LCOV - code coverage report
Current view: top level - kernel/sched - loadavg.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 21 41 51.2 %
Date: 2023-03-27 20:00:47 Functions: 2 5 40.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * kernel/sched/loadavg.c
       4             :  *
       5             :  * This file contains the magic bits required to compute the global loadavg
       6             :  * figure. Its a silly number but people think its important. We go through
       7             :  * great pains to make it work on big machines and tickless kernels.
       8             :  */
       9             : 
      10             : /*
      11             :  * Global load-average calculations
      12             :  *
      13             :  * We take a distributed and async approach to calculating the global load-avg
      14             :  * in order to minimize overhead.
      15             :  *
      16             :  * The global load average is an exponentially decaying average of nr_running +
      17             :  * nr_uninterruptible.
      18             :  *
      19             :  * Once every LOAD_FREQ:
      20             :  *
      21             :  *   nr_active = 0;
      22             :  *   for_each_possible_cpu(cpu)
      23             :  *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
      24             :  *
      25             :  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
      26             :  *
      27             :  * Due to a number of reasons the above turns in the mess below:
      28             :  *
      29             :  *  - for_each_possible_cpu() is prohibitively expensive on machines with
      30             :  *    serious number of CPUs, therefore we need to take a distributed approach
      31             :  *    to calculating nr_active.
      32             :  *
      33             :  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
      34             :  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
      35             :  *
      36             :  *    So assuming nr_active := 0 when we start out -- true per definition, we
      37             :  *    can simply take per-CPU deltas and fold those into a global accumulate
      38             :  *    to obtain the same result. See calc_load_fold_active().
      39             :  *
      40             :  *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
      41             :  *    across the machine, we assume 10 ticks is sufficient time for every
      42             :  *    CPU to have completed this task.
      43             :  *
      44             :  *    This places an upper-bound on the IRQ-off latency of the machine. Then
      45             :  *    again, being late doesn't loose the delta, just wrecks the sample.
      46             :  *
      47             :  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
      48             :  *    this would add another cross-CPU cacheline miss and atomic operation
      49             :  *    to the wakeup path. Instead we increment on whatever CPU the task ran
      50             :  *    when it went into uninterruptible state and decrement on whatever CPU
      51             :  *    did the wakeup. This means that only the sum of nr_uninterruptible over
      52             :  *    all CPUs yields the correct result.
      53             :  *
      54             :  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
      55             :  */
      56             : 
      57             : /* Variables and functions for calc_load */
      58             : atomic_long_t calc_load_tasks;
      59             : unsigned long calc_load_update;
      60             : unsigned long avenrun[3];
      61             : EXPORT_SYMBOL(avenrun); /* should be removed */
      62             : 
      63             : /**
      64             :  * get_avenrun - get the load average array
      65             :  * @loads:      pointer to dest load array
      66             :  * @offset:     offset to add
      67             :  * @shift:      shift count to shift the result left
      68             :  *
      69             :  * These values are estimates at best, so no need for locking.
      70             :  */
      71           0 : void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
      72             : {
      73           0 :         loads[0] = (avenrun[0] + offset) << shift;
      74           0 :         loads[1] = (avenrun[1] + offset) << shift;
      75           0 :         loads[2] = (avenrun[2] + offset) << shift;
      76           0 : }
      77             : 
      78           0 : long calc_load_fold_active(struct rq *this_rq, long adjust)
      79             : {
      80           5 :         long nr_active, delta = 0;
      81             : 
      82           5 :         nr_active = this_rq->nr_running - adjust;
      83           5 :         nr_active += (int)this_rq->nr_uninterruptible;
      84             : 
      85           5 :         if (nr_active != this_rq->calc_load_active) {
      86           2 :                 delta = nr_active - this_rq->calc_load_active;
      87           2 :                 this_rq->calc_load_active = nr_active;
      88             :         }
      89             : 
      90           0 :         return delta;
      91             : }
      92             : 
      93             : /**
      94             :  * fixed_power_int - compute: x^n, in O(log n) time
      95             :  *
      96             :  * @x:         base of the power
      97             :  * @frac_bits: fractional bits of @x
      98             :  * @n:         power to raise @x to.
      99             :  *
     100             :  * By exploiting the relation between the definition of the natural power
     101             :  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
     102             :  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
     103             :  * (where: n_i \elem {0, 1}, the binary vector representing n),
     104             :  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
     105             :  * of course trivially computable in O(log_2 n), the length of our binary
     106             :  * vector.
     107             :  */
     108             : static unsigned long
     109             : fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
     110             : {
     111           0 :         unsigned long result = 1UL << frac_bits;
     112             : 
     113           0 :         if (n) {
     114             :                 for (;;) {
     115           0 :                         if (n & 1) {
     116           0 :                                 result *= x;
     117           0 :                                 result += 1UL << (frac_bits - 1);
     118           0 :                                 result >>= frac_bits;
     119             :                         }
     120           0 :                         n >>= 1;
     121           0 :                         if (!n)
     122             :                                 break;
     123           0 :                         x *= x;
     124           0 :                         x += 1UL << (frac_bits - 1);
     125           0 :                         x >>= frac_bits;
     126             :                 }
     127             :         }
     128             : 
     129             :         return result;
     130             : }
     131             : 
     132             : /*
     133             :  * a1 = a0 * e + a * (1 - e)
     134             :  *
     135             :  * a2 = a1 * e + a * (1 - e)
     136             :  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
     137             :  *    = a0 * e^2 + a * (1 - e) * (1 + e)
     138             :  *
     139             :  * a3 = a2 * e + a * (1 - e)
     140             :  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
     141             :  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
     142             :  *
     143             :  *  ...
     144             :  *
     145             :  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
     146             :  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
     147             :  *    = a0 * e^n + a * (1 - e^n)
     148             :  *
     149             :  * [1] application of the geometric series:
     150             :  *
     151             :  *              n         1 - x^(n+1)
     152             :  *     S_n := \Sum x^i = -------------
     153             :  *             i=0          1 - x
     154             :  */
     155             : unsigned long
     156           0 : calc_load_n(unsigned long load, unsigned long exp,
     157             :             unsigned long active, unsigned int n)
     158             : {
     159           0 :         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
     160             : }
     161             : 
     162             : #ifdef CONFIG_NO_HZ_COMMON
     163             : /*
     164             :  * Handle NO_HZ for the global load-average.
     165             :  *
     166             :  * Since the above described distributed algorithm to compute the global
     167             :  * load-average relies on per-CPU sampling from the tick, it is affected by
     168             :  * NO_HZ.
     169             :  *
     170             :  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
     171             :  * entering NO_HZ state such that we can include this as an 'extra' CPU delta
     172             :  * when we read the global state.
     173             :  *
     174             :  * Obviously reality has to ruin such a delightfully simple scheme:
     175             :  *
     176             :  *  - When we go NO_HZ idle during the window, we can negate our sample
     177             :  *    contribution, causing under-accounting.
     178             :  *
     179             :  *    We avoid this by keeping two NO_HZ-delta counters and flipping them
     180             :  *    when the window starts, thus separating old and new NO_HZ load.
     181             :  *
     182             :  *    The only trick is the slight shift in index flip for read vs write.
     183             :  *
     184             :  *        0s            5s            10s           15s
     185             :  *          +10           +10           +10           +10
     186             :  *        |-|-----------|-|-----------|-|-----------|-|
     187             :  *    r:0 0 1           1 0           0 1           1 0
     188             :  *    w:0 1 1           0 0           1 1           0 0
     189             :  *
     190             :  *    This ensures we'll fold the old NO_HZ contribution in this window while
     191             :  *    accumulating the new one.
     192             :  *
     193             :  *  - When we wake up from NO_HZ during the window, we push up our
     194             :  *    contribution, since we effectively move our sample point to a known
     195             :  *    busy state.
     196             :  *
     197             :  *    This is solved by pushing the window forward, and thus skipping the
     198             :  *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
     199             :  *    was in effect at the time the window opened). This also solves the issue
     200             :  *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
     201             :  *    intervals.
     202             :  *
     203             :  * When making the ILB scale, we should try to pull this in as well.
     204             :  */
     205             : static atomic_long_t calc_load_nohz[2];
     206             : static int calc_load_idx;
     207             : 
     208             : static inline int calc_load_write_idx(void)
     209             : {
     210             :         int idx = calc_load_idx;
     211             : 
     212             :         /*
     213             :          * See calc_global_nohz(), if we observe the new index, we also
     214             :          * need to observe the new update time.
     215             :          */
     216             :         smp_rmb();
     217             : 
     218             :         /*
     219             :          * If the folding window started, make sure we start writing in the
     220             :          * next NO_HZ-delta.
     221             :          */
     222             :         if (!time_before(jiffies, READ_ONCE(calc_load_update)))
     223             :                 idx++;
     224             : 
     225             :         return idx & 1;
     226             : }
     227             : 
     228             : static inline int calc_load_read_idx(void)
     229             : {
     230             :         return calc_load_idx & 1;
     231             : }
     232             : 
     233             : static void calc_load_nohz_fold(struct rq *rq)
     234             : {
     235             :         long delta;
     236             : 
     237             :         delta = calc_load_fold_active(rq, 0);
     238             :         if (delta) {
     239             :                 int idx = calc_load_write_idx();
     240             : 
     241             :                 atomic_long_add(delta, &calc_load_nohz[idx]);
     242             :         }
     243             : }
     244             : 
     245             : void calc_load_nohz_start(void)
     246             : {
     247             :         /*
     248             :          * We're going into NO_HZ mode, if there's any pending delta, fold it
     249             :          * into the pending NO_HZ delta.
     250             :          */
     251             :         calc_load_nohz_fold(this_rq());
     252             : }
     253             : 
     254             : /*
     255             :  * Keep track of the load for NOHZ_FULL, must be called between
     256             :  * calc_load_nohz_{start,stop}().
     257             :  */
     258             : void calc_load_nohz_remote(struct rq *rq)
     259             : {
     260             :         calc_load_nohz_fold(rq);
     261             : }
     262             : 
     263             : void calc_load_nohz_stop(void)
     264             : {
     265             :         struct rq *this_rq = this_rq();
     266             : 
     267             :         /*
     268             :          * If we're still before the pending sample window, we're done.
     269             :          */
     270             :         this_rq->calc_load_update = READ_ONCE(calc_load_update);
     271             :         if (time_before(jiffies, this_rq->calc_load_update))
     272             :                 return;
     273             : 
     274             :         /*
     275             :          * We woke inside or after the sample window, this means we're already
     276             :          * accounted through the nohz accounting, so skip the entire deal and
     277             :          * sync up for the next window.
     278             :          */
     279             :         if (time_before(jiffies, this_rq->calc_load_update + 10))
     280             :                 this_rq->calc_load_update += LOAD_FREQ;
     281             : }
     282             : 
     283             : static long calc_load_nohz_read(void)
     284             : {
     285             :         int idx = calc_load_read_idx();
     286             :         long delta = 0;
     287             : 
     288             :         if (atomic_long_read(&calc_load_nohz[idx]))
     289             :                 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
     290             : 
     291             :         return delta;
     292             : }
     293             : 
     294             : /*
     295             :  * NO_HZ can leave us missing all per-CPU ticks calling
     296             :  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
     297             :  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
     298             :  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
     299             :  *
     300             :  * Once we've updated the global active value, we need to apply the exponential
     301             :  * weights adjusted to the number of cycles missed.
     302             :  */
     303             : static void calc_global_nohz(void)
     304             : {
     305             :         unsigned long sample_window;
     306             :         long delta, active, n;
     307             : 
     308             :         sample_window = READ_ONCE(calc_load_update);
     309             :         if (!time_before(jiffies, sample_window + 10)) {
     310             :                 /*
     311             :                  * Catch-up, fold however many we are behind still
     312             :                  */
     313             :                 delta = jiffies - sample_window - 10;
     314             :                 n = 1 + (delta / LOAD_FREQ);
     315             : 
     316             :                 active = atomic_long_read(&calc_load_tasks);
     317             :                 active = active > 0 ? active * FIXED_1 : 0;
     318             : 
     319             :                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
     320             :                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
     321             :                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
     322             : 
     323             :                 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
     324             :         }
     325             : 
     326             :         /*
     327             :          * Flip the NO_HZ index...
     328             :          *
     329             :          * Make sure we first write the new time then flip the index, so that
     330             :          * calc_load_write_idx() will see the new time when it reads the new
     331             :          * index, this avoids a double flip messing things up.
     332             :          */
     333             :         smp_wmb();
     334             :         calc_load_idx++;
     335             : }
     336             : #else /* !CONFIG_NO_HZ_COMMON */
     337             : 
     338             : static inline long calc_load_nohz_read(void) { return 0; }
     339             : static inline void calc_global_nohz(void) { }
     340             : 
     341             : #endif /* CONFIG_NO_HZ_COMMON */
     342             : 
     343             : /*
     344             :  * calc_load - update the avenrun load estimates 10 ticks after the
     345             :  * CPUs have updated calc_load_tasks.
     346             :  *
     347             :  * Called from the global timer code.
     348             :  */
     349        2723 : void calc_global_load(void)
     350             : {
     351             :         unsigned long sample_window;
     352             :         long active, delta;
     353             : 
     354        2723 :         sample_window = READ_ONCE(calc_load_update);
     355        2723 :         if (time_before(jiffies, sample_window + 10))
     356             :                 return;
     357             : 
     358             :         /*
     359             :          * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
     360             :          */
     361           5 :         delta = calc_load_nohz_read();
     362             :         if (delta)
     363             :                 atomic_long_add(delta, &calc_load_tasks);
     364             : 
     365           5 :         active = atomic_long_read(&calc_load_tasks);
     366           5 :         active = active > 0 ? active * FIXED_1 : 0;
     367             : 
     368          10 :         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
     369          10 :         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
     370          10 :         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
     371             : 
     372           5 :         WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
     373             : 
     374             :         /*
     375             :          * In case we went to NO_HZ for multiple LOAD_FREQ intervals
     376             :          * catch up in bulk.
     377             :          */
     378             :         calc_global_nohz();
     379             : }
     380             : 
     381             : /*
     382             :  * Called from scheduler_tick() to periodically update this CPU's
     383             :  * active count.
     384             :  */
     385        2723 : void calc_global_load_tick(struct rq *this_rq)
     386             : {
     387             :         long delta;
     388             : 
     389        2723 :         if (time_before(jiffies, this_rq->calc_load_update))
     390             :                 return;
     391             : 
     392           5 :         delta  = calc_load_fold_active(this_rq, 0);
     393           5 :         if (delta)
     394             :                 atomic_long_add(delta, &calc_load_tasks);
     395             : 
     396           5 :         this_rq->calc_load_update += LOAD_FREQ;
     397             : }

Generated by: LCOV version 1.14