LCOV - code coverage report
Current view: top level - kernel - pid_namespace.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 6 143 4.2 %
Date: 2023-03-27 20:00:47 Functions: 2 15 13.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * Pid namespaces
       4             :  *
       5             :  * Authors:
       6             :  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
       7             :  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
       8             :  *     Many thanks to Oleg Nesterov for comments and help
       9             :  *
      10             :  */
      11             : 
      12             : #include <linux/pid.h>
      13             : #include <linux/pid_namespace.h>
      14             : #include <linux/user_namespace.h>
      15             : #include <linux/syscalls.h>
      16             : #include <linux/cred.h>
      17             : #include <linux/err.h>
      18             : #include <linux/acct.h>
      19             : #include <linux/slab.h>
      20             : #include <linux/proc_ns.h>
      21             : #include <linux/reboot.h>
      22             : #include <linux/export.h>
      23             : #include <linux/sched/task.h>
      24             : #include <linux/sched/signal.h>
      25             : #include <linux/idr.h>
      26             : #include "pid_sysctl.h"
      27             : 
      28             : static DEFINE_MUTEX(pid_caches_mutex);
      29             : static struct kmem_cache *pid_ns_cachep;
      30             : /* Write once array, filled from the beginning. */
      31             : static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
      32             : 
      33             : /*
      34             :  * creates the kmem cache to allocate pids from.
      35             :  * @level: pid namespace level
      36             :  */
      37             : 
      38           0 : static struct kmem_cache *create_pid_cachep(unsigned int level)
      39             : {
      40             :         /* Level 0 is init_pid_ns.pid_cachep */
      41           0 :         struct kmem_cache **pkc = &pid_cache[level - 1];
      42             :         struct kmem_cache *kc;
      43             :         char name[4 + 10 + 1];
      44             :         unsigned int len;
      45             : 
      46           0 :         kc = READ_ONCE(*pkc);
      47           0 :         if (kc)
      48             :                 return kc;
      49             : 
      50           0 :         snprintf(name, sizeof(name), "pid_%u", level + 1);
      51           0 :         len = sizeof(struct pid) + level * sizeof(struct upid);
      52           0 :         mutex_lock(&pid_caches_mutex);
      53             :         /* Name collision forces to do allocation under mutex. */
      54           0 :         if (!*pkc)
      55           0 :                 *pkc = kmem_cache_create(name, len, 0,
      56             :                                          SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
      57           0 :         mutex_unlock(&pid_caches_mutex);
      58             :         /* current can fail, but someone else can succeed. */
      59           0 :         return READ_ONCE(*pkc);
      60             : }
      61             : 
      62             : static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
      63             : {
      64           0 :         return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
      65             : }
      66             : 
      67             : static void dec_pid_namespaces(struct ucounts *ucounts)
      68             : {
      69           0 :         dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
      70             : }
      71             : 
      72           0 : static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
      73             :         struct pid_namespace *parent_pid_ns)
      74             : {
      75             :         struct pid_namespace *ns;
      76           0 :         unsigned int level = parent_pid_ns->level + 1;
      77             :         struct ucounts *ucounts;
      78             :         int err;
      79             : 
      80           0 :         err = -EINVAL;
      81           0 :         if (!in_userns(parent_pid_ns->user_ns, user_ns))
      82             :                 goto out;
      83             : 
      84           0 :         err = -ENOSPC;
      85           0 :         if (level > MAX_PID_NS_LEVEL)
      86             :                 goto out;
      87           0 :         ucounts = inc_pid_namespaces(user_ns);
      88           0 :         if (!ucounts)
      89             :                 goto out;
      90             : 
      91           0 :         err = -ENOMEM;
      92           0 :         ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
      93           0 :         if (ns == NULL)
      94             :                 goto out_dec;
      95             : 
      96           0 :         idr_init(&ns->idr);
      97             : 
      98           0 :         ns->pid_cachep = create_pid_cachep(level);
      99           0 :         if (ns->pid_cachep == NULL)
     100             :                 goto out_free_idr;
     101             : 
     102           0 :         err = ns_alloc_inum(&ns->ns);
     103           0 :         if (err)
     104             :                 goto out_free_idr;
     105           0 :         ns->ns.ops = &pidns_operations;
     106             : 
     107           0 :         refcount_set(&ns->ns.count, 1);
     108           0 :         ns->level = level;
     109           0 :         ns->parent = get_pid_ns(parent_pid_ns);
     110           0 :         ns->user_ns = get_user_ns(user_ns);
     111           0 :         ns->ucounts = ucounts;
     112           0 :         ns->pid_allocated = PIDNS_ADDING;
     113             : 
     114             :         initialize_memfd_noexec_scope(ns);
     115             : 
     116           0 :         return ns;
     117             : 
     118             : out_free_idr:
     119           0 :         idr_destroy(&ns->idr);
     120           0 :         kmem_cache_free(pid_ns_cachep, ns);
     121             : out_dec:
     122             :         dec_pid_namespaces(ucounts);
     123             : out:
     124           0 :         return ERR_PTR(err);
     125             : }
     126             : 
     127           0 : static void delayed_free_pidns(struct rcu_head *p)
     128             : {
     129           0 :         struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
     130             : 
     131           0 :         dec_pid_namespaces(ns->ucounts);
     132           0 :         put_user_ns(ns->user_ns);
     133             : 
     134           0 :         kmem_cache_free(pid_ns_cachep, ns);
     135           0 : }
     136             : 
     137           0 : static void destroy_pid_namespace(struct pid_namespace *ns)
     138             : {
     139           0 :         ns_free_inum(&ns->ns);
     140             : 
     141           0 :         idr_destroy(&ns->idr);
     142           0 :         call_rcu(&ns->rcu, delayed_free_pidns);
     143           0 : }
     144             : 
     145           0 : struct pid_namespace *copy_pid_ns(unsigned long flags,
     146             :         struct user_namespace *user_ns, struct pid_namespace *old_ns)
     147             : {
     148           0 :         if (!(flags & CLONE_NEWPID))
     149             :                 return get_pid_ns(old_ns);
     150           0 :         if (task_active_pid_ns(current) != old_ns)
     151             :                 return ERR_PTR(-EINVAL);
     152           0 :         return create_pid_namespace(user_ns, old_ns);
     153             : }
     154             : 
     155         325 : void put_pid_ns(struct pid_namespace *ns)
     156             : {
     157             :         struct pid_namespace *parent;
     158             : 
     159         650 :         while (ns != &init_pid_ns) {
     160           0 :                 parent = ns->parent;
     161           0 :                 if (!refcount_dec_and_test(&ns->ns.count))
     162             :                         break;
     163           0 :                 destroy_pid_namespace(ns);
     164           0 :                 ns = parent;
     165             :         }
     166         325 : }
     167             : EXPORT_SYMBOL_GPL(put_pid_ns);
     168             : 
     169           0 : void zap_pid_ns_processes(struct pid_namespace *pid_ns)
     170             : {
     171             :         int nr;
     172             :         int rc;
     173           0 :         struct task_struct *task, *me = current;
     174           0 :         int init_pids = thread_group_leader(me) ? 1 : 2;
     175             :         struct pid *pid;
     176             : 
     177             :         /* Don't allow any more processes into the pid namespace */
     178           0 :         disable_pid_allocation(pid_ns);
     179             : 
     180             :         /*
     181             :          * Ignore SIGCHLD causing any terminated children to autoreap.
     182             :          * This speeds up the namespace shutdown, plus see the comment
     183             :          * below.
     184             :          */
     185           0 :         spin_lock_irq(&me->sighand->siglock);
     186           0 :         me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
     187           0 :         spin_unlock_irq(&me->sighand->siglock);
     188             : 
     189             :         /*
     190             :          * The last thread in the cgroup-init thread group is terminating.
     191             :          * Find remaining pid_ts in the namespace, signal and wait for them
     192             :          * to exit.
     193             :          *
     194             :          * Note:  This signals each threads in the namespace - even those that
     195             :          *        belong to the same thread group, To avoid this, we would have
     196             :          *        to walk the entire tasklist looking a processes in this
     197             :          *        namespace, but that could be unnecessarily expensive if the
     198             :          *        pid namespace has just a few processes. Or we need to
     199             :          *        maintain a tasklist for each pid namespace.
     200             :          *
     201             :          */
     202             :         rcu_read_lock();
     203           0 :         read_lock(&tasklist_lock);
     204           0 :         nr = 2;
     205           0 :         idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
     206           0 :                 task = pid_task(pid, PIDTYPE_PID);
     207           0 :                 if (task && !__fatal_signal_pending(task))
     208           0 :                         group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
     209             :         }
     210           0 :         read_unlock(&tasklist_lock);
     211             :         rcu_read_unlock();
     212             : 
     213             :         /*
     214             :          * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
     215             :          * kernel_wait4() will also block until our children traced from the
     216             :          * parent namespace are detached and become EXIT_DEAD.
     217             :          */
     218             :         do {
     219           0 :                 clear_thread_flag(TIF_SIGPENDING);
     220           0 :                 rc = kernel_wait4(-1, NULL, __WALL, NULL);
     221           0 :         } while (rc != -ECHILD);
     222             : 
     223             :         /*
     224             :          * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
     225             :          * process whose parents processes are outside of the pid
     226             :          * namespace.  Such processes are created with setns()+fork().
     227             :          *
     228             :          * If those EXIT_ZOMBIE processes are not reaped by their
     229             :          * parents before their parents exit, they will be reparented
     230             :          * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
     231             :          * stay valid until they all go away.
     232             :          *
     233             :          * The code relies on the pid_ns->child_reaper ignoring
     234             :          * SIGCHILD to cause those EXIT_ZOMBIE processes to be
     235             :          * autoreaped if reparented.
     236             :          *
     237             :          * Semantically it is also desirable to wait for EXIT_ZOMBIE
     238             :          * processes before allowing the child_reaper to be reaped, as
     239             :          * that gives the invariant that when the init process of a
     240             :          * pid namespace is reaped all of the processes in the pid
     241             :          * namespace are gone.
     242             :          *
     243             :          * Once all of the other tasks are gone from the pid_namespace
     244             :          * free_pid() will awaken this task.
     245             :          */
     246             :         for (;;) {
     247           0 :                 set_current_state(TASK_INTERRUPTIBLE);
     248           0 :                 if (pid_ns->pid_allocated == init_pids)
     249             :                         break;
     250             :                 /*
     251             :                  * Release tasks_rcu_exit_srcu to avoid following deadlock:
     252             :                  *
     253             :                  * 1) TASK A unshare(CLONE_NEWPID)
     254             :                  * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
     255             :                  *    and TASK C
     256             :                  * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
     257             :                  * 4) TASK A calls synchronize_rcu_tasks()
     258             :                  *                   -> synchronize_srcu(tasks_rcu_exit_srcu)
     259             :                  * 5) *DEADLOCK*
     260             :                  *
     261             :                  * It is considered safe to release tasks_rcu_exit_srcu here
     262             :                  * because we assume the current task can not be concurrently
     263             :                  * reaped at this point.
     264             :                  */
     265             :                 exit_tasks_rcu_stop();
     266           0 :                 schedule();
     267             :                 exit_tasks_rcu_start();
     268             :         }
     269           0 :         __set_current_state(TASK_RUNNING);
     270             : 
     271           0 :         if (pid_ns->reboot)
     272           0 :                 current->signal->group_exit_code = pid_ns->reboot;
     273             : 
     274             :         acct_exit_ns(pid_ns);
     275           0 :         return;
     276             : }
     277             : 
     278             : #ifdef CONFIG_CHECKPOINT_RESTORE
     279             : static int pid_ns_ctl_handler(struct ctl_table *table, int write,
     280             :                 void *buffer, size_t *lenp, loff_t *ppos)
     281             : {
     282             :         struct pid_namespace *pid_ns = task_active_pid_ns(current);
     283             :         struct ctl_table tmp = *table;
     284             :         int ret, next;
     285             : 
     286             :         if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
     287             :                 return -EPERM;
     288             : 
     289             :         /*
     290             :          * Writing directly to ns' last_pid field is OK, since this field
     291             :          * is volatile in a living namespace anyway and a code writing to
     292             :          * it should synchronize its usage with external means.
     293             :          */
     294             : 
     295             :         next = idr_get_cursor(&pid_ns->idr) - 1;
     296             : 
     297             :         tmp.data = &next;
     298             :         ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
     299             :         if (!ret && write)
     300             :                 idr_set_cursor(&pid_ns->idr, next + 1);
     301             : 
     302             :         return ret;
     303             : }
     304             : 
     305             : extern int pid_max;
     306             : static struct ctl_table pid_ns_ctl_table[] = {
     307             :         {
     308             :                 .procname = "ns_last_pid",
     309             :                 .maxlen = sizeof(int),
     310             :                 .mode = 0666, /* permissions are checked in the handler */
     311             :                 .proc_handler = pid_ns_ctl_handler,
     312             :                 .extra1 = SYSCTL_ZERO,
     313             :                 .extra2 = &pid_max,
     314             :         },
     315             :         { }
     316             : };
     317             : static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
     318             : #endif  /* CONFIG_CHECKPOINT_RESTORE */
     319             : 
     320           0 : int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
     321             : {
     322           0 :         if (pid_ns == &init_pid_ns)
     323             :                 return 0;
     324             : 
     325           0 :         switch (cmd) {
     326             :         case LINUX_REBOOT_CMD_RESTART2:
     327             :         case LINUX_REBOOT_CMD_RESTART:
     328           0 :                 pid_ns->reboot = SIGHUP;
     329           0 :                 break;
     330             : 
     331             :         case LINUX_REBOOT_CMD_POWER_OFF:
     332             :         case LINUX_REBOOT_CMD_HALT:
     333           0 :                 pid_ns->reboot = SIGINT;
     334           0 :                 break;
     335             :         default:
     336             :                 return -EINVAL;
     337             :         }
     338             : 
     339           0 :         read_lock(&tasklist_lock);
     340           0 :         send_sig(SIGKILL, pid_ns->child_reaper, 1);
     341           0 :         read_unlock(&tasklist_lock);
     342             : 
     343           0 :         do_exit(0);
     344             : 
     345             :         /* Not reached */
     346             :         return 0;
     347             : }
     348             : 
     349             : static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
     350             : {
     351           0 :         return container_of(ns, struct pid_namespace, ns);
     352             : }
     353             : 
     354           0 : static struct ns_common *pidns_get(struct task_struct *task)
     355             : {
     356             :         struct pid_namespace *ns;
     357             : 
     358             :         rcu_read_lock();
     359           0 :         ns = task_active_pid_ns(task);
     360           0 :         if (ns)
     361             :                 get_pid_ns(ns);
     362             :         rcu_read_unlock();
     363             : 
     364           0 :         return ns ? &ns->ns : NULL;
     365             : }
     366             : 
     367           0 : static struct ns_common *pidns_for_children_get(struct task_struct *task)
     368             : {
     369           0 :         struct pid_namespace *ns = NULL;
     370             : 
     371           0 :         task_lock(task);
     372           0 :         if (task->nsproxy) {
     373           0 :                 ns = task->nsproxy->pid_ns_for_children;
     374             :                 get_pid_ns(ns);
     375             :         }
     376           0 :         task_unlock(task);
     377             : 
     378           0 :         if (ns) {
     379           0 :                 read_lock(&tasklist_lock);
     380           0 :                 if (!ns->child_reaper) {
     381           0 :                         put_pid_ns(ns);
     382           0 :                         ns = NULL;
     383             :                 }
     384           0 :                 read_unlock(&tasklist_lock);
     385             :         }
     386             : 
     387           0 :         return ns ? &ns->ns : NULL;
     388             : }
     389             : 
     390           0 : static void pidns_put(struct ns_common *ns)
     391             : {
     392           0 :         put_pid_ns(to_pid_ns(ns));
     393           0 : }
     394             : 
     395           0 : static int pidns_install(struct nsset *nsset, struct ns_common *ns)
     396             : {
     397           0 :         struct nsproxy *nsproxy = nsset->nsproxy;
     398           0 :         struct pid_namespace *active = task_active_pid_ns(current);
     399           0 :         struct pid_namespace *ancestor, *new = to_pid_ns(ns);
     400             : 
     401           0 :         if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
     402           0 :             !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
     403             :                 return -EPERM;
     404             : 
     405             :         /*
     406             :          * Only allow entering the current active pid namespace
     407             :          * or a child of the current active pid namespace.
     408             :          *
     409             :          * This is required for fork to return a usable pid value and
     410             :          * this maintains the property that processes and their
     411             :          * children can not escape their current pid namespace.
     412             :          */
     413           0 :         if (new->level < active->level)
     414             :                 return -EINVAL;
     415             : 
     416             :         ancestor = new;
     417           0 :         while (ancestor->level > active->level)
     418           0 :                 ancestor = ancestor->parent;
     419           0 :         if (ancestor != active)
     420             :                 return -EINVAL;
     421             : 
     422           0 :         put_pid_ns(nsproxy->pid_ns_for_children);
     423           0 :         nsproxy->pid_ns_for_children = get_pid_ns(new);
     424           0 :         return 0;
     425             : }
     426             : 
     427           0 : static struct ns_common *pidns_get_parent(struct ns_common *ns)
     428             : {
     429           0 :         struct pid_namespace *active = task_active_pid_ns(current);
     430             :         struct pid_namespace *pid_ns, *p;
     431             : 
     432             :         /* See if the parent is in the current namespace */
     433           0 :         pid_ns = p = to_pid_ns(ns)->parent;
     434             :         for (;;) {
     435           0 :                 if (!p)
     436             :                         return ERR_PTR(-EPERM);
     437           0 :                 if (p == active)
     438             :                         break;
     439           0 :                 p = p->parent;
     440             :         }
     441             : 
     442           0 :         return &get_pid_ns(pid_ns)->ns;
     443             : }
     444             : 
     445           0 : static struct user_namespace *pidns_owner(struct ns_common *ns)
     446             : {
     447           0 :         return to_pid_ns(ns)->user_ns;
     448             : }
     449             : 
     450             : const struct proc_ns_operations pidns_operations = {
     451             :         .name           = "pid",
     452             :         .type           = CLONE_NEWPID,
     453             :         .get            = pidns_get,
     454             :         .put            = pidns_put,
     455             :         .install        = pidns_install,
     456             :         .owner          = pidns_owner,
     457             :         .get_parent     = pidns_get_parent,
     458             : };
     459             : 
     460             : const struct proc_ns_operations pidns_for_children_operations = {
     461             :         .name           = "pid_for_children",
     462             :         .real_ns_name   = "pid",
     463             :         .type           = CLONE_NEWPID,
     464             :         .get            = pidns_for_children_get,
     465             :         .put            = pidns_put,
     466             :         .install        = pidns_install,
     467             :         .owner          = pidns_owner,
     468             :         .get_parent     = pidns_get_parent,
     469             : };
     470             : 
     471           1 : static __init int pid_namespaces_init(void)
     472             : {
     473           1 :         pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
     474             : 
     475             : #ifdef CONFIG_CHECKPOINT_RESTORE
     476             :         register_sysctl_paths(kern_path, pid_ns_ctl_table);
     477             : #endif
     478             : 
     479             :         register_pid_ns_sysctl_table_vm();
     480           1 :         return 0;
     481             : }
     482             : 
     483             : __initcall(pid_namespaces_init);

Generated by: LCOV version 1.14