LCOV - code coverage report
Current view: top level - kernel/sched - fair.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 362 519 69.7 %
Date: 2023-03-27 20:00:47 Functions: 34 53 64.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
       4             :  *
       5             :  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
       6             :  *
       7             :  *  Interactivity improvements by Mike Galbraith
       8             :  *  (C) 2007 Mike Galbraith <efault@gmx.de>
       9             :  *
      10             :  *  Various enhancements by Dmitry Adamushko.
      11             :  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
      12             :  *
      13             :  *  Group scheduling enhancements by Srivatsa Vaddagiri
      14             :  *  Copyright IBM Corporation, 2007
      15             :  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      16             :  *
      17             :  *  Scaled math optimizations by Thomas Gleixner
      18             :  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
      19             :  *
      20             :  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
      21             :  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
      22             :  */
      23             : #include <linux/energy_model.h>
      24             : #include <linux/mmap_lock.h>
      25             : #include <linux/hugetlb_inline.h>
      26             : #include <linux/jiffies.h>
      27             : #include <linux/mm_api.h>
      28             : #include <linux/highmem.h>
      29             : #include <linux/spinlock_api.h>
      30             : #include <linux/cpumask_api.h>
      31             : #include <linux/lockdep_api.h>
      32             : #include <linux/softirq.h>
      33             : #include <linux/refcount_api.h>
      34             : #include <linux/topology.h>
      35             : #include <linux/sched/clock.h>
      36             : #include <linux/sched/cond_resched.h>
      37             : #include <linux/sched/cputime.h>
      38             : #include <linux/sched/isolation.h>
      39             : #include <linux/sched/nohz.h>
      40             : 
      41             : #include <linux/cpuidle.h>
      42             : #include <linux/interrupt.h>
      43             : #include <linux/memory-tiers.h>
      44             : #include <linux/mempolicy.h>
      45             : #include <linux/mutex_api.h>
      46             : #include <linux/profile.h>
      47             : #include <linux/psi.h>
      48             : #include <linux/ratelimit.h>
      49             : #include <linux/task_work.h>
      50             : 
      51             : #include <asm/switch_to.h>
      52             : 
      53             : #include <linux/sched/cond_resched.h>
      54             : 
      55             : #include "sched.h"
      56             : #include "stats.h"
      57             : #include "autogroup.h"
      58             : 
      59             : /*
      60             :  * Targeted preemption latency for CPU-bound tasks:
      61             :  *
      62             :  * NOTE: this latency value is not the same as the concept of
      63             :  * 'timeslice length' - timeslices in CFS are of variable length
      64             :  * and have no persistent notion like in traditional, time-slice
      65             :  * based scheduling concepts.
      66             :  *
      67             :  * (to see the precise effective timeslice length of your workload,
      68             :  *  run vmstat and monitor the context-switches (cs) field)
      69             :  *
      70             :  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
      71             :  */
      72             : unsigned int sysctl_sched_latency                       = 6000000ULL;
      73             : static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
      74             : 
      75             : /*
      76             :  * The initial- and re-scaling of tunables is configurable
      77             :  *
      78             :  * Options are:
      79             :  *
      80             :  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
      81             :  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
      82             :  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
      83             :  *
      84             :  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
      85             :  */
      86             : unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
      87             : 
      88             : /*
      89             :  * Minimal preemption granularity for CPU-bound tasks:
      90             :  *
      91             :  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
      92             :  */
      93             : unsigned int sysctl_sched_min_granularity                       = 750000ULL;
      94             : static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
      95             : 
      96             : /*
      97             :  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
      98             :  * Applies only when SCHED_IDLE tasks compete with normal tasks.
      99             :  *
     100             :  * (default: 0.75 msec)
     101             :  */
     102             : unsigned int sysctl_sched_idle_min_granularity                  = 750000ULL;
     103             : 
     104             : /*
     105             :  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
     106             :  */
     107             : static unsigned int sched_nr_latency = 8;
     108             : 
     109             : /*
     110             :  * After fork, child runs first. If set to 0 (default) then
     111             :  * parent will (try to) run first.
     112             :  */
     113             : unsigned int sysctl_sched_child_runs_first __read_mostly;
     114             : 
     115             : /*
     116             :  * SCHED_OTHER wake-up granularity.
     117             :  *
     118             :  * This option delays the preemption effects of decoupled workloads
     119             :  * and reduces their over-scheduling. Synchronous workloads will still
     120             :  * have immediate wakeup/sleep latencies.
     121             :  *
     122             :  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
     123             :  */
     124             : unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
     125             : static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
     126             : 
     127             : const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
     128             : 
     129             : int sched_thermal_decay_shift;
     130           0 : static int __init setup_sched_thermal_decay_shift(char *str)
     131             : {
     132           0 :         int _shift = 0;
     133             : 
     134           0 :         if (kstrtoint(str, 0, &_shift))
     135           0 :                 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
     136             : 
     137           0 :         sched_thermal_decay_shift = clamp(_shift, 0, 10);
     138           0 :         return 1;
     139             : }
     140             : __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
     141             : 
     142             : #ifdef CONFIG_SMP
     143             : /*
     144             :  * For asym packing, by default the lower numbered CPU has higher priority.
     145             :  */
     146             : int __weak arch_asym_cpu_priority(int cpu)
     147             : {
     148             :         return -cpu;
     149             : }
     150             : 
     151             : /*
     152             :  * The margin used when comparing utilization with CPU capacity.
     153             :  *
     154             :  * (default: ~20%)
     155             :  */
     156             : #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
     157             : 
     158             : /*
     159             :  * The margin used when comparing CPU capacities.
     160             :  * is 'cap1' noticeably greater than 'cap2'
     161             :  *
     162             :  * (default: ~5%)
     163             :  */
     164             : #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
     165             : #endif
     166             : 
     167             : #ifdef CONFIG_CFS_BANDWIDTH
     168             : /*
     169             :  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
     170             :  * each time a cfs_rq requests quota.
     171             :  *
     172             :  * Note: in the case that the slice exceeds the runtime remaining (either due
     173             :  * to consumption or the quota being specified to be smaller than the slice)
     174             :  * we will always only issue the remaining available time.
     175             :  *
     176             :  * (default: 5 msec, units: microseconds)
     177             :  */
     178             : static unsigned int sysctl_sched_cfs_bandwidth_slice            = 5000UL;
     179             : #endif
     180             : 
     181             : #ifdef CONFIG_NUMA_BALANCING
     182             : /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
     183             : static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
     184             : #endif
     185             : 
     186             : #ifdef CONFIG_SYSCTL
     187             : static struct ctl_table sched_fair_sysctls[] = {
     188             :         {
     189             :                 .procname       = "sched_child_runs_first",
     190             :                 .data           = &sysctl_sched_child_runs_first,
     191             :                 .maxlen         = sizeof(unsigned int),
     192             :                 .mode           = 0644,
     193             :                 .proc_handler   = proc_dointvec,
     194             :         },
     195             : #ifdef CONFIG_CFS_BANDWIDTH
     196             :         {
     197             :                 .procname       = "sched_cfs_bandwidth_slice_us",
     198             :                 .data           = &sysctl_sched_cfs_bandwidth_slice,
     199             :                 .maxlen         = sizeof(unsigned int),
     200             :                 .mode           = 0644,
     201             :                 .proc_handler   = proc_dointvec_minmax,
     202             :                 .extra1         = SYSCTL_ONE,
     203             :         },
     204             : #endif
     205             : #ifdef CONFIG_NUMA_BALANCING
     206             :         {
     207             :                 .procname       = "numa_balancing_promote_rate_limit_MBps",
     208             :                 .data           = &sysctl_numa_balancing_promote_rate_limit,
     209             :                 .maxlen         = sizeof(unsigned int),
     210             :                 .mode           = 0644,
     211             :                 .proc_handler   = proc_dointvec_minmax,
     212             :                 .extra1         = SYSCTL_ZERO,
     213             :         },
     214             : #endif /* CONFIG_NUMA_BALANCING */
     215             :         {}
     216             : };
     217             : 
     218           1 : static int __init sched_fair_sysctl_init(void)
     219             : {
     220           1 :         register_sysctl_init("kernel", sched_fair_sysctls);
     221           1 :         return 0;
     222             : }
     223             : late_initcall(sched_fair_sysctl_init);
     224             : #endif
     225             : 
     226             : static inline void update_load_add(struct load_weight *lw, unsigned long inc)
     227             : {
     228        2472 :         lw->weight += inc;
     229        2472 :         lw->inv_weight = 0;
     230             : }
     231             : 
     232             : static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
     233             : {
     234        2130 :         lw->weight -= dec;
     235        2130 :         lw->inv_weight = 0;
     236             : }
     237             : 
     238             : static inline void update_load_set(struct load_weight *lw, unsigned long w)
     239             : {
     240           5 :         lw->weight = w;
     241           5 :         lw->inv_weight = 0;
     242             : }
     243             : 
     244             : /*
     245             :  * Increase the granularity value when there are more CPUs,
     246             :  * because with more CPUs the 'effective latency' as visible
     247             :  * to users decreases. But the relationship is not linear,
     248             :  * so pick a second-best guess by going with the log2 of the
     249             :  * number of CPUs.
     250             :  *
     251             :  * This idea comes from the SD scheduler of Con Kolivas:
     252             :  */
     253             : static unsigned int get_update_sysctl_factor(void)
     254             : {
     255           1 :         unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
     256             :         unsigned int factor;
     257             : 
     258             :         switch (sysctl_sched_tunable_scaling) {
     259             :         case SCHED_TUNABLESCALING_NONE:
     260             :                 factor = 1;
     261             :                 break;
     262             :         case SCHED_TUNABLESCALING_LINEAR:
     263             :                 factor = cpus;
     264             :                 break;
     265             :         case SCHED_TUNABLESCALING_LOG:
     266             :         default:
     267             :                 factor = 1 + ilog2(cpus);
     268             :                 break;
     269             :         }
     270             : 
     271             :         return factor;
     272             : }
     273             : 
     274             : static void update_sysctl(void)
     275             : {
     276           1 :         unsigned int factor = get_update_sysctl_factor();
     277             : 
     278             : #define SET_SYSCTL(name) \
     279             :         (sysctl_##name = (factor) * normalized_sysctl_##name)
     280           1 :         SET_SYSCTL(sched_min_granularity);
     281           1 :         SET_SYSCTL(sched_latency);
     282           1 :         SET_SYSCTL(sched_wakeup_granularity);
     283             : #undef SET_SYSCTL
     284             : }
     285             : 
     286           1 : void __init sched_init_granularity(void)
     287             : {
     288             :         update_sysctl();
     289           1 : }
     290             : 
     291             : #define WMULT_CONST     (~0U)
     292             : #define WMULT_SHIFT     32
     293             : 
     294             : static void __update_inv_weight(struct load_weight *lw)
     295             : {
     296             :         unsigned long w;
     297             : 
     298         465 :         if (likely(lw->inv_weight))
     299             :                 return;
     300             : 
     301         390 :         w = scale_load_down(lw->weight);
     302             : 
     303         390 :         if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
     304           0 :                 lw->inv_weight = 1;
     305         390 :         else if (unlikely(!w))
     306           0 :                 lw->inv_weight = WMULT_CONST;
     307             :         else
     308         390 :                 lw->inv_weight = WMULT_CONST / w;
     309             : }
     310             : 
     311             : /*
     312             :  * delta_exec * weight / lw.weight
     313             :  *   OR
     314             :  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
     315             :  *
     316             :  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
     317             :  * we're guaranteed shift stays positive because inv_weight is guaranteed to
     318             :  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
     319             :  *
     320             :  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
     321             :  * weight/lw.weight <= 1, and therefore our shift will also be positive.
     322             :  */
     323         465 : static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
     324             : {
     325         465 :         u64 fact = scale_load_down(weight);
     326         465 :         u32 fact_hi = (u32)(fact >> 32);
     327         465 :         int shift = WMULT_SHIFT;
     328             :         int fs;
     329             : 
     330         465 :         __update_inv_weight(lw);
     331             : 
     332         465 :         if (unlikely(fact_hi)) {
     333           0 :                 fs = fls(fact_hi);
     334           0 :                 shift -= fs;
     335           0 :                 fact >>= fs;
     336             :         }
     337             : 
     338         930 :         fact = mul_u32_u32(fact, lw->inv_weight);
     339             : 
     340         465 :         fact_hi = (u32)(fact >> 32);
     341         465 :         if (fact_hi) {
     342           0 :                 fs = fls(fact_hi);
     343           0 :                 shift -= fs;
     344           0 :                 fact >>= fs;
     345             :         }
     346             : 
     347         930 :         return mul_u64_u32_shr(delta_exec, fact, shift);
     348             : }
     349             : 
     350             : 
     351             : const struct sched_class fair_sched_class;
     352             : 
     353             : /**************************************************************
     354             :  * CFS operations on generic schedulable entities:
     355             :  */
     356             : 
     357             : #ifdef CONFIG_FAIR_GROUP_SCHED
     358             : 
     359             : /* Walk up scheduling entities hierarchy */
     360             : #define for_each_sched_entity(se) \
     361             :                 for (; se; se = se->parent)
     362             : 
     363             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     364             : {
     365             :         struct rq *rq = rq_of(cfs_rq);
     366             :         int cpu = cpu_of(rq);
     367             : 
     368             :         if (cfs_rq->on_list)
     369             :                 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
     370             : 
     371             :         cfs_rq->on_list = 1;
     372             : 
     373             :         /*
     374             :          * Ensure we either appear before our parent (if already
     375             :          * enqueued) or force our parent to appear after us when it is
     376             :          * enqueued. The fact that we always enqueue bottom-up
     377             :          * reduces this to two cases and a special case for the root
     378             :          * cfs_rq. Furthermore, it also means that we will always reset
     379             :          * tmp_alone_branch either when the branch is connected
     380             :          * to a tree or when we reach the top of the tree
     381             :          */
     382             :         if (cfs_rq->tg->parent &&
     383             :             cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
     384             :                 /*
     385             :                  * If parent is already on the list, we add the child
     386             :                  * just before. Thanks to circular linked property of
     387             :                  * the list, this means to put the child at the tail
     388             :                  * of the list that starts by parent.
     389             :                  */
     390             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     391             :                         &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
     392             :                 /*
     393             :                  * The branch is now connected to its tree so we can
     394             :                  * reset tmp_alone_branch to the beginning of the
     395             :                  * list.
     396             :                  */
     397             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     398             :                 return true;
     399             :         }
     400             : 
     401             :         if (!cfs_rq->tg->parent) {
     402             :                 /*
     403             :                  * cfs rq without parent should be put
     404             :                  * at the tail of the list.
     405             :                  */
     406             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     407             :                         &rq->leaf_cfs_rq_list);
     408             :                 /*
     409             :                  * We have reach the top of a tree so we can reset
     410             :                  * tmp_alone_branch to the beginning of the list.
     411             :                  */
     412             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     413             :                 return true;
     414             :         }
     415             : 
     416             :         /*
     417             :          * The parent has not already been added so we want to
     418             :          * make sure that it will be put after us.
     419             :          * tmp_alone_branch points to the begin of the branch
     420             :          * where we will add parent.
     421             :          */
     422             :         list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
     423             :         /*
     424             :          * update tmp_alone_branch to points to the new begin
     425             :          * of the branch
     426             :          */
     427             :         rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
     428             :         return false;
     429             : }
     430             : 
     431             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     432             : {
     433             :         if (cfs_rq->on_list) {
     434             :                 struct rq *rq = rq_of(cfs_rq);
     435             : 
     436             :                 /*
     437             :                  * With cfs_rq being unthrottled/throttled during an enqueue,
     438             :                  * it can happen the tmp_alone_branch points the a leaf that
     439             :                  * we finally want to del. In this case, tmp_alone_branch moves
     440             :                  * to the prev element but it will point to rq->leaf_cfs_rq_list
     441             :                  * at the end of the enqueue.
     442             :                  */
     443             :                 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
     444             :                         rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
     445             : 
     446             :                 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
     447             :                 cfs_rq->on_list = 0;
     448             :         }
     449             : }
     450             : 
     451             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     452             : {
     453             :         SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
     454             : }
     455             : 
     456             : /* Iterate thr' all leaf cfs_rq's on a runqueue */
     457             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
     458             :         list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,     \
     459             :                                  leaf_cfs_rq_list)
     460             : 
     461             : /* Do the two (enqueued) entities belong to the same group ? */
     462             : static inline struct cfs_rq *
     463             : is_same_group(struct sched_entity *se, struct sched_entity *pse)
     464             : {
     465             :         if (se->cfs_rq == pse->cfs_rq)
     466             :                 return se->cfs_rq;
     467             : 
     468             :         return NULL;
     469             : }
     470             : 
     471             : static inline struct sched_entity *parent_entity(const struct sched_entity *se)
     472             : {
     473             :         return se->parent;
     474             : }
     475             : 
     476             : static void
     477             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     478             : {
     479             :         int se_depth, pse_depth;
     480             : 
     481             :         /*
     482             :          * preemption test can be made between sibling entities who are in the
     483             :          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
     484             :          * both tasks until we find their ancestors who are siblings of common
     485             :          * parent.
     486             :          */
     487             : 
     488             :         /* First walk up until both entities are at same depth */
     489             :         se_depth = (*se)->depth;
     490             :         pse_depth = (*pse)->depth;
     491             : 
     492             :         while (se_depth > pse_depth) {
     493             :                 se_depth--;
     494             :                 *se = parent_entity(*se);
     495             :         }
     496             : 
     497             :         while (pse_depth > se_depth) {
     498             :                 pse_depth--;
     499             :                 *pse = parent_entity(*pse);
     500             :         }
     501             : 
     502             :         while (!is_same_group(*se, *pse)) {
     503             :                 *se = parent_entity(*se);
     504             :                 *pse = parent_entity(*pse);
     505             :         }
     506             : }
     507             : 
     508             : static int tg_is_idle(struct task_group *tg)
     509             : {
     510             :         return tg->idle > 0;
     511             : }
     512             : 
     513             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     514             : {
     515             :         return cfs_rq->idle > 0;
     516             : }
     517             : 
     518             : static int se_is_idle(struct sched_entity *se)
     519             : {
     520             :         if (entity_is_task(se))
     521             :                 return task_has_idle_policy(task_of(se));
     522             :         return cfs_rq_is_idle(group_cfs_rq(se));
     523             : }
     524             : 
     525             : #else   /* !CONFIG_FAIR_GROUP_SCHED */
     526             : 
     527             : #define for_each_sched_entity(se) \
     528             :                 for (; se; se = NULL)
     529             : 
     530             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     531             : {
     532             :         return true;
     533             : }
     534             : 
     535             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     536             : {
     537             : }
     538             : 
     539             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     540             : {
     541             : }
     542             : 
     543             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
     544             :                 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
     545             : 
     546             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     547             : {
     548             :         return NULL;
     549             : }
     550             : 
     551             : static inline void
     552             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     553             : {
     554             : }
     555             : 
     556             : static inline int tg_is_idle(struct task_group *tg)
     557             : {
     558             :         return 0;
     559             : }
     560             : 
     561             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     562             : {
     563             :         return 0;
     564             : }
     565             : 
     566             : static int se_is_idle(struct sched_entity *se)
     567             : {
     568             :         return 0;
     569             : }
     570             : 
     571             : #endif  /* CONFIG_FAIR_GROUP_SCHED */
     572             : 
     573             : static __always_inline
     574             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
     575             : 
     576             : /**************************************************************
     577             :  * Scheduling class tree data structure manipulation methods:
     578             :  */
     579             : 
     580             : static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
     581             : {
     582        6973 :         s64 delta = (s64)(vruntime - max_vruntime);
     583        6973 :         if (delta > 0)
     584        4434 :                 max_vruntime = vruntime;
     585             : 
     586             :         return max_vruntime;
     587             : }
     588             : 
     589             : static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
     590             : {
     591         125 :         s64 delta = (s64)(vruntime - min_vruntime);
     592         125 :         if (delta < 0)
     593         125 :                 min_vruntime = vruntime;
     594             : 
     595             :         return min_vruntime;
     596             : }
     597             : 
     598             : static inline bool entity_before(const struct sched_entity *a,
     599             :                                  const struct sched_entity *b)
     600             : {
     601         842 :         return (s64)(a->vruntime - b->vruntime) < 0;
     602             : }
     603             : 
     604             : #define __node_2_se(node) \
     605             :         rb_entry((node), struct sched_entity, run_node)
     606             : 
     607        4845 : static void update_min_vruntime(struct cfs_rq *cfs_rq)
     608             : {
     609        4845 :         struct sched_entity *curr = cfs_rq->curr;
     610        4845 :         struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
     611             : 
     612        4845 :         u64 vruntime = cfs_rq->min_vruntime;
     613             : 
     614        4845 :         if (curr) {
     615        4845 :                 if (curr->on_rq)
     616        2719 :                         vruntime = curr->vruntime;
     617             :                 else
     618             :                         curr = NULL;
     619             :         }
     620             : 
     621        4845 :         if (leftmost) { /* non-empty tree */
     622        2250 :                 struct sched_entity *se = __node_2_se(leftmost);
     623             : 
     624        2250 :                 if (!curr)
     625        2125 :                         vruntime = se->vruntime;
     626             :                 else
     627         125 :                         vruntime = min_vruntime(vruntime, se->vruntime);
     628             :         }
     629             : 
     630             :         /* ensure we never gain time by being placed backwards. */
     631        9690 :         u64_u32_store(cfs_rq->min_vruntime,
     632             :                       max_vruntime(cfs_rq->min_vruntime, vruntime));
     633        4845 : }
     634             : 
     635             : static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
     636             : {
     637         842 :         return entity_before(__node_2_se(a), __node_2_se(b));
     638             : }
     639             : 
     640             : /*
     641             :  * Enqueue an entity into the rb-tree:
     642             :  */
     643        2214 : static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     644             : {
     645        4428 :         rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
     646        2214 : }
     647             : 
     648             : static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     649             : {
     650        2213 :         rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
     651             : }
     652             : 
     653           0 : struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
     654             : {
     655        2209 :         struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
     656             : 
     657        2209 :         if (!left)
     658             :                 return NULL;
     659             : 
     660        2209 :         return __node_2_se(left);
     661             : }
     662             : 
     663             : static struct sched_entity *__pick_next_entity(struct sched_entity *se)
     664             : {
     665           0 :         struct rb_node *next = rb_next(&se->run_node);
     666             : 
     667           0 :         if (!next)
     668             :                 return NULL;
     669             : 
     670           0 :         return __node_2_se(next);
     671             : }
     672             : 
     673             : #ifdef CONFIG_SCHED_DEBUG
     674           0 : struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
     675             : {
     676           0 :         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
     677             : 
     678           0 :         if (!last)
     679             :                 return NULL;
     680             : 
     681           0 :         return __node_2_se(last);
     682             : }
     683             : 
     684             : /**************************************************************
     685             :  * Scheduling class statistics methods:
     686             :  */
     687             : 
     688           0 : int sched_update_scaling(void)
     689             : {
     690           0 :         unsigned int factor = get_update_sysctl_factor();
     691             : 
     692           0 :         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
     693             :                                         sysctl_sched_min_granularity);
     694             : 
     695             : #define WRT_SYSCTL(name) \
     696             :         (normalized_sysctl_##name = sysctl_##name / (factor))
     697           0 :         WRT_SYSCTL(sched_min_granularity);
     698           0 :         WRT_SYSCTL(sched_latency);
     699           0 :         WRT_SYSCTL(sched_wakeup_granularity);
     700             : #undef WRT_SYSCTL
     701             : 
     702           0 :         return 0;
     703             : }
     704             : #endif
     705             : 
     706             : /*
     707             :  * delta /= w
     708             :  */
     709             : static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
     710             : {
     711        3809 :         if (unlikely(se->load.weight != NICE_0_LOAD))
     712           0 :                 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
     713             : 
     714             :         return delta;
     715             : }
     716             : 
     717             : /*
     718             :  * The idea is to set a period in which each task runs once.
     719             :  *
     720             :  * When there are too many tasks (sched_nr_latency) we have to stretch
     721             :  * this period because otherwise the slices get too small.
     722             :  *
     723             :  * p = (nr <= nl) ? l : l*nr/nl
     724             :  */
     725             : static u64 __sched_period(unsigned long nr_running)
     726             : {
     727         465 :         if (unlikely(nr_running > sched_nr_latency))
     728           0 :                 return nr_running * sysctl_sched_min_granularity;
     729             :         else
     730         465 :                 return sysctl_sched_latency;
     731             : }
     732             : 
     733             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
     734             : 
     735             : /*
     736             :  * We calculate the wall-time slice from the period by taking a part
     737             :  * proportional to the weight.
     738             :  *
     739             :  * s = p*P[w/rw]
     740             :  */
     741         465 : static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     742             : {
     743         465 :         unsigned int nr_running = cfs_rq->nr_running;
     744         465 :         struct sched_entity *init_se = se;
     745             :         unsigned int min_gran;
     746             :         u64 slice;
     747             : 
     748         465 :         if (sched_feat(ALT_PERIOD))
     749         465 :                 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
     750             : 
     751         465 :         slice = __sched_period(nr_running + !se->on_rq);
     752             : 
     753         465 :         for_each_sched_entity(se) {
     754             :                 struct load_weight *load;
     755             :                 struct load_weight lw;
     756             :                 struct cfs_rq *qcfs_rq;
     757             : 
     758         930 :                 qcfs_rq = cfs_rq_of(se);
     759         465 :                 load = &qcfs_rq->load;
     760             : 
     761         465 :                 if (unlikely(!se->on_rq)) {
     762         340 :                         lw = qcfs_rq->load;
     763             : 
     764         680 :                         update_load_add(&lw, se->load.weight);
     765         340 :                         load = &lw;
     766             :                 }
     767         465 :                 slice = __calc_delta(slice, se->load.weight, load);
     768             :         }
     769             : 
     770         465 :         if (sched_feat(BASE_SLICE)) {
     771         465 :                 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
     772             :                         min_gran = sysctl_sched_idle_min_granularity;
     773             :                 else
     774         465 :                         min_gran = sysctl_sched_min_granularity;
     775             : 
     776         465 :                 slice = max_t(u64, slice, min_gran);
     777             :         }
     778             : 
     779         465 :         return slice;
     780             : }
     781             : 
     782             : /*
     783             :  * We calculate the vruntime slice of a to-be-inserted task.
     784             :  *
     785             :  * vs = s/w
     786             :  */
     787         340 : static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     788             : {
     789         680 :         return calc_delta_fair(sched_slice(cfs_rq, se), se);
     790             : }
     791             : 
     792             : #include "pelt.h"
     793             : #ifdef CONFIG_SMP
     794             : 
     795             : static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
     796             : static unsigned long task_h_load(struct task_struct *p);
     797             : static unsigned long capacity_of(int cpu);
     798             : 
     799             : /* Give new sched_entity start runnable values to heavy its load in infant time */
     800             : void init_entity_runnable_average(struct sched_entity *se)
     801             : {
     802             :         struct sched_avg *sa = &se->avg;
     803             : 
     804             :         memset(sa, 0, sizeof(*sa));
     805             : 
     806             :         /*
     807             :          * Tasks are initialized with full load to be seen as heavy tasks until
     808             :          * they get a chance to stabilize to their real load level.
     809             :          * Group entities are initialized with zero load to reflect the fact that
     810             :          * nothing has been attached to the task group yet.
     811             :          */
     812             :         if (entity_is_task(se))
     813             :                 sa->load_avg = scale_load_down(se->load.weight);
     814             : 
     815             :         /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
     816             : }
     817             : 
     818             : /*
     819             :  * With new tasks being created, their initial util_avgs are extrapolated
     820             :  * based on the cfs_rq's current util_avg:
     821             :  *
     822             :  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
     823             :  *
     824             :  * However, in many cases, the above util_avg does not give a desired
     825             :  * value. Moreover, the sum of the util_avgs may be divergent, such
     826             :  * as when the series is a harmonic series.
     827             :  *
     828             :  * To solve this problem, we also cap the util_avg of successive tasks to
     829             :  * only 1/2 of the left utilization budget:
     830             :  *
     831             :  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
     832             :  *
     833             :  * where n denotes the nth task and cpu_scale the CPU capacity.
     834             :  *
     835             :  * For example, for a CPU with 1024 of capacity, a simplest series from
     836             :  * the beginning would be like:
     837             :  *
     838             :  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
     839             :  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
     840             :  *
     841             :  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
     842             :  * if util_avg > util_avg_cap.
     843             :  */
     844             : void post_init_entity_util_avg(struct task_struct *p)
     845             : {
     846             :         struct sched_entity *se = &p->se;
     847             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
     848             :         struct sched_avg *sa = &se->avg;
     849             :         long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
     850             :         long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
     851             : 
     852             :         if (p->sched_class != &fair_sched_class) {
     853             :                 /*
     854             :                  * For !fair tasks do:
     855             :                  *
     856             :                 update_cfs_rq_load_avg(now, cfs_rq);
     857             :                 attach_entity_load_avg(cfs_rq, se);
     858             :                 switched_from_fair(rq, p);
     859             :                  *
     860             :                  * such that the next switched_to_fair() has the
     861             :                  * expected state.
     862             :                  */
     863             :                 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
     864             :                 return;
     865             :         }
     866             : 
     867             :         if (cap > 0) {
     868             :                 if (cfs_rq->avg.util_avg != 0) {
     869             :                         sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
     870             :                         sa->util_avg /= (cfs_rq->avg.load_avg + 1);
     871             : 
     872             :                         if (sa->util_avg > cap)
     873             :                                 sa->util_avg = cap;
     874             :                 } else {
     875             :                         sa->util_avg = cap;
     876             :                 }
     877             :         }
     878             : 
     879             :         sa->runnable_avg = sa->util_avg;
     880             : }
     881             : 
     882             : #else /* !CONFIG_SMP */
     883         340 : void init_entity_runnable_average(struct sched_entity *se)
     884             : {
     885         340 : }
     886         340 : void post_init_entity_util_avg(struct task_struct *p)
     887             : {
     888         340 : }
     889             : static void update_tg_load_avg(struct cfs_rq *cfs_rq)
     890             : {
     891             : }
     892             : #endif /* CONFIG_SMP */
     893             : 
     894             : /*
     895             :  * Update the current task's runtime statistics.
     896             :  */
     897        9180 : static void update_curr(struct cfs_rq *cfs_rq)
     898             : {
     899        9180 :         struct sched_entity *curr = cfs_rq->curr;
     900       18360 :         u64 now = rq_clock_task(rq_of(cfs_rq));
     901             :         u64 delta_exec;
     902             : 
     903        9180 :         if (unlikely(!curr))
     904             :                 return;
     905             : 
     906        9173 :         delta_exec = now - curr->exec_start;
     907        9173 :         if (unlikely((s64)delta_exec <= 0))
     908             :                 return;
     909             : 
     910        2719 :         curr->exec_start = now;
     911             : 
     912             :         if (schedstat_enabled()) {
     913             :                 struct sched_statistics *stats;
     914             : 
     915             :                 stats = __schedstats_from_se(curr);
     916             :                 __schedstat_set(stats->exec_max,
     917             :                                 max(delta_exec, stats->exec_max));
     918             :         }
     919             : 
     920        2719 :         curr->sum_exec_runtime += delta_exec;
     921             :         schedstat_add(cfs_rq->exec_clock, delta_exec);
     922             : 
     923        2719 :         curr->vruntime += calc_delta_fair(delta_exec, curr);
     924        2719 :         update_min_vruntime(cfs_rq);
     925             : 
     926             :         if (entity_is_task(curr)) {
     927        2719 :                 struct task_struct *curtask = task_of(curr);
     928             : 
     929        2719 :                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
     930        2719 :                 cgroup_account_cputime(curtask, delta_exec);
     931             :                 account_group_exec_runtime(curtask, delta_exec);
     932             :         }
     933             : 
     934             :         account_cfs_rq_runtime(cfs_rq, delta_exec);
     935             : }
     936             : 
     937           0 : static void update_curr_fair(struct rq *rq)
     938             : {
     939           0 :         update_curr(cfs_rq_of(&rq->curr->se));
     940           0 : }
     941             : 
     942             : static inline void
     943             : update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     944             : {
     945             :         struct sched_statistics *stats;
     946          82 :         struct task_struct *p = NULL;
     947             : 
     948             :         if (!schedstat_enabled())
     949             :                 return;
     950             : 
     951             :         stats = __schedstats_from_se(se);
     952             : 
     953             :         if (entity_is_task(se))
     954             :                 p = task_of(se);
     955             : 
     956             :         __update_stats_wait_start(rq_of(cfs_rq), p, stats);
     957             : }
     958             : 
     959             : static inline void
     960             : update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     961             : {
     962             :         struct sched_statistics *stats;
     963        2213 :         struct task_struct *p = NULL;
     964             : 
     965             :         if (!schedstat_enabled())
     966             :                 return;
     967             : 
     968             :         stats = __schedstats_from_se(se);
     969             : 
     970             :         /*
     971             :          * When the sched_schedstat changes from 0 to 1, some sched se
     972             :          * maybe already in the runqueue, the se->statistics.wait_start
     973             :          * will be 0.So it will let the delta wrong. We need to avoid this
     974             :          * scenario.
     975             :          */
     976             :         if (unlikely(!schedstat_val(stats->wait_start)))
     977             :                 return;
     978             : 
     979             :         if (entity_is_task(se))
     980             :                 p = task_of(se);
     981             : 
     982             :         __update_stats_wait_end(rq_of(cfs_rq), p, stats);
     983             : }
     984             : 
     985             : static inline void
     986             : update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     987             : {
     988             :         struct sched_statistics *stats;
     989             :         struct task_struct *tsk = NULL;
     990             : 
     991             :         if (!schedstat_enabled())
     992             :                 return;
     993             : 
     994             :         stats = __schedstats_from_se(se);
     995             : 
     996             :         if (entity_is_task(se))
     997             :                 tsk = task_of(se);
     998             : 
     999             :         __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
    1000             : }
    1001             : 
    1002             : /*
    1003             :  * Task is being enqueued - update stats:
    1004             :  */
    1005             : static inline void
    1006             : update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1007             : {
    1008             :         if (!schedstat_enabled())
    1009             :                 return;
    1010             : 
    1011             :         /*
    1012             :          * Are we enqueueing a waiting task? (for current tasks
    1013             :          * a dequeue/enqueue event is a NOP)
    1014             :          */
    1015             :         if (se != cfs_rq->curr)
    1016             :                 update_stats_wait_start_fair(cfs_rq, se);
    1017             : 
    1018             :         if (flags & ENQUEUE_WAKEUP)
    1019             :                 update_stats_enqueue_sleeper_fair(cfs_rq, se);
    1020             : }
    1021             : 
    1022             : static inline void
    1023             : update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1024             : {
    1025             : 
    1026             :         if (!schedstat_enabled())
    1027             :                 return;
    1028             : 
    1029             :         /*
    1030             :          * Mark the end of the wait period if dequeueing a
    1031             :          * waiting task:
    1032             :          */
    1033             :         if (se != cfs_rq->curr)
    1034             :                 update_stats_wait_end_fair(cfs_rq, se);
    1035             : 
    1036             :         if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
    1037             :                 struct task_struct *tsk = task_of(se);
    1038             :                 unsigned int state;
    1039             : 
    1040             :                 /* XXX racy against TTWU */
    1041             :                 state = READ_ONCE(tsk->__state);
    1042             :                 if (state & TASK_INTERRUPTIBLE)
    1043             :                         __schedstat_set(tsk->stats.sleep_start,
    1044             :                                       rq_clock(rq_of(cfs_rq)));
    1045             :                 if (state & TASK_UNINTERRUPTIBLE)
    1046             :                         __schedstat_set(tsk->stats.block_start,
    1047             :                                       rq_clock(rq_of(cfs_rq)));
    1048             :         }
    1049             : }
    1050             : 
    1051             : /*
    1052             :  * We are picking a new current task - update its stats:
    1053             :  */
    1054             : static inline void
    1055             : update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    1056             : {
    1057             :         /*
    1058             :          * We are starting a new run period:
    1059             :          */
    1060        4426 :         se->exec_start = rq_clock_task(rq_of(cfs_rq));
    1061             : }
    1062             : 
    1063             : /**************************************************
    1064             :  * Scheduling class queueing methods:
    1065             :  */
    1066             : 
    1067             : #ifdef CONFIG_NUMA
    1068             : #define NUMA_IMBALANCE_MIN 2
    1069             : 
    1070             : static inline long
    1071             : adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
    1072             : {
    1073             :         /*
    1074             :          * Allow a NUMA imbalance if busy CPUs is less than the maximum
    1075             :          * threshold. Above this threshold, individual tasks may be contending
    1076             :          * for both memory bandwidth and any shared HT resources.  This is an
    1077             :          * approximation as the number of running tasks may not be related to
    1078             :          * the number of busy CPUs due to sched_setaffinity.
    1079             :          */
    1080             :         if (dst_running > imb_numa_nr)
    1081             :                 return imbalance;
    1082             : 
    1083             :         /*
    1084             :          * Allow a small imbalance based on a simple pair of communicating
    1085             :          * tasks that remain local when the destination is lightly loaded.
    1086             :          */
    1087             :         if (imbalance <= NUMA_IMBALANCE_MIN)
    1088             :                 return 0;
    1089             : 
    1090             :         return imbalance;
    1091             : }
    1092             : #endif /* CONFIG_NUMA */
    1093             : 
    1094             : #ifdef CONFIG_NUMA_BALANCING
    1095             : /*
    1096             :  * Approximate time to scan a full NUMA task in ms. The task scan period is
    1097             :  * calculated based on the tasks virtual memory size and
    1098             :  * numa_balancing_scan_size.
    1099             :  */
    1100             : unsigned int sysctl_numa_balancing_scan_period_min = 1000;
    1101             : unsigned int sysctl_numa_balancing_scan_period_max = 60000;
    1102             : 
    1103             : /* Portion of address space to scan in MB */
    1104             : unsigned int sysctl_numa_balancing_scan_size = 256;
    1105             : 
    1106             : /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
    1107             : unsigned int sysctl_numa_balancing_scan_delay = 1000;
    1108             : 
    1109             : /* The page with hint page fault latency < threshold in ms is considered hot */
    1110             : unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
    1111             : 
    1112             : struct numa_group {
    1113             :         refcount_t refcount;
    1114             : 
    1115             :         spinlock_t lock; /* nr_tasks, tasks */
    1116             :         int nr_tasks;
    1117             :         pid_t gid;
    1118             :         int active_nodes;
    1119             : 
    1120             :         struct rcu_head rcu;
    1121             :         unsigned long total_faults;
    1122             :         unsigned long max_faults_cpu;
    1123             :         /*
    1124             :          * faults[] array is split into two regions: faults_mem and faults_cpu.
    1125             :          *
    1126             :          * Faults_cpu is used to decide whether memory should move
    1127             :          * towards the CPU. As a consequence, these stats are weighted
    1128             :          * more by CPU use than by memory faults.
    1129             :          */
    1130             :         unsigned long faults[];
    1131             : };
    1132             : 
    1133             : /*
    1134             :  * For functions that can be called in multiple contexts that permit reading
    1135             :  * ->numa_group (see struct task_struct for locking rules).
    1136             :  */
    1137             : static struct numa_group *deref_task_numa_group(struct task_struct *p)
    1138             : {
    1139             :         return rcu_dereference_check(p->numa_group, p == current ||
    1140             :                 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
    1141             : }
    1142             : 
    1143             : static struct numa_group *deref_curr_numa_group(struct task_struct *p)
    1144             : {
    1145             :         return rcu_dereference_protected(p->numa_group, p == current);
    1146             : }
    1147             : 
    1148             : static inline unsigned long group_faults_priv(struct numa_group *ng);
    1149             : static inline unsigned long group_faults_shared(struct numa_group *ng);
    1150             : 
    1151             : static unsigned int task_nr_scan_windows(struct task_struct *p)
    1152             : {
    1153             :         unsigned long rss = 0;
    1154             :         unsigned long nr_scan_pages;
    1155             : 
    1156             :         /*
    1157             :          * Calculations based on RSS as non-present and empty pages are skipped
    1158             :          * by the PTE scanner and NUMA hinting faults should be trapped based
    1159             :          * on resident pages
    1160             :          */
    1161             :         nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
    1162             :         rss = get_mm_rss(p->mm);
    1163             :         if (!rss)
    1164             :                 rss = nr_scan_pages;
    1165             : 
    1166             :         rss = round_up(rss, nr_scan_pages);
    1167             :         return rss / nr_scan_pages;
    1168             : }
    1169             : 
    1170             : /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
    1171             : #define MAX_SCAN_WINDOW 2560
    1172             : 
    1173             : static unsigned int task_scan_min(struct task_struct *p)
    1174             : {
    1175             :         unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
    1176             :         unsigned int scan, floor;
    1177             :         unsigned int windows = 1;
    1178             : 
    1179             :         if (scan_size < MAX_SCAN_WINDOW)
    1180             :                 windows = MAX_SCAN_WINDOW / scan_size;
    1181             :         floor = 1000 / windows;
    1182             : 
    1183             :         scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
    1184             :         return max_t(unsigned int, floor, scan);
    1185             : }
    1186             : 
    1187             : static unsigned int task_scan_start(struct task_struct *p)
    1188             : {
    1189             :         unsigned long smin = task_scan_min(p);
    1190             :         unsigned long period = smin;
    1191             :         struct numa_group *ng;
    1192             : 
    1193             :         /* Scale the maximum scan period with the amount of shared memory. */
    1194             :         rcu_read_lock();
    1195             :         ng = rcu_dereference(p->numa_group);
    1196             :         if (ng) {
    1197             :                 unsigned long shared = group_faults_shared(ng);
    1198             :                 unsigned long private = group_faults_priv(ng);
    1199             : 
    1200             :                 period *= refcount_read(&ng->refcount);
    1201             :                 period *= shared + 1;
    1202             :                 period /= private + shared + 1;
    1203             :         }
    1204             :         rcu_read_unlock();
    1205             : 
    1206             :         return max(smin, period);
    1207             : }
    1208             : 
    1209             : static unsigned int task_scan_max(struct task_struct *p)
    1210             : {
    1211             :         unsigned long smin = task_scan_min(p);
    1212             :         unsigned long smax;
    1213             :         struct numa_group *ng;
    1214             : 
    1215             :         /* Watch for min being lower than max due to floor calculations */
    1216             :         smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
    1217             : 
    1218             :         /* Scale the maximum scan period with the amount of shared memory. */
    1219             :         ng = deref_curr_numa_group(p);
    1220             :         if (ng) {
    1221             :                 unsigned long shared = group_faults_shared(ng);
    1222             :                 unsigned long private = group_faults_priv(ng);
    1223             :                 unsigned long period = smax;
    1224             : 
    1225             :                 period *= refcount_read(&ng->refcount);
    1226             :                 period *= shared + 1;
    1227             :                 period /= private + shared + 1;
    1228             : 
    1229             :                 smax = max(smax, period);
    1230             :         }
    1231             : 
    1232             :         return max(smin, smax);
    1233             : }
    1234             : 
    1235             : static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    1236             : {
    1237             :         rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
    1238             :         rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
    1239             : }
    1240             : 
    1241             : static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    1242             : {
    1243             :         rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
    1244             :         rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
    1245             : }
    1246             : 
    1247             : /* Shared or private faults. */
    1248             : #define NR_NUMA_HINT_FAULT_TYPES 2
    1249             : 
    1250             : /* Memory and CPU locality */
    1251             : #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
    1252             : 
    1253             : /* Averaged statistics, and temporary buffers. */
    1254             : #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
    1255             : 
    1256             : pid_t task_numa_group_id(struct task_struct *p)
    1257             : {
    1258             :         struct numa_group *ng;
    1259             :         pid_t gid = 0;
    1260             : 
    1261             :         rcu_read_lock();
    1262             :         ng = rcu_dereference(p->numa_group);
    1263             :         if (ng)
    1264             :                 gid = ng->gid;
    1265             :         rcu_read_unlock();
    1266             : 
    1267             :         return gid;
    1268             : }
    1269             : 
    1270             : /*
    1271             :  * The averaged statistics, shared & private, memory & CPU,
    1272             :  * occupy the first half of the array. The second half of the
    1273             :  * array is for current counters, which are averaged into the
    1274             :  * first set by task_numa_placement.
    1275             :  */
    1276             : static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
    1277             : {
    1278             :         return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
    1279             : }
    1280             : 
    1281             : static inline unsigned long task_faults(struct task_struct *p, int nid)
    1282             : {
    1283             :         if (!p->numa_faults)
    1284             :                 return 0;
    1285             : 
    1286             :         return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1287             :                 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1288             : }
    1289             : 
    1290             : static inline unsigned long group_faults(struct task_struct *p, int nid)
    1291             : {
    1292             :         struct numa_group *ng = deref_task_numa_group(p);
    1293             : 
    1294             :         if (!ng)
    1295             :                 return 0;
    1296             : 
    1297             :         return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1298             :                 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1299             : }
    1300             : 
    1301             : static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
    1302             : {
    1303             :         return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
    1304             :                 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
    1305             : }
    1306             : 
    1307             : static inline unsigned long group_faults_priv(struct numa_group *ng)
    1308             : {
    1309             :         unsigned long faults = 0;
    1310             :         int node;
    1311             : 
    1312             :         for_each_online_node(node) {
    1313             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
    1314             :         }
    1315             : 
    1316             :         return faults;
    1317             : }
    1318             : 
    1319             : static inline unsigned long group_faults_shared(struct numa_group *ng)
    1320             : {
    1321             :         unsigned long faults = 0;
    1322             :         int node;
    1323             : 
    1324             :         for_each_online_node(node) {
    1325             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
    1326             :         }
    1327             : 
    1328             :         return faults;
    1329             : }
    1330             : 
    1331             : /*
    1332             :  * A node triggering more than 1/3 as many NUMA faults as the maximum is
    1333             :  * considered part of a numa group's pseudo-interleaving set. Migrations
    1334             :  * between these nodes are slowed down, to allow things to settle down.
    1335             :  */
    1336             : #define ACTIVE_NODE_FRACTION 3
    1337             : 
    1338             : static bool numa_is_active_node(int nid, struct numa_group *ng)
    1339             : {
    1340             :         return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
    1341             : }
    1342             : 
    1343             : /* Handle placement on systems where not all nodes are directly connected. */
    1344             : static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
    1345             :                                         int lim_dist, bool task)
    1346             : {
    1347             :         unsigned long score = 0;
    1348             :         int node, max_dist;
    1349             : 
    1350             :         /*
    1351             :          * All nodes are directly connected, and the same distance
    1352             :          * from each other. No need for fancy placement algorithms.
    1353             :          */
    1354             :         if (sched_numa_topology_type == NUMA_DIRECT)
    1355             :                 return 0;
    1356             : 
    1357             :         /* sched_max_numa_distance may be changed in parallel. */
    1358             :         max_dist = READ_ONCE(sched_max_numa_distance);
    1359             :         /*
    1360             :          * This code is called for each node, introducing N^2 complexity,
    1361             :          * which should be ok given the number of nodes rarely exceeds 8.
    1362             :          */
    1363             :         for_each_online_node(node) {
    1364             :                 unsigned long faults;
    1365             :                 int dist = node_distance(nid, node);
    1366             : 
    1367             :                 /*
    1368             :                  * The furthest away nodes in the system are not interesting
    1369             :                  * for placement; nid was already counted.
    1370             :                  */
    1371             :                 if (dist >= max_dist || node == nid)
    1372             :                         continue;
    1373             : 
    1374             :                 /*
    1375             :                  * On systems with a backplane NUMA topology, compare groups
    1376             :                  * of nodes, and move tasks towards the group with the most
    1377             :                  * memory accesses. When comparing two nodes at distance
    1378             :                  * "hoplimit", only nodes closer by than "hoplimit" are part
    1379             :                  * of each group. Skip other nodes.
    1380             :                  */
    1381             :                 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
    1382             :                         continue;
    1383             : 
    1384             :                 /* Add up the faults from nearby nodes. */
    1385             :                 if (task)
    1386             :                         faults = task_faults(p, node);
    1387             :                 else
    1388             :                         faults = group_faults(p, node);
    1389             : 
    1390             :                 /*
    1391             :                  * On systems with a glueless mesh NUMA topology, there are
    1392             :                  * no fixed "groups of nodes". Instead, nodes that are not
    1393             :                  * directly connected bounce traffic through intermediate
    1394             :                  * nodes; a numa_group can occupy any set of nodes.
    1395             :                  * The further away a node is, the less the faults count.
    1396             :                  * This seems to result in good task placement.
    1397             :                  */
    1398             :                 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    1399             :                         faults *= (max_dist - dist);
    1400             :                         faults /= (max_dist - LOCAL_DISTANCE);
    1401             :                 }
    1402             : 
    1403             :                 score += faults;
    1404             :         }
    1405             : 
    1406             :         return score;
    1407             : }
    1408             : 
    1409             : /*
    1410             :  * These return the fraction of accesses done by a particular task, or
    1411             :  * task group, on a particular numa node.  The group weight is given a
    1412             :  * larger multiplier, in order to group tasks together that are almost
    1413             :  * evenly spread out between numa nodes.
    1414             :  */
    1415             : static inline unsigned long task_weight(struct task_struct *p, int nid,
    1416             :                                         int dist)
    1417             : {
    1418             :         unsigned long faults, total_faults;
    1419             : 
    1420             :         if (!p->numa_faults)
    1421             :                 return 0;
    1422             : 
    1423             :         total_faults = p->total_numa_faults;
    1424             : 
    1425             :         if (!total_faults)
    1426             :                 return 0;
    1427             : 
    1428             :         faults = task_faults(p, nid);
    1429             :         faults += score_nearby_nodes(p, nid, dist, true);
    1430             : 
    1431             :         return 1000 * faults / total_faults;
    1432             : }
    1433             : 
    1434             : static inline unsigned long group_weight(struct task_struct *p, int nid,
    1435             :                                          int dist)
    1436             : {
    1437             :         struct numa_group *ng = deref_task_numa_group(p);
    1438             :         unsigned long faults, total_faults;
    1439             : 
    1440             :         if (!ng)
    1441             :                 return 0;
    1442             : 
    1443             :         total_faults = ng->total_faults;
    1444             : 
    1445             :         if (!total_faults)
    1446             :                 return 0;
    1447             : 
    1448             :         faults = group_faults(p, nid);
    1449             :         faults += score_nearby_nodes(p, nid, dist, false);
    1450             : 
    1451             :         return 1000 * faults / total_faults;
    1452             : }
    1453             : 
    1454             : /*
    1455             :  * If memory tiering mode is enabled, cpupid of slow memory page is
    1456             :  * used to record scan time instead of CPU and PID.  When tiering mode
    1457             :  * is disabled at run time, the scan time (in cpupid) will be
    1458             :  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
    1459             :  * access out of array bound.
    1460             :  */
    1461             : static inline bool cpupid_valid(int cpupid)
    1462             : {
    1463             :         return cpupid_to_cpu(cpupid) < nr_cpu_ids;
    1464             : }
    1465             : 
    1466             : /*
    1467             :  * For memory tiering mode, if there are enough free pages (more than
    1468             :  * enough watermark defined here) in fast memory node, to take full
    1469             :  * advantage of fast memory capacity, all recently accessed slow
    1470             :  * memory pages will be migrated to fast memory node without
    1471             :  * considering hot threshold.
    1472             :  */
    1473             : static bool pgdat_free_space_enough(struct pglist_data *pgdat)
    1474             : {
    1475             :         int z;
    1476             :         unsigned long enough_wmark;
    1477             : 
    1478             :         enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
    1479             :                            pgdat->node_present_pages >> 4);
    1480             :         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
    1481             :                 struct zone *zone = pgdat->node_zones + z;
    1482             : 
    1483             :                 if (!populated_zone(zone))
    1484             :                         continue;
    1485             : 
    1486             :                 if (zone_watermark_ok(zone, 0,
    1487             :                                       wmark_pages(zone, WMARK_PROMO) + enough_wmark,
    1488             :                                       ZONE_MOVABLE, 0))
    1489             :                         return true;
    1490             :         }
    1491             :         return false;
    1492             : }
    1493             : 
    1494             : /*
    1495             :  * For memory tiering mode, when page tables are scanned, the scan
    1496             :  * time will be recorded in struct page in addition to make page
    1497             :  * PROT_NONE for slow memory page.  So when the page is accessed, in
    1498             :  * hint page fault handler, the hint page fault latency is calculated
    1499             :  * via,
    1500             :  *
    1501             :  *      hint page fault latency = hint page fault time - scan time
    1502             :  *
    1503             :  * The smaller the hint page fault latency, the higher the possibility
    1504             :  * for the page to be hot.
    1505             :  */
    1506             : static int numa_hint_fault_latency(struct page *page)
    1507             : {
    1508             :         int last_time, time;
    1509             : 
    1510             :         time = jiffies_to_msecs(jiffies);
    1511             :         last_time = xchg_page_access_time(page, time);
    1512             : 
    1513             :         return (time - last_time) & PAGE_ACCESS_TIME_MASK;
    1514             : }
    1515             : 
    1516             : /*
    1517             :  * For memory tiering mode, too high promotion/demotion throughput may
    1518             :  * hurt application latency.  So we provide a mechanism to rate limit
    1519             :  * the number of pages that are tried to be promoted.
    1520             :  */
    1521             : static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
    1522             :                                       unsigned long rate_limit, int nr)
    1523             : {
    1524             :         unsigned long nr_cand;
    1525             :         unsigned int now, start;
    1526             : 
    1527             :         now = jiffies_to_msecs(jiffies);
    1528             :         mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
    1529             :         nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    1530             :         start = pgdat->nbp_rl_start;
    1531             :         if (now - start > MSEC_PER_SEC &&
    1532             :             cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
    1533             :                 pgdat->nbp_rl_nr_cand = nr_cand;
    1534             :         if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
    1535             :                 return true;
    1536             :         return false;
    1537             : }
    1538             : 
    1539             : #define NUMA_MIGRATION_ADJUST_STEPS     16
    1540             : 
    1541             : static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
    1542             :                                             unsigned long rate_limit,
    1543             :                                             unsigned int ref_th)
    1544             : {
    1545             :         unsigned int now, start, th_period, unit_th, th;
    1546             :         unsigned long nr_cand, ref_cand, diff_cand;
    1547             : 
    1548             :         now = jiffies_to_msecs(jiffies);
    1549             :         th_period = sysctl_numa_balancing_scan_period_max;
    1550             :         start = pgdat->nbp_th_start;
    1551             :         if (now - start > th_period &&
    1552             :             cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
    1553             :                 ref_cand = rate_limit *
    1554             :                         sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
    1555             :                 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    1556             :                 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
    1557             :                 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
    1558             :                 th = pgdat->nbp_threshold ? : ref_th;
    1559             :                 if (diff_cand > ref_cand * 11 / 10)
    1560             :                         th = max(th - unit_th, unit_th);
    1561             :                 else if (diff_cand < ref_cand * 9 / 10)
    1562             :                         th = min(th + unit_th, ref_th * 2);
    1563             :                 pgdat->nbp_th_nr_cand = nr_cand;
    1564             :                 pgdat->nbp_threshold = th;
    1565             :         }
    1566             : }
    1567             : 
    1568             : bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
    1569             :                                 int src_nid, int dst_cpu)
    1570             : {
    1571             :         struct numa_group *ng = deref_curr_numa_group(p);
    1572             :         int dst_nid = cpu_to_node(dst_cpu);
    1573             :         int last_cpupid, this_cpupid;
    1574             : 
    1575             :         /*
    1576             :          * The pages in slow memory node should be migrated according
    1577             :          * to hot/cold instead of private/shared.
    1578             :          */
    1579             :         if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
    1580             :             !node_is_toptier(src_nid)) {
    1581             :                 struct pglist_data *pgdat;
    1582             :                 unsigned long rate_limit;
    1583             :                 unsigned int latency, th, def_th;
    1584             : 
    1585             :                 pgdat = NODE_DATA(dst_nid);
    1586             :                 if (pgdat_free_space_enough(pgdat)) {
    1587             :                         /* workload changed, reset hot threshold */
    1588             :                         pgdat->nbp_threshold = 0;
    1589             :                         return true;
    1590             :                 }
    1591             : 
    1592             :                 def_th = sysctl_numa_balancing_hot_threshold;
    1593             :                 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
    1594             :                         (20 - PAGE_SHIFT);
    1595             :                 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
    1596             : 
    1597             :                 th = pgdat->nbp_threshold ? : def_th;
    1598             :                 latency = numa_hint_fault_latency(page);
    1599             :                 if (latency >= th)
    1600             :                         return false;
    1601             : 
    1602             :                 return !numa_promotion_rate_limit(pgdat, rate_limit,
    1603             :                                                   thp_nr_pages(page));
    1604             :         }
    1605             : 
    1606             :         this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
    1607             :         last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
    1608             : 
    1609             :         if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    1610             :             !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
    1611             :                 return false;
    1612             : 
    1613             :         /*
    1614             :          * Allow first faults or private faults to migrate immediately early in
    1615             :          * the lifetime of a task. The magic number 4 is based on waiting for
    1616             :          * two full passes of the "multi-stage node selection" test that is
    1617             :          * executed below.
    1618             :          */
    1619             :         if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
    1620             :             (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
    1621             :                 return true;
    1622             : 
    1623             :         /*
    1624             :          * Multi-stage node selection is used in conjunction with a periodic
    1625             :          * migration fault to build a temporal task<->page relation. By using
    1626             :          * a two-stage filter we remove short/unlikely relations.
    1627             :          *
    1628             :          * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
    1629             :          * a task's usage of a particular page (n_p) per total usage of this
    1630             :          * page (n_t) (in a given time-span) to a probability.
    1631             :          *
    1632             :          * Our periodic faults will sample this probability and getting the
    1633             :          * same result twice in a row, given these samples are fully
    1634             :          * independent, is then given by P(n)^2, provided our sample period
    1635             :          * is sufficiently short compared to the usage pattern.
    1636             :          *
    1637             :          * This quadric squishes small probabilities, making it less likely we
    1638             :          * act on an unlikely task<->page relation.
    1639             :          */
    1640             :         if (!cpupid_pid_unset(last_cpupid) &&
    1641             :                                 cpupid_to_nid(last_cpupid) != dst_nid)
    1642             :                 return false;
    1643             : 
    1644             :         /* Always allow migrate on private faults */
    1645             :         if (cpupid_match_pid(p, last_cpupid))
    1646             :                 return true;
    1647             : 
    1648             :         /* A shared fault, but p->numa_group has not been set up yet. */
    1649             :         if (!ng)
    1650             :                 return true;
    1651             : 
    1652             :         /*
    1653             :          * Destination node is much more heavily used than the source
    1654             :          * node? Allow migration.
    1655             :          */
    1656             :         if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
    1657             :                                         ACTIVE_NODE_FRACTION)
    1658             :                 return true;
    1659             : 
    1660             :         /*
    1661             :          * Distribute memory according to CPU & memory use on each node,
    1662             :          * with 3/4 hysteresis to avoid unnecessary memory migrations:
    1663             :          *
    1664             :          * faults_cpu(dst)   3   faults_cpu(src)
    1665             :          * --------------- * - > ---------------
    1666             :          * faults_mem(dst)   4   faults_mem(src)
    1667             :          */
    1668             :         return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
    1669             :                group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
    1670             : }
    1671             : 
    1672             : /*
    1673             :  * 'numa_type' describes the node at the moment of load balancing.
    1674             :  */
    1675             : enum numa_type {
    1676             :         /* The node has spare capacity that can be used to run more tasks.  */
    1677             :         node_has_spare = 0,
    1678             :         /*
    1679             :          * The node is fully used and the tasks don't compete for more CPU
    1680             :          * cycles. Nevertheless, some tasks might wait before running.
    1681             :          */
    1682             :         node_fully_busy,
    1683             :         /*
    1684             :          * The node is overloaded and can't provide expected CPU cycles to all
    1685             :          * tasks.
    1686             :          */
    1687             :         node_overloaded
    1688             : };
    1689             : 
    1690             : /* Cached statistics for all CPUs within a node */
    1691             : struct numa_stats {
    1692             :         unsigned long load;
    1693             :         unsigned long runnable;
    1694             :         unsigned long util;
    1695             :         /* Total compute capacity of CPUs on a node */
    1696             :         unsigned long compute_capacity;
    1697             :         unsigned int nr_running;
    1698             :         unsigned int weight;
    1699             :         enum numa_type node_type;
    1700             :         int idle_cpu;
    1701             : };
    1702             : 
    1703             : static inline bool is_core_idle(int cpu)
    1704             : {
    1705             : #ifdef CONFIG_SCHED_SMT
    1706             :         int sibling;
    1707             : 
    1708             :         for_each_cpu(sibling, cpu_smt_mask(cpu)) {
    1709             :                 if (cpu == sibling)
    1710             :                         continue;
    1711             : 
    1712             :                 if (!idle_cpu(sibling))
    1713             :                         return false;
    1714             :         }
    1715             : #endif
    1716             : 
    1717             :         return true;
    1718             : }
    1719             : 
    1720             : struct task_numa_env {
    1721             :         struct task_struct *p;
    1722             : 
    1723             :         int src_cpu, src_nid;
    1724             :         int dst_cpu, dst_nid;
    1725             :         int imb_numa_nr;
    1726             : 
    1727             :         struct numa_stats src_stats, dst_stats;
    1728             : 
    1729             :         int imbalance_pct;
    1730             :         int dist;
    1731             : 
    1732             :         struct task_struct *best_task;
    1733             :         long best_imp;
    1734             :         int best_cpu;
    1735             : };
    1736             : 
    1737             : static unsigned long cpu_load(struct rq *rq);
    1738             : static unsigned long cpu_runnable(struct rq *rq);
    1739             : 
    1740             : static inline enum
    1741             : numa_type numa_classify(unsigned int imbalance_pct,
    1742             :                          struct numa_stats *ns)
    1743             : {
    1744             :         if ((ns->nr_running > ns->weight) &&
    1745             :             (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
    1746             :              ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
    1747             :                 return node_overloaded;
    1748             : 
    1749             :         if ((ns->nr_running < ns->weight) ||
    1750             :             (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
    1751             :              ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
    1752             :                 return node_has_spare;
    1753             : 
    1754             :         return node_fully_busy;
    1755             : }
    1756             : 
    1757             : #ifdef CONFIG_SCHED_SMT
    1758             : /* Forward declarations of select_idle_sibling helpers */
    1759             : static inline bool test_idle_cores(int cpu);
    1760             : static inline int numa_idle_core(int idle_core, int cpu)
    1761             : {
    1762             :         if (!static_branch_likely(&sched_smt_present) ||
    1763             :             idle_core >= 0 || !test_idle_cores(cpu))
    1764             :                 return idle_core;
    1765             : 
    1766             :         /*
    1767             :          * Prefer cores instead of packing HT siblings
    1768             :          * and triggering future load balancing.
    1769             :          */
    1770             :         if (is_core_idle(cpu))
    1771             :                 idle_core = cpu;
    1772             : 
    1773             :         return idle_core;
    1774             : }
    1775             : #else
    1776             : static inline int numa_idle_core(int idle_core, int cpu)
    1777             : {
    1778             :         return idle_core;
    1779             : }
    1780             : #endif
    1781             : 
    1782             : /*
    1783             :  * Gather all necessary information to make NUMA balancing placement
    1784             :  * decisions that are compatible with standard load balancer. This
    1785             :  * borrows code and logic from update_sg_lb_stats but sharing a
    1786             :  * common implementation is impractical.
    1787             :  */
    1788             : static void update_numa_stats(struct task_numa_env *env,
    1789             :                               struct numa_stats *ns, int nid,
    1790             :                               bool find_idle)
    1791             : {
    1792             :         int cpu, idle_core = -1;
    1793             : 
    1794             :         memset(ns, 0, sizeof(*ns));
    1795             :         ns->idle_cpu = -1;
    1796             : 
    1797             :         rcu_read_lock();
    1798             :         for_each_cpu(cpu, cpumask_of_node(nid)) {
    1799             :                 struct rq *rq = cpu_rq(cpu);
    1800             : 
    1801             :                 ns->load += cpu_load(rq);
    1802             :                 ns->runnable += cpu_runnable(rq);
    1803             :                 ns->util += cpu_util_cfs(cpu);
    1804             :                 ns->nr_running += rq->cfs.h_nr_running;
    1805             :                 ns->compute_capacity += capacity_of(cpu);
    1806             : 
    1807             :                 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
    1808             :                         if (READ_ONCE(rq->numa_migrate_on) ||
    1809             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1810             :                                 continue;
    1811             : 
    1812             :                         if (ns->idle_cpu == -1)
    1813             :                                 ns->idle_cpu = cpu;
    1814             : 
    1815             :                         idle_core = numa_idle_core(idle_core, cpu);
    1816             :                 }
    1817             :         }
    1818             :         rcu_read_unlock();
    1819             : 
    1820             :         ns->weight = cpumask_weight(cpumask_of_node(nid));
    1821             : 
    1822             :         ns->node_type = numa_classify(env->imbalance_pct, ns);
    1823             : 
    1824             :         if (idle_core >= 0)
    1825             :                 ns->idle_cpu = idle_core;
    1826             : }
    1827             : 
    1828             : static void task_numa_assign(struct task_numa_env *env,
    1829             :                              struct task_struct *p, long imp)
    1830             : {
    1831             :         struct rq *rq = cpu_rq(env->dst_cpu);
    1832             : 
    1833             :         /* Check if run-queue part of active NUMA balance. */
    1834             :         if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
    1835             :                 int cpu;
    1836             :                 int start = env->dst_cpu;
    1837             : 
    1838             :                 /* Find alternative idle CPU. */
    1839             :                 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
    1840             :                         if (cpu == env->best_cpu || !idle_cpu(cpu) ||
    1841             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
    1842             :                                 continue;
    1843             :                         }
    1844             : 
    1845             :                         env->dst_cpu = cpu;
    1846             :                         rq = cpu_rq(env->dst_cpu);
    1847             :                         if (!xchg(&rq->numa_migrate_on, 1))
    1848             :                                 goto assign;
    1849             :                 }
    1850             : 
    1851             :                 /* Failed to find an alternative idle CPU */
    1852             :                 return;
    1853             :         }
    1854             : 
    1855             : assign:
    1856             :         /*
    1857             :          * Clear previous best_cpu/rq numa-migrate flag, since task now
    1858             :          * found a better CPU to move/swap.
    1859             :          */
    1860             :         if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
    1861             :                 rq = cpu_rq(env->best_cpu);
    1862             :                 WRITE_ONCE(rq->numa_migrate_on, 0);
    1863             :         }
    1864             : 
    1865             :         if (env->best_task)
    1866             :                 put_task_struct(env->best_task);
    1867             :         if (p)
    1868             :                 get_task_struct(p);
    1869             : 
    1870             :         env->best_task = p;
    1871             :         env->best_imp = imp;
    1872             :         env->best_cpu = env->dst_cpu;
    1873             : }
    1874             : 
    1875             : static bool load_too_imbalanced(long src_load, long dst_load,
    1876             :                                 struct task_numa_env *env)
    1877             : {
    1878             :         long imb, old_imb;
    1879             :         long orig_src_load, orig_dst_load;
    1880             :         long src_capacity, dst_capacity;
    1881             : 
    1882             :         /*
    1883             :          * The load is corrected for the CPU capacity available on each node.
    1884             :          *
    1885             :          * src_load        dst_load
    1886             :          * ------------ vs ---------
    1887             :          * src_capacity    dst_capacity
    1888             :          */
    1889             :         src_capacity = env->src_stats.compute_capacity;
    1890             :         dst_capacity = env->dst_stats.compute_capacity;
    1891             : 
    1892             :         imb = abs(dst_load * src_capacity - src_load * dst_capacity);
    1893             : 
    1894             :         orig_src_load = env->src_stats.load;
    1895             :         orig_dst_load = env->dst_stats.load;
    1896             : 
    1897             :         old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
    1898             : 
    1899             :         /* Would this change make things worse? */
    1900             :         return (imb > old_imb);
    1901             : }
    1902             : 
    1903             : /*
    1904             :  * Maximum NUMA importance can be 1998 (2*999);
    1905             :  * SMALLIMP @ 30 would be close to 1998/64.
    1906             :  * Used to deter task migration.
    1907             :  */
    1908             : #define SMALLIMP        30
    1909             : 
    1910             : /*
    1911             :  * This checks if the overall compute and NUMA accesses of the system would
    1912             :  * be improved if the source tasks was migrated to the target dst_cpu taking
    1913             :  * into account that it might be best if task running on the dst_cpu should
    1914             :  * be exchanged with the source task
    1915             :  */
    1916             : static bool task_numa_compare(struct task_numa_env *env,
    1917             :                               long taskimp, long groupimp, bool maymove)
    1918             : {
    1919             :         struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
    1920             :         struct rq *dst_rq = cpu_rq(env->dst_cpu);
    1921             :         long imp = p_ng ? groupimp : taskimp;
    1922             :         struct task_struct *cur;
    1923             :         long src_load, dst_load;
    1924             :         int dist = env->dist;
    1925             :         long moveimp = imp;
    1926             :         long load;
    1927             :         bool stopsearch = false;
    1928             : 
    1929             :         if (READ_ONCE(dst_rq->numa_migrate_on))
    1930             :                 return false;
    1931             : 
    1932             :         rcu_read_lock();
    1933             :         cur = rcu_dereference(dst_rq->curr);
    1934             :         if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
    1935             :                 cur = NULL;
    1936             : 
    1937             :         /*
    1938             :          * Because we have preemption enabled we can get migrated around and
    1939             :          * end try selecting ourselves (current == env->p) as a swap candidate.
    1940             :          */
    1941             :         if (cur == env->p) {
    1942             :                 stopsearch = true;
    1943             :                 goto unlock;
    1944             :         }
    1945             : 
    1946             :         if (!cur) {
    1947             :                 if (maymove && moveimp >= env->best_imp)
    1948             :                         goto assign;
    1949             :                 else
    1950             :                         goto unlock;
    1951             :         }
    1952             : 
    1953             :         /* Skip this swap candidate if cannot move to the source cpu. */
    1954             :         if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
    1955             :                 goto unlock;
    1956             : 
    1957             :         /*
    1958             :          * Skip this swap candidate if it is not moving to its preferred
    1959             :          * node and the best task is.
    1960             :          */
    1961             :         if (env->best_task &&
    1962             :             env->best_task->numa_preferred_nid == env->src_nid &&
    1963             :             cur->numa_preferred_nid != env->src_nid) {
    1964             :                 goto unlock;
    1965             :         }
    1966             : 
    1967             :         /*
    1968             :          * "imp" is the fault differential for the source task between the
    1969             :          * source and destination node. Calculate the total differential for
    1970             :          * the source task and potential destination task. The more negative
    1971             :          * the value is, the more remote accesses that would be expected to
    1972             :          * be incurred if the tasks were swapped.
    1973             :          *
    1974             :          * If dst and source tasks are in the same NUMA group, or not
    1975             :          * in any group then look only at task weights.
    1976             :          */
    1977             :         cur_ng = rcu_dereference(cur->numa_group);
    1978             :         if (cur_ng == p_ng) {
    1979             :                 /*
    1980             :                  * Do not swap within a group or between tasks that have
    1981             :                  * no group if there is spare capacity. Swapping does
    1982             :                  * not address the load imbalance and helps one task at
    1983             :                  * the cost of punishing another.
    1984             :                  */
    1985             :                 if (env->dst_stats.node_type == node_has_spare)
    1986             :                         goto unlock;
    1987             : 
    1988             :                 imp = taskimp + task_weight(cur, env->src_nid, dist) -
    1989             :                       task_weight(cur, env->dst_nid, dist);
    1990             :                 /*
    1991             :                  * Add some hysteresis to prevent swapping the
    1992             :                  * tasks within a group over tiny differences.
    1993             :                  */
    1994             :                 if (cur_ng)
    1995             :                         imp -= imp / 16;
    1996             :         } else {
    1997             :                 /*
    1998             :                  * Compare the group weights. If a task is all by itself
    1999             :                  * (not part of a group), use the task weight instead.
    2000             :                  */
    2001             :                 if (cur_ng && p_ng)
    2002             :                         imp += group_weight(cur, env->src_nid, dist) -
    2003             :                                group_weight(cur, env->dst_nid, dist);
    2004             :                 else
    2005             :                         imp += task_weight(cur, env->src_nid, dist) -
    2006             :                                task_weight(cur, env->dst_nid, dist);
    2007             :         }
    2008             : 
    2009             :         /* Discourage picking a task already on its preferred node */
    2010             :         if (cur->numa_preferred_nid == env->dst_nid)
    2011             :                 imp -= imp / 16;
    2012             : 
    2013             :         /*
    2014             :          * Encourage picking a task that moves to its preferred node.
    2015             :          * This potentially makes imp larger than it's maximum of
    2016             :          * 1998 (see SMALLIMP and task_weight for why) but in this
    2017             :          * case, it does not matter.
    2018             :          */
    2019             :         if (cur->numa_preferred_nid == env->src_nid)
    2020             :                 imp += imp / 8;
    2021             : 
    2022             :         if (maymove && moveimp > imp && moveimp > env->best_imp) {
    2023             :                 imp = moveimp;
    2024             :                 cur = NULL;
    2025             :                 goto assign;
    2026             :         }
    2027             : 
    2028             :         /*
    2029             :          * Prefer swapping with a task moving to its preferred node over a
    2030             :          * task that is not.
    2031             :          */
    2032             :         if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
    2033             :             env->best_task->numa_preferred_nid != env->src_nid) {
    2034             :                 goto assign;
    2035             :         }
    2036             : 
    2037             :         /*
    2038             :          * If the NUMA importance is less than SMALLIMP,
    2039             :          * task migration might only result in ping pong
    2040             :          * of tasks and also hurt performance due to cache
    2041             :          * misses.
    2042             :          */
    2043             :         if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
    2044             :                 goto unlock;
    2045             : 
    2046             :         /*
    2047             :          * In the overloaded case, try and keep the load balanced.
    2048             :          */
    2049             :         load = task_h_load(env->p) - task_h_load(cur);
    2050             :         if (!load)
    2051             :                 goto assign;
    2052             : 
    2053             :         dst_load = env->dst_stats.load + load;
    2054             :         src_load = env->src_stats.load - load;
    2055             : 
    2056             :         if (load_too_imbalanced(src_load, dst_load, env))
    2057             :                 goto unlock;
    2058             : 
    2059             : assign:
    2060             :         /* Evaluate an idle CPU for a task numa move. */
    2061             :         if (!cur) {
    2062             :                 int cpu = env->dst_stats.idle_cpu;
    2063             : 
    2064             :                 /* Nothing cached so current CPU went idle since the search. */
    2065             :                 if (cpu < 0)
    2066             :                         cpu = env->dst_cpu;
    2067             : 
    2068             :                 /*
    2069             :                  * If the CPU is no longer truly idle and the previous best CPU
    2070             :                  * is, keep using it.
    2071             :                  */
    2072             :                 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
    2073             :                     idle_cpu(env->best_cpu)) {
    2074             :                         cpu = env->best_cpu;
    2075             :                 }
    2076             : 
    2077             :                 env->dst_cpu = cpu;
    2078             :         }
    2079             : 
    2080             :         task_numa_assign(env, cur, imp);
    2081             : 
    2082             :         /*
    2083             :          * If a move to idle is allowed because there is capacity or load
    2084             :          * balance improves then stop the search. While a better swap
    2085             :          * candidate may exist, a search is not free.
    2086             :          */
    2087             :         if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
    2088             :                 stopsearch = true;
    2089             : 
    2090             :         /*
    2091             :          * If a swap candidate must be identified and the current best task
    2092             :          * moves its preferred node then stop the search.
    2093             :          */
    2094             :         if (!maymove && env->best_task &&
    2095             :             env->best_task->numa_preferred_nid == env->src_nid) {
    2096             :                 stopsearch = true;
    2097             :         }
    2098             : unlock:
    2099             :         rcu_read_unlock();
    2100             : 
    2101             :         return stopsearch;
    2102             : }
    2103             : 
    2104             : static void task_numa_find_cpu(struct task_numa_env *env,
    2105             :                                 long taskimp, long groupimp)
    2106             : {
    2107             :         bool maymove = false;
    2108             :         int cpu;
    2109             : 
    2110             :         /*
    2111             :          * If dst node has spare capacity, then check if there is an
    2112             :          * imbalance that would be overruled by the load balancer.
    2113             :          */
    2114             :         if (env->dst_stats.node_type == node_has_spare) {
    2115             :                 unsigned int imbalance;
    2116             :                 int src_running, dst_running;
    2117             : 
    2118             :                 /*
    2119             :                  * Would movement cause an imbalance? Note that if src has
    2120             :                  * more running tasks that the imbalance is ignored as the
    2121             :                  * move improves the imbalance from the perspective of the
    2122             :                  * CPU load balancer.
    2123             :                  * */
    2124             :                 src_running = env->src_stats.nr_running - 1;
    2125             :                 dst_running = env->dst_stats.nr_running + 1;
    2126             :                 imbalance = max(0, dst_running - src_running);
    2127             :                 imbalance = adjust_numa_imbalance(imbalance, dst_running,
    2128             :                                                   env->imb_numa_nr);
    2129             : 
    2130             :                 /* Use idle CPU if there is no imbalance */
    2131             :                 if (!imbalance) {
    2132             :                         maymove = true;
    2133             :                         if (env->dst_stats.idle_cpu >= 0) {
    2134             :                                 env->dst_cpu = env->dst_stats.idle_cpu;
    2135             :                                 task_numa_assign(env, NULL, 0);
    2136             :                                 return;
    2137             :                         }
    2138             :                 }
    2139             :         } else {
    2140             :                 long src_load, dst_load, load;
    2141             :                 /*
    2142             :                  * If the improvement from just moving env->p direction is better
    2143             :                  * than swapping tasks around, check if a move is possible.
    2144             :                  */
    2145             :                 load = task_h_load(env->p);
    2146             :                 dst_load = env->dst_stats.load + load;
    2147             :                 src_load = env->src_stats.load - load;
    2148             :                 maymove = !load_too_imbalanced(src_load, dst_load, env);
    2149             :         }
    2150             : 
    2151             :         for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
    2152             :                 /* Skip this CPU if the source task cannot migrate */
    2153             :                 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
    2154             :                         continue;
    2155             : 
    2156             :                 env->dst_cpu = cpu;
    2157             :                 if (task_numa_compare(env, taskimp, groupimp, maymove))
    2158             :                         break;
    2159             :         }
    2160             : }
    2161             : 
    2162             : static int task_numa_migrate(struct task_struct *p)
    2163             : {
    2164             :         struct task_numa_env env = {
    2165             :                 .p = p,
    2166             : 
    2167             :                 .src_cpu = task_cpu(p),
    2168             :                 .src_nid = task_node(p),
    2169             : 
    2170             :                 .imbalance_pct = 112,
    2171             : 
    2172             :                 .best_task = NULL,
    2173             :                 .best_imp = 0,
    2174             :                 .best_cpu = -1,
    2175             :         };
    2176             :         unsigned long taskweight, groupweight;
    2177             :         struct sched_domain *sd;
    2178             :         long taskimp, groupimp;
    2179             :         struct numa_group *ng;
    2180             :         struct rq *best_rq;
    2181             :         int nid, ret, dist;
    2182             : 
    2183             :         /*
    2184             :          * Pick the lowest SD_NUMA domain, as that would have the smallest
    2185             :          * imbalance and would be the first to start moving tasks about.
    2186             :          *
    2187             :          * And we want to avoid any moving of tasks about, as that would create
    2188             :          * random movement of tasks -- counter the numa conditions we're trying
    2189             :          * to satisfy here.
    2190             :          */
    2191             :         rcu_read_lock();
    2192             :         sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
    2193             :         if (sd) {
    2194             :                 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
    2195             :                 env.imb_numa_nr = sd->imb_numa_nr;
    2196             :         }
    2197             :         rcu_read_unlock();
    2198             : 
    2199             :         /*
    2200             :          * Cpusets can break the scheduler domain tree into smaller
    2201             :          * balance domains, some of which do not cross NUMA boundaries.
    2202             :          * Tasks that are "trapped" in such domains cannot be migrated
    2203             :          * elsewhere, so there is no point in (re)trying.
    2204             :          */
    2205             :         if (unlikely(!sd)) {
    2206             :                 sched_setnuma(p, task_node(p));
    2207             :                 return -EINVAL;
    2208             :         }
    2209             : 
    2210             :         env.dst_nid = p->numa_preferred_nid;
    2211             :         dist = env.dist = node_distance(env.src_nid, env.dst_nid);
    2212             :         taskweight = task_weight(p, env.src_nid, dist);
    2213             :         groupweight = group_weight(p, env.src_nid, dist);
    2214             :         update_numa_stats(&env, &env.src_stats, env.src_nid, false);
    2215             :         taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
    2216             :         groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
    2217             :         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2218             : 
    2219             :         /* Try to find a spot on the preferred nid. */
    2220             :         task_numa_find_cpu(&env, taskimp, groupimp);
    2221             : 
    2222             :         /*
    2223             :          * Look at other nodes in these cases:
    2224             :          * - there is no space available on the preferred_nid
    2225             :          * - the task is part of a numa_group that is interleaved across
    2226             :          *   multiple NUMA nodes; in order to better consolidate the group,
    2227             :          *   we need to check other locations.
    2228             :          */
    2229             :         ng = deref_curr_numa_group(p);
    2230             :         if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
    2231             :                 for_each_node_state(nid, N_CPU) {
    2232             :                         if (nid == env.src_nid || nid == p->numa_preferred_nid)
    2233             :                                 continue;
    2234             : 
    2235             :                         dist = node_distance(env.src_nid, env.dst_nid);
    2236             :                         if (sched_numa_topology_type == NUMA_BACKPLANE &&
    2237             :                                                 dist != env.dist) {
    2238             :                                 taskweight = task_weight(p, env.src_nid, dist);
    2239             :                                 groupweight = group_weight(p, env.src_nid, dist);
    2240             :                         }
    2241             : 
    2242             :                         /* Only consider nodes where both task and groups benefit */
    2243             :                         taskimp = task_weight(p, nid, dist) - taskweight;
    2244             :                         groupimp = group_weight(p, nid, dist) - groupweight;
    2245             :                         if (taskimp < 0 && groupimp < 0)
    2246             :                                 continue;
    2247             : 
    2248             :                         env.dist = dist;
    2249             :                         env.dst_nid = nid;
    2250             :                         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2251             :                         task_numa_find_cpu(&env, taskimp, groupimp);
    2252             :                 }
    2253             :         }
    2254             : 
    2255             :         /*
    2256             :          * If the task is part of a workload that spans multiple NUMA nodes,
    2257             :          * and is migrating into one of the workload's active nodes, remember
    2258             :          * this node as the task's preferred numa node, so the workload can
    2259             :          * settle down.
    2260             :          * A task that migrated to a second choice node will be better off
    2261             :          * trying for a better one later. Do not set the preferred node here.
    2262             :          */
    2263             :         if (ng) {
    2264             :                 if (env.best_cpu == -1)
    2265             :                         nid = env.src_nid;
    2266             :                 else
    2267             :                         nid = cpu_to_node(env.best_cpu);
    2268             : 
    2269             :                 if (nid != p->numa_preferred_nid)
    2270             :                         sched_setnuma(p, nid);
    2271             :         }
    2272             : 
    2273             :         /* No better CPU than the current one was found. */
    2274             :         if (env.best_cpu == -1) {
    2275             :                 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
    2276             :                 return -EAGAIN;
    2277             :         }
    2278             : 
    2279             :         best_rq = cpu_rq(env.best_cpu);
    2280             :         if (env.best_task == NULL) {
    2281             :                 ret = migrate_task_to(p, env.best_cpu);
    2282             :                 WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2283             :                 if (ret != 0)
    2284             :                         trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
    2285             :                 return ret;
    2286             :         }
    2287             : 
    2288             :         ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
    2289             :         WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2290             : 
    2291             :         if (ret != 0)
    2292             :                 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
    2293             :         put_task_struct(env.best_task);
    2294             :         return ret;
    2295             : }
    2296             : 
    2297             : /* Attempt to migrate a task to a CPU on the preferred node. */
    2298             : static void numa_migrate_preferred(struct task_struct *p)
    2299             : {
    2300             :         unsigned long interval = HZ;
    2301             : 
    2302             :         /* This task has no NUMA fault statistics yet */
    2303             :         if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
    2304             :                 return;
    2305             : 
    2306             :         /* Periodically retry migrating the task to the preferred node */
    2307             :         interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
    2308             :         p->numa_migrate_retry = jiffies + interval;
    2309             : 
    2310             :         /* Success if task is already running on preferred CPU */
    2311             :         if (task_node(p) == p->numa_preferred_nid)
    2312             :                 return;
    2313             : 
    2314             :         /* Otherwise, try migrate to a CPU on the preferred node */
    2315             :         task_numa_migrate(p);
    2316             : }
    2317             : 
    2318             : /*
    2319             :  * Find out how many nodes the workload is actively running on. Do this by
    2320             :  * tracking the nodes from which NUMA hinting faults are triggered. This can
    2321             :  * be different from the set of nodes where the workload's memory is currently
    2322             :  * located.
    2323             :  */
    2324             : static void numa_group_count_active_nodes(struct numa_group *numa_group)
    2325             : {
    2326             :         unsigned long faults, max_faults = 0;
    2327             :         int nid, active_nodes = 0;
    2328             : 
    2329             :         for_each_node_state(nid, N_CPU) {
    2330             :                 faults = group_faults_cpu(numa_group, nid);
    2331             :                 if (faults > max_faults)
    2332             :                         max_faults = faults;
    2333             :         }
    2334             : 
    2335             :         for_each_node_state(nid, N_CPU) {
    2336             :                 faults = group_faults_cpu(numa_group, nid);
    2337             :                 if (faults * ACTIVE_NODE_FRACTION > max_faults)
    2338             :                         active_nodes++;
    2339             :         }
    2340             : 
    2341             :         numa_group->max_faults_cpu = max_faults;
    2342             :         numa_group->active_nodes = active_nodes;
    2343             : }
    2344             : 
    2345             : /*
    2346             :  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
    2347             :  * increments. The more local the fault statistics are, the higher the scan
    2348             :  * period will be for the next scan window. If local/(local+remote) ratio is
    2349             :  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
    2350             :  * the scan period will decrease. Aim for 70% local accesses.
    2351             :  */
    2352             : #define NUMA_PERIOD_SLOTS 10
    2353             : #define NUMA_PERIOD_THRESHOLD 7
    2354             : 
    2355             : /*
    2356             :  * Increase the scan period (slow down scanning) if the majority of
    2357             :  * our memory is already on our local node, or if the majority of
    2358             :  * the page accesses are shared with other processes.
    2359             :  * Otherwise, decrease the scan period.
    2360             :  */
    2361             : static void update_task_scan_period(struct task_struct *p,
    2362             :                         unsigned long shared, unsigned long private)
    2363             : {
    2364             :         unsigned int period_slot;
    2365             :         int lr_ratio, ps_ratio;
    2366             :         int diff;
    2367             : 
    2368             :         unsigned long remote = p->numa_faults_locality[0];
    2369             :         unsigned long local = p->numa_faults_locality[1];
    2370             : 
    2371             :         /*
    2372             :          * If there were no record hinting faults then either the task is
    2373             :          * completely idle or all activity is in areas that are not of interest
    2374             :          * to automatic numa balancing. Related to that, if there were failed
    2375             :          * migration then it implies we are migrating too quickly or the local
    2376             :          * node is overloaded. In either case, scan slower
    2377             :          */
    2378             :         if (local + shared == 0 || p->numa_faults_locality[2]) {
    2379             :                 p->numa_scan_period = min(p->numa_scan_period_max,
    2380             :                         p->numa_scan_period << 1);
    2381             : 
    2382             :                 p->mm->numa_next_scan = jiffies +
    2383             :                         msecs_to_jiffies(p->numa_scan_period);
    2384             : 
    2385             :                 return;
    2386             :         }
    2387             : 
    2388             :         /*
    2389             :          * Prepare to scale scan period relative to the current period.
    2390             :          *       == NUMA_PERIOD_THRESHOLD scan period stays the same
    2391             :          *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
    2392             :          *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
    2393             :          */
    2394             :         period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
    2395             :         lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
    2396             :         ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
    2397             : 
    2398             :         if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
    2399             :                 /*
    2400             :                  * Most memory accesses are local. There is no need to
    2401             :                  * do fast NUMA scanning, since memory is already local.
    2402             :                  */
    2403             :                 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
    2404             :                 if (!slot)
    2405             :                         slot = 1;
    2406             :                 diff = slot * period_slot;
    2407             :         } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
    2408             :                 /*
    2409             :                  * Most memory accesses are shared with other tasks.
    2410             :                  * There is no point in continuing fast NUMA scanning,
    2411             :                  * since other tasks may just move the memory elsewhere.
    2412             :                  */
    2413             :                 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
    2414             :                 if (!slot)
    2415             :                         slot = 1;
    2416             :                 diff = slot * period_slot;
    2417             :         } else {
    2418             :                 /*
    2419             :                  * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
    2420             :                  * yet they are not on the local NUMA node. Speed up
    2421             :                  * NUMA scanning to get the memory moved over.
    2422             :                  */
    2423             :                 int ratio = max(lr_ratio, ps_ratio);
    2424             :                 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
    2425             :         }
    2426             : 
    2427             :         p->numa_scan_period = clamp(p->numa_scan_period + diff,
    2428             :                         task_scan_min(p), task_scan_max(p));
    2429             :         memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2430             : }
    2431             : 
    2432             : /*
    2433             :  * Get the fraction of time the task has been running since the last
    2434             :  * NUMA placement cycle. The scheduler keeps similar statistics, but
    2435             :  * decays those on a 32ms period, which is orders of magnitude off
    2436             :  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
    2437             :  * stats only if the task is so new there are no NUMA statistics yet.
    2438             :  */
    2439             : static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
    2440             : {
    2441             :         u64 runtime, delta, now;
    2442             :         /* Use the start of this time slice to avoid calculations. */
    2443             :         now = p->se.exec_start;
    2444             :         runtime = p->se.sum_exec_runtime;
    2445             : 
    2446             :         if (p->last_task_numa_placement) {
    2447             :                 delta = runtime - p->last_sum_exec_runtime;
    2448             :                 *period = now - p->last_task_numa_placement;
    2449             : 
    2450             :                 /* Avoid time going backwards, prevent potential divide error: */
    2451             :                 if (unlikely((s64)*period < 0))
    2452             :                         *period = 0;
    2453             :         } else {
    2454             :                 delta = p->se.avg.load_sum;
    2455             :                 *period = LOAD_AVG_MAX;
    2456             :         }
    2457             : 
    2458             :         p->last_sum_exec_runtime = runtime;
    2459             :         p->last_task_numa_placement = now;
    2460             : 
    2461             :         return delta;
    2462             : }
    2463             : 
    2464             : /*
    2465             :  * Determine the preferred nid for a task in a numa_group. This needs to
    2466             :  * be done in a way that produces consistent results with group_weight,
    2467             :  * otherwise workloads might not converge.
    2468             :  */
    2469             : static int preferred_group_nid(struct task_struct *p, int nid)
    2470             : {
    2471             :         nodemask_t nodes;
    2472             :         int dist;
    2473             : 
    2474             :         /* Direct connections between all NUMA nodes. */
    2475             :         if (sched_numa_topology_type == NUMA_DIRECT)
    2476             :                 return nid;
    2477             : 
    2478             :         /*
    2479             :          * On a system with glueless mesh NUMA topology, group_weight
    2480             :          * scores nodes according to the number of NUMA hinting faults on
    2481             :          * both the node itself, and on nearby nodes.
    2482             :          */
    2483             :         if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    2484             :                 unsigned long score, max_score = 0;
    2485             :                 int node, max_node = nid;
    2486             : 
    2487             :                 dist = sched_max_numa_distance;
    2488             : 
    2489             :                 for_each_node_state(node, N_CPU) {
    2490             :                         score = group_weight(p, node, dist);
    2491             :                         if (score > max_score) {
    2492             :                                 max_score = score;
    2493             :                                 max_node = node;
    2494             :                         }
    2495             :                 }
    2496             :                 return max_node;
    2497             :         }
    2498             : 
    2499             :         /*
    2500             :          * Finding the preferred nid in a system with NUMA backplane
    2501             :          * interconnect topology is more involved. The goal is to locate
    2502             :          * tasks from numa_groups near each other in the system, and
    2503             :          * untangle workloads from different sides of the system. This requires
    2504             :          * searching down the hierarchy of node groups, recursively searching
    2505             :          * inside the highest scoring group of nodes. The nodemask tricks
    2506             :          * keep the complexity of the search down.
    2507             :          */
    2508             :         nodes = node_states[N_CPU];
    2509             :         for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
    2510             :                 unsigned long max_faults = 0;
    2511             :                 nodemask_t max_group = NODE_MASK_NONE;
    2512             :                 int a, b;
    2513             : 
    2514             :                 /* Are there nodes at this distance from each other? */
    2515             :                 if (!find_numa_distance(dist))
    2516             :                         continue;
    2517             : 
    2518             :                 for_each_node_mask(a, nodes) {
    2519             :                         unsigned long faults = 0;
    2520             :                         nodemask_t this_group;
    2521             :                         nodes_clear(this_group);
    2522             : 
    2523             :                         /* Sum group's NUMA faults; includes a==b case. */
    2524             :                         for_each_node_mask(b, nodes) {
    2525             :                                 if (node_distance(a, b) < dist) {
    2526             :                                         faults += group_faults(p, b);
    2527             :                                         node_set(b, this_group);
    2528             :                                         node_clear(b, nodes);
    2529             :                                 }
    2530             :                         }
    2531             : 
    2532             :                         /* Remember the top group. */
    2533             :                         if (faults > max_faults) {
    2534             :                                 max_faults = faults;
    2535             :                                 max_group = this_group;
    2536             :                                 /*
    2537             :                                  * subtle: at the smallest distance there is
    2538             :                                  * just one node left in each "group", the
    2539             :                                  * winner is the preferred nid.
    2540             :                                  */
    2541             :                                 nid = a;
    2542             :                         }
    2543             :                 }
    2544             :                 /* Next round, evaluate the nodes within max_group. */
    2545             :                 if (!max_faults)
    2546             :                         break;
    2547             :                 nodes = max_group;
    2548             :         }
    2549             :         return nid;
    2550             : }
    2551             : 
    2552             : static void task_numa_placement(struct task_struct *p)
    2553             : {
    2554             :         int seq, nid, max_nid = NUMA_NO_NODE;
    2555             :         unsigned long max_faults = 0;
    2556             :         unsigned long fault_types[2] = { 0, 0 };
    2557             :         unsigned long total_faults;
    2558             :         u64 runtime, period;
    2559             :         spinlock_t *group_lock = NULL;
    2560             :         struct numa_group *ng;
    2561             : 
    2562             :         /*
    2563             :          * The p->mm->numa_scan_seq field gets updated without
    2564             :          * exclusive access. Use READ_ONCE() here to ensure
    2565             :          * that the field is read in a single access:
    2566             :          */
    2567             :         seq = READ_ONCE(p->mm->numa_scan_seq);
    2568             :         if (p->numa_scan_seq == seq)
    2569             :                 return;
    2570             :         p->numa_scan_seq = seq;
    2571             :         p->numa_scan_period_max = task_scan_max(p);
    2572             : 
    2573             :         total_faults = p->numa_faults_locality[0] +
    2574             :                        p->numa_faults_locality[1];
    2575             :         runtime = numa_get_avg_runtime(p, &period);
    2576             : 
    2577             :         /* If the task is part of a group prevent parallel updates to group stats */
    2578             :         ng = deref_curr_numa_group(p);
    2579             :         if (ng) {
    2580             :                 group_lock = &ng->lock;
    2581             :                 spin_lock_irq(group_lock);
    2582             :         }
    2583             : 
    2584             :         /* Find the node with the highest number of faults */
    2585             :         for_each_online_node(nid) {
    2586             :                 /* Keep track of the offsets in numa_faults array */
    2587             :                 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
    2588             :                 unsigned long faults = 0, group_faults = 0;
    2589             :                 int priv;
    2590             : 
    2591             :                 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
    2592             :                         long diff, f_diff, f_weight;
    2593             : 
    2594             :                         mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
    2595             :                         membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
    2596             :                         cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
    2597             :                         cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
    2598             : 
    2599             :                         /* Decay existing window, copy faults since last scan */
    2600             :                         diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
    2601             :                         fault_types[priv] += p->numa_faults[membuf_idx];
    2602             :                         p->numa_faults[membuf_idx] = 0;
    2603             : 
    2604             :                         /*
    2605             :                          * Normalize the faults_from, so all tasks in a group
    2606             :                          * count according to CPU use, instead of by the raw
    2607             :                          * number of faults. Tasks with little runtime have
    2608             :                          * little over-all impact on throughput, and thus their
    2609             :                          * faults are less important.
    2610             :                          */
    2611             :                         f_weight = div64_u64(runtime << 16, period + 1);
    2612             :                         f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
    2613             :                                    (total_faults + 1);
    2614             :                         f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
    2615             :                         p->numa_faults[cpubuf_idx] = 0;
    2616             : 
    2617             :                         p->numa_faults[mem_idx] += diff;
    2618             :                         p->numa_faults[cpu_idx] += f_diff;
    2619             :                         faults += p->numa_faults[mem_idx];
    2620             :                         p->total_numa_faults += diff;
    2621             :                         if (ng) {
    2622             :                                 /*
    2623             :                                  * safe because we can only change our own group
    2624             :                                  *
    2625             :                                  * mem_idx represents the offset for a given
    2626             :                                  * nid and priv in a specific region because it
    2627             :                                  * is at the beginning of the numa_faults array.
    2628             :                                  */
    2629             :                                 ng->faults[mem_idx] += diff;
    2630             :                                 ng->faults[cpu_idx] += f_diff;
    2631             :                                 ng->total_faults += diff;
    2632             :                                 group_faults += ng->faults[mem_idx];
    2633             :                         }
    2634             :                 }
    2635             : 
    2636             :                 if (!ng) {
    2637             :                         if (faults > max_faults) {
    2638             :                                 max_faults = faults;
    2639             :                                 max_nid = nid;
    2640             :                         }
    2641             :                 } else if (group_faults > max_faults) {
    2642             :                         max_faults = group_faults;
    2643             :                         max_nid = nid;
    2644             :                 }
    2645             :         }
    2646             : 
    2647             :         /* Cannot migrate task to CPU-less node */
    2648             :         if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
    2649             :                 int near_nid = max_nid;
    2650             :                 int distance, near_distance = INT_MAX;
    2651             : 
    2652             :                 for_each_node_state(nid, N_CPU) {
    2653             :                         distance = node_distance(max_nid, nid);
    2654             :                         if (distance < near_distance) {
    2655             :                                 near_nid = nid;
    2656             :                                 near_distance = distance;
    2657             :                         }
    2658             :                 }
    2659             :                 max_nid = near_nid;
    2660             :         }
    2661             : 
    2662             :         if (ng) {
    2663             :                 numa_group_count_active_nodes(ng);
    2664             :                 spin_unlock_irq(group_lock);
    2665             :                 max_nid = preferred_group_nid(p, max_nid);
    2666             :         }
    2667             : 
    2668             :         if (max_faults) {
    2669             :                 /* Set the new preferred node */
    2670             :                 if (max_nid != p->numa_preferred_nid)
    2671             :                         sched_setnuma(p, max_nid);
    2672             :         }
    2673             : 
    2674             :         update_task_scan_period(p, fault_types[0], fault_types[1]);
    2675             : }
    2676             : 
    2677             : static inline int get_numa_group(struct numa_group *grp)
    2678             : {
    2679             :         return refcount_inc_not_zero(&grp->refcount);
    2680             : }
    2681             : 
    2682             : static inline void put_numa_group(struct numa_group *grp)
    2683             : {
    2684             :         if (refcount_dec_and_test(&grp->refcount))
    2685             :                 kfree_rcu(grp, rcu);
    2686             : }
    2687             : 
    2688             : static void task_numa_group(struct task_struct *p, int cpupid, int flags,
    2689             :                         int *priv)
    2690             : {
    2691             :         struct numa_group *grp, *my_grp;
    2692             :         struct task_struct *tsk;
    2693             :         bool join = false;
    2694             :         int cpu = cpupid_to_cpu(cpupid);
    2695             :         int i;
    2696             : 
    2697             :         if (unlikely(!deref_curr_numa_group(p))) {
    2698             :                 unsigned int size = sizeof(struct numa_group) +
    2699             :                                     NR_NUMA_HINT_FAULT_STATS *
    2700             :                                     nr_node_ids * sizeof(unsigned long);
    2701             : 
    2702             :                 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
    2703             :                 if (!grp)
    2704             :                         return;
    2705             : 
    2706             :                 refcount_set(&grp->refcount, 1);
    2707             :                 grp->active_nodes = 1;
    2708             :                 grp->max_faults_cpu = 0;
    2709             :                 spin_lock_init(&grp->lock);
    2710             :                 grp->gid = p->pid;
    2711             : 
    2712             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2713             :                         grp->faults[i] = p->numa_faults[i];
    2714             : 
    2715             :                 grp->total_faults = p->total_numa_faults;
    2716             : 
    2717             :                 grp->nr_tasks++;
    2718             :                 rcu_assign_pointer(p->numa_group, grp);
    2719             :         }
    2720             : 
    2721             :         rcu_read_lock();
    2722             :         tsk = READ_ONCE(cpu_rq(cpu)->curr);
    2723             : 
    2724             :         if (!cpupid_match_pid(tsk, cpupid))
    2725             :                 goto no_join;
    2726             : 
    2727             :         grp = rcu_dereference(tsk->numa_group);
    2728             :         if (!grp)
    2729             :                 goto no_join;
    2730             : 
    2731             :         my_grp = deref_curr_numa_group(p);
    2732             :         if (grp == my_grp)
    2733             :                 goto no_join;
    2734             : 
    2735             :         /*
    2736             :          * Only join the other group if its bigger; if we're the bigger group,
    2737             :          * the other task will join us.
    2738             :          */
    2739             :         if (my_grp->nr_tasks > grp->nr_tasks)
    2740             :                 goto no_join;
    2741             : 
    2742             :         /*
    2743             :          * Tie-break on the grp address.
    2744             :          */
    2745             :         if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
    2746             :                 goto no_join;
    2747             : 
    2748             :         /* Always join threads in the same process. */
    2749             :         if (tsk->mm == current->mm)
    2750             :                 join = true;
    2751             : 
    2752             :         /* Simple filter to avoid false positives due to PID collisions */
    2753             :         if (flags & TNF_SHARED)
    2754             :                 join = true;
    2755             : 
    2756             :         /* Update priv based on whether false sharing was detected */
    2757             :         *priv = !join;
    2758             : 
    2759             :         if (join && !get_numa_group(grp))
    2760             :                 goto no_join;
    2761             : 
    2762             :         rcu_read_unlock();
    2763             : 
    2764             :         if (!join)
    2765             :                 return;
    2766             : 
    2767             :         WARN_ON_ONCE(irqs_disabled());
    2768             :         double_lock_irq(&my_grp->lock, &grp->lock);
    2769             : 
    2770             :         for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
    2771             :                 my_grp->faults[i] -= p->numa_faults[i];
    2772             :                 grp->faults[i] += p->numa_faults[i];
    2773             :         }
    2774             :         my_grp->total_faults -= p->total_numa_faults;
    2775             :         grp->total_faults += p->total_numa_faults;
    2776             : 
    2777             :         my_grp->nr_tasks--;
    2778             :         grp->nr_tasks++;
    2779             : 
    2780             :         spin_unlock(&my_grp->lock);
    2781             :         spin_unlock_irq(&grp->lock);
    2782             : 
    2783             :         rcu_assign_pointer(p->numa_group, grp);
    2784             : 
    2785             :         put_numa_group(my_grp);
    2786             :         return;
    2787             : 
    2788             : no_join:
    2789             :         rcu_read_unlock();
    2790             :         return;
    2791             : }
    2792             : 
    2793             : /*
    2794             :  * Get rid of NUMA statistics associated with a task (either current or dead).
    2795             :  * If @final is set, the task is dead and has reached refcount zero, so we can
    2796             :  * safely free all relevant data structures. Otherwise, there might be
    2797             :  * concurrent reads from places like load balancing and procfs, and we should
    2798             :  * reset the data back to default state without freeing ->numa_faults.
    2799             :  */
    2800             : void task_numa_free(struct task_struct *p, bool final)
    2801             : {
    2802             :         /* safe: p either is current or is being freed by current */
    2803             :         struct numa_group *grp = rcu_dereference_raw(p->numa_group);
    2804             :         unsigned long *numa_faults = p->numa_faults;
    2805             :         unsigned long flags;
    2806             :         int i;
    2807             : 
    2808             :         if (!numa_faults)
    2809             :                 return;
    2810             : 
    2811             :         if (grp) {
    2812             :                 spin_lock_irqsave(&grp->lock, flags);
    2813             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2814             :                         grp->faults[i] -= p->numa_faults[i];
    2815             :                 grp->total_faults -= p->total_numa_faults;
    2816             : 
    2817             :                 grp->nr_tasks--;
    2818             :                 spin_unlock_irqrestore(&grp->lock, flags);
    2819             :                 RCU_INIT_POINTER(p->numa_group, NULL);
    2820             :                 put_numa_group(grp);
    2821             :         }
    2822             : 
    2823             :         if (final) {
    2824             :                 p->numa_faults = NULL;
    2825             :                 kfree(numa_faults);
    2826             :         } else {
    2827             :                 p->total_numa_faults = 0;
    2828             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2829             :                         numa_faults[i] = 0;
    2830             :         }
    2831             : }
    2832             : 
    2833             : /*
    2834             :  * Got a PROT_NONE fault for a page on @node.
    2835             :  */
    2836             : void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
    2837             : {
    2838             :         struct task_struct *p = current;
    2839             :         bool migrated = flags & TNF_MIGRATED;
    2840             :         int cpu_node = task_node(current);
    2841             :         int local = !!(flags & TNF_FAULT_LOCAL);
    2842             :         struct numa_group *ng;
    2843             :         int priv;
    2844             : 
    2845             :         if (!static_branch_likely(&sched_numa_balancing))
    2846             :                 return;
    2847             : 
    2848             :         /* for example, ksmd faulting in a user's mm */
    2849             :         if (!p->mm)
    2850             :                 return;
    2851             : 
    2852             :         /*
    2853             :          * NUMA faults statistics are unnecessary for the slow memory
    2854             :          * node for memory tiering mode.
    2855             :          */
    2856             :         if (!node_is_toptier(mem_node) &&
    2857             :             (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
    2858             :              !cpupid_valid(last_cpupid)))
    2859             :                 return;
    2860             : 
    2861             :         /* Allocate buffer to track faults on a per-node basis */
    2862             :         if (unlikely(!p->numa_faults)) {
    2863             :                 int size = sizeof(*p->numa_faults) *
    2864             :                            NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
    2865             : 
    2866             :                 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
    2867             :                 if (!p->numa_faults)
    2868             :                         return;
    2869             : 
    2870             :                 p->total_numa_faults = 0;
    2871             :                 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2872             :         }
    2873             : 
    2874             :         /*
    2875             :          * First accesses are treated as private, otherwise consider accesses
    2876             :          * to be private if the accessing pid has not changed
    2877             :          */
    2878             :         if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
    2879             :                 priv = 1;
    2880             :         } else {
    2881             :                 priv = cpupid_match_pid(p, last_cpupid);
    2882             :                 if (!priv && !(flags & TNF_NO_GROUP))
    2883             :                         task_numa_group(p, last_cpupid, flags, &priv);
    2884             :         }
    2885             : 
    2886             :         /*
    2887             :          * If a workload spans multiple NUMA nodes, a shared fault that
    2888             :          * occurs wholly within the set of nodes that the workload is
    2889             :          * actively using should be counted as local. This allows the
    2890             :          * scan rate to slow down when a workload has settled down.
    2891             :          */
    2892             :         ng = deref_curr_numa_group(p);
    2893             :         if (!priv && !local && ng && ng->active_nodes > 1 &&
    2894             :                                 numa_is_active_node(cpu_node, ng) &&
    2895             :                                 numa_is_active_node(mem_node, ng))
    2896             :                 local = 1;
    2897             : 
    2898             :         /*
    2899             :          * Retry to migrate task to preferred node periodically, in case it
    2900             :          * previously failed, or the scheduler moved us.
    2901             :          */
    2902             :         if (time_after(jiffies, p->numa_migrate_retry)) {
    2903             :                 task_numa_placement(p);
    2904             :                 numa_migrate_preferred(p);
    2905             :         }
    2906             : 
    2907             :         if (migrated)
    2908             :                 p->numa_pages_migrated += pages;
    2909             :         if (flags & TNF_MIGRATE_FAIL)
    2910             :                 p->numa_faults_locality[2] += pages;
    2911             : 
    2912             :         p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
    2913             :         p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
    2914             :         p->numa_faults_locality[local] += pages;
    2915             : }
    2916             : 
    2917             : static void reset_ptenuma_scan(struct task_struct *p)
    2918             : {
    2919             :         /*
    2920             :          * We only did a read acquisition of the mmap sem, so
    2921             :          * p->mm->numa_scan_seq is written to without exclusive access
    2922             :          * and the update is not guaranteed to be atomic. That's not
    2923             :          * much of an issue though, since this is just used for
    2924             :          * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
    2925             :          * expensive, to avoid any form of compiler optimizations:
    2926             :          */
    2927             :         WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
    2928             :         p->mm->numa_scan_offset = 0;
    2929             : }
    2930             : 
    2931             : /*
    2932             :  * The expensive part of numa migration is done from task_work context.
    2933             :  * Triggered from task_tick_numa().
    2934             :  */
    2935             : static void task_numa_work(struct callback_head *work)
    2936             : {
    2937             :         unsigned long migrate, next_scan, now = jiffies;
    2938             :         struct task_struct *p = current;
    2939             :         struct mm_struct *mm = p->mm;
    2940             :         u64 runtime = p->se.sum_exec_runtime;
    2941             :         struct vm_area_struct *vma;
    2942             :         unsigned long start, end;
    2943             :         unsigned long nr_pte_updates = 0;
    2944             :         long pages, virtpages;
    2945             :         struct vma_iterator vmi;
    2946             : 
    2947             :         SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
    2948             : 
    2949             :         work->next = work;
    2950             :         /*
    2951             :          * Who cares about NUMA placement when they're dying.
    2952             :          *
    2953             :          * NOTE: make sure not to dereference p->mm before this check,
    2954             :          * exit_task_work() happens _after_ exit_mm() so we could be called
    2955             :          * without p->mm even though we still had it when we enqueued this
    2956             :          * work.
    2957             :          */
    2958             :         if (p->flags & PF_EXITING)
    2959             :                 return;
    2960             : 
    2961             :         if (!mm->numa_next_scan) {
    2962             :                 mm->numa_next_scan = now +
    2963             :                         msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2964             :         }
    2965             : 
    2966             :         /*
    2967             :          * Enforce maximal scan/migration frequency..
    2968             :          */
    2969             :         migrate = mm->numa_next_scan;
    2970             :         if (time_before(now, migrate))
    2971             :                 return;
    2972             : 
    2973             :         if (p->numa_scan_period == 0) {
    2974             :                 p->numa_scan_period_max = task_scan_max(p);
    2975             :                 p->numa_scan_period = task_scan_start(p);
    2976             :         }
    2977             : 
    2978             :         next_scan = now + msecs_to_jiffies(p->numa_scan_period);
    2979             :         if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
    2980             :                 return;
    2981             : 
    2982             :         /*
    2983             :          * Delay this task enough that another task of this mm will likely win
    2984             :          * the next time around.
    2985             :          */
    2986             :         p->node_stamp += 2 * TICK_NSEC;
    2987             : 
    2988             :         start = mm->numa_scan_offset;
    2989             :         pages = sysctl_numa_balancing_scan_size;
    2990             :         pages <<= 20 - PAGE_SHIFT; /* MB in pages */
    2991             :         virtpages = pages * 8;     /* Scan up to this much virtual space */
    2992             :         if (!pages)
    2993             :                 return;
    2994             : 
    2995             : 
    2996             :         if (!mmap_read_trylock(mm))
    2997             :                 return;
    2998             :         vma_iter_init(&vmi, mm, start);
    2999             :         vma = vma_next(&vmi);
    3000             :         if (!vma) {
    3001             :                 reset_ptenuma_scan(p);
    3002             :                 start = 0;
    3003             :                 vma_iter_set(&vmi, start);
    3004             :                 vma = vma_next(&vmi);
    3005             :         }
    3006             : 
    3007             :         do {
    3008             :                 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
    3009             :                         is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
    3010             :                         continue;
    3011             :                 }
    3012             : 
    3013             :                 /*
    3014             :                  * Shared library pages mapped by multiple processes are not
    3015             :                  * migrated as it is expected they are cache replicated. Avoid
    3016             :                  * hinting faults in read-only file-backed mappings or the vdso
    3017             :                  * as migrating the pages will be of marginal benefit.
    3018             :                  */
    3019             :                 if (!vma->vm_mm ||
    3020             :                     (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
    3021             :                         continue;
    3022             : 
    3023             :                 /*
    3024             :                  * Skip inaccessible VMAs to avoid any confusion between
    3025             :                  * PROT_NONE and NUMA hinting ptes
    3026             :                  */
    3027             :                 if (!vma_is_accessible(vma))
    3028             :                         continue;
    3029             : 
    3030             :                 do {
    3031             :                         start = max(start, vma->vm_start);
    3032             :                         end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
    3033             :                         end = min(end, vma->vm_end);
    3034             :                         nr_pte_updates = change_prot_numa(vma, start, end);
    3035             : 
    3036             :                         /*
    3037             :                          * Try to scan sysctl_numa_balancing_size worth of
    3038             :                          * hpages that have at least one present PTE that
    3039             :                          * is not already pte-numa. If the VMA contains
    3040             :                          * areas that are unused or already full of prot_numa
    3041             :                          * PTEs, scan up to virtpages, to skip through those
    3042             :                          * areas faster.
    3043             :                          */
    3044             :                         if (nr_pte_updates)
    3045             :                                 pages -= (end - start) >> PAGE_SHIFT;
    3046             :                         virtpages -= (end - start) >> PAGE_SHIFT;
    3047             : 
    3048             :                         start = end;
    3049             :                         if (pages <= 0 || virtpages <= 0)
    3050             :                                 goto out;
    3051             : 
    3052             :                         cond_resched();
    3053             :                 } while (end != vma->vm_end);
    3054             :         } for_each_vma(vmi, vma);
    3055             : 
    3056             : out:
    3057             :         /*
    3058             :          * It is possible to reach the end of the VMA list but the last few
    3059             :          * VMAs are not guaranteed to the vma_migratable. If they are not, we
    3060             :          * would find the !migratable VMA on the next scan but not reset the
    3061             :          * scanner to the start so check it now.
    3062             :          */
    3063             :         if (vma)
    3064             :                 mm->numa_scan_offset = start;
    3065             :         else
    3066             :                 reset_ptenuma_scan(p);
    3067             :         mmap_read_unlock(mm);
    3068             : 
    3069             :         /*
    3070             :          * Make sure tasks use at least 32x as much time to run other code
    3071             :          * than they used here, to limit NUMA PTE scanning overhead to 3% max.
    3072             :          * Usually update_task_scan_period slows down scanning enough; on an
    3073             :          * overloaded system we need to limit overhead on a per task basis.
    3074             :          */
    3075             :         if (unlikely(p->se.sum_exec_runtime != runtime)) {
    3076             :                 u64 diff = p->se.sum_exec_runtime - runtime;
    3077             :                 p->node_stamp += 32 * diff;
    3078             :         }
    3079             : }
    3080             : 
    3081             : void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
    3082             : {
    3083             :         int mm_users = 0;
    3084             :         struct mm_struct *mm = p->mm;
    3085             : 
    3086             :         if (mm) {
    3087             :                 mm_users = atomic_read(&mm->mm_users);
    3088             :                 if (mm_users == 1) {
    3089             :                         mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    3090             :                         mm->numa_scan_seq = 0;
    3091             :                 }
    3092             :         }
    3093             :         p->node_stamp                        = 0;
    3094             :         p->numa_scan_seq             = mm ? mm->numa_scan_seq : 0;
    3095             :         p->numa_scan_period          = sysctl_numa_balancing_scan_delay;
    3096             :         p->numa_migrate_retry                = 0;
    3097             :         /* Protect against double add, see task_tick_numa and task_numa_work */
    3098             :         p->numa_work.next            = &p->numa_work;
    3099             :         p->numa_faults                       = NULL;
    3100             :         p->numa_pages_migrated               = 0;
    3101             :         p->total_numa_faults         = 0;
    3102             :         RCU_INIT_POINTER(p->numa_group, NULL);
    3103             :         p->last_task_numa_placement  = 0;
    3104             :         p->last_sum_exec_runtime     = 0;
    3105             : 
    3106             :         init_task_work(&p->numa_work, task_numa_work);
    3107             : 
    3108             :         /* New address space, reset the preferred nid */
    3109             :         if (!(clone_flags & CLONE_VM)) {
    3110             :                 p->numa_preferred_nid = NUMA_NO_NODE;
    3111             :                 return;
    3112             :         }
    3113             : 
    3114             :         /*
    3115             :          * New thread, keep existing numa_preferred_nid which should be copied
    3116             :          * already by arch_dup_task_struct but stagger when scans start.
    3117             :          */
    3118             :         if (mm) {
    3119             :                 unsigned int delay;
    3120             : 
    3121             :                 delay = min_t(unsigned int, task_scan_max(current),
    3122             :                         current->numa_scan_period * mm_users * NSEC_PER_MSEC);
    3123             :                 delay += 2 * TICK_NSEC;
    3124             :                 p->node_stamp = delay;
    3125             :         }
    3126             : }
    3127             : 
    3128             : /*
    3129             :  * Drive the periodic memory faults..
    3130             :  */
    3131             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    3132             : {
    3133             :         struct callback_head *work = &curr->numa_work;
    3134             :         u64 period, now;
    3135             : 
    3136             :         /*
    3137             :          * We don't care about NUMA placement if we don't have memory.
    3138             :          */
    3139             :         if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
    3140             :                 return;
    3141             : 
    3142             :         /*
    3143             :          * Using runtime rather than walltime has the dual advantage that
    3144             :          * we (mostly) drive the selection from busy threads and that the
    3145             :          * task needs to have done some actual work before we bother with
    3146             :          * NUMA placement.
    3147             :          */
    3148             :         now = curr->se.sum_exec_runtime;
    3149             :         period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
    3150             : 
    3151             :         if (now > curr->node_stamp + period) {
    3152             :                 if (!curr->node_stamp)
    3153             :                         curr->numa_scan_period = task_scan_start(curr);
    3154             :                 curr->node_stamp += period;
    3155             : 
    3156             :                 if (!time_before(jiffies, curr->mm->numa_next_scan))
    3157             :                         task_work_add(curr, work, TWA_RESUME);
    3158             :         }
    3159             : }
    3160             : 
    3161             : static void update_scan_period(struct task_struct *p, int new_cpu)
    3162             : {
    3163             :         int src_nid = cpu_to_node(task_cpu(p));
    3164             :         int dst_nid = cpu_to_node(new_cpu);
    3165             : 
    3166             :         if (!static_branch_likely(&sched_numa_balancing))
    3167             :                 return;
    3168             : 
    3169             :         if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
    3170             :                 return;
    3171             : 
    3172             :         if (src_nid == dst_nid)
    3173             :                 return;
    3174             : 
    3175             :         /*
    3176             :          * Allow resets if faults have been trapped before one scan
    3177             :          * has completed. This is most likely due to a new task that
    3178             :          * is pulled cross-node due to wakeups or load balancing.
    3179             :          */
    3180             :         if (p->numa_scan_seq) {
    3181             :                 /*
    3182             :                  * Avoid scan adjustments if moving to the preferred
    3183             :                  * node or if the task was not previously running on
    3184             :                  * the preferred node.
    3185             :                  */
    3186             :                 if (dst_nid == p->numa_preferred_nid ||
    3187             :                     (p->numa_preferred_nid != NUMA_NO_NODE &&
    3188             :                         src_nid != p->numa_preferred_nid))
    3189             :                         return;
    3190             :         }
    3191             : 
    3192             :         p->numa_scan_period = task_scan_start(p);
    3193             : }
    3194             : 
    3195             : #else
    3196             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    3197             : {
    3198             : }
    3199             : 
    3200             : static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    3201             : {
    3202             : }
    3203             : 
    3204             : static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    3205             : {
    3206             : }
    3207             : 
    3208             : static inline void update_scan_period(struct task_struct *p, int new_cpu)
    3209             : {
    3210             : }
    3211             : 
    3212             : #endif /* CONFIG_NUMA_BALANCING */
    3213             : 
    3214             : static void
    3215             : account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3216             : {
    3217        4264 :         update_load_add(&cfs_rq->load, se->load.weight);
    3218             : #ifdef CONFIG_SMP
    3219             :         if (entity_is_task(se)) {
    3220             :                 struct rq *rq = rq_of(cfs_rq);
    3221             : 
    3222             :                 account_numa_enqueue(rq, task_of(se));
    3223             :                 list_add(&se->group_node, &rq->cfs_tasks);
    3224             :         }
    3225             : #endif
    3226        2132 :         cfs_rq->nr_running++;
    3227        2132 :         if (se_is_idle(se))
    3228             :                 cfs_rq->idle_nr_running++;
    3229             : }
    3230             : 
    3231             : static void
    3232             : account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3233             : {
    3234        4260 :         update_load_sub(&cfs_rq->load, se->load.weight);
    3235             : #ifdef CONFIG_SMP
    3236             :         if (entity_is_task(se)) {
    3237             :                 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
    3238             :                 list_del_init(&se->group_node);
    3239             :         }
    3240             : #endif
    3241        2130 :         cfs_rq->nr_running--;
    3242        2130 :         if (se_is_idle(se))
    3243             :                 cfs_rq->idle_nr_running--;
    3244             : }
    3245             : 
    3246             : /*
    3247             :  * Signed add and clamp on underflow.
    3248             :  *
    3249             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3250             :  * memory. This allows lockless observations without ever seeing the negative
    3251             :  * values.
    3252             :  */
    3253             : #define add_positive(_ptr, _val) do {                           \
    3254             :         typeof(_ptr) ptr = (_ptr);                              \
    3255             :         typeof(_val) val = (_val);                              \
    3256             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3257             :                                                                 \
    3258             :         res = var + val;                                        \
    3259             :                                                                 \
    3260             :         if (val < 0 && res > var)                               \
    3261             :                 res = 0;                                        \
    3262             :                                                                 \
    3263             :         WRITE_ONCE(*ptr, res);                                  \
    3264             : } while (0)
    3265             : 
    3266             : /*
    3267             :  * Unsigned subtract and clamp on underflow.
    3268             :  *
    3269             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3270             :  * memory. This allows lockless observations without ever seeing the negative
    3271             :  * values.
    3272             :  */
    3273             : #define sub_positive(_ptr, _val) do {                           \
    3274             :         typeof(_ptr) ptr = (_ptr);                              \
    3275             :         typeof(*ptr) val = (_val);                              \
    3276             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3277             :         res = var - val;                                        \
    3278             :         if (res > var)                                               \
    3279             :                 res = 0;                                        \
    3280             :         WRITE_ONCE(*ptr, res);                                  \
    3281             : } while (0)
    3282             : 
    3283             : /*
    3284             :  * Remove and clamp on negative, from a local variable.
    3285             :  *
    3286             :  * A variant of sub_positive(), which does not use explicit load-store
    3287             :  * and is thus optimized for local variable updates.
    3288             :  */
    3289             : #define lsub_positive(_ptr, _val) do {                          \
    3290             :         typeof(_ptr) ptr = (_ptr);                              \
    3291             :         *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
    3292             : } while (0)
    3293             : 
    3294             : #ifdef CONFIG_SMP
    3295             : static inline void
    3296             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3297             : {
    3298             :         cfs_rq->avg.load_avg += se->avg.load_avg;
    3299             :         cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
    3300             : }
    3301             : 
    3302             : static inline void
    3303             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3304             : {
    3305             :         sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
    3306             :         sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
    3307             :         /* See update_cfs_rq_load_avg() */
    3308             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3309             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3310             : }
    3311             : #else
    3312             : static inline void
    3313             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3314             : static inline void
    3315             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3316             : #endif
    3317             : 
    3318           5 : static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
    3319             :                             unsigned long weight)
    3320             : {
    3321           5 :         if (se->on_rq) {
    3322             :                 /* commit outstanding execution time */
    3323           0 :                 if (cfs_rq->curr == se)
    3324           0 :                         update_curr(cfs_rq);
    3325           0 :                 update_load_sub(&cfs_rq->load, se->load.weight);
    3326             :         }
    3327           5 :         dequeue_load_avg(cfs_rq, se);
    3328             : 
    3329          10 :         update_load_set(&se->load, weight);
    3330             : 
    3331             : #ifdef CONFIG_SMP
    3332             :         do {
    3333             :                 u32 divider = get_pelt_divider(&se->avg);
    3334             : 
    3335             :                 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
    3336             :         } while (0);
    3337             : #endif
    3338             : 
    3339           5 :         enqueue_load_avg(cfs_rq, se);
    3340           5 :         if (se->on_rq)
    3341           0 :                 update_load_add(&cfs_rq->load, se->load.weight);
    3342             : 
    3343           5 : }
    3344             : 
    3345           5 : void reweight_task(struct task_struct *p, int prio)
    3346             : {
    3347           5 :         struct sched_entity *se = &p->se;
    3348          10 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3349           5 :         struct load_weight *load = &se->load;
    3350           5 :         unsigned long weight = scale_load(sched_prio_to_weight[prio]);
    3351             : 
    3352           5 :         reweight_entity(cfs_rq, se, weight);
    3353           5 :         load->inv_weight = sched_prio_to_wmult[prio];
    3354           5 : }
    3355             : 
    3356             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
    3357             : 
    3358             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3359             : #ifdef CONFIG_SMP
    3360             : /*
    3361             :  * All this does is approximate the hierarchical proportion which includes that
    3362             :  * global sum we all love to hate.
    3363             :  *
    3364             :  * That is, the weight of a group entity, is the proportional share of the
    3365             :  * group weight based on the group runqueue weights. That is:
    3366             :  *
    3367             :  *                     tg->weight * grq->load.weight
    3368             :  *   ge->load.weight = -----------------------------               (1)
    3369             :  *                       \Sum grq->load.weight
    3370             :  *
    3371             :  * Now, because computing that sum is prohibitively expensive to compute (been
    3372             :  * there, done that) we approximate it with this average stuff. The average
    3373             :  * moves slower and therefore the approximation is cheaper and more stable.
    3374             :  *
    3375             :  * So instead of the above, we substitute:
    3376             :  *
    3377             :  *   grq->load.weight -> grq->avg.load_avg                         (2)
    3378             :  *
    3379             :  * which yields the following:
    3380             :  *
    3381             :  *                     tg->weight * grq->avg.load_avg
    3382             :  *   ge->load.weight = ------------------------------              (3)
    3383             :  *                             tg->load_avg
    3384             :  *
    3385             :  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
    3386             :  *
    3387             :  * That is shares_avg, and it is right (given the approximation (2)).
    3388             :  *
    3389             :  * The problem with it is that because the average is slow -- it was designed
    3390             :  * to be exactly that of course -- this leads to transients in boundary
    3391             :  * conditions. In specific, the case where the group was idle and we start the
    3392             :  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
    3393             :  * yielding bad latency etc..
    3394             :  *
    3395             :  * Now, in that special case (1) reduces to:
    3396             :  *
    3397             :  *                     tg->weight * grq->load.weight
    3398             :  *   ge->load.weight = ----------------------------- = tg->weight   (4)
    3399             :  *                         grp->load.weight
    3400             :  *
    3401             :  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
    3402             :  *
    3403             :  * So what we do is modify our approximation (3) to approach (4) in the (near)
    3404             :  * UP case, like:
    3405             :  *
    3406             :  *   ge->load.weight =
    3407             :  *
    3408             :  *              tg->weight * grq->load.weight
    3409             :  *     ---------------------------------------------------         (5)
    3410             :  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
    3411             :  *
    3412             :  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
    3413             :  * we need to use grq->avg.load_avg as its lower bound, which then gives:
    3414             :  *
    3415             :  *
    3416             :  *                     tg->weight * grq->load.weight
    3417             :  *   ge->load.weight = -----------------------------            (6)
    3418             :  *                             tg_load_avg'
    3419             :  *
    3420             :  * Where:
    3421             :  *
    3422             :  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
    3423             :  *                  max(grq->load.weight, grq->avg.load_avg)
    3424             :  *
    3425             :  * And that is shares_weight and is icky. In the (near) UP case it approaches
    3426             :  * (4) while in the normal case it approaches (3). It consistently
    3427             :  * overestimates the ge->load.weight and therefore:
    3428             :  *
    3429             :  *   \Sum ge->load.weight >= tg->weight
    3430             :  *
    3431             :  * hence icky!
    3432             :  */
    3433             : static long calc_group_shares(struct cfs_rq *cfs_rq)
    3434             : {
    3435             :         long tg_weight, tg_shares, load, shares;
    3436             :         struct task_group *tg = cfs_rq->tg;
    3437             : 
    3438             :         tg_shares = READ_ONCE(tg->shares);
    3439             : 
    3440             :         load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
    3441             : 
    3442             :         tg_weight = atomic_long_read(&tg->load_avg);
    3443             : 
    3444             :         /* Ensure tg_weight >= load */
    3445             :         tg_weight -= cfs_rq->tg_load_avg_contrib;
    3446             :         tg_weight += load;
    3447             : 
    3448             :         shares = (tg_shares * load);
    3449             :         if (tg_weight)
    3450             :                 shares /= tg_weight;
    3451             : 
    3452             :         /*
    3453             :          * MIN_SHARES has to be unscaled here to support per-CPU partitioning
    3454             :          * of a group with small tg->shares value. It is a floor value which is
    3455             :          * assigned as a minimum load.weight to the sched_entity representing
    3456             :          * the group on a CPU.
    3457             :          *
    3458             :          * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
    3459             :          * on an 8-core system with 8 tasks each runnable on one CPU shares has
    3460             :          * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
    3461             :          * case no task is runnable on a CPU MIN_SHARES=2 should be returned
    3462             :          * instead of 0.
    3463             :          */
    3464             :         return clamp_t(long, shares, MIN_SHARES, tg_shares);
    3465             : }
    3466             : #endif /* CONFIG_SMP */
    3467             : 
    3468             : /*
    3469             :  * Recomputes the group entity based on the current state of its group
    3470             :  * runqueue.
    3471             :  */
    3472             : static void update_cfs_group(struct sched_entity *se)
    3473             : {
    3474             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3475             :         long shares;
    3476             : 
    3477             :         if (!gcfs_rq)
    3478             :                 return;
    3479             : 
    3480             :         if (throttled_hierarchy(gcfs_rq))
    3481             :                 return;
    3482             : 
    3483             : #ifndef CONFIG_SMP
    3484             :         shares = READ_ONCE(gcfs_rq->tg->shares);
    3485             : 
    3486             :         if (likely(se->load.weight == shares))
    3487             :                 return;
    3488             : #else
    3489             :         shares   = calc_group_shares(gcfs_rq);
    3490             : #endif
    3491             : 
    3492             :         reweight_entity(cfs_rq_of(se), se, shares);
    3493             : }
    3494             : 
    3495             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3496             : static inline void update_cfs_group(struct sched_entity *se)
    3497             : {
    3498             : }
    3499             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3500             : 
    3501             : static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
    3502             : {
    3503        6981 :         struct rq *rq = rq_of(cfs_rq);
    3504             : 
    3505             :         if (&rq->cfs == cfs_rq) {
    3506             :                 /*
    3507             :                  * There are a few boundary cases this might miss but it should
    3508             :                  * get called often enough that that should (hopefully) not be
    3509             :                  * a real problem.
    3510             :                  *
    3511             :                  * It will not get called when we go idle, because the idle
    3512             :                  * thread is a different class (!fair), nor will the utilization
    3513             :                  * number include things like RT tasks.
    3514             :                  *
    3515             :                  * As is, the util number is not freq-invariant (we'd have to
    3516             :                  * implement arch_scale_freq_capacity() for that).
    3517             :                  *
    3518             :                  * See cpu_util_cfs().
    3519             :                  */
    3520             :                 cpufreq_update_util(rq, flags);
    3521             :         }
    3522             : }
    3523             : 
    3524             : #ifdef CONFIG_SMP
    3525             : static inline bool load_avg_is_decayed(struct sched_avg *sa)
    3526             : {
    3527             :         if (sa->load_sum)
    3528             :                 return false;
    3529             : 
    3530             :         if (sa->util_sum)
    3531             :                 return false;
    3532             : 
    3533             :         if (sa->runnable_sum)
    3534             :                 return false;
    3535             : 
    3536             :         /*
    3537             :          * _avg must be null when _sum are null because _avg = _sum / divider
    3538             :          * Make sure that rounding and/or propagation of PELT values never
    3539             :          * break this.
    3540             :          */
    3541             :         SCHED_WARN_ON(sa->load_avg ||
    3542             :                       sa->util_avg ||
    3543             :                       sa->runnable_avg);
    3544             : 
    3545             :         return true;
    3546             : }
    3547             : 
    3548             : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3549             : {
    3550             :         return u64_u32_load_copy(cfs_rq->avg.last_update_time,
    3551             :                                  cfs_rq->last_update_time_copy);
    3552             : }
    3553             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3554             : /*
    3555             :  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
    3556             :  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
    3557             :  * bottom-up, we only have to test whether the cfs_rq before us on the list
    3558             :  * is our child.
    3559             :  * If cfs_rq is not on the list, test whether a child needs its to be added to
    3560             :  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
    3561             :  */
    3562             : static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
    3563             : {
    3564             :         struct cfs_rq *prev_cfs_rq;
    3565             :         struct list_head *prev;
    3566             : 
    3567             :         if (cfs_rq->on_list) {
    3568             :                 prev = cfs_rq->leaf_cfs_rq_list.prev;
    3569             :         } else {
    3570             :                 struct rq *rq = rq_of(cfs_rq);
    3571             : 
    3572             :                 prev = rq->tmp_alone_branch;
    3573             :         }
    3574             : 
    3575             :         prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
    3576             : 
    3577             :         return (prev_cfs_rq->tg->parent == cfs_rq->tg);
    3578             : }
    3579             : 
    3580             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    3581             : {
    3582             :         if (cfs_rq->load.weight)
    3583             :                 return false;
    3584             : 
    3585             :         if (!load_avg_is_decayed(&cfs_rq->avg))
    3586             :                 return false;
    3587             : 
    3588             :         if (child_cfs_rq_on_list(cfs_rq))
    3589             :                 return false;
    3590             : 
    3591             :         return true;
    3592             : }
    3593             : 
    3594             : /**
    3595             :  * update_tg_load_avg - update the tg's load avg
    3596             :  * @cfs_rq: the cfs_rq whose avg changed
    3597             :  *
    3598             :  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
    3599             :  * However, because tg->load_avg is a global value there are performance
    3600             :  * considerations.
    3601             :  *
    3602             :  * In order to avoid having to look at the other cfs_rq's, we use a
    3603             :  * differential update where we store the last value we propagated. This in
    3604             :  * turn allows skipping updates if the differential is 'small'.
    3605             :  *
    3606             :  * Updating tg's load_avg is necessary before update_cfs_share().
    3607             :  */
    3608             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
    3609             : {
    3610             :         long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
    3611             : 
    3612             :         /*
    3613             :          * No need to update load_avg for root_task_group as it is not used.
    3614             :          */
    3615             :         if (cfs_rq->tg == &root_task_group)
    3616             :                 return;
    3617             : 
    3618             :         if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
    3619             :                 atomic_long_add(delta, &cfs_rq->tg->load_avg);
    3620             :                 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
    3621             :         }
    3622             : }
    3623             : 
    3624             : /*
    3625             :  * Called within set_task_rq() right before setting a task's CPU. The
    3626             :  * caller only guarantees p->pi_lock is held; no other assumptions,
    3627             :  * including the state of rq->lock, should be made.
    3628             :  */
    3629             : void set_task_rq_fair(struct sched_entity *se,
    3630             :                       struct cfs_rq *prev, struct cfs_rq *next)
    3631             : {
    3632             :         u64 p_last_update_time;
    3633             :         u64 n_last_update_time;
    3634             : 
    3635             :         if (!sched_feat(ATTACH_AGE_LOAD))
    3636             :                 return;
    3637             : 
    3638             :         /*
    3639             :          * We are supposed to update the task to "current" time, then its up to
    3640             :          * date and ready to go to new CPU/cfs_rq. But we have difficulty in
    3641             :          * getting what current time is, so simply throw away the out-of-date
    3642             :          * time. This will result in the wakee task is less decayed, but giving
    3643             :          * the wakee more load sounds not bad.
    3644             :          */
    3645             :         if (!(se->avg.last_update_time && prev))
    3646             :                 return;
    3647             : 
    3648             :         p_last_update_time = cfs_rq_last_update_time(prev);
    3649             :         n_last_update_time = cfs_rq_last_update_time(next);
    3650             : 
    3651             :         __update_load_avg_blocked_se(p_last_update_time, se);
    3652             :         se->avg.last_update_time = n_last_update_time;
    3653             : }
    3654             : 
    3655             : /*
    3656             :  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
    3657             :  * propagate its contribution. The key to this propagation is the invariant
    3658             :  * that for each group:
    3659             :  *
    3660             :  *   ge->avg == grq->avg                                          (1)
    3661             :  *
    3662             :  * _IFF_ we look at the pure running and runnable sums. Because they
    3663             :  * represent the very same entity, just at different points in the hierarchy.
    3664             :  *
    3665             :  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
    3666             :  * and simply copies the running/runnable sum over (but still wrong, because
    3667             :  * the group entity and group rq do not have their PELT windows aligned).
    3668             :  *
    3669             :  * However, update_tg_cfs_load() is more complex. So we have:
    3670             :  *
    3671             :  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg         (2)
    3672             :  *
    3673             :  * And since, like util, the runnable part should be directly transferable,
    3674             :  * the following would _appear_ to be the straight forward approach:
    3675             :  *
    3676             :  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg      (3)
    3677             :  *
    3678             :  * And per (1) we have:
    3679             :  *
    3680             :  *   ge->avg.runnable_avg == grq->avg.runnable_avg
    3681             :  *
    3682             :  * Which gives:
    3683             :  *
    3684             :  *                      ge->load.weight * grq->avg.load_avg
    3685             :  *   ge->avg.load_avg = -----------------------------------          (4)
    3686             :  *                               grq->load.weight
    3687             :  *
    3688             :  * Except that is wrong!
    3689             :  *
    3690             :  * Because while for entities historical weight is not important and we
    3691             :  * really only care about our future and therefore can consider a pure
    3692             :  * runnable sum, runqueues can NOT do this.
    3693             :  *
    3694             :  * We specifically want runqueues to have a load_avg that includes
    3695             :  * historical weights. Those represent the blocked load, the load we expect
    3696             :  * to (shortly) return to us. This only works by keeping the weights as
    3697             :  * integral part of the sum. We therefore cannot decompose as per (3).
    3698             :  *
    3699             :  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
    3700             :  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
    3701             :  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
    3702             :  * runnable section of these tasks overlap (or not). If they were to perfectly
    3703             :  * align the rq as a whole would be runnable 2/3 of the time. If however we
    3704             :  * always have at least 1 runnable task, the rq as a whole is always runnable.
    3705             :  *
    3706             :  * So we'll have to approximate.. :/
    3707             :  *
    3708             :  * Given the constraint:
    3709             :  *
    3710             :  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
    3711             :  *
    3712             :  * We can construct a rule that adds runnable to a rq by assuming minimal
    3713             :  * overlap.
    3714             :  *
    3715             :  * On removal, we'll assume each task is equally runnable; which yields:
    3716             :  *
    3717             :  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
    3718             :  *
    3719             :  * XXX: only do this for the part of runnable > running ?
    3720             :  *
    3721             :  */
    3722             : static inline void
    3723             : update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3724             : {
    3725             :         long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
    3726             :         u32 new_sum, divider;
    3727             : 
    3728             :         /* Nothing to update */
    3729             :         if (!delta_avg)
    3730             :                 return;
    3731             : 
    3732             :         /*
    3733             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3734             :          * See ___update_load_avg() for details.
    3735             :          */
    3736             :         divider = get_pelt_divider(&cfs_rq->avg);
    3737             : 
    3738             : 
    3739             :         /* Set new sched_entity's utilization */
    3740             :         se->avg.util_avg = gcfs_rq->avg.util_avg;
    3741             :         new_sum = se->avg.util_avg * divider;
    3742             :         delta_sum = (long)new_sum - (long)se->avg.util_sum;
    3743             :         se->avg.util_sum = new_sum;
    3744             : 
    3745             :         /* Update parent cfs_rq utilization */
    3746             :         add_positive(&cfs_rq->avg.util_avg, delta_avg);
    3747             :         add_positive(&cfs_rq->avg.util_sum, delta_sum);
    3748             : 
    3749             :         /* See update_cfs_rq_load_avg() */
    3750             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    3751             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    3752             : }
    3753             : 
    3754             : static inline void
    3755             : update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3756             : {
    3757             :         long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
    3758             :         u32 new_sum, divider;
    3759             : 
    3760             :         /* Nothing to update */
    3761             :         if (!delta_avg)
    3762             :                 return;
    3763             : 
    3764             :         /*
    3765             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3766             :          * See ___update_load_avg() for details.
    3767             :          */
    3768             :         divider = get_pelt_divider(&cfs_rq->avg);
    3769             : 
    3770             :         /* Set new sched_entity's runnable */
    3771             :         se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
    3772             :         new_sum = se->avg.runnable_avg * divider;
    3773             :         delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
    3774             :         se->avg.runnable_sum = new_sum;
    3775             : 
    3776             :         /* Update parent cfs_rq runnable */
    3777             :         add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
    3778             :         add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
    3779             :         /* See update_cfs_rq_load_avg() */
    3780             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    3781             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    3782             : }
    3783             : 
    3784             : static inline void
    3785             : update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3786             : {
    3787             :         long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
    3788             :         unsigned long load_avg;
    3789             :         u64 load_sum = 0;
    3790             :         s64 delta_sum;
    3791             :         u32 divider;
    3792             : 
    3793             :         if (!runnable_sum)
    3794             :                 return;
    3795             : 
    3796             :         gcfs_rq->prop_runnable_sum = 0;
    3797             : 
    3798             :         /*
    3799             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3800             :          * See ___update_load_avg() for details.
    3801             :          */
    3802             :         divider = get_pelt_divider(&cfs_rq->avg);
    3803             : 
    3804             :         if (runnable_sum >= 0) {
    3805             :                 /*
    3806             :                  * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
    3807             :                  * the CPU is saturated running == runnable.
    3808             :                  */
    3809             :                 runnable_sum += se->avg.load_sum;
    3810             :                 runnable_sum = min_t(long, runnable_sum, divider);
    3811             :         } else {
    3812             :                 /*
    3813             :                  * Estimate the new unweighted runnable_sum of the gcfs_rq by
    3814             :                  * assuming all tasks are equally runnable.
    3815             :                  */
    3816             :                 if (scale_load_down(gcfs_rq->load.weight)) {
    3817             :                         load_sum = div_u64(gcfs_rq->avg.load_sum,
    3818             :                                 scale_load_down(gcfs_rq->load.weight));
    3819             :                 }
    3820             : 
    3821             :                 /* But make sure to not inflate se's runnable */
    3822             :                 runnable_sum = min(se->avg.load_sum, load_sum);
    3823             :         }
    3824             : 
    3825             :         /*
    3826             :          * runnable_sum can't be lower than running_sum
    3827             :          * Rescale running sum to be in the same range as runnable sum
    3828             :          * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
    3829             :          * runnable_sum is in [0 : LOAD_AVG_MAX]
    3830             :          */
    3831             :         running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
    3832             :         runnable_sum = max(runnable_sum, running_sum);
    3833             : 
    3834             :         load_sum = se_weight(se) * runnable_sum;
    3835             :         load_avg = div_u64(load_sum, divider);
    3836             : 
    3837             :         delta_avg = load_avg - se->avg.load_avg;
    3838             :         if (!delta_avg)
    3839             :                 return;
    3840             : 
    3841             :         delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
    3842             : 
    3843             :         se->avg.load_sum = runnable_sum;
    3844             :         se->avg.load_avg = load_avg;
    3845             :         add_positive(&cfs_rq->avg.load_avg, delta_avg);
    3846             :         add_positive(&cfs_rq->avg.load_sum, delta_sum);
    3847             :         /* See update_cfs_rq_load_avg() */
    3848             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3849             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3850             : }
    3851             : 
    3852             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
    3853             : {
    3854             :         cfs_rq->propagate = 1;
    3855             :         cfs_rq->prop_runnable_sum += runnable_sum;
    3856             : }
    3857             : 
    3858             : /* Update task and its cfs_rq load average */
    3859             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3860             : {
    3861             :         struct cfs_rq *cfs_rq, *gcfs_rq;
    3862             : 
    3863             :         if (entity_is_task(se))
    3864             :                 return 0;
    3865             : 
    3866             :         gcfs_rq = group_cfs_rq(se);
    3867             :         if (!gcfs_rq->propagate)
    3868             :                 return 0;
    3869             : 
    3870             :         gcfs_rq->propagate = 0;
    3871             : 
    3872             :         cfs_rq = cfs_rq_of(se);
    3873             : 
    3874             :         add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
    3875             : 
    3876             :         update_tg_cfs_util(cfs_rq, se, gcfs_rq);
    3877             :         update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
    3878             :         update_tg_cfs_load(cfs_rq, se, gcfs_rq);
    3879             : 
    3880             :         trace_pelt_cfs_tp(cfs_rq);
    3881             :         trace_pelt_se_tp(se);
    3882             : 
    3883             :         return 1;
    3884             : }
    3885             : 
    3886             : /*
    3887             :  * Check if we need to update the load and the utilization of a blocked
    3888             :  * group_entity:
    3889             :  */
    3890             : static inline bool skip_blocked_update(struct sched_entity *se)
    3891             : {
    3892             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3893             : 
    3894             :         /*
    3895             :          * If sched_entity still have not zero load or utilization, we have to
    3896             :          * decay it:
    3897             :          */
    3898             :         if (se->avg.load_avg || se->avg.util_avg)
    3899             :                 return false;
    3900             : 
    3901             :         /*
    3902             :          * If there is a pending propagation, we have to update the load and
    3903             :          * the utilization of the sched_entity:
    3904             :          */
    3905             :         if (gcfs_rq->propagate)
    3906             :                 return false;
    3907             : 
    3908             :         /*
    3909             :          * Otherwise, the load and the utilization of the sched_entity is
    3910             :          * already zero and there is no pending propagation, so it will be a
    3911             :          * waste of time to try to decay it:
    3912             :          */
    3913             :         return true;
    3914             : }
    3915             : 
    3916             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3917             : 
    3918             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
    3919             : 
    3920             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3921             : {
    3922             :         return 0;
    3923             : }
    3924             : 
    3925             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
    3926             : 
    3927             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3928             : 
    3929             : #ifdef CONFIG_NO_HZ_COMMON
    3930             : static inline void migrate_se_pelt_lag(struct sched_entity *se)
    3931             : {
    3932             :         u64 throttled = 0, now, lut;
    3933             :         struct cfs_rq *cfs_rq;
    3934             :         struct rq *rq;
    3935             :         bool is_idle;
    3936             : 
    3937             :         if (load_avg_is_decayed(&se->avg))
    3938             :                 return;
    3939             : 
    3940             :         cfs_rq = cfs_rq_of(se);
    3941             :         rq = rq_of(cfs_rq);
    3942             : 
    3943             :         rcu_read_lock();
    3944             :         is_idle = is_idle_task(rcu_dereference(rq->curr));
    3945             :         rcu_read_unlock();
    3946             : 
    3947             :         /*
    3948             :          * The lag estimation comes with a cost we don't want to pay all the
    3949             :          * time. Hence, limiting to the case where the source CPU is idle and
    3950             :          * we know we are at the greatest risk to have an outdated clock.
    3951             :          */
    3952             :         if (!is_idle)
    3953             :                 return;
    3954             : 
    3955             :         /*
    3956             :          * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
    3957             :          *
    3958             :          *   last_update_time (the cfs_rq's last_update_time)
    3959             :          *      = cfs_rq_clock_pelt()@cfs_rq_idle
    3960             :          *      = rq_clock_pelt()@cfs_rq_idle
    3961             :          *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
    3962             :          *
    3963             :          *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
    3964             :          *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
    3965             :          *
    3966             :          *   rq_idle_lag (delta between now and rq's update)
    3967             :          *      = sched_clock_cpu() - rq_clock()@rq_idle
    3968             :          *
    3969             :          * We can then write:
    3970             :          *
    3971             :          *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
    3972             :          *          sched_clock_cpu() - rq_clock()@rq_idle
    3973             :          * Where:
    3974             :          *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
    3975             :          *      rq_clock()@rq_idle      is rq->clock_idle
    3976             :          *      cfs->throttled_clock_pelt_time@cfs_rq_idle
    3977             :          *                              is cfs_rq->throttled_pelt_idle
    3978             :          */
    3979             : 
    3980             : #ifdef CONFIG_CFS_BANDWIDTH
    3981             :         throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
    3982             :         /* The clock has been stopped for throttling */
    3983             :         if (throttled == U64_MAX)
    3984             :                 return;
    3985             : #endif
    3986             :         now = u64_u32_load(rq->clock_pelt_idle);
    3987             :         /*
    3988             :          * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
    3989             :          * is observed the old clock_pelt_idle value and the new clock_idle,
    3990             :          * which lead to an underestimation. The opposite would lead to an
    3991             :          * overestimation.
    3992             :          */
    3993             :         smp_rmb();
    3994             :         lut = cfs_rq_last_update_time(cfs_rq);
    3995             : 
    3996             :         now -= throttled;
    3997             :         if (now < lut)
    3998             :                 /*
    3999             :                  * cfs_rq->avg.last_update_time is more recent than our
    4000             :                  * estimation, let's use it.
    4001             :                  */
    4002             :                 now = lut;
    4003             :         else
    4004             :                 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
    4005             : 
    4006             :         __update_load_avg_blocked_se(now, se);
    4007             : }
    4008             : #else
    4009             : static void migrate_se_pelt_lag(struct sched_entity *se) {}
    4010             : #endif
    4011             : 
    4012             : /**
    4013             :  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
    4014             :  * @now: current time, as per cfs_rq_clock_pelt()
    4015             :  * @cfs_rq: cfs_rq to update
    4016             :  *
    4017             :  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
    4018             :  * avg. The immediate corollary is that all (fair) tasks must be attached.
    4019             :  *
    4020             :  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
    4021             :  *
    4022             :  * Return: true if the load decayed or we removed load.
    4023             :  *
    4024             :  * Since both these conditions indicate a changed cfs_rq->avg.load we should
    4025             :  * call update_tg_load_avg() when this function returns true.
    4026             :  */
    4027             : static inline int
    4028             : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
    4029             : {
    4030             :         unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
    4031             :         struct sched_avg *sa = &cfs_rq->avg;
    4032             :         int decayed = 0;
    4033             : 
    4034             :         if (cfs_rq->removed.nr) {
    4035             :                 unsigned long r;
    4036             :                 u32 divider = get_pelt_divider(&cfs_rq->avg);
    4037             : 
    4038             :                 raw_spin_lock(&cfs_rq->removed.lock);
    4039             :                 swap(cfs_rq->removed.util_avg, removed_util);
    4040             :                 swap(cfs_rq->removed.load_avg, removed_load);
    4041             :                 swap(cfs_rq->removed.runnable_avg, removed_runnable);
    4042             :                 cfs_rq->removed.nr = 0;
    4043             :                 raw_spin_unlock(&cfs_rq->removed.lock);
    4044             : 
    4045             :                 r = removed_load;
    4046             :                 sub_positive(&sa->load_avg, r);
    4047             :                 sub_positive(&sa->load_sum, r * divider);
    4048             :                 /* See sa->util_sum below */
    4049             :                 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
    4050             : 
    4051             :                 r = removed_util;
    4052             :                 sub_positive(&sa->util_avg, r);
    4053             :                 sub_positive(&sa->util_sum, r * divider);
    4054             :                 /*
    4055             :                  * Because of rounding, se->util_sum might ends up being +1 more than
    4056             :                  * cfs->util_sum. Although this is not a problem by itself, detaching
    4057             :                  * a lot of tasks with the rounding problem between 2 updates of
    4058             :                  * util_avg (~1ms) can make cfs->util_sum becoming null whereas
    4059             :                  * cfs_util_avg is not.
    4060             :                  * Check that util_sum is still above its lower bound for the new
    4061             :                  * util_avg. Given that period_contrib might have moved since the last
    4062             :                  * sync, we are only sure that util_sum must be above or equal to
    4063             :                  *    util_avg * minimum possible divider
    4064             :                  */
    4065             :                 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
    4066             : 
    4067             :                 r = removed_runnable;
    4068             :                 sub_positive(&sa->runnable_avg, r);
    4069             :                 sub_positive(&sa->runnable_sum, r * divider);
    4070             :                 /* See sa->util_sum above */
    4071             :                 sa->runnable_sum = max_t(u32, sa->runnable_sum,
    4072             :                                               sa->runnable_avg * PELT_MIN_DIVIDER);
    4073             : 
    4074             :                 /*
    4075             :                  * removed_runnable is the unweighted version of removed_load so we
    4076             :                  * can use it to estimate removed_load_sum.
    4077             :                  */
    4078             :                 add_tg_cfs_propagate(cfs_rq,
    4079             :                         -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
    4080             : 
    4081             :                 decayed = 1;
    4082             :         }
    4083             : 
    4084             :         decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
    4085             :         u64_u32_store_copy(sa->last_update_time,
    4086             :                            cfs_rq->last_update_time_copy,
    4087             :                            sa->last_update_time);
    4088             :         return decayed;
    4089             : }
    4090             : 
    4091             : /**
    4092             :  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
    4093             :  * @cfs_rq: cfs_rq to attach to
    4094             :  * @se: sched_entity to attach
    4095             :  *
    4096             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    4097             :  * cfs_rq->avg.last_update_time being current.
    4098             :  */
    4099             : static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4100             : {
    4101             :         /*
    4102             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    4103             :          * See ___update_load_avg() for details.
    4104             :          */
    4105             :         u32 divider = get_pelt_divider(&cfs_rq->avg);
    4106             : 
    4107             :         /*
    4108             :          * When we attach the @se to the @cfs_rq, we must align the decay
    4109             :          * window because without that, really weird and wonderful things can
    4110             :          * happen.
    4111             :          *
    4112             :          * XXX illustrate
    4113             :          */
    4114             :         se->avg.last_update_time = cfs_rq->avg.last_update_time;
    4115             :         se->avg.period_contrib = cfs_rq->avg.period_contrib;
    4116             : 
    4117             :         /*
    4118             :          * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
    4119             :          * period_contrib. This isn't strictly correct, but since we're
    4120             :          * entirely outside of the PELT hierarchy, nobody cares if we truncate
    4121             :          * _sum a little.
    4122             :          */
    4123             :         se->avg.util_sum = se->avg.util_avg * divider;
    4124             : 
    4125             :         se->avg.runnable_sum = se->avg.runnable_avg * divider;
    4126             : 
    4127             :         se->avg.load_sum = se->avg.load_avg * divider;
    4128             :         if (se_weight(se) < se->avg.load_sum)
    4129             :                 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
    4130             :         else
    4131             :                 se->avg.load_sum = 1;
    4132             : 
    4133             :         enqueue_load_avg(cfs_rq, se);
    4134             :         cfs_rq->avg.util_avg += se->avg.util_avg;
    4135             :         cfs_rq->avg.util_sum += se->avg.util_sum;
    4136             :         cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
    4137             :         cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
    4138             : 
    4139             :         add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
    4140             : 
    4141             :         cfs_rq_util_change(cfs_rq, 0);
    4142             : 
    4143             :         trace_pelt_cfs_tp(cfs_rq);
    4144             : }
    4145             : 
    4146             : /**
    4147             :  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
    4148             :  * @cfs_rq: cfs_rq to detach from
    4149             :  * @se: sched_entity to detach
    4150             :  *
    4151             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    4152             :  * cfs_rq->avg.last_update_time being current.
    4153             :  */
    4154             : static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4155             : {
    4156             :         dequeue_load_avg(cfs_rq, se);
    4157             :         sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
    4158             :         sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
    4159             :         /* See update_cfs_rq_load_avg() */
    4160             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    4161             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    4162             : 
    4163             :         sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
    4164             :         sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
    4165             :         /* See update_cfs_rq_load_avg() */
    4166             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    4167             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    4168             : 
    4169             :         add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
    4170             : 
    4171             :         cfs_rq_util_change(cfs_rq, 0);
    4172             : 
    4173             :         trace_pelt_cfs_tp(cfs_rq);
    4174             : }
    4175             : 
    4176             : /*
    4177             :  * Optional action to be done while updating the load average
    4178             :  */
    4179             : #define UPDATE_TG       0x1
    4180             : #define SKIP_AGE_LOAD   0x2
    4181             : #define DO_ATTACH       0x4
    4182             : #define DO_DETACH       0x8
    4183             : 
    4184             : /* Update task and its cfs_rq load average */
    4185             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4186             : {
    4187             :         u64 now = cfs_rq_clock_pelt(cfs_rq);
    4188             :         int decayed;
    4189             : 
    4190             :         /*
    4191             :          * Track task load average for carrying it to new CPU after migrated, and
    4192             :          * track group sched_entity load average for task_h_load calc in migration
    4193             :          */
    4194             :         if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
    4195             :                 __update_load_avg_se(now, cfs_rq, se);
    4196             : 
    4197             :         decayed  = update_cfs_rq_load_avg(now, cfs_rq);
    4198             :         decayed |= propagate_entity_load_avg(se);
    4199             : 
    4200             :         if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
    4201             : 
    4202             :                 /*
    4203             :                  * DO_ATTACH means we're here from enqueue_entity().
    4204             :                  * !last_update_time means we've passed through
    4205             :                  * migrate_task_rq_fair() indicating we migrated.
    4206             :                  *
    4207             :                  * IOW we're enqueueing a task on a new CPU.
    4208             :                  */
    4209             :                 attach_entity_load_avg(cfs_rq, se);
    4210             :                 update_tg_load_avg(cfs_rq);
    4211             : 
    4212             :         } else if (flags & DO_DETACH) {
    4213             :                 /*
    4214             :                  * DO_DETACH means we're here from dequeue_entity()
    4215             :                  * and we are migrating task out of the CPU.
    4216             :                  */
    4217             :                 detach_entity_load_avg(cfs_rq, se);
    4218             :                 update_tg_load_avg(cfs_rq);
    4219             :         } else if (decayed) {
    4220             :                 cfs_rq_util_change(cfs_rq, 0);
    4221             : 
    4222             :                 if (flags & UPDATE_TG)
    4223             :                         update_tg_load_avg(cfs_rq);
    4224             :         }
    4225             : }
    4226             : 
    4227             : /*
    4228             :  * Synchronize entity load avg of dequeued entity without locking
    4229             :  * the previous rq.
    4230             :  */
    4231             : static void sync_entity_load_avg(struct sched_entity *se)
    4232             : {
    4233             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4234             :         u64 last_update_time;
    4235             : 
    4236             :         last_update_time = cfs_rq_last_update_time(cfs_rq);
    4237             :         __update_load_avg_blocked_se(last_update_time, se);
    4238             : }
    4239             : 
    4240             : /*
    4241             :  * Task first catches up with cfs_rq, and then subtract
    4242             :  * itself from the cfs_rq (task must be off the queue now).
    4243             :  */
    4244             : static void remove_entity_load_avg(struct sched_entity *se)
    4245             : {
    4246             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4247             :         unsigned long flags;
    4248             : 
    4249             :         /*
    4250             :          * tasks cannot exit without having gone through wake_up_new_task() ->
    4251             :          * enqueue_task_fair() which will have added things to the cfs_rq,
    4252             :          * so we can remove unconditionally.
    4253             :          */
    4254             : 
    4255             :         sync_entity_load_avg(se);
    4256             : 
    4257             :         raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
    4258             :         ++cfs_rq->removed.nr;
    4259             :         cfs_rq->removed.util_avg     += se->avg.util_avg;
    4260             :         cfs_rq->removed.load_avg     += se->avg.load_avg;
    4261             :         cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
    4262             :         raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
    4263             : }
    4264             : 
    4265             : static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
    4266             : {
    4267             :         return cfs_rq->avg.runnable_avg;
    4268             : }
    4269             : 
    4270             : static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
    4271             : {
    4272             :         return cfs_rq->avg.load_avg;
    4273             : }
    4274             : 
    4275             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
    4276             : 
    4277             : static inline unsigned long task_util(struct task_struct *p)
    4278             : {
    4279             :         return READ_ONCE(p->se.avg.util_avg);
    4280             : }
    4281             : 
    4282             : static inline unsigned long _task_util_est(struct task_struct *p)
    4283             : {
    4284             :         struct util_est ue = READ_ONCE(p->se.avg.util_est);
    4285             : 
    4286             :         return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
    4287             : }
    4288             : 
    4289             : static inline unsigned long task_util_est(struct task_struct *p)
    4290             : {
    4291             :         return max(task_util(p), _task_util_est(p));
    4292             : }
    4293             : 
    4294             : #ifdef CONFIG_UCLAMP_TASK
    4295             : static inline unsigned long uclamp_task_util(struct task_struct *p,
    4296             :                                              unsigned long uclamp_min,
    4297             :                                              unsigned long uclamp_max)
    4298             : {
    4299             :         return clamp(task_util_est(p), uclamp_min, uclamp_max);
    4300             : }
    4301             : #else
    4302             : static inline unsigned long uclamp_task_util(struct task_struct *p,
    4303             :                                              unsigned long uclamp_min,
    4304             :                                              unsigned long uclamp_max)
    4305             : {
    4306             :         return task_util_est(p);
    4307             : }
    4308             : #endif
    4309             : 
    4310             : static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
    4311             :                                     struct task_struct *p)
    4312             : {
    4313             :         unsigned int enqueued;
    4314             : 
    4315             :         if (!sched_feat(UTIL_EST))
    4316             :                 return;
    4317             : 
    4318             :         /* Update root cfs_rq's estimated utilization */
    4319             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4320             :         enqueued += _task_util_est(p);
    4321             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4322             : 
    4323             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4324             : }
    4325             : 
    4326             : static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
    4327             :                                     struct task_struct *p)
    4328             : {
    4329             :         unsigned int enqueued;
    4330             : 
    4331             :         if (!sched_feat(UTIL_EST))
    4332             :                 return;
    4333             : 
    4334             :         /* Update root cfs_rq's estimated utilization */
    4335             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4336             :         enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
    4337             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4338             : 
    4339             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4340             : }
    4341             : 
    4342             : #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
    4343             : 
    4344             : /*
    4345             :  * Check if a (signed) value is within a specified (unsigned) margin,
    4346             :  * based on the observation that:
    4347             :  *
    4348             :  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
    4349             :  *
    4350             :  * NOTE: this only works when value + margin < INT_MAX.
    4351             :  */
    4352             : static inline bool within_margin(int value, int margin)
    4353             : {
    4354             :         return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
    4355             : }
    4356             : 
    4357             : static inline void util_est_update(struct cfs_rq *cfs_rq,
    4358             :                                    struct task_struct *p,
    4359             :                                    bool task_sleep)
    4360             : {
    4361             :         long last_ewma_diff, last_enqueued_diff;
    4362             :         struct util_est ue;
    4363             : 
    4364             :         if (!sched_feat(UTIL_EST))
    4365             :                 return;
    4366             : 
    4367             :         /*
    4368             :          * Skip update of task's estimated utilization when the task has not
    4369             :          * yet completed an activation, e.g. being migrated.
    4370             :          */
    4371             :         if (!task_sleep)
    4372             :                 return;
    4373             : 
    4374             :         /*
    4375             :          * If the PELT values haven't changed since enqueue time,
    4376             :          * skip the util_est update.
    4377             :          */
    4378             :         ue = p->se.avg.util_est;
    4379             :         if (ue.enqueued & UTIL_AVG_UNCHANGED)
    4380             :                 return;
    4381             : 
    4382             :         last_enqueued_diff = ue.enqueued;
    4383             : 
    4384             :         /*
    4385             :          * Reset EWMA on utilization increases, the moving average is used only
    4386             :          * to smooth utilization decreases.
    4387             :          */
    4388             :         ue.enqueued = task_util(p);
    4389             :         if (sched_feat(UTIL_EST_FASTUP)) {
    4390             :                 if (ue.ewma < ue.enqueued) {
    4391             :                         ue.ewma = ue.enqueued;
    4392             :                         goto done;
    4393             :                 }
    4394             :         }
    4395             : 
    4396             :         /*
    4397             :          * Skip update of task's estimated utilization when its members are
    4398             :          * already ~1% close to its last activation value.
    4399             :          */
    4400             :         last_ewma_diff = ue.enqueued - ue.ewma;
    4401             :         last_enqueued_diff -= ue.enqueued;
    4402             :         if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
    4403             :                 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
    4404             :                         goto done;
    4405             : 
    4406             :                 return;
    4407             :         }
    4408             : 
    4409             :         /*
    4410             :          * To avoid overestimation of actual task utilization, skip updates if
    4411             :          * we cannot grant there is idle time in this CPU.
    4412             :          */
    4413             :         if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
    4414             :                 return;
    4415             : 
    4416             :         /*
    4417             :          * Update Task's estimated utilization
    4418             :          *
    4419             :          * When *p completes an activation we can consolidate another sample
    4420             :          * of the task size. This is done by storing the current PELT value
    4421             :          * as ue.enqueued and by using this value to update the Exponential
    4422             :          * Weighted Moving Average (EWMA):
    4423             :          *
    4424             :          *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
    4425             :          *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
    4426             :          *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
    4427             :          *          = w * (      last_ewma_diff            ) +     ewma(t-1)
    4428             :          *          = w * (last_ewma_diff  +  ewma(t-1) / w)
    4429             :          *
    4430             :          * Where 'w' is the weight of new samples, which is configured to be
    4431             :          * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
    4432             :          */
    4433             :         ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
    4434             :         ue.ewma  += last_ewma_diff;
    4435             :         ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
    4436             : done:
    4437             :         ue.enqueued |= UTIL_AVG_UNCHANGED;
    4438             :         WRITE_ONCE(p->se.avg.util_est, ue);
    4439             : 
    4440             :         trace_sched_util_est_se_tp(&p->se);
    4441             : }
    4442             : 
    4443             : static inline int util_fits_cpu(unsigned long util,
    4444             :                                 unsigned long uclamp_min,
    4445             :                                 unsigned long uclamp_max,
    4446             :                                 int cpu)
    4447             : {
    4448             :         unsigned long capacity_orig, capacity_orig_thermal;
    4449             :         unsigned long capacity = capacity_of(cpu);
    4450             :         bool fits, uclamp_max_fits;
    4451             : 
    4452             :         /*
    4453             :          * Check if the real util fits without any uclamp boost/cap applied.
    4454             :          */
    4455             :         fits = fits_capacity(util, capacity);
    4456             : 
    4457             :         if (!uclamp_is_used())
    4458             :                 return fits;
    4459             : 
    4460             :         /*
    4461             :          * We must use capacity_orig_of() for comparing against uclamp_min and
    4462             :          * uclamp_max. We only care about capacity pressure (by using
    4463             :          * capacity_of()) for comparing against the real util.
    4464             :          *
    4465             :          * If a task is boosted to 1024 for example, we don't want a tiny
    4466             :          * pressure to skew the check whether it fits a CPU or not.
    4467             :          *
    4468             :          * Similarly if a task is capped to capacity_orig_of(little_cpu), it
    4469             :          * should fit a little cpu even if there's some pressure.
    4470             :          *
    4471             :          * Only exception is for thermal pressure since it has a direct impact
    4472             :          * on available OPP of the system.
    4473             :          *
    4474             :          * We honour it for uclamp_min only as a drop in performance level
    4475             :          * could result in not getting the requested minimum performance level.
    4476             :          *
    4477             :          * For uclamp_max, we can tolerate a drop in performance level as the
    4478             :          * goal is to cap the task. So it's okay if it's getting less.
    4479             :          */
    4480             :         capacity_orig = capacity_orig_of(cpu);
    4481             :         capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
    4482             : 
    4483             :         /*
    4484             :          * We want to force a task to fit a cpu as implied by uclamp_max.
    4485             :          * But we do have some corner cases to cater for..
    4486             :          *
    4487             :          *
    4488             :          *                                 C=z
    4489             :          *   |                             ___
    4490             :          *   |                  C=y       |   |
    4491             :          *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
    4492             :          *   |      C=x        |   |      |   |
    4493             :          *   |      ___        |   |      |   |
    4494             :          *   |     |   |       |   |      |   |    (util somewhere in this region)
    4495             :          *   |     |   |       |   |      |   |
    4496             :          *   |     |   |       |   |      |   |
    4497             :          *   +----------------------------------------
    4498             :          *         cpu0        cpu1       cpu2
    4499             :          *
    4500             :          *   In the above example if a task is capped to a specific performance
    4501             :          *   point, y, then when:
    4502             :          *
    4503             :          *   * util = 80% of x then it does not fit on cpu0 and should migrate
    4504             :          *     to cpu1
    4505             :          *   * util = 80% of y then it is forced to fit on cpu1 to honour
    4506             :          *     uclamp_max request.
    4507             :          *
    4508             :          *   which is what we're enforcing here. A task always fits if
    4509             :          *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
    4510             :          *   the normal upmigration rules should withhold still.
    4511             :          *
    4512             :          *   Only exception is when we are on max capacity, then we need to be
    4513             :          *   careful not to block overutilized state. This is so because:
    4514             :          *
    4515             :          *     1. There's no concept of capping at max_capacity! We can't go
    4516             :          *        beyond this performance level anyway.
    4517             :          *     2. The system is being saturated when we're operating near
    4518             :          *        max capacity, it doesn't make sense to block overutilized.
    4519             :          */
    4520             :         uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
    4521             :         uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
    4522             :         fits = fits || uclamp_max_fits;
    4523             : 
    4524             :         /*
    4525             :          *
    4526             :          *                                 C=z
    4527             :          *   |                             ___       (region a, capped, util >= uclamp_max)
    4528             :          *   |                  C=y       |   |
    4529             :          *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
    4530             :          *   |      C=x        |   |      |   |
    4531             :          *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
    4532             :          *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
    4533             :          *   |     |   |       |   |      |   |
    4534             :          *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
    4535             :          *   +----------------------------------------
    4536             :          *         cpu0        cpu1       cpu2
    4537             :          *
    4538             :          * a) If util > uclamp_max, then we're capped, we don't care about
    4539             :          *    actual fitness value here. We only care if uclamp_max fits
    4540             :          *    capacity without taking margin/pressure into account.
    4541             :          *    See comment above.
    4542             :          *
    4543             :          * b) If uclamp_min <= util <= uclamp_max, then the normal
    4544             :          *    fits_capacity() rules apply. Except we need to ensure that we
    4545             :          *    enforce we remain within uclamp_max, see comment above.
    4546             :          *
    4547             :          * c) If util < uclamp_min, then we are boosted. Same as (b) but we
    4548             :          *    need to take into account the boosted value fits the CPU without
    4549             :          *    taking margin/pressure into account.
    4550             :          *
    4551             :          * Cases (a) and (b) are handled in the 'fits' variable already. We
    4552             :          * just need to consider an extra check for case (c) after ensuring we
    4553             :          * handle the case uclamp_min > uclamp_max.
    4554             :          */
    4555             :         uclamp_min = min(uclamp_min, uclamp_max);
    4556             :         if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
    4557             :                 return -1;
    4558             : 
    4559             :         return fits;
    4560             : }
    4561             : 
    4562             : static inline int task_fits_cpu(struct task_struct *p, int cpu)
    4563             : {
    4564             :         unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
    4565             :         unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
    4566             :         unsigned long util = task_util_est(p);
    4567             :         /*
    4568             :          * Return true only if the cpu fully fits the task requirements, which
    4569             :          * include the utilization but also the performance hints.
    4570             :          */
    4571             :         return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
    4572             : }
    4573             : 
    4574             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
    4575             : {
    4576             :         if (!sched_asym_cpucap_active())
    4577             :                 return;
    4578             : 
    4579             :         if (!p || p->nr_cpus_allowed == 1) {
    4580             :                 rq->misfit_task_load = 0;
    4581             :                 return;
    4582             :         }
    4583             : 
    4584             :         if (task_fits_cpu(p, cpu_of(rq))) {
    4585             :                 rq->misfit_task_load = 0;
    4586             :                 return;
    4587             :         }
    4588             : 
    4589             :         /*
    4590             :          * Make sure that misfit_task_load will not be null even if
    4591             :          * task_h_load() returns 0.
    4592             :          */
    4593             :         rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
    4594             : }
    4595             : 
    4596             : #else /* CONFIG_SMP */
    4597             : 
    4598             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    4599             : {
    4600             :         return true;
    4601             : }
    4602             : 
    4603             : #define UPDATE_TG       0x0
    4604             : #define SKIP_AGE_LOAD   0x0
    4605             : #define DO_ATTACH       0x0
    4606             : #define DO_DETACH       0x0
    4607             : 
    4608             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
    4609             : {
    4610        6981 :         cfs_rq_util_change(cfs_rq, 0);
    4611             : }
    4612             : 
    4613             : static inline void remove_entity_load_avg(struct sched_entity *se) {}
    4614             : 
    4615             : static inline void
    4616             : attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4617             : static inline void
    4618             : detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4619             : 
    4620             : static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
    4621             : {
    4622             :         return 0;
    4623             : }
    4624             : 
    4625             : static inline void
    4626             : util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4627             : 
    4628             : static inline void
    4629             : util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4630             : 
    4631             : static inline void
    4632             : util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
    4633             :                 bool task_sleep) {}
    4634             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
    4635             : 
    4636             : #endif /* CONFIG_SMP */
    4637             : 
    4638             : static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4639             : {
    4640             : #ifdef CONFIG_SCHED_DEBUG
    4641        4344 :         s64 d = se->vruntime - cfs_rq->min_vruntime;
    4642             : 
    4643             :         if (d < 0)
    4644             :                 d = -d;
    4645             : 
    4646             :         if (d > 3*sysctl_sched_latency)
    4647             :                 schedstat_inc(cfs_rq->nr_spread_over);
    4648             : #endif
    4649             : }
    4650             : 
    4651             : static void
    4652        2128 : place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
    4653             : {
    4654        2128 :         u64 vruntime = cfs_rq->min_vruntime;
    4655             :         u64 sleep_time;
    4656             : 
    4657             :         /*
    4658             :          * The 'current' period is already promised to the current tasks,
    4659             :          * however the extra weight of the new task will slow them down a
    4660             :          * little, place the new task so that it fits in the slot that
    4661             :          * stays open at the end.
    4662             :          */
    4663        2128 :         if (initial && sched_feat(START_DEBIT))
    4664         340 :                 vruntime += sched_vslice(cfs_rq, se);
    4665             : 
    4666             :         /* sleeps up to a single latency don't count. */
    4667        2128 :         if (!initial) {
    4668             :                 unsigned long thresh;
    4669             : 
    4670        1788 :                 if (se_is_idle(se))
    4671             :                         thresh = sysctl_sched_min_granularity;
    4672             :                 else
    4673        1788 :                         thresh = sysctl_sched_latency;
    4674             : 
    4675             :                 /*
    4676             :                  * Halve their sleep time's effect, to allow
    4677             :                  * for a gentler effect of sleepers:
    4678             :                  */
    4679        1788 :                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
    4680        1788 :                         thresh >>= 1;
    4681             : 
    4682        1788 :                 vruntime -= thresh;
    4683             :         }
    4684             : 
    4685             :         /*
    4686             :          * Pull vruntime of the entity being placed to the base level of
    4687             :          * cfs_rq, to prevent boosting it if placed backwards.  If the entity
    4688             :          * slept for a long time, don't even try to compare its vruntime with
    4689             :          * the base as it may be too far off and the comparison may get
    4690             :          * inversed due to s64 overflow.
    4691             :          */
    4692        4256 :         sleep_time = rq_clock_task(rq_of(cfs_rq)) - se->exec_start;
    4693        2128 :         if ((s64)sleep_time > 60LL * NSEC_PER_SEC)
    4694           0 :                 se->vruntime = vruntime;
    4695             :         else
    4696        4256 :                 se->vruntime = max_vruntime(se->vruntime, vruntime);
    4697        2128 : }
    4698             : 
    4699             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
    4700             : 
    4701             : static inline bool cfs_bandwidth_used(void);
    4702             : 
    4703             : /*
    4704             :  * MIGRATION
    4705             :  *
    4706             :  *      dequeue
    4707             :  *        update_curr()
    4708             :  *          update_min_vruntime()
    4709             :  *        vruntime -= min_vruntime
    4710             :  *
    4711             :  *      enqueue
    4712             :  *        update_curr()
    4713             :  *          update_min_vruntime()
    4714             :  *        vruntime += min_vruntime
    4715             :  *
    4716             :  * this way the vruntime transition between RQs is done when both
    4717             :  * min_vruntime are up-to-date.
    4718             :  *
    4719             :  * WAKEUP (remote)
    4720             :  *
    4721             :  *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
    4722             :  *        vruntime -= min_vruntime
    4723             :  *
    4724             :  *      enqueue
    4725             :  *        update_curr()
    4726             :  *          update_min_vruntime()
    4727             :  *        vruntime += min_vruntime
    4728             :  *
    4729             :  * this way we don't have the most up-to-date min_vruntime on the originating
    4730             :  * CPU and an up-to-date min_vruntime on the destination CPU.
    4731             :  */
    4732             : 
    4733             : static void
    4734        2132 : enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4735             : {
    4736        2132 :         bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
    4737        2132 :         bool curr = cfs_rq->curr == se;
    4738             : 
    4739             :         /*
    4740             :          * If we're the current task, we must renormalise before calling
    4741             :          * update_curr().
    4742             :          */
    4743        2132 :         if (renorm && curr)
    4744           0 :                 se->vruntime += cfs_rq->min_vruntime;
    4745             : 
    4746        2132 :         update_curr(cfs_rq);
    4747             : 
    4748             :         /*
    4749             :          * Otherwise, renormalise after, such that we're placed at the current
    4750             :          * moment in time, instead of some random moment in the past. Being
    4751             :          * placed in the past could significantly boost this task to the
    4752             :          * fairness detriment of existing tasks.
    4753             :          */
    4754        2132 :         if (renorm && !curr)
    4755         344 :                 se->vruntime += cfs_rq->min_vruntime;
    4756             : 
    4757             :         /*
    4758             :          * When enqueuing a sched_entity, we must:
    4759             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4760             :          *   - For group_entity, update its runnable_weight to reflect the new
    4761             :          *     h_nr_running of its group cfs_rq.
    4762             :          *   - For group_entity, update its weight to reflect the new share of
    4763             :          *     its group cfs_rq
    4764             :          *   - Add its new weight to cfs_rq->load.weight
    4765             :          */
    4766        2132 :         update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
    4767        2132 :         se_update_runnable(se);
    4768        2132 :         update_cfs_group(se);
    4769        4264 :         account_entity_enqueue(cfs_rq, se);
    4770             : 
    4771        2132 :         if (flags & ENQUEUE_WAKEUP)
    4772        1788 :                 place_entity(cfs_rq, se, 0);
    4773             : 
    4774             :         check_schedstat_required();
    4775        2132 :         update_stats_enqueue_fair(cfs_rq, se, flags);
    4776        2132 :         check_spread(cfs_rq, se);
    4777        2132 :         if (!curr)
    4778        2132 :                 __enqueue_entity(cfs_rq, se);
    4779        2132 :         se->on_rq = 1;
    4780             : 
    4781             :         if (cfs_rq->nr_running == 1) {
    4782             :                 check_enqueue_throttle(cfs_rq);
    4783             :                 if (!throttled_hierarchy(cfs_rq))
    4784             :                         list_add_leaf_cfs_rq(cfs_rq);
    4785             :         }
    4786        2132 : }
    4787             : 
    4788             : static void __clear_buddies_last(struct sched_entity *se)
    4789             : {
    4790           0 :         for_each_sched_entity(se) {
    4791           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4792           0 :                 if (cfs_rq->last != se)
    4793             :                         break;
    4794             : 
    4795           0 :                 cfs_rq->last = NULL;
    4796             :         }
    4797             : }
    4798             : 
    4799             : static void __clear_buddies_next(struct sched_entity *se)
    4800             : {
    4801         746 :         for_each_sched_entity(se) {
    4802        1492 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4803         746 :                 if (cfs_rq->next != se)
    4804             :                         break;
    4805             : 
    4806         746 :                 cfs_rq->next = NULL;
    4807             :         }
    4808             : }
    4809             : 
    4810             : static void __clear_buddies_skip(struct sched_entity *se)
    4811             : {
    4812           0 :         for_each_sched_entity(se) {
    4813           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4814           0 :                 if (cfs_rq->skip != se)
    4815             :                         break;
    4816             : 
    4817           0 :                 cfs_rq->skip = NULL;
    4818             :         }
    4819             : }
    4820             : 
    4821        4468 : static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4822             : {
    4823        4468 :         if (cfs_rq->last == se)
    4824             :                 __clear_buddies_last(se);
    4825             : 
    4826        4468 :         if (cfs_rq->next == se)
    4827             :                 __clear_buddies_next(se);
    4828             : 
    4829        4468 :         if (cfs_rq->skip == se)
    4830             :                 __clear_buddies_skip(se);
    4831        4468 : }
    4832             : 
    4833             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4834             : 
    4835             : static void
    4836        2130 : dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4837             : {
    4838        2130 :         int action = UPDATE_TG;
    4839             : 
    4840        4260 :         if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
    4841             :                 action |= DO_DETACH;
    4842             : 
    4843             :         /*
    4844             :          * Update run-time statistics of the 'current'.
    4845             :          */
    4846        2130 :         update_curr(cfs_rq);
    4847             : 
    4848             :         /*
    4849             :          * When dequeuing a sched_entity, we must:
    4850             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4851             :          *   - For group_entity, update its runnable_weight to reflect the new
    4852             :          *     h_nr_running of its group cfs_rq.
    4853             :          *   - Subtract its previous weight from cfs_rq->load.weight.
    4854             :          *   - For group entity, update its weight to reflect the new share
    4855             :          *     of its group cfs_rq.
    4856             :          */
    4857        2130 :         update_load_avg(cfs_rq, se, action);
    4858        2130 :         se_update_runnable(se);
    4859             : 
    4860        2130 :         update_stats_dequeue_fair(cfs_rq, se, flags);
    4861             : 
    4862        2130 :         clear_buddies(cfs_rq, se);
    4863             : 
    4864        2130 :         if (se != cfs_rq->curr)
    4865             :                 __dequeue_entity(cfs_rq, se);
    4866        2130 :         se->on_rq = 0;
    4867        4260 :         account_entity_dequeue(cfs_rq, se);
    4868             : 
    4869             :         /*
    4870             :          * Normalize after update_curr(); which will also have moved
    4871             :          * min_vruntime if @se is the one holding it back. But before doing
    4872             :          * update_min_vruntime() again, which will discount @se's position and
    4873             :          * can move min_vruntime forward still more.
    4874             :          */
    4875        2130 :         if (!(flags & DEQUEUE_SLEEP))
    4876           4 :                 se->vruntime -= cfs_rq->min_vruntime;
    4877             : 
    4878             :         /* return excess runtime on last dequeue */
    4879        2130 :         return_cfs_rq_runtime(cfs_rq);
    4880             : 
    4881        2130 :         update_cfs_group(se);
    4882             : 
    4883             :         /*
    4884             :          * Now advance min_vruntime if @se was the entity holding it back,
    4885             :          * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
    4886             :          * put back on, and if we advance min_vruntime, we'll be placed back
    4887             :          * further than we started -- ie. we'll be penalized.
    4888             :          */
    4889        2130 :         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
    4890        2126 :                 update_min_vruntime(cfs_rq);
    4891             : 
    4892             :         if (cfs_rq->nr_running == 0)
    4893             :                 update_idle_cfs_rq_clock_pelt(cfs_rq);
    4894        2130 : }
    4895             : 
    4896             : /*
    4897             :  * Preempt the current task with a newly woken task if needed:
    4898             :  */
    4899             : static void
    4900         125 : check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4901             : {
    4902             :         unsigned long ideal_runtime, delta_exec;
    4903             :         struct sched_entity *se;
    4904             :         s64 delta;
    4905             : 
    4906             :         /*
    4907             :          * When many tasks blow up the sched_period; it is possible that
    4908             :          * sched_slice() reports unusually large results (when many tasks are
    4909             :          * very light for example). Therefore impose a maximum.
    4910             :          */
    4911         125 :         ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
    4912             : 
    4913         125 :         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
    4914         125 :         if (delta_exec > ideal_runtime) {
    4915         125 :                 resched_curr(rq_of(cfs_rq));
    4916             :                 /*
    4917             :                  * The current task ran long enough, ensure it doesn't get
    4918             :                  * re-elected due to buddy favours.
    4919             :                  */
    4920         125 :                 clear_buddies(cfs_rq, curr);
    4921         125 :                 return;
    4922             :         }
    4923             : 
    4924             :         /*
    4925             :          * Ensure that a task that missed wakeup preemption by a
    4926             :          * narrow margin doesn't have to wait for a full slice.
    4927             :          * This also mitigates buddy induced latencies under load.
    4928             :          */
    4929           0 :         if (delta_exec < sysctl_sched_min_granularity)
    4930             :                 return;
    4931             : 
    4932           0 :         se = __pick_first_entity(cfs_rq);
    4933           0 :         delta = curr->vruntime - se->vruntime;
    4934             : 
    4935           0 :         if (delta < 0)
    4936             :                 return;
    4937             : 
    4938           0 :         if (delta > ideal_runtime)
    4939           0 :                 resched_curr(rq_of(cfs_rq));
    4940             : }
    4941             : 
    4942             : static void
    4943        2213 : set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4944             : {
    4945        2213 :         clear_buddies(cfs_rq, se);
    4946             : 
    4947             :         /* 'current' is not kept within the tree. */
    4948        2213 :         if (se->on_rq) {
    4949             :                 /*
    4950             :                  * Any task has to be enqueued before it get to execute on
    4951             :                  * a CPU. So account for the time it spent waiting on the
    4952             :                  * runqueue.
    4953             :                  */
    4954        4426 :                 update_stats_wait_end_fair(cfs_rq, se);
    4955             :                 __dequeue_entity(cfs_rq, se);
    4956             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    4957             :         }
    4958             : 
    4959        4426 :         update_stats_curr_start(cfs_rq, se);
    4960        2213 :         cfs_rq->curr = se;
    4961             : 
    4962             :         /*
    4963             :          * Track our maximum slice length, if the CPU's load is at
    4964             :          * least twice that of our own weight (i.e. dont track it
    4965             :          * when there are only lesser-weight tasks around):
    4966             :          */
    4967             :         if (schedstat_enabled() &&
    4968             :             rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
    4969             :                 struct sched_statistics *stats;
    4970             : 
    4971             :                 stats = __schedstats_from_se(se);
    4972             :                 __schedstat_set(stats->slice_max,
    4973             :                                 max((u64)stats->slice_max,
    4974             :                                     se->sum_exec_runtime - se->prev_sum_exec_runtime));
    4975             :         }
    4976             : 
    4977        2213 :         se->prev_sum_exec_runtime = se->sum_exec_runtime;
    4978        2213 : }
    4979             : 
    4980             : static int
    4981             : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
    4982             : 
    4983             : /*
    4984             :  * Pick the next process, keeping these things in mind, in this order:
    4985             :  * 1) keep things fair between processes/task groups
    4986             :  * 2) pick the "next" process, since someone really wants that to run
    4987             :  * 3) pick the "last" process, for cache locality
    4988             :  * 4) do not run the "skip" process, if something else is available
    4989             :  */
    4990             : static struct sched_entity *
    4991        2209 : pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4992             : {
    4993        2209 :         struct sched_entity *left = __pick_first_entity(cfs_rq);
    4994             :         struct sched_entity *se;
    4995             : 
    4996             :         /*
    4997             :          * If curr is set we have to see if its left of the leftmost entity
    4998             :          * still in the tree, provided there was anything in the tree at all.
    4999             :          */
    5000        2209 :         if (!left || (curr && entity_before(curr, left)))
    5001             :                 left = curr;
    5002             : 
    5003        2209 :         se = left; /* ideally we run the leftmost entity */
    5004             : 
    5005             :         /*
    5006             :          * Avoid running the skip buddy, if running something else can
    5007             :          * be done without getting too unfair.
    5008             :          */
    5009        2209 :         if (cfs_rq->skip && cfs_rq->skip == se) {
    5010             :                 struct sched_entity *second;
    5011             : 
    5012           0 :                 if (se == curr) {
    5013             :                         second = __pick_first_entity(cfs_rq);
    5014             :                 } else {
    5015           0 :                         second = __pick_next_entity(se);
    5016           0 :                         if (!second || (curr && entity_before(curr, second)))
    5017             :                                 second = curr;
    5018             :                 }
    5019             : 
    5020           0 :                 if (second && wakeup_preempt_entity(second, left) < 1)
    5021           0 :                         se = second;
    5022             :         }
    5023             : 
    5024        2209 :         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
    5025             :                 /*
    5026             :                  * Someone really wants this to run. If it's not unfair, run it.
    5027             :                  */
    5028         746 :                 se = cfs_rq->next;
    5029        1463 :         } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
    5030             :                 /*
    5031             :                  * Prefer last buddy, try to return the CPU to a preempted task.
    5032             :                  */
    5033           0 :                 se = cfs_rq->last;
    5034             :         }
    5035             : 
    5036        2209 :         return se;
    5037             : }
    5038             : 
    5039             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    5040             : 
    5041        2212 : static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    5042             : {
    5043             :         /*
    5044             :          * If still on the runqueue then deactivate_task()
    5045             :          * was not called and update_curr() has to be done:
    5046             :          */
    5047        2212 :         if (prev->on_rq)
    5048          82 :                 update_curr(cfs_rq);
    5049             : 
    5050             :         /* throttle cfs_rqs exceeding runtime */
    5051        2212 :         check_cfs_rq_runtime(cfs_rq);
    5052             : 
    5053        2212 :         check_spread(cfs_rq, prev);
    5054             : 
    5055        2212 :         if (prev->on_rq) {
    5056          82 :                 update_stats_wait_start_fair(cfs_rq, prev);
    5057             :                 /* Put 'current' back into the tree. */
    5058          82 :                 __enqueue_entity(cfs_rq, prev);
    5059             :                 /* in !on_rq case, update occurred at dequeue */
    5060          82 :                 update_load_avg(cfs_rq, prev, 0);
    5061             :         }
    5062        2212 :         cfs_rq->curr = NULL;
    5063        2212 : }
    5064             : 
    5065             : static void
    5066        2719 : entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
    5067             : {
    5068             :         /*
    5069             :          * Update run-time statistics of the 'current'.
    5070             :          */
    5071        2719 :         update_curr(cfs_rq);
    5072             : 
    5073             :         /*
    5074             :          * Ensure that runnable average is periodically updated.
    5075             :          */
    5076        2719 :         update_load_avg(cfs_rq, curr, UPDATE_TG);
    5077        2719 :         update_cfs_group(curr);
    5078             : 
    5079             : #ifdef CONFIG_SCHED_HRTICK
    5080             :         /*
    5081             :          * queued ticks are scheduled to match the slice, so don't bother
    5082             :          * validating it and just reschedule.
    5083             :          */
    5084             :         if (queued) {
    5085             :                 resched_curr(rq_of(cfs_rq));
    5086             :                 return;
    5087             :         }
    5088             :         /*
    5089             :          * don't let the period tick interfere with the hrtick preemption
    5090             :          */
    5091             :         if (!sched_feat(DOUBLE_TICK) &&
    5092             :                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
    5093             :                 return;
    5094             : #endif
    5095             : 
    5096        2719 :         if (cfs_rq->nr_running > 1)
    5097         125 :                 check_preempt_tick(cfs_rq, curr);
    5098        2719 : }
    5099             : 
    5100             : 
    5101             : /**************************************************
    5102             :  * CFS bandwidth control machinery
    5103             :  */
    5104             : 
    5105             : #ifdef CONFIG_CFS_BANDWIDTH
    5106             : 
    5107             : #ifdef CONFIG_JUMP_LABEL
    5108             : static struct static_key __cfs_bandwidth_used;
    5109             : 
    5110             : static inline bool cfs_bandwidth_used(void)
    5111             : {
    5112             :         return static_key_false(&__cfs_bandwidth_used);
    5113             : }
    5114             : 
    5115             : void cfs_bandwidth_usage_inc(void)
    5116             : {
    5117             :         static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
    5118             : }
    5119             : 
    5120             : void cfs_bandwidth_usage_dec(void)
    5121             : {
    5122             :         static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
    5123             : }
    5124             : #else /* CONFIG_JUMP_LABEL */
    5125             : static bool cfs_bandwidth_used(void)
    5126             : {
    5127             :         return true;
    5128             : }
    5129             : 
    5130             : void cfs_bandwidth_usage_inc(void) {}
    5131             : void cfs_bandwidth_usage_dec(void) {}
    5132             : #endif /* CONFIG_JUMP_LABEL */
    5133             : 
    5134             : /*
    5135             :  * default period for cfs group bandwidth.
    5136             :  * default: 0.1s, units: nanoseconds
    5137             :  */
    5138             : static inline u64 default_cfs_period(void)
    5139             : {
    5140             :         return 100000000ULL;
    5141             : }
    5142             : 
    5143             : static inline u64 sched_cfs_bandwidth_slice(void)
    5144             : {
    5145             :         return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
    5146             : }
    5147             : 
    5148             : /*
    5149             :  * Replenish runtime according to assigned quota. We use sched_clock_cpu
    5150             :  * directly instead of rq->clock to avoid adding additional synchronization
    5151             :  * around rq->lock.
    5152             :  *
    5153             :  * requires cfs_b->lock
    5154             :  */
    5155             : void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
    5156             : {
    5157             :         s64 runtime;
    5158             : 
    5159             :         if (unlikely(cfs_b->quota == RUNTIME_INF))
    5160             :                 return;
    5161             : 
    5162             :         cfs_b->runtime += cfs_b->quota;
    5163             :         runtime = cfs_b->runtime_snap - cfs_b->runtime;
    5164             :         if (runtime > 0) {
    5165             :                 cfs_b->burst_time += runtime;
    5166             :                 cfs_b->nr_burst++;
    5167             :         }
    5168             : 
    5169             :         cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
    5170             :         cfs_b->runtime_snap = cfs_b->runtime;
    5171             : }
    5172             : 
    5173             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    5174             : {
    5175             :         return &tg->cfs_bandwidth;
    5176             : }
    5177             : 
    5178             : /* returns 0 on failure to allocate runtime */
    5179             : static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
    5180             :                                    struct cfs_rq *cfs_rq, u64 target_runtime)
    5181             : {
    5182             :         u64 min_amount, amount = 0;
    5183             : 
    5184             :         lockdep_assert_held(&cfs_b->lock);
    5185             : 
    5186             :         /* note: this is a positive sum as runtime_remaining <= 0 */
    5187             :         min_amount = target_runtime - cfs_rq->runtime_remaining;
    5188             : 
    5189             :         if (cfs_b->quota == RUNTIME_INF)
    5190             :                 amount = min_amount;
    5191             :         else {
    5192             :                 start_cfs_bandwidth(cfs_b);
    5193             : 
    5194             :                 if (cfs_b->runtime > 0) {
    5195             :                         amount = min(cfs_b->runtime, min_amount);
    5196             :                         cfs_b->runtime -= amount;
    5197             :                         cfs_b->idle = 0;
    5198             :                 }
    5199             :         }
    5200             : 
    5201             :         cfs_rq->runtime_remaining += amount;
    5202             : 
    5203             :         return cfs_rq->runtime_remaining > 0;
    5204             : }
    5205             : 
    5206             : /* returns 0 on failure to allocate runtime */
    5207             : static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5208             : {
    5209             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5210             :         int ret;
    5211             : 
    5212             :         raw_spin_lock(&cfs_b->lock);
    5213             :         ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
    5214             :         raw_spin_unlock(&cfs_b->lock);
    5215             : 
    5216             :         return ret;
    5217             : }
    5218             : 
    5219             : static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    5220             : {
    5221             :         /* dock delta_exec before expiring quota (as it could span periods) */
    5222             :         cfs_rq->runtime_remaining -= delta_exec;
    5223             : 
    5224             :         if (likely(cfs_rq->runtime_remaining > 0))
    5225             :                 return;
    5226             : 
    5227             :         if (cfs_rq->throttled)
    5228             :                 return;
    5229             :         /*
    5230             :          * if we're unable to extend our runtime we resched so that the active
    5231             :          * hierarchy can be throttled
    5232             :          */
    5233             :         if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
    5234             :                 resched_curr(rq_of(cfs_rq));
    5235             : }
    5236             : 
    5237             : static __always_inline
    5238             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    5239             : {
    5240             :         if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
    5241             :                 return;
    5242             : 
    5243             :         __account_cfs_rq_runtime(cfs_rq, delta_exec);
    5244             : }
    5245             : 
    5246             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    5247             : {
    5248             :         return cfs_bandwidth_used() && cfs_rq->throttled;
    5249             : }
    5250             : 
    5251             : /* check whether cfs_rq, or any parent, is throttled */
    5252             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    5253             : {
    5254             :         return cfs_bandwidth_used() && cfs_rq->throttle_count;
    5255             : }
    5256             : 
    5257             : /*
    5258             :  * Ensure that neither of the group entities corresponding to src_cpu or
    5259             :  * dest_cpu are members of a throttled hierarchy when performing group
    5260             :  * load-balance operations.
    5261             :  */
    5262             : static inline int throttled_lb_pair(struct task_group *tg,
    5263             :                                     int src_cpu, int dest_cpu)
    5264             : {
    5265             :         struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
    5266             : 
    5267             :         src_cfs_rq = tg->cfs_rq[src_cpu];
    5268             :         dest_cfs_rq = tg->cfs_rq[dest_cpu];
    5269             : 
    5270             :         return throttled_hierarchy(src_cfs_rq) ||
    5271             :                throttled_hierarchy(dest_cfs_rq);
    5272             : }
    5273             : 
    5274             : static int tg_unthrottle_up(struct task_group *tg, void *data)
    5275             : {
    5276             :         struct rq *rq = data;
    5277             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5278             : 
    5279             :         cfs_rq->throttle_count--;
    5280             :         if (!cfs_rq->throttle_count) {
    5281             :                 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
    5282             :                                              cfs_rq->throttled_clock_pelt;
    5283             : 
    5284             :                 /* Add cfs_rq with load or one or more already running entities to the list */
    5285             :                 if (!cfs_rq_is_decayed(cfs_rq))
    5286             :                         list_add_leaf_cfs_rq(cfs_rq);
    5287             :         }
    5288             : 
    5289             :         return 0;
    5290             : }
    5291             : 
    5292             : static int tg_throttle_down(struct task_group *tg, void *data)
    5293             : {
    5294             :         struct rq *rq = data;
    5295             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5296             : 
    5297             :         /* group is entering throttled state, stop time */
    5298             :         if (!cfs_rq->throttle_count) {
    5299             :                 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
    5300             :                 list_del_leaf_cfs_rq(cfs_rq);
    5301             :         }
    5302             :         cfs_rq->throttle_count++;
    5303             : 
    5304             :         return 0;
    5305             : }
    5306             : 
    5307             : static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
    5308             : {
    5309             :         struct rq *rq = rq_of(cfs_rq);
    5310             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5311             :         struct sched_entity *se;
    5312             :         long task_delta, idle_task_delta, dequeue = 1;
    5313             : 
    5314             :         raw_spin_lock(&cfs_b->lock);
    5315             :         /* This will start the period timer if necessary */
    5316             :         if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
    5317             :                 /*
    5318             :                  * We have raced with bandwidth becoming available, and if we
    5319             :                  * actually throttled the timer might not unthrottle us for an
    5320             :                  * entire period. We additionally needed to make sure that any
    5321             :                  * subsequent check_cfs_rq_runtime calls agree not to throttle
    5322             :                  * us, as we may commit to do cfs put_prev+pick_next, so we ask
    5323             :                  * for 1ns of runtime rather than just check cfs_b.
    5324             :                  */
    5325             :                 dequeue = 0;
    5326             :         } else {
    5327             :                 list_add_tail_rcu(&cfs_rq->throttled_list,
    5328             :                                   &cfs_b->throttled_cfs_rq);
    5329             :         }
    5330             :         raw_spin_unlock(&cfs_b->lock);
    5331             : 
    5332             :         if (!dequeue)
    5333             :                 return false;  /* Throttle no longer required. */
    5334             : 
    5335             :         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
    5336             : 
    5337             :         /* freeze hierarchy runnable averages while throttled */
    5338             :         rcu_read_lock();
    5339             :         walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
    5340             :         rcu_read_unlock();
    5341             : 
    5342             :         task_delta = cfs_rq->h_nr_running;
    5343             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    5344             :         for_each_sched_entity(se) {
    5345             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5346             :                 /* throttled entity or throttle-on-deactivate */
    5347             :                 if (!se->on_rq)
    5348             :                         goto done;
    5349             : 
    5350             :                 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
    5351             : 
    5352             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5353             :                         idle_task_delta = cfs_rq->h_nr_running;
    5354             : 
    5355             :                 qcfs_rq->h_nr_running -= task_delta;
    5356             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    5357             : 
    5358             :                 if (qcfs_rq->load.weight) {
    5359             :                         /* Avoid re-evaluating load for this entity: */
    5360             :                         se = parent_entity(se);
    5361             :                         break;
    5362             :                 }
    5363             :         }
    5364             : 
    5365             :         for_each_sched_entity(se) {
    5366             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5367             :                 /* throttled entity or throttle-on-deactivate */
    5368             :                 if (!se->on_rq)
    5369             :                         goto done;
    5370             : 
    5371             :                 update_load_avg(qcfs_rq, se, 0);
    5372             :                 se_update_runnable(se);
    5373             : 
    5374             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5375             :                         idle_task_delta = cfs_rq->h_nr_running;
    5376             : 
    5377             :                 qcfs_rq->h_nr_running -= task_delta;
    5378             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    5379             :         }
    5380             : 
    5381             :         /* At this point se is NULL and we are at root level*/
    5382             :         sub_nr_running(rq, task_delta);
    5383             : 
    5384             : done:
    5385             :         /*
    5386             :          * Note: distribution will already see us throttled via the
    5387             :          * throttled-list.  rq->lock protects completion.
    5388             :          */
    5389             :         cfs_rq->throttled = 1;
    5390             :         cfs_rq->throttled_clock = rq_clock(rq);
    5391             :         return true;
    5392             : }
    5393             : 
    5394             : void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
    5395             : {
    5396             :         struct rq *rq = rq_of(cfs_rq);
    5397             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5398             :         struct sched_entity *se;
    5399             :         long task_delta, idle_task_delta;
    5400             : 
    5401             :         se = cfs_rq->tg->se[cpu_of(rq)];
    5402             : 
    5403             :         cfs_rq->throttled = 0;
    5404             : 
    5405             :         update_rq_clock(rq);
    5406             : 
    5407             :         raw_spin_lock(&cfs_b->lock);
    5408             :         cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
    5409             :         list_del_rcu(&cfs_rq->throttled_list);
    5410             :         raw_spin_unlock(&cfs_b->lock);
    5411             : 
    5412             :         /* update hierarchical throttle state */
    5413             :         walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
    5414             : 
    5415             :         if (!cfs_rq->load.weight) {
    5416             :                 if (!cfs_rq->on_list)
    5417             :                         return;
    5418             :                 /*
    5419             :                  * Nothing to run but something to decay (on_list)?
    5420             :                  * Complete the branch.
    5421             :                  */
    5422             :                 for_each_sched_entity(se) {
    5423             :                         if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
    5424             :                                 break;
    5425             :                 }
    5426             :                 goto unthrottle_throttle;
    5427             :         }
    5428             : 
    5429             :         task_delta = cfs_rq->h_nr_running;
    5430             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    5431             :         for_each_sched_entity(se) {
    5432             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5433             : 
    5434             :                 if (se->on_rq)
    5435             :                         break;
    5436             :                 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
    5437             : 
    5438             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5439             :                         idle_task_delta = cfs_rq->h_nr_running;
    5440             : 
    5441             :                 qcfs_rq->h_nr_running += task_delta;
    5442             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5443             : 
    5444             :                 /* end evaluation on encountering a throttled cfs_rq */
    5445             :                 if (cfs_rq_throttled(qcfs_rq))
    5446             :                         goto unthrottle_throttle;
    5447             :         }
    5448             : 
    5449             :         for_each_sched_entity(se) {
    5450             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5451             : 
    5452             :                 update_load_avg(qcfs_rq, se, UPDATE_TG);
    5453             :                 se_update_runnable(se);
    5454             : 
    5455             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5456             :                         idle_task_delta = cfs_rq->h_nr_running;
    5457             : 
    5458             :                 qcfs_rq->h_nr_running += task_delta;
    5459             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5460             : 
    5461             :                 /* end evaluation on encountering a throttled cfs_rq */
    5462             :                 if (cfs_rq_throttled(qcfs_rq))
    5463             :                         goto unthrottle_throttle;
    5464             :         }
    5465             : 
    5466             :         /* At this point se is NULL and we are at root level*/
    5467             :         add_nr_running(rq, task_delta);
    5468             : 
    5469             : unthrottle_throttle:
    5470             :         assert_list_leaf_cfs_rq(rq);
    5471             : 
    5472             :         /* Determine whether we need to wake up potentially idle CPU: */
    5473             :         if (rq->curr == rq->idle && rq->cfs.nr_running)
    5474             :                 resched_curr(rq);
    5475             : }
    5476             : 
    5477             : #ifdef CONFIG_SMP
    5478             : static void __cfsb_csd_unthrottle(void *arg)
    5479             : {
    5480             :         struct cfs_rq *cursor, *tmp;
    5481             :         struct rq *rq = arg;
    5482             :         struct rq_flags rf;
    5483             : 
    5484             :         rq_lock(rq, &rf);
    5485             : 
    5486             :         /*
    5487             :          * Since we hold rq lock we're safe from concurrent manipulation of
    5488             :          * the CSD list. However, this RCU critical section annotates the
    5489             :          * fact that we pair with sched_free_group_rcu(), so that we cannot
    5490             :          * race with group being freed in the window between removing it
    5491             :          * from the list and advancing to the next entry in the list.
    5492             :          */
    5493             :         rcu_read_lock();
    5494             : 
    5495             :         list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
    5496             :                                  throttled_csd_list) {
    5497             :                 list_del_init(&cursor->throttled_csd_list);
    5498             : 
    5499             :                 if (cfs_rq_throttled(cursor))
    5500             :                         unthrottle_cfs_rq(cursor);
    5501             :         }
    5502             : 
    5503             :         rcu_read_unlock();
    5504             : 
    5505             :         rq_unlock(rq, &rf);
    5506             : }
    5507             : 
    5508             : static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5509             : {
    5510             :         struct rq *rq = rq_of(cfs_rq);
    5511             :         bool first;
    5512             : 
    5513             :         if (rq == this_rq()) {
    5514             :                 unthrottle_cfs_rq(cfs_rq);
    5515             :                 return;
    5516             :         }
    5517             : 
    5518             :         /* Already enqueued */
    5519             :         if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
    5520             :                 return;
    5521             : 
    5522             :         first = list_empty(&rq->cfsb_csd_list);
    5523             :         list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
    5524             :         if (first)
    5525             :                 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
    5526             : }
    5527             : #else
    5528             : static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5529             : {
    5530             :         unthrottle_cfs_rq(cfs_rq);
    5531             : }
    5532             : #endif
    5533             : 
    5534             : static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5535             : {
    5536             :         lockdep_assert_rq_held(rq_of(cfs_rq));
    5537             : 
    5538             :         if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
    5539             :             cfs_rq->runtime_remaining <= 0))
    5540             :                 return;
    5541             : 
    5542             :         __unthrottle_cfs_rq_async(cfs_rq);
    5543             : }
    5544             : 
    5545             : static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
    5546             : {
    5547             :         struct cfs_rq *local_unthrottle = NULL;
    5548             :         int this_cpu = smp_processor_id();
    5549             :         u64 runtime, remaining = 1;
    5550             :         bool throttled = false;
    5551             :         struct cfs_rq *cfs_rq;
    5552             :         struct rq_flags rf;
    5553             :         struct rq *rq;
    5554             : 
    5555             :         rcu_read_lock();
    5556             :         list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
    5557             :                                 throttled_list) {
    5558             :                 rq = rq_of(cfs_rq);
    5559             : 
    5560             :                 if (!remaining) {
    5561             :                         throttled = true;
    5562             :                         break;
    5563             :                 }
    5564             : 
    5565             :                 rq_lock_irqsave(rq, &rf);
    5566             :                 if (!cfs_rq_throttled(cfs_rq))
    5567             :                         goto next;
    5568             : 
    5569             : #ifdef CONFIG_SMP
    5570             :                 /* Already queued for async unthrottle */
    5571             :                 if (!list_empty(&cfs_rq->throttled_csd_list))
    5572             :                         goto next;
    5573             : #endif
    5574             : 
    5575             :                 /* By the above checks, this should never be true */
    5576             :                 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
    5577             : 
    5578             :                 raw_spin_lock(&cfs_b->lock);
    5579             :                 runtime = -cfs_rq->runtime_remaining + 1;
    5580             :                 if (runtime > cfs_b->runtime)
    5581             :                         runtime = cfs_b->runtime;
    5582             :                 cfs_b->runtime -= runtime;
    5583             :                 remaining = cfs_b->runtime;
    5584             :                 raw_spin_unlock(&cfs_b->lock);
    5585             : 
    5586             :                 cfs_rq->runtime_remaining += runtime;
    5587             : 
    5588             :                 /* we check whether we're throttled above */
    5589             :                 if (cfs_rq->runtime_remaining > 0) {
    5590             :                         if (cpu_of(rq) != this_cpu ||
    5591             :                             SCHED_WARN_ON(local_unthrottle))
    5592             :                                 unthrottle_cfs_rq_async(cfs_rq);
    5593             :                         else
    5594             :                                 local_unthrottle = cfs_rq;
    5595             :                 } else {
    5596             :                         throttled = true;
    5597             :                 }
    5598             : 
    5599             : next:
    5600             :                 rq_unlock_irqrestore(rq, &rf);
    5601             :         }
    5602             :         rcu_read_unlock();
    5603             : 
    5604             :         if (local_unthrottle) {
    5605             :                 rq = cpu_rq(this_cpu);
    5606             :                 rq_lock_irqsave(rq, &rf);
    5607             :                 if (cfs_rq_throttled(local_unthrottle))
    5608             :                         unthrottle_cfs_rq(local_unthrottle);
    5609             :                 rq_unlock_irqrestore(rq, &rf);
    5610             :         }
    5611             : 
    5612             :         return throttled;
    5613             : }
    5614             : 
    5615             : /*
    5616             :  * Responsible for refilling a task_group's bandwidth and unthrottling its
    5617             :  * cfs_rqs as appropriate. If there has been no activity within the last
    5618             :  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
    5619             :  * used to track this state.
    5620             :  */
    5621             : static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
    5622             : {
    5623             :         int throttled;
    5624             : 
    5625             :         /* no need to continue the timer with no bandwidth constraint */
    5626             :         if (cfs_b->quota == RUNTIME_INF)
    5627             :                 goto out_deactivate;
    5628             : 
    5629             :         throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    5630             :         cfs_b->nr_periods += overrun;
    5631             : 
    5632             :         /* Refill extra burst quota even if cfs_b->idle */
    5633             :         __refill_cfs_bandwidth_runtime(cfs_b);
    5634             : 
    5635             :         /*
    5636             :          * idle depends on !throttled (for the case of a large deficit), and if
    5637             :          * we're going inactive then everything else can be deferred
    5638             :          */
    5639             :         if (cfs_b->idle && !throttled)
    5640             :                 goto out_deactivate;
    5641             : 
    5642             :         if (!throttled) {
    5643             :                 /* mark as potentially idle for the upcoming period */
    5644             :                 cfs_b->idle = 1;
    5645             :                 return 0;
    5646             :         }
    5647             : 
    5648             :         /* account preceding periods in which throttling occurred */
    5649             :         cfs_b->nr_throttled += overrun;
    5650             : 
    5651             :         /*
    5652             :          * This check is repeated as we release cfs_b->lock while we unthrottle.
    5653             :          */
    5654             :         while (throttled && cfs_b->runtime > 0) {
    5655             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5656             :                 /* we can't nest cfs_b->lock while distributing bandwidth */
    5657             :                 throttled = distribute_cfs_runtime(cfs_b);
    5658             :                 raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5659             :         }
    5660             : 
    5661             :         /*
    5662             :          * While we are ensured activity in the period following an
    5663             :          * unthrottle, this also covers the case in which the new bandwidth is
    5664             :          * insufficient to cover the existing bandwidth deficit.  (Forcing the
    5665             :          * timer to remain active while there are any throttled entities.)
    5666             :          */
    5667             :         cfs_b->idle = 0;
    5668             : 
    5669             :         return 0;
    5670             : 
    5671             : out_deactivate:
    5672             :         return 1;
    5673             : }
    5674             : 
    5675             : /* a cfs_rq won't donate quota below this amount */
    5676             : static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
    5677             : /* minimum remaining period time to redistribute slack quota */
    5678             : static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
    5679             : /* how long we wait to gather additional slack before distributing */
    5680             : static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
    5681             : 
    5682             : /*
    5683             :  * Are we near the end of the current quota period?
    5684             :  *
    5685             :  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
    5686             :  * hrtimer base being cleared by hrtimer_start. In the case of
    5687             :  * migrate_hrtimers, base is never cleared, so we are fine.
    5688             :  */
    5689             : static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
    5690             : {
    5691             :         struct hrtimer *refresh_timer = &cfs_b->period_timer;
    5692             :         s64 remaining;
    5693             : 
    5694             :         /* if the call-back is running a quota refresh is already occurring */
    5695             :         if (hrtimer_callback_running(refresh_timer))
    5696             :                 return 1;
    5697             : 
    5698             :         /* is a quota refresh about to occur? */
    5699             :         remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
    5700             :         if (remaining < (s64)min_expire)
    5701             :                 return 1;
    5702             : 
    5703             :         return 0;
    5704             : }
    5705             : 
    5706             : static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
    5707             : {
    5708             :         u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
    5709             : 
    5710             :         /* if there's a quota refresh soon don't bother with slack */
    5711             :         if (runtime_refresh_within(cfs_b, min_left))
    5712             :                 return;
    5713             : 
    5714             :         /* don't push forwards an existing deferred unthrottle */
    5715             :         if (cfs_b->slack_started)
    5716             :                 return;
    5717             :         cfs_b->slack_started = true;
    5718             : 
    5719             :         hrtimer_start(&cfs_b->slack_timer,
    5720             :                         ns_to_ktime(cfs_bandwidth_slack_period),
    5721             :                         HRTIMER_MODE_REL);
    5722             : }
    5723             : 
    5724             : /* we know any runtime found here is valid as update_curr() precedes return */
    5725             : static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5726             : {
    5727             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5728             :         s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
    5729             : 
    5730             :         if (slack_runtime <= 0)
    5731             :                 return;
    5732             : 
    5733             :         raw_spin_lock(&cfs_b->lock);
    5734             :         if (cfs_b->quota != RUNTIME_INF) {
    5735             :                 cfs_b->runtime += slack_runtime;
    5736             : 
    5737             :                 /* we are under rq->lock, defer unthrottling using a timer */
    5738             :                 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
    5739             :                     !list_empty(&cfs_b->throttled_cfs_rq))
    5740             :                         start_cfs_slack_bandwidth(cfs_b);
    5741             :         }
    5742             :         raw_spin_unlock(&cfs_b->lock);
    5743             : 
    5744             :         /* even if it's not valid for return we don't want to try again */
    5745             :         cfs_rq->runtime_remaining -= slack_runtime;
    5746             : }
    5747             : 
    5748             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5749             : {
    5750             :         if (!cfs_bandwidth_used())
    5751             :                 return;
    5752             : 
    5753             :         if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
    5754             :                 return;
    5755             : 
    5756             :         __return_cfs_rq_runtime(cfs_rq);
    5757             : }
    5758             : 
    5759             : /*
    5760             :  * This is done with a timer (instead of inline with bandwidth return) since
    5761             :  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
    5762             :  */
    5763             : static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
    5764             : {
    5765             :         u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
    5766             :         unsigned long flags;
    5767             : 
    5768             :         /* confirm we're still not at a refresh boundary */
    5769             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5770             :         cfs_b->slack_started = false;
    5771             : 
    5772             :         if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
    5773             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5774             :                 return;
    5775             :         }
    5776             : 
    5777             :         if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
    5778             :                 runtime = cfs_b->runtime;
    5779             : 
    5780             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5781             : 
    5782             :         if (!runtime)
    5783             :                 return;
    5784             : 
    5785             :         distribute_cfs_runtime(cfs_b);
    5786             : }
    5787             : 
    5788             : /*
    5789             :  * When a group wakes up we want to make sure that its quota is not already
    5790             :  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
    5791             :  * runtime as update_curr() throttling can not trigger until it's on-rq.
    5792             :  */
    5793             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
    5794             : {
    5795             :         if (!cfs_bandwidth_used())
    5796             :                 return;
    5797             : 
    5798             :         /* an active group must be handled by the update_curr()->put() path */
    5799             :         if (!cfs_rq->runtime_enabled || cfs_rq->curr)
    5800             :                 return;
    5801             : 
    5802             :         /* ensure the group is not already throttled */
    5803             :         if (cfs_rq_throttled(cfs_rq))
    5804             :                 return;
    5805             : 
    5806             :         /* update runtime allocation */
    5807             :         account_cfs_rq_runtime(cfs_rq, 0);
    5808             :         if (cfs_rq->runtime_remaining <= 0)
    5809             :                 throttle_cfs_rq(cfs_rq);
    5810             : }
    5811             : 
    5812             : static void sync_throttle(struct task_group *tg, int cpu)
    5813             : {
    5814             :         struct cfs_rq *pcfs_rq, *cfs_rq;
    5815             : 
    5816             :         if (!cfs_bandwidth_used())
    5817             :                 return;
    5818             : 
    5819             :         if (!tg->parent)
    5820             :                 return;
    5821             : 
    5822             :         cfs_rq = tg->cfs_rq[cpu];
    5823             :         pcfs_rq = tg->parent->cfs_rq[cpu];
    5824             : 
    5825             :         cfs_rq->throttle_count = pcfs_rq->throttle_count;
    5826             :         cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
    5827             : }
    5828             : 
    5829             : /* conditionally throttle active cfs_rq's from put_prev_entity() */
    5830             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5831             : {
    5832             :         if (!cfs_bandwidth_used())
    5833             :                 return false;
    5834             : 
    5835             :         if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
    5836             :                 return false;
    5837             : 
    5838             :         /*
    5839             :          * it's possible for a throttled entity to be forced into a running
    5840             :          * state (e.g. set_curr_task), in this case we're finished.
    5841             :          */
    5842             :         if (cfs_rq_throttled(cfs_rq))
    5843             :                 return true;
    5844             : 
    5845             :         return throttle_cfs_rq(cfs_rq);
    5846             : }
    5847             : 
    5848             : static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
    5849             : {
    5850             :         struct cfs_bandwidth *cfs_b =
    5851             :                 container_of(timer, struct cfs_bandwidth, slack_timer);
    5852             : 
    5853             :         do_sched_cfs_slack_timer(cfs_b);
    5854             : 
    5855             :         return HRTIMER_NORESTART;
    5856             : }
    5857             : 
    5858             : extern const u64 max_cfs_quota_period;
    5859             : 
    5860             : static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
    5861             : {
    5862             :         struct cfs_bandwidth *cfs_b =
    5863             :                 container_of(timer, struct cfs_bandwidth, period_timer);
    5864             :         unsigned long flags;
    5865             :         int overrun;
    5866             :         int idle = 0;
    5867             :         int count = 0;
    5868             : 
    5869             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5870             :         for (;;) {
    5871             :                 overrun = hrtimer_forward_now(timer, cfs_b->period);
    5872             :                 if (!overrun)
    5873             :                         break;
    5874             : 
    5875             :                 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
    5876             : 
    5877             :                 if (++count > 3) {
    5878             :                         u64 new, old = ktime_to_ns(cfs_b->period);
    5879             : 
    5880             :                         /*
    5881             :                          * Grow period by a factor of 2 to avoid losing precision.
    5882             :                          * Precision loss in the quota/period ratio can cause __cfs_schedulable
    5883             :                          * to fail.
    5884             :                          */
    5885             :                         new = old * 2;
    5886             :                         if (new < max_cfs_quota_period) {
    5887             :                                 cfs_b->period = ns_to_ktime(new);
    5888             :                                 cfs_b->quota *= 2;
    5889             :                                 cfs_b->burst *= 2;
    5890             : 
    5891             :                                 pr_warn_ratelimited(
    5892             :         "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5893             :                                         smp_processor_id(),
    5894             :                                         div_u64(new, NSEC_PER_USEC),
    5895             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5896             :                         } else {
    5897             :                                 pr_warn_ratelimited(
    5898             :         "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5899             :                                         smp_processor_id(),
    5900             :                                         div_u64(old, NSEC_PER_USEC),
    5901             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5902             :                         }
    5903             : 
    5904             :                         /* reset count so we don't come right back in here */
    5905             :                         count = 0;
    5906             :                 }
    5907             :         }
    5908             :         if (idle)
    5909             :                 cfs_b->period_active = 0;
    5910             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5911             : 
    5912             :         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
    5913             : }
    5914             : 
    5915             : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5916             : {
    5917             :         raw_spin_lock_init(&cfs_b->lock);
    5918             :         cfs_b->runtime = 0;
    5919             :         cfs_b->quota = RUNTIME_INF;
    5920             :         cfs_b->period = ns_to_ktime(default_cfs_period());
    5921             :         cfs_b->burst = 0;
    5922             : 
    5923             :         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
    5924             :         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
    5925             :         cfs_b->period_timer.function = sched_cfs_period_timer;
    5926             :         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    5927             :         cfs_b->slack_timer.function = sched_cfs_slack_timer;
    5928             :         cfs_b->slack_started = false;
    5929             : }
    5930             : 
    5931             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5932             : {
    5933             :         cfs_rq->runtime_enabled = 0;
    5934             :         INIT_LIST_HEAD(&cfs_rq->throttled_list);
    5935             : #ifdef CONFIG_SMP
    5936             :         INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
    5937             : #endif
    5938             : }
    5939             : 
    5940             : void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5941             : {
    5942             :         lockdep_assert_held(&cfs_b->lock);
    5943             : 
    5944             :         if (cfs_b->period_active)
    5945             :                 return;
    5946             : 
    5947             :         cfs_b->period_active = 1;
    5948             :         hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
    5949             :         hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
    5950             : }
    5951             : 
    5952             : static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5953             : {
    5954             :         int __maybe_unused i;
    5955             : 
    5956             :         /* init_cfs_bandwidth() was not called */
    5957             :         if (!cfs_b->throttled_cfs_rq.next)
    5958             :                 return;
    5959             : 
    5960             :         hrtimer_cancel(&cfs_b->period_timer);
    5961             :         hrtimer_cancel(&cfs_b->slack_timer);
    5962             : 
    5963             :         /*
    5964             :          * It is possible that we still have some cfs_rq's pending on a CSD
    5965             :          * list, though this race is very rare. In order for this to occur, we
    5966             :          * must have raced with the last task leaving the group while there
    5967             :          * exist throttled cfs_rq(s), and the period_timer must have queued the
    5968             :          * CSD item but the remote cpu has not yet processed it. To handle this,
    5969             :          * we can simply flush all pending CSD work inline here. We're
    5970             :          * guaranteed at this point that no additional cfs_rq of this group can
    5971             :          * join a CSD list.
    5972             :          */
    5973             : #ifdef CONFIG_SMP
    5974             :         for_each_possible_cpu(i) {
    5975             :                 struct rq *rq = cpu_rq(i);
    5976             :                 unsigned long flags;
    5977             : 
    5978             :                 if (list_empty(&rq->cfsb_csd_list))
    5979             :                         continue;
    5980             : 
    5981             :                 local_irq_save(flags);
    5982             :                 __cfsb_csd_unthrottle(rq);
    5983             :                 local_irq_restore(flags);
    5984             :         }
    5985             : #endif
    5986             : }
    5987             : 
    5988             : /*
    5989             :  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
    5990             :  *
    5991             :  * The race is harmless, since modifying bandwidth settings of unhooked group
    5992             :  * bits doesn't do much.
    5993             :  */
    5994             : 
    5995             : /* cpu online callback */
    5996             : static void __maybe_unused update_runtime_enabled(struct rq *rq)
    5997             : {
    5998             :         struct task_group *tg;
    5999             : 
    6000             :         lockdep_assert_rq_held(rq);
    6001             : 
    6002             :         rcu_read_lock();
    6003             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    6004             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    6005             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    6006             : 
    6007             :                 raw_spin_lock(&cfs_b->lock);
    6008             :                 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
    6009             :                 raw_spin_unlock(&cfs_b->lock);
    6010             :         }
    6011             :         rcu_read_unlock();
    6012             : }
    6013             : 
    6014             : /* cpu offline callback */
    6015             : static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
    6016             : {
    6017             :         struct task_group *tg;
    6018             : 
    6019             :         lockdep_assert_rq_held(rq);
    6020             : 
    6021             :         rcu_read_lock();
    6022             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    6023             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    6024             : 
    6025             :                 if (!cfs_rq->runtime_enabled)
    6026             :                         continue;
    6027             : 
    6028             :                 /*
    6029             :                  * clock_task is not advancing so we just need to make sure
    6030             :                  * there's some valid quota amount
    6031             :                  */
    6032             :                 cfs_rq->runtime_remaining = 1;
    6033             :                 /*
    6034             :                  * Offline rq is schedulable till CPU is completely disabled
    6035             :                  * in take_cpu_down(), so we prevent new cfs throttling here.
    6036             :                  */
    6037             :                 cfs_rq->runtime_enabled = 0;
    6038             : 
    6039             :                 if (cfs_rq_throttled(cfs_rq))
    6040             :                         unthrottle_cfs_rq(cfs_rq);
    6041             :         }
    6042             :         rcu_read_unlock();
    6043             : }
    6044             : 
    6045             : #else /* CONFIG_CFS_BANDWIDTH */
    6046             : 
    6047             : static inline bool cfs_bandwidth_used(void)
    6048             : {
    6049             :         return false;
    6050             : }
    6051             : 
    6052             : static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
    6053             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
    6054             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
    6055             : static inline void sync_throttle(struct task_group *tg, int cpu) {}
    6056             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    6057             : 
    6058             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    6059             : {
    6060             :         return 0;
    6061             : }
    6062             : 
    6063             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    6064             : {
    6065             :         return 0;
    6066             : }
    6067             : 
    6068             : static inline int throttled_lb_pair(struct task_group *tg,
    6069             :                                     int src_cpu, int dest_cpu)
    6070             : {
    6071             :         return 0;
    6072             : }
    6073             : 
    6074           0 : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    6075             : 
    6076             : #ifdef CONFIG_FAIR_GROUP_SCHED
    6077             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    6078             : #endif
    6079             : 
    6080             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    6081             : {
    6082             :         return NULL;
    6083             : }
    6084             : static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    6085             : static inline void update_runtime_enabled(struct rq *rq) {}
    6086             : static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
    6087             : 
    6088             : #endif /* CONFIG_CFS_BANDWIDTH */
    6089             : 
    6090             : /**************************************************
    6091             :  * CFS operations on tasks:
    6092             :  */
    6093             : 
    6094             : #ifdef CONFIG_SCHED_HRTICK
    6095             : static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
    6096             : {
    6097             :         struct sched_entity *se = &p->se;
    6098             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    6099             : 
    6100             :         SCHED_WARN_ON(task_rq(p) != rq);
    6101             : 
    6102             :         if (rq->cfs.h_nr_running > 1) {
    6103             :                 u64 slice = sched_slice(cfs_rq, se);
    6104             :                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
    6105             :                 s64 delta = slice - ran;
    6106             : 
    6107             :                 if (delta < 0) {
    6108             :                         if (task_current(rq, p))
    6109             :                                 resched_curr(rq);
    6110             :                         return;
    6111             :                 }
    6112             :                 hrtick_start(rq, delta);
    6113             :         }
    6114             : }
    6115             : 
    6116             : /*
    6117             :  * called from enqueue/dequeue and updates the hrtick when the
    6118             :  * current task is from our class and nr_running is low enough
    6119             :  * to matter.
    6120             :  */
    6121             : static void hrtick_update(struct rq *rq)
    6122             : {
    6123             :         struct task_struct *curr = rq->curr;
    6124             : 
    6125             :         if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
    6126             :                 return;
    6127             : 
    6128             :         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
    6129             :                 hrtick_start_fair(rq, curr);
    6130             : }
    6131             : #else /* !CONFIG_SCHED_HRTICK */
    6132             : static inline void
    6133             : hrtick_start_fair(struct rq *rq, struct task_struct *p)
    6134             : {
    6135             : }
    6136             : 
    6137             : static inline void hrtick_update(struct rq *rq)
    6138             : {
    6139             : }
    6140             : #endif
    6141             : 
    6142             : #ifdef CONFIG_SMP
    6143             : static inline bool cpu_overutilized(int cpu)
    6144             : {
    6145             :         unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
    6146             :         unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
    6147             : 
    6148             :         /* Return true only if the utilization doesn't fit CPU's capacity */
    6149             :         return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
    6150             : }
    6151             : 
    6152             : static inline void update_overutilized_status(struct rq *rq)
    6153             : {
    6154             :         if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
    6155             :                 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
    6156             :                 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
    6157             :         }
    6158             : }
    6159             : #else
    6160             : static inline void update_overutilized_status(struct rq *rq) { }
    6161             : #endif
    6162             : 
    6163             : /* Runqueue only has SCHED_IDLE tasks enqueued */
    6164             : static int sched_idle_rq(struct rq *rq)
    6165             : {
    6166        4260 :         return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
    6167             :                         rq->nr_running);
    6168             : }
    6169             : 
    6170             : /*
    6171             :  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
    6172             :  * of idle_nr_running, which does not consider idle descendants of normal
    6173             :  * entities.
    6174             :  */
    6175             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
    6176             : {
    6177             :         return cfs_rq->nr_running &&
    6178             :                 cfs_rq->nr_running == cfs_rq->idle_nr_running;
    6179             : }
    6180             : 
    6181             : #ifdef CONFIG_SMP
    6182             : static int sched_idle_cpu(int cpu)
    6183             : {
    6184             :         return sched_idle_rq(cpu_rq(cpu));
    6185             : }
    6186             : #endif
    6187             : 
    6188             : /*
    6189             :  * The enqueue_task method is called before nr_running is
    6190             :  * increased. Here we update the fair scheduling stats and
    6191             :  * then put the task into the rbtree:
    6192             :  */
    6193             : static void
    6194        2132 : enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    6195             : {
    6196             :         struct cfs_rq *cfs_rq;
    6197        2132 :         struct sched_entity *se = &p->se;
    6198        4264 :         int idle_h_nr_running = task_has_idle_policy(p);
    6199        2132 :         int task_new = !(flags & ENQUEUE_WAKEUP);
    6200             : 
    6201             :         /*
    6202             :          * The code below (indirectly) updates schedutil which looks at
    6203             :          * the cfs_rq utilization to select a frequency.
    6204             :          * Let's add the task's estimated utilization to the cfs_rq's
    6205             :          * estimated utilization, before we update schedutil.
    6206             :          */
    6207        2132 :         util_est_enqueue(&rq->cfs, p);
    6208             : 
    6209             :         /*
    6210             :          * If in_iowait is set, the code below may not trigger any cpufreq
    6211             :          * utilization updates, so do it here explicitly with the IOWAIT flag
    6212             :          * passed.
    6213             :          */
    6214             :         if (p->in_iowait)
    6215             :                 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
    6216             : 
    6217        4264 :         for_each_sched_entity(se) {
    6218        2132 :                 if (se->on_rq)
    6219             :                         break;
    6220        4264 :                 cfs_rq = cfs_rq_of(se);
    6221        2132 :                 enqueue_entity(cfs_rq, se, flags);
    6222             : 
    6223        2132 :                 cfs_rq->h_nr_running++;
    6224        2132 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    6225             : 
    6226             :                 if (cfs_rq_is_idle(cfs_rq))
    6227             :                         idle_h_nr_running = 1;
    6228             : 
    6229             :                 /* end evaluation on encountering a throttled cfs_rq */
    6230             :                 if (cfs_rq_throttled(cfs_rq))
    6231             :                         goto enqueue_throttle;
    6232             : 
    6233             :                 flags = ENQUEUE_WAKEUP;
    6234             :         }
    6235             : 
    6236        2132 :         for_each_sched_entity(se) {
    6237           0 :                 cfs_rq = cfs_rq_of(se);
    6238             : 
    6239           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    6240           0 :                 se_update_runnable(se);
    6241           0 :                 update_cfs_group(se);
    6242             : 
    6243           0 :                 cfs_rq->h_nr_running++;
    6244           0 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    6245             : 
    6246             :                 if (cfs_rq_is_idle(cfs_rq))
    6247             :                         idle_h_nr_running = 1;
    6248             : 
    6249             :                 /* end evaluation on encountering a throttled cfs_rq */
    6250             :                 if (cfs_rq_throttled(cfs_rq))
    6251             :                         goto enqueue_throttle;
    6252             :         }
    6253             : 
    6254             :         /* At this point se is NULL and we are at root level*/
    6255        4264 :         add_nr_running(rq, 1);
    6256             : 
    6257             :         /*
    6258             :          * Since new tasks are assigned an initial util_avg equal to
    6259             :          * half of the spare capacity of their CPU, tiny tasks have the
    6260             :          * ability to cross the overutilized threshold, which will
    6261             :          * result in the load balancer ruining all the task placement
    6262             :          * done by EAS. As a way to mitigate that effect, do not account
    6263             :          * for the first enqueue operation of new tasks during the
    6264             :          * overutilized flag detection.
    6265             :          *
    6266             :          * A better way of solving this problem would be to wait for
    6267             :          * the PELT signals of tasks to converge before taking them
    6268             :          * into account, but that is not straightforward to implement,
    6269             :          * and the following generally works well enough in practice.
    6270             :          */
    6271             :         if (!task_new)
    6272             :                 update_overutilized_status(rq);
    6273             : 
    6274             : enqueue_throttle:
    6275        2132 :         assert_list_leaf_cfs_rq(rq);
    6276             : 
    6277        2132 :         hrtick_update(rq);
    6278        2132 : }
    6279             : 
    6280             : static void set_next_buddy(struct sched_entity *se);
    6281             : 
    6282             : /*
    6283             :  * The dequeue_task method is called before nr_running is
    6284             :  * decreased. We remove the task from the rbtree and
    6285             :  * update the fair scheduling stats:
    6286             :  */
    6287        2130 : static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    6288             : {
    6289             :         struct cfs_rq *cfs_rq;
    6290        2130 :         struct sched_entity *se = &p->se;
    6291        2130 :         int task_sleep = flags & DEQUEUE_SLEEP;
    6292        4260 :         int idle_h_nr_running = task_has_idle_policy(p);
    6293        4260 :         bool was_sched_idle = sched_idle_rq(rq);
    6294             : 
    6295        2130 :         util_est_dequeue(&rq->cfs, p);
    6296             : 
    6297           1 :         for_each_sched_entity(se) {
    6298        4260 :                 cfs_rq = cfs_rq_of(se);
    6299        2130 :                 dequeue_entity(cfs_rq, se, flags);
    6300             : 
    6301        2130 :                 cfs_rq->h_nr_running--;
    6302        2130 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    6303             : 
    6304             :                 if (cfs_rq_is_idle(cfs_rq))
    6305             :                         idle_h_nr_running = 1;
    6306             : 
    6307             :                 /* end evaluation on encountering a throttled cfs_rq */
    6308             :                 if (cfs_rq_throttled(cfs_rq))
    6309             :                         goto dequeue_throttle;
    6310             : 
    6311             :                 /* Don't dequeue parent if it has other entities besides us */
    6312        2130 :                 if (cfs_rq->load.weight) {
    6313             :                         /* Avoid re-evaluating load for this entity: */
    6314             :                         se = parent_entity(se);
    6315             :                         /*
    6316             :                          * Bias pick_next to pick a task from this cfs_rq, as
    6317             :                          * p is sleeping when it is within its sched_slice.
    6318             :                          */
    6319             :                         if (task_sleep && se && !throttled_hierarchy(cfs_rq))
    6320             :                                 set_next_buddy(se);
    6321             :                         break;
    6322             :                 }
    6323           1 :                 flags |= DEQUEUE_SLEEP;
    6324             :         }
    6325             : 
    6326        2130 :         for_each_sched_entity(se) {
    6327           0 :                 cfs_rq = cfs_rq_of(se);
    6328             : 
    6329           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    6330           0 :                 se_update_runnable(se);
    6331           0 :                 update_cfs_group(se);
    6332             : 
    6333           0 :                 cfs_rq->h_nr_running--;
    6334           0 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    6335             : 
    6336             :                 if (cfs_rq_is_idle(cfs_rq))
    6337             :                         idle_h_nr_running = 1;
    6338             : 
    6339             :                 /* end evaluation on encountering a throttled cfs_rq */
    6340             :                 if (cfs_rq_throttled(cfs_rq))
    6341             :                         goto dequeue_throttle;
    6342             : 
    6343             :         }
    6344             : 
    6345             :         /* At this point se is NULL and we are at root level*/
    6346        4260 :         sub_nr_running(rq, 1);
    6347             : 
    6348             :         /* balance early to pull high priority tasks */
    6349        4260 :         if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
    6350           0 :                 rq->next_balance = jiffies;
    6351             : 
    6352             : dequeue_throttle:
    6353        2130 :         util_est_update(&rq->cfs, p, task_sleep);
    6354        2130 :         hrtick_update(rq);
    6355        2130 : }
    6356             : 
    6357             : #ifdef CONFIG_SMP
    6358             : 
    6359             : /* Working cpumask for: load_balance, load_balance_newidle. */
    6360             : static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
    6361             : static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
    6362             : 
    6363             : #ifdef CONFIG_NO_HZ_COMMON
    6364             : 
    6365             : static struct {
    6366             :         cpumask_var_t idle_cpus_mask;
    6367             :         atomic_t nr_cpus;
    6368             :         int has_blocked;                /* Idle CPUS has blocked load */
    6369             :         int needs_update;               /* Newly idle CPUs need their next_balance collated */
    6370             :         unsigned long next_balance;     /* in jiffy units */
    6371             :         unsigned long next_blocked;     /* Next update of blocked load in jiffies */
    6372             : } nohz ____cacheline_aligned;
    6373             : 
    6374             : #endif /* CONFIG_NO_HZ_COMMON */
    6375             : 
    6376             : static unsigned long cpu_load(struct rq *rq)
    6377             : {
    6378             :         return cfs_rq_load_avg(&rq->cfs);
    6379             : }
    6380             : 
    6381             : /*
    6382             :  * cpu_load_without - compute CPU load without any contributions from *p
    6383             :  * @cpu: the CPU which load is requested
    6384             :  * @p: the task which load should be discounted
    6385             :  *
    6386             :  * The load of a CPU is defined by the load of tasks currently enqueued on that
    6387             :  * CPU as well as tasks which are currently sleeping after an execution on that
    6388             :  * CPU.
    6389             :  *
    6390             :  * This method returns the load of the specified CPU by discounting the load of
    6391             :  * the specified task, whenever the task is currently contributing to the CPU
    6392             :  * load.
    6393             :  */
    6394             : static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
    6395             : {
    6396             :         struct cfs_rq *cfs_rq;
    6397             :         unsigned int load;
    6398             : 
    6399             :         /* Task has no contribution or is new */
    6400             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6401             :                 return cpu_load(rq);
    6402             : 
    6403             :         cfs_rq = &rq->cfs;
    6404             :         load = READ_ONCE(cfs_rq->avg.load_avg);
    6405             : 
    6406             :         /* Discount task's util from CPU's util */
    6407             :         lsub_positive(&load, task_h_load(p));
    6408             : 
    6409             :         return load;
    6410             : }
    6411             : 
    6412             : static unsigned long cpu_runnable(struct rq *rq)
    6413             : {
    6414             :         return cfs_rq_runnable_avg(&rq->cfs);
    6415             : }
    6416             : 
    6417             : static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
    6418             : {
    6419             :         struct cfs_rq *cfs_rq;
    6420             :         unsigned int runnable;
    6421             : 
    6422             :         /* Task has no contribution or is new */
    6423             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6424             :                 return cpu_runnable(rq);
    6425             : 
    6426             :         cfs_rq = &rq->cfs;
    6427             :         runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
    6428             : 
    6429             :         /* Discount task's runnable from CPU's runnable */
    6430             :         lsub_positive(&runnable, p->se.avg.runnable_avg);
    6431             : 
    6432             :         return runnable;
    6433             : }
    6434             : 
    6435             : static unsigned long capacity_of(int cpu)
    6436             : {
    6437             :         return cpu_rq(cpu)->cpu_capacity;
    6438             : }
    6439             : 
    6440             : static void record_wakee(struct task_struct *p)
    6441             : {
    6442             :         /*
    6443             :          * Only decay a single time; tasks that have less then 1 wakeup per
    6444             :          * jiffy will not have built up many flips.
    6445             :          */
    6446             :         if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
    6447             :                 current->wakee_flips >>= 1;
    6448             :                 current->wakee_flip_decay_ts = jiffies;
    6449             :         }
    6450             : 
    6451             :         if (current->last_wakee != p) {
    6452             :                 current->last_wakee = p;
    6453             :                 current->wakee_flips++;
    6454             :         }
    6455             : }
    6456             : 
    6457             : /*
    6458             :  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
    6459             :  *
    6460             :  * A waker of many should wake a different task than the one last awakened
    6461             :  * at a frequency roughly N times higher than one of its wakees.
    6462             :  *
    6463             :  * In order to determine whether we should let the load spread vs consolidating
    6464             :  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
    6465             :  * partner, and a factor of lls_size higher frequency in the other.
    6466             :  *
    6467             :  * With both conditions met, we can be relatively sure that the relationship is
    6468             :  * non-monogamous, with partner count exceeding socket size.
    6469             :  *
    6470             :  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
    6471             :  * whatever is irrelevant, spread criteria is apparent partner count exceeds
    6472             :  * socket size.
    6473             :  */
    6474             : static int wake_wide(struct task_struct *p)
    6475             : {
    6476             :         unsigned int master = current->wakee_flips;
    6477             :         unsigned int slave = p->wakee_flips;
    6478             :         int factor = __this_cpu_read(sd_llc_size);
    6479             : 
    6480             :         if (master < slave)
    6481             :                 swap(master, slave);
    6482             :         if (slave < factor || master < slave * factor)
    6483             :                 return 0;
    6484             :         return 1;
    6485             : }
    6486             : 
    6487             : /*
    6488             :  * The purpose of wake_affine() is to quickly determine on which CPU we can run
    6489             :  * soonest. For the purpose of speed we only consider the waking and previous
    6490             :  * CPU.
    6491             :  *
    6492             :  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
    6493             :  *                      cache-affine and is (or will be) idle.
    6494             :  *
    6495             :  * wake_affine_weight() - considers the weight to reflect the average
    6496             :  *                        scheduling latency of the CPUs. This seems to work
    6497             :  *                        for the overloaded case.
    6498             :  */
    6499             : static int
    6500             : wake_affine_idle(int this_cpu, int prev_cpu, int sync)
    6501             : {
    6502             :         /*
    6503             :          * If this_cpu is idle, it implies the wakeup is from interrupt
    6504             :          * context. Only allow the move if cache is shared. Otherwise an
    6505             :          * interrupt intensive workload could force all tasks onto one
    6506             :          * node depending on the IO topology or IRQ affinity settings.
    6507             :          *
    6508             :          * If the prev_cpu is idle and cache affine then avoid a migration.
    6509             :          * There is no guarantee that the cache hot data from an interrupt
    6510             :          * is more important than cache hot data on the prev_cpu and from
    6511             :          * a cpufreq perspective, it's better to have higher utilisation
    6512             :          * on one CPU.
    6513             :          */
    6514             :         if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
    6515             :                 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
    6516             : 
    6517             :         if (sync && cpu_rq(this_cpu)->nr_running == 1)
    6518             :                 return this_cpu;
    6519             : 
    6520             :         if (available_idle_cpu(prev_cpu))
    6521             :                 return prev_cpu;
    6522             : 
    6523             :         return nr_cpumask_bits;
    6524             : }
    6525             : 
    6526             : static int
    6527             : wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
    6528             :                    int this_cpu, int prev_cpu, int sync)
    6529             : {
    6530             :         s64 this_eff_load, prev_eff_load;
    6531             :         unsigned long task_load;
    6532             : 
    6533             :         this_eff_load = cpu_load(cpu_rq(this_cpu));
    6534             : 
    6535             :         if (sync) {
    6536             :                 unsigned long current_load = task_h_load(current);
    6537             : 
    6538             :                 if (current_load > this_eff_load)
    6539             :                         return this_cpu;
    6540             : 
    6541             :                 this_eff_load -= current_load;
    6542             :         }
    6543             : 
    6544             :         task_load = task_h_load(p);
    6545             : 
    6546             :         this_eff_load += task_load;
    6547             :         if (sched_feat(WA_BIAS))
    6548             :                 this_eff_load *= 100;
    6549             :         this_eff_load *= capacity_of(prev_cpu);
    6550             : 
    6551             :         prev_eff_load = cpu_load(cpu_rq(prev_cpu));
    6552             :         prev_eff_load -= task_load;
    6553             :         if (sched_feat(WA_BIAS))
    6554             :                 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
    6555             :         prev_eff_load *= capacity_of(this_cpu);
    6556             : 
    6557             :         /*
    6558             :          * If sync, adjust the weight of prev_eff_load such that if
    6559             :          * prev_eff == this_eff that select_idle_sibling() will consider
    6560             :          * stacking the wakee on top of the waker if no other CPU is
    6561             :          * idle.
    6562             :          */
    6563             :         if (sync)
    6564             :                 prev_eff_load += 1;
    6565             : 
    6566             :         return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
    6567             : }
    6568             : 
    6569             : static int wake_affine(struct sched_domain *sd, struct task_struct *p,
    6570             :                        int this_cpu, int prev_cpu, int sync)
    6571             : {
    6572             :         int target = nr_cpumask_bits;
    6573             : 
    6574             :         if (sched_feat(WA_IDLE))
    6575             :                 target = wake_affine_idle(this_cpu, prev_cpu, sync);
    6576             : 
    6577             :         if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
    6578             :                 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
    6579             : 
    6580             :         schedstat_inc(p->stats.nr_wakeups_affine_attempts);
    6581             :         if (target == nr_cpumask_bits)
    6582             :                 return prev_cpu;
    6583             : 
    6584             :         schedstat_inc(sd->ttwu_move_affine);
    6585             :         schedstat_inc(p->stats.nr_wakeups_affine);
    6586             :         return target;
    6587             : }
    6588             : 
    6589             : static struct sched_group *
    6590             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
    6591             : 
    6592             : /*
    6593             :  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
    6594             :  */
    6595             : static int
    6596             : find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
    6597             : {
    6598             :         unsigned long load, min_load = ULONG_MAX;
    6599             :         unsigned int min_exit_latency = UINT_MAX;
    6600             :         u64 latest_idle_timestamp = 0;
    6601             :         int least_loaded_cpu = this_cpu;
    6602             :         int shallowest_idle_cpu = -1;
    6603             :         int i;
    6604             : 
    6605             :         /* Check if we have any choice: */
    6606             :         if (group->group_weight == 1)
    6607             :                 return cpumask_first(sched_group_span(group));
    6608             : 
    6609             :         /* Traverse only the allowed CPUs */
    6610             :         for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
    6611             :                 struct rq *rq = cpu_rq(i);
    6612             : 
    6613             :                 if (!sched_core_cookie_match(rq, p))
    6614             :                         continue;
    6615             : 
    6616             :                 if (sched_idle_cpu(i))
    6617             :                         return i;
    6618             : 
    6619             :                 if (available_idle_cpu(i)) {
    6620             :                         struct cpuidle_state *idle = idle_get_state(rq);
    6621             :                         if (idle && idle->exit_latency < min_exit_latency) {
    6622             :                                 /*
    6623             :                                  * We give priority to a CPU whose idle state
    6624             :                                  * has the smallest exit latency irrespective
    6625             :                                  * of any idle timestamp.
    6626             :                                  */
    6627             :                                 min_exit_latency = idle->exit_latency;
    6628             :                                 latest_idle_timestamp = rq->idle_stamp;
    6629             :                                 shallowest_idle_cpu = i;
    6630             :                         } else if ((!idle || idle->exit_latency == min_exit_latency) &&
    6631             :                                    rq->idle_stamp > latest_idle_timestamp) {
    6632             :                                 /*
    6633             :                                  * If equal or no active idle state, then
    6634             :                                  * the most recently idled CPU might have
    6635             :                                  * a warmer cache.
    6636             :                                  */
    6637             :                                 latest_idle_timestamp = rq->idle_stamp;
    6638             :                                 shallowest_idle_cpu = i;
    6639             :                         }
    6640             :                 } else if (shallowest_idle_cpu == -1) {
    6641             :                         load = cpu_load(cpu_rq(i));
    6642             :                         if (load < min_load) {
    6643             :                                 min_load = load;
    6644             :                                 least_loaded_cpu = i;
    6645             :                         }
    6646             :                 }
    6647             :         }
    6648             : 
    6649             :         return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
    6650             : }
    6651             : 
    6652             : static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
    6653             :                                   int cpu, int prev_cpu, int sd_flag)
    6654             : {
    6655             :         int new_cpu = cpu;
    6656             : 
    6657             :         if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
    6658             :                 return prev_cpu;
    6659             : 
    6660             :         /*
    6661             :          * We need task's util for cpu_util_without, sync it up to
    6662             :          * prev_cpu's last_update_time.
    6663             :          */
    6664             :         if (!(sd_flag & SD_BALANCE_FORK))
    6665             :                 sync_entity_load_avg(&p->se);
    6666             : 
    6667             :         while (sd) {
    6668             :                 struct sched_group *group;
    6669             :                 struct sched_domain *tmp;
    6670             :                 int weight;
    6671             : 
    6672             :                 if (!(sd->flags & sd_flag)) {
    6673             :                         sd = sd->child;
    6674             :                         continue;
    6675             :                 }
    6676             : 
    6677             :                 group = find_idlest_group(sd, p, cpu);
    6678             :                 if (!group) {
    6679             :                         sd = sd->child;
    6680             :                         continue;
    6681             :                 }
    6682             : 
    6683             :                 new_cpu = find_idlest_group_cpu(group, p, cpu);
    6684             :                 if (new_cpu == cpu) {
    6685             :                         /* Now try balancing at a lower domain level of 'cpu': */
    6686             :                         sd = sd->child;
    6687             :                         continue;
    6688             :                 }
    6689             : 
    6690             :                 /* Now try balancing at a lower domain level of 'new_cpu': */
    6691             :                 cpu = new_cpu;
    6692             :                 weight = sd->span_weight;
    6693             :                 sd = NULL;
    6694             :                 for_each_domain(cpu, tmp) {
    6695             :                         if (weight <= tmp->span_weight)
    6696             :                                 break;
    6697             :                         if (tmp->flags & sd_flag)
    6698             :                                 sd = tmp;
    6699             :                 }
    6700             :         }
    6701             : 
    6702             :         return new_cpu;
    6703             : }
    6704             : 
    6705             : static inline int __select_idle_cpu(int cpu, struct task_struct *p)
    6706             : {
    6707             :         if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
    6708             :             sched_cpu_cookie_match(cpu_rq(cpu), p))
    6709             :                 return cpu;
    6710             : 
    6711             :         return -1;
    6712             : }
    6713             : 
    6714             : #ifdef CONFIG_SCHED_SMT
    6715             : DEFINE_STATIC_KEY_FALSE(sched_smt_present);
    6716             : EXPORT_SYMBOL_GPL(sched_smt_present);
    6717             : 
    6718             : static inline void set_idle_cores(int cpu, int val)
    6719             : {
    6720             :         struct sched_domain_shared *sds;
    6721             : 
    6722             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6723             :         if (sds)
    6724             :                 WRITE_ONCE(sds->has_idle_cores, val);
    6725             : }
    6726             : 
    6727             : static inline bool test_idle_cores(int cpu)
    6728             : {
    6729             :         struct sched_domain_shared *sds;
    6730             : 
    6731             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6732             :         if (sds)
    6733             :                 return READ_ONCE(sds->has_idle_cores);
    6734             : 
    6735             :         return false;
    6736             : }
    6737             : 
    6738             : /*
    6739             :  * Scans the local SMT mask to see if the entire core is idle, and records this
    6740             :  * information in sd_llc_shared->has_idle_cores.
    6741             :  *
    6742             :  * Since SMT siblings share all cache levels, inspecting this limited remote
    6743             :  * state should be fairly cheap.
    6744             :  */
    6745             : void __update_idle_core(struct rq *rq)
    6746             : {
    6747             :         int core = cpu_of(rq);
    6748             :         int cpu;
    6749             : 
    6750             :         rcu_read_lock();
    6751             :         if (test_idle_cores(core))
    6752             :                 goto unlock;
    6753             : 
    6754             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6755             :                 if (cpu == core)
    6756             :                         continue;
    6757             : 
    6758             :                 if (!available_idle_cpu(cpu))
    6759             :                         goto unlock;
    6760             :         }
    6761             : 
    6762             :         set_idle_cores(core, 1);
    6763             : unlock:
    6764             :         rcu_read_unlock();
    6765             : }
    6766             : 
    6767             : /*
    6768             :  * Scan the entire LLC domain for idle cores; this dynamically switches off if
    6769             :  * there are no idle cores left in the system; tracked through
    6770             :  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
    6771             :  */
    6772             : static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6773             : {
    6774             :         bool idle = true;
    6775             :         int cpu;
    6776             : 
    6777             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6778             :                 if (!available_idle_cpu(cpu)) {
    6779             :                         idle = false;
    6780             :                         if (*idle_cpu == -1) {
    6781             :                                 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
    6782             :                                         *idle_cpu = cpu;
    6783             :                                         break;
    6784             :                                 }
    6785             :                                 continue;
    6786             :                         }
    6787             :                         break;
    6788             :                 }
    6789             :                 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
    6790             :                         *idle_cpu = cpu;
    6791             :         }
    6792             : 
    6793             :         if (idle)
    6794             :                 return core;
    6795             : 
    6796             :         cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
    6797             :         return -1;
    6798             : }
    6799             : 
    6800             : /*
    6801             :  * Scan the local SMT mask for idle CPUs.
    6802             :  */
    6803             : static int select_idle_smt(struct task_struct *p, int target)
    6804             : {
    6805             :         int cpu;
    6806             : 
    6807             :         for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
    6808             :                 if (cpu == target)
    6809             :                         continue;
    6810             :                 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
    6811             :                         return cpu;
    6812             :         }
    6813             : 
    6814             :         return -1;
    6815             : }
    6816             : 
    6817             : #else /* CONFIG_SCHED_SMT */
    6818             : 
    6819             : static inline void set_idle_cores(int cpu, int val)
    6820             : {
    6821             : }
    6822             : 
    6823             : static inline bool test_idle_cores(int cpu)
    6824             : {
    6825             :         return false;
    6826             : }
    6827             : 
    6828             : static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6829             : {
    6830             :         return __select_idle_cpu(core, p);
    6831             : }
    6832             : 
    6833             : static inline int select_idle_smt(struct task_struct *p, int target)
    6834             : {
    6835             :         return -1;
    6836             : }
    6837             : 
    6838             : #endif /* CONFIG_SCHED_SMT */
    6839             : 
    6840             : /*
    6841             :  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
    6842             :  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
    6843             :  * average idle time for this rq (as found in rq->avg_idle).
    6844             :  */
    6845             : static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
    6846             : {
    6847             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    6848             :         int i, cpu, idle_cpu = -1, nr = INT_MAX;
    6849             :         struct sched_domain_shared *sd_share;
    6850             :         struct rq *this_rq = this_rq();
    6851             :         int this = smp_processor_id();
    6852             :         struct sched_domain *this_sd = NULL;
    6853             :         u64 time = 0;
    6854             : 
    6855             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6856             : 
    6857             :         if (sched_feat(SIS_PROP) && !has_idle_core) {
    6858             :                 u64 avg_cost, avg_idle, span_avg;
    6859             :                 unsigned long now = jiffies;
    6860             : 
    6861             :                 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
    6862             :                 if (!this_sd)
    6863             :                         return -1;
    6864             : 
    6865             :                 /*
    6866             :                  * If we're busy, the assumption that the last idle period
    6867             :                  * predicts the future is flawed; age away the remaining
    6868             :                  * predicted idle time.
    6869             :                  */
    6870             :                 if (unlikely(this_rq->wake_stamp < now)) {
    6871             :                         while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
    6872             :                                 this_rq->wake_stamp++;
    6873             :                                 this_rq->wake_avg_idle >>= 1;
    6874             :                         }
    6875             :                 }
    6876             : 
    6877             :                 avg_idle = this_rq->wake_avg_idle;
    6878             :                 avg_cost = this_sd->avg_scan_cost + 1;
    6879             : 
    6880             :                 span_avg = sd->span_weight * avg_idle;
    6881             :                 if (span_avg > 4*avg_cost)
    6882             :                         nr = div_u64(span_avg, avg_cost);
    6883             :                 else
    6884             :                         nr = 4;
    6885             : 
    6886             :                 time = cpu_clock(this);
    6887             :         }
    6888             : 
    6889             :         if (sched_feat(SIS_UTIL)) {
    6890             :                 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
    6891             :                 if (sd_share) {
    6892             :                         /* because !--nr is the condition to stop scan */
    6893             :                         nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
    6894             :                         /* overloaded LLC is unlikely to have idle cpu/core */
    6895             :                         if (nr == 1)
    6896             :                                 return -1;
    6897             :                 }
    6898             :         }
    6899             : 
    6900             :         for_each_cpu_wrap(cpu, cpus, target + 1) {
    6901             :                 if (has_idle_core) {
    6902             :                         i = select_idle_core(p, cpu, cpus, &idle_cpu);
    6903             :                         if ((unsigned int)i < nr_cpumask_bits)
    6904             :                                 return i;
    6905             : 
    6906             :                 } else {
    6907             :                         if (!--nr)
    6908             :                                 return -1;
    6909             :                         idle_cpu = __select_idle_cpu(cpu, p);
    6910             :                         if ((unsigned int)idle_cpu < nr_cpumask_bits)
    6911             :                                 break;
    6912             :                 }
    6913             :         }
    6914             : 
    6915             :         if (has_idle_core)
    6916             :                 set_idle_cores(target, false);
    6917             : 
    6918             :         if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
    6919             :                 time = cpu_clock(this) - time;
    6920             : 
    6921             :                 /*
    6922             :                  * Account for the scan cost of wakeups against the average
    6923             :                  * idle time.
    6924             :                  */
    6925             :                 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
    6926             : 
    6927             :                 update_avg(&this_sd->avg_scan_cost, time);
    6928             :         }
    6929             : 
    6930             :         return idle_cpu;
    6931             : }
    6932             : 
    6933             : /*
    6934             :  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
    6935             :  * the task fits. If no CPU is big enough, but there are idle ones, try to
    6936             :  * maximize capacity.
    6937             :  */
    6938             : static int
    6939             : select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
    6940             : {
    6941             :         unsigned long task_util, util_min, util_max, best_cap = 0;
    6942             :         int fits, best_fits = 0;
    6943             :         int cpu, best_cpu = -1;
    6944             :         struct cpumask *cpus;
    6945             : 
    6946             :         cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    6947             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6948             : 
    6949             :         task_util = task_util_est(p);
    6950             :         util_min = uclamp_eff_value(p, UCLAMP_MIN);
    6951             :         util_max = uclamp_eff_value(p, UCLAMP_MAX);
    6952             : 
    6953             :         for_each_cpu_wrap(cpu, cpus, target + 1) {
    6954             :                 unsigned long cpu_cap = capacity_of(cpu);
    6955             : 
    6956             :                 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
    6957             :                         continue;
    6958             : 
    6959             :                 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
    6960             : 
    6961             :                 /* This CPU fits with all requirements */
    6962             :                 if (fits > 0)
    6963             :                         return cpu;
    6964             :                 /*
    6965             :                  * Only the min performance hint (i.e. uclamp_min) doesn't fit.
    6966             :                  * Look for the CPU with best capacity.
    6967             :                  */
    6968             :                 else if (fits < 0)
    6969             :                         cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
    6970             : 
    6971             :                 /*
    6972             :                  * First, select CPU which fits better (-1 being better than 0).
    6973             :                  * Then, select the one with best capacity at same level.
    6974             :                  */
    6975             :                 if ((fits < best_fits) ||
    6976             :                     ((fits == best_fits) && (cpu_cap > best_cap))) {
    6977             :                         best_cap = cpu_cap;
    6978             :                         best_cpu = cpu;
    6979             :                         best_fits = fits;
    6980             :                 }
    6981             :         }
    6982             : 
    6983             :         return best_cpu;
    6984             : }
    6985             : 
    6986             : static inline bool asym_fits_cpu(unsigned long util,
    6987             :                                  unsigned long util_min,
    6988             :                                  unsigned long util_max,
    6989             :                                  int cpu)
    6990             : {
    6991             :         if (sched_asym_cpucap_active())
    6992             :                 /*
    6993             :                  * Return true only if the cpu fully fits the task requirements
    6994             :                  * which include the utilization and the performance hints.
    6995             :                  */
    6996             :                 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
    6997             : 
    6998             :         return true;
    6999             : }
    7000             : 
    7001             : /*
    7002             :  * Try and locate an idle core/thread in the LLC cache domain.
    7003             :  */
    7004             : static int select_idle_sibling(struct task_struct *p, int prev, int target)
    7005             : {
    7006             :         bool has_idle_core = false;
    7007             :         struct sched_domain *sd;
    7008             :         unsigned long task_util, util_min, util_max;
    7009             :         int i, recent_used_cpu;
    7010             : 
    7011             :         /*
    7012             :          * On asymmetric system, update task utilization because we will check
    7013             :          * that the task fits with cpu's capacity.
    7014             :          */
    7015             :         if (sched_asym_cpucap_active()) {
    7016             :                 sync_entity_load_avg(&p->se);
    7017             :                 task_util = task_util_est(p);
    7018             :                 util_min = uclamp_eff_value(p, UCLAMP_MIN);
    7019             :                 util_max = uclamp_eff_value(p, UCLAMP_MAX);
    7020             :         }
    7021             : 
    7022             :         /*
    7023             :          * per-cpu select_rq_mask usage
    7024             :          */
    7025             :         lockdep_assert_irqs_disabled();
    7026             : 
    7027             :         if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
    7028             :             asym_fits_cpu(task_util, util_min, util_max, target))
    7029             :                 return target;
    7030             : 
    7031             :         /*
    7032             :          * If the previous CPU is cache affine and idle, don't be stupid:
    7033             :          */
    7034             :         if (prev != target && cpus_share_cache(prev, target) &&
    7035             :             (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
    7036             :             asym_fits_cpu(task_util, util_min, util_max, prev))
    7037             :                 return prev;
    7038             : 
    7039             :         /*
    7040             :          * Allow a per-cpu kthread to stack with the wakee if the
    7041             :          * kworker thread and the tasks previous CPUs are the same.
    7042             :          * The assumption is that the wakee queued work for the
    7043             :          * per-cpu kthread that is now complete and the wakeup is
    7044             :          * essentially a sync wakeup. An obvious example of this
    7045             :          * pattern is IO completions.
    7046             :          */
    7047             :         if (is_per_cpu_kthread(current) &&
    7048             :             in_task() &&
    7049             :             prev == smp_processor_id() &&
    7050             :             this_rq()->nr_running <= 1 &&
    7051             :             asym_fits_cpu(task_util, util_min, util_max, prev)) {
    7052             :                 return prev;
    7053             :         }
    7054             : 
    7055             :         /* Check a recently used CPU as a potential idle candidate: */
    7056             :         recent_used_cpu = p->recent_used_cpu;
    7057             :         p->recent_used_cpu = prev;
    7058             :         if (recent_used_cpu != prev &&
    7059             :             recent_used_cpu != target &&
    7060             :             cpus_share_cache(recent_used_cpu, target) &&
    7061             :             (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
    7062             :             cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
    7063             :             asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
    7064             :                 return recent_used_cpu;
    7065             :         }
    7066             : 
    7067             :         /*
    7068             :          * For asymmetric CPU capacity systems, our domain of interest is
    7069             :          * sd_asym_cpucapacity rather than sd_llc.
    7070             :          */
    7071             :         if (sched_asym_cpucap_active()) {
    7072             :                 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
    7073             :                 /*
    7074             :                  * On an asymmetric CPU capacity system where an exclusive
    7075             :                  * cpuset defines a symmetric island (i.e. one unique
    7076             :                  * capacity_orig value through the cpuset), the key will be set
    7077             :                  * but the CPUs within that cpuset will not have a domain with
    7078             :                  * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
    7079             :                  * capacity path.
    7080             :                  */
    7081             :                 if (sd) {
    7082             :                         i = select_idle_capacity(p, sd, target);
    7083             :                         return ((unsigned)i < nr_cpumask_bits) ? i : target;
    7084             :                 }
    7085             :         }
    7086             : 
    7087             :         sd = rcu_dereference(per_cpu(sd_llc, target));
    7088             :         if (!sd)
    7089             :                 return target;
    7090             : 
    7091             :         if (sched_smt_active()) {
    7092             :                 has_idle_core = test_idle_cores(target);
    7093             : 
    7094             :                 if (!has_idle_core && cpus_share_cache(prev, target)) {
    7095             :                         i = select_idle_smt(p, prev);
    7096             :                         if ((unsigned int)i < nr_cpumask_bits)
    7097             :                                 return i;
    7098             :                 }
    7099             :         }
    7100             : 
    7101             :         i = select_idle_cpu(p, sd, has_idle_core, target);
    7102             :         if ((unsigned)i < nr_cpumask_bits)
    7103             :                 return i;
    7104             : 
    7105             :         return target;
    7106             : }
    7107             : 
    7108             : /*
    7109             :  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
    7110             :  * (@dst_cpu = -1) or migrated to @dst_cpu.
    7111             :  */
    7112             : static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
    7113             : {
    7114             :         struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
    7115             :         unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
    7116             : 
    7117             :         /*
    7118             :          * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
    7119             :          * contribution. If @p migrates from another CPU to @cpu add its
    7120             :          * contribution. In all the other cases @cpu is not impacted by the
    7121             :          * migration so its util_avg is already correct.
    7122             :          */
    7123             :         if (task_cpu(p) == cpu && dst_cpu != cpu)
    7124             :                 lsub_positive(&util, task_util(p));
    7125             :         else if (task_cpu(p) != cpu && dst_cpu == cpu)
    7126             :                 util += task_util(p);
    7127             : 
    7128             :         if (sched_feat(UTIL_EST)) {
    7129             :                 unsigned long util_est;
    7130             : 
    7131             :                 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
    7132             : 
    7133             :                 /*
    7134             :                  * During wake-up @p isn't enqueued yet and doesn't contribute
    7135             :                  * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
    7136             :                  * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
    7137             :                  * has been enqueued.
    7138             :                  *
    7139             :                  * During exec (@dst_cpu = -1) @p is enqueued and does
    7140             :                  * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
    7141             :                  * Remove it to "simulate" cpu_util without @p's contribution.
    7142             :                  *
    7143             :                  * Despite the task_on_rq_queued(@p) check there is still a
    7144             :                  * small window for a possible race when an exec
    7145             :                  * select_task_rq_fair() races with LB's detach_task().
    7146             :                  *
    7147             :                  *   detach_task()
    7148             :                  *     deactivate_task()
    7149             :                  *       p->on_rq = TASK_ON_RQ_MIGRATING;
    7150             :                  *       -------------------------------- A
    7151             :                  *       dequeue_task()                    \
    7152             :                  *         dequeue_task_fair()              + Race Time
    7153             :                  *           util_est_dequeue()            /
    7154             :                  *       -------------------------------- B
    7155             :                  *
    7156             :                  * The additional check "current == p" is required to further
    7157             :                  * reduce the race window.
    7158             :                  */
    7159             :                 if (dst_cpu == cpu)
    7160             :                         util_est += _task_util_est(p);
    7161             :                 else if (unlikely(task_on_rq_queued(p) || current == p))
    7162             :                         lsub_positive(&util_est, _task_util_est(p));
    7163             : 
    7164             :                 util = max(util, util_est);
    7165             :         }
    7166             : 
    7167             :         return min(util, capacity_orig_of(cpu));
    7168             : }
    7169             : 
    7170             : /*
    7171             :  * cpu_util_without: compute cpu utilization without any contributions from *p
    7172             :  * @cpu: the CPU which utilization is requested
    7173             :  * @p: the task which utilization should be discounted
    7174             :  *
    7175             :  * The utilization of a CPU is defined by the utilization of tasks currently
    7176             :  * enqueued on that CPU as well as tasks which are currently sleeping after an
    7177             :  * execution on that CPU.
    7178             :  *
    7179             :  * This method returns the utilization of the specified CPU by discounting the
    7180             :  * utilization of the specified task, whenever the task is currently
    7181             :  * contributing to the CPU utilization.
    7182             :  */
    7183             : static unsigned long cpu_util_without(int cpu, struct task_struct *p)
    7184             : {
    7185             :         /* Task has no contribution or is new */
    7186             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    7187             :                 return cpu_util_cfs(cpu);
    7188             : 
    7189             :         return cpu_util_next(cpu, p, -1);
    7190             : }
    7191             : 
    7192             : /*
    7193             :  * energy_env - Utilization landscape for energy estimation.
    7194             :  * @task_busy_time: Utilization contribution by the task for which we test the
    7195             :  *                  placement. Given by eenv_task_busy_time().
    7196             :  * @pd_busy_time:   Utilization of the whole perf domain without the task
    7197             :  *                  contribution. Given by eenv_pd_busy_time().
    7198             :  * @cpu_cap:        Maximum CPU capacity for the perf domain.
    7199             :  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
    7200             :  */
    7201             : struct energy_env {
    7202             :         unsigned long task_busy_time;
    7203             :         unsigned long pd_busy_time;
    7204             :         unsigned long cpu_cap;
    7205             :         unsigned long pd_cap;
    7206             : };
    7207             : 
    7208             : /*
    7209             :  * Compute the task busy time for compute_energy(). This time cannot be
    7210             :  * injected directly into effective_cpu_util() because of the IRQ scaling.
    7211             :  * The latter only makes sense with the most recent CPUs where the task has
    7212             :  * run.
    7213             :  */
    7214             : static inline void eenv_task_busy_time(struct energy_env *eenv,
    7215             :                                        struct task_struct *p, int prev_cpu)
    7216             : {
    7217             :         unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
    7218             :         unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
    7219             : 
    7220             :         if (unlikely(irq >= max_cap))
    7221             :                 busy_time = max_cap;
    7222             :         else
    7223             :                 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
    7224             : 
    7225             :         eenv->task_busy_time = busy_time;
    7226             : }
    7227             : 
    7228             : /*
    7229             :  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
    7230             :  * utilization for each @pd_cpus, it however doesn't take into account
    7231             :  * clamping since the ratio (utilization / cpu_capacity) is already enough to
    7232             :  * scale the EM reported power consumption at the (eventually clamped)
    7233             :  * cpu_capacity.
    7234             :  *
    7235             :  * The contribution of the task @p for which we want to estimate the
    7236             :  * energy cost is removed (by cpu_util_next()) and must be calculated
    7237             :  * separately (see eenv_task_busy_time). This ensures:
    7238             :  *
    7239             :  *   - A stable PD utilization, no matter which CPU of that PD we want to place
    7240             :  *     the task on.
    7241             :  *
    7242             :  *   - A fair comparison between CPUs as the task contribution (task_util())
    7243             :  *     will always be the same no matter which CPU utilization we rely on
    7244             :  *     (util_avg or util_est).
    7245             :  *
    7246             :  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
    7247             :  * exceed @eenv->pd_cap.
    7248             :  */
    7249             : static inline void eenv_pd_busy_time(struct energy_env *eenv,
    7250             :                                      struct cpumask *pd_cpus,
    7251             :                                      struct task_struct *p)
    7252             : {
    7253             :         unsigned long busy_time = 0;
    7254             :         int cpu;
    7255             : 
    7256             :         for_each_cpu(cpu, pd_cpus) {
    7257             :                 unsigned long util = cpu_util_next(cpu, p, -1);
    7258             : 
    7259             :                 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
    7260             :         }
    7261             : 
    7262             :         eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
    7263             : }
    7264             : 
    7265             : /*
    7266             :  * Compute the maximum utilization for compute_energy() when the task @p
    7267             :  * is placed on the cpu @dst_cpu.
    7268             :  *
    7269             :  * Returns the maximum utilization among @eenv->cpus. This utilization can't
    7270             :  * exceed @eenv->cpu_cap.
    7271             :  */
    7272             : static inline unsigned long
    7273             : eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
    7274             :                  struct task_struct *p, int dst_cpu)
    7275             : {
    7276             :         unsigned long max_util = 0;
    7277             :         int cpu;
    7278             : 
    7279             :         for_each_cpu(cpu, pd_cpus) {
    7280             :                 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
    7281             :                 unsigned long util = cpu_util_next(cpu, p, dst_cpu);
    7282             :                 unsigned long cpu_util;
    7283             : 
    7284             :                 /*
    7285             :                  * Performance domain frequency: utilization clamping
    7286             :                  * must be considered since it affects the selection
    7287             :                  * of the performance domain frequency.
    7288             :                  * NOTE: in case RT tasks are running, by default the
    7289             :                  * FREQUENCY_UTIL's utilization can be max OPP.
    7290             :                  */
    7291             :                 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
    7292             :                 max_util = max(max_util, cpu_util);
    7293             :         }
    7294             : 
    7295             :         return min(max_util, eenv->cpu_cap);
    7296             : }
    7297             : 
    7298             : /*
    7299             :  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
    7300             :  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
    7301             :  * contribution is ignored.
    7302             :  */
    7303             : static inline unsigned long
    7304             : compute_energy(struct energy_env *eenv, struct perf_domain *pd,
    7305             :                struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
    7306             : {
    7307             :         unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
    7308             :         unsigned long busy_time = eenv->pd_busy_time;
    7309             : 
    7310             :         if (dst_cpu >= 0)
    7311             :                 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
    7312             : 
    7313             :         return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
    7314             : }
    7315             : 
    7316             : /*
    7317             :  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
    7318             :  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
    7319             :  * spare capacity in each performance domain and uses it as a potential
    7320             :  * candidate to execute the task. Then, it uses the Energy Model to figure
    7321             :  * out which of the CPU candidates is the most energy-efficient.
    7322             :  *
    7323             :  * The rationale for this heuristic is as follows. In a performance domain,
    7324             :  * all the most energy efficient CPU candidates (according to the Energy
    7325             :  * Model) are those for which we'll request a low frequency. When there are
    7326             :  * several CPUs for which the frequency request will be the same, we don't
    7327             :  * have enough data to break the tie between them, because the Energy Model
    7328             :  * only includes active power costs. With this model, if we assume that
    7329             :  * frequency requests follow utilization (e.g. using schedutil), the CPU with
    7330             :  * the maximum spare capacity in a performance domain is guaranteed to be among
    7331             :  * the best candidates of the performance domain.
    7332             :  *
    7333             :  * In practice, it could be preferable from an energy standpoint to pack
    7334             :  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
    7335             :  * but that could also hurt our chances to go cluster idle, and we have no
    7336             :  * ways to tell with the current Energy Model if this is actually a good
    7337             :  * idea or not. So, find_energy_efficient_cpu() basically favors
    7338             :  * cluster-packing, and spreading inside a cluster. That should at least be
    7339             :  * a good thing for latency, and this is consistent with the idea that most
    7340             :  * of the energy savings of EAS come from the asymmetry of the system, and
    7341             :  * not so much from breaking the tie between identical CPUs. That's also the
    7342             :  * reason why EAS is enabled in the topology code only for systems where
    7343             :  * SD_ASYM_CPUCAPACITY is set.
    7344             :  *
    7345             :  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
    7346             :  * they don't have any useful utilization data yet and it's not possible to
    7347             :  * forecast their impact on energy consumption. Consequently, they will be
    7348             :  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
    7349             :  * to be energy-inefficient in some use-cases. The alternative would be to
    7350             :  * bias new tasks towards specific types of CPUs first, or to try to infer
    7351             :  * their util_avg from the parent task, but those heuristics could hurt
    7352             :  * other use-cases too. So, until someone finds a better way to solve this,
    7353             :  * let's keep things simple by re-using the existing slow path.
    7354             :  */
    7355             : static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
    7356             : {
    7357             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    7358             :         unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
    7359             :         unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
    7360             :         unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
    7361             :         struct root_domain *rd = this_rq()->rd;
    7362             :         int cpu, best_energy_cpu, target = -1;
    7363             :         int prev_fits = -1, best_fits = -1;
    7364             :         unsigned long best_thermal_cap = 0;
    7365             :         unsigned long prev_thermal_cap = 0;
    7366             :         struct sched_domain *sd;
    7367             :         struct perf_domain *pd;
    7368             :         struct energy_env eenv;
    7369             : 
    7370             :         rcu_read_lock();
    7371             :         pd = rcu_dereference(rd->pd);
    7372             :         if (!pd || READ_ONCE(rd->overutilized))
    7373             :                 goto unlock;
    7374             : 
    7375             :         /*
    7376             :          * Energy-aware wake-up happens on the lowest sched_domain starting
    7377             :          * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
    7378             :          */
    7379             :         sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
    7380             :         while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
    7381             :                 sd = sd->parent;
    7382             :         if (!sd)
    7383             :                 goto unlock;
    7384             : 
    7385             :         target = prev_cpu;
    7386             : 
    7387             :         sync_entity_load_avg(&p->se);
    7388             :         if (!uclamp_task_util(p, p_util_min, p_util_max))
    7389             :                 goto unlock;
    7390             : 
    7391             :         eenv_task_busy_time(&eenv, p, prev_cpu);
    7392             : 
    7393             :         for (; pd; pd = pd->next) {
    7394             :                 unsigned long util_min = p_util_min, util_max = p_util_max;
    7395             :                 unsigned long cpu_cap, cpu_thermal_cap, util;
    7396             :                 unsigned long cur_delta, max_spare_cap = 0;
    7397             :                 unsigned long rq_util_min, rq_util_max;
    7398             :                 unsigned long prev_spare_cap = 0;
    7399             :                 int max_spare_cap_cpu = -1;
    7400             :                 unsigned long base_energy;
    7401             :                 int fits, max_fits = -1;
    7402             : 
    7403             :                 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
    7404             : 
    7405             :                 if (cpumask_empty(cpus))
    7406             :                         continue;
    7407             : 
    7408             :                 /* Account thermal pressure for the energy estimation */
    7409             :                 cpu = cpumask_first(cpus);
    7410             :                 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
    7411             :                 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
    7412             : 
    7413             :                 eenv.cpu_cap = cpu_thermal_cap;
    7414             :                 eenv.pd_cap = 0;
    7415             : 
    7416             :                 for_each_cpu(cpu, cpus) {
    7417             :                         struct rq *rq = cpu_rq(cpu);
    7418             : 
    7419             :                         eenv.pd_cap += cpu_thermal_cap;
    7420             : 
    7421             :                         if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
    7422             :                                 continue;
    7423             : 
    7424             :                         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    7425             :                                 continue;
    7426             : 
    7427             :                         util = cpu_util_next(cpu, p, cpu);
    7428             :                         cpu_cap = capacity_of(cpu);
    7429             : 
    7430             :                         /*
    7431             :                          * Skip CPUs that cannot satisfy the capacity request.
    7432             :                          * IOW, placing the task there would make the CPU
    7433             :                          * overutilized. Take uclamp into account to see how
    7434             :                          * much capacity we can get out of the CPU; this is
    7435             :                          * aligned with sched_cpu_util().
    7436             :                          */
    7437             :                         if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
    7438             :                                 /*
    7439             :                                  * Open code uclamp_rq_util_with() except for
    7440             :                                  * the clamp() part. Ie: apply max aggregation
    7441             :                                  * only. util_fits_cpu() logic requires to
    7442             :                                  * operate on non clamped util but must use the
    7443             :                                  * max-aggregated uclamp_{min, max}.
    7444             :                                  */
    7445             :                                 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
    7446             :                                 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
    7447             : 
    7448             :                                 util_min = max(rq_util_min, p_util_min);
    7449             :                                 util_max = max(rq_util_max, p_util_max);
    7450             :                         }
    7451             : 
    7452             :                         fits = util_fits_cpu(util, util_min, util_max, cpu);
    7453             :                         if (!fits)
    7454             :                                 continue;
    7455             : 
    7456             :                         lsub_positive(&cpu_cap, util);
    7457             : 
    7458             :                         if (cpu == prev_cpu) {
    7459             :                                 /* Always use prev_cpu as a candidate. */
    7460             :                                 prev_spare_cap = cpu_cap;
    7461             :                                 prev_fits = fits;
    7462             :                         } else if ((fits > max_fits) ||
    7463             :                                    ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
    7464             :                                 /*
    7465             :                                  * Find the CPU with the maximum spare capacity
    7466             :                                  * among the remaining CPUs in the performance
    7467             :                                  * domain.
    7468             :                                  */
    7469             :                                 max_spare_cap = cpu_cap;
    7470             :                                 max_spare_cap_cpu = cpu;
    7471             :                                 max_fits = fits;
    7472             :                         }
    7473             :                 }
    7474             : 
    7475             :                 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
    7476             :                         continue;
    7477             : 
    7478             :                 eenv_pd_busy_time(&eenv, cpus, p);
    7479             :                 /* Compute the 'base' energy of the pd, without @p */
    7480             :                 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
    7481             : 
    7482             :                 /* Evaluate the energy impact of using prev_cpu. */
    7483             :                 if (prev_spare_cap > 0) {
    7484             :                         prev_delta = compute_energy(&eenv, pd, cpus, p,
    7485             :                                                     prev_cpu);
    7486             :                         /* CPU utilization has changed */
    7487             :                         if (prev_delta < base_energy)
    7488             :                                 goto unlock;
    7489             :                         prev_delta -= base_energy;
    7490             :                         prev_thermal_cap = cpu_thermal_cap;
    7491             :                         best_delta = min(best_delta, prev_delta);
    7492             :                 }
    7493             : 
    7494             :                 /* Evaluate the energy impact of using max_spare_cap_cpu. */
    7495             :                 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
    7496             :                         /* Current best energy cpu fits better */
    7497             :                         if (max_fits < best_fits)
    7498             :                                 continue;
    7499             : 
    7500             :                         /*
    7501             :                          * Both don't fit performance hint (i.e. uclamp_min)
    7502             :                          * but best energy cpu has better capacity.
    7503             :                          */
    7504             :                         if ((max_fits < 0) &&
    7505             :                             (cpu_thermal_cap <= best_thermal_cap))
    7506             :                                 continue;
    7507             : 
    7508             :                         cur_delta = compute_energy(&eenv, pd, cpus, p,
    7509             :                                                    max_spare_cap_cpu);
    7510             :                         /* CPU utilization has changed */
    7511             :                         if (cur_delta < base_energy)
    7512             :                                 goto unlock;
    7513             :                         cur_delta -= base_energy;
    7514             : 
    7515             :                         /*
    7516             :                          * Both fit for the task but best energy cpu has lower
    7517             :                          * energy impact.
    7518             :                          */
    7519             :                         if ((max_fits > 0) && (best_fits > 0) &&
    7520             :                             (cur_delta >= best_delta))
    7521             :                                 continue;
    7522             : 
    7523             :                         best_delta = cur_delta;
    7524             :                         best_energy_cpu = max_spare_cap_cpu;
    7525             :                         best_fits = max_fits;
    7526             :                         best_thermal_cap = cpu_thermal_cap;
    7527             :                 }
    7528             :         }
    7529             :         rcu_read_unlock();
    7530             : 
    7531             :         if ((best_fits > prev_fits) ||
    7532             :             ((best_fits > 0) && (best_delta < prev_delta)) ||
    7533             :             ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
    7534             :                 target = best_energy_cpu;
    7535             : 
    7536             :         return target;
    7537             : 
    7538             : unlock:
    7539             :         rcu_read_unlock();
    7540             : 
    7541             :         return target;
    7542             : }
    7543             : 
    7544             : /*
    7545             :  * select_task_rq_fair: Select target runqueue for the waking task in domains
    7546             :  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
    7547             :  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
    7548             :  *
    7549             :  * Balances load by selecting the idlest CPU in the idlest group, or under
    7550             :  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
    7551             :  *
    7552             :  * Returns the target CPU number.
    7553             :  */
    7554             : static int
    7555             : select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
    7556             : {
    7557             :         int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
    7558             :         struct sched_domain *tmp, *sd = NULL;
    7559             :         int cpu = smp_processor_id();
    7560             :         int new_cpu = prev_cpu;
    7561             :         int want_affine = 0;
    7562             :         /* SD_flags and WF_flags share the first nibble */
    7563             :         int sd_flag = wake_flags & 0xF;
    7564             : 
    7565             :         /*
    7566             :          * required for stable ->cpus_allowed
    7567             :          */
    7568             :         lockdep_assert_held(&p->pi_lock);
    7569             :         if (wake_flags & WF_TTWU) {
    7570             :                 record_wakee(p);
    7571             : 
    7572             :                 if (sched_energy_enabled()) {
    7573             :                         new_cpu = find_energy_efficient_cpu(p, prev_cpu);
    7574             :                         if (new_cpu >= 0)
    7575             :                                 return new_cpu;
    7576             :                         new_cpu = prev_cpu;
    7577             :                 }
    7578             : 
    7579             :                 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
    7580             :         }
    7581             : 
    7582             :         rcu_read_lock();
    7583             :         for_each_domain(cpu, tmp) {
    7584             :                 /*
    7585             :                  * If both 'cpu' and 'prev_cpu' are part of this domain,
    7586             :                  * cpu is a valid SD_WAKE_AFFINE target.
    7587             :                  */
    7588             :                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
    7589             :                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
    7590             :                         if (cpu != prev_cpu)
    7591             :                                 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
    7592             : 
    7593             :                         sd = NULL; /* Prefer wake_affine over balance flags */
    7594             :                         break;
    7595             :                 }
    7596             : 
    7597             :                 /*
    7598             :                  * Usually only true for WF_EXEC and WF_FORK, as sched_domains
    7599             :                  * usually do not have SD_BALANCE_WAKE set. That means wakeup
    7600             :                  * will usually go to the fast path.
    7601             :                  */
    7602             :                 if (tmp->flags & sd_flag)
    7603             :                         sd = tmp;
    7604             :                 else if (!want_affine)
    7605             :                         break;
    7606             :         }
    7607             : 
    7608             :         if (unlikely(sd)) {
    7609             :                 /* Slow path */
    7610             :                 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
    7611             :         } else if (wake_flags & WF_TTWU) { /* XXX always ? */
    7612             :                 /* Fast path */
    7613             :                 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
    7614             :         }
    7615             :         rcu_read_unlock();
    7616             : 
    7617             :         return new_cpu;
    7618             : }
    7619             : 
    7620             : /*
    7621             :  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
    7622             :  * cfs_rq_of(p) references at time of call are still valid and identify the
    7623             :  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
    7624             :  */
    7625             : static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
    7626             : {
    7627             :         struct sched_entity *se = &p->se;
    7628             : 
    7629             :         /*
    7630             :          * As blocked tasks retain absolute vruntime the migration needs to
    7631             :          * deal with this by subtracting the old and adding the new
    7632             :          * min_vruntime -- the latter is done by enqueue_entity() when placing
    7633             :          * the task on the new runqueue.
    7634             :          */
    7635             :         if (READ_ONCE(p->__state) == TASK_WAKING) {
    7636             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    7637             : 
    7638             :                 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
    7639             :         }
    7640             : 
    7641             :         if (!task_on_rq_migrating(p)) {
    7642             :                 remove_entity_load_avg(se);
    7643             : 
    7644             :                 /*
    7645             :                  * Here, the task's PELT values have been updated according to
    7646             :                  * the current rq's clock. But if that clock hasn't been
    7647             :                  * updated in a while, a substantial idle time will be missed,
    7648             :                  * leading to an inflation after wake-up on the new rq.
    7649             :                  *
    7650             :                  * Estimate the missing time from the cfs_rq last_update_time
    7651             :                  * and update sched_avg to improve the PELT continuity after
    7652             :                  * migration.
    7653             :                  */
    7654             :                 migrate_se_pelt_lag(se);
    7655             :         }
    7656             : 
    7657             :         /* Tell new CPU we are migrated */
    7658             :         se->avg.last_update_time = 0;
    7659             : 
    7660             :         /* We have migrated, no longer consider this task hot */
    7661             :         se->exec_start = 0;
    7662             : 
    7663             :         update_scan_period(p, new_cpu);
    7664             : }
    7665             : 
    7666             : static void task_dead_fair(struct task_struct *p)
    7667             : {
    7668             :         remove_entity_load_avg(&p->se);
    7669             : }
    7670             : 
    7671             : static int
    7672             : balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7673             : {
    7674             :         if (rq->nr_running)
    7675             :                 return 1;
    7676             : 
    7677             :         return newidle_balance(rq, rf) != 0;
    7678             : }
    7679             : #endif /* CONFIG_SMP */
    7680             : 
    7681             : static unsigned long wakeup_gran(struct sched_entity *se)
    7682             : {
    7683         750 :         unsigned long gran = sysctl_sched_wakeup_granularity;
    7684             : 
    7685             :         /*
    7686             :          * Since its curr running now, convert the gran from real-time
    7687             :          * to virtual-time in his units.
    7688             :          *
    7689             :          * By using 'se' instead of 'curr' we penalize light tasks, so
    7690             :          * they get preempted easier. That is, if 'se' < 'curr' then
    7691             :          * the resulting gran will be larger, therefore penalizing the
    7692             :          * lighter, if otoh 'se' > 'curr' then the resulting gran will
    7693             :          * be smaller, again penalizing the lighter task.
    7694             :          *
    7695             :          * This is especially important for buddies when the leftmost
    7696             :          * task is higher priority than the buddy.
    7697             :          */
    7698         750 :         return calc_delta_fair(gran, se);
    7699             : }
    7700             : 
    7701             : /*
    7702             :  * Should 'se' preempt 'curr'.
    7703             :  *
    7704             :  *             |s1
    7705             :  *        |s2
    7706             :  *   |s3
    7707             :  *         g
    7708             :  *      |<--->|c
    7709             :  *
    7710             :  *  w(c, s1) = -1
    7711             :  *  w(c, s2) =  0
    7712             :  *  w(c, s3) =  1
    7713             :  *
    7714             :  */
    7715             : static int
    7716        2525 : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
    7717             : {
    7718        2525 :         s64 gran, vdiff = curr->vruntime - se->vruntime;
    7719             : 
    7720        2525 :         if (vdiff <= 0)
    7721             :                 return -1;
    7722             : 
    7723         750 :         gran = wakeup_gran(se);
    7724         750 :         if (vdiff > gran)
    7725             :                 return 1;
    7726             : 
    7727             :         return 0;
    7728             : }
    7729             : 
    7730           0 : static void set_last_buddy(struct sched_entity *se)
    7731             : {
    7732           0 :         for_each_sched_entity(se) {
    7733           0 :                 if (SCHED_WARN_ON(!se->on_rq))
    7734             :                         return;
    7735           0 :                 if (se_is_idle(se))
    7736             :                         return;
    7737           0 :                 cfs_rq_of(se)->last = se;
    7738             :         }
    7739             : }
    7740             : 
    7741         746 : static void set_next_buddy(struct sched_entity *se)
    7742             : {
    7743        1492 :         for_each_sched_entity(se) {
    7744         746 :                 if (SCHED_WARN_ON(!se->on_rq))
    7745             :                         return;
    7746         746 :                 if (se_is_idle(se))
    7747             :                         return;
    7748        1492 :                 cfs_rq_of(se)->next = se;
    7749             :         }
    7750             : }
    7751             : 
    7752             : static void set_skip_buddy(struct sched_entity *se)
    7753             : {
    7754           0 :         for_each_sched_entity(se)
    7755           0 :                 cfs_rq_of(se)->skip = se;
    7756             : }
    7757             : 
    7758             : /*
    7759             :  * Preempt the current task with a newly woken task if needed:
    7760             :  */
    7761        2125 : static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
    7762             : {
    7763        2125 :         struct task_struct *curr = rq->curr;
    7764        2125 :         struct sched_entity *se = &curr->se, *pse = &p->se;
    7765        4250 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    7766        2125 :         int scale = cfs_rq->nr_running >= sched_nr_latency;
    7767        2125 :         int next_buddy_marked = 0;
    7768             :         int cse_is_idle, pse_is_idle;
    7769             : 
    7770        2125 :         if (unlikely(se == pse))
    7771             :                 return;
    7772             : 
    7773             :         /*
    7774             :          * This is possible from callers such as attach_tasks(), in which we
    7775             :          * unconditionally check_preempt_curr() after an enqueue (which may have
    7776             :          * lead to a throttle).  This both saves work and prevents false
    7777             :          * next-buddy nomination below.
    7778             :          */
    7779        2125 :         if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
    7780             :                 return;
    7781             : 
    7782        2125 :         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
    7783           0 :                 set_next_buddy(pse);
    7784           0 :                 next_buddy_marked = 1;
    7785             :         }
    7786             : 
    7787             :         /*
    7788             :          * We can come here with TIF_NEED_RESCHED already set from new task
    7789             :          * wake up path.
    7790             :          *
    7791             :          * Note: this also catches the edge-case of curr being in a throttled
    7792             :          * group (e.g. via set_curr_task), since update_curr() (in the
    7793             :          * enqueue of curr) will have resulted in resched being set.  This
    7794             :          * prevents us from potentially nominating it as a false LAST_BUDDY
    7795             :          * below.
    7796             :          */
    7797        2125 :         if (test_tsk_need_resched(curr))
    7798             :                 return;
    7799             : 
    7800             :         /* Idle tasks are by definition preempted by non-idle tasks. */
    7801        3558 :         if (unlikely(task_has_idle_policy(curr)) &&
    7802           0 :             likely(!task_has_idle_policy(p)))
    7803             :                 goto preempt;
    7804             : 
    7805             :         /*
    7806             :          * Batch and idle tasks do not preempt non-idle tasks (their preemption
    7807             :          * is driven by the tick):
    7808             :          */
    7809        1779 :         if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
    7810             :                 return;
    7811             : 
    7812        1779 :         find_matching_se(&se, &pse);
    7813        1779 :         WARN_ON_ONCE(!pse);
    7814             : 
    7815        1779 :         cse_is_idle = se_is_idle(se);
    7816        1779 :         pse_is_idle = se_is_idle(pse);
    7817             : 
    7818             :         /*
    7819             :          * Preempt an idle group in favor of a non-idle group (and don't preempt
    7820             :          * in the inverse case).
    7821             :          */
    7822             :         if (cse_is_idle && !pse_is_idle)
    7823             :                 goto preempt;
    7824             :         if (cse_is_idle != pse_is_idle)
    7825             :                 return;
    7826             : 
    7827        3558 :         update_curr(cfs_rq_of(se));
    7828        1779 :         if (wakeup_preempt_entity(se, pse) == 1) {
    7829             :                 /*
    7830             :                  * Bias pick_next to pick the sched entity that is
    7831             :                  * triggering this preemption.
    7832             :                  */
    7833         746 :                 if (!next_buddy_marked)
    7834         746 :                         set_next_buddy(pse);
    7835             :                 goto preempt;
    7836             :         }
    7837             : 
    7838             :         return;
    7839             : 
    7840             : preempt:
    7841         746 :         resched_curr(rq);
    7842             :         /*
    7843             :          * Only set the backward buddy when the current task is still
    7844             :          * on the rq. This can happen when a wakeup gets interleaved
    7845             :          * with schedule on the ->pre_schedule() or idle_balance()
    7846             :          * point, either of which can * drop the rq lock.
    7847             :          *
    7848             :          * Also, during early boot the idle thread is in the fair class,
    7849             :          * for obvious reasons its a bad idea to schedule back to it.
    7850             :          */
    7851         746 :         if (unlikely(!se->on_rq || curr == rq->idle))
    7852             :                 return;
    7853             : 
    7854         746 :         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
    7855           0 :                 set_last_buddy(se);
    7856             : }
    7857             : 
    7858             : #ifdef CONFIG_SMP
    7859             : static struct task_struct *pick_task_fair(struct rq *rq)
    7860             : {
    7861             :         struct sched_entity *se;
    7862             :         struct cfs_rq *cfs_rq;
    7863             : 
    7864             : again:
    7865             :         cfs_rq = &rq->cfs;
    7866             :         if (!cfs_rq->nr_running)
    7867             :                 return NULL;
    7868             : 
    7869             :         do {
    7870             :                 struct sched_entity *curr = cfs_rq->curr;
    7871             : 
    7872             :                 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
    7873             :                 if (curr) {
    7874             :                         if (curr->on_rq)
    7875             :                                 update_curr(cfs_rq);
    7876             :                         else
    7877             :                                 curr = NULL;
    7878             : 
    7879             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq)))
    7880             :                                 goto again;
    7881             :                 }
    7882             : 
    7883             :                 se = pick_next_entity(cfs_rq, curr);
    7884             :                 cfs_rq = group_cfs_rq(se);
    7885             :         } while (cfs_rq);
    7886             : 
    7887             :         return task_of(se);
    7888             : }
    7889             : #endif
    7890             : 
    7891             : struct task_struct *
    7892        2210 : pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7893             : {
    7894        2210 :         struct cfs_rq *cfs_rq = &rq->cfs;
    7895             :         struct sched_entity *se;
    7896             :         struct task_struct *p;
    7897             :         int new_tasks;
    7898             : 
    7899             : again:
    7900        2210 :         if (!sched_fair_runnable(rq))
    7901             :                 goto idle;
    7902             : 
    7903             : #ifdef CONFIG_FAIR_GROUP_SCHED
    7904             :         if (!prev || prev->sched_class != &fair_sched_class)
    7905             :                 goto simple;
    7906             : 
    7907             :         /*
    7908             :          * Because of the set_next_buddy() in dequeue_task_fair() it is rather
    7909             :          * likely that a next task is from the same cgroup as the current.
    7910             :          *
    7911             :          * Therefore attempt to avoid putting and setting the entire cgroup
    7912             :          * hierarchy, only change the part that actually changes.
    7913             :          */
    7914             : 
    7915             :         do {
    7916             :                 struct sched_entity *curr = cfs_rq->curr;
    7917             : 
    7918             :                 /*
    7919             :                  * Since we got here without doing put_prev_entity() we also
    7920             :                  * have to consider cfs_rq->curr. If it is still a runnable
    7921             :                  * entity, update_curr() will update its vruntime, otherwise
    7922             :                  * forget we've ever seen it.
    7923             :                  */
    7924             :                 if (curr) {
    7925             :                         if (curr->on_rq)
    7926             :                                 update_curr(cfs_rq);
    7927             :                         else
    7928             :                                 curr = NULL;
    7929             : 
    7930             :                         /*
    7931             :                          * This call to check_cfs_rq_runtime() will do the
    7932             :                          * throttle and dequeue its entity in the parent(s).
    7933             :                          * Therefore the nr_running test will indeed
    7934             :                          * be correct.
    7935             :                          */
    7936             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
    7937             :                                 cfs_rq = &rq->cfs;
    7938             : 
    7939             :                                 if (!cfs_rq->nr_running)
    7940             :                                         goto idle;
    7941             : 
    7942             :                                 goto simple;
    7943             :                         }
    7944             :                 }
    7945             : 
    7946             :                 se = pick_next_entity(cfs_rq, curr);
    7947             :                 cfs_rq = group_cfs_rq(se);
    7948             :         } while (cfs_rq);
    7949             : 
    7950             :         p = task_of(se);
    7951             : 
    7952             :         /*
    7953             :          * Since we haven't yet done put_prev_entity and if the selected task
    7954             :          * is a different task than we started out with, try and touch the
    7955             :          * least amount of cfs_rqs.
    7956             :          */
    7957             :         if (prev != p) {
    7958             :                 struct sched_entity *pse = &prev->se;
    7959             : 
    7960             :                 while (!(cfs_rq = is_same_group(se, pse))) {
    7961             :                         int se_depth = se->depth;
    7962             :                         int pse_depth = pse->depth;
    7963             : 
    7964             :                         if (se_depth <= pse_depth) {
    7965             :                                 put_prev_entity(cfs_rq_of(pse), pse);
    7966             :                                 pse = parent_entity(pse);
    7967             :                         }
    7968             :                         if (se_depth >= pse_depth) {
    7969             :                                 set_next_entity(cfs_rq_of(se), se);
    7970             :                                 se = parent_entity(se);
    7971             :                         }
    7972             :                 }
    7973             : 
    7974             :                 put_prev_entity(cfs_rq, pse);
    7975             :                 set_next_entity(cfs_rq, se);
    7976             :         }
    7977             : 
    7978             :         goto done;
    7979             : simple:
    7980             : #endif
    7981        2209 :         if (prev)
    7982        2209 :                 put_prev_task(rq, prev);
    7983             : 
    7984             :         do {
    7985        2209 :                 se = pick_next_entity(cfs_rq, NULL);
    7986        2209 :                 set_next_entity(cfs_rq, se);
    7987        2209 :                 cfs_rq = group_cfs_rq(se);
    7988             :         } while (cfs_rq);
    7989             : 
    7990        2209 :         p = task_of(se);
    7991             : 
    7992             : done: __maybe_unused;
    7993             : #ifdef CONFIG_SMP
    7994             :         /*
    7995             :          * Move the next running task to the front of
    7996             :          * the list, so our cfs_tasks list becomes MRU
    7997             :          * one.
    7998             :          */
    7999             :         list_move(&p->se.group_node, &rq->cfs_tasks);
    8000             : #endif
    8001             : 
    8002        2209 :         if (hrtick_enabled_fair(rq))
    8003             :                 hrtick_start_fair(rq, p);
    8004             : 
    8005        2209 :         update_misfit_status(p, rq);
    8006             : 
    8007        2209 :         return p;
    8008             : 
    8009             : idle:
    8010             :         if (!rf)
    8011             :                 return NULL;
    8012             : 
    8013             :         new_tasks = newidle_balance(rq, rf);
    8014             : 
    8015             :         /*
    8016             :          * Because newidle_balance() releases (and re-acquires) rq->lock, it is
    8017             :          * possible for any higher priority task to appear. In that case we
    8018             :          * must re-start the pick_next_entity() loop.
    8019             :          */
    8020             :         if (new_tasks < 0)
    8021             :                 return RETRY_TASK;
    8022             : 
    8023             :         if (new_tasks > 0)
    8024             :                 goto again;
    8025             : 
    8026             :         /*
    8027             :          * rq is about to be idle, check if we need to update the
    8028             :          * lost_idle_time of clock_pelt
    8029             :          */
    8030             :         update_idle_rq_clock_pelt(rq);
    8031             : 
    8032             :         return NULL;
    8033             : }
    8034             : 
    8035           0 : static struct task_struct *__pick_next_task_fair(struct rq *rq)
    8036             : {
    8037           0 :         return pick_next_task_fair(rq, NULL, NULL);
    8038             : }
    8039             : 
    8040             : /*
    8041             :  * Account for a descheduled task:
    8042             :  */
    8043        2212 : static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
    8044             : {
    8045        2212 :         struct sched_entity *se = &prev->se;
    8046             :         struct cfs_rq *cfs_rq;
    8047             : 
    8048        4424 :         for_each_sched_entity(se) {
    8049        4424 :                 cfs_rq = cfs_rq_of(se);
    8050        2212 :                 put_prev_entity(cfs_rq, se);
    8051             :         }
    8052        2212 : }
    8053             : 
    8054             : /*
    8055             :  * sched_yield() is very simple
    8056             :  *
    8057             :  * The magic of dealing with the ->skip buddy is in pick_next_entity.
    8058             :  */
    8059           0 : static void yield_task_fair(struct rq *rq)
    8060             : {
    8061           0 :         struct task_struct *curr = rq->curr;
    8062           0 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    8063           0 :         struct sched_entity *se = &curr->se;
    8064             : 
    8065             :         /*
    8066             :          * Are we the only task in the tree?
    8067             :          */
    8068           0 :         if (unlikely(rq->nr_running == 1))
    8069             :                 return;
    8070             : 
    8071           0 :         clear_buddies(cfs_rq, se);
    8072             : 
    8073           0 :         if (curr->policy != SCHED_BATCH) {
    8074           0 :                 update_rq_clock(rq);
    8075             :                 /*
    8076             :                  * Update run-time statistics of the 'current'.
    8077             :                  */
    8078           0 :                 update_curr(cfs_rq);
    8079             :                 /*
    8080             :                  * Tell update_rq_clock() that we've just updated,
    8081             :                  * so we don't do microscopic update in schedule()
    8082             :                  * and double the fastpath cost.
    8083             :                  */
    8084           0 :                 rq_clock_skip_update(rq);
    8085             :         }
    8086             : 
    8087             :         set_skip_buddy(se);
    8088             : }
    8089             : 
    8090           0 : static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
    8091             : {
    8092           0 :         struct sched_entity *se = &p->se;
    8093             : 
    8094             :         /* throttled hierarchies are not runnable */
    8095           0 :         if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
    8096             :                 return false;
    8097             : 
    8098             :         /* Tell the scheduler that we'd really like pse to run next. */
    8099           0 :         set_next_buddy(se);
    8100             : 
    8101           0 :         yield_task_fair(rq);
    8102             : 
    8103           0 :         return true;
    8104             : }
    8105             : 
    8106             : #ifdef CONFIG_SMP
    8107             : /**************************************************
    8108             :  * Fair scheduling class load-balancing methods.
    8109             :  *
    8110             :  * BASICS
    8111             :  *
    8112             :  * The purpose of load-balancing is to achieve the same basic fairness the
    8113             :  * per-CPU scheduler provides, namely provide a proportional amount of compute
    8114             :  * time to each task. This is expressed in the following equation:
    8115             :  *
    8116             :  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
    8117             :  *
    8118             :  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
    8119             :  * W_i,0 is defined as:
    8120             :  *
    8121             :  *   W_i,0 = \Sum_j w_i,j                                             (2)
    8122             :  *
    8123             :  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
    8124             :  * is derived from the nice value as per sched_prio_to_weight[].
    8125             :  *
    8126             :  * The weight average is an exponential decay average of the instantaneous
    8127             :  * weight:
    8128             :  *
    8129             :  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
    8130             :  *
    8131             :  * C_i is the compute capacity of CPU i, typically it is the
    8132             :  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
    8133             :  * can also include other factors [XXX].
    8134             :  *
    8135             :  * To achieve this balance we define a measure of imbalance which follows
    8136             :  * directly from (1):
    8137             :  *
    8138             :  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
    8139             :  *
    8140             :  * We them move tasks around to minimize the imbalance. In the continuous
    8141             :  * function space it is obvious this converges, in the discrete case we get
    8142             :  * a few fun cases generally called infeasible weight scenarios.
    8143             :  *
    8144             :  * [XXX expand on:
    8145             :  *     - infeasible weights;
    8146             :  *     - local vs global optima in the discrete case. ]
    8147             :  *
    8148             :  *
    8149             :  * SCHED DOMAINS
    8150             :  *
    8151             :  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
    8152             :  * for all i,j solution, we create a tree of CPUs that follows the hardware
    8153             :  * topology where each level pairs two lower groups (or better). This results
    8154             :  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
    8155             :  * tree to only the first of the previous level and we decrease the frequency
    8156             :  * of load-balance at each level inv. proportional to the number of CPUs in
    8157             :  * the groups.
    8158             :  *
    8159             :  * This yields:
    8160             :  *
    8161             :  *     log_2 n     1     n
    8162             :  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
    8163             :  *     i = 0      2^i   2^i
    8164             :  *                               `- size of each group
    8165             :  *         |         |     `- number of CPUs doing load-balance
    8166             :  *         |         `- freq
    8167             :  *         `- sum over all levels
    8168             :  *
    8169             :  * Coupled with a limit on how many tasks we can migrate every balance pass,
    8170             :  * this makes (5) the runtime complexity of the balancer.
    8171             :  *
    8172             :  * An important property here is that each CPU is still (indirectly) connected
    8173             :  * to every other CPU in at most O(log n) steps:
    8174             :  *
    8175             :  * The adjacency matrix of the resulting graph is given by:
    8176             :  *
    8177             :  *             log_2 n
    8178             :  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
    8179             :  *             k = 0
    8180             :  *
    8181             :  * And you'll find that:
    8182             :  *
    8183             :  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
    8184             :  *
    8185             :  * Showing there's indeed a path between every CPU in at most O(log n) steps.
    8186             :  * The task movement gives a factor of O(m), giving a convergence complexity
    8187             :  * of:
    8188             :  *
    8189             :  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
    8190             :  *
    8191             :  *
    8192             :  * WORK CONSERVING
    8193             :  *
    8194             :  * In order to avoid CPUs going idle while there's still work to do, new idle
    8195             :  * balancing is more aggressive and has the newly idle CPU iterate up the domain
    8196             :  * tree itself instead of relying on other CPUs to bring it work.
    8197             :  *
    8198             :  * This adds some complexity to both (5) and (8) but it reduces the total idle
    8199             :  * time.
    8200             :  *
    8201             :  * [XXX more?]
    8202             :  *
    8203             :  *
    8204             :  * CGROUPS
    8205             :  *
    8206             :  * Cgroups make a horror show out of (2), instead of a simple sum we get:
    8207             :  *
    8208             :  *                                s_k,i
    8209             :  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
    8210             :  *                                 S_k
    8211             :  *
    8212             :  * Where
    8213             :  *
    8214             :  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
    8215             :  *
    8216             :  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
    8217             :  *
    8218             :  * The big problem is S_k, its a global sum needed to compute a local (W_i)
    8219             :  * property.
    8220             :  *
    8221             :  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
    8222             :  *      rewrite all of this once again.]
    8223             :  */
    8224             : 
    8225             : static unsigned long __read_mostly max_load_balance_interval = HZ/10;
    8226             : 
    8227             : enum fbq_type { regular, remote, all };
    8228             : 
    8229             : /*
    8230             :  * 'group_type' describes the group of CPUs at the moment of load balancing.
    8231             :  *
    8232             :  * The enum is ordered by pulling priority, with the group with lowest priority
    8233             :  * first so the group_type can simply be compared when selecting the busiest
    8234             :  * group. See update_sd_pick_busiest().
    8235             :  */
    8236             : enum group_type {
    8237             :         /* The group has spare capacity that can be used to run more tasks.  */
    8238             :         group_has_spare = 0,
    8239             :         /*
    8240             :          * The group is fully used and the tasks don't compete for more CPU
    8241             :          * cycles. Nevertheless, some tasks might wait before running.
    8242             :          */
    8243             :         group_fully_busy,
    8244             :         /*
    8245             :          * One task doesn't fit with CPU's capacity and must be migrated to a
    8246             :          * more powerful CPU.
    8247             :          */
    8248             :         group_misfit_task,
    8249             :         /*
    8250             :          * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
    8251             :          * and the task should be migrated to it instead of running on the
    8252             :          * current CPU.
    8253             :          */
    8254             :         group_asym_packing,
    8255             :         /*
    8256             :          * The tasks' affinity constraints previously prevented the scheduler
    8257             :          * from balancing the load across the system.
    8258             :          */
    8259             :         group_imbalanced,
    8260             :         /*
    8261             :          * The CPU is overloaded and can't provide expected CPU cycles to all
    8262             :          * tasks.
    8263             :          */
    8264             :         group_overloaded
    8265             : };
    8266             : 
    8267             : enum migration_type {
    8268             :         migrate_load = 0,
    8269             :         migrate_util,
    8270             :         migrate_task,
    8271             :         migrate_misfit
    8272             : };
    8273             : 
    8274             : #define LBF_ALL_PINNED  0x01
    8275             : #define LBF_NEED_BREAK  0x02
    8276             : #define LBF_DST_PINNED  0x04
    8277             : #define LBF_SOME_PINNED 0x08
    8278             : #define LBF_ACTIVE_LB   0x10
    8279             : 
    8280             : struct lb_env {
    8281             :         struct sched_domain     *sd;
    8282             : 
    8283             :         struct rq               *src_rq;
    8284             :         int                     src_cpu;
    8285             : 
    8286             :         int                     dst_cpu;
    8287             :         struct rq               *dst_rq;
    8288             : 
    8289             :         struct cpumask          *dst_grpmask;
    8290             :         int                     new_dst_cpu;
    8291             :         enum cpu_idle_type      idle;
    8292             :         long                    imbalance;
    8293             :         /* The set of CPUs under consideration for load-balancing */
    8294             :         struct cpumask          *cpus;
    8295             : 
    8296             :         unsigned int            flags;
    8297             : 
    8298             :         unsigned int            loop;
    8299             :         unsigned int            loop_break;
    8300             :         unsigned int            loop_max;
    8301             : 
    8302             :         enum fbq_type           fbq_type;
    8303             :         enum migration_type     migration_type;
    8304             :         struct list_head        tasks;
    8305             : };
    8306             : 
    8307             : /*
    8308             :  * Is this task likely cache-hot:
    8309             :  */
    8310             : static int task_hot(struct task_struct *p, struct lb_env *env)
    8311             : {
    8312             :         s64 delta;
    8313             : 
    8314             :         lockdep_assert_rq_held(env->src_rq);
    8315             : 
    8316             :         if (p->sched_class != &fair_sched_class)
    8317             :                 return 0;
    8318             : 
    8319             :         if (unlikely(task_has_idle_policy(p)))
    8320             :                 return 0;
    8321             : 
    8322             :         /* SMT siblings share cache */
    8323             :         if (env->sd->flags & SD_SHARE_CPUCAPACITY)
    8324             :                 return 0;
    8325             : 
    8326             :         /*
    8327             :          * Buddy candidates are cache hot:
    8328             :          */
    8329             :         if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
    8330             :                         (&p->se == cfs_rq_of(&p->se)->next ||
    8331             :                          &p->se == cfs_rq_of(&p->se)->last))
    8332             :                 return 1;
    8333             : 
    8334             :         if (sysctl_sched_migration_cost == -1)
    8335             :                 return 1;
    8336             : 
    8337             :         /*
    8338             :          * Don't migrate task if the task's cookie does not match
    8339             :          * with the destination CPU's core cookie.
    8340             :          */
    8341             :         if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
    8342             :                 return 1;
    8343             : 
    8344             :         if (sysctl_sched_migration_cost == 0)
    8345             :                 return 0;
    8346             : 
    8347             :         delta = rq_clock_task(env->src_rq) - p->se.exec_start;
    8348             : 
    8349             :         return delta < (s64)sysctl_sched_migration_cost;
    8350             : }
    8351             : 
    8352             : #ifdef CONFIG_NUMA_BALANCING
    8353             : /*
    8354             :  * Returns 1, if task migration degrades locality
    8355             :  * Returns 0, if task migration improves locality i.e migration preferred.
    8356             :  * Returns -1, if task migration is not affected by locality.
    8357             :  */
    8358             : static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
    8359             : {
    8360             :         struct numa_group *numa_group = rcu_dereference(p->numa_group);
    8361             :         unsigned long src_weight, dst_weight;
    8362             :         int src_nid, dst_nid, dist;
    8363             : 
    8364             :         if (!static_branch_likely(&sched_numa_balancing))
    8365             :                 return -1;
    8366             : 
    8367             :         if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
    8368             :                 return -1;
    8369             : 
    8370             :         src_nid = cpu_to_node(env->src_cpu);
    8371             :         dst_nid = cpu_to_node(env->dst_cpu);
    8372             : 
    8373             :         if (src_nid == dst_nid)
    8374             :                 return -1;
    8375             : 
    8376             :         /* Migrating away from the preferred node is always bad. */
    8377             :         if (src_nid == p->numa_preferred_nid) {
    8378             :                 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
    8379             :                         return 1;
    8380             :                 else
    8381             :                         return -1;
    8382             :         }
    8383             : 
    8384             :         /* Encourage migration to the preferred node. */
    8385             :         if (dst_nid == p->numa_preferred_nid)
    8386             :                 return 0;
    8387             : 
    8388             :         /* Leaving a core idle is often worse than degrading locality. */
    8389             :         if (env->idle == CPU_IDLE)
    8390             :                 return -1;
    8391             : 
    8392             :         dist = node_distance(src_nid, dst_nid);
    8393             :         if (numa_group) {
    8394             :                 src_weight = group_weight(p, src_nid, dist);
    8395             :                 dst_weight = group_weight(p, dst_nid, dist);
    8396             :         } else {
    8397             :                 src_weight = task_weight(p, src_nid, dist);
    8398             :                 dst_weight = task_weight(p, dst_nid, dist);
    8399             :         }
    8400             : 
    8401             :         return dst_weight < src_weight;
    8402             : }
    8403             : 
    8404             : #else
    8405             : static inline int migrate_degrades_locality(struct task_struct *p,
    8406             :                                              struct lb_env *env)
    8407             : {
    8408             :         return -1;
    8409             : }
    8410             : #endif
    8411             : 
    8412             : /*
    8413             :  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
    8414             :  */
    8415             : static
    8416             : int can_migrate_task(struct task_struct *p, struct lb_env *env)
    8417             : {
    8418             :         int tsk_cache_hot;
    8419             : 
    8420             :         lockdep_assert_rq_held(env->src_rq);
    8421             : 
    8422             :         /*
    8423             :          * We do not migrate tasks that are:
    8424             :          * 1) throttled_lb_pair, or
    8425             :          * 2) cannot be migrated to this CPU due to cpus_ptr, or
    8426             :          * 3) running (obviously), or
    8427             :          * 4) are cache-hot on their current CPU.
    8428             :          */
    8429             :         if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
    8430             :                 return 0;
    8431             : 
    8432             :         /* Disregard pcpu kthreads; they are where they need to be. */
    8433             :         if (kthread_is_per_cpu(p))
    8434             :                 return 0;
    8435             : 
    8436             :         if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
    8437             :                 int cpu;
    8438             : 
    8439             :                 schedstat_inc(p->stats.nr_failed_migrations_affine);
    8440             : 
    8441             :                 env->flags |= LBF_SOME_PINNED;
    8442             : 
    8443             :                 /*
    8444             :                  * Remember if this task can be migrated to any other CPU in
    8445             :                  * our sched_group. We may want to revisit it if we couldn't
    8446             :                  * meet load balance goals by pulling other tasks on src_cpu.
    8447             :                  *
    8448             :                  * Avoid computing new_dst_cpu
    8449             :                  * - for NEWLY_IDLE
    8450             :                  * - if we have already computed one in current iteration
    8451             :                  * - if it's an active balance
    8452             :                  */
    8453             :                 if (env->idle == CPU_NEWLY_IDLE ||
    8454             :                     env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
    8455             :                         return 0;
    8456             : 
    8457             :                 /* Prevent to re-select dst_cpu via env's CPUs: */
    8458             :                 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
    8459             :                         if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
    8460             :                                 env->flags |= LBF_DST_PINNED;
    8461             :                                 env->new_dst_cpu = cpu;
    8462             :                                 break;
    8463             :                         }
    8464             :                 }
    8465             : 
    8466             :                 return 0;
    8467             :         }
    8468             : 
    8469             :         /* Record that we found at least one task that could run on dst_cpu */
    8470             :         env->flags &= ~LBF_ALL_PINNED;
    8471             : 
    8472             :         if (task_on_cpu(env->src_rq, p)) {
    8473             :                 schedstat_inc(p->stats.nr_failed_migrations_running);
    8474             :                 return 0;
    8475             :         }
    8476             : 
    8477             :         /*
    8478             :          * Aggressive migration if:
    8479             :          * 1) active balance
    8480             :          * 2) destination numa is preferred
    8481             :          * 3) task is cache cold, or
    8482             :          * 4) too many balance attempts have failed.
    8483             :          */
    8484             :         if (env->flags & LBF_ACTIVE_LB)
    8485             :                 return 1;
    8486             : 
    8487             :         tsk_cache_hot = migrate_degrades_locality(p, env);
    8488             :         if (tsk_cache_hot == -1)
    8489             :                 tsk_cache_hot = task_hot(p, env);
    8490             : 
    8491             :         if (tsk_cache_hot <= 0 ||
    8492             :             env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
    8493             :                 if (tsk_cache_hot == 1) {
    8494             :                         schedstat_inc(env->sd->lb_hot_gained[env->idle]);
    8495             :                         schedstat_inc(p->stats.nr_forced_migrations);
    8496             :                 }
    8497             :                 return 1;
    8498             :         }
    8499             : 
    8500             :         schedstat_inc(p->stats.nr_failed_migrations_hot);
    8501             :         return 0;
    8502             : }
    8503             : 
    8504             : /*
    8505             :  * detach_task() -- detach the task for the migration specified in env
    8506             :  */
    8507             : static void detach_task(struct task_struct *p, struct lb_env *env)
    8508             : {
    8509             :         lockdep_assert_rq_held(env->src_rq);
    8510             : 
    8511             :         deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
    8512             :         set_task_cpu(p, env->dst_cpu);
    8513             : }
    8514             : 
    8515             : /*
    8516             :  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
    8517             :  * part of active balancing operations within "domain".
    8518             :  *
    8519             :  * Returns a task if successful and NULL otherwise.
    8520             :  */
    8521             : static struct task_struct *detach_one_task(struct lb_env *env)
    8522             : {
    8523             :         struct task_struct *p;
    8524             : 
    8525             :         lockdep_assert_rq_held(env->src_rq);
    8526             : 
    8527             :         list_for_each_entry_reverse(p,
    8528             :                         &env->src_rq->cfs_tasks, se.group_node) {
    8529             :                 if (!can_migrate_task(p, env))
    8530             :                         continue;
    8531             : 
    8532             :                 detach_task(p, env);
    8533             : 
    8534             :                 /*
    8535             :                  * Right now, this is only the second place where
    8536             :                  * lb_gained[env->idle] is updated (other is detach_tasks)
    8537             :                  * so we can safely collect stats here rather than
    8538             :                  * inside detach_tasks().
    8539             :                  */
    8540             :                 schedstat_inc(env->sd->lb_gained[env->idle]);
    8541             :                 return p;
    8542             :         }
    8543             :         return NULL;
    8544             : }
    8545             : 
    8546             : /*
    8547             :  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
    8548             :  * busiest_rq, as part of a balancing operation within domain "sd".
    8549             :  *
    8550             :  * Returns number of detached tasks if successful and 0 otherwise.
    8551             :  */
    8552             : static int detach_tasks(struct lb_env *env)
    8553             : {
    8554             :         struct list_head *tasks = &env->src_rq->cfs_tasks;
    8555             :         unsigned long util, load;
    8556             :         struct task_struct *p;
    8557             :         int detached = 0;
    8558             : 
    8559             :         lockdep_assert_rq_held(env->src_rq);
    8560             : 
    8561             :         /*
    8562             :          * Source run queue has been emptied by another CPU, clear
    8563             :          * LBF_ALL_PINNED flag as we will not test any task.
    8564             :          */
    8565             :         if (env->src_rq->nr_running <= 1) {
    8566             :                 env->flags &= ~LBF_ALL_PINNED;
    8567             :                 return 0;
    8568             :         }
    8569             : 
    8570             :         if (env->imbalance <= 0)
    8571             :                 return 0;
    8572             : 
    8573             :         while (!list_empty(tasks)) {
    8574             :                 /*
    8575             :                  * We don't want to steal all, otherwise we may be treated likewise,
    8576             :                  * which could at worst lead to a livelock crash.
    8577             :                  */
    8578             :                 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
    8579             :                         break;
    8580             : 
    8581             :                 env->loop++;
    8582             :                 /*
    8583             :                  * We've more or less seen every task there is, call it quits
    8584             :                  * unless we haven't found any movable task yet.
    8585             :                  */
    8586             :                 if (env->loop > env->loop_max &&
    8587             :                     !(env->flags & LBF_ALL_PINNED))
    8588             :                         break;
    8589             : 
    8590             :                 /* take a breather every nr_migrate tasks */
    8591             :                 if (env->loop > env->loop_break) {
    8592             :                         env->loop_break += SCHED_NR_MIGRATE_BREAK;
    8593             :                         env->flags |= LBF_NEED_BREAK;
    8594             :                         break;
    8595             :                 }
    8596             : 
    8597             :                 p = list_last_entry(tasks, struct task_struct, se.group_node);
    8598             : 
    8599             :                 if (!can_migrate_task(p, env))
    8600             :                         goto next;
    8601             : 
    8602             :                 switch (env->migration_type) {
    8603             :                 case migrate_load:
    8604             :                         /*
    8605             :                          * Depending of the number of CPUs and tasks and the
    8606             :                          * cgroup hierarchy, task_h_load() can return a null
    8607             :                          * value. Make sure that env->imbalance decreases
    8608             :                          * otherwise detach_tasks() will stop only after
    8609             :                          * detaching up to loop_max tasks.
    8610             :                          */
    8611             :                         load = max_t(unsigned long, task_h_load(p), 1);
    8612             : 
    8613             :                         if (sched_feat(LB_MIN) &&
    8614             :                             load < 16 && !env->sd->nr_balance_failed)
    8615             :                                 goto next;
    8616             : 
    8617             :                         /*
    8618             :                          * Make sure that we don't migrate too much load.
    8619             :                          * Nevertheless, let relax the constraint if
    8620             :                          * scheduler fails to find a good waiting task to
    8621             :                          * migrate.
    8622             :                          */
    8623             :                         if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
    8624             :                                 goto next;
    8625             : 
    8626             :                         env->imbalance -= load;
    8627             :                         break;
    8628             : 
    8629             :                 case migrate_util:
    8630             :                         util = task_util_est(p);
    8631             : 
    8632             :                         if (util > env->imbalance)
    8633             :                                 goto next;
    8634             : 
    8635             :                         env->imbalance -= util;
    8636             :                         break;
    8637             : 
    8638             :                 case migrate_task:
    8639             :                         env->imbalance--;
    8640             :                         break;
    8641             : 
    8642             :                 case migrate_misfit:
    8643             :                         /* This is not a misfit task */
    8644             :                         if (task_fits_cpu(p, env->src_cpu))
    8645             :                                 goto next;
    8646             : 
    8647             :                         env->imbalance = 0;
    8648             :                         break;
    8649             :                 }
    8650             : 
    8651             :                 detach_task(p, env);
    8652             :                 list_add(&p->se.group_node, &env->tasks);
    8653             : 
    8654             :                 detached++;
    8655             : 
    8656             : #ifdef CONFIG_PREEMPTION
    8657             :                 /*
    8658             :                  * NEWIDLE balancing is a source of latency, so preemptible
    8659             :                  * kernels will stop after the first task is detached to minimize
    8660             :                  * the critical section.
    8661             :                  */
    8662             :                 if (env->idle == CPU_NEWLY_IDLE)
    8663             :                         break;
    8664             : #endif
    8665             : 
    8666             :                 /*
    8667             :                  * We only want to steal up to the prescribed amount of
    8668             :                  * load/util/tasks.
    8669             :                  */
    8670             :                 if (env->imbalance <= 0)
    8671             :                         break;
    8672             : 
    8673             :                 continue;
    8674             : next:
    8675             :                 list_move(&p->se.group_node, tasks);
    8676             :         }
    8677             : 
    8678             :         /*
    8679             :          * Right now, this is one of only two places we collect this stat
    8680             :          * so we can safely collect detach_one_task() stats here rather
    8681             :          * than inside detach_one_task().
    8682             :          */
    8683             :         schedstat_add(env->sd->lb_gained[env->idle], detached);
    8684             : 
    8685             :         return detached;
    8686             : }
    8687             : 
    8688             : /*
    8689             :  * attach_task() -- attach the task detached by detach_task() to its new rq.
    8690             :  */
    8691             : static void attach_task(struct rq *rq, struct task_struct *p)
    8692             : {
    8693             :         lockdep_assert_rq_held(rq);
    8694             : 
    8695             :         WARN_ON_ONCE(task_rq(p) != rq);
    8696             :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    8697             :         check_preempt_curr(rq, p, 0);
    8698             : }
    8699             : 
    8700             : /*
    8701             :  * attach_one_task() -- attaches the task returned from detach_one_task() to
    8702             :  * its new rq.
    8703             :  */
    8704             : static void attach_one_task(struct rq *rq, struct task_struct *p)
    8705             : {
    8706             :         struct rq_flags rf;
    8707             : 
    8708             :         rq_lock(rq, &rf);
    8709             :         update_rq_clock(rq);
    8710             :         attach_task(rq, p);
    8711             :         rq_unlock(rq, &rf);
    8712             : }
    8713             : 
    8714             : /*
    8715             :  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
    8716             :  * new rq.
    8717             :  */
    8718             : static void attach_tasks(struct lb_env *env)
    8719             : {
    8720             :         struct list_head *tasks = &env->tasks;
    8721             :         struct task_struct *p;
    8722             :         struct rq_flags rf;
    8723             : 
    8724             :         rq_lock(env->dst_rq, &rf);
    8725             :         update_rq_clock(env->dst_rq);
    8726             : 
    8727             :         while (!list_empty(tasks)) {
    8728             :                 p = list_first_entry(tasks, struct task_struct, se.group_node);
    8729             :                 list_del_init(&p->se.group_node);
    8730             : 
    8731             :                 attach_task(env->dst_rq, p);
    8732             :         }
    8733             : 
    8734             :         rq_unlock(env->dst_rq, &rf);
    8735             : }
    8736             : 
    8737             : #ifdef CONFIG_NO_HZ_COMMON
    8738             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
    8739             : {
    8740             :         if (cfs_rq->avg.load_avg)
    8741             :                 return true;
    8742             : 
    8743             :         if (cfs_rq->avg.util_avg)
    8744             :                 return true;
    8745             : 
    8746             :         return false;
    8747             : }
    8748             : 
    8749             : static inline bool others_have_blocked(struct rq *rq)
    8750             : {
    8751             :         if (READ_ONCE(rq->avg_rt.util_avg))
    8752             :                 return true;
    8753             : 
    8754             :         if (READ_ONCE(rq->avg_dl.util_avg))
    8755             :                 return true;
    8756             : 
    8757             :         if (thermal_load_avg(rq))
    8758             :                 return true;
    8759             : 
    8760             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
    8761             :         if (READ_ONCE(rq->avg_irq.util_avg))
    8762             :                 return true;
    8763             : #endif
    8764             : 
    8765             :         return false;
    8766             : }
    8767             : 
    8768             : static inline void update_blocked_load_tick(struct rq *rq)
    8769             : {
    8770             :         WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
    8771             : }
    8772             : 
    8773             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
    8774             : {
    8775             :         if (!has_blocked)
    8776             :                 rq->has_blocked_load = 0;
    8777             : }
    8778             : #else
    8779             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
    8780             : static inline bool others_have_blocked(struct rq *rq) { return false; }
    8781             : static inline void update_blocked_load_tick(struct rq *rq) {}
    8782             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
    8783             : #endif
    8784             : 
    8785             : static bool __update_blocked_others(struct rq *rq, bool *done)
    8786             : {
    8787             :         const struct sched_class *curr_class;
    8788             :         u64 now = rq_clock_pelt(rq);
    8789             :         unsigned long thermal_pressure;
    8790             :         bool decayed;
    8791             : 
    8792             :         /*
    8793             :          * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
    8794             :          * DL and IRQ signals have been updated before updating CFS.
    8795             :          */
    8796             :         curr_class = rq->curr->sched_class;
    8797             : 
    8798             :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    8799             : 
    8800             :         decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
    8801             :                   update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
    8802             :                   update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
    8803             :                   update_irq_load_avg(rq, 0);
    8804             : 
    8805             :         if (others_have_blocked(rq))
    8806             :                 *done = false;
    8807             : 
    8808             :         return decayed;
    8809             : }
    8810             : 
    8811             : #ifdef CONFIG_FAIR_GROUP_SCHED
    8812             : 
    8813             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8814             : {
    8815             :         struct cfs_rq *cfs_rq, *pos;
    8816             :         bool decayed = false;
    8817             :         int cpu = cpu_of(rq);
    8818             : 
    8819             :         /*
    8820             :          * Iterates the task_group tree in a bottom up fashion, see
    8821             :          * list_add_leaf_cfs_rq() for details.
    8822             :          */
    8823             :         for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
    8824             :                 struct sched_entity *se;
    8825             : 
    8826             :                 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
    8827             :                         update_tg_load_avg(cfs_rq);
    8828             : 
    8829             :                         if (cfs_rq->nr_running == 0)
    8830             :                                 update_idle_cfs_rq_clock_pelt(cfs_rq);
    8831             : 
    8832             :                         if (cfs_rq == &rq->cfs)
    8833             :                                 decayed = true;
    8834             :                 }
    8835             : 
    8836             :                 /* Propagate pending load changes to the parent, if any: */
    8837             :                 se = cfs_rq->tg->se[cpu];
    8838             :                 if (se && !skip_blocked_update(se))
    8839             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
    8840             : 
    8841             :                 /*
    8842             :                  * There can be a lot of idle CPU cgroups.  Don't let fully
    8843             :                  * decayed cfs_rqs linger on the list.
    8844             :                  */
    8845             :                 if (cfs_rq_is_decayed(cfs_rq))
    8846             :                         list_del_leaf_cfs_rq(cfs_rq);
    8847             : 
    8848             :                 /* Don't need periodic decay once load/util_avg are null */
    8849             :                 if (cfs_rq_has_blocked(cfs_rq))
    8850             :                         *done = false;
    8851             :         }
    8852             : 
    8853             :         return decayed;
    8854             : }
    8855             : 
    8856             : /*
    8857             :  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
    8858             :  * This needs to be done in a top-down fashion because the load of a child
    8859             :  * group is a fraction of its parents load.
    8860             :  */
    8861             : static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
    8862             : {
    8863             :         struct rq *rq = rq_of(cfs_rq);
    8864             :         struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
    8865             :         unsigned long now = jiffies;
    8866             :         unsigned long load;
    8867             : 
    8868             :         if (cfs_rq->last_h_load_update == now)
    8869             :                 return;
    8870             : 
    8871             :         WRITE_ONCE(cfs_rq->h_load_next, NULL);
    8872             :         for_each_sched_entity(se) {
    8873             :                 cfs_rq = cfs_rq_of(se);
    8874             :                 WRITE_ONCE(cfs_rq->h_load_next, se);
    8875             :                 if (cfs_rq->last_h_load_update == now)
    8876             :                         break;
    8877             :         }
    8878             : 
    8879             :         if (!se) {
    8880             :                 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
    8881             :                 cfs_rq->last_h_load_update = now;
    8882             :         }
    8883             : 
    8884             :         while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
    8885             :                 load = cfs_rq->h_load;
    8886             :                 load = div64_ul(load * se->avg.load_avg,
    8887             :                         cfs_rq_load_avg(cfs_rq) + 1);
    8888             :                 cfs_rq = group_cfs_rq(se);
    8889             :                 cfs_rq->h_load = load;
    8890             :                 cfs_rq->last_h_load_update = now;
    8891             :         }
    8892             : }
    8893             : 
    8894             : static unsigned long task_h_load(struct task_struct *p)
    8895             : {
    8896             :         struct cfs_rq *cfs_rq = task_cfs_rq(p);
    8897             : 
    8898             :         update_cfs_rq_h_load(cfs_rq);
    8899             :         return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
    8900             :                         cfs_rq_load_avg(cfs_rq) + 1);
    8901             : }
    8902             : #else
    8903             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8904             : {
    8905             :         struct cfs_rq *cfs_rq = &rq->cfs;
    8906             :         bool decayed;
    8907             : 
    8908             :         decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
    8909             :         if (cfs_rq_has_blocked(cfs_rq))
    8910             :                 *done = false;
    8911             : 
    8912             :         return decayed;
    8913             : }
    8914             : 
    8915             : static unsigned long task_h_load(struct task_struct *p)
    8916             : {
    8917             :         return p->se.avg.load_avg;
    8918             : }
    8919             : #endif
    8920             : 
    8921             : static void update_blocked_averages(int cpu)
    8922             : {
    8923             :         bool decayed = false, done = true;
    8924             :         struct rq *rq = cpu_rq(cpu);
    8925             :         struct rq_flags rf;
    8926             : 
    8927             :         rq_lock_irqsave(rq, &rf);
    8928             :         update_blocked_load_tick(rq);
    8929             :         update_rq_clock(rq);
    8930             : 
    8931             :         decayed |= __update_blocked_others(rq, &done);
    8932             :         decayed |= __update_blocked_fair(rq, &done);
    8933             : 
    8934             :         update_blocked_load_status(rq, !done);
    8935             :         if (decayed)
    8936             :                 cpufreq_update_util(rq, 0);
    8937             :         rq_unlock_irqrestore(rq, &rf);
    8938             : }
    8939             : 
    8940             : /********** Helpers for find_busiest_group ************************/
    8941             : 
    8942             : /*
    8943             :  * sg_lb_stats - stats of a sched_group required for load_balancing
    8944             :  */
    8945             : struct sg_lb_stats {
    8946             :         unsigned long avg_load; /*Avg load across the CPUs of the group */
    8947             :         unsigned long group_load; /* Total load over the CPUs of the group */
    8948             :         unsigned long group_capacity;
    8949             :         unsigned long group_util; /* Total utilization over the CPUs of the group */
    8950             :         unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
    8951             :         unsigned int sum_nr_running; /* Nr of tasks running in the group */
    8952             :         unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
    8953             :         unsigned int idle_cpus;
    8954             :         unsigned int group_weight;
    8955             :         enum group_type group_type;
    8956             :         unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
    8957             :         unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
    8958             : #ifdef CONFIG_NUMA_BALANCING
    8959             :         unsigned int nr_numa_running;
    8960             :         unsigned int nr_preferred_running;
    8961             : #endif
    8962             : };
    8963             : 
    8964             : /*
    8965             :  * sd_lb_stats - Structure to store the statistics of a sched_domain
    8966             :  *               during load balancing.
    8967             :  */
    8968             : struct sd_lb_stats {
    8969             :         struct sched_group *busiest;    /* Busiest group in this sd */
    8970             :         struct sched_group *local;      /* Local group in this sd */
    8971             :         unsigned long total_load;       /* Total load of all groups in sd */
    8972             :         unsigned long total_capacity;   /* Total capacity of all groups in sd */
    8973             :         unsigned long avg_load; /* Average load across all groups in sd */
    8974             :         unsigned int prefer_sibling; /* tasks should go to sibling first */
    8975             : 
    8976             :         struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
    8977             :         struct sg_lb_stats local_stat;  /* Statistics of the local group */
    8978             : };
    8979             : 
    8980             : static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
    8981             : {
    8982             :         /*
    8983             :          * Skimp on the clearing to avoid duplicate work. We can avoid clearing
    8984             :          * local_stat because update_sg_lb_stats() does a full clear/assignment.
    8985             :          * We must however set busiest_stat::group_type and
    8986             :          * busiest_stat::idle_cpus to the worst busiest group because
    8987             :          * update_sd_pick_busiest() reads these before assignment.
    8988             :          */
    8989             :         *sds = (struct sd_lb_stats){
    8990             :                 .busiest = NULL,
    8991             :                 .local = NULL,
    8992             :                 .total_load = 0UL,
    8993             :                 .total_capacity = 0UL,
    8994             :                 .busiest_stat = {
    8995             :                         .idle_cpus = UINT_MAX,
    8996             :                         .group_type = group_has_spare,
    8997             :                 },
    8998             :         };
    8999             : }
    9000             : 
    9001             : static unsigned long scale_rt_capacity(int cpu)
    9002             : {
    9003             :         struct rq *rq = cpu_rq(cpu);
    9004             :         unsigned long max = arch_scale_cpu_capacity(cpu);
    9005             :         unsigned long used, free;
    9006             :         unsigned long irq;
    9007             : 
    9008             :         irq = cpu_util_irq(rq);
    9009             : 
    9010             :         if (unlikely(irq >= max))
    9011             :                 return 1;
    9012             : 
    9013             :         /*
    9014             :          * avg_rt.util_avg and avg_dl.util_avg track binary signals
    9015             :          * (running and not running) with weights 0 and 1024 respectively.
    9016             :          * avg_thermal.load_avg tracks thermal pressure and the weighted
    9017             :          * average uses the actual delta max capacity(load).
    9018             :          */
    9019             :         used = READ_ONCE(rq->avg_rt.util_avg);
    9020             :         used += READ_ONCE(rq->avg_dl.util_avg);
    9021             :         used += thermal_load_avg(rq);
    9022             : 
    9023             :         if (unlikely(used >= max))
    9024             :                 return 1;
    9025             : 
    9026             :         free = max - used;
    9027             : 
    9028             :         return scale_irq_capacity(free, irq, max);
    9029             : }
    9030             : 
    9031             : static void update_cpu_capacity(struct sched_domain *sd, int cpu)
    9032             : {
    9033             :         unsigned long capacity = scale_rt_capacity(cpu);
    9034             :         struct sched_group *sdg = sd->groups;
    9035             : 
    9036             :         cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
    9037             : 
    9038             :         if (!capacity)
    9039             :                 capacity = 1;
    9040             : 
    9041             :         cpu_rq(cpu)->cpu_capacity = capacity;
    9042             :         trace_sched_cpu_capacity_tp(cpu_rq(cpu));
    9043             : 
    9044             :         sdg->sgc->capacity = capacity;
    9045             :         sdg->sgc->min_capacity = capacity;
    9046             :         sdg->sgc->max_capacity = capacity;
    9047             : }
    9048             : 
    9049             : void update_group_capacity(struct sched_domain *sd, int cpu)
    9050             : {
    9051             :         struct sched_domain *child = sd->child;
    9052             :         struct sched_group *group, *sdg = sd->groups;
    9053             :         unsigned long capacity, min_capacity, max_capacity;
    9054             :         unsigned long interval;
    9055             : 
    9056             :         interval = msecs_to_jiffies(sd->balance_interval);
    9057             :         interval = clamp(interval, 1UL, max_load_balance_interval);
    9058             :         sdg->sgc->next_update = jiffies + interval;
    9059             : 
    9060             :         if (!child) {
    9061             :                 update_cpu_capacity(sd, cpu);
    9062             :                 return;
    9063             :         }
    9064             : 
    9065             :         capacity = 0;
    9066             :         min_capacity = ULONG_MAX;
    9067             :         max_capacity = 0;
    9068             : 
    9069             :         if (child->flags & SD_OVERLAP) {
    9070             :                 /*
    9071             :                  * SD_OVERLAP domains cannot assume that child groups
    9072             :                  * span the current group.
    9073             :                  */
    9074             : 
    9075             :                 for_each_cpu(cpu, sched_group_span(sdg)) {
    9076             :                         unsigned long cpu_cap = capacity_of(cpu);
    9077             : 
    9078             :                         capacity += cpu_cap;
    9079             :                         min_capacity = min(cpu_cap, min_capacity);
    9080             :                         max_capacity = max(cpu_cap, max_capacity);
    9081             :                 }
    9082             :         } else  {
    9083             :                 /*
    9084             :                  * !SD_OVERLAP domains can assume that child groups
    9085             :                  * span the current group.
    9086             :                  */
    9087             : 
    9088             :                 group = child->groups;
    9089             :                 do {
    9090             :                         struct sched_group_capacity *sgc = group->sgc;
    9091             : 
    9092             :                         capacity += sgc->capacity;
    9093             :                         min_capacity = min(sgc->min_capacity, min_capacity);
    9094             :                         max_capacity = max(sgc->max_capacity, max_capacity);
    9095             :                         group = group->next;
    9096             :                 } while (group != child->groups);
    9097             :         }
    9098             : 
    9099             :         sdg->sgc->capacity = capacity;
    9100             :         sdg->sgc->min_capacity = min_capacity;
    9101             :         sdg->sgc->max_capacity = max_capacity;
    9102             : }
    9103             : 
    9104             : /*
    9105             :  * Check whether the capacity of the rq has been noticeably reduced by side
    9106             :  * activity. The imbalance_pct is used for the threshold.
    9107             :  * Return true is the capacity is reduced
    9108             :  */
    9109             : static inline int
    9110             : check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
    9111             : {
    9112             :         return ((rq->cpu_capacity * sd->imbalance_pct) <
    9113             :                                 (rq->cpu_capacity_orig * 100));
    9114             : }
    9115             : 
    9116             : /*
    9117             :  * Check whether a rq has a misfit task and if it looks like we can actually
    9118             :  * help that task: we can migrate the task to a CPU of higher capacity, or
    9119             :  * the task's current CPU is heavily pressured.
    9120             :  */
    9121             : static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
    9122             : {
    9123             :         return rq->misfit_task_load &&
    9124             :                 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
    9125             :                  check_cpu_capacity(rq, sd));
    9126             : }
    9127             : 
    9128             : /*
    9129             :  * Group imbalance indicates (and tries to solve) the problem where balancing
    9130             :  * groups is inadequate due to ->cpus_ptr constraints.
    9131             :  *
    9132             :  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
    9133             :  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
    9134             :  * Something like:
    9135             :  *
    9136             :  *      { 0 1 2 3 } { 4 5 6 7 }
    9137             :  *              *     * * *
    9138             :  *
    9139             :  * If we were to balance group-wise we'd place two tasks in the first group and
    9140             :  * two tasks in the second group. Clearly this is undesired as it will overload
    9141             :  * cpu 3 and leave one of the CPUs in the second group unused.
    9142             :  *
    9143             :  * The current solution to this issue is detecting the skew in the first group
    9144             :  * by noticing the lower domain failed to reach balance and had difficulty
    9145             :  * moving tasks due to affinity constraints.
    9146             :  *
    9147             :  * When this is so detected; this group becomes a candidate for busiest; see
    9148             :  * update_sd_pick_busiest(). And calculate_imbalance() and
    9149             :  * find_busiest_group() avoid some of the usual balance conditions to allow it
    9150             :  * to create an effective group imbalance.
    9151             :  *
    9152             :  * This is a somewhat tricky proposition since the next run might not find the
    9153             :  * group imbalance and decide the groups need to be balanced again. A most
    9154             :  * subtle and fragile situation.
    9155             :  */
    9156             : 
    9157             : static inline int sg_imbalanced(struct sched_group *group)
    9158             : {
    9159             :         return group->sgc->imbalance;
    9160             : }
    9161             : 
    9162             : /*
    9163             :  * group_has_capacity returns true if the group has spare capacity that could
    9164             :  * be used by some tasks.
    9165             :  * We consider that a group has spare capacity if the number of task is
    9166             :  * smaller than the number of CPUs or if the utilization is lower than the
    9167             :  * available capacity for CFS tasks.
    9168             :  * For the latter, we use a threshold to stabilize the state, to take into
    9169             :  * account the variance of the tasks' load and to return true if the available
    9170             :  * capacity in meaningful for the load balancer.
    9171             :  * As an example, an available capacity of 1% can appear but it doesn't make
    9172             :  * any benefit for the load balance.
    9173             :  */
    9174             : static inline bool
    9175             : group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    9176             : {
    9177             :         if (sgs->sum_nr_running < sgs->group_weight)
    9178             :                 return true;
    9179             : 
    9180             :         if ((sgs->group_capacity * imbalance_pct) <
    9181             :                         (sgs->group_runnable * 100))
    9182             :                 return false;
    9183             : 
    9184             :         if ((sgs->group_capacity * 100) >
    9185             :                         (sgs->group_util * imbalance_pct))
    9186             :                 return true;
    9187             : 
    9188             :         return false;
    9189             : }
    9190             : 
    9191             : /*
    9192             :  *  group_is_overloaded returns true if the group has more tasks than it can
    9193             :  *  handle.
    9194             :  *  group_is_overloaded is not equals to !group_has_capacity because a group
    9195             :  *  with the exact right number of tasks, has no more spare capacity but is not
    9196             :  *  overloaded so both group_has_capacity and group_is_overloaded return
    9197             :  *  false.
    9198             :  */
    9199             : static inline bool
    9200             : group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    9201             : {
    9202             :         if (sgs->sum_nr_running <= sgs->group_weight)
    9203             :                 return false;
    9204             : 
    9205             :         if ((sgs->group_capacity * 100) <
    9206             :                         (sgs->group_util * imbalance_pct))
    9207             :                 return true;
    9208             : 
    9209             :         if ((sgs->group_capacity * imbalance_pct) <
    9210             :                         (sgs->group_runnable * 100))
    9211             :                 return true;
    9212             : 
    9213             :         return false;
    9214             : }
    9215             : 
    9216             : static inline enum
    9217             : group_type group_classify(unsigned int imbalance_pct,
    9218             :                           struct sched_group *group,
    9219             :                           struct sg_lb_stats *sgs)
    9220             : {
    9221             :         if (group_is_overloaded(imbalance_pct, sgs))
    9222             :                 return group_overloaded;
    9223             : 
    9224             :         if (sg_imbalanced(group))
    9225             :                 return group_imbalanced;
    9226             : 
    9227             :         if (sgs->group_asym_packing)
    9228             :                 return group_asym_packing;
    9229             : 
    9230             :         if (sgs->group_misfit_task_load)
    9231             :                 return group_misfit_task;
    9232             : 
    9233             :         if (!group_has_capacity(imbalance_pct, sgs))
    9234             :                 return group_fully_busy;
    9235             : 
    9236             :         return group_has_spare;
    9237             : }
    9238             : 
    9239             : /**
    9240             :  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
    9241             :  * @dst_cpu:    Destination CPU of the load balancing
    9242             :  * @sds:        Load-balancing data with statistics of the local group
    9243             :  * @sgs:        Load-balancing statistics of the candidate busiest group
    9244             :  * @sg:         The candidate busiest group
    9245             :  *
    9246             :  * Check the state of the SMT siblings of both @sds::local and @sg and decide
    9247             :  * if @dst_cpu can pull tasks.
    9248             :  *
    9249             :  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
    9250             :  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
    9251             :  * only if @dst_cpu has higher priority.
    9252             :  *
    9253             :  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
    9254             :  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
    9255             :  * Bigger imbalances in the number of busy CPUs will be dealt with in
    9256             :  * update_sd_pick_busiest().
    9257             :  *
    9258             :  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
    9259             :  * of @dst_cpu are idle and @sg has lower priority.
    9260             :  *
    9261             :  * Return: true if @dst_cpu can pull tasks, false otherwise.
    9262             :  */
    9263             : static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
    9264             :                                     struct sg_lb_stats *sgs,
    9265             :                                     struct sched_group *sg)
    9266             : {
    9267             : #ifdef CONFIG_SCHED_SMT
    9268             :         bool local_is_smt, sg_is_smt;
    9269             :         int sg_busy_cpus;
    9270             : 
    9271             :         local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
    9272             :         sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
    9273             : 
    9274             :         sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
    9275             : 
    9276             :         if (!local_is_smt) {
    9277             :                 /*
    9278             :                  * If we are here, @dst_cpu is idle and does not have SMT
    9279             :                  * siblings. Pull tasks if candidate group has two or more
    9280             :                  * busy CPUs.
    9281             :                  */
    9282             :                 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
    9283             :                         return true;
    9284             : 
    9285             :                 /*
    9286             :                  * @dst_cpu does not have SMT siblings. @sg may have SMT
    9287             :                  * siblings and only one is busy. In such case, @dst_cpu
    9288             :                  * can help if it has higher priority and is idle (i.e.,
    9289             :                  * it has no running tasks).
    9290             :                  */
    9291             :                 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    9292             :         }
    9293             : 
    9294             :         /* @dst_cpu has SMT siblings. */
    9295             : 
    9296             :         if (sg_is_smt) {
    9297             :                 int local_busy_cpus = sds->local->group_weight -
    9298             :                                       sds->local_stat.idle_cpus;
    9299             :                 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
    9300             : 
    9301             :                 if (busy_cpus_delta == 1)
    9302             :                         return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    9303             : 
    9304             :                 return false;
    9305             :         }
    9306             : 
    9307             :         /*
    9308             :          * @sg does not have SMT siblings. Ensure that @sds::local does not end
    9309             :          * up with more than one busy SMT sibling and only pull tasks if there
    9310             :          * are not busy CPUs (i.e., no CPU has running tasks).
    9311             :          */
    9312             :         if (!sds->local_stat.sum_nr_running)
    9313             :                 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    9314             : 
    9315             :         return false;
    9316             : #else
    9317             :         /* Always return false so that callers deal with non-SMT cases. */
    9318             :         return false;
    9319             : #endif
    9320             : }
    9321             : 
    9322             : static inline bool
    9323             : sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
    9324             :            struct sched_group *group)
    9325             : {
    9326             :         /* Only do SMT checks if either local or candidate have SMT siblings */
    9327             :         if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
    9328             :             (group->flags & SD_SHARE_CPUCAPACITY))
    9329             :                 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
    9330             : 
    9331             :         return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
    9332             : }
    9333             : 
    9334             : static inline bool
    9335             : sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
    9336             : {
    9337             :         /*
    9338             :          * When there is more than 1 task, the group_overloaded case already
    9339             :          * takes care of cpu with reduced capacity
    9340             :          */
    9341             :         if (rq->cfs.h_nr_running != 1)
    9342             :                 return false;
    9343             : 
    9344             :         return check_cpu_capacity(rq, sd);
    9345             : }
    9346             : 
    9347             : /**
    9348             :  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
    9349             :  * @env: The load balancing environment.
    9350             :  * @sds: Load-balancing data with statistics of the local group.
    9351             :  * @group: sched_group whose statistics are to be updated.
    9352             :  * @sgs: variable to hold the statistics for this group.
    9353             :  * @sg_status: Holds flag indicating the status of the sched_group
    9354             :  */
    9355             : static inline void update_sg_lb_stats(struct lb_env *env,
    9356             :                                       struct sd_lb_stats *sds,
    9357             :                                       struct sched_group *group,
    9358             :                                       struct sg_lb_stats *sgs,
    9359             :                                       int *sg_status)
    9360             : {
    9361             :         int i, nr_running, local_group;
    9362             : 
    9363             :         memset(sgs, 0, sizeof(*sgs));
    9364             : 
    9365             :         local_group = group == sds->local;
    9366             : 
    9367             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    9368             :                 struct rq *rq = cpu_rq(i);
    9369             :                 unsigned long load = cpu_load(rq);
    9370             : 
    9371             :                 sgs->group_load += load;
    9372             :                 sgs->group_util += cpu_util_cfs(i);
    9373             :                 sgs->group_runnable += cpu_runnable(rq);
    9374             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
    9375             : 
    9376             :                 nr_running = rq->nr_running;
    9377             :                 sgs->sum_nr_running += nr_running;
    9378             : 
    9379             :                 if (nr_running > 1)
    9380             :                         *sg_status |= SG_OVERLOAD;
    9381             : 
    9382             :                 if (cpu_overutilized(i))
    9383             :                         *sg_status |= SG_OVERUTILIZED;
    9384             : 
    9385             : #ifdef CONFIG_NUMA_BALANCING
    9386             :                 sgs->nr_numa_running += rq->nr_numa_running;
    9387             :                 sgs->nr_preferred_running += rq->nr_preferred_running;
    9388             : #endif
    9389             :                 /*
    9390             :                  * No need to call idle_cpu() if nr_running is not 0
    9391             :                  */
    9392             :                 if (!nr_running && idle_cpu(i)) {
    9393             :                         sgs->idle_cpus++;
    9394             :                         /* Idle cpu can't have misfit task */
    9395             :                         continue;
    9396             :                 }
    9397             : 
    9398             :                 if (local_group)
    9399             :                         continue;
    9400             : 
    9401             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
    9402             :                         /* Check for a misfit task on the cpu */
    9403             :                         if (sgs->group_misfit_task_load < rq->misfit_task_load) {
    9404             :                                 sgs->group_misfit_task_load = rq->misfit_task_load;
    9405             :                                 *sg_status |= SG_OVERLOAD;
    9406             :                         }
    9407             :                 } else if ((env->idle != CPU_NOT_IDLE) &&
    9408             :                            sched_reduced_capacity(rq, env->sd)) {
    9409             :                         /* Check for a task running on a CPU with reduced capacity */
    9410             :                         if (sgs->group_misfit_task_load < load)
    9411             :                                 sgs->group_misfit_task_load = load;
    9412             :                 }
    9413             :         }
    9414             : 
    9415             :         sgs->group_capacity = group->sgc->capacity;
    9416             : 
    9417             :         sgs->group_weight = group->group_weight;
    9418             : 
    9419             :         /* Check if dst CPU is idle and preferred to this group */
    9420             :         if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
    9421             :             env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
    9422             :             sched_asym(env, sds, sgs, group)) {
    9423             :                 sgs->group_asym_packing = 1;
    9424             :         }
    9425             : 
    9426             :         sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
    9427             : 
    9428             :         /* Computing avg_load makes sense only when group is overloaded */
    9429             :         if (sgs->group_type == group_overloaded)
    9430             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    9431             :                                 sgs->group_capacity;
    9432             : }
    9433             : 
    9434             : /**
    9435             :  * update_sd_pick_busiest - return 1 on busiest group
    9436             :  * @env: The load balancing environment.
    9437             :  * @sds: sched_domain statistics
    9438             :  * @sg: sched_group candidate to be checked for being the busiest
    9439             :  * @sgs: sched_group statistics
    9440             :  *
    9441             :  * Determine if @sg is a busier group than the previously selected
    9442             :  * busiest group.
    9443             :  *
    9444             :  * Return: %true if @sg is a busier group than the previously selected
    9445             :  * busiest group. %false otherwise.
    9446             :  */
    9447             : static bool update_sd_pick_busiest(struct lb_env *env,
    9448             :                                    struct sd_lb_stats *sds,
    9449             :                                    struct sched_group *sg,
    9450             :                                    struct sg_lb_stats *sgs)
    9451             : {
    9452             :         struct sg_lb_stats *busiest = &sds->busiest_stat;
    9453             : 
    9454             :         /* Make sure that there is at least one task to pull */
    9455             :         if (!sgs->sum_h_nr_running)
    9456             :                 return false;
    9457             : 
    9458             :         /*
    9459             :          * Don't try to pull misfit tasks we can't help.
    9460             :          * We can use max_capacity here as reduction in capacity on some
    9461             :          * CPUs in the group should either be possible to resolve
    9462             :          * internally or be covered by avg_load imbalance (eventually).
    9463             :          */
    9464             :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    9465             :             (sgs->group_type == group_misfit_task) &&
    9466             :             (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
    9467             :              sds->local_stat.group_type != group_has_spare))
    9468             :                 return false;
    9469             : 
    9470             :         if (sgs->group_type > busiest->group_type)
    9471             :                 return true;
    9472             : 
    9473             :         if (sgs->group_type < busiest->group_type)
    9474             :                 return false;
    9475             : 
    9476             :         /*
    9477             :          * The candidate and the current busiest group are the same type of
    9478             :          * group. Let check which one is the busiest according to the type.
    9479             :          */
    9480             : 
    9481             :         switch (sgs->group_type) {
    9482             :         case group_overloaded:
    9483             :                 /* Select the overloaded group with highest avg_load. */
    9484             :                 if (sgs->avg_load <= busiest->avg_load)
    9485             :                         return false;
    9486             :                 break;
    9487             : 
    9488             :         case group_imbalanced:
    9489             :                 /*
    9490             :                  * Select the 1st imbalanced group as we don't have any way to
    9491             :                  * choose one more than another.
    9492             :                  */
    9493             :                 return false;
    9494             : 
    9495             :         case group_asym_packing:
    9496             :                 /* Prefer to move from lowest priority CPU's work */
    9497             :                 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
    9498             :                         return false;
    9499             :                 break;
    9500             : 
    9501             :         case group_misfit_task:
    9502             :                 /*
    9503             :                  * If we have more than one misfit sg go with the biggest
    9504             :                  * misfit.
    9505             :                  */
    9506             :                 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
    9507             :                         return false;
    9508             :                 break;
    9509             : 
    9510             :         case group_fully_busy:
    9511             :                 /*
    9512             :                  * Select the fully busy group with highest avg_load. In
    9513             :                  * theory, there is no need to pull task from such kind of
    9514             :                  * group because tasks have all compute capacity that they need
    9515             :                  * but we can still improve the overall throughput by reducing
    9516             :                  * contention when accessing shared HW resources.
    9517             :                  *
    9518             :                  * XXX for now avg_load is not computed and always 0 so we
    9519             :                  * select the 1st one.
    9520             :                  */
    9521             :                 if (sgs->avg_load <= busiest->avg_load)
    9522             :                         return false;
    9523             :                 break;
    9524             : 
    9525             :         case group_has_spare:
    9526             :                 /*
    9527             :                  * Select not overloaded group with lowest number of idle cpus
    9528             :                  * and highest number of running tasks. We could also compare
    9529             :                  * the spare capacity which is more stable but it can end up
    9530             :                  * that the group has less spare capacity but finally more idle
    9531             :                  * CPUs which means less opportunity to pull tasks.
    9532             :                  */
    9533             :                 if (sgs->idle_cpus > busiest->idle_cpus)
    9534             :                         return false;
    9535             :                 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
    9536             :                          (sgs->sum_nr_running <= busiest->sum_nr_running))
    9537             :                         return false;
    9538             : 
    9539             :                 break;
    9540             :         }
    9541             : 
    9542             :         /*
    9543             :          * Candidate sg has no more than one task per CPU and has higher
    9544             :          * per-CPU capacity. Migrating tasks to less capable CPUs may harm
    9545             :          * throughput. Maximize throughput, power/energy consequences are not
    9546             :          * considered.
    9547             :          */
    9548             :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    9549             :             (sgs->group_type <= group_fully_busy) &&
    9550             :             (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
    9551             :                 return false;
    9552             : 
    9553             :         return true;
    9554             : }
    9555             : 
    9556             : #ifdef CONFIG_NUMA_BALANCING
    9557             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    9558             : {
    9559             :         if (sgs->sum_h_nr_running > sgs->nr_numa_running)
    9560             :                 return regular;
    9561             :         if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
    9562             :                 return remote;
    9563             :         return all;
    9564             : }
    9565             : 
    9566             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    9567             : {
    9568             :         if (rq->nr_running > rq->nr_numa_running)
    9569             :                 return regular;
    9570             :         if (rq->nr_running > rq->nr_preferred_running)
    9571             :                 return remote;
    9572             :         return all;
    9573             : }
    9574             : #else
    9575             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    9576             : {
    9577             :         return all;
    9578             : }
    9579             : 
    9580             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    9581             : {
    9582             :         return regular;
    9583             : }
    9584             : #endif /* CONFIG_NUMA_BALANCING */
    9585             : 
    9586             : 
    9587             : struct sg_lb_stats;
    9588             : 
    9589             : /*
    9590             :  * task_running_on_cpu - return 1 if @p is running on @cpu.
    9591             :  */
    9592             : 
    9593             : static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
    9594             : {
    9595             :         /* Task has no contribution or is new */
    9596             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    9597             :                 return 0;
    9598             : 
    9599             :         if (task_on_rq_queued(p))
    9600             :                 return 1;
    9601             : 
    9602             :         return 0;
    9603             : }
    9604             : 
    9605             : /**
    9606             :  * idle_cpu_without - would a given CPU be idle without p ?
    9607             :  * @cpu: the processor on which idleness is tested.
    9608             :  * @p: task which should be ignored.
    9609             :  *
    9610             :  * Return: 1 if the CPU would be idle. 0 otherwise.
    9611             :  */
    9612             : static int idle_cpu_without(int cpu, struct task_struct *p)
    9613             : {
    9614             :         struct rq *rq = cpu_rq(cpu);
    9615             : 
    9616             :         if (rq->curr != rq->idle && rq->curr != p)
    9617             :                 return 0;
    9618             : 
    9619             :         /*
    9620             :          * rq->nr_running can't be used but an updated version without the
    9621             :          * impact of p on cpu must be used instead. The updated nr_running
    9622             :          * be computed and tested before calling idle_cpu_without().
    9623             :          */
    9624             : 
    9625             : #ifdef CONFIG_SMP
    9626             :         if (rq->ttwu_pending)
    9627             :                 return 0;
    9628             : #endif
    9629             : 
    9630             :         return 1;
    9631             : }
    9632             : 
    9633             : /*
    9634             :  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
    9635             :  * @sd: The sched_domain level to look for idlest group.
    9636             :  * @group: sched_group whose statistics are to be updated.
    9637             :  * @sgs: variable to hold the statistics for this group.
    9638             :  * @p: The task for which we look for the idlest group/CPU.
    9639             :  */
    9640             : static inline void update_sg_wakeup_stats(struct sched_domain *sd,
    9641             :                                           struct sched_group *group,
    9642             :                                           struct sg_lb_stats *sgs,
    9643             :                                           struct task_struct *p)
    9644             : {
    9645             :         int i, nr_running;
    9646             : 
    9647             :         memset(sgs, 0, sizeof(*sgs));
    9648             : 
    9649             :         /* Assume that task can't fit any CPU of the group */
    9650             :         if (sd->flags & SD_ASYM_CPUCAPACITY)
    9651             :                 sgs->group_misfit_task_load = 1;
    9652             : 
    9653             :         for_each_cpu(i, sched_group_span(group)) {
    9654             :                 struct rq *rq = cpu_rq(i);
    9655             :                 unsigned int local;
    9656             : 
    9657             :                 sgs->group_load += cpu_load_without(rq, p);
    9658             :                 sgs->group_util += cpu_util_without(i, p);
    9659             :                 sgs->group_runnable += cpu_runnable_without(rq, p);
    9660             :                 local = task_running_on_cpu(i, p);
    9661             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
    9662             : 
    9663             :                 nr_running = rq->nr_running - local;
    9664             :                 sgs->sum_nr_running += nr_running;
    9665             : 
    9666             :                 /*
    9667             :                  * No need to call idle_cpu_without() if nr_running is not 0
    9668             :                  */
    9669             :                 if (!nr_running && idle_cpu_without(i, p))
    9670             :                         sgs->idle_cpus++;
    9671             : 
    9672             :                 /* Check if task fits in the CPU */
    9673             :                 if (sd->flags & SD_ASYM_CPUCAPACITY &&
    9674             :                     sgs->group_misfit_task_load &&
    9675             :                     task_fits_cpu(p, i))
    9676             :                         sgs->group_misfit_task_load = 0;
    9677             : 
    9678             :         }
    9679             : 
    9680             :         sgs->group_capacity = group->sgc->capacity;
    9681             : 
    9682             :         sgs->group_weight = group->group_weight;
    9683             : 
    9684             :         sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
    9685             : 
    9686             :         /*
    9687             :          * Computing avg_load makes sense only when group is fully busy or
    9688             :          * overloaded
    9689             :          */
    9690             :         if (sgs->group_type == group_fully_busy ||
    9691             :                 sgs->group_type == group_overloaded)
    9692             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    9693             :                                 sgs->group_capacity;
    9694             : }
    9695             : 
    9696             : static bool update_pick_idlest(struct sched_group *idlest,
    9697             :                                struct sg_lb_stats *idlest_sgs,
    9698             :                                struct sched_group *group,
    9699             :                                struct sg_lb_stats *sgs)
    9700             : {
    9701             :         if (sgs->group_type < idlest_sgs->group_type)
    9702             :                 return true;
    9703             : 
    9704             :         if (sgs->group_type > idlest_sgs->group_type)
    9705             :                 return false;
    9706             : 
    9707             :         /*
    9708             :          * The candidate and the current idlest group are the same type of
    9709             :          * group. Let check which one is the idlest according to the type.
    9710             :          */
    9711             : 
    9712             :         switch (sgs->group_type) {
    9713             :         case group_overloaded:
    9714             :         case group_fully_busy:
    9715             :                 /* Select the group with lowest avg_load. */
    9716             :                 if (idlest_sgs->avg_load <= sgs->avg_load)
    9717             :                         return false;
    9718             :                 break;
    9719             : 
    9720             :         case group_imbalanced:
    9721             :         case group_asym_packing:
    9722             :                 /* Those types are not used in the slow wakeup path */
    9723             :                 return false;
    9724             : 
    9725             :         case group_misfit_task:
    9726             :                 /* Select group with the highest max capacity */
    9727             :                 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
    9728             :                         return false;
    9729             :                 break;
    9730             : 
    9731             :         case group_has_spare:
    9732             :                 /* Select group with most idle CPUs */
    9733             :                 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
    9734             :                         return false;
    9735             : 
    9736             :                 /* Select group with lowest group_util */
    9737             :                 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
    9738             :                         idlest_sgs->group_util <= sgs->group_util)
    9739             :                         return false;
    9740             : 
    9741             :                 break;
    9742             :         }
    9743             : 
    9744             :         return true;
    9745             : }
    9746             : 
    9747             : /*
    9748             :  * find_idlest_group() finds and returns the least busy CPU group within the
    9749             :  * domain.
    9750             :  *
    9751             :  * Assumes p is allowed on at least one CPU in sd.
    9752             :  */
    9753             : static struct sched_group *
    9754             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
    9755             : {
    9756             :         struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
    9757             :         struct sg_lb_stats local_sgs, tmp_sgs;
    9758             :         struct sg_lb_stats *sgs;
    9759             :         unsigned long imbalance;
    9760             :         struct sg_lb_stats idlest_sgs = {
    9761             :                         .avg_load = UINT_MAX,
    9762             :                         .group_type = group_overloaded,
    9763             :         };
    9764             : 
    9765             :         do {
    9766             :                 int local_group;
    9767             : 
    9768             :                 /* Skip over this group if it has no CPUs allowed */
    9769             :                 if (!cpumask_intersects(sched_group_span(group),
    9770             :                                         p->cpus_ptr))
    9771             :                         continue;
    9772             : 
    9773             :                 /* Skip over this group if no cookie matched */
    9774             :                 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
    9775             :                         continue;
    9776             : 
    9777             :                 local_group = cpumask_test_cpu(this_cpu,
    9778             :                                                sched_group_span(group));
    9779             : 
    9780             :                 if (local_group) {
    9781             :                         sgs = &local_sgs;
    9782             :                         local = group;
    9783             :                 } else {
    9784             :                         sgs = &tmp_sgs;
    9785             :                 }
    9786             : 
    9787             :                 update_sg_wakeup_stats(sd, group, sgs, p);
    9788             : 
    9789             :                 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
    9790             :                         idlest = group;
    9791             :                         idlest_sgs = *sgs;
    9792             :                 }
    9793             : 
    9794             :         } while (group = group->next, group != sd->groups);
    9795             : 
    9796             : 
    9797             :         /* There is no idlest group to push tasks to */
    9798             :         if (!idlest)
    9799             :                 return NULL;
    9800             : 
    9801             :         /* The local group has been skipped because of CPU affinity */
    9802             :         if (!local)
    9803             :                 return idlest;
    9804             : 
    9805             :         /*
    9806             :          * If the local group is idler than the selected idlest group
    9807             :          * don't try and push the task.
    9808             :          */
    9809             :         if (local_sgs.group_type < idlest_sgs.group_type)
    9810             :                 return NULL;
    9811             : 
    9812             :         /*
    9813             :          * If the local group is busier than the selected idlest group
    9814             :          * try and push the task.
    9815             :          */
    9816             :         if (local_sgs.group_type > idlest_sgs.group_type)
    9817             :                 return idlest;
    9818             : 
    9819             :         switch (local_sgs.group_type) {
    9820             :         case group_overloaded:
    9821             :         case group_fully_busy:
    9822             : 
    9823             :                 /* Calculate allowed imbalance based on load */
    9824             :                 imbalance = scale_load_down(NICE_0_LOAD) *
    9825             :                                 (sd->imbalance_pct-100) / 100;
    9826             : 
    9827             :                 /*
    9828             :                  * When comparing groups across NUMA domains, it's possible for
    9829             :                  * the local domain to be very lightly loaded relative to the
    9830             :                  * remote domains but "imbalance" skews the comparison making
    9831             :                  * remote CPUs look much more favourable. When considering
    9832             :                  * cross-domain, add imbalance to the load on the remote node
    9833             :                  * and consider staying local.
    9834             :                  */
    9835             : 
    9836             :                 if ((sd->flags & SD_NUMA) &&
    9837             :                     ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
    9838             :                         return NULL;
    9839             : 
    9840             :                 /*
    9841             :                  * If the local group is less loaded than the selected
    9842             :                  * idlest group don't try and push any tasks.
    9843             :                  */
    9844             :                 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
    9845             :                         return NULL;
    9846             : 
    9847             :                 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
    9848             :                         return NULL;
    9849             :                 break;
    9850             : 
    9851             :         case group_imbalanced:
    9852             :         case group_asym_packing:
    9853             :                 /* Those type are not used in the slow wakeup path */
    9854             :                 return NULL;
    9855             : 
    9856             :         case group_misfit_task:
    9857             :                 /* Select group with the highest max capacity */
    9858             :                 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
    9859             :                         return NULL;
    9860             :                 break;
    9861             : 
    9862             :         case group_has_spare:
    9863             : #ifdef CONFIG_NUMA
    9864             :                 if (sd->flags & SD_NUMA) {
    9865             :                         int imb_numa_nr = sd->imb_numa_nr;
    9866             : #ifdef CONFIG_NUMA_BALANCING
    9867             :                         int idlest_cpu;
    9868             :                         /*
    9869             :                          * If there is spare capacity at NUMA, try to select
    9870             :                          * the preferred node
    9871             :                          */
    9872             :                         if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
    9873             :                                 return NULL;
    9874             : 
    9875             :                         idlest_cpu = cpumask_first(sched_group_span(idlest));
    9876             :                         if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
    9877             :                                 return idlest;
    9878             : #endif /* CONFIG_NUMA_BALANCING */
    9879             :                         /*
    9880             :                          * Otherwise, keep the task close to the wakeup source
    9881             :                          * and improve locality if the number of running tasks
    9882             :                          * would remain below threshold where an imbalance is
    9883             :                          * allowed while accounting for the possibility the
    9884             :                          * task is pinned to a subset of CPUs. If there is a
    9885             :                          * real need of migration, periodic load balance will
    9886             :                          * take care of it.
    9887             :                          */
    9888             :                         if (p->nr_cpus_allowed != NR_CPUS) {
    9889             :                                 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    9890             : 
    9891             :                                 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
    9892             :                                 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
    9893             :                         }
    9894             : 
    9895             :                         imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
    9896             :                         if (!adjust_numa_imbalance(imbalance,
    9897             :                                                    local_sgs.sum_nr_running + 1,
    9898             :                                                    imb_numa_nr)) {
    9899             :                                 return NULL;
    9900             :                         }
    9901             :                 }
    9902             : #endif /* CONFIG_NUMA */
    9903             : 
    9904             :                 /*
    9905             :                  * Select group with highest number of idle CPUs. We could also
    9906             :                  * compare the utilization which is more stable but it can end
    9907             :                  * up that the group has less spare capacity but finally more
    9908             :                  * idle CPUs which means more opportunity to run task.
    9909             :                  */
    9910             :                 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
    9911             :                         return NULL;
    9912             :                 break;
    9913             :         }
    9914             : 
    9915             :         return idlest;
    9916             : }
    9917             : 
    9918             : static void update_idle_cpu_scan(struct lb_env *env,
    9919             :                                  unsigned long sum_util)
    9920             : {
    9921             :         struct sched_domain_shared *sd_share;
    9922             :         int llc_weight, pct;
    9923             :         u64 x, y, tmp;
    9924             :         /*
    9925             :          * Update the number of CPUs to scan in LLC domain, which could
    9926             :          * be used as a hint in select_idle_cpu(). The update of sd_share
    9927             :          * could be expensive because it is within a shared cache line.
    9928             :          * So the write of this hint only occurs during periodic load
    9929             :          * balancing, rather than CPU_NEWLY_IDLE, because the latter
    9930             :          * can fire way more frequently than the former.
    9931             :          */
    9932             :         if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
    9933             :                 return;
    9934             : 
    9935             :         llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
    9936             :         if (env->sd->span_weight != llc_weight)
    9937             :                 return;
    9938             : 
    9939             :         sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
    9940             :         if (!sd_share)
    9941             :                 return;
    9942             : 
    9943             :         /*
    9944             :          * The number of CPUs to search drops as sum_util increases, when
    9945             :          * sum_util hits 85% or above, the scan stops.
    9946             :          * The reason to choose 85% as the threshold is because this is the
    9947             :          * imbalance_pct(117) when a LLC sched group is overloaded.
    9948             :          *
    9949             :          * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
    9950             :          * and y'= y / SCHED_CAPACITY_SCALE
    9951             :          *
    9952             :          * x is the ratio of sum_util compared to the CPU capacity:
    9953             :          * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
    9954             :          * y' is the ratio of CPUs to be scanned in the LLC domain,
    9955             :          * and the number of CPUs to scan is calculated by:
    9956             :          *
    9957             :          * nr_scan = llc_weight * y'                                    [2]
    9958             :          *
    9959             :          * When x hits the threshold of overloaded, AKA, when
    9960             :          * x = 100 / pct, y drops to 0. According to [1],
    9961             :          * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
    9962             :          *
    9963             :          * Scale x by SCHED_CAPACITY_SCALE:
    9964             :          * x' = sum_util / llc_weight;                                  [3]
    9965             :          *
    9966             :          * and finally [1] becomes:
    9967             :          * y = SCHED_CAPACITY_SCALE -
    9968             :          *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
    9969             :          *
    9970             :          */
    9971             :         /* equation [3] */
    9972             :         x = sum_util;
    9973             :         do_div(x, llc_weight);
    9974             : 
    9975             :         /* equation [4] */
    9976             :         pct = env->sd->imbalance_pct;
    9977             :         tmp = x * x * pct * pct;
    9978             :         do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
    9979             :         tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
    9980             :         y = SCHED_CAPACITY_SCALE - tmp;
    9981             : 
    9982             :         /* equation [2] */
    9983             :         y *= llc_weight;
    9984             :         do_div(y, SCHED_CAPACITY_SCALE);
    9985             :         if ((int)y != sd_share->nr_idle_scan)
    9986             :                 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
    9987             : }
    9988             : 
    9989             : /**
    9990             :  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
    9991             :  * @env: The load balancing environment.
    9992             :  * @sds: variable to hold the statistics for this sched_domain.
    9993             :  */
    9994             : 
    9995             : static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
    9996             : {
    9997             :         struct sched_domain *child = env->sd->child;
    9998             :         struct sched_group *sg = env->sd->groups;
    9999             :         struct sg_lb_stats *local = &sds->local_stat;
   10000             :         struct sg_lb_stats tmp_sgs;
   10001             :         unsigned long sum_util = 0;
   10002             :         int sg_status = 0;
   10003             : 
   10004             :         do {
   10005             :                 struct sg_lb_stats *sgs = &tmp_sgs;
   10006             :                 int local_group;
   10007             : 
   10008             :                 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
   10009             :                 if (local_group) {
   10010             :                         sds->local = sg;
   10011             :                         sgs = local;
   10012             : 
   10013             :                         if (env->idle != CPU_NEWLY_IDLE ||
   10014             :                             time_after_eq(jiffies, sg->sgc->next_update))
   10015             :                                 update_group_capacity(env->sd, env->dst_cpu);
   10016             :                 }
   10017             : 
   10018             :                 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
   10019             : 
   10020             :                 if (local_group)
   10021             :                         goto next_group;
   10022             : 
   10023             : 
   10024             :                 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
   10025             :                         sds->busiest = sg;
   10026             :                         sds->busiest_stat = *sgs;
   10027             :                 }
   10028             : 
   10029             : next_group:
   10030             :                 /* Now, start updating sd_lb_stats */
   10031             :                 sds->total_load += sgs->group_load;
   10032             :                 sds->total_capacity += sgs->group_capacity;
   10033             : 
   10034             :                 sum_util += sgs->group_util;
   10035             :                 sg = sg->next;
   10036             :         } while (sg != env->sd->groups);
   10037             : 
   10038             :         /* Tag domain that child domain prefers tasks go to siblings first */
   10039             :         sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
   10040             : 
   10041             : 
   10042             :         if (env->sd->flags & SD_NUMA)
   10043             :                 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
   10044             : 
   10045             :         if (!env->sd->parent) {
   10046             :                 struct root_domain *rd = env->dst_rq->rd;
   10047             : 
   10048             :                 /* update overload indicator if we are at root domain */
   10049             :                 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
   10050             : 
   10051             :                 /* Update over-utilization (tipping point, U >= 0) indicator */
   10052             :                 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
   10053             :                 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
   10054             :         } else if (sg_status & SG_OVERUTILIZED) {
   10055             :                 struct root_domain *rd = env->dst_rq->rd;
   10056             : 
   10057             :                 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
   10058             :                 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
   10059             :         }
   10060             : 
   10061             :         update_idle_cpu_scan(env, sum_util);
   10062             : }
   10063             : 
   10064             : /**
   10065             :  * calculate_imbalance - Calculate the amount of imbalance present within the
   10066             :  *                       groups of a given sched_domain during load balance.
   10067             :  * @env: load balance environment
   10068             :  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
   10069             :  */
   10070             : static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
   10071             : {
   10072             :         struct sg_lb_stats *local, *busiest;
   10073             : 
   10074             :         local = &sds->local_stat;
   10075             :         busiest = &sds->busiest_stat;
   10076             : 
   10077             :         if (busiest->group_type == group_misfit_task) {
   10078             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
   10079             :                         /* Set imbalance to allow misfit tasks to be balanced. */
   10080             :                         env->migration_type = migrate_misfit;
   10081             :                         env->imbalance = 1;
   10082             :                 } else {
   10083             :                         /*
   10084             :                          * Set load imbalance to allow moving task from cpu
   10085             :                          * with reduced capacity.
   10086             :                          */
   10087             :                         env->migration_type = migrate_load;
   10088             :                         env->imbalance = busiest->group_misfit_task_load;
   10089             :                 }
   10090             :                 return;
   10091             :         }
   10092             : 
   10093             :         if (busiest->group_type == group_asym_packing) {
   10094             :                 /*
   10095             :                  * In case of asym capacity, we will try to migrate all load to
   10096             :                  * the preferred CPU.
   10097             :                  */
   10098             :                 env->migration_type = migrate_task;
   10099             :                 env->imbalance = busiest->sum_h_nr_running;
   10100             :                 return;
   10101             :         }
   10102             : 
   10103             :         if (busiest->group_type == group_imbalanced) {
   10104             :                 /*
   10105             :                  * In the group_imb case we cannot rely on group-wide averages
   10106             :                  * to ensure CPU-load equilibrium, try to move any task to fix
   10107             :                  * the imbalance. The next load balance will take care of
   10108             :                  * balancing back the system.
   10109             :                  */
   10110             :                 env->migration_type = migrate_task;
   10111             :                 env->imbalance = 1;
   10112             :                 return;
   10113             :         }
   10114             : 
   10115             :         /*
   10116             :          * Try to use spare capacity of local group without overloading it or
   10117             :          * emptying busiest.
   10118             :          */
   10119             :         if (local->group_type == group_has_spare) {
   10120             :                 if ((busiest->group_type > group_fully_busy) &&
   10121             :                     !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
   10122             :                         /*
   10123             :                          * If busiest is overloaded, try to fill spare
   10124             :                          * capacity. This might end up creating spare capacity
   10125             :                          * in busiest or busiest still being overloaded but
   10126             :                          * there is no simple way to directly compute the
   10127             :                          * amount of load to migrate in order to balance the
   10128             :                          * system.
   10129             :                          */
   10130             :                         env->migration_type = migrate_util;
   10131             :                         env->imbalance = max(local->group_capacity, local->group_util) -
   10132             :                                          local->group_util;
   10133             : 
   10134             :                         /*
   10135             :                          * In some cases, the group's utilization is max or even
   10136             :                          * higher than capacity because of migrations but the
   10137             :                          * local CPU is (newly) idle. There is at least one
   10138             :                          * waiting task in this overloaded busiest group. Let's
   10139             :                          * try to pull it.
   10140             :                          */
   10141             :                         if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
   10142             :                                 env->migration_type = migrate_task;
   10143             :                                 env->imbalance = 1;
   10144             :                         }
   10145             : 
   10146             :                         return;
   10147             :                 }
   10148             : 
   10149             :                 if (busiest->group_weight == 1 || sds->prefer_sibling) {
   10150             :                         unsigned int nr_diff = busiest->sum_nr_running;
   10151             :                         /*
   10152             :                          * When prefer sibling, evenly spread running tasks on
   10153             :                          * groups.
   10154             :                          */
   10155             :                         env->migration_type = migrate_task;
   10156             :                         lsub_positive(&nr_diff, local->sum_nr_running);
   10157             :                         env->imbalance = nr_diff;
   10158             :                 } else {
   10159             : 
   10160             :                         /*
   10161             :                          * If there is no overload, we just want to even the number of
   10162             :                          * idle cpus.
   10163             :                          */
   10164             :                         env->migration_type = migrate_task;
   10165             :                         env->imbalance = max_t(long, 0,
   10166             :                                                (local->idle_cpus - busiest->idle_cpus));
   10167             :                 }
   10168             : 
   10169             : #ifdef CONFIG_NUMA
   10170             :                 /* Consider allowing a small imbalance between NUMA groups */
   10171             :                 if (env->sd->flags & SD_NUMA) {
   10172             :                         env->imbalance = adjust_numa_imbalance(env->imbalance,
   10173             :                                                                local->sum_nr_running + 1,
   10174             :                                                                env->sd->imb_numa_nr);
   10175             :                 }
   10176             : #endif
   10177             : 
   10178             :                 /* Number of tasks to move to restore balance */
   10179             :                 env->imbalance >>= 1;
   10180             : 
   10181             :                 return;
   10182             :         }
   10183             : 
   10184             :         /*
   10185             :          * Local is fully busy but has to take more load to relieve the
   10186             :          * busiest group
   10187             :          */
   10188             :         if (local->group_type < group_overloaded) {
   10189             :                 /*
   10190             :                  * Local will become overloaded so the avg_load metrics are
   10191             :                  * finally needed.
   10192             :                  */
   10193             : 
   10194             :                 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
   10195             :                                   local->group_capacity;
   10196             : 
   10197             :                 /*
   10198             :                  * If the local group is more loaded than the selected
   10199             :                  * busiest group don't try to pull any tasks.
   10200             :                  */
   10201             :                 if (local->avg_load >= busiest->avg_load) {
   10202             :                         env->imbalance = 0;
   10203             :                         return;
   10204             :                 }
   10205             : 
   10206             :                 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
   10207             :                                 sds->total_capacity;
   10208             :         }
   10209             : 
   10210             :         /*
   10211             :          * Both group are or will become overloaded and we're trying to get all
   10212             :          * the CPUs to the average_load, so we don't want to push ourselves
   10213             :          * above the average load, nor do we wish to reduce the max loaded CPU
   10214             :          * below the average load. At the same time, we also don't want to
   10215             :          * reduce the group load below the group capacity. Thus we look for
   10216             :          * the minimum possible imbalance.
   10217             :          */
   10218             :         env->migration_type = migrate_load;
   10219             :         env->imbalance = min(
   10220             :                 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
   10221             :                 (sds->avg_load - local->avg_load) * local->group_capacity
   10222             :         ) / SCHED_CAPACITY_SCALE;
   10223             : }
   10224             : 
   10225             : /******* find_busiest_group() helpers end here *********************/
   10226             : 
   10227             : /*
   10228             :  * Decision matrix according to the local and busiest group type:
   10229             :  *
   10230             :  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
   10231             :  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
   10232             :  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
   10233             :  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
   10234             :  * asym_packing     force     force      N/A    N/A  force      force
   10235             :  * imbalanced       force     force      N/A    N/A  force      force
   10236             :  * overloaded       force     force      N/A    N/A  force      avg_load
   10237             :  *
   10238             :  * N/A :      Not Applicable because already filtered while updating
   10239             :  *            statistics.
   10240             :  * balanced : The system is balanced for these 2 groups.
   10241             :  * force :    Calculate the imbalance as load migration is probably needed.
   10242             :  * avg_load : Only if imbalance is significant enough.
   10243             :  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
   10244             :  *            different in groups.
   10245             :  */
   10246             : 
   10247             : /**
   10248             :  * find_busiest_group - Returns the busiest group within the sched_domain
   10249             :  * if there is an imbalance.
   10250             :  * @env: The load balancing environment.
   10251             :  *
   10252             :  * Also calculates the amount of runnable load which should be moved
   10253             :  * to restore balance.
   10254             :  *
   10255             :  * Return:      - The busiest group if imbalance exists.
   10256             :  */
   10257             : static struct sched_group *find_busiest_group(struct lb_env *env)
   10258             : {
   10259             :         struct sg_lb_stats *local, *busiest;
   10260             :         struct sd_lb_stats sds;
   10261             : 
   10262             :         init_sd_lb_stats(&sds);
   10263             : 
   10264             :         /*
   10265             :          * Compute the various statistics relevant for load balancing at
   10266             :          * this level.
   10267             :          */
   10268             :         update_sd_lb_stats(env, &sds);
   10269             : 
   10270             :         /* There is no busy sibling group to pull tasks from */
   10271             :         if (!sds.busiest)
   10272             :                 goto out_balanced;
   10273             : 
   10274             :         busiest = &sds.busiest_stat;
   10275             : 
   10276             :         /* Misfit tasks should be dealt with regardless of the avg load */
   10277             :         if (busiest->group_type == group_misfit_task)
   10278             :                 goto force_balance;
   10279             : 
   10280             :         if (sched_energy_enabled()) {
   10281             :                 struct root_domain *rd = env->dst_rq->rd;
   10282             : 
   10283             :                 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
   10284             :                         goto out_balanced;
   10285             :         }
   10286             : 
   10287             :         /* ASYM feature bypasses nice load balance check */
   10288             :         if (busiest->group_type == group_asym_packing)
   10289             :                 goto force_balance;
   10290             : 
   10291             :         /*
   10292             :          * If the busiest group is imbalanced the below checks don't
   10293             :          * work because they assume all things are equal, which typically
   10294             :          * isn't true due to cpus_ptr constraints and the like.
   10295             :          */
   10296             :         if (busiest->group_type == group_imbalanced)
   10297             :                 goto force_balance;
   10298             : 
   10299             :         local = &sds.local_stat;
   10300             :         /*
   10301             :          * If the local group is busier than the selected busiest group
   10302             :          * don't try and pull any tasks.
   10303             :          */
   10304             :         if (local->group_type > busiest->group_type)
   10305             :                 goto out_balanced;
   10306             : 
   10307             :         /*
   10308             :          * When groups are overloaded, use the avg_load to ensure fairness
   10309             :          * between tasks.
   10310             :          */
   10311             :         if (local->group_type == group_overloaded) {
   10312             :                 /*
   10313             :                  * If the local group is more loaded than the selected
   10314             :                  * busiest group don't try to pull any tasks.
   10315             :                  */
   10316             :                 if (local->avg_load >= busiest->avg_load)
   10317             :                         goto out_balanced;
   10318             : 
   10319             :                 /* XXX broken for overlapping NUMA groups */
   10320             :                 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
   10321             :                                 sds.total_capacity;
   10322             : 
   10323             :                 /*
   10324             :                  * Don't pull any tasks if this group is already above the
   10325             :                  * domain average load.
   10326             :                  */
   10327             :                 if (local->avg_load >= sds.avg_load)
   10328             :                         goto out_balanced;
   10329             : 
   10330             :                 /*
   10331             :                  * If the busiest group is more loaded, use imbalance_pct to be
   10332             :                  * conservative.
   10333             :                  */
   10334             :                 if (100 * busiest->avg_load <=
   10335             :                                 env->sd->imbalance_pct * local->avg_load)
   10336             :                         goto out_balanced;
   10337             :         }
   10338             : 
   10339             :         /* Try to move all excess tasks to child's sibling domain */
   10340             :         if (sds.prefer_sibling && local->group_type == group_has_spare &&
   10341             :             busiest->sum_nr_running > local->sum_nr_running + 1)
   10342             :                 goto force_balance;
   10343             : 
   10344             :         if (busiest->group_type != group_overloaded) {
   10345             :                 if (env->idle == CPU_NOT_IDLE)
   10346             :                         /*
   10347             :                          * If the busiest group is not overloaded (and as a
   10348             :                          * result the local one too) but this CPU is already
   10349             :                          * busy, let another idle CPU try to pull task.
   10350             :                          */
   10351             :                         goto out_balanced;
   10352             : 
   10353             :                 if (busiest->group_weight > 1 &&
   10354             :                     local->idle_cpus <= (busiest->idle_cpus + 1))
   10355             :                         /*
   10356             :                          * If the busiest group is not overloaded
   10357             :                          * and there is no imbalance between this and busiest
   10358             :                          * group wrt idle CPUs, it is balanced. The imbalance
   10359             :                          * becomes significant if the diff is greater than 1
   10360             :                          * otherwise we might end up to just move the imbalance
   10361             :                          * on another group. Of course this applies only if
   10362             :                          * there is more than 1 CPU per group.
   10363             :                          */
   10364             :                         goto out_balanced;
   10365             : 
   10366             :                 if (busiest->sum_h_nr_running == 1)
   10367             :                         /*
   10368             :                          * busiest doesn't have any tasks waiting to run
   10369             :                          */
   10370             :                         goto out_balanced;
   10371             :         }
   10372             : 
   10373             : force_balance:
   10374             :         /* Looks like there is an imbalance. Compute it */
   10375             :         calculate_imbalance(env, &sds);
   10376             :         return env->imbalance ? sds.busiest : NULL;
   10377             : 
   10378             : out_balanced:
   10379             :         env->imbalance = 0;
   10380             :         return NULL;
   10381             : }
   10382             : 
   10383             : /*
   10384             :  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
   10385             :  */
   10386             : static struct rq *find_busiest_queue(struct lb_env *env,
   10387             :                                      struct sched_group *group)
   10388             : {
   10389             :         struct rq *busiest = NULL, *rq;
   10390             :         unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
   10391             :         unsigned int busiest_nr = 0;
   10392             :         int i;
   10393             : 
   10394             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
   10395             :                 unsigned long capacity, load, util;
   10396             :                 unsigned int nr_running;
   10397             :                 enum fbq_type rt;
   10398             : 
   10399             :                 rq = cpu_rq(i);
   10400             :                 rt = fbq_classify_rq(rq);
   10401             : 
   10402             :                 /*
   10403             :                  * We classify groups/runqueues into three groups:
   10404             :                  *  - regular: there are !numa tasks
   10405             :                  *  - remote:  there are numa tasks that run on the 'wrong' node
   10406             :                  *  - all:     there is no distinction
   10407             :                  *
   10408             :                  * In order to avoid migrating ideally placed numa tasks,
   10409             :                  * ignore those when there's better options.
   10410             :                  *
   10411             :                  * If we ignore the actual busiest queue to migrate another
   10412             :                  * task, the next balance pass can still reduce the busiest
   10413             :                  * queue by moving tasks around inside the node.
   10414             :                  *
   10415             :                  * If we cannot move enough load due to this classification
   10416             :                  * the next pass will adjust the group classification and
   10417             :                  * allow migration of more tasks.
   10418             :                  *
   10419             :                  * Both cases only affect the total convergence complexity.
   10420             :                  */
   10421             :                 if (rt > env->fbq_type)
   10422             :                         continue;
   10423             : 
   10424             :                 nr_running = rq->cfs.h_nr_running;
   10425             :                 if (!nr_running)
   10426             :                         continue;
   10427             : 
   10428             :                 capacity = capacity_of(i);
   10429             : 
   10430             :                 /*
   10431             :                  * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
   10432             :                  * eventually lead to active_balancing high->low capacity.
   10433             :                  * Higher per-CPU capacity is considered better than balancing
   10434             :                  * average load.
   10435             :                  */
   10436             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
   10437             :                     !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
   10438             :                     nr_running == 1)
   10439             :                         continue;
   10440             : 
   10441             :                 /* Make sure we only pull tasks from a CPU of lower priority */
   10442             :                 if ((env->sd->flags & SD_ASYM_PACKING) &&
   10443             :                     sched_asym_prefer(i, env->dst_cpu) &&
   10444             :                     nr_running == 1)
   10445             :                         continue;
   10446             : 
   10447             :                 switch (env->migration_type) {
   10448             :                 case migrate_load:
   10449             :                         /*
   10450             :                          * When comparing with load imbalance, use cpu_load()
   10451             :                          * which is not scaled with the CPU capacity.
   10452             :                          */
   10453             :                         load = cpu_load(rq);
   10454             : 
   10455             :                         if (nr_running == 1 && load > env->imbalance &&
   10456             :                             !check_cpu_capacity(rq, env->sd))
   10457             :                                 break;
   10458             : 
   10459             :                         /*
   10460             :                          * For the load comparisons with the other CPUs,
   10461             :                          * consider the cpu_load() scaled with the CPU
   10462             :                          * capacity, so that the load can be moved away
   10463             :                          * from the CPU that is potentially running at a
   10464             :                          * lower capacity.
   10465             :                          *
   10466             :                          * Thus we're looking for max(load_i / capacity_i),
   10467             :                          * crosswise multiplication to rid ourselves of the
   10468             :                          * division works out to:
   10469             :                          * load_i * capacity_j > load_j * capacity_i;
   10470             :                          * where j is our previous maximum.
   10471             :                          */
   10472             :                         if (load * busiest_capacity > busiest_load * capacity) {
   10473             :                                 busiest_load = load;
   10474             :                                 busiest_capacity = capacity;
   10475             :                                 busiest = rq;
   10476             :                         }
   10477             :                         break;
   10478             : 
   10479             :                 case migrate_util:
   10480             :                         util = cpu_util_cfs(i);
   10481             : 
   10482             :                         /*
   10483             :                          * Don't try to pull utilization from a CPU with one
   10484             :                          * running task. Whatever its utilization, we will fail
   10485             :                          * detach the task.
   10486             :                          */
   10487             :                         if (nr_running <= 1)
   10488             :                                 continue;
   10489             : 
   10490             :                         if (busiest_util < util) {
   10491             :                                 busiest_util = util;
   10492             :                                 busiest = rq;
   10493             :                         }
   10494             :                         break;
   10495             : 
   10496             :                 case migrate_task:
   10497             :                         if (busiest_nr < nr_running) {
   10498             :                                 busiest_nr = nr_running;
   10499             :                                 busiest = rq;
   10500             :                         }
   10501             :                         break;
   10502             : 
   10503             :                 case migrate_misfit:
   10504             :                         /*
   10505             :                          * For ASYM_CPUCAPACITY domains with misfit tasks we
   10506             :                          * simply seek the "biggest" misfit task.
   10507             :                          */
   10508             :                         if (rq->misfit_task_load > busiest_load) {
   10509             :                                 busiest_load = rq->misfit_task_load;
   10510             :                                 busiest = rq;
   10511             :                         }
   10512             : 
   10513             :                         break;
   10514             : 
   10515             :                 }
   10516             :         }
   10517             : 
   10518             :         return busiest;
   10519             : }
   10520             : 
   10521             : /*
   10522             :  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
   10523             :  * so long as it is large enough.
   10524             :  */
   10525             : #define MAX_PINNED_INTERVAL     512
   10526             : 
   10527             : static inline bool
   10528             : asym_active_balance(struct lb_env *env)
   10529             : {
   10530             :         /*
   10531             :          * ASYM_PACKING needs to force migrate tasks from busy but
   10532             :          * lower priority CPUs in order to pack all tasks in the
   10533             :          * highest priority CPUs.
   10534             :          */
   10535             :         return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
   10536             :                sched_asym_prefer(env->dst_cpu, env->src_cpu);
   10537             : }
   10538             : 
   10539             : static inline bool
   10540             : imbalanced_active_balance(struct lb_env *env)
   10541             : {
   10542             :         struct sched_domain *sd = env->sd;
   10543             : 
   10544             :         /*
   10545             :          * The imbalanced case includes the case of pinned tasks preventing a fair
   10546             :          * distribution of the load on the system but also the even distribution of the
   10547             :          * threads on a system with spare capacity
   10548             :          */
   10549             :         if ((env->migration_type == migrate_task) &&
   10550             :             (sd->nr_balance_failed > sd->cache_nice_tries+2))
   10551             :                 return 1;
   10552             : 
   10553             :         return 0;
   10554             : }
   10555             : 
   10556             : static int need_active_balance(struct lb_env *env)
   10557             : {
   10558             :         struct sched_domain *sd = env->sd;
   10559             : 
   10560             :         if (asym_active_balance(env))
   10561             :                 return 1;
   10562             : 
   10563             :         if (imbalanced_active_balance(env))
   10564             :                 return 1;
   10565             : 
   10566             :         /*
   10567             :          * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
   10568             :          * It's worth migrating the task if the src_cpu's capacity is reduced
   10569             :          * because of other sched_class or IRQs if more capacity stays
   10570             :          * available on dst_cpu.
   10571             :          */
   10572             :         if ((env->idle != CPU_NOT_IDLE) &&
   10573             :             (env->src_rq->cfs.h_nr_running == 1)) {
   10574             :                 if ((check_cpu_capacity(env->src_rq, sd)) &&
   10575             :                     (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
   10576             :                         return 1;
   10577             :         }
   10578             : 
   10579             :         if (env->migration_type == migrate_misfit)
   10580             :                 return 1;
   10581             : 
   10582             :         return 0;
   10583             : }
   10584             : 
   10585             : static int active_load_balance_cpu_stop(void *data);
   10586             : 
   10587             : static int should_we_balance(struct lb_env *env)
   10588             : {
   10589             :         struct sched_group *sg = env->sd->groups;
   10590             :         int cpu;
   10591             : 
   10592             :         /*
   10593             :          * Ensure the balancing environment is consistent; can happen
   10594             :          * when the softirq triggers 'during' hotplug.
   10595             :          */
   10596             :         if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
   10597             :                 return 0;
   10598             : 
   10599             :         /*
   10600             :          * In the newly idle case, we will allow all the CPUs
   10601             :          * to do the newly idle load balance.
   10602             :          *
   10603             :          * However, we bail out if we already have tasks or a wakeup pending,
   10604             :          * to optimize wakeup latency.
   10605             :          */
   10606             :         if (env->idle == CPU_NEWLY_IDLE) {
   10607             :                 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
   10608             :                         return 0;
   10609             :                 return 1;
   10610             :         }
   10611             : 
   10612             :         /* Try to find first idle CPU */
   10613             :         for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
   10614             :                 if (!idle_cpu(cpu))
   10615             :                         continue;
   10616             : 
   10617             :                 /* Are we the first idle CPU? */
   10618             :                 return cpu == env->dst_cpu;
   10619             :         }
   10620             : 
   10621             :         /* Are we the first CPU of this group ? */
   10622             :         return group_balance_cpu(sg) == env->dst_cpu;
   10623             : }
   10624             : 
   10625             : /*
   10626             :  * Check this_cpu to ensure it is balanced within domain. Attempt to move
   10627             :  * tasks if there is an imbalance.
   10628             :  */
   10629             : static int load_balance(int this_cpu, struct rq *this_rq,
   10630             :                         struct sched_domain *sd, enum cpu_idle_type idle,
   10631             :                         int *continue_balancing)
   10632             : {
   10633             :         int ld_moved, cur_ld_moved, active_balance = 0;
   10634             :         struct sched_domain *sd_parent = sd->parent;
   10635             :         struct sched_group *group;
   10636             :         struct rq *busiest;
   10637             :         struct rq_flags rf;
   10638             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
   10639             :         struct lb_env env = {
   10640             :                 .sd             = sd,
   10641             :                 .dst_cpu        = this_cpu,
   10642             :                 .dst_rq         = this_rq,
   10643             :                 .dst_grpmask    = sched_group_span(sd->groups),
   10644             :                 .idle           = idle,
   10645             :                 .loop_break     = SCHED_NR_MIGRATE_BREAK,
   10646             :                 .cpus           = cpus,
   10647             :                 .fbq_type       = all,
   10648             :                 .tasks          = LIST_HEAD_INIT(env.tasks),
   10649             :         };
   10650             : 
   10651             :         cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
   10652             : 
   10653             :         schedstat_inc(sd->lb_count[idle]);
   10654             : 
   10655             : redo:
   10656             :         if (!should_we_balance(&env)) {
   10657             :                 *continue_balancing = 0;
   10658             :                 goto out_balanced;
   10659             :         }
   10660             : 
   10661             :         group = find_busiest_group(&env);
   10662             :         if (!group) {
   10663             :                 schedstat_inc(sd->lb_nobusyg[idle]);
   10664             :                 goto out_balanced;
   10665             :         }
   10666             : 
   10667             :         busiest = find_busiest_queue(&env, group);
   10668             :         if (!busiest) {
   10669             :                 schedstat_inc(sd->lb_nobusyq[idle]);
   10670             :                 goto out_balanced;
   10671             :         }
   10672             : 
   10673             :         WARN_ON_ONCE(busiest == env.dst_rq);
   10674             : 
   10675             :         schedstat_add(sd->lb_imbalance[idle], env.imbalance);
   10676             : 
   10677             :         env.src_cpu = busiest->cpu;
   10678             :         env.src_rq = busiest;
   10679             : 
   10680             :         ld_moved = 0;
   10681             :         /* Clear this flag as soon as we find a pullable task */
   10682             :         env.flags |= LBF_ALL_PINNED;
   10683             :         if (busiest->nr_running > 1) {
   10684             :                 /*
   10685             :                  * Attempt to move tasks. If find_busiest_group has found
   10686             :                  * an imbalance but busiest->nr_running <= 1, the group is
   10687             :                  * still unbalanced. ld_moved simply stays zero, so it is
   10688             :                  * correctly treated as an imbalance.
   10689             :                  */
   10690             :                 env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
   10691             : 
   10692             : more_balance:
   10693             :                 rq_lock_irqsave(busiest, &rf);
   10694             :                 update_rq_clock(busiest);
   10695             : 
   10696             :                 /*
   10697             :                  * cur_ld_moved - load moved in current iteration
   10698             :                  * ld_moved     - cumulative load moved across iterations
   10699             :                  */
   10700             :                 cur_ld_moved = detach_tasks(&env);
   10701             : 
   10702             :                 /*
   10703             :                  * We've detached some tasks from busiest_rq. Every
   10704             :                  * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
   10705             :                  * unlock busiest->lock, and we are able to be sure
   10706             :                  * that nobody can manipulate the tasks in parallel.
   10707             :                  * See task_rq_lock() family for the details.
   10708             :                  */
   10709             : 
   10710             :                 rq_unlock(busiest, &rf);
   10711             : 
   10712             :                 if (cur_ld_moved) {
   10713             :                         attach_tasks(&env);
   10714             :                         ld_moved += cur_ld_moved;
   10715             :                 }
   10716             : 
   10717             :                 local_irq_restore(rf.flags);
   10718             : 
   10719             :                 if (env.flags & LBF_NEED_BREAK) {
   10720             :                         env.flags &= ~LBF_NEED_BREAK;
   10721             :                         /* Stop if we tried all running tasks */
   10722             :                         if (env.loop < busiest->nr_running)
   10723             :                                 goto more_balance;
   10724             :                 }
   10725             : 
   10726             :                 /*
   10727             :                  * Revisit (affine) tasks on src_cpu that couldn't be moved to
   10728             :                  * us and move them to an alternate dst_cpu in our sched_group
   10729             :                  * where they can run. The upper limit on how many times we
   10730             :                  * iterate on same src_cpu is dependent on number of CPUs in our
   10731             :                  * sched_group.
   10732             :                  *
   10733             :                  * This changes load balance semantics a bit on who can move
   10734             :                  * load to a given_cpu. In addition to the given_cpu itself
   10735             :                  * (or a ilb_cpu acting on its behalf where given_cpu is
   10736             :                  * nohz-idle), we now have balance_cpu in a position to move
   10737             :                  * load to given_cpu. In rare situations, this may cause
   10738             :                  * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
   10739             :                  * _independently_ and at _same_ time to move some load to
   10740             :                  * given_cpu) causing excess load to be moved to given_cpu.
   10741             :                  * This however should not happen so much in practice and
   10742             :                  * moreover subsequent load balance cycles should correct the
   10743             :                  * excess load moved.
   10744             :                  */
   10745             :                 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
   10746             : 
   10747             :                         /* Prevent to re-select dst_cpu via env's CPUs */
   10748             :                         __cpumask_clear_cpu(env.dst_cpu, env.cpus);
   10749             : 
   10750             :                         env.dst_rq       = cpu_rq(env.new_dst_cpu);
   10751             :                         env.dst_cpu      = env.new_dst_cpu;
   10752             :                         env.flags       &= ~LBF_DST_PINNED;
   10753             :                         env.loop         = 0;
   10754             :                         env.loop_break   = SCHED_NR_MIGRATE_BREAK;
   10755             : 
   10756             :                         /*
   10757             :                          * Go back to "more_balance" rather than "redo" since we
   10758             :                          * need to continue with same src_cpu.
   10759             :                          */
   10760             :                         goto more_balance;
   10761             :                 }
   10762             : 
   10763             :                 /*
   10764             :                  * We failed to reach balance because of affinity.
   10765             :                  */
   10766             :                 if (sd_parent) {
   10767             :                         int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   10768             : 
   10769             :                         if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
   10770             :                                 *group_imbalance = 1;
   10771             :                 }
   10772             : 
   10773             :                 /* All tasks on this runqueue were pinned by CPU affinity */
   10774             :                 if (unlikely(env.flags & LBF_ALL_PINNED)) {
   10775             :                         __cpumask_clear_cpu(cpu_of(busiest), cpus);
   10776             :                         /*
   10777             :                          * Attempting to continue load balancing at the current
   10778             :                          * sched_domain level only makes sense if there are
   10779             :                          * active CPUs remaining as possible busiest CPUs to
   10780             :                          * pull load from which are not contained within the
   10781             :                          * destination group that is receiving any migrated
   10782             :                          * load.
   10783             :                          */
   10784             :                         if (!cpumask_subset(cpus, env.dst_grpmask)) {
   10785             :                                 env.loop = 0;
   10786             :                                 env.loop_break = SCHED_NR_MIGRATE_BREAK;
   10787             :                                 goto redo;
   10788             :                         }
   10789             :                         goto out_all_pinned;
   10790             :                 }
   10791             :         }
   10792             : 
   10793             :         if (!ld_moved) {
   10794             :                 schedstat_inc(sd->lb_failed[idle]);
   10795             :                 /*
   10796             :                  * Increment the failure counter only on periodic balance.
   10797             :                  * We do not want newidle balance, which can be very
   10798             :                  * frequent, pollute the failure counter causing
   10799             :                  * excessive cache_hot migrations and active balances.
   10800             :                  */
   10801             :                 if (idle != CPU_NEWLY_IDLE)
   10802             :                         sd->nr_balance_failed++;
   10803             : 
   10804             :                 if (need_active_balance(&env)) {
   10805             :                         unsigned long flags;
   10806             : 
   10807             :                         raw_spin_rq_lock_irqsave(busiest, flags);
   10808             : 
   10809             :                         /*
   10810             :                          * Don't kick the active_load_balance_cpu_stop,
   10811             :                          * if the curr task on busiest CPU can't be
   10812             :                          * moved to this_cpu:
   10813             :                          */
   10814             :                         if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
   10815             :                                 raw_spin_rq_unlock_irqrestore(busiest, flags);
   10816             :                                 goto out_one_pinned;
   10817             :                         }
   10818             : 
   10819             :                         /* Record that we found at least one task that could run on this_cpu */
   10820             :                         env.flags &= ~LBF_ALL_PINNED;
   10821             : 
   10822             :                         /*
   10823             :                          * ->active_balance synchronizes accesses to
   10824             :                          * ->active_balance_work.  Once set, it's cleared
   10825             :                          * only after active load balance is finished.
   10826             :                          */
   10827             :                         if (!busiest->active_balance) {
   10828             :                                 busiest->active_balance = 1;
   10829             :                                 busiest->push_cpu = this_cpu;
   10830             :                                 active_balance = 1;
   10831             :                         }
   10832             :                         raw_spin_rq_unlock_irqrestore(busiest, flags);
   10833             : 
   10834             :                         if (active_balance) {
   10835             :                                 stop_one_cpu_nowait(cpu_of(busiest),
   10836             :                                         active_load_balance_cpu_stop, busiest,
   10837             :                                         &busiest->active_balance_work);
   10838             :                         }
   10839             :                 }
   10840             :         } else {
   10841             :                 sd->nr_balance_failed = 0;
   10842             :         }
   10843             : 
   10844             :         if (likely(!active_balance) || need_active_balance(&env)) {
   10845             :                 /* We were unbalanced, so reset the balancing interval */
   10846             :                 sd->balance_interval = sd->min_interval;
   10847             :         }
   10848             : 
   10849             :         goto out;
   10850             : 
   10851             : out_balanced:
   10852             :         /*
   10853             :          * We reach balance although we may have faced some affinity
   10854             :          * constraints. Clear the imbalance flag only if other tasks got
   10855             :          * a chance to move and fix the imbalance.
   10856             :          */
   10857             :         if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
   10858             :                 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   10859             : 
   10860             :                 if (*group_imbalance)
   10861             :                         *group_imbalance = 0;
   10862             :         }
   10863             : 
   10864             : out_all_pinned:
   10865             :         /*
   10866             :          * We reach balance because all tasks are pinned at this level so
   10867             :          * we can't migrate them. Let the imbalance flag set so parent level
   10868             :          * can try to migrate them.
   10869             :          */
   10870             :         schedstat_inc(sd->lb_balanced[idle]);
   10871             : 
   10872             :         sd->nr_balance_failed = 0;
   10873             : 
   10874             : out_one_pinned:
   10875             :         ld_moved = 0;
   10876             : 
   10877             :         /*
   10878             :          * newidle_balance() disregards balance intervals, so we could
   10879             :          * repeatedly reach this code, which would lead to balance_interval
   10880             :          * skyrocketing in a short amount of time. Skip the balance_interval
   10881             :          * increase logic to avoid that.
   10882             :          */
   10883             :         if (env.idle == CPU_NEWLY_IDLE)
   10884             :                 goto out;
   10885             : 
   10886             :         /* tune up the balancing interval */
   10887             :         if ((env.flags & LBF_ALL_PINNED &&
   10888             :              sd->balance_interval < MAX_PINNED_INTERVAL) ||
   10889             :             sd->balance_interval < sd->max_interval)
   10890             :                 sd->balance_interval *= 2;
   10891             : out:
   10892             :         return ld_moved;
   10893             : }
   10894             : 
   10895             : static inline unsigned long
   10896             : get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
   10897             : {
   10898             :         unsigned long interval = sd->balance_interval;
   10899             : 
   10900             :         if (cpu_busy)
   10901             :                 interval *= sd->busy_factor;
   10902             : 
   10903             :         /* scale ms to jiffies */
   10904             :         interval = msecs_to_jiffies(interval);
   10905             : 
   10906             :         /*
   10907             :          * Reduce likelihood of busy balancing at higher domains racing with
   10908             :          * balancing at lower domains by preventing their balancing periods
   10909             :          * from being multiples of each other.
   10910             :          */
   10911             :         if (cpu_busy)
   10912             :                 interval -= 1;
   10913             : 
   10914             :         interval = clamp(interval, 1UL, max_load_balance_interval);
   10915             : 
   10916             :         return interval;
   10917             : }
   10918             : 
   10919             : static inline void
   10920             : update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
   10921             : {
   10922             :         unsigned long interval, next;
   10923             : 
   10924             :         /* used by idle balance, so cpu_busy = 0 */
   10925             :         interval = get_sd_balance_interval(sd, 0);
   10926             :         next = sd->last_balance + interval;
   10927             : 
   10928             :         if (time_after(*next_balance, next))
   10929             :                 *next_balance = next;
   10930             : }
   10931             : 
   10932             : /*
   10933             :  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
   10934             :  * running tasks off the busiest CPU onto idle CPUs. It requires at
   10935             :  * least 1 task to be running on each physical CPU where possible, and
   10936             :  * avoids physical / logical imbalances.
   10937             :  */
   10938             : static int active_load_balance_cpu_stop(void *data)
   10939             : {
   10940             :         struct rq *busiest_rq = data;
   10941             :         int busiest_cpu = cpu_of(busiest_rq);
   10942             :         int target_cpu = busiest_rq->push_cpu;
   10943             :         struct rq *target_rq = cpu_rq(target_cpu);
   10944             :         struct sched_domain *sd;
   10945             :         struct task_struct *p = NULL;
   10946             :         struct rq_flags rf;
   10947             : 
   10948             :         rq_lock_irq(busiest_rq, &rf);
   10949             :         /*
   10950             :          * Between queueing the stop-work and running it is a hole in which
   10951             :          * CPUs can become inactive. We should not move tasks from or to
   10952             :          * inactive CPUs.
   10953             :          */
   10954             :         if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
   10955             :                 goto out_unlock;
   10956             : 
   10957             :         /* Make sure the requested CPU hasn't gone down in the meantime: */
   10958             :         if (unlikely(busiest_cpu != smp_processor_id() ||
   10959             :                      !busiest_rq->active_balance))
   10960             :                 goto out_unlock;
   10961             : 
   10962             :         /* Is there any task to move? */
   10963             :         if (busiest_rq->nr_running <= 1)
   10964             :                 goto out_unlock;
   10965             : 
   10966             :         /*
   10967             :          * This condition is "impossible", if it occurs
   10968             :          * we need to fix it. Originally reported by
   10969             :          * Bjorn Helgaas on a 128-CPU setup.
   10970             :          */
   10971             :         WARN_ON_ONCE(busiest_rq == target_rq);
   10972             : 
   10973             :         /* Search for an sd spanning us and the target CPU. */
   10974             :         rcu_read_lock();
   10975             :         for_each_domain(target_cpu, sd) {
   10976             :                 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
   10977             :                         break;
   10978             :         }
   10979             : 
   10980             :         if (likely(sd)) {
   10981             :                 struct lb_env env = {
   10982             :                         .sd             = sd,
   10983             :                         .dst_cpu        = target_cpu,
   10984             :                         .dst_rq         = target_rq,
   10985             :                         .src_cpu        = busiest_rq->cpu,
   10986             :                         .src_rq         = busiest_rq,
   10987             :                         .idle           = CPU_IDLE,
   10988             :                         .flags          = LBF_ACTIVE_LB,
   10989             :                 };
   10990             : 
   10991             :                 schedstat_inc(sd->alb_count);
   10992             :                 update_rq_clock(busiest_rq);
   10993             : 
   10994             :                 p = detach_one_task(&env);
   10995             :                 if (p) {
   10996             :                         schedstat_inc(sd->alb_pushed);
   10997             :                         /* Active balancing done, reset the failure counter. */
   10998             :                         sd->nr_balance_failed = 0;
   10999             :                 } else {
   11000             :                         schedstat_inc(sd->alb_failed);
   11001             :                 }
   11002             :         }
   11003             :         rcu_read_unlock();
   11004             : out_unlock:
   11005             :         busiest_rq->active_balance = 0;
   11006             :         rq_unlock(busiest_rq, &rf);
   11007             : 
   11008             :         if (p)
   11009             :                 attach_one_task(target_rq, p);
   11010             : 
   11011             :         local_irq_enable();
   11012             : 
   11013             :         return 0;
   11014             : }
   11015             : 
   11016             : static DEFINE_SPINLOCK(balancing);
   11017             : 
   11018             : /*
   11019             :  * Scale the max load_balance interval with the number of CPUs in the system.
   11020             :  * This trades load-balance latency on larger machines for less cross talk.
   11021             :  */
   11022             : void update_max_interval(void)
   11023             : {
   11024             :         max_load_balance_interval = HZ*num_online_cpus()/10;
   11025             : }
   11026             : 
   11027             : static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
   11028             : {
   11029             :         if (cost > sd->max_newidle_lb_cost) {
   11030             :                 /*
   11031             :                  * Track max cost of a domain to make sure to not delay the
   11032             :                  * next wakeup on the CPU.
   11033             :                  */
   11034             :                 sd->max_newidle_lb_cost = cost;
   11035             :                 sd->last_decay_max_lb_cost = jiffies;
   11036             :         } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
   11037             :                 /*
   11038             :                  * Decay the newidle max times by ~1% per second to ensure that
   11039             :                  * it is not outdated and the current max cost is actually
   11040             :                  * shorter.
   11041             :                  */
   11042             :                 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
   11043             :                 sd->last_decay_max_lb_cost = jiffies;
   11044             : 
   11045             :                 return true;
   11046             :         }
   11047             : 
   11048             :         return false;
   11049             : }
   11050             : 
   11051             : /*
   11052             :  * It checks each scheduling domain to see if it is due to be balanced,
   11053             :  * and initiates a balancing operation if so.
   11054             :  *
   11055             :  * Balancing parameters are set up in init_sched_domains.
   11056             :  */
   11057             : static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
   11058             : {
   11059             :         int continue_balancing = 1;
   11060             :         int cpu = rq->cpu;
   11061             :         int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   11062             :         unsigned long interval;
   11063             :         struct sched_domain *sd;
   11064             :         /* Earliest time when we have to do rebalance again */
   11065             :         unsigned long next_balance = jiffies + 60*HZ;
   11066             :         int update_next_balance = 0;
   11067             :         int need_serialize, need_decay = 0;
   11068             :         u64 max_cost = 0;
   11069             : 
   11070             :         rcu_read_lock();
   11071             :         for_each_domain(cpu, sd) {
   11072             :                 /*
   11073             :                  * Decay the newidle max times here because this is a regular
   11074             :                  * visit to all the domains.
   11075             :                  */
   11076             :                 need_decay = update_newidle_cost(sd, 0);
   11077             :                 max_cost += sd->max_newidle_lb_cost;
   11078             : 
   11079             :                 /*
   11080             :                  * Stop the load balance at this level. There is another
   11081             :                  * CPU in our sched group which is doing load balancing more
   11082             :                  * actively.
   11083             :                  */
   11084             :                 if (!continue_balancing) {
   11085             :                         if (need_decay)
   11086             :                                 continue;
   11087             :                         break;
   11088             :                 }
   11089             : 
   11090             :                 interval = get_sd_balance_interval(sd, busy);
   11091             : 
   11092             :                 need_serialize = sd->flags & SD_SERIALIZE;
   11093             :                 if (need_serialize) {
   11094             :                         if (!spin_trylock(&balancing))
   11095             :                                 goto out;
   11096             :                 }
   11097             : 
   11098             :                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
   11099             :                         if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
   11100             :                                 /*
   11101             :                                  * The LBF_DST_PINNED logic could have changed
   11102             :                                  * env->dst_cpu, so we can't know our idle
   11103             :                                  * state even if we migrated tasks. Update it.
   11104             :                                  */
   11105             :                                 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
   11106             :                                 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   11107             :                         }
   11108             :                         sd->last_balance = jiffies;
   11109             :                         interval = get_sd_balance_interval(sd, busy);
   11110             :                 }
   11111             :                 if (need_serialize)
   11112             :                         spin_unlock(&balancing);
   11113             : out:
   11114             :                 if (time_after(next_balance, sd->last_balance + interval)) {
   11115             :                         next_balance = sd->last_balance + interval;
   11116             :                         update_next_balance = 1;
   11117             :                 }
   11118             :         }
   11119             :         if (need_decay) {
   11120             :                 /*
   11121             :                  * Ensure the rq-wide value also decays but keep it at a
   11122             :                  * reasonable floor to avoid funnies with rq->avg_idle.
   11123             :                  */
   11124             :                 rq->max_idle_balance_cost =
   11125             :                         max((u64)sysctl_sched_migration_cost, max_cost);
   11126             :         }
   11127             :         rcu_read_unlock();
   11128             : 
   11129             :         /*
   11130             :          * next_balance will be updated only when there is a need.
   11131             :          * When the cpu is attached to null domain for ex, it will not be
   11132             :          * updated.
   11133             :          */
   11134             :         if (likely(update_next_balance))
   11135             :                 rq->next_balance = next_balance;
   11136             : 
   11137             : }
   11138             : 
   11139             : static inline int on_null_domain(struct rq *rq)
   11140             : {
   11141             :         return unlikely(!rcu_dereference_sched(rq->sd));
   11142             : }
   11143             : 
   11144             : #ifdef CONFIG_NO_HZ_COMMON
   11145             : /*
   11146             :  * idle load balancing details
   11147             :  * - When one of the busy CPUs notice that there may be an idle rebalancing
   11148             :  *   needed, they will kick the idle load balancer, which then does idle
   11149             :  *   load balancing for all the idle CPUs.
   11150             :  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
   11151             :  *   anywhere yet.
   11152             :  */
   11153             : 
   11154             : static inline int find_new_ilb(void)
   11155             : {
   11156             :         int ilb;
   11157             :         const struct cpumask *hk_mask;
   11158             : 
   11159             :         hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
   11160             : 
   11161             :         for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
   11162             : 
   11163             :                 if (ilb == smp_processor_id())
   11164             :                         continue;
   11165             : 
   11166             :                 if (idle_cpu(ilb))
   11167             :                         return ilb;
   11168             :         }
   11169             : 
   11170             :         return nr_cpu_ids;
   11171             : }
   11172             : 
   11173             : /*
   11174             :  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
   11175             :  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
   11176             :  */
   11177             : static void kick_ilb(unsigned int flags)
   11178             : {
   11179             :         int ilb_cpu;
   11180             : 
   11181             :         /*
   11182             :          * Increase nohz.next_balance only when if full ilb is triggered but
   11183             :          * not if we only update stats.
   11184             :          */
   11185             :         if (flags & NOHZ_BALANCE_KICK)
   11186             :                 nohz.next_balance = jiffies+1;
   11187             : 
   11188             :         ilb_cpu = find_new_ilb();
   11189             : 
   11190             :         if (ilb_cpu >= nr_cpu_ids)
   11191             :                 return;
   11192             : 
   11193             :         /*
   11194             :          * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
   11195             :          * the first flag owns it; cleared by nohz_csd_func().
   11196             :          */
   11197             :         flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
   11198             :         if (flags & NOHZ_KICK_MASK)
   11199             :                 return;
   11200             : 
   11201             :         /*
   11202             :          * This way we generate an IPI on the target CPU which
   11203             :          * is idle. And the softirq performing nohz idle load balance
   11204             :          * will be run before returning from the IPI.
   11205             :          */
   11206             :         smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
   11207             : }
   11208             : 
   11209             : /*
   11210             :  * Current decision point for kicking the idle load balancer in the presence
   11211             :  * of idle CPUs in the system.
   11212             :  */
   11213             : static void nohz_balancer_kick(struct rq *rq)
   11214             : {
   11215             :         unsigned long now = jiffies;
   11216             :         struct sched_domain_shared *sds;
   11217             :         struct sched_domain *sd;
   11218             :         int nr_busy, i, cpu = rq->cpu;
   11219             :         unsigned int flags = 0;
   11220             : 
   11221             :         if (unlikely(rq->idle_balance))
   11222             :                 return;
   11223             : 
   11224             :         /*
   11225             :          * We may be recently in ticked or tickless idle mode. At the first
   11226             :          * busy tick after returning from idle, we will update the busy stats.
   11227             :          */
   11228             :         nohz_balance_exit_idle(rq);
   11229             : 
   11230             :         /*
   11231             :          * None are in tickless mode and hence no need for NOHZ idle load
   11232             :          * balancing.
   11233             :          */
   11234             :         if (likely(!atomic_read(&nohz.nr_cpus)))
   11235             :                 return;
   11236             : 
   11237             :         if (READ_ONCE(nohz.has_blocked) &&
   11238             :             time_after(now, READ_ONCE(nohz.next_blocked)))
   11239             :                 flags = NOHZ_STATS_KICK;
   11240             : 
   11241             :         if (time_before(now, nohz.next_balance))
   11242             :                 goto out;
   11243             : 
   11244             :         if (rq->nr_running >= 2) {
   11245             :                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11246             :                 goto out;
   11247             :         }
   11248             : 
   11249             :         rcu_read_lock();
   11250             : 
   11251             :         sd = rcu_dereference(rq->sd);
   11252             :         if (sd) {
   11253             :                 /*
   11254             :                  * If there's a CFS task and the current CPU has reduced
   11255             :                  * capacity; kick the ILB to see if there's a better CPU to run
   11256             :                  * on.
   11257             :                  */
   11258             :                 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
   11259             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11260             :                         goto unlock;
   11261             :                 }
   11262             :         }
   11263             : 
   11264             :         sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
   11265             :         if (sd) {
   11266             :                 /*
   11267             :                  * When ASYM_PACKING; see if there's a more preferred CPU
   11268             :                  * currently idle; in which case, kick the ILB to move tasks
   11269             :                  * around.
   11270             :                  */
   11271             :                 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
   11272             :                         if (sched_asym_prefer(i, cpu)) {
   11273             :                                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11274             :                                 goto unlock;
   11275             :                         }
   11276             :                 }
   11277             :         }
   11278             : 
   11279             :         sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
   11280             :         if (sd) {
   11281             :                 /*
   11282             :                  * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
   11283             :                  * to run the misfit task on.
   11284             :                  */
   11285             :                 if (check_misfit_status(rq, sd)) {
   11286             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11287             :                         goto unlock;
   11288             :                 }
   11289             : 
   11290             :                 /*
   11291             :                  * For asymmetric systems, we do not want to nicely balance
   11292             :                  * cache use, instead we want to embrace asymmetry and only
   11293             :                  * ensure tasks have enough CPU capacity.
   11294             :                  *
   11295             :                  * Skip the LLC logic because it's not relevant in that case.
   11296             :                  */
   11297             :                 goto unlock;
   11298             :         }
   11299             : 
   11300             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
   11301             :         if (sds) {
   11302             :                 /*
   11303             :                  * If there is an imbalance between LLC domains (IOW we could
   11304             :                  * increase the overall cache use), we need some less-loaded LLC
   11305             :                  * domain to pull some load. Likewise, we may need to spread
   11306             :                  * load within the current LLC domain (e.g. packed SMT cores but
   11307             :                  * other CPUs are idle). We can't really know from here how busy
   11308             :                  * the others are - so just get a nohz balance going if it looks
   11309             :                  * like this LLC domain has tasks we could move.
   11310             :                  */
   11311             :                 nr_busy = atomic_read(&sds->nr_busy_cpus);
   11312             :                 if (nr_busy > 1) {
   11313             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11314             :                         goto unlock;
   11315             :                 }
   11316             :         }
   11317             : unlock:
   11318             :         rcu_read_unlock();
   11319             : out:
   11320             :         if (READ_ONCE(nohz.needs_update))
   11321             :                 flags |= NOHZ_NEXT_KICK;
   11322             : 
   11323             :         if (flags)
   11324             :                 kick_ilb(flags);
   11325             : }
   11326             : 
   11327             : static void set_cpu_sd_state_busy(int cpu)
   11328             : {
   11329             :         struct sched_domain *sd;
   11330             : 
   11331             :         rcu_read_lock();
   11332             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   11333             : 
   11334             :         if (!sd || !sd->nohz_idle)
   11335             :                 goto unlock;
   11336             :         sd->nohz_idle = 0;
   11337             : 
   11338             :         atomic_inc(&sd->shared->nr_busy_cpus);
   11339             : unlock:
   11340             :         rcu_read_unlock();
   11341             : }
   11342             : 
   11343             : void nohz_balance_exit_idle(struct rq *rq)
   11344             : {
   11345             :         SCHED_WARN_ON(rq != this_rq());
   11346             : 
   11347             :         if (likely(!rq->nohz_tick_stopped))
   11348             :                 return;
   11349             : 
   11350             :         rq->nohz_tick_stopped = 0;
   11351             :         cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
   11352             :         atomic_dec(&nohz.nr_cpus);
   11353             : 
   11354             :         set_cpu_sd_state_busy(rq->cpu);
   11355             : }
   11356             : 
   11357             : static void set_cpu_sd_state_idle(int cpu)
   11358             : {
   11359             :         struct sched_domain *sd;
   11360             : 
   11361             :         rcu_read_lock();
   11362             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   11363             : 
   11364             :         if (!sd || sd->nohz_idle)
   11365             :                 goto unlock;
   11366             :         sd->nohz_idle = 1;
   11367             : 
   11368             :         atomic_dec(&sd->shared->nr_busy_cpus);
   11369             : unlock:
   11370             :         rcu_read_unlock();
   11371             : }
   11372             : 
   11373             : /*
   11374             :  * This routine will record that the CPU is going idle with tick stopped.
   11375             :  * This info will be used in performing idle load balancing in the future.
   11376             :  */
   11377             : void nohz_balance_enter_idle(int cpu)
   11378             : {
   11379             :         struct rq *rq = cpu_rq(cpu);
   11380             : 
   11381             :         SCHED_WARN_ON(cpu != smp_processor_id());
   11382             : 
   11383             :         /* If this CPU is going down, then nothing needs to be done: */
   11384             :         if (!cpu_active(cpu))
   11385             :                 return;
   11386             : 
   11387             :         /* Spare idle load balancing on CPUs that don't want to be disturbed: */
   11388             :         if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
   11389             :                 return;
   11390             : 
   11391             :         /*
   11392             :          * Can be set safely without rq->lock held
   11393             :          * If a clear happens, it will have evaluated last additions because
   11394             :          * rq->lock is held during the check and the clear
   11395             :          */
   11396             :         rq->has_blocked_load = 1;
   11397             : 
   11398             :         /*
   11399             :          * The tick is still stopped but load could have been added in the
   11400             :          * meantime. We set the nohz.has_blocked flag to trig a check of the
   11401             :          * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
   11402             :          * of nohz.has_blocked can only happen after checking the new load
   11403             :          */
   11404             :         if (rq->nohz_tick_stopped)
   11405             :                 goto out;
   11406             : 
   11407             :         /* If we're a completely isolated CPU, we don't play: */
   11408             :         if (on_null_domain(rq))
   11409             :                 return;
   11410             : 
   11411             :         rq->nohz_tick_stopped = 1;
   11412             : 
   11413             :         cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
   11414             :         atomic_inc(&nohz.nr_cpus);
   11415             : 
   11416             :         /*
   11417             :          * Ensures that if nohz_idle_balance() fails to observe our
   11418             :          * @idle_cpus_mask store, it must observe the @has_blocked
   11419             :          * and @needs_update stores.
   11420             :          */
   11421             :         smp_mb__after_atomic();
   11422             : 
   11423             :         set_cpu_sd_state_idle(cpu);
   11424             : 
   11425             :         WRITE_ONCE(nohz.needs_update, 1);
   11426             : out:
   11427             :         /*
   11428             :          * Each time a cpu enter idle, we assume that it has blocked load and
   11429             :          * enable the periodic update of the load of idle cpus
   11430             :          */
   11431             :         WRITE_ONCE(nohz.has_blocked, 1);
   11432             : }
   11433             : 
   11434             : static bool update_nohz_stats(struct rq *rq)
   11435             : {
   11436             :         unsigned int cpu = rq->cpu;
   11437             : 
   11438             :         if (!rq->has_blocked_load)
   11439             :                 return false;
   11440             : 
   11441             :         if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
   11442             :                 return false;
   11443             : 
   11444             :         if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
   11445             :                 return true;
   11446             : 
   11447             :         update_blocked_averages(cpu);
   11448             : 
   11449             :         return rq->has_blocked_load;
   11450             : }
   11451             : 
   11452             : /*
   11453             :  * Internal function that runs load balance for all idle cpus. The load balance
   11454             :  * can be a simple update of blocked load or a complete load balance with
   11455             :  * tasks movement depending of flags.
   11456             :  */
   11457             : static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
   11458             : {
   11459             :         /* Earliest time when we have to do rebalance again */
   11460             :         unsigned long now = jiffies;
   11461             :         unsigned long next_balance = now + 60*HZ;
   11462             :         bool has_blocked_load = false;
   11463             :         int update_next_balance = 0;
   11464             :         int this_cpu = this_rq->cpu;
   11465             :         int balance_cpu;
   11466             :         struct rq *rq;
   11467             : 
   11468             :         SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
   11469             : 
   11470             :         /*
   11471             :          * We assume there will be no idle load after this update and clear
   11472             :          * the has_blocked flag. If a cpu enters idle in the mean time, it will
   11473             :          * set the has_blocked flag and trigger another update of idle load.
   11474             :          * Because a cpu that becomes idle, is added to idle_cpus_mask before
   11475             :          * setting the flag, we are sure to not clear the state and not
   11476             :          * check the load of an idle cpu.
   11477             :          *
   11478             :          * Same applies to idle_cpus_mask vs needs_update.
   11479             :          */
   11480             :         if (flags & NOHZ_STATS_KICK)
   11481             :                 WRITE_ONCE(nohz.has_blocked, 0);
   11482             :         if (flags & NOHZ_NEXT_KICK)
   11483             :                 WRITE_ONCE(nohz.needs_update, 0);
   11484             : 
   11485             :         /*
   11486             :          * Ensures that if we miss the CPU, we must see the has_blocked
   11487             :          * store from nohz_balance_enter_idle().
   11488             :          */
   11489             :         smp_mb();
   11490             : 
   11491             :         /*
   11492             :          * Start with the next CPU after this_cpu so we will end with this_cpu and let a
   11493             :          * chance for other idle cpu to pull load.
   11494             :          */
   11495             :         for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
   11496             :                 if (!idle_cpu(balance_cpu))
   11497             :                         continue;
   11498             : 
   11499             :                 /*
   11500             :                  * If this CPU gets work to do, stop the load balancing
   11501             :                  * work being done for other CPUs. Next load
   11502             :                  * balancing owner will pick it up.
   11503             :                  */
   11504             :                 if (need_resched()) {
   11505             :                         if (flags & NOHZ_STATS_KICK)
   11506             :                                 has_blocked_load = true;
   11507             :                         if (flags & NOHZ_NEXT_KICK)
   11508             :                                 WRITE_ONCE(nohz.needs_update, 1);
   11509             :                         goto abort;
   11510             :                 }
   11511             : 
   11512             :                 rq = cpu_rq(balance_cpu);
   11513             : 
   11514             :                 if (flags & NOHZ_STATS_KICK)
   11515             :                         has_blocked_load |= update_nohz_stats(rq);
   11516             : 
   11517             :                 /*
   11518             :                  * If time for next balance is due,
   11519             :                  * do the balance.
   11520             :                  */
   11521             :                 if (time_after_eq(jiffies, rq->next_balance)) {
   11522             :                         struct rq_flags rf;
   11523             : 
   11524             :                         rq_lock_irqsave(rq, &rf);
   11525             :                         update_rq_clock(rq);
   11526             :                         rq_unlock_irqrestore(rq, &rf);
   11527             : 
   11528             :                         if (flags & NOHZ_BALANCE_KICK)
   11529             :                                 rebalance_domains(rq, CPU_IDLE);
   11530             :                 }
   11531             : 
   11532             :                 if (time_after(next_balance, rq->next_balance)) {
   11533             :                         next_balance = rq->next_balance;
   11534             :                         update_next_balance = 1;
   11535             :                 }
   11536             :         }
   11537             : 
   11538             :         /*
   11539             :          * next_balance will be updated only when there is a need.
   11540             :          * When the CPU is attached to null domain for ex, it will not be
   11541             :          * updated.
   11542             :          */
   11543             :         if (likely(update_next_balance))
   11544             :                 nohz.next_balance = next_balance;
   11545             : 
   11546             :         if (flags & NOHZ_STATS_KICK)
   11547             :                 WRITE_ONCE(nohz.next_blocked,
   11548             :                            now + msecs_to_jiffies(LOAD_AVG_PERIOD));
   11549             : 
   11550             : abort:
   11551             :         /* There is still blocked load, enable periodic update */
   11552             :         if (has_blocked_load)
   11553             :                 WRITE_ONCE(nohz.has_blocked, 1);
   11554             : }
   11555             : 
   11556             : /*
   11557             :  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
   11558             :  * rebalancing for all the cpus for whom scheduler ticks are stopped.
   11559             :  */
   11560             : static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   11561             : {
   11562             :         unsigned int flags = this_rq->nohz_idle_balance;
   11563             : 
   11564             :         if (!flags)
   11565             :                 return false;
   11566             : 
   11567             :         this_rq->nohz_idle_balance = 0;
   11568             : 
   11569             :         if (idle != CPU_IDLE)
   11570             :                 return false;
   11571             : 
   11572             :         _nohz_idle_balance(this_rq, flags);
   11573             : 
   11574             :         return true;
   11575             : }
   11576             : 
   11577             : /*
   11578             :  * Check if we need to run the ILB for updating blocked load before entering
   11579             :  * idle state.
   11580             :  */
   11581             : void nohz_run_idle_balance(int cpu)
   11582             : {
   11583             :         unsigned int flags;
   11584             : 
   11585             :         flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
   11586             : 
   11587             :         /*
   11588             :          * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
   11589             :          * (ie NOHZ_STATS_KICK set) and will do the same.
   11590             :          */
   11591             :         if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
   11592             :                 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
   11593             : }
   11594             : 
   11595             : static void nohz_newidle_balance(struct rq *this_rq)
   11596             : {
   11597             :         int this_cpu = this_rq->cpu;
   11598             : 
   11599             :         /*
   11600             :          * This CPU doesn't want to be disturbed by scheduler
   11601             :          * housekeeping
   11602             :          */
   11603             :         if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
   11604             :                 return;
   11605             : 
   11606             :         /* Will wake up very soon. No time for doing anything else*/
   11607             :         if (this_rq->avg_idle < sysctl_sched_migration_cost)
   11608             :                 return;
   11609             : 
   11610             :         /* Don't need to update blocked load of idle CPUs*/
   11611             :         if (!READ_ONCE(nohz.has_blocked) ||
   11612             :             time_before(jiffies, READ_ONCE(nohz.next_blocked)))
   11613             :                 return;
   11614             : 
   11615             :         /*
   11616             :          * Set the need to trigger ILB in order to update blocked load
   11617             :          * before entering idle state.
   11618             :          */
   11619             :         atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
   11620             : }
   11621             : 
   11622             : #else /* !CONFIG_NO_HZ_COMMON */
   11623             : static inline void nohz_balancer_kick(struct rq *rq) { }
   11624             : 
   11625             : static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   11626             : {
   11627             :         return false;
   11628             : }
   11629             : 
   11630             : static inline void nohz_newidle_balance(struct rq *this_rq) { }
   11631             : #endif /* CONFIG_NO_HZ_COMMON */
   11632             : 
   11633             : /*
   11634             :  * newidle_balance is called by schedule() if this_cpu is about to become
   11635             :  * idle. Attempts to pull tasks from other CPUs.
   11636             :  *
   11637             :  * Returns:
   11638             :  *   < 0 - we released the lock and there are !fair tasks present
   11639             :  *     0 - failed, no new tasks
   11640             :  *   > 0 - success, new (fair) tasks present
   11641             :  */
   11642             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
   11643             : {
   11644             :         unsigned long next_balance = jiffies + HZ;
   11645             :         int this_cpu = this_rq->cpu;
   11646             :         u64 t0, t1, curr_cost = 0;
   11647             :         struct sched_domain *sd;
   11648             :         int pulled_task = 0;
   11649             : 
   11650             :         update_misfit_status(NULL, this_rq);
   11651             : 
   11652             :         /*
   11653             :          * There is a task waiting to run. No need to search for one.
   11654             :          * Return 0; the task will be enqueued when switching to idle.
   11655             :          */
   11656             :         if (this_rq->ttwu_pending)
   11657             :                 return 0;
   11658             : 
   11659             :         /*
   11660             :          * We must set idle_stamp _before_ calling idle_balance(), such that we
   11661             :          * measure the duration of idle_balance() as idle time.
   11662             :          */
   11663             :         this_rq->idle_stamp = rq_clock(this_rq);
   11664             : 
   11665             :         /*
   11666             :          * Do not pull tasks towards !active CPUs...
   11667             :          */
   11668             :         if (!cpu_active(this_cpu))
   11669             :                 return 0;
   11670             : 
   11671             :         /*
   11672             :          * This is OK, because current is on_cpu, which avoids it being picked
   11673             :          * for load-balance and preemption/IRQs are still disabled avoiding
   11674             :          * further scheduler activity on it and we're being very careful to
   11675             :          * re-start the picking loop.
   11676             :          */
   11677             :         rq_unpin_lock(this_rq, rf);
   11678             : 
   11679             :         rcu_read_lock();
   11680             :         sd = rcu_dereference_check_sched_domain(this_rq->sd);
   11681             : 
   11682             :         if (!READ_ONCE(this_rq->rd->overload) ||
   11683             :             (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
   11684             : 
   11685             :                 if (sd)
   11686             :                         update_next_balance(sd, &next_balance);
   11687             :                 rcu_read_unlock();
   11688             : 
   11689             :                 goto out;
   11690             :         }
   11691             :         rcu_read_unlock();
   11692             : 
   11693             :         raw_spin_rq_unlock(this_rq);
   11694             : 
   11695             :         t0 = sched_clock_cpu(this_cpu);
   11696             :         update_blocked_averages(this_cpu);
   11697             : 
   11698             :         rcu_read_lock();
   11699             :         for_each_domain(this_cpu, sd) {
   11700             :                 int continue_balancing = 1;
   11701             :                 u64 domain_cost;
   11702             : 
   11703             :                 update_next_balance(sd, &next_balance);
   11704             : 
   11705             :                 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
   11706             :                         break;
   11707             : 
   11708             :                 if (sd->flags & SD_BALANCE_NEWIDLE) {
   11709             : 
   11710             :                         pulled_task = load_balance(this_cpu, this_rq,
   11711             :                                                    sd, CPU_NEWLY_IDLE,
   11712             :                                                    &continue_balancing);
   11713             : 
   11714             :                         t1 = sched_clock_cpu(this_cpu);
   11715             :                         domain_cost = t1 - t0;
   11716             :                         update_newidle_cost(sd, domain_cost);
   11717             : 
   11718             :                         curr_cost += domain_cost;
   11719             :                         t0 = t1;
   11720             :                 }
   11721             : 
   11722             :                 /*
   11723             :                  * Stop searching for tasks to pull if there are
   11724             :                  * now runnable tasks on this rq.
   11725             :                  */
   11726             :                 if (pulled_task || this_rq->nr_running > 0 ||
   11727             :                     this_rq->ttwu_pending)
   11728             :                         break;
   11729             :         }
   11730             :         rcu_read_unlock();
   11731             : 
   11732             :         raw_spin_rq_lock(this_rq);
   11733             : 
   11734             :         if (curr_cost > this_rq->max_idle_balance_cost)
   11735             :                 this_rq->max_idle_balance_cost = curr_cost;
   11736             : 
   11737             :         /*
   11738             :          * While browsing the domains, we released the rq lock, a task could
   11739             :          * have been enqueued in the meantime. Since we're not going idle,
   11740             :          * pretend we pulled a task.
   11741             :          */
   11742             :         if (this_rq->cfs.h_nr_running && !pulled_task)
   11743             :                 pulled_task = 1;
   11744             : 
   11745             :         /* Is there a task of a high priority class? */
   11746             :         if (this_rq->nr_running != this_rq->cfs.h_nr_running)
   11747             :                 pulled_task = -1;
   11748             : 
   11749             : out:
   11750             :         /* Move the next balance forward */
   11751             :         if (time_after(this_rq->next_balance, next_balance))
   11752             :                 this_rq->next_balance = next_balance;
   11753             : 
   11754             :         if (pulled_task)
   11755             :                 this_rq->idle_stamp = 0;
   11756             :         else
   11757             :                 nohz_newidle_balance(this_rq);
   11758             : 
   11759             :         rq_repin_lock(this_rq, rf);
   11760             : 
   11761             :         return pulled_task;
   11762             : }
   11763             : 
   11764             : /*
   11765             :  * run_rebalance_domains is triggered when needed from the scheduler tick.
   11766             :  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
   11767             :  */
   11768             : static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
   11769             : {
   11770             :         struct rq *this_rq = this_rq();
   11771             :         enum cpu_idle_type idle = this_rq->idle_balance ?
   11772             :                                                 CPU_IDLE : CPU_NOT_IDLE;
   11773             : 
   11774             :         /*
   11775             :          * If this CPU has a pending nohz_balance_kick, then do the
   11776             :          * balancing on behalf of the other idle CPUs whose ticks are
   11777             :          * stopped. Do nohz_idle_balance *before* rebalance_domains to
   11778             :          * give the idle CPUs a chance to load balance. Else we may
   11779             :          * load balance only within the local sched_domain hierarchy
   11780             :          * and abort nohz_idle_balance altogether if we pull some load.
   11781             :          */
   11782             :         if (nohz_idle_balance(this_rq, idle))
   11783             :                 return;
   11784             : 
   11785             :         /* normal load balance */
   11786             :         update_blocked_averages(this_rq->cpu);
   11787             :         rebalance_domains(this_rq, idle);
   11788             : }
   11789             : 
   11790             : /*
   11791             :  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
   11792             :  */
   11793             : void trigger_load_balance(struct rq *rq)
   11794             : {
   11795             :         /*
   11796             :          * Don't need to rebalance while attached to NULL domain or
   11797             :          * runqueue CPU is not active
   11798             :          */
   11799             :         if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
   11800             :                 return;
   11801             : 
   11802             :         if (time_after_eq(jiffies, rq->next_balance))
   11803             :                 raise_softirq(SCHED_SOFTIRQ);
   11804             : 
   11805             :         nohz_balancer_kick(rq);
   11806             : }
   11807             : 
   11808             : static void rq_online_fair(struct rq *rq)
   11809             : {
   11810             :         update_sysctl();
   11811             : 
   11812             :         update_runtime_enabled(rq);
   11813             : }
   11814             : 
   11815             : static void rq_offline_fair(struct rq *rq)
   11816             : {
   11817             :         update_sysctl();
   11818             : 
   11819             :         /* Ensure any throttled groups are reachable by pick_next_task */
   11820             :         unthrottle_offline_cfs_rqs(rq);
   11821             : }
   11822             : 
   11823             : #endif /* CONFIG_SMP */
   11824             : 
   11825             : #ifdef CONFIG_SCHED_CORE
   11826             : static inline bool
   11827             : __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
   11828             : {
   11829             :         u64 slice = sched_slice(cfs_rq_of(se), se);
   11830             :         u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
   11831             : 
   11832             :         return (rtime * min_nr_tasks > slice);
   11833             : }
   11834             : 
   11835             : #define MIN_NR_TASKS_DURING_FORCEIDLE   2
   11836             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
   11837             : {
   11838             :         if (!sched_core_enabled(rq))
   11839             :                 return;
   11840             : 
   11841             :         /*
   11842             :          * If runqueue has only one task which used up its slice and
   11843             :          * if the sibling is forced idle, then trigger schedule to
   11844             :          * give forced idle task a chance.
   11845             :          *
   11846             :          * sched_slice() considers only this active rq and it gets the
   11847             :          * whole slice. But during force idle, we have siblings acting
   11848             :          * like a single runqueue and hence we need to consider runnable
   11849             :          * tasks on this CPU and the forced idle CPU. Ideally, we should
   11850             :          * go through the forced idle rq, but that would be a perf hit.
   11851             :          * We can assume that the forced idle CPU has at least
   11852             :          * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
   11853             :          * if we need to give up the CPU.
   11854             :          */
   11855             :         if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
   11856             :             __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
   11857             :                 resched_curr(rq);
   11858             : }
   11859             : 
   11860             : /*
   11861             :  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
   11862             :  */
   11863             : static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
   11864             :                          bool forceidle)
   11865             : {
   11866             :         for_each_sched_entity(se) {
   11867             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11868             : 
   11869             :                 if (forceidle) {
   11870             :                         if (cfs_rq->forceidle_seq == fi_seq)
   11871             :                                 break;
   11872             :                         cfs_rq->forceidle_seq = fi_seq;
   11873             :                 }
   11874             : 
   11875             :                 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
   11876             :         }
   11877             : }
   11878             : 
   11879             : void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
   11880             : {
   11881             :         struct sched_entity *se = &p->se;
   11882             : 
   11883             :         if (p->sched_class != &fair_sched_class)
   11884             :                 return;
   11885             : 
   11886             :         se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
   11887             : }
   11888             : 
   11889             : bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
   11890             :                         bool in_fi)
   11891             : {
   11892             :         struct rq *rq = task_rq(a);
   11893             :         const struct sched_entity *sea = &a->se;
   11894             :         const struct sched_entity *seb = &b->se;
   11895             :         struct cfs_rq *cfs_rqa;
   11896             :         struct cfs_rq *cfs_rqb;
   11897             :         s64 delta;
   11898             : 
   11899             :         SCHED_WARN_ON(task_rq(b)->core != rq->core);
   11900             : 
   11901             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11902             :         /*
   11903             :          * Find an se in the hierarchy for tasks a and b, such that the se's
   11904             :          * are immediate siblings.
   11905             :          */
   11906             :         while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
   11907             :                 int sea_depth = sea->depth;
   11908             :                 int seb_depth = seb->depth;
   11909             : 
   11910             :                 if (sea_depth >= seb_depth)
   11911             :                         sea = parent_entity(sea);
   11912             :                 if (sea_depth <= seb_depth)
   11913             :                         seb = parent_entity(seb);
   11914             :         }
   11915             : 
   11916             :         se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
   11917             :         se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
   11918             : 
   11919             :         cfs_rqa = sea->cfs_rq;
   11920             :         cfs_rqb = seb->cfs_rq;
   11921             : #else
   11922             :         cfs_rqa = &task_rq(a)->cfs;
   11923             :         cfs_rqb = &task_rq(b)->cfs;
   11924             : #endif
   11925             : 
   11926             :         /*
   11927             :          * Find delta after normalizing se's vruntime with its cfs_rq's
   11928             :          * min_vruntime_fi, which would have been updated in prior calls
   11929             :          * to se_fi_update().
   11930             :          */
   11931             :         delta = (s64)(sea->vruntime - seb->vruntime) +
   11932             :                 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
   11933             : 
   11934             :         return delta > 0;
   11935             : }
   11936             : #else
   11937             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
   11938             : #endif
   11939             : 
   11940             : /*
   11941             :  * scheduler tick hitting a task of our scheduling class.
   11942             :  *
   11943             :  * NOTE: This function can be called remotely by the tick offload that
   11944             :  * goes along full dynticks. Therefore no local assumption can be made
   11945             :  * and everything must be accessed through the @rq and @curr passed in
   11946             :  * parameters.
   11947             :  */
   11948        2719 : static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
   11949             : {
   11950             :         struct cfs_rq *cfs_rq;
   11951        2719 :         struct sched_entity *se = &curr->se;
   11952             : 
   11953        5438 :         for_each_sched_entity(se) {
   11954        5438 :                 cfs_rq = cfs_rq_of(se);
   11955        2719 :                 entity_tick(cfs_rq, se, queued);
   11956             :         }
   11957             : 
   11958        2719 :         if (static_branch_unlikely(&sched_numa_balancing))
   11959             :                 task_tick_numa(rq, curr);
   11960             : 
   11961        2719 :         update_misfit_status(curr, rq);
   11962        2719 :         update_overutilized_status(task_rq(curr));
   11963             : 
   11964        2719 :         task_tick_core(rq, curr);
   11965        2719 : }
   11966             : 
   11967             : /*
   11968             :  * called on fork with the child task as argument from the parent's context
   11969             :  *  - child not yet on the tasklist
   11970             :  *  - preemption disabled
   11971             :  */
   11972         340 : static void task_fork_fair(struct task_struct *p)
   11973             : {
   11974             :         struct cfs_rq *cfs_rq;
   11975         340 :         struct sched_entity *se = &p->se, *curr;
   11976         340 :         struct rq *rq = this_rq();
   11977             :         struct rq_flags rf;
   11978             : 
   11979         340 :         rq_lock(rq, &rf);
   11980         340 :         update_rq_clock(rq);
   11981             : 
   11982         680 :         cfs_rq = task_cfs_rq(current);
   11983         340 :         curr = cfs_rq->curr;
   11984         340 :         if (curr) {
   11985         338 :                 update_curr(cfs_rq);
   11986         338 :                 se->vruntime = curr->vruntime;
   11987             :         }
   11988         340 :         place_entity(cfs_rq, se, 1);
   11989             : 
   11990         340 :         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
   11991             :                 /*
   11992             :                  * Upon rescheduling, sched_class::put_prev_task() will place
   11993             :                  * 'current' within the tree based on its new key value.
   11994             :                  */
   11995           0 :                 swap(curr->vruntime, se->vruntime);
   11996           0 :                 resched_curr(rq);
   11997             :         }
   11998             : 
   11999         340 :         se->vruntime -= cfs_rq->min_vruntime;
   12000         340 :         rq_unlock(rq, &rf);
   12001         340 : }
   12002             : 
   12003             : /*
   12004             :  * Priority of the task has changed. Check to see if we preempt
   12005             :  * the current task.
   12006             :  */
   12007             : static void
   12008           5 : prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
   12009             : {
   12010           5 :         if (!task_on_rq_queued(p))
   12011             :                 return;
   12012             : 
   12013           4 :         if (rq->cfs.nr_running == 1)
   12014             :                 return;
   12015             : 
   12016             :         /*
   12017             :          * Reschedule if we are currently running on this runqueue and
   12018             :          * our priority decreased, or if we are not currently running on
   12019             :          * this runqueue and our priority is higher than the current's
   12020             :          */
   12021           4 :         if (task_current(rq, p)) {
   12022           4 :                 if (p->prio > oldprio)
   12023           0 :                         resched_curr(rq);
   12024             :         } else
   12025           0 :                 check_preempt_curr(rq, p, 0);
   12026             : }
   12027             : 
   12028             : static inline bool vruntime_normalized(struct task_struct *p)
   12029             : {
   12030           0 :         struct sched_entity *se = &p->se;
   12031             : 
   12032             :         /*
   12033             :          * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
   12034             :          * the dequeue_entity(.flags=0) will already have normalized the
   12035             :          * vruntime.
   12036             :          */
   12037           0 :         if (p->on_rq)
   12038             :                 return true;
   12039             : 
   12040             :         /*
   12041             :          * When !on_rq, vruntime of the task has usually NOT been normalized.
   12042             :          * But there are some cases where it has already been normalized:
   12043             :          *
   12044             :          * - A forked child which is waiting for being woken up by
   12045             :          *   wake_up_new_task().
   12046             :          * - A task which has been woken up by try_to_wake_up() and
   12047             :          *   waiting for actually being woken up by sched_ttwu_pending().
   12048             :          */
   12049           0 :         if (!se->sum_exec_runtime ||
   12050           0 :             (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
   12051             :                 return true;
   12052             : 
   12053             :         return false;
   12054             : }
   12055             : 
   12056             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12057             : /*
   12058             :  * Propagate the changes of the sched_entity across the tg tree to make it
   12059             :  * visible to the root
   12060             :  */
   12061             : static void propagate_entity_cfs_rq(struct sched_entity *se)
   12062             : {
   12063             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12064             : 
   12065             :         if (cfs_rq_throttled(cfs_rq))
   12066             :                 return;
   12067             : 
   12068             :         if (!throttled_hierarchy(cfs_rq))
   12069             :                 list_add_leaf_cfs_rq(cfs_rq);
   12070             : 
   12071             :         /* Start to propagate at parent */
   12072             :         se = se->parent;
   12073             : 
   12074             :         for_each_sched_entity(se) {
   12075             :                 cfs_rq = cfs_rq_of(se);
   12076             : 
   12077             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
   12078             : 
   12079             :                 if (cfs_rq_throttled(cfs_rq))
   12080             :                         break;
   12081             : 
   12082             :                 if (!throttled_hierarchy(cfs_rq))
   12083             :                         list_add_leaf_cfs_rq(cfs_rq);
   12084             :         }
   12085             : }
   12086             : #else
   12087             : static void propagate_entity_cfs_rq(struct sched_entity *se) { }
   12088             : #endif
   12089             : 
   12090             : static void detach_entity_cfs_rq(struct sched_entity *se)
   12091             : {
   12092           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12093             : 
   12094             : #ifdef CONFIG_SMP
   12095             :         /*
   12096             :          * In case the task sched_avg hasn't been attached:
   12097             :          * - A forked task which hasn't been woken up by wake_up_new_task().
   12098             :          * - A task which has been woken up by try_to_wake_up() but is
   12099             :          *   waiting for actually being woken up by sched_ttwu_pending().
   12100             :          */
   12101             :         if (!se->avg.last_update_time)
   12102             :                 return;
   12103             : #endif
   12104             : 
   12105             :         /* Catch up with the cfs_rq and remove our load when we leave */
   12106           0 :         update_load_avg(cfs_rq, se, 0);
   12107           0 :         detach_entity_load_avg(cfs_rq, se);
   12108             :         update_tg_load_avg(cfs_rq);
   12109           0 :         propagate_entity_cfs_rq(se);
   12110             : }
   12111             : 
   12112             : static void attach_entity_cfs_rq(struct sched_entity *se)
   12113             : {
   12114           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12115             : 
   12116             :         /* Synchronize entity with its cfs_rq */
   12117           0 :         update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
   12118           0 :         attach_entity_load_avg(cfs_rq, se);
   12119             :         update_tg_load_avg(cfs_rq);
   12120           0 :         propagate_entity_cfs_rq(se);
   12121             : }
   12122             : 
   12123           0 : static void detach_task_cfs_rq(struct task_struct *p)
   12124             : {
   12125           0 :         struct sched_entity *se = &p->se;
   12126           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12127             : 
   12128           0 :         if (!vruntime_normalized(p)) {
   12129             :                 /*
   12130             :                  * Fix up our vruntime so that the current sleep doesn't
   12131             :                  * cause 'unlimited' sleep bonus.
   12132             :                  */
   12133           0 :                 place_entity(cfs_rq, se, 0);
   12134           0 :                 se->vruntime -= cfs_rq->min_vruntime;
   12135             :         }
   12136             : 
   12137           0 :         detach_entity_cfs_rq(se);
   12138           0 : }
   12139             : 
   12140             : static void attach_task_cfs_rq(struct task_struct *p)
   12141             : {
   12142           0 :         struct sched_entity *se = &p->se;
   12143           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12144             : 
   12145           0 :         attach_entity_cfs_rq(se);
   12146             : 
   12147           0 :         if (!vruntime_normalized(p))
   12148           0 :                 se->vruntime += cfs_rq->min_vruntime;
   12149             : }
   12150             : 
   12151           0 : static void switched_from_fair(struct rq *rq, struct task_struct *p)
   12152             : {
   12153           0 :         detach_task_cfs_rq(p);
   12154           0 : }
   12155             : 
   12156           0 : static void switched_to_fair(struct rq *rq, struct task_struct *p)
   12157             : {
   12158           0 :         attach_task_cfs_rq(p);
   12159             : 
   12160           0 :         if (task_on_rq_queued(p)) {
   12161             :                 /*
   12162             :                  * We were most likely switched from sched_rt, so
   12163             :                  * kick off the schedule if running, otherwise just see
   12164             :                  * if we can still preempt the current task.
   12165             :                  */
   12166           0 :                 if (task_current(rq, p))
   12167           0 :                         resched_curr(rq);
   12168             :                 else
   12169           0 :                         check_preempt_curr(rq, p, 0);
   12170             :         }
   12171           0 : }
   12172             : 
   12173             : /* Account for a task changing its policy or group.
   12174             :  *
   12175             :  * This routine is mostly called to set cfs_rq->curr field when a task
   12176             :  * migrates between groups/classes.
   12177             :  */
   12178           4 : static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
   12179             : {
   12180           4 :         struct sched_entity *se = &p->se;
   12181             : 
   12182             : #ifdef CONFIG_SMP
   12183             :         if (task_on_rq_queued(p)) {
   12184             :                 /*
   12185             :                  * Move the next running task to the front of the list, so our
   12186             :                  * cfs_tasks list becomes MRU one.
   12187             :                  */
   12188             :                 list_move(&se->group_node, &rq->cfs_tasks);
   12189             :         }
   12190             : #endif
   12191             : 
   12192           8 :         for_each_sched_entity(se) {
   12193           8 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12194             : 
   12195           4 :                 set_next_entity(cfs_rq, se);
   12196             :                 /* ensure bandwidth has been allocated on our new cfs_rq */
   12197           4 :                 account_cfs_rq_runtime(cfs_rq, 0);
   12198             :         }
   12199           4 : }
   12200             : 
   12201           1 : void init_cfs_rq(struct cfs_rq *cfs_rq)
   12202             : {
   12203           1 :         cfs_rq->tasks_timeline = RB_ROOT_CACHED;
   12204           1 :         u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
   12205             : #ifdef CONFIG_SMP
   12206             :         raw_spin_lock_init(&cfs_rq->removed.lock);
   12207             : #endif
   12208           1 : }
   12209             : 
   12210             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12211             : static void task_change_group_fair(struct task_struct *p)
   12212             : {
   12213             :         /*
   12214             :          * We couldn't detach or attach a forked task which
   12215             :          * hasn't been woken up by wake_up_new_task().
   12216             :          */
   12217             :         if (READ_ONCE(p->__state) == TASK_NEW)
   12218             :                 return;
   12219             : 
   12220             :         detach_task_cfs_rq(p);
   12221             : 
   12222             : #ifdef CONFIG_SMP
   12223             :         /* Tell se's cfs_rq has been changed -- migrated */
   12224             :         p->se.avg.last_update_time = 0;
   12225             : #endif
   12226             :         set_task_rq(p, task_cpu(p));
   12227             :         attach_task_cfs_rq(p);
   12228             : }
   12229             : 
   12230             : void free_fair_sched_group(struct task_group *tg)
   12231             : {
   12232             :         int i;
   12233             : 
   12234             :         for_each_possible_cpu(i) {
   12235             :                 if (tg->cfs_rq)
   12236             :                         kfree(tg->cfs_rq[i]);
   12237             :                 if (tg->se)
   12238             :                         kfree(tg->se[i]);
   12239             :         }
   12240             : 
   12241             :         kfree(tg->cfs_rq);
   12242             :         kfree(tg->se);
   12243             : }
   12244             : 
   12245             : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   12246             : {
   12247             :         struct sched_entity *se;
   12248             :         struct cfs_rq *cfs_rq;
   12249             :         int i;
   12250             : 
   12251             :         tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
   12252             :         if (!tg->cfs_rq)
   12253             :                 goto err;
   12254             :         tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
   12255             :         if (!tg->se)
   12256             :                 goto err;
   12257             : 
   12258             :         tg->shares = NICE_0_LOAD;
   12259             : 
   12260             :         init_cfs_bandwidth(tg_cfs_bandwidth(tg));
   12261             : 
   12262             :         for_each_possible_cpu(i) {
   12263             :                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
   12264             :                                       GFP_KERNEL, cpu_to_node(i));
   12265             :                 if (!cfs_rq)
   12266             :                         goto err;
   12267             : 
   12268             :                 se = kzalloc_node(sizeof(struct sched_entity_stats),
   12269             :                                   GFP_KERNEL, cpu_to_node(i));
   12270             :                 if (!se)
   12271             :                         goto err_free_rq;
   12272             : 
   12273             :                 init_cfs_rq(cfs_rq);
   12274             :                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
   12275             :                 init_entity_runnable_average(se);
   12276             :         }
   12277             : 
   12278             :         return 1;
   12279             : 
   12280             : err_free_rq:
   12281             :         kfree(cfs_rq);
   12282             : err:
   12283             :         return 0;
   12284             : }
   12285             : 
   12286             : void online_fair_sched_group(struct task_group *tg)
   12287             : {
   12288             :         struct sched_entity *se;
   12289             :         struct rq_flags rf;
   12290             :         struct rq *rq;
   12291             :         int i;
   12292             : 
   12293             :         for_each_possible_cpu(i) {
   12294             :                 rq = cpu_rq(i);
   12295             :                 se = tg->se[i];
   12296             :                 rq_lock_irq(rq, &rf);
   12297             :                 update_rq_clock(rq);
   12298             :                 attach_entity_cfs_rq(se);
   12299             :                 sync_throttle(tg, i);
   12300             :                 rq_unlock_irq(rq, &rf);
   12301             :         }
   12302             : }
   12303             : 
   12304             : void unregister_fair_sched_group(struct task_group *tg)
   12305             : {
   12306             :         unsigned long flags;
   12307             :         struct rq *rq;
   12308             :         int cpu;
   12309             : 
   12310             :         destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
   12311             : 
   12312             :         for_each_possible_cpu(cpu) {
   12313             :                 if (tg->se[cpu])
   12314             :                         remove_entity_load_avg(tg->se[cpu]);
   12315             : 
   12316             :                 /*
   12317             :                  * Only empty task groups can be destroyed; so we can speculatively
   12318             :                  * check on_list without danger of it being re-added.
   12319             :                  */
   12320             :                 if (!tg->cfs_rq[cpu]->on_list)
   12321             :                         continue;
   12322             : 
   12323             :                 rq = cpu_rq(cpu);
   12324             : 
   12325             :                 raw_spin_rq_lock_irqsave(rq, flags);
   12326             :                 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
   12327             :                 raw_spin_rq_unlock_irqrestore(rq, flags);
   12328             :         }
   12329             : }
   12330             : 
   12331             : void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
   12332             :                         struct sched_entity *se, int cpu,
   12333             :                         struct sched_entity *parent)
   12334             : {
   12335             :         struct rq *rq = cpu_rq(cpu);
   12336             : 
   12337             :         cfs_rq->tg = tg;
   12338             :         cfs_rq->rq = rq;
   12339             :         init_cfs_rq_runtime(cfs_rq);
   12340             : 
   12341             :         tg->cfs_rq[cpu] = cfs_rq;
   12342             :         tg->se[cpu] = se;
   12343             : 
   12344             :         /* se could be NULL for root_task_group */
   12345             :         if (!se)
   12346             :                 return;
   12347             : 
   12348             :         if (!parent) {
   12349             :                 se->cfs_rq = &rq->cfs;
   12350             :                 se->depth = 0;
   12351             :         } else {
   12352             :                 se->cfs_rq = parent->my_q;
   12353             :                 se->depth = parent->depth + 1;
   12354             :         }
   12355             : 
   12356             :         se->my_q = cfs_rq;
   12357             :         /* guarantee group entities always have weight */
   12358             :         update_load_set(&se->load, NICE_0_LOAD);
   12359             :         se->parent = parent;
   12360             : }
   12361             : 
   12362             : static DEFINE_MUTEX(shares_mutex);
   12363             : 
   12364             : static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
   12365             : {
   12366             :         int i;
   12367             : 
   12368             :         lockdep_assert_held(&shares_mutex);
   12369             : 
   12370             :         /*
   12371             :          * We can't change the weight of the root cgroup.
   12372             :          */
   12373             :         if (!tg->se[0])
   12374             :                 return -EINVAL;
   12375             : 
   12376             :         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
   12377             : 
   12378             :         if (tg->shares == shares)
   12379             :                 return 0;
   12380             : 
   12381             :         tg->shares = shares;
   12382             :         for_each_possible_cpu(i) {
   12383             :                 struct rq *rq = cpu_rq(i);
   12384             :                 struct sched_entity *se = tg->se[i];
   12385             :                 struct rq_flags rf;
   12386             : 
   12387             :                 /* Propagate contribution to hierarchy */
   12388             :                 rq_lock_irqsave(rq, &rf);
   12389             :                 update_rq_clock(rq);
   12390             :                 for_each_sched_entity(se) {
   12391             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
   12392             :                         update_cfs_group(se);
   12393             :                 }
   12394             :                 rq_unlock_irqrestore(rq, &rf);
   12395             :         }
   12396             : 
   12397             :         return 0;
   12398             : }
   12399             : 
   12400             : int sched_group_set_shares(struct task_group *tg, unsigned long shares)
   12401             : {
   12402             :         int ret;
   12403             : 
   12404             :         mutex_lock(&shares_mutex);
   12405             :         if (tg_is_idle(tg))
   12406             :                 ret = -EINVAL;
   12407             :         else
   12408             :                 ret = __sched_group_set_shares(tg, shares);
   12409             :         mutex_unlock(&shares_mutex);
   12410             : 
   12411             :         return ret;
   12412             : }
   12413             : 
   12414             : int sched_group_set_idle(struct task_group *tg, long idle)
   12415             : {
   12416             :         int i;
   12417             : 
   12418             :         if (tg == &root_task_group)
   12419             :                 return -EINVAL;
   12420             : 
   12421             :         if (idle < 0 || idle > 1)
   12422             :                 return -EINVAL;
   12423             : 
   12424             :         mutex_lock(&shares_mutex);
   12425             : 
   12426             :         if (tg->idle == idle) {
   12427             :                 mutex_unlock(&shares_mutex);
   12428             :                 return 0;
   12429             :         }
   12430             : 
   12431             :         tg->idle = idle;
   12432             : 
   12433             :         for_each_possible_cpu(i) {
   12434             :                 struct rq *rq = cpu_rq(i);
   12435             :                 struct sched_entity *se = tg->se[i];
   12436             :                 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
   12437             :                 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
   12438             :                 long idle_task_delta;
   12439             :                 struct rq_flags rf;
   12440             : 
   12441             :                 rq_lock_irqsave(rq, &rf);
   12442             : 
   12443             :                 grp_cfs_rq->idle = idle;
   12444             :                 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
   12445             :                         goto next_cpu;
   12446             : 
   12447             :                 if (se->on_rq) {
   12448             :                         parent_cfs_rq = cfs_rq_of(se);
   12449             :                         if (cfs_rq_is_idle(grp_cfs_rq))
   12450             :                                 parent_cfs_rq->idle_nr_running++;
   12451             :                         else
   12452             :                                 parent_cfs_rq->idle_nr_running--;
   12453             :                 }
   12454             : 
   12455             :                 idle_task_delta = grp_cfs_rq->h_nr_running -
   12456             :                                   grp_cfs_rq->idle_h_nr_running;
   12457             :                 if (!cfs_rq_is_idle(grp_cfs_rq))
   12458             :                         idle_task_delta *= -1;
   12459             : 
   12460             :                 for_each_sched_entity(se) {
   12461             :                         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12462             : 
   12463             :                         if (!se->on_rq)
   12464             :                                 break;
   12465             : 
   12466             :                         cfs_rq->idle_h_nr_running += idle_task_delta;
   12467             : 
   12468             :                         /* Already accounted at parent level and above. */
   12469             :                         if (cfs_rq_is_idle(cfs_rq))
   12470             :                                 break;
   12471             :                 }
   12472             : 
   12473             : next_cpu:
   12474             :                 rq_unlock_irqrestore(rq, &rf);
   12475             :         }
   12476             : 
   12477             :         /* Idle groups have minimum weight. */
   12478             :         if (tg_is_idle(tg))
   12479             :                 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
   12480             :         else
   12481             :                 __sched_group_set_shares(tg, NICE_0_LOAD);
   12482             : 
   12483             :         mutex_unlock(&shares_mutex);
   12484             :         return 0;
   12485             : }
   12486             : 
   12487             : #else /* CONFIG_FAIR_GROUP_SCHED */
   12488             : 
   12489           0 : void free_fair_sched_group(struct task_group *tg) { }
   12490             : 
   12491           0 : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   12492             : {
   12493           0 :         return 1;
   12494             : }
   12495             : 
   12496           0 : void online_fair_sched_group(struct task_group *tg) { }
   12497             : 
   12498           0 : void unregister_fair_sched_group(struct task_group *tg) { }
   12499             : 
   12500             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   12501             : 
   12502             : 
   12503           0 : static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
   12504             : {
   12505           0 :         struct sched_entity *se = &task->se;
   12506           0 :         unsigned int rr_interval = 0;
   12507             : 
   12508             :         /*
   12509             :          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
   12510             :          * idle runqueue:
   12511             :          */
   12512           0 :         if (rq->cfs.load.weight)
   12513           0 :                 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
   12514             : 
   12515           0 :         return rr_interval;
   12516             : }
   12517             : 
   12518             : /*
   12519             :  * All the scheduling class methods:
   12520             :  */
   12521             : DEFINE_SCHED_CLASS(fair) = {
   12522             : 
   12523             :         .enqueue_task           = enqueue_task_fair,
   12524             :         .dequeue_task           = dequeue_task_fair,
   12525             :         .yield_task             = yield_task_fair,
   12526             :         .yield_to_task          = yield_to_task_fair,
   12527             : 
   12528             :         .check_preempt_curr     = check_preempt_wakeup,
   12529             : 
   12530             :         .pick_next_task         = __pick_next_task_fair,
   12531             :         .put_prev_task          = put_prev_task_fair,
   12532             :         .set_next_task          = set_next_task_fair,
   12533             : 
   12534             : #ifdef CONFIG_SMP
   12535             :         .balance                = balance_fair,
   12536             :         .pick_task              = pick_task_fair,
   12537             :         .select_task_rq         = select_task_rq_fair,
   12538             :         .migrate_task_rq        = migrate_task_rq_fair,
   12539             : 
   12540             :         .rq_online              = rq_online_fair,
   12541             :         .rq_offline             = rq_offline_fair,
   12542             : 
   12543             :         .task_dead              = task_dead_fair,
   12544             :         .set_cpus_allowed       = set_cpus_allowed_common,
   12545             : #endif
   12546             : 
   12547             :         .task_tick              = task_tick_fair,
   12548             :         .task_fork              = task_fork_fair,
   12549             : 
   12550             :         .prio_changed           = prio_changed_fair,
   12551             :         .switched_from          = switched_from_fair,
   12552             :         .switched_to            = switched_to_fair,
   12553             : 
   12554             :         .get_rr_interval        = get_rr_interval_fair,
   12555             : 
   12556             :         .update_curr            = update_curr_fair,
   12557             : 
   12558             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12559             :         .task_change_group      = task_change_group_fair,
   12560             : #endif
   12561             : 
   12562             : #ifdef CONFIG_UCLAMP_TASK
   12563             :         .uclamp_enabled         = 1,
   12564             : #endif
   12565             : };
   12566             : 
   12567             : #ifdef CONFIG_SCHED_DEBUG
   12568           0 : void print_cfs_stats(struct seq_file *m, int cpu)
   12569             : {
   12570             :         struct cfs_rq *cfs_rq, *pos;
   12571             : 
   12572             :         rcu_read_lock();
   12573           0 :         for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
   12574           0 :                 print_cfs_rq(m, cpu, cfs_rq);
   12575             :         rcu_read_unlock();
   12576           0 : }
   12577             : 
   12578             : #ifdef CONFIG_NUMA_BALANCING
   12579             : void show_numa_stats(struct task_struct *p, struct seq_file *m)
   12580             : {
   12581             :         int node;
   12582             :         unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
   12583             :         struct numa_group *ng;
   12584             : 
   12585             :         rcu_read_lock();
   12586             :         ng = rcu_dereference(p->numa_group);
   12587             :         for_each_online_node(node) {
   12588             :                 if (p->numa_faults) {
   12589             :                         tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
   12590             :                         tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
   12591             :                 }
   12592             :                 if (ng) {
   12593             :                         gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
   12594             :                         gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
   12595             :                 }
   12596             :                 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
   12597             :         }
   12598             :         rcu_read_unlock();
   12599             : }
   12600             : #endif /* CONFIG_NUMA_BALANCING */
   12601             : #endif /* CONFIG_SCHED_DEBUG */
   12602             : 
   12603           1 : __init void init_sched_fair_class(void)
   12604             : {
   12605             : #ifdef CONFIG_SMP
   12606             :         int i;
   12607             : 
   12608             :         for_each_possible_cpu(i) {
   12609             :                 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
   12610             :                 zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
   12611             : 
   12612             : #ifdef CONFIG_CFS_BANDWIDTH
   12613             :                 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
   12614             :                 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
   12615             : #endif
   12616             :         }
   12617             : 
   12618             :         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
   12619             : 
   12620             : #ifdef CONFIG_NO_HZ_COMMON
   12621             :         nohz.next_balance = jiffies;
   12622             :         nohz.next_blocked = jiffies;
   12623             :         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
   12624             : #endif
   12625             : #endif /* SMP */
   12626             : 
   12627           1 : }

Generated by: LCOV version 1.14