Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/kernel/sys.c
4 : *
5 : * Copyright (C) 1991, 1992 Linus Torvalds
6 : */
7 :
8 : #include <linux/export.h>
9 : #include <linux/mm.h>
10 : #include <linux/mm_inline.h>
11 : #include <linux/utsname.h>
12 : #include <linux/mman.h>
13 : #include <linux/reboot.h>
14 : #include <linux/prctl.h>
15 : #include <linux/highuid.h>
16 : #include <linux/fs.h>
17 : #include <linux/kmod.h>
18 : #include <linux/perf_event.h>
19 : #include <linux/resource.h>
20 : #include <linux/kernel.h>
21 : #include <linux/workqueue.h>
22 : #include <linux/capability.h>
23 : #include <linux/device.h>
24 : #include <linux/key.h>
25 : #include <linux/times.h>
26 : #include <linux/posix-timers.h>
27 : #include <linux/security.h>
28 : #include <linux/random.h>
29 : #include <linux/suspend.h>
30 : #include <linux/tty.h>
31 : #include <linux/signal.h>
32 : #include <linux/cn_proc.h>
33 : #include <linux/getcpu.h>
34 : #include <linux/task_io_accounting_ops.h>
35 : #include <linux/seccomp.h>
36 : #include <linux/cpu.h>
37 : #include <linux/personality.h>
38 : #include <linux/ptrace.h>
39 : #include <linux/fs_struct.h>
40 : #include <linux/file.h>
41 : #include <linux/mount.h>
42 : #include <linux/gfp.h>
43 : #include <linux/syscore_ops.h>
44 : #include <linux/version.h>
45 : #include <linux/ctype.h>
46 : #include <linux/syscall_user_dispatch.h>
47 :
48 : #include <linux/compat.h>
49 : #include <linux/syscalls.h>
50 : #include <linux/kprobes.h>
51 : #include <linux/user_namespace.h>
52 : #include <linux/time_namespace.h>
53 : #include <linux/binfmts.h>
54 :
55 : #include <linux/sched.h>
56 : #include <linux/sched/autogroup.h>
57 : #include <linux/sched/loadavg.h>
58 : #include <linux/sched/stat.h>
59 : #include <linux/sched/mm.h>
60 : #include <linux/sched/coredump.h>
61 : #include <linux/sched/task.h>
62 : #include <linux/sched/cputime.h>
63 : #include <linux/rcupdate.h>
64 : #include <linux/uidgid.h>
65 : #include <linux/cred.h>
66 :
67 : #include <linux/nospec.h>
68 :
69 : #include <linux/kmsg_dump.h>
70 : /* Move somewhere else to avoid recompiling? */
71 : #include <generated/utsrelease.h>
72 :
73 : #include <linux/uaccess.h>
74 : #include <asm/io.h>
75 : #include <asm/unistd.h>
76 :
77 : #include "uid16.h"
78 :
79 : #ifndef SET_UNALIGN_CTL
80 : # define SET_UNALIGN_CTL(a, b) (-EINVAL)
81 : #endif
82 : #ifndef GET_UNALIGN_CTL
83 : # define GET_UNALIGN_CTL(a, b) (-EINVAL)
84 : #endif
85 : #ifndef SET_FPEMU_CTL
86 : # define SET_FPEMU_CTL(a, b) (-EINVAL)
87 : #endif
88 : #ifndef GET_FPEMU_CTL
89 : # define GET_FPEMU_CTL(a, b) (-EINVAL)
90 : #endif
91 : #ifndef SET_FPEXC_CTL
92 : # define SET_FPEXC_CTL(a, b) (-EINVAL)
93 : #endif
94 : #ifndef GET_FPEXC_CTL
95 : # define GET_FPEXC_CTL(a, b) (-EINVAL)
96 : #endif
97 : #ifndef GET_ENDIAN
98 : # define GET_ENDIAN(a, b) (-EINVAL)
99 : #endif
100 : #ifndef SET_ENDIAN
101 : # define SET_ENDIAN(a, b) (-EINVAL)
102 : #endif
103 : #ifndef GET_TSC_CTL
104 : # define GET_TSC_CTL(a) (-EINVAL)
105 : #endif
106 : #ifndef SET_TSC_CTL
107 : # define SET_TSC_CTL(a) (-EINVAL)
108 : #endif
109 : #ifndef GET_FP_MODE
110 : # define GET_FP_MODE(a) (-EINVAL)
111 : #endif
112 : #ifndef SET_FP_MODE
113 : # define SET_FP_MODE(a,b) (-EINVAL)
114 : #endif
115 : #ifndef SVE_SET_VL
116 : # define SVE_SET_VL(a) (-EINVAL)
117 : #endif
118 : #ifndef SVE_GET_VL
119 : # define SVE_GET_VL() (-EINVAL)
120 : #endif
121 : #ifndef SME_SET_VL
122 : # define SME_SET_VL(a) (-EINVAL)
123 : #endif
124 : #ifndef SME_GET_VL
125 : # define SME_GET_VL() (-EINVAL)
126 : #endif
127 : #ifndef PAC_RESET_KEYS
128 : # define PAC_RESET_KEYS(a, b) (-EINVAL)
129 : #endif
130 : #ifndef PAC_SET_ENABLED_KEYS
131 : # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
132 : #endif
133 : #ifndef PAC_GET_ENABLED_KEYS
134 : # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
135 : #endif
136 : #ifndef SET_TAGGED_ADDR_CTRL
137 : # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
138 : #endif
139 : #ifndef GET_TAGGED_ADDR_CTRL
140 : # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
141 : #endif
142 :
143 : /*
144 : * this is where the system-wide overflow UID and GID are defined, for
145 : * architectures that now have 32-bit UID/GID but didn't in the past
146 : */
147 :
148 : int overflowuid = DEFAULT_OVERFLOWUID;
149 : int overflowgid = DEFAULT_OVERFLOWGID;
150 :
151 : EXPORT_SYMBOL(overflowuid);
152 : EXPORT_SYMBOL(overflowgid);
153 :
154 : /*
155 : * the same as above, but for filesystems which can only store a 16-bit
156 : * UID and GID. as such, this is needed on all architectures
157 : */
158 :
159 : int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
160 : int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
161 :
162 : EXPORT_SYMBOL(fs_overflowuid);
163 : EXPORT_SYMBOL(fs_overflowgid);
164 :
165 : /*
166 : * Returns true if current's euid is same as p's uid or euid,
167 : * or has CAP_SYS_NICE to p's user_ns.
168 : *
169 : * Called with rcu_read_lock, creds are safe
170 : */
171 0 : static bool set_one_prio_perm(struct task_struct *p)
172 : {
173 0 : const struct cred *cred = current_cred(), *pcred = __task_cred(p);
174 :
175 0 : if (uid_eq(pcred->uid, cred->euid) ||
176 0 : uid_eq(pcred->euid, cred->euid))
177 : return true;
178 0 : if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
179 : return true;
180 0 : return false;
181 : }
182 :
183 : /*
184 : * set the priority of a task
185 : * - the caller must hold the RCU read lock
186 : */
187 0 : static int set_one_prio(struct task_struct *p, int niceval, int error)
188 : {
189 : int no_nice;
190 :
191 0 : if (!set_one_prio_perm(p)) {
192 : error = -EPERM;
193 : goto out;
194 : }
195 0 : if (niceval < task_nice(p) && !can_nice(p, niceval)) {
196 : error = -EACCES;
197 : goto out;
198 : }
199 0 : no_nice = security_task_setnice(p, niceval);
200 0 : if (no_nice) {
201 : error = no_nice;
202 : goto out;
203 : }
204 0 : if (error == -ESRCH)
205 0 : error = 0;
206 0 : set_user_nice(p, niceval);
207 : out:
208 0 : return error;
209 : }
210 :
211 0 : SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
212 : {
213 : struct task_struct *g, *p;
214 : struct user_struct *user;
215 0 : const struct cred *cred = current_cred();
216 0 : int error = -EINVAL;
217 : struct pid *pgrp;
218 : kuid_t uid;
219 :
220 0 : if (which > PRIO_USER || which < PRIO_PROCESS)
221 : goto out;
222 :
223 : /* normalize: avoid signed division (rounding problems) */
224 0 : error = -ESRCH;
225 0 : if (niceval < MIN_NICE)
226 0 : niceval = MIN_NICE;
227 0 : if (niceval > MAX_NICE)
228 0 : niceval = MAX_NICE;
229 :
230 : rcu_read_lock();
231 0 : switch (which) {
232 : case PRIO_PROCESS:
233 0 : if (who)
234 0 : p = find_task_by_vpid(who);
235 : else
236 0 : p = current;
237 0 : if (p)
238 0 : error = set_one_prio(p, niceval, error);
239 : break;
240 : case PRIO_PGRP:
241 0 : if (who)
242 0 : pgrp = find_vpid(who);
243 : else
244 0 : pgrp = task_pgrp(current);
245 0 : read_lock(&tasklist_lock);
246 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 0 : error = set_one_prio(p, niceval, error);
248 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 0 : read_unlock(&tasklist_lock);
250 0 : break;
251 : case PRIO_USER:
252 0 : uid = make_kuid(cred->user_ns, who);
253 0 : user = cred->user;
254 0 : if (!who)
255 0 : uid = cred->uid;
256 0 : else if (!uid_eq(uid, cred->uid)) {
257 0 : user = find_user(uid);
258 0 : if (!user)
259 : goto out_unlock; /* No processes for this user */
260 : }
261 0 : for_each_process_thread(g, p) {
262 0 : if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
263 0 : error = set_one_prio(p, niceval, error);
264 : }
265 0 : if (!uid_eq(uid, cred->uid))
266 0 : free_uid(user); /* For find_user() */
267 : break;
268 : }
269 : out_unlock:
270 : rcu_read_unlock();
271 : out:
272 0 : return error;
273 : }
274 :
275 : /*
276 : * Ugh. To avoid negative return values, "getpriority()" will
277 : * not return the normal nice-value, but a negated value that
278 : * has been offset by 20 (ie it returns 40..1 instead of -20..19)
279 : * to stay compatible.
280 : */
281 0 : SYSCALL_DEFINE2(getpriority, int, which, int, who)
282 : {
283 : struct task_struct *g, *p;
284 : struct user_struct *user;
285 0 : const struct cred *cred = current_cred();
286 0 : long niceval, retval = -ESRCH;
287 : struct pid *pgrp;
288 : kuid_t uid;
289 :
290 0 : if (which > PRIO_USER || which < PRIO_PROCESS)
291 : return -EINVAL;
292 :
293 : rcu_read_lock();
294 0 : switch (which) {
295 : case PRIO_PROCESS:
296 0 : if (who)
297 0 : p = find_task_by_vpid(who);
298 : else
299 0 : p = current;
300 0 : if (p) {
301 0 : niceval = nice_to_rlimit(task_nice(p));
302 0 : if (niceval > retval)
303 0 : retval = niceval;
304 : }
305 : break;
306 : case PRIO_PGRP:
307 0 : if (who)
308 0 : pgrp = find_vpid(who);
309 : else
310 0 : pgrp = task_pgrp(current);
311 0 : read_lock(&tasklist_lock);
312 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
313 0 : niceval = nice_to_rlimit(task_nice(p));
314 0 : if (niceval > retval)
315 0 : retval = niceval;
316 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
317 0 : read_unlock(&tasklist_lock);
318 0 : break;
319 : case PRIO_USER:
320 0 : uid = make_kuid(cred->user_ns, who);
321 0 : user = cred->user;
322 0 : if (!who)
323 0 : uid = cred->uid;
324 0 : else if (!uid_eq(uid, cred->uid)) {
325 0 : user = find_user(uid);
326 0 : if (!user)
327 : goto out_unlock; /* No processes for this user */
328 : }
329 0 : for_each_process_thread(g, p) {
330 0 : if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
331 0 : niceval = nice_to_rlimit(task_nice(p));
332 0 : if (niceval > retval)
333 0 : retval = niceval;
334 : }
335 : }
336 0 : if (!uid_eq(uid, cred->uid))
337 0 : free_uid(user); /* for find_user() */
338 : break;
339 : }
340 : out_unlock:
341 : rcu_read_unlock();
342 :
343 0 : return retval;
344 : }
345 :
346 : /*
347 : * Unprivileged users may change the real gid to the effective gid
348 : * or vice versa. (BSD-style)
349 : *
350 : * If you set the real gid at all, or set the effective gid to a value not
351 : * equal to the real gid, then the saved gid is set to the new effective gid.
352 : *
353 : * This makes it possible for a setgid program to completely drop its
354 : * privileges, which is often a useful assertion to make when you are doing
355 : * a security audit over a program.
356 : *
357 : * The general idea is that a program which uses just setregid() will be
358 : * 100% compatible with BSD. A program which uses just setgid() will be
359 : * 100% compatible with POSIX with saved IDs.
360 : *
361 : * SMP: There are not races, the GIDs are checked only by filesystem
362 : * operations (as far as semantic preservation is concerned).
363 : */
364 : #ifdef CONFIG_MULTIUSER
365 0 : long __sys_setregid(gid_t rgid, gid_t egid)
366 : {
367 0 : struct user_namespace *ns = current_user_ns();
368 : const struct cred *old;
369 : struct cred *new;
370 : int retval;
371 : kgid_t krgid, kegid;
372 :
373 0 : krgid = make_kgid(ns, rgid);
374 0 : kegid = make_kgid(ns, egid);
375 :
376 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
377 : return -EINVAL;
378 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
379 : return -EINVAL;
380 :
381 0 : new = prepare_creds();
382 0 : if (!new)
383 : return -ENOMEM;
384 0 : old = current_cred();
385 :
386 0 : retval = -EPERM;
387 0 : if (rgid != (gid_t) -1) {
388 0 : if (gid_eq(old->gid, krgid) ||
389 0 : gid_eq(old->egid, krgid) ||
390 0 : ns_capable_setid(old->user_ns, CAP_SETGID))
391 0 : new->gid = krgid;
392 : else
393 : goto error;
394 : }
395 0 : if (egid != (gid_t) -1) {
396 0 : if (gid_eq(old->gid, kegid) ||
397 0 : gid_eq(old->egid, kegid) ||
398 0 : gid_eq(old->sgid, kegid) ||
399 0 : ns_capable_setid(old->user_ns, CAP_SETGID))
400 0 : new->egid = kegid;
401 : else
402 : goto error;
403 : }
404 :
405 0 : if (rgid != (gid_t) -1 ||
406 0 : (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
407 0 : new->sgid = new->egid;
408 0 : new->fsgid = new->egid;
409 :
410 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
411 : if (retval < 0)
412 : goto error;
413 :
414 0 : return commit_creds(new);
415 :
416 : error:
417 0 : abort_creds(new);
418 0 : return retval;
419 : }
420 :
421 0 : SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
422 : {
423 0 : return __sys_setregid(rgid, egid);
424 : }
425 :
426 : /*
427 : * setgid() is implemented like SysV w/ SAVED_IDS
428 : *
429 : * SMP: Same implicit races as above.
430 : */
431 0 : long __sys_setgid(gid_t gid)
432 : {
433 0 : struct user_namespace *ns = current_user_ns();
434 : const struct cred *old;
435 : struct cred *new;
436 : int retval;
437 : kgid_t kgid;
438 :
439 0 : kgid = make_kgid(ns, gid);
440 0 : if (!gid_valid(kgid))
441 : return -EINVAL;
442 :
443 0 : new = prepare_creds();
444 0 : if (!new)
445 : return -ENOMEM;
446 0 : old = current_cred();
447 :
448 0 : retval = -EPERM;
449 0 : if (ns_capable_setid(old->user_ns, CAP_SETGID))
450 0 : new->gid = new->egid = new->sgid = new->fsgid = kgid;
451 0 : else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
452 0 : new->egid = new->fsgid = kgid;
453 : else
454 : goto error;
455 :
456 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
457 : if (retval < 0)
458 : goto error;
459 :
460 0 : return commit_creds(new);
461 :
462 : error:
463 0 : abort_creds(new);
464 0 : return retval;
465 : }
466 :
467 0 : SYSCALL_DEFINE1(setgid, gid_t, gid)
468 : {
469 0 : return __sys_setgid(gid);
470 : }
471 :
472 : /*
473 : * change the user struct in a credentials set to match the new UID
474 : */
475 : static int set_user(struct cred *new)
476 : {
477 : struct user_struct *new_user;
478 :
479 0 : new_user = alloc_uid(new->uid);
480 0 : if (!new_user)
481 : return -EAGAIN;
482 :
483 0 : free_uid(new->user);
484 0 : new->user = new_user;
485 : return 0;
486 : }
487 :
488 0 : static void flag_nproc_exceeded(struct cred *new)
489 : {
490 0 : if (new->ucounts == current_ucounts())
491 : return;
492 :
493 : /*
494 : * We don't fail in case of NPROC limit excess here because too many
495 : * poorly written programs don't check set*uid() return code, assuming
496 : * it never fails if called by root. We may still enforce NPROC limit
497 : * for programs doing set*uid()+execve() by harmlessly deferring the
498 : * failure to the execve() stage.
499 : */
500 0 : if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
501 0 : new->user != INIT_USER)
502 0 : current->flags |= PF_NPROC_EXCEEDED;
503 : else
504 0 : current->flags &= ~PF_NPROC_EXCEEDED;
505 : }
506 :
507 : /*
508 : * Unprivileged users may change the real uid to the effective uid
509 : * or vice versa. (BSD-style)
510 : *
511 : * If you set the real uid at all, or set the effective uid to a value not
512 : * equal to the real uid, then the saved uid is set to the new effective uid.
513 : *
514 : * This makes it possible for a setuid program to completely drop its
515 : * privileges, which is often a useful assertion to make when you are doing
516 : * a security audit over a program.
517 : *
518 : * The general idea is that a program which uses just setreuid() will be
519 : * 100% compatible with BSD. A program which uses just setuid() will be
520 : * 100% compatible with POSIX with saved IDs.
521 : */
522 0 : long __sys_setreuid(uid_t ruid, uid_t euid)
523 : {
524 0 : struct user_namespace *ns = current_user_ns();
525 : const struct cred *old;
526 : struct cred *new;
527 : int retval;
528 : kuid_t kruid, keuid;
529 :
530 0 : kruid = make_kuid(ns, ruid);
531 0 : keuid = make_kuid(ns, euid);
532 :
533 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
534 : return -EINVAL;
535 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
536 : return -EINVAL;
537 :
538 0 : new = prepare_creds();
539 0 : if (!new)
540 : return -ENOMEM;
541 0 : old = current_cred();
542 :
543 0 : retval = -EPERM;
544 0 : if (ruid != (uid_t) -1) {
545 0 : new->uid = kruid;
546 0 : if (!uid_eq(old->uid, kruid) &&
547 0 : !uid_eq(old->euid, kruid) &&
548 0 : !ns_capable_setid(old->user_ns, CAP_SETUID))
549 : goto error;
550 : }
551 :
552 0 : if (euid != (uid_t) -1) {
553 0 : new->euid = keuid;
554 0 : if (!uid_eq(old->uid, keuid) &&
555 0 : !uid_eq(old->euid, keuid) &&
556 0 : !uid_eq(old->suid, keuid) &&
557 0 : !ns_capable_setid(old->user_ns, CAP_SETUID))
558 : goto error;
559 : }
560 :
561 0 : if (!uid_eq(new->uid, old->uid)) {
562 0 : retval = set_user(new);
563 0 : if (retval < 0)
564 : goto error;
565 : }
566 0 : if (ruid != (uid_t) -1 ||
567 0 : (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
568 0 : new->suid = new->euid;
569 0 : new->fsuid = new->euid;
570 :
571 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
572 0 : if (retval < 0)
573 : goto error;
574 :
575 0 : retval = set_cred_ucounts(new);
576 0 : if (retval < 0)
577 : goto error;
578 :
579 0 : flag_nproc_exceeded(new);
580 0 : return commit_creds(new);
581 :
582 : error:
583 0 : abort_creds(new);
584 0 : return retval;
585 : }
586 :
587 0 : SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
588 : {
589 0 : return __sys_setreuid(ruid, euid);
590 : }
591 :
592 : /*
593 : * setuid() is implemented like SysV with SAVED_IDS
594 : *
595 : * Note that SAVED_ID's is deficient in that a setuid root program
596 : * like sendmail, for example, cannot set its uid to be a normal
597 : * user and then switch back, because if you're root, setuid() sets
598 : * the saved uid too. If you don't like this, blame the bright people
599 : * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
600 : * will allow a root program to temporarily drop privileges and be able to
601 : * regain them by swapping the real and effective uid.
602 : */
603 0 : long __sys_setuid(uid_t uid)
604 : {
605 0 : struct user_namespace *ns = current_user_ns();
606 : const struct cred *old;
607 : struct cred *new;
608 : int retval;
609 : kuid_t kuid;
610 :
611 0 : kuid = make_kuid(ns, uid);
612 0 : if (!uid_valid(kuid))
613 : return -EINVAL;
614 :
615 0 : new = prepare_creds();
616 0 : if (!new)
617 : return -ENOMEM;
618 0 : old = current_cred();
619 :
620 0 : retval = -EPERM;
621 0 : if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
622 0 : new->suid = new->uid = kuid;
623 0 : if (!uid_eq(kuid, old->uid)) {
624 0 : retval = set_user(new);
625 0 : if (retval < 0)
626 : goto error;
627 : }
628 0 : } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
629 : goto error;
630 : }
631 :
632 0 : new->fsuid = new->euid = kuid;
633 :
634 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
635 0 : if (retval < 0)
636 : goto error;
637 :
638 0 : retval = set_cred_ucounts(new);
639 0 : if (retval < 0)
640 : goto error;
641 :
642 0 : flag_nproc_exceeded(new);
643 0 : return commit_creds(new);
644 :
645 : error:
646 0 : abort_creds(new);
647 0 : return retval;
648 : }
649 :
650 0 : SYSCALL_DEFINE1(setuid, uid_t, uid)
651 : {
652 0 : return __sys_setuid(uid);
653 : }
654 :
655 :
656 : /*
657 : * This function implements a generic ability to update ruid, euid,
658 : * and suid. This allows you to implement the 4.4 compatible seteuid().
659 : */
660 0 : long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
661 : {
662 0 : struct user_namespace *ns = current_user_ns();
663 : const struct cred *old;
664 : struct cred *new;
665 : int retval;
666 : kuid_t kruid, keuid, ksuid;
667 :
668 0 : kruid = make_kuid(ns, ruid);
669 0 : keuid = make_kuid(ns, euid);
670 0 : ksuid = make_kuid(ns, suid);
671 :
672 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
673 : return -EINVAL;
674 :
675 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
676 : return -EINVAL;
677 :
678 : if ((suid != (uid_t) -1) && !uid_valid(ksuid))
679 : return -EINVAL;
680 :
681 0 : new = prepare_creds();
682 0 : if (!new)
683 : return -ENOMEM;
684 :
685 0 : old = current_cred();
686 :
687 0 : retval = -EPERM;
688 0 : if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
689 0 : if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
690 0 : !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
691 : goto error;
692 0 : if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
693 0 : !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
694 : goto error;
695 0 : if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
696 0 : !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
697 : goto error;
698 : }
699 :
700 0 : if (ruid != (uid_t) -1) {
701 0 : new->uid = kruid;
702 0 : if (!uid_eq(kruid, old->uid)) {
703 0 : retval = set_user(new);
704 0 : if (retval < 0)
705 : goto error;
706 : }
707 : }
708 0 : if (euid != (uid_t) -1)
709 0 : new->euid = keuid;
710 0 : if (suid != (uid_t) -1)
711 0 : new->suid = ksuid;
712 0 : new->fsuid = new->euid;
713 :
714 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
715 0 : if (retval < 0)
716 : goto error;
717 :
718 0 : retval = set_cred_ucounts(new);
719 0 : if (retval < 0)
720 : goto error;
721 :
722 0 : flag_nproc_exceeded(new);
723 0 : return commit_creds(new);
724 :
725 : error:
726 0 : abort_creds(new);
727 0 : return retval;
728 : }
729 :
730 0 : SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
731 : {
732 0 : return __sys_setresuid(ruid, euid, suid);
733 : }
734 :
735 0 : SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
736 : {
737 0 : const struct cred *cred = current_cred();
738 : int retval;
739 : uid_t ruid, euid, suid;
740 :
741 0 : ruid = from_kuid_munged(cred->user_ns, cred->uid);
742 0 : euid = from_kuid_munged(cred->user_ns, cred->euid);
743 0 : suid = from_kuid_munged(cred->user_ns, cred->suid);
744 :
745 0 : retval = put_user(ruid, ruidp);
746 0 : if (!retval) {
747 0 : retval = put_user(euid, euidp);
748 0 : if (!retval)
749 0 : return put_user(suid, suidp);
750 : }
751 0 : return retval;
752 : }
753 :
754 : /*
755 : * Same as above, but for rgid, egid, sgid.
756 : */
757 0 : long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
758 : {
759 0 : struct user_namespace *ns = current_user_ns();
760 : const struct cred *old;
761 : struct cred *new;
762 : int retval;
763 : kgid_t krgid, kegid, ksgid;
764 :
765 0 : krgid = make_kgid(ns, rgid);
766 0 : kegid = make_kgid(ns, egid);
767 0 : ksgid = make_kgid(ns, sgid);
768 :
769 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
770 : return -EINVAL;
771 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
772 : return -EINVAL;
773 : if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
774 : return -EINVAL;
775 :
776 0 : new = prepare_creds();
777 0 : if (!new)
778 : return -ENOMEM;
779 0 : old = current_cred();
780 :
781 0 : retval = -EPERM;
782 0 : if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
783 0 : if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
784 0 : !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
785 : goto error;
786 0 : if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
787 0 : !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
788 : goto error;
789 0 : if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
790 0 : !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
791 : goto error;
792 : }
793 :
794 0 : if (rgid != (gid_t) -1)
795 0 : new->gid = krgid;
796 0 : if (egid != (gid_t) -1)
797 0 : new->egid = kegid;
798 0 : if (sgid != (gid_t) -1)
799 0 : new->sgid = ksgid;
800 0 : new->fsgid = new->egid;
801 :
802 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
803 : if (retval < 0)
804 : goto error;
805 :
806 0 : return commit_creds(new);
807 :
808 : error:
809 0 : abort_creds(new);
810 0 : return retval;
811 : }
812 :
813 0 : SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
814 : {
815 0 : return __sys_setresgid(rgid, egid, sgid);
816 : }
817 :
818 0 : SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
819 : {
820 0 : const struct cred *cred = current_cred();
821 : int retval;
822 : gid_t rgid, egid, sgid;
823 :
824 0 : rgid = from_kgid_munged(cred->user_ns, cred->gid);
825 0 : egid = from_kgid_munged(cred->user_ns, cred->egid);
826 0 : sgid = from_kgid_munged(cred->user_ns, cred->sgid);
827 :
828 0 : retval = put_user(rgid, rgidp);
829 0 : if (!retval) {
830 0 : retval = put_user(egid, egidp);
831 0 : if (!retval)
832 0 : retval = put_user(sgid, sgidp);
833 : }
834 :
835 0 : return retval;
836 : }
837 :
838 :
839 : /*
840 : * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841 : * is used for "access()" and for the NFS daemon (letting nfsd stay at
842 : * whatever uid it wants to). It normally shadows "euid", except when
843 : * explicitly set by setfsuid() or for access..
844 : */
845 0 : long __sys_setfsuid(uid_t uid)
846 : {
847 : const struct cred *old;
848 : struct cred *new;
849 : uid_t old_fsuid;
850 : kuid_t kuid;
851 :
852 0 : old = current_cred();
853 0 : old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
854 :
855 0 : kuid = make_kuid(old->user_ns, uid);
856 0 : if (!uid_valid(kuid))
857 0 : return old_fsuid;
858 :
859 0 : new = prepare_creds();
860 0 : if (!new)
861 0 : return old_fsuid;
862 :
863 0 : if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
864 0 : uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
865 0 : ns_capable_setid(old->user_ns, CAP_SETUID)) {
866 0 : if (!uid_eq(kuid, old->fsuid)) {
867 0 : new->fsuid = kuid;
868 0 : if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
869 : goto change_okay;
870 : }
871 : }
872 :
873 0 : abort_creds(new);
874 0 : return old_fsuid;
875 :
876 : change_okay:
877 0 : commit_creds(new);
878 0 : return old_fsuid;
879 : }
880 :
881 0 : SYSCALL_DEFINE1(setfsuid, uid_t, uid)
882 : {
883 0 : return __sys_setfsuid(uid);
884 : }
885 :
886 : /*
887 : * Samma på svenska..
888 : */
889 0 : long __sys_setfsgid(gid_t gid)
890 : {
891 : const struct cred *old;
892 : struct cred *new;
893 : gid_t old_fsgid;
894 : kgid_t kgid;
895 :
896 0 : old = current_cred();
897 0 : old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
898 :
899 0 : kgid = make_kgid(old->user_ns, gid);
900 0 : if (!gid_valid(kgid))
901 0 : return old_fsgid;
902 :
903 0 : new = prepare_creds();
904 0 : if (!new)
905 0 : return old_fsgid;
906 :
907 0 : if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
908 0 : gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
909 0 : ns_capable_setid(old->user_ns, CAP_SETGID)) {
910 0 : if (!gid_eq(kgid, old->fsgid)) {
911 0 : new->fsgid = kgid;
912 0 : if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
913 : goto change_okay;
914 : }
915 : }
916 :
917 0 : abort_creds(new);
918 0 : return old_fsgid;
919 :
920 : change_okay:
921 0 : commit_creds(new);
922 0 : return old_fsgid;
923 : }
924 :
925 0 : SYSCALL_DEFINE1(setfsgid, gid_t, gid)
926 : {
927 0 : return __sys_setfsgid(gid);
928 : }
929 : #endif /* CONFIG_MULTIUSER */
930 :
931 : /**
932 : * sys_getpid - return the thread group id of the current process
933 : *
934 : * Note, despite the name, this returns the tgid not the pid. The tgid and
935 : * the pid are identical unless CLONE_THREAD was specified on clone() in
936 : * which case the tgid is the same in all threads of the same group.
937 : *
938 : * This is SMP safe as current->tgid does not change.
939 : */
940 0 : SYSCALL_DEFINE0(getpid)
941 : {
942 0 : return task_tgid_vnr(current);
943 : }
944 :
945 : /* Thread ID - the internal kernel "pid" */
946 0 : SYSCALL_DEFINE0(gettid)
947 : {
948 0 : return task_pid_vnr(current);
949 : }
950 :
951 : /*
952 : * Accessing ->real_parent is not SMP-safe, it could
953 : * change from under us. However, we can use a stale
954 : * value of ->real_parent under rcu_read_lock(), see
955 : * release_task()->call_rcu(delayed_put_task_struct).
956 : */
957 0 : SYSCALL_DEFINE0(getppid)
958 : {
959 : int pid;
960 :
961 : rcu_read_lock();
962 0 : pid = task_tgid_vnr(rcu_dereference(current->real_parent));
963 : rcu_read_unlock();
964 :
965 0 : return pid;
966 : }
967 :
968 0 : SYSCALL_DEFINE0(getuid)
969 : {
970 : /* Only we change this so SMP safe */
971 0 : return from_kuid_munged(current_user_ns(), current_uid());
972 : }
973 :
974 0 : SYSCALL_DEFINE0(geteuid)
975 : {
976 : /* Only we change this so SMP safe */
977 0 : return from_kuid_munged(current_user_ns(), current_euid());
978 : }
979 :
980 0 : SYSCALL_DEFINE0(getgid)
981 : {
982 : /* Only we change this so SMP safe */
983 0 : return from_kgid_munged(current_user_ns(), current_gid());
984 : }
985 :
986 0 : SYSCALL_DEFINE0(getegid)
987 : {
988 : /* Only we change this so SMP safe */
989 0 : return from_kgid_munged(current_user_ns(), current_egid());
990 : }
991 :
992 0 : static void do_sys_times(struct tms *tms)
993 : {
994 : u64 tgutime, tgstime, cutime, cstime;
995 :
996 0 : thread_group_cputime_adjusted(current, &tgutime, &tgstime);
997 0 : cutime = current->signal->cutime;
998 0 : cstime = current->signal->cstime;
999 0 : tms->tms_utime = nsec_to_clock_t(tgutime);
1000 0 : tms->tms_stime = nsec_to_clock_t(tgstime);
1001 0 : tms->tms_cutime = nsec_to_clock_t(cutime);
1002 0 : tms->tms_cstime = nsec_to_clock_t(cstime);
1003 0 : }
1004 :
1005 0 : SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1006 : {
1007 0 : if (tbuf) {
1008 : struct tms tmp;
1009 :
1010 0 : do_sys_times(&tmp);
1011 0 : if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1012 0 : return -EFAULT;
1013 : }
1014 : force_successful_syscall_return();
1015 0 : return (long) jiffies_64_to_clock_t(get_jiffies_64());
1016 : }
1017 :
1018 : #ifdef CONFIG_COMPAT
1019 : static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1020 : {
1021 : return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1022 : }
1023 :
1024 : COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1025 : {
1026 : if (tbuf) {
1027 : struct tms tms;
1028 : struct compat_tms tmp;
1029 :
1030 : do_sys_times(&tms);
1031 : /* Convert our struct tms to the compat version. */
1032 : tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1033 : tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1034 : tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1035 : tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1036 : if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1037 : return -EFAULT;
1038 : }
1039 : force_successful_syscall_return();
1040 : return compat_jiffies_to_clock_t(jiffies);
1041 : }
1042 : #endif
1043 :
1044 : /*
1045 : * This needs some heavy checking ...
1046 : * I just haven't the stomach for it. I also don't fully
1047 : * understand sessions/pgrp etc. Let somebody who does explain it.
1048 : *
1049 : * OK, I think I have the protection semantics right.... this is really
1050 : * only important on a multi-user system anyway, to make sure one user
1051 : * can't send a signal to a process owned by another. -TYT, 12/12/91
1052 : *
1053 : * !PF_FORKNOEXEC check to conform completely to POSIX.
1054 : */
1055 0 : SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1056 : {
1057 : struct task_struct *p;
1058 0 : struct task_struct *group_leader = current->group_leader;
1059 : struct pid *pgrp;
1060 : int err;
1061 :
1062 0 : if (!pid)
1063 0 : pid = task_pid_vnr(group_leader);
1064 0 : if (!pgid)
1065 0 : pgid = pid;
1066 0 : if (pgid < 0)
1067 : return -EINVAL;
1068 : rcu_read_lock();
1069 :
1070 : /* From this point forward we keep holding onto the tasklist lock
1071 : * so that our parent does not change from under us. -DaveM
1072 : */
1073 0 : write_lock_irq(&tasklist_lock);
1074 :
1075 0 : err = -ESRCH;
1076 0 : p = find_task_by_vpid(pid);
1077 0 : if (!p)
1078 : goto out;
1079 :
1080 0 : err = -EINVAL;
1081 0 : if (!thread_group_leader(p))
1082 : goto out;
1083 :
1084 0 : if (same_thread_group(p->real_parent, group_leader)) {
1085 0 : err = -EPERM;
1086 0 : if (task_session(p) != task_session(group_leader))
1087 : goto out;
1088 0 : err = -EACCES;
1089 0 : if (!(p->flags & PF_FORKNOEXEC))
1090 : goto out;
1091 : } else {
1092 0 : err = -ESRCH;
1093 0 : if (p != group_leader)
1094 : goto out;
1095 : }
1096 :
1097 0 : err = -EPERM;
1098 0 : if (p->signal->leader)
1099 : goto out;
1100 :
1101 0 : pgrp = task_pid(p);
1102 0 : if (pgid != pid) {
1103 : struct task_struct *g;
1104 :
1105 0 : pgrp = find_vpid(pgid);
1106 0 : g = pid_task(pgrp, PIDTYPE_PGID);
1107 0 : if (!g || task_session(g) != task_session(group_leader))
1108 : goto out;
1109 : }
1110 :
1111 0 : err = security_task_setpgid(p, pgid);
1112 : if (err)
1113 : goto out;
1114 :
1115 0 : if (task_pgrp(p) != pgrp)
1116 0 : change_pid(p, PIDTYPE_PGID, pgrp);
1117 :
1118 : err = 0;
1119 : out:
1120 : /* All paths lead to here, thus we are safe. -DaveM */
1121 0 : write_unlock_irq(&tasklist_lock);
1122 : rcu_read_unlock();
1123 0 : return err;
1124 : }
1125 :
1126 0 : static int do_getpgid(pid_t pid)
1127 : {
1128 : struct task_struct *p;
1129 : struct pid *grp;
1130 : int retval;
1131 :
1132 : rcu_read_lock();
1133 0 : if (!pid)
1134 0 : grp = task_pgrp(current);
1135 : else {
1136 0 : retval = -ESRCH;
1137 0 : p = find_task_by_vpid(pid);
1138 0 : if (!p)
1139 : goto out;
1140 0 : grp = task_pgrp(p);
1141 0 : if (!grp)
1142 : goto out;
1143 :
1144 : retval = security_task_getpgid(p);
1145 : if (retval)
1146 : goto out;
1147 : }
1148 0 : retval = pid_vnr(grp);
1149 : out:
1150 : rcu_read_unlock();
1151 0 : return retval;
1152 : }
1153 :
1154 0 : SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155 : {
1156 0 : return do_getpgid(pid);
1157 : }
1158 :
1159 : #ifdef __ARCH_WANT_SYS_GETPGRP
1160 :
1161 0 : SYSCALL_DEFINE0(getpgrp)
1162 : {
1163 0 : return do_getpgid(0);
1164 : }
1165 :
1166 : #endif
1167 :
1168 0 : SYSCALL_DEFINE1(getsid, pid_t, pid)
1169 : {
1170 : struct task_struct *p;
1171 : struct pid *sid;
1172 : int retval;
1173 :
1174 : rcu_read_lock();
1175 0 : if (!pid)
1176 0 : sid = task_session(current);
1177 : else {
1178 0 : retval = -ESRCH;
1179 0 : p = find_task_by_vpid(pid);
1180 0 : if (!p)
1181 : goto out;
1182 0 : sid = task_session(p);
1183 0 : if (!sid)
1184 : goto out;
1185 :
1186 : retval = security_task_getsid(p);
1187 : if (retval)
1188 : goto out;
1189 : }
1190 0 : retval = pid_vnr(sid);
1191 : out:
1192 : rcu_read_unlock();
1193 0 : return retval;
1194 : }
1195 :
1196 0 : static void set_special_pids(struct pid *pid)
1197 : {
1198 0 : struct task_struct *curr = current->group_leader;
1199 :
1200 0 : if (task_session(curr) != pid)
1201 0 : change_pid(curr, PIDTYPE_SID, pid);
1202 :
1203 0 : if (task_pgrp(curr) != pid)
1204 0 : change_pid(curr, PIDTYPE_PGID, pid);
1205 0 : }
1206 :
1207 0 : int ksys_setsid(void)
1208 : {
1209 0 : struct task_struct *group_leader = current->group_leader;
1210 0 : struct pid *sid = task_pid(group_leader);
1211 0 : pid_t session = pid_vnr(sid);
1212 0 : int err = -EPERM;
1213 :
1214 0 : write_lock_irq(&tasklist_lock);
1215 : /* Fail if I am already a session leader */
1216 0 : if (group_leader->signal->leader)
1217 : goto out;
1218 :
1219 : /* Fail if a process group id already exists that equals the
1220 : * proposed session id.
1221 : */
1222 0 : if (pid_task(sid, PIDTYPE_PGID))
1223 : goto out;
1224 :
1225 0 : group_leader->signal->leader = 1;
1226 0 : set_special_pids(sid);
1227 :
1228 0 : proc_clear_tty(group_leader);
1229 :
1230 0 : err = session;
1231 : out:
1232 0 : write_unlock_irq(&tasklist_lock);
1233 : if (err > 0) {
1234 : proc_sid_connector(group_leader);
1235 : sched_autogroup_create_attach(group_leader);
1236 : }
1237 0 : return err;
1238 : }
1239 :
1240 0 : SYSCALL_DEFINE0(setsid)
1241 : {
1242 0 : return ksys_setsid();
1243 : }
1244 :
1245 : DECLARE_RWSEM(uts_sem);
1246 :
1247 : #ifdef COMPAT_UTS_MACHINE
1248 : #define override_architecture(name) \
1249 : (personality(current->personality) == PER_LINUX32 && \
1250 : copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1251 : sizeof(COMPAT_UTS_MACHINE)))
1252 : #else
1253 : #define override_architecture(name) 0
1254 : #endif
1255 :
1256 : /*
1257 : * Work around broken programs that cannot handle "Linux 3.0".
1258 : * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1259 : * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1260 : * 2.6.60.
1261 : */
1262 0 : static int override_release(char __user *release, size_t len)
1263 : {
1264 0 : int ret = 0;
1265 :
1266 0 : if (current->personality & UNAME26) {
1267 0 : const char *rest = UTS_RELEASE;
1268 0 : char buf[65] = { 0 };
1269 0 : int ndots = 0;
1270 : unsigned v;
1271 : size_t copy;
1272 :
1273 0 : while (*rest) {
1274 0 : if (*rest == '.' && ++ndots >= 3)
1275 : break;
1276 0 : if (!isdigit(*rest) && *rest != '.')
1277 : break;
1278 0 : rest++;
1279 : }
1280 0 : v = LINUX_VERSION_PATCHLEVEL + 60;
1281 0 : copy = clamp_t(size_t, len, 1, sizeof(buf));
1282 0 : copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1283 0 : ret = copy_to_user(release, buf, copy + 1);
1284 : }
1285 0 : return ret;
1286 : }
1287 :
1288 0 : SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1289 : {
1290 : struct new_utsname tmp;
1291 :
1292 0 : down_read(&uts_sem);
1293 0 : memcpy(&tmp, utsname(), sizeof(tmp));
1294 0 : up_read(&uts_sem);
1295 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1296 : return -EFAULT;
1297 :
1298 0 : if (override_release(name->release, sizeof(name->release)))
1299 : return -EFAULT;
1300 : if (override_architecture(name))
1301 : return -EFAULT;
1302 0 : return 0;
1303 : }
1304 :
1305 : #ifdef __ARCH_WANT_SYS_OLD_UNAME
1306 : /*
1307 : * Old cruft
1308 : */
1309 0 : SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310 : {
1311 : struct old_utsname tmp;
1312 :
1313 0 : if (!name)
1314 : return -EFAULT;
1315 :
1316 0 : down_read(&uts_sem);
1317 0 : memcpy(&tmp, utsname(), sizeof(tmp));
1318 0 : up_read(&uts_sem);
1319 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1320 : return -EFAULT;
1321 :
1322 0 : if (override_release(name->release, sizeof(name->release)))
1323 : return -EFAULT;
1324 : if (override_architecture(name))
1325 : return -EFAULT;
1326 0 : return 0;
1327 : }
1328 :
1329 0 : SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1330 : {
1331 : struct oldold_utsname tmp;
1332 :
1333 0 : if (!name)
1334 : return -EFAULT;
1335 :
1336 0 : memset(&tmp, 0, sizeof(tmp));
1337 :
1338 0 : down_read(&uts_sem);
1339 0 : memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1340 0 : memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1341 0 : memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1342 0 : memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1343 0 : memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1344 0 : up_read(&uts_sem);
1345 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1346 : return -EFAULT;
1347 :
1348 : if (override_architecture(name))
1349 : return -EFAULT;
1350 0 : if (override_release(name->release, sizeof(name->release)))
1351 : return -EFAULT;
1352 0 : return 0;
1353 : }
1354 : #endif
1355 :
1356 0 : SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1357 : {
1358 : int errno;
1359 : char tmp[__NEW_UTS_LEN];
1360 :
1361 0 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1362 : return -EPERM;
1363 :
1364 0 : if (len < 0 || len > __NEW_UTS_LEN)
1365 : return -EINVAL;
1366 0 : errno = -EFAULT;
1367 0 : if (!copy_from_user(tmp, name, len)) {
1368 : struct new_utsname *u;
1369 :
1370 0 : add_device_randomness(tmp, len);
1371 0 : down_write(&uts_sem);
1372 0 : u = utsname();
1373 0 : memcpy(u->nodename, tmp, len);
1374 0 : memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1375 0 : errno = 0;
1376 0 : uts_proc_notify(UTS_PROC_HOSTNAME);
1377 0 : up_write(&uts_sem);
1378 : }
1379 0 : return errno;
1380 : }
1381 :
1382 : #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1383 :
1384 0 : SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1385 : {
1386 : int i;
1387 : struct new_utsname *u;
1388 : char tmp[__NEW_UTS_LEN + 1];
1389 :
1390 0 : if (len < 0)
1391 : return -EINVAL;
1392 0 : down_read(&uts_sem);
1393 0 : u = utsname();
1394 0 : i = 1 + strlen(u->nodename);
1395 0 : if (i > len)
1396 0 : i = len;
1397 0 : memcpy(tmp, u->nodename, i);
1398 0 : up_read(&uts_sem);
1399 0 : if (copy_to_user(name, tmp, i))
1400 : return -EFAULT;
1401 0 : return 0;
1402 : }
1403 :
1404 : #endif
1405 :
1406 : /*
1407 : * Only setdomainname; getdomainname can be implemented by calling
1408 : * uname()
1409 : */
1410 0 : SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1411 : {
1412 : int errno;
1413 : char tmp[__NEW_UTS_LEN];
1414 :
1415 0 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1416 : return -EPERM;
1417 0 : if (len < 0 || len > __NEW_UTS_LEN)
1418 : return -EINVAL;
1419 :
1420 0 : errno = -EFAULT;
1421 0 : if (!copy_from_user(tmp, name, len)) {
1422 : struct new_utsname *u;
1423 :
1424 0 : add_device_randomness(tmp, len);
1425 0 : down_write(&uts_sem);
1426 0 : u = utsname();
1427 0 : memcpy(u->domainname, tmp, len);
1428 0 : memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1429 0 : errno = 0;
1430 0 : uts_proc_notify(UTS_PROC_DOMAINNAME);
1431 0 : up_write(&uts_sem);
1432 : }
1433 0 : return errno;
1434 : }
1435 :
1436 : /* make sure you are allowed to change @tsk limits before calling this */
1437 0 : static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1438 : struct rlimit *new_rlim, struct rlimit *old_rlim)
1439 : {
1440 : struct rlimit *rlim;
1441 0 : int retval = 0;
1442 :
1443 0 : if (resource >= RLIM_NLIMITS)
1444 : return -EINVAL;
1445 0 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1446 :
1447 0 : if (new_rlim) {
1448 0 : if (new_rlim->rlim_cur > new_rlim->rlim_max)
1449 : return -EINVAL;
1450 0 : if (resource == RLIMIT_NOFILE &&
1451 0 : new_rlim->rlim_max > sysctl_nr_open)
1452 : return -EPERM;
1453 : }
1454 :
1455 : /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1456 0 : rlim = tsk->signal->rlim + resource;
1457 0 : task_lock(tsk->group_leader);
1458 0 : if (new_rlim) {
1459 : /*
1460 : * Keep the capable check against init_user_ns until cgroups can
1461 : * contain all limits.
1462 : */
1463 0 : if (new_rlim->rlim_max > rlim->rlim_max &&
1464 0 : !capable(CAP_SYS_RESOURCE))
1465 0 : retval = -EPERM;
1466 0 : if (!retval)
1467 0 : retval = security_task_setrlimit(tsk, resource, new_rlim);
1468 : }
1469 0 : if (!retval) {
1470 0 : if (old_rlim)
1471 0 : *old_rlim = *rlim;
1472 0 : if (new_rlim)
1473 0 : *rlim = *new_rlim;
1474 : }
1475 0 : task_unlock(tsk->group_leader);
1476 :
1477 : /*
1478 : * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1479 : * infinite. In case of RLIM_INFINITY the posix CPU timer code
1480 : * ignores the rlimit.
1481 : */
1482 0 : if (!retval && new_rlim && resource == RLIMIT_CPU &&
1483 0 : new_rlim->rlim_cur != RLIM_INFINITY &&
1484 : IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1485 : /*
1486 : * update_rlimit_cpu can fail if the task is exiting, but there
1487 : * may be other tasks in the thread group that are not exiting,
1488 : * and they need their cpu timers adjusted.
1489 : *
1490 : * The group_leader is the last task to be released, so if we
1491 : * cannot update_rlimit_cpu on it, then the entire process is
1492 : * exiting and we do not need to update at all.
1493 : */
1494 0 : update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1495 : }
1496 :
1497 : return retval;
1498 : }
1499 :
1500 0 : SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1501 : {
1502 : struct rlimit value;
1503 : int ret;
1504 :
1505 0 : ret = do_prlimit(current, resource, NULL, &value);
1506 0 : if (!ret)
1507 0 : ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1508 :
1509 0 : return ret;
1510 : }
1511 :
1512 : #ifdef CONFIG_COMPAT
1513 :
1514 : COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1515 : struct compat_rlimit __user *, rlim)
1516 : {
1517 : struct rlimit r;
1518 : struct compat_rlimit r32;
1519 :
1520 : if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1521 : return -EFAULT;
1522 :
1523 : if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1524 : r.rlim_cur = RLIM_INFINITY;
1525 : else
1526 : r.rlim_cur = r32.rlim_cur;
1527 : if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1528 : r.rlim_max = RLIM_INFINITY;
1529 : else
1530 : r.rlim_max = r32.rlim_max;
1531 : return do_prlimit(current, resource, &r, NULL);
1532 : }
1533 :
1534 : COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1535 : struct compat_rlimit __user *, rlim)
1536 : {
1537 : struct rlimit r;
1538 : int ret;
1539 :
1540 : ret = do_prlimit(current, resource, NULL, &r);
1541 : if (!ret) {
1542 : struct compat_rlimit r32;
1543 : if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1544 : r32.rlim_cur = COMPAT_RLIM_INFINITY;
1545 : else
1546 : r32.rlim_cur = r.rlim_cur;
1547 : if (r.rlim_max > COMPAT_RLIM_INFINITY)
1548 : r32.rlim_max = COMPAT_RLIM_INFINITY;
1549 : else
1550 : r32.rlim_max = r.rlim_max;
1551 :
1552 : if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1553 : return -EFAULT;
1554 : }
1555 : return ret;
1556 : }
1557 :
1558 : #endif
1559 :
1560 : #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1561 :
1562 : /*
1563 : * Back compatibility for getrlimit. Needed for some apps.
1564 : */
1565 0 : SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1566 : struct rlimit __user *, rlim)
1567 : {
1568 : struct rlimit x;
1569 0 : if (resource >= RLIM_NLIMITS)
1570 : return -EINVAL;
1571 :
1572 0 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1573 0 : task_lock(current->group_leader);
1574 0 : x = current->signal->rlim[resource];
1575 0 : task_unlock(current->group_leader);
1576 0 : if (x.rlim_cur > 0x7FFFFFFF)
1577 0 : x.rlim_cur = 0x7FFFFFFF;
1578 0 : if (x.rlim_max > 0x7FFFFFFF)
1579 0 : x.rlim_max = 0x7FFFFFFF;
1580 0 : return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1581 : }
1582 :
1583 : #ifdef CONFIG_COMPAT
1584 : COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1585 : struct compat_rlimit __user *, rlim)
1586 : {
1587 : struct rlimit r;
1588 :
1589 : if (resource >= RLIM_NLIMITS)
1590 : return -EINVAL;
1591 :
1592 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1593 : task_lock(current->group_leader);
1594 : r = current->signal->rlim[resource];
1595 : task_unlock(current->group_leader);
1596 : if (r.rlim_cur > 0x7FFFFFFF)
1597 : r.rlim_cur = 0x7FFFFFFF;
1598 : if (r.rlim_max > 0x7FFFFFFF)
1599 : r.rlim_max = 0x7FFFFFFF;
1600 :
1601 : if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1602 : put_user(r.rlim_max, &rlim->rlim_max))
1603 : return -EFAULT;
1604 : return 0;
1605 : }
1606 : #endif
1607 :
1608 : #endif
1609 :
1610 : static inline bool rlim64_is_infinity(__u64 rlim64)
1611 : {
1612 : #if BITS_PER_LONG < 64
1613 : return rlim64 >= ULONG_MAX;
1614 : #else
1615 : return rlim64 == RLIM64_INFINITY;
1616 : #endif
1617 : }
1618 :
1619 : static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1620 : {
1621 0 : if (rlim->rlim_cur == RLIM_INFINITY)
1622 0 : rlim64->rlim_cur = RLIM64_INFINITY;
1623 : else
1624 0 : rlim64->rlim_cur = rlim->rlim_cur;
1625 0 : if (rlim->rlim_max == RLIM_INFINITY)
1626 0 : rlim64->rlim_max = RLIM64_INFINITY;
1627 : else
1628 0 : rlim64->rlim_max = rlim->rlim_max;
1629 : }
1630 :
1631 : static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1632 : {
1633 0 : if (rlim64_is_infinity(rlim64->rlim_cur))
1634 0 : rlim->rlim_cur = RLIM_INFINITY;
1635 : else
1636 0 : rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1637 0 : if (rlim64_is_infinity(rlim64->rlim_max))
1638 0 : rlim->rlim_max = RLIM_INFINITY;
1639 : else
1640 0 : rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1641 : }
1642 :
1643 : /* rcu lock must be held */
1644 0 : static int check_prlimit_permission(struct task_struct *task,
1645 : unsigned int flags)
1646 : {
1647 0 : const struct cred *cred = current_cred(), *tcred;
1648 : bool id_match;
1649 :
1650 0 : if (current == task)
1651 : return 0;
1652 :
1653 0 : tcred = __task_cred(task);
1654 0 : id_match = (uid_eq(cred->uid, tcred->euid) &&
1655 0 : uid_eq(cred->uid, tcred->suid) &&
1656 0 : uid_eq(cred->uid, tcred->uid) &&
1657 0 : gid_eq(cred->gid, tcred->egid) &&
1658 0 : gid_eq(cred->gid, tcred->sgid) &&
1659 0 : gid_eq(cred->gid, tcred->gid));
1660 0 : if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1661 : return -EPERM;
1662 :
1663 : return security_task_prlimit(cred, tcred, flags);
1664 : }
1665 :
1666 0 : SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1667 : const struct rlimit64 __user *, new_rlim,
1668 : struct rlimit64 __user *, old_rlim)
1669 : {
1670 : struct rlimit64 old64, new64;
1671 : struct rlimit old, new;
1672 : struct task_struct *tsk;
1673 0 : unsigned int checkflags = 0;
1674 : int ret;
1675 :
1676 : if (old_rlim)
1677 : checkflags |= LSM_PRLIMIT_READ;
1678 :
1679 0 : if (new_rlim) {
1680 0 : if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1681 : return -EFAULT;
1682 0 : rlim64_to_rlim(&new64, &new);
1683 0 : checkflags |= LSM_PRLIMIT_WRITE;
1684 : }
1685 :
1686 : rcu_read_lock();
1687 0 : tsk = pid ? find_task_by_vpid(pid) : current;
1688 0 : if (!tsk) {
1689 : rcu_read_unlock();
1690 0 : return -ESRCH;
1691 : }
1692 0 : ret = check_prlimit_permission(tsk, checkflags);
1693 0 : if (ret) {
1694 : rcu_read_unlock();
1695 0 : return ret;
1696 : }
1697 0 : get_task_struct(tsk);
1698 : rcu_read_unlock();
1699 :
1700 0 : ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1701 : old_rlim ? &old : NULL);
1702 :
1703 0 : if (!ret && old_rlim) {
1704 0 : rlim_to_rlim64(&old, &old64);
1705 0 : if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1706 0 : ret = -EFAULT;
1707 : }
1708 :
1709 0 : put_task_struct(tsk);
1710 0 : return ret;
1711 : }
1712 :
1713 0 : SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1714 : {
1715 : struct rlimit new_rlim;
1716 :
1717 0 : if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1718 : return -EFAULT;
1719 0 : return do_prlimit(current, resource, &new_rlim, NULL);
1720 : }
1721 :
1722 : /*
1723 : * It would make sense to put struct rusage in the task_struct,
1724 : * except that would make the task_struct be *really big*. After
1725 : * task_struct gets moved into malloc'ed memory, it would
1726 : * make sense to do this. It will make moving the rest of the information
1727 : * a lot simpler! (Which we're not doing right now because we're not
1728 : * measuring them yet).
1729 : *
1730 : * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 : * races with threads incrementing their own counters. But since word
1732 : * reads are atomic, we either get new values or old values and we don't
1733 : * care which for the sums. We always take the siglock to protect reading
1734 : * the c* fields from p->signal from races with exit.c updating those
1735 : * fields when reaping, so a sample either gets all the additions of a
1736 : * given child after it's reaped, or none so this sample is before reaping.
1737 : *
1738 : * Locking:
1739 : * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 : * for the cases current multithreaded, non-current single threaded
1741 : * non-current multithreaded. Thread traversal is now safe with
1742 : * the siglock held.
1743 : * Strictly speaking, we donot need to take the siglock if we are current and
1744 : * single threaded, as no one else can take our signal_struct away, no one
1745 : * else can reap the children to update signal->c* counters, and no one else
1746 : * can race with the signal-> fields. If we do not take any lock, the
1747 : * signal-> fields could be read out of order while another thread was just
1748 : * exiting. So we should place a read memory barrier when we avoid the lock.
1749 : * On the writer side, write memory barrier is implied in __exit_signal
1750 : * as __exit_signal releases the siglock spinlock after updating the signal->
1751 : * fields. But we don't do this yet to keep things simple.
1752 : *
1753 : */
1754 :
1755 : static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1756 : {
1757 0 : r->ru_nvcsw += t->nvcsw;
1758 0 : r->ru_nivcsw += t->nivcsw;
1759 0 : r->ru_minflt += t->min_flt;
1760 0 : r->ru_majflt += t->maj_flt;
1761 0 : r->ru_inblock += task_io_get_inblock(t);
1762 0 : r->ru_oublock += task_io_get_oublock(t);
1763 : }
1764 :
1765 0 : void getrusage(struct task_struct *p, int who, struct rusage *r)
1766 : {
1767 : struct task_struct *t;
1768 : unsigned long flags;
1769 : u64 tgutime, tgstime, utime, stime;
1770 0 : unsigned long maxrss = 0;
1771 :
1772 0 : memset((char *)r, 0, sizeof (*r));
1773 0 : utime = stime = 0;
1774 :
1775 0 : if (who == RUSAGE_THREAD) {
1776 0 : task_cputime_adjusted(current, &utime, &stime);
1777 0 : accumulate_thread_rusage(p, r);
1778 0 : maxrss = p->signal->maxrss;
1779 0 : goto out;
1780 : }
1781 :
1782 0 : if (!lock_task_sighand(p, &flags))
1783 0 : return;
1784 :
1785 0 : switch (who) {
1786 : case RUSAGE_BOTH:
1787 : case RUSAGE_CHILDREN:
1788 0 : utime = p->signal->cutime;
1789 0 : stime = p->signal->cstime;
1790 0 : r->ru_nvcsw = p->signal->cnvcsw;
1791 0 : r->ru_nivcsw = p->signal->cnivcsw;
1792 0 : r->ru_minflt = p->signal->cmin_flt;
1793 0 : r->ru_majflt = p->signal->cmaj_flt;
1794 0 : r->ru_inblock = p->signal->cinblock;
1795 0 : r->ru_oublock = p->signal->coublock;
1796 0 : maxrss = p->signal->cmaxrss;
1797 :
1798 0 : if (who == RUSAGE_CHILDREN)
1799 : break;
1800 : fallthrough;
1801 :
1802 : case RUSAGE_SELF:
1803 0 : thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1804 0 : utime += tgutime;
1805 0 : stime += tgstime;
1806 0 : r->ru_nvcsw += p->signal->nvcsw;
1807 0 : r->ru_nivcsw += p->signal->nivcsw;
1808 0 : r->ru_minflt += p->signal->min_flt;
1809 0 : r->ru_majflt += p->signal->maj_flt;
1810 0 : r->ru_inblock += p->signal->inblock;
1811 0 : r->ru_oublock += p->signal->oublock;
1812 0 : if (maxrss < p->signal->maxrss)
1813 0 : maxrss = p->signal->maxrss;
1814 0 : t = p;
1815 : do {
1816 0 : accumulate_thread_rusage(t, r);
1817 0 : } while_each_thread(p, t);
1818 : break;
1819 :
1820 : default:
1821 0 : BUG();
1822 : }
1823 0 : unlock_task_sighand(p, &flags);
1824 :
1825 : out:
1826 0 : r->ru_utime = ns_to_kernel_old_timeval(utime);
1827 0 : r->ru_stime = ns_to_kernel_old_timeval(stime);
1828 :
1829 0 : if (who != RUSAGE_CHILDREN) {
1830 0 : struct mm_struct *mm = get_task_mm(p);
1831 :
1832 0 : if (mm) {
1833 0 : setmax_mm_hiwater_rss(&maxrss, mm);
1834 0 : mmput(mm);
1835 : }
1836 : }
1837 0 : r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1838 : }
1839 :
1840 0 : SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1841 : {
1842 : struct rusage r;
1843 :
1844 0 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1845 : who != RUSAGE_THREAD)
1846 : return -EINVAL;
1847 :
1848 0 : getrusage(current, who, &r);
1849 0 : return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1850 : }
1851 :
1852 : #ifdef CONFIG_COMPAT
1853 : COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1854 : {
1855 : struct rusage r;
1856 :
1857 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1858 : who != RUSAGE_THREAD)
1859 : return -EINVAL;
1860 :
1861 : getrusage(current, who, &r);
1862 : return put_compat_rusage(&r, ru);
1863 : }
1864 : #endif
1865 :
1866 0 : SYSCALL_DEFINE1(umask, int, mask)
1867 : {
1868 0 : mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1869 0 : return mask;
1870 : }
1871 :
1872 0 : static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1873 : {
1874 : struct fd exe;
1875 : struct inode *inode;
1876 : int err;
1877 :
1878 0 : exe = fdget(fd);
1879 0 : if (!exe.file)
1880 : return -EBADF;
1881 :
1882 0 : inode = file_inode(exe.file);
1883 :
1884 : /*
1885 : * Because the original mm->exe_file points to executable file, make
1886 : * sure that this one is executable as well, to avoid breaking an
1887 : * overall picture.
1888 : */
1889 0 : err = -EACCES;
1890 0 : if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1891 : goto exit;
1892 :
1893 0 : err = file_permission(exe.file, MAY_EXEC);
1894 0 : if (err)
1895 : goto exit;
1896 :
1897 0 : err = replace_mm_exe_file(mm, exe.file);
1898 : exit:
1899 0 : fdput(exe);
1900 : return err;
1901 : }
1902 :
1903 : /*
1904 : * Check arithmetic relations of passed addresses.
1905 : *
1906 : * WARNING: we don't require any capability here so be very careful
1907 : * in what is allowed for modification from userspace.
1908 : */
1909 0 : static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1910 : {
1911 0 : unsigned long mmap_max_addr = TASK_SIZE;
1912 0 : int error = -EINVAL, i;
1913 :
1914 : static const unsigned char offsets[] = {
1915 : offsetof(struct prctl_mm_map, start_code),
1916 : offsetof(struct prctl_mm_map, end_code),
1917 : offsetof(struct prctl_mm_map, start_data),
1918 : offsetof(struct prctl_mm_map, end_data),
1919 : offsetof(struct prctl_mm_map, start_brk),
1920 : offsetof(struct prctl_mm_map, brk),
1921 : offsetof(struct prctl_mm_map, start_stack),
1922 : offsetof(struct prctl_mm_map, arg_start),
1923 : offsetof(struct prctl_mm_map, arg_end),
1924 : offsetof(struct prctl_mm_map, env_start),
1925 : offsetof(struct prctl_mm_map, env_end),
1926 : };
1927 :
1928 : /*
1929 : * Make sure the members are not somewhere outside
1930 : * of allowed address space.
1931 : */
1932 0 : for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1933 0 : u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1934 :
1935 0 : if ((unsigned long)val >= mmap_max_addr ||
1936 0 : (unsigned long)val < mmap_min_addr)
1937 : goto out;
1938 : }
1939 :
1940 : /*
1941 : * Make sure the pairs are ordered.
1942 : */
1943 : #define __prctl_check_order(__m1, __op, __m2) \
1944 : ((unsigned long)prctl_map->__m1 __op \
1945 : (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1946 0 : error = __prctl_check_order(start_code, <, end_code);
1947 0 : error |= __prctl_check_order(start_data,<=, end_data);
1948 0 : error |= __prctl_check_order(start_brk, <=, brk);
1949 0 : error |= __prctl_check_order(arg_start, <=, arg_end);
1950 0 : error |= __prctl_check_order(env_start, <=, env_end);
1951 0 : if (error)
1952 : goto out;
1953 : #undef __prctl_check_order
1954 :
1955 0 : error = -EINVAL;
1956 :
1957 : /*
1958 : * Neither we should allow to override limits if they set.
1959 : */
1960 0 : if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1961 : prctl_map->start_brk, prctl_map->end_data,
1962 : prctl_map->start_data))
1963 : goto out;
1964 :
1965 0 : error = 0;
1966 : out:
1967 0 : return error;
1968 : }
1969 :
1970 : #ifdef CONFIG_CHECKPOINT_RESTORE
1971 : static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1972 : {
1973 : struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1974 : unsigned long user_auxv[AT_VECTOR_SIZE];
1975 : struct mm_struct *mm = current->mm;
1976 : int error;
1977 :
1978 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1979 : BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1980 :
1981 : if (opt == PR_SET_MM_MAP_SIZE)
1982 : return put_user((unsigned int)sizeof(prctl_map),
1983 : (unsigned int __user *)addr);
1984 :
1985 : if (data_size != sizeof(prctl_map))
1986 : return -EINVAL;
1987 :
1988 : if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1989 : return -EFAULT;
1990 :
1991 : error = validate_prctl_map_addr(&prctl_map);
1992 : if (error)
1993 : return error;
1994 :
1995 : if (prctl_map.auxv_size) {
1996 : /*
1997 : * Someone is trying to cheat the auxv vector.
1998 : */
1999 : if (!prctl_map.auxv ||
2000 : prctl_map.auxv_size > sizeof(mm->saved_auxv))
2001 : return -EINVAL;
2002 :
2003 : memset(user_auxv, 0, sizeof(user_auxv));
2004 : if (copy_from_user(user_auxv,
2005 : (const void __user *)prctl_map.auxv,
2006 : prctl_map.auxv_size))
2007 : return -EFAULT;
2008 :
2009 : /* Last entry must be AT_NULL as specification requires */
2010 : user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2011 : user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2012 : }
2013 :
2014 : if (prctl_map.exe_fd != (u32)-1) {
2015 : /*
2016 : * Check if the current user is checkpoint/restore capable.
2017 : * At the time of this writing, it checks for CAP_SYS_ADMIN
2018 : * or CAP_CHECKPOINT_RESTORE.
2019 : * Note that a user with access to ptrace can masquerade an
2020 : * arbitrary program as any executable, even setuid ones.
2021 : * This may have implications in the tomoyo subsystem.
2022 : */
2023 : if (!checkpoint_restore_ns_capable(current_user_ns()))
2024 : return -EPERM;
2025 :
2026 : error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2027 : if (error)
2028 : return error;
2029 : }
2030 :
2031 : /*
2032 : * arg_lock protects concurrent updates but we still need mmap_lock for
2033 : * read to exclude races with sys_brk.
2034 : */
2035 : mmap_read_lock(mm);
2036 :
2037 : /*
2038 : * We don't validate if these members are pointing to
2039 : * real present VMAs because application may have correspond
2040 : * VMAs already unmapped and kernel uses these members for statistics
2041 : * output in procfs mostly, except
2042 : *
2043 : * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2044 : * for VMAs when updating these members so anything wrong written
2045 : * here cause kernel to swear at userspace program but won't lead
2046 : * to any problem in kernel itself
2047 : */
2048 :
2049 : spin_lock(&mm->arg_lock);
2050 : mm->start_code = prctl_map.start_code;
2051 : mm->end_code = prctl_map.end_code;
2052 : mm->start_data = prctl_map.start_data;
2053 : mm->end_data = prctl_map.end_data;
2054 : mm->start_brk = prctl_map.start_brk;
2055 : mm->brk = prctl_map.brk;
2056 : mm->start_stack = prctl_map.start_stack;
2057 : mm->arg_start = prctl_map.arg_start;
2058 : mm->arg_end = prctl_map.arg_end;
2059 : mm->env_start = prctl_map.env_start;
2060 : mm->env_end = prctl_map.env_end;
2061 : spin_unlock(&mm->arg_lock);
2062 :
2063 : /*
2064 : * Note this update of @saved_auxv is lockless thus
2065 : * if someone reads this member in procfs while we're
2066 : * updating -- it may get partly updated results. It's
2067 : * known and acceptable trade off: we leave it as is to
2068 : * not introduce additional locks here making the kernel
2069 : * more complex.
2070 : */
2071 : if (prctl_map.auxv_size)
2072 : memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2073 :
2074 : mmap_read_unlock(mm);
2075 : return 0;
2076 : }
2077 : #endif /* CONFIG_CHECKPOINT_RESTORE */
2078 :
2079 0 : static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2080 : unsigned long len)
2081 : {
2082 : /*
2083 : * This doesn't move the auxiliary vector itself since it's pinned to
2084 : * mm_struct, but it permits filling the vector with new values. It's
2085 : * up to the caller to provide sane values here, otherwise userspace
2086 : * tools which use this vector might be unhappy.
2087 : */
2088 0 : unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2089 :
2090 0 : if (len > sizeof(user_auxv))
2091 : return -EINVAL;
2092 :
2093 0 : if (copy_from_user(user_auxv, (const void __user *)addr, len))
2094 : return -EFAULT;
2095 :
2096 : /* Make sure the last entry is always AT_NULL */
2097 0 : user_auxv[AT_VECTOR_SIZE - 2] = 0;
2098 0 : user_auxv[AT_VECTOR_SIZE - 1] = 0;
2099 :
2100 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2101 :
2102 0 : task_lock(current);
2103 0 : memcpy(mm->saved_auxv, user_auxv, len);
2104 0 : task_unlock(current);
2105 :
2106 0 : return 0;
2107 : }
2108 :
2109 0 : static int prctl_set_mm(int opt, unsigned long addr,
2110 : unsigned long arg4, unsigned long arg5)
2111 : {
2112 0 : struct mm_struct *mm = current->mm;
2113 0 : struct prctl_mm_map prctl_map = {
2114 : .auxv = NULL,
2115 : .auxv_size = 0,
2116 : .exe_fd = -1,
2117 : };
2118 : struct vm_area_struct *vma;
2119 : int error;
2120 :
2121 0 : if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2122 0 : opt != PR_SET_MM_MAP &&
2123 : opt != PR_SET_MM_MAP_SIZE)))
2124 : return -EINVAL;
2125 :
2126 : #ifdef CONFIG_CHECKPOINT_RESTORE
2127 : if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2128 : return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2129 : #endif
2130 :
2131 0 : if (!capable(CAP_SYS_RESOURCE))
2132 : return -EPERM;
2133 :
2134 0 : if (opt == PR_SET_MM_EXE_FILE)
2135 0 : return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2136 :
2137 0 : if (opt == PR_SET_MM_AUXV)
2138 0 : return prctl_set_auxv(mm, addr, arg4);
2139 :
2140 0 : if (addr >= TASK_SIZE || addr < mmap_min_addr)
2141 : return -EINVAL;
2142 :
2143 0 : error = -EINVAL;
2144 :
2145 : /*
2146 : * arg_lock protects concurrent updates of arg boundaries, we need
2147 : * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2148 : * validation.
2149 : */
2150 0 : mmap_read_lock(mm);
2151 0 : vma = find_vma(mm, addr);
2152 :
2153 0 : spin_lock(&mm->arg_lock);
2154 0 : prctl_map.start_code = mm->start_code;
2155 0 : prctl_map.end_code = mm->end_code;
2156 0 : prctl_map.start_data = mm->start_data;
2157 0 : prctl_map.end_data = mm->end_data;
2158 0 : prctl_map.start_brk = mm->start_brk;
2159 0 : prctl_map.brk = mm->brk;
2160 0 : prctl_map.start_stack = mm->start_stack;
2161 0 : prctl_map.arg_start = mm->arg_start;
2162 0 : prctl_map.arg_end = mm->arg_end;
2163 0 : prctl_map.env_start = mm->env_start;
2164 0 : prctl_map.env_end = mm->env_end;
2165 :
2166 0 : switch (opt) {
2167 : case PR_SET_MM_START_CODE:
2168 0 : prctl_map.start_code = addr;
2169 0 : break;
2170 : case PR_SET_MM_END_CODE:
2171 0 : prctl_map.end_code = addr;
2172 0 : break;
2173 : case PR_SET_MM_START_DATA:
2174 0 : prctl_map.start_data = addr;
2175 0 : break;
2176 : case PR_SET_MM_END_DATA:
2177 0 : prctl_map.end_data = addr;
2178 0 : break;
2179 : case PR_SET_MM_START_STACK:
2180 0 : prctl_map.start_stack = addr;
2181 0 : break;
2182 : case PR_SET_MM_START_BRK:
2183 0 : prctl_map.start_brk = addr;
2184 0 : break;
2185 : case PR_SET_MM_BRK:
2186 0 : prctl_map.brk = addr;
2187 0 : break;
2188 : case PR_SET_MM_ARG_START:
2189 0 : prctl_map.arg_start = addr;
2190 0 : break;
2191 : case PR_SET_MM_ARG_END:
2192 0 : prctl_map.arg_end = addr;
2193 0 : break;
2194 : case PR_SET_MM_ENV_START:
2195 0 : prctl_map.env_start = addr;
2196 0 : break;
2197 : case PR_SET_MM_ENV_END:
2198 0 : prctl_map.env_end = addr;
2199 0 : break;
2200 : default:
2201 : goto out;
2202 : }
2203 :
2204 0 : error = validate_prctl_map_addr(&prctl_map);
2205 0 : if (error)
2206 : goto out;
2207 :
2208 : switch (opt) {
2209 : /*
2210 : * If command line arguments and environment
2211 : * are placed somewhere else on stack, we can
2212 : * set them up here, ARG_START/END to setup
2213 : * command line arguments and ENV_START/END
2214 : * for environment.
2215 : */
2216 : case PR_SET_MM_START_STACK:
2217 : case PR_SET_MM_ARG_START:
2218 : case PR_SET_MM_ARG_END:
2219 : case PR_SET_MM_ENV_START:
2220 : case PR_SET_MM_ENV_END:
2221 0 : if (!vma) {
2222 : error = -EFAULT;
2223 : goto out;
2224 : }
2225 : }
2226 :
2227 0 : mm->start_code = prctl_map.start_code;
2228 0 : mm->end_code = prctl_map.end_code;
2229 0 : mm->start_data = prctl_map.start_data;
2230 0 : mm->end_data = prctl_map.end_data;
2231 0 : mm->start_brk = prctl_map.start_brk;
2232 0 : mm->brk = prctl_map.brk;
2233 0 : mm->start_stack = prctl_map.start_stack;
2234 0 : mm->arg_start = prctl_map.arg_start;
2235 0 : mm->arg_end = prctl_map.arg_end;
2236 0 : mm->env_start = prctl_map.env_start;
2237 0 : mm->env_end = prctl_map.env_end;
2238 :
2239 0 : error = 0;
2240 : out:
2241 0 : spin_unlock(&mm->arg_lock);
2242 0 : mmap_read_unlock(mm);
2243 0 : return error;
2244 : }
2245 :
2246 : #ifdef CONFIG_CHECKPOINT_RESTORE
2247 : static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2248 : {
2249 : return put_user(me->clear_child_tid, tid_addr);
2250 : }
2251 : #else
2252 : static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2253 : {
2254 : return -EINVAL;
2255 : }
2256 : #endif
2257 :
2258 0 : static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2259 : {
2260 : /*
2261 : * If task has has_child_subreaper - all its descendants
2262 : * already have these flag too and new descendants will
2263 : * inherit it on fork, skip them.
2264 : *
2265 : * If we've found child_reaper - skip descendants in
2266 : * it's subtree as they will never get out pidns.
2267 : */
2268 0 : if (p->signal->has_child_subreaper ||
2269 0 : is_child_reaper(task_pid(p)))
2270 : return 0;
2271 :
2272 0 : p->signal->has_child_subreaper = 1;
2273 0 : return 1;
2274 : }
2275 :
2276 0 : int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2277 : {
2278 0 : return -EINVAL;
2279 : }
2280 :
2281 0 : int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2282 : unsigned long ctrl)
2283 : {
2284 0 : return -EINVAL;
2285 : }
2286 :
2287 : #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2288 :
2289 : #ifdef CONFIG_ANON_VMA_NAME
2290 :
2291 : #define ANON_VMA_NAME_MAX_LEN 80
2292 : #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2293 :
2294 : static inline bool is_valid_name_char(char ch)
2295 : {
2296 : /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2297 : return ch > 0x1f && ch < 0x7f &&
2298 : !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2299 : }
2300 :
2301 : static int prctl_set_vma(unsigned long opt, unsigned long addr,
2302 : unsigned long size, unsigned long arg)
2303 : {
2304 : struct mm_struct *mm = current->mm;
2305 : const char __user *uname;
2306 : struct anon_vma_name *anon_name = NULL;
2307 : int error;
2308 :
2309 : switch (opt) {
2310 : case PR_SET_VMA_ANON_NAME:
2311 : uname = (const char __user *)arg;
2312 : if (uname) {
2313 : char *name, *pch;
2314 :
2315 : name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2316 : if (IS_ERR(name))
2317 : return PTR_ERR(name);
2318 :
2319 : for (pch = name; *pch != '\0'; pch++) {
2320 : if (!is_valid_name_char(*pch)) {
2321 : kfree(name);
2322 : return -EINVAL;
2323 : }
2324 : }
2325 : /* anon_vma has its own copy */
2326 : anon_name = anon_vma_name_alloc(name);
2327 : kfree(name);
2328 : if (!anon_name)
2329 : return -ENOMEM;
2330 :
2331 : }
2332 :
2333 : mmap_write_lock(mm);
2334 : error = madvise_set_anon_name(mm, addr, size, anon_name);
2335 : mmap_write_unlock(mm);
2336 : anon_vma_name_put(anon_name);
2337 : break;
2338 : default:
2339 : error = -EINVAL;
2340 : }
2341 :
2342 : return error;
2343 : }
2344 :
2345 : #else /* CONFIG_ANON_VMA_NAME */
2346 : static int prctl_set_vma(unsigned long opt, unsigned long start,
2347 : unsigned long size, unsigned long arg)
2348 : {
2349 : return -EINVAL;
2350 : }
2351 : #endif /* CONFIG_ANON_VMA_NAME */
2352 :
2353 0 : static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2354 : unsigned long arg4, unsigned long arg5)
2355 : {
2356 0 : if (arg3 || arg4 || arg5)
2357 : return -EINVAL;
2358 :
2359 0 : if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN))
2360 : return -EINVAL;
2361 :
2362 0 : if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2363 0 : set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2364 0 : else if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2365 : return -EPERM; /* Cannot unset the flag */
2366 :
2367 : return 0;
2368 : }
2369 :
2370 : static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2371 : unsigned long arg4, unsigned long arg5)
2372 : {
2373 0 : if (arg2 || arg3 || arg4 || arg5)
2374 : return -EINVAL;
2375 :
2376 0 : return test_bit(MMF_HAS_MDWE, ¤t->mm->flags) ?
2377 0 : PR_MDWE_REFUSE_EXEC_GAIN : 0;
2378 : }
2379 :
2380 0 : SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2381 : unsigned long, arg4, unsigned long, arg5)
2382 : {
2383 0 : struct task_struct *me = current;
2384 : unsigned char comm[sizeof(me->comm)];
2385 : long error;
2386 :
2387 0 : error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2388 0 : if (error != -ENOSYS)
2389 : return error;
2390 :
2391 0 : error = 0;
2392 0 : switch (option) {
2393 : case PR_SET_PDEATHSIG:
2394 0 : if (!valid_signal(arg2)) {
2395 : error = -EINVAL;
2396 : break;
2397 : }
2398 0 : me->pdeath_signal = arg2;
2399 0 : break;
2400 : case PR_GET_PDEATHSIG:
2401 0 : error = put_user(me->pdeath_signal, (int __user *)arg2);
2402 0 : break;
2403 : case PR_GET_DUMPABLE:
2404 0 : error = get_dumpable(me->mm);
2405 0 : break;
2406 : case PR_SET_DUMPABLE:
2407 0 : if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2408 : error = -EINVAL;
2409 : break;
2410 : }
2411 0 : set_dumpable(me->mm, arg2);
2412 0 : break;
2413 :
2414 : case PR_SET_UNALIGN:
2415 : error = SET_UNALIGN_CTL(me, arg2);
2416 : break;
2417 : case PR_GET_UNALIGN:
2418 : error = GET_UNALIGN_CTL(me, arg2);
2419 : break;
2420 : case PR_SET_FPEMU:
2421 : error = SET_FPEMU_CTL(me, arg2);
2422 : break;
2423 : case PR_GET_FPEMU:
2424 : error = GET_FPEMU_CTL(me, arg2);
2425 : break;
2426 : case PR_SET_FPEXC:
2427 : error = SET_FPEXC_CTL(me, arg2);
2428 : break;
2429 : case PR_GET_FPEXC:
2430 : error = GET_FPEXC_CTL(me, arg2);
2431 : break;
2432 : case PR_GET_TIMING:
2433 0 : error = PR_TIMING_STATISTICAL;
2434 0 : break;
2435 : case PR_SET_TIMING:
2436 0 : if (arg2 != PR_TIMING_STATISTICAL)
2437 0 : error = -EINVAL;
2438 : break;
2439 : case PR_SET_NAME:
2440 0 : comm[sizeof(me->comm) - 1] = 0;
2441 0 : if (strncpy_from_user(comm, (char __user *)arg2,
2442 : sizeof(me->comm) - 1) < 0)
2443 : return -EFAULT;
2444 : set_task_comm(me, comm);
2445 : proc_comm_connector(me);
2446 : break;
2447 : case PR_GET_NAME:
2448 0 : get_task_comm(comm, me);
2449 0 : if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2450 : return -EFAULT;
2451 : break;
2452 : case PR_GET_ENDIAN:
2453 : error = GET_ENDIAN(me, arg2);
2454 : break;
2455 : case PR_SET_ENDIAN:
2456 : error = SET_ENDIAN(me, arg2);
2457 : break;
2458 : case PR_GET_SECCOMP:
2459 0 : error = prctl_get_seccomp();
2460 0 : break;
2461 : case PR_SET_SECCOMP:
2462 0 : error = prctl_set_seccomp(arg2, (char __user *)arg3);
2463 0 : break;
2464 : case PR_GET_TSC:
2465 : error = GET_TSC_CTL(arg2);
2466 : break;
2467 : case PR_SET_TSC:
2468 : error = SET_TSC_CTL(arg2);
2469 : break;
2470 : case PR_TASK_PERF_EVENTS_DISABLE:
2471 : error = perf_event_task_disable();
2472 : break;
2473 : case PR_TASK_PERF_EVENTS_ENABLE:
2474 : error = perf_event_task_enable();
2475 : break;
2476 : case PR_GET_TIMERSLACK:
2477 0 : if (current->timer_slack_ns > ULONG_MAX)
2478 : error = ULONG_MAX;
2479 : else
2480 0 : error = current->timer_slack_ns;
2481 : break;
2482 : case PR_SET_TIMERSLACK:
2483 0 : if (arg2 <= 0)
2484 0 : current->timer_slack_ns =
2485 0 : current->default_timer_slack_ns;
2486 : else
2487 0 : current->timer_slack_ns = arg2;
2488 : break;
2489 : case PR_MCE_KILL:
2490 0 : if (arg4 | arg5)
2491 : return -EINVAL;
2492 0 : switch (arg2) {
2493 : case PR_MCE_KILL_CLEAR:
2494 0 : if (arg3 != 0)
2495 : return -EINVAL;
2496 0 : current->flags &= ~PF_MCE_PROCESS;
2497 0 : break;
2498 : case PR_MCE_KILL_SET:
2499 0 : current->flags |= PF_MCE_PROCESS;
2500 0 : if (arg3 == PR_MCE_KILL_EARLY)
2501 0 : current->flags |= PF_MCE_EARLY;
2502 0 : else if (arg3 == PR_MCE_KILL_LATE)
2503 0 : current->flags &= ~PF_MCE_EARLY;
2504 0 : else if (arg3 == PR_MCE_KILL_DEFAULT)
2505 0 : current->flags &=
2506 : ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2507 : else
2508 : return -EINVAL;
2509 : break;
2510 : default:
2511 : return -EINVAL;
2512 : }
2513 : break;
2514 : case PR_MCE_KILL_GET:
2515 0 : if (arg2 | arg3 | arg4 | arg5)
2516 : return -EINVAL;
2517 0 : if (current->flags & PF_MCE_PROCESS)
2518 0 : error = (current->flags & PF_MCE_EARLY) ?
2519 0 : PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2520 : else
2521 : error = PR_MCE_KILL_DEFAULT;
2522 : break;
2523 : case PR_SET_MM:
2524 0 : error = prctl_set_mm(arg2, arg3, arg4, arg5);
2525 0 : break;
2526 : case PR_GET_TID_ADDRESS:
2527 : error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2528 : break;
2529 : case PR_SET_CHILD_SUBREAPER:
2530 0 : me->signal->is_child_subreaper = !!arg2;
2531 0 : if (!arg2)
2532 : break;
2533 :
2534 0 : walk_process_tree(me, propagate_has_child_subreaper, NULL);
2535 0 : break;
2536 : case PR_GET_CHILD_SUBREAPER:
2537 0 : error = put_user(me->signal->is_child_subreaper,
2538 : (int __user *)arg2);
2539 0 : break;
2540 : case PR_SET_NO_NEW_PRIVS:
2541 0 : if (arg2 != 1 || arg3 || arg4 || arg5)
2542 : return -EINVAL;
2543 :
2544 0 : task_set_no_new_privs(current);
2545 : break;
2546 : case PR_GET_NO_NEW_PRIVS:
2547 0 : if (arg2 || arg3 || arg4 || arg5)
2548 : return -EINVAL;
2549 0 : return task_no_new_privs(current) ? 1 : 0;
2550 : case PR_GET_THP_DISABLE:
2551 0 : if (arg2 || arg3 || arg4 || arg5)
2552 : return -EINVAL;
2553 0 : error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2554 : break;
2555 : case PR_SET_THP_DISABLE:
2556 0 : if (arg3 || arg4 || arg5)
2557 : return -EINVAL;
2558 0 : if (mmap_write_lock_killable(me->mm))
2559 : return -EINTR;
2560 0 : if (arg2)
2561 0 : set_bit(MMF_DISABLE_THP, &me->mm->flags);
2562 : else
2563 0 : clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2564 0 : mmap_write_unlock(me->mm);
2565 : break;
2566 : case PR_MPX_ENABLE_MANAGEMENT:
2567 : case PR_MPX_DISABLE_MANAGEMENT:
2568 : /* No longer implemented: */
2569 : return -EINVAL;
2570 : case PR_SET_FP_MODE:
2571 : error = SET_FP_MODE(me, arg2);
2572 : break;
2573 : case PR_GET_FP_MODE:
2574 : error = GET_FP_MODE(me);
2575 : break;
2576 : case PR_SVE_SET_VL:
2577 : error = SVE_SET_VL(arg2);
2578 : break;
2579 : case PR_SVE_GET_VL:
2580 : error = SVE_GET_VL();
2581 : break;
2582 : case PR_SME_SET_VL:
2583 : error = SME_SET_VL(arg2);
2584 : break;
2585 : case PR_SME_GET_VL:
2586 : error = SME_GET_VL();
2587 : break;
2588 : case PR_GET_SPECULATION_CTRL:
2589 0 : if (arg3 || arg4 || arg5)
2590 : return -EINVAL;
2591 0 : error = arch_prctl_spec_ctrl_get(me, arg2);
2592 0 : break;
2593 : case PR_SET_SPECULATION_CTRL:
2594 0 : if (arg4 || arg5)
2595 : return -EINVAL;
2596 0 : error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2597 0 : break;
2598 : case PR_PAC_RESET_KEYS:
2599 0 : if (arg3 || arg4 || arg5)
2600 : return -EINVAL;
2601 : error = PAC_RESET_KEYS(me, arg2);
2602 : break;
2603 : case PR_PAC_SET_ENABLED_KEYS:
2604 0 : if (arg4 || arg5)
2605 : return -EINVAL;
2606 : error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2607 : break;
2608 : case PR_PAC_GET_ENABLED_KEYS:
2609 0 : if (arg2 || arg3 || arg4 || arg5)
2610 : return -EINVAL;
2611 : error = PAC_GET_ENABLED_KEYS(me);
2612 : break;
2613 : case PR_SET_TAGGED_ADDR_CTRL:
2614 0 : if (arg3 || arg4 || arg5)
2615 : return -EINVAL;
2616 : error = SET_TAGGED_ADDR_CTRL(arg2);
2617 : break;
2618 : case PR_GET_TAGGED_ADDR_CTRL:
2619 0 : if (arg2 || arg3 || arg4 || arg5)
2620 : return -EINVAL;
2621 : error = GET_TAGGED_ADDR_CTRL();
2622 : break;
2623 : case PR_SET_IO_FLUSHER:
2624 0 : if (!capable(CAP_SYS_RESOURCE))
2625 : return -EPERM;
2626 :
2627 0 : if (arg3 || arg4 || arg5)
2628 : return -EINVAL;
2629 :
2630 0 : if (arg2 == 1)
2631 0 : current->flags |= PR_IO_FLUSHER;
2632 0 : else if (!arg2)
2633 0 : current->flags &= ~PR_IO_FLUSHER;
2634 : else
2635 : return -EINVAL;
2636 : break;
2637 : case PR_GET_IO_FLUSHER:
2638 0 : if (!capable(CAP_SYS_RESOURCE))
2639 : return -EPERM;
2640 :
2641 0 : if (arg2 || arg3 || arg4 || arg5)
2642 : return -EINVAL;
2643 :
2644 0 : error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2645 0 : break;
2646 : case PR_SET_SYSCALL_USER_DISPATCH:
2647 : error = set_syscall_user_dispatch(arg2, arg3, arg4,
2648 : (char __user *) arg5);
2649 : break;
2650 : #ifdef CONFIG_SCHED_CORE
2651 : case PR_SCHED_CORE:
2652 : error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2653 : break;
2654 : #endif
2655 : case PR_SET_MDWE:
2656 0 : error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2657 0 : break;
2658 : case PR_GET_MDWE:
2659 0 : error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2660 0 : break;
2661 : case PR_SET_VMA:
2662 : error = prctl_set_vma(arg2, arg3, arg4, arg5);
2663 : break;
2664 : default:
2665 : error = -EINVAL;
2666 : break;
2667 : }
2668 : return error;
2669 : }
2670 :
2671 0 : SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2672 : struct getcpu_cache __user *, unused)
2673 : {
2674 0 : int err = 0;
2675 0 : int cpu = raw_smp_processor_id();
2676 :
2677 0 : if (cpup)
2678 0 : err |= put_user(cpu, cpup);
2679 0 : if (nodep)
2680 0 : err |= put_user(cpu_to_node(cpu), nodep);
2681 0 : return err ? -EFAULT : 0;
2682 : }
2683 :
2684 : /**
2685 : * do_sysinfo - fill in sysinfo struct
2686 : * @info: pointer to buffer to fill
2687 : */
2688 0 : static int do_sysinfo(struct sysinfo *info)
2689 : {
2690 : unsigned long mem_total, sav_total;
2691 : unsigned int mem_unit, bitcount;
2692 : struct timespec64 tp;
2693 :
2694 0 : memset(info, 0, sizeof(struct sysinfo));
2695 :
2696 0 : ktime_get_boottime_ts64(&tp);
2697 0 : timens_add_boottime(&tp);
2698 0 : info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2699 :
2700 0 : get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2701 :
2702 0 : info->procs = nr_threads;
2703 :
2704 0 : si_meminfo(info);
2705 0 : si_swapinfo(info);
2706 :
2707 : /*
2708 : * If the sum of all the available memory (i.e. ram + swap)
2709 : * is less than can be stored in a 32 bit unsigned long then
2710 : * we can be binary compatible with 2.2.x kernels. If not,
2711 : * well, in that case 2.2.x was broken anyways...
2712 : *
2713 : * -Erik Andersen <andersee@debian.org>
2714 : */
2715 :
2716 0 : mem_total = info->totalram + info->totalswap;
2717 0 : if (mem_total < info->totalram || mem_total < info->totalswap)
2718 : goto out;
2719 0 : bitcount = 0;
2720 0 : mem_unit = info->mem_unit;
2721 0 : while (mem_unit > 1) {
2722 0 : bitcount++;
2723 0 : mem_unit >>= 1;
2724 0 : sav_total = mem_total;
2725 0 : mem_total <<= 1;
2726 0 : if (mem_total < sav_total)
2727 : goto out;
2728 : }
2729 :
2730 : /*
2731 : * If mem_total did not overflow, multiply all memory values by
2732 : * info->mem_unit and set it to 1. This leaves things compatible
2733 : * with 2.2.x, and also retains compatibility with earlier 2.4.x
2734 : * kernels...
2735 : */
2736 :
2737 0 : info->mem_unit = 1;
2738 0 : info->totalram <<= bitcount;
2739 0 : info->freeram <<= bitcount;
2740 0 : info->sharedram <<= bitcount;
2741 0 : info->bufferram <<= bitcount;
2742 0 : info->totalswap <<= bitcount;
2743 0 : info->freeswap <<= bitcount;
2744 0 : info->totalhigh <<= bitcount;
2745 0 : info->freehigh <<= bitcount;
2746 :
2747 : out:
2748 0 : return 0;
2749 : }
2750 :
2751 0 : SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2752 : {
2753 : struct sysinfo val;
2754 :
2755 0 : do_sysinfo(&val);
2756 :
2757 0 : if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2758 : return -EFAULT;
2759 :
2760 0 : return 0;
2761 : }
2762 :
2763 : #ifdef CONFIG_COMPAT
2764 : struct compat_sysinfo {
2765 : s32 uptime;
2766 : u32 loads[3];
2767 : u32 totalram;
2768 : u32 freeram;
2769 : u32 sharedram;
2770 : u32 bufferram;
2771 : u32 totalswap;
2772 : u32 freeswap;
2773 : u16 procs;
2774 : u16 pad;
2775 : u32 totalhigh;
2776 : u32 freehigh;
2777 : u32 mem_unit;
2778 : char _f[20-2*sizeof(u32)-sizeof(int)];
2779 : };
2780 :
2781 : COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2782 : {
2783 : struct sysinfo s;
2784 : struct compat_sysinfo s_32;
2785 :
2786 : do_sysinfo(&s);
2787 :
2788 : /* Check to see if any memory value is too large for 32-bit and scale
2789 : * down if needed
2790 : */
2791 : if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2792 : int bitcount = 0;
2793 :
2794 : while (s.mem_unit < PAGE_SIZE) {
2795 : s.mem_unit <<= 1;
2796 : bitcount++;
2797 : }
2798 :
2799 : s.totalram >>= bitcount;
2800 : s.freeram >>= bitcount;
2801 : s.sharedram >>= bitcount;
2802 : s.bufferram >>= bitcount;
2803 : s.totalswap >>= bitcount;
2804 : s.freeswap >>= bitcount;
2805 : s.totalhigh >>= bitcount;
2806 : s.freehigh >>= bitcount;
2807 : }
2808 :
2809 : memset(&s_32, 0, sizeof(s_32));
2810 : s_32.uptime = s.uptime;
2811 : s_32.loads[0] = s.loads[0];
2812 : s_32.loads[1] = s.loads[1];
2813 : s_32.loads[2] = s.loads[2];
2814 : s_32.totalram = s.totalram;
2815 : s_32.freeram = s.freeram;
2816 : s_32.sharedram = s.sharedram;
2817 : s_32.bufferram = s.bufferram;
2818 : s_32.totalswap = s.totalswap;
2819 : s_32.freeswap = s.freeswap;
2820 : s_32.procs = s.procs;
2821 : s_32.totalhigh = s.totalhigh;
2822 : s_32.freehigh = s.freehigh;
2823 : s_32.mem_unit = s.mem_unit;
2824 : if (copy_to_user(info, &s_32, sizeof(s_32)))
2825 : return -EFAULT;
2826 : return 0;
2827 : }
2828 : #endif /* CONFIG_COMPAT */
|