 : return 0;
1404 : }
1405 :
1406 0 : if (likely(!ptrace) && unlikely(p->ptrace)) {
1407 : /*
1408 : * If it is traced by its real parent's group, just pretend
1409 : * the caller is ptrace_do_wait() and reap this child if it
1410 : * is zombie.
1411 : *
1412 : * This also hides group stop state from real parent; otherwise
1413 : * a single stop can be reported twice as group and ptrace stop.
1414 : * If a ptracer wants to distinguish these two events for its
1415 : * own children it should create a separate process which takes
1416 : * the role of real parent.
1417 : */
1418 0 : if (!ptrace_reparented(p))
1419 0 : ptrace = 1;
1420 : }
1421 :
1422 : /* slay zombie? */
1423 0 : if (exit_state == EXIT_ZOMBIE) {
1424 : /* we don't reap group leaders with subthreads */
1425 0 : if (!delay_group_leader(p)) {
1426 : /*
1427 : * A zombie ptracee is only visible to its ptracer.
1428 : * Notification and reaping will be cascaded to the
1429 : * real parent when the ptracer detaches.
1430 : */
1431 0 : if (unlikely(ptrace) || likely(!p->ptrace))
1432 0 : return wait_task_zombie(wo, p);
1433 : }
1434 :
1435 : /*
1436 : * Allow access to stopped/continued state via zombie by
1437 : * falling through. Clearing of notask_error is complex.
1438 : *
1439 : * When !@ptrace:
1440 : *
1441 : * If WEXITED is set, notask_error should naturally be
1442 : * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1443 : * so, if there are live subthreads, there are events to
1444 : * wait for. If all subthreads are dead, it's still safe
1445 : * to clear - this function will be called again in finite
1446 : * amount time once all the subthreads are released and
1447 : * will then return without clearing.
1448 : *
1449 : * When @ptrace:
1450 : *
1451 : * Stopped state is per-task and thus can't change once the
1452 : * target task dies. Only continued and exited can happen.
1453 : * Clear notask_error if WCONTINUED | WEXITED.
1454 : */
1455 0 : if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1456 0 : wo->notask_error = 0;
1457 : } else {
1458 : /*
1459 : * @p is alive and it's gonna stop, continue or exit, so
1460 : * there always is something to wait for.
1461 : */
1462 0 : wo->notask_error = 0;
1463 : }
1464 :
1465 : /*
1466 : * Wait for stopped. Depending on @ptrace, different stopped state
1467 : * is used and the two don't interact with each other.
1468 : */
1469 0 : ret = wait_task_stopped(wo, ptrace, p);
1470 0 : if (ret)
1471 : return ret;
1472 :
1473 : /*
1474 : * Wait for continued. There's only one continued state and the
1475 : * ptracer can consume it which can confuse the real parent. Don't
1476 : * use WCONTINUED from ptracer. You don't need or want it.
1477 : */
1478 0 : return wait_task_continued(wo, p);
1479 : }
1480 :
1481 : /*
1482 : * Do the work of do_wait() for one thread in the group, @tsk.
1483 : *
1484 : * -ECHILD should be in ->notask_error before the first call.
1485 : * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1486 : * Returns zero if the search for a child should continue; then
1487 : * ->notask_error is 0 if there were any eligible children,
1488 : * or still -ECHILD.
1489 : */
1490 0 : static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1491 : {
1492 : struct task_struct *p;
1493 :
1494 0 : list_for_each_entry(p, &tsk->children, sibling) {
1495 0 : int ret = wait_consider_task(wo, 0, p);
1496 :
1497 0 : if (ret)
1498 : return ret;
1499 : }
1500 :
1501 : return 0;
1502 : }
1503 :
1504 0 : static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1505 : {
1506 : struct task_struct *p;
1507 :
1508 0 : list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1509 0 : int ret = wait_consider_task(wo, 1, p);
1510 :
1511 0 : if (ret)
1512 : return ret;
1513 : }
1514 :
1515 : return 0;
1516 : }
1517 :
1518 0 : static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1519 : int sync, void *key)
1520 : {
1521 0 : struct wait_opts *wo = container_of(wait, struct wait_opts,
1522 : child_wait);
1523 0 : struct task_struct *p = key;
1524 :
1525 0 : if (!eligible_pid(wo, p))
1526 : return 0;
1527 :
1528 0 : if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1529 : return 0;
1530 :
1531 0 : return default_wake_function(wait, mode, sync, key);
1532 : }
1533 :
1534 325 : void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1535 : {
1536 325 : __wake_up_sync_key(&parent->signal->wait_chldexit,
1537 : TASK_INTERRUPTIBLE, p);
1538 325 : }
1539 :
1540 : static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1541 : struct task_struct *target)
1542 : {
1543 0 : struct task_struct *parent =
1544 0 : !ptrace ? target->real_parent : target->parent;
1545 :
1546 0 : return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1547 0 : same_thread_group(current, parent));
1548 : }
1549 :
1550 : /*
1551 : * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1552 : * and tracee lists to find the target task.
1553 : */
1554 0 : static int do_wait_pid(struct wait_opts *wo)
1555 : {
1556 : bool ptrace;
1557 : struct task_struct *target;
1558 : int retval;
1559 :
1560 0 : ptrace = false;
1561 0 : target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1562 0 : if (target && is_effectively_child(wo, ptrace, target)) {
1563 0 : retval = wait_consider_task(wo, ptrace, target);
1564 0 : if (retval)
1565 : return retval;
1566 : }
1567 :
1568 0 : ptrace = true;
1569 0 : target = pid_task(wo->wo_pid, PIDTYPE_PID);
1570 0 : if (target && target->ptrace &&
1571 0 : is_effectively_child(wo, ptrace, target)) {
1572 0 : retval = wait_consider_task(wo, ptrace, target);
1573 0 : if (retval)
1574 : return retval;
1575 : }
1576 :
1577 : return 0;
1578 : }
1579 :
1580 0 : static long do_wait(struct wait_opts *wo)
1581 : {
1582 : int retval;
1583 :
1584 0 : trace_sched_process_wait(wo->wo_pid);
1585 :
1586 0 : init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1587 0 : wo->child_wait.private = current;
1588 0 : add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1589 : repeat:
1590 : /*
1591 : * If there is nothing that can match our criteria, just get out.
1592 : * We will clear ->notask_error to zero if we see any child that
1593 : * might later match our criteria, even if we are not able to reap
1594 : * it yet.
1595 : */
1596 0 : wo->notask_error = -ECHILD;
1597 0 : if ((wo->wo_type < PIDTYPE_MAX) &&
1598 0 : (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1599 : goto notask;
1600 :
1601 0 : set_current_state(TASK_INTERRUPTIBLE);
1602 0 : read_lock(&tasklist_lock);
1603 :
1604 0 : if (wo->wo_type == PIDTYPE_PID) {
1605 0 : retval = do_wait_pid(wo);
1606 0 : if (retval)
1607 : goto end;
1608 : } else {
1609 0 : struct task_struct *tsk = current;
1610 :
1611 : do {
1612 0 : retval = do_wait_thread(wo, tsk);
1613 0 : if (retval)
1614 : goto end;
1615 :
1616 0 : retval = ptrace_do_wait(wo, tsk);
1617 0 : if (retval)
1618 : goto end;
1619 :
1620 0 : if (wo->wo_flags & __WNOTHREAD)
1621 : break;
1622 0 : } while_each_thread(current, tsk);
1623 : }
1624 0 : read_unlock(&tasklist_lock);
1625 :
1626 : notask:
1627 0 : retval = wo->notask_error;
1628 0 : if (!retval && !(wo->wo_flags & WNOHANG)) {
1629 0 : retval = -ERESTARTSYS;
1630 0 : if (!signal_pending(current)) {
1631 0 : schedule();
1632 0 : goto repeat;
1633 : }
1634 : }
1635 : end:
1636 0 : __set_current_state(TASK_RUNNING);
1637 0 : remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1638 0 : return retval;
1639 : }
1640 :
1641 0 : static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1642 : int options, struct rusage *ru)
1643 : {
1644 : struct wait_opts wo;
1645 0 : struct pid *pid = NULL;
1646 : enum pid_type type;
1647 : long ret;
1648 0 : unsigned int f_flags = 0;
1649 :
1650 0 : if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1651 : __WNOTHREAD|__WCLONE|__WALL))
1652 : return -EINVAL;
1653 0 : if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654 : return -EINVAL;
1655 :
1656 0 : switch (which) {
1657 : case P_ALL:
1658 : type = PIDTYPE_MAX;
1659 : break;
1660 : case P_PID:
1661 0 : type = PIDTYPE_PID;
1662 0 : if (upid <= 0)
1663 : return -EINVAL;
1664 :
1665 0 : pid = find_get_pid(upid);
1666 0 : break;
1667 : case P_PGID:
1668 0 : type = PIDTYPE_PGID;
1669 0 : if (upid < 0)
1670 : return -EINVAL;
1671 :
1672 0 : if (upid)
1673 0 : pid = find_get_pid(upid);
1674 : else
1675 0 : pid = get_task_pid(current, PIDTYPE_PGID);
1676 : break;
1677 : case P_PIDFD:
1678 0 : type = PIDTYPE_PID;
1679 0 : if (upid < 0)
1680 : return -EINVAL;
1681 :
1682 0 : pid = pidfd_get_pid(upid, &f_flags);
1683 0 : if (IS_ERR(pid))
1684 0 : return PTR_ERR(pid);
1685 :
1686 : break;
1687 : default:
1688 : return -EINVAL;
1689 : }
1690 :
1691 0 : wo.wo_type = type;
1692 0 : wo.wo_pid = pid;
1693 0 : wo.wo_flags = options;
1694 0 : wo.wo_info = infop;
1695 0 : wo.wo_rusage = ru;
1696 0 : if (f_flags & O_NONBLOCK)
1697 0 : wo.wo_flags |= WNOHANG;
1698 :
1699 0 : ret = do_wait(&wo);
1700 0 : if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1701 0 : ret = -EAGAIN;
1702 :
1703 0 : put_pid(pid);
1704 0 : return ret;
1705 : }
1706 :
1707 0 : SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1708 : infop, int, options, struct rusage __user *, ru)
1709 : {
1710 : struct rusage r;
1711 0 : struct waitid_info info = {.status = 0};
1712 0 : long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1713 0 : int signo = 0;
1714 :
1715 0 : if (err > 0) {
1716 0 : signo = SIGCHLD;
1717 0 : err = 0;
1718 0 : if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1719 : return -EFAULT;
1720 : }
1721 0 : if (!infop)
1722 : return err;
1723 :
1724 0 : if (!user_write_access_begin(infop, sizeof(*infop)))
1725 : return -EFAULT;
1726 :
1727 0 : unsafe_put_user(signo, &infop->si_signo, Efault);
1728 0 : unsafe_put_user(0, &infop->si_errno, Efault);
1729 0 : unsafe_put_user(info.cause, &infop->si_code, Efault);
1730 0 : unsafe_put_user(info.pid, &infop->si_pid, Efault);
1731 0 : unsafe_put_user(info.uid, &infop->si_uid, Efault);
1732 0 : unsafe_put_user(info.status, &infop->si_status, Efault);
1733 : user_write_access_end();
1734 : return err;
1735 : Efault:
1736 : user_write_access_end();
1737 : return -EFAULT;
1738 : }
1739 :
1740 0 : long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1741 : struct rusage *ru)
1742 : {
1743 : struct wait_opts wo;
1744 0 : struct pid *pid = NULL;
1745 : enum pid_type type;
1746 : long ret;
1747 :
1748 0 : if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749 : __WNOTHREAD|__WCLONE|__WALL))
1750 : return -EINVAL;
1751 :
1752 : /* -INT_MIN is not defined */
1753 0 : if (upid == INT_MIN)
1754 : return -ESRCH;
1755 :
1756 0 : if (upid == -1)
1757 : type = PIDTYPE_MAX;
1758 0 : else if (upid < 0) {
1759 0 : type = PIDTYPE_PGID;
1760 0 : pid = find_get_pid(-upid);
1761 0 : } else if (upid == 0) {
1762 0 : type = PIDTYPE_PGID;
1763 0 : pid = get_task_pid(current, PIDTYPE_PGID);
1764 : } else /* upid > 0 */ {
1765 0 : type = PIDTYPE_PID;
1766 0 : pid = find_get_pid(upid);
1767 : }
1768 :
1769 0 : wo.wo_type = type;
1770 0 : wo.wo_pid = pid;
1771 0 : wo.wo_flags = options | WEXITED;
1772 0 : wo.wo_info = NULL;
1773 0 : wo.wo_stat = 0;
1774 0 : wo.wo_rusage = ru;
1775 0 : ret = do_wait(&wo);
1776 0 : put_pid(pid);
1777 0 : if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1778 0 : ret = -EFAULT;
1779 :
1780 : return ret;
1781 : }
1782 :
1783 0 : int kernel_wait(pid_t pid, int *stat)
1784 : {
1785 0 : struct wait_opts wo = {
1786 : .wo_type = PIDTYPE_PID,
1787 0 : .wo_pid = find_get_pid(pid),
1788 : .wo_flags = WEXITED,
1789 : };
1790 : int ret;
1791 :
1792 0 : ret = do_wait(&wo);
1793 0 : if (ret > 0 && wo.wo_stat)
1794 0 : *stat = wo.wo_stat;
1795 0 : put_pid(wo.wo_pid);
1796 0 : return ret;
1797 : }
1798 :
1799 0 : SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1800 : int, options, struct rusage __user *, ru)
1801 : {
1802 : struct rusage r;
1803 0 : long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1804 :
1805 0 : if (err > 0) {
1806 0 : if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1807 : return -EFAULT;
1808 : }
1809 : return err;
1810 : }
1811 :
1812 : #ifdef __ARCH_WANT_SYS_WAITPID
1813 :
1814 : /*
1815 : * sys_waitpid() remains for compatibility. waitpid() should be
1816 : * implemented by calling sys_wait4() from libc.a.
1817 : */
1818 0 : SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1819 : {
1820 0 : return kernel_wait4(pid, stat_addr, options, NULL);
1821 : }
1822 :
1823 : #endif
1824 :
1825 : #ifdef CONFIG_COMPAT
1826 : COMPAT_SYSCALL_DEFINE4(wait4,
1827 : compat_pid_t, pid,
1828 : compat_uint_t __user *, stat_addr,
1829 : int, options,
1830 : struct compat_rusage __user *, ru)
1831 : {
1832 : struct rusage r;
1833 : long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1834 : if (err > 0) {
1835 : if (ru && put_compat_rusage(&r, ru))
1836 : return -EFAULT;
1837 : }
1838 : return err;
1839 : }
1840 :
1841 : COMPAT_SYSCALL_DEFINE5(waitid,
1842 : int, which, compat_pid_t, pid,
1843 : struct compat_siginfo __user *, infop, int, options,
1844 : struct compat_rusage __user *, uru)
1845 : {
1846 : struct rusage ru;
1847 : struct waitid_info info = {.status = 0};
1848 : long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1849 : int signo = 0;
1850 : if (err > 0) {
1851 : signo = SIGCHLD;
1852 : err = 0;
1853 : if (uru) {
1854 : /* kernel_waitid() overwrites everything in ru */
1855 : if (COMPAT_USE_64BIT_TIME)
1856 : err = copy_to_user(uru, &ru, sizeof(ru));
1857 : else
1858 : err = put_compat_rusage(&ru, uru);
1859 : if (err)
1860 : return -EFAULT;
1861 : }
1862 : }
1863 :
1864 : if (!infop)
1865 : return err;
1866 :
1867 : if (!user_write_access_begin(infop, sizeof(*infop)))
1868 : return -EFAULT;
1869 :
1870 : unsafe_put_user(signo, &infop->si_signo, Efault);
1871 : unsafe_put_user(0, &infop->si_errno, Efault);
1872 : unsafe_put_user(info.cause, &infop->si_code, Efault);
1873 : unsafe_put_user(info.pid, &infop->si_pid, Efault);
1874 : unsafe_put_user(info.uid, &infop->si_uid, Efault);
1875 : unsafe_put_user(info.status, &infop->si_status, Efault);
1876 : user_write_access_end();
1877 : return err;
1878 : Efault:
1879 : user_write_access_end();
1880 : return -EFAULT;
1881 : }
1882 : #endif
1883 :
1884 : /**
1885 : * thread_group_exited - check that a thread group has exited
1886 : * @pid: tgid of thread group to be checked.
1887 : *
1888 : * Test if the thread group represented by tgid has exited (all
1889 : * threads are zombies, dead or completely gone).
1890 : *
1891 : * Return: true if the thread group has exited. false otherwise.
1892 : */
1893 0 : bool thread_group_exited(struct pid *pid)
1894 : {
1895 : struct task_struct *task;
1896 : bool exited;
1897 :
1898 : rcu_read_lock();
1899 0 : task = pid_task(pid, PIDTYPE_PID);
1900 0 : exited = !task ||
1901 0 : (READ_ONCE(task->exit_state) && thread_group_empty(task));
1902 : rcu_read_unlock();
1903 :
1904 0 : return exited;
1905 : }
1906 : EXPORT_SYMBOL(thread_group_exited);
1907 :
1908 : /*
1909 : * This needs to be __function_aligned as GCC implicitly makes any
1910 : * implementation of abort() cold and drops alignment specified by
1911 : * -falign-functions=N.
1912 : *
1913 : * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1914 : */
1915 0 : __weak __function_aligned void abort(void)
1916 : {
1917 0 : BUG();
1918 :
1919 : /* if that doesn't kill us, halt */
1920 : panic("Oops failed to kill thread");
1921 : }
1922 : EXPORT_SYMBOL(abort);
|