LCOV - code coverage report
Current view: top level - lib - maple_tree.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 3 2428 0.1 %
Date: 2023-03-27 20:00:47 Functions: 1 130 0.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0+
       2             : /*
       3             :  * Maple Tree implementation
       4             :  * Copyright (c) 2018-2022 Oracle Corporation
       5             :  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
       6             :  *          Matthew Wilcox <willy@infradead.org>
       7             :  */
       8             : 
       9             : /*
      10             :  * DOC: Interesting implementation details of the Maple Tree
      11             :  *
      12             :  * Each node type has a number of slots for entries and a number of slots for
      13             :  * pivots.  In the case of dense nodes, the pivots are implied by the position
      14             :  * and are simply the slot index + the minimum of the node.
      15             :  *
      16             :  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
      17             :  * indicate that the tree is specifying ranges,  Pivots may appear in the
      18             :  * subtree with an entry attached to the value where as keys are unique to a
      19             :  * specific position of a B-tree.  Pivot values are inclusive of the slot with
      20             :  * the same index.
      21             :  *
      22             :  *
      23             :  * The following illustrates the layout of a range64 nodes slots and pivots.
      24             :  *
      25             :  *
      26             :  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
      27             :  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
      28             :  *           │   │   │   │     │    │    │    │    └─ Implied maximum
      29             :  *           │   │   │   │     │    │    │    └─ Pivot 14
      30             :  *           │   │   │   │     │    │    └─ Pivot 13
      31             :  *           │   │   │   │     │    └─ Pivot 12
      32             :  *           │   │   │   │     └─ Pivot 11
      33             :  *           │   │   │   └─ Pivot 2
      34             :  *           │   │   └─ Pivot 1
      35             :  *           │   └─ Pivot 0
      36             :  *           └─  Implied minimum
      37             :  *
      38             :  * Slot contents:
      39             :  *  Internal (non-leaf) nodes contain pointers to other nodes.
      40             :  *  Leaf nodes contain entries.
      41             :  *
      42             :  * The location of interest is often referred to as an offset.  All offsets have
      43             :  * a slot, but the last offset has an implied pivot from the node above (or
      44             :  * UINT_MAX for the root node.
      45             :  *
      46             :  * Ranges complicate certain write activities.  When modifying any of
      47             :  * the B-tree variants, it is known that one entry will either be added or
      48             :  * deleted.  When modifying the Maple Tree, one store operation may overwrite
      49             :  * the entire data set, or one half of the tree, or the middle half of the tree.
      50             :  *
      51             :  */
      52             : 
      53             : 
      54             : #include <linux/maple_tree.h>
      55             : #include <linux/xarray.h>
      56             : #include <linux/types.h>
      57             : #include <linux/export.h>
      58             : #include <linux/slab.h>
      59             : #include <linux/limits.h>
      60             : #include <asm/barrier.h>
      61             : 
      62             : #define CREATE_TRACE_POINTS
      63             : #include <trace/events/maple_tree.h>
      64             : 
      65             : #define MA_ROOT_PARENT 1
      66             : 
      67             : /*
      68             :  * Maple state flags
      69             :  * * MA_STATE_BULK              - Bulk insert mode
      70             :  * * MA_STATE_REBALANCE         - Indicate a rebalance during bulk insert
      71             :  * * MA_STATE_PREALLOC          - Preallocated nodes, WARN_ON allocation
      72             :  */
      73             : #define MA_STATE_BULK           1
      74             : #define MA_STATE_REBALANCE      2
      75             : #define MA_STATE_PREALLOC       4
      76             : 
      77             : #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
      78             : #define ma_mnode_ptr(x) ((struct maple_node *)(x))
      79             : #define ma_enode_ptr(x) ((struct maple_enode *)(x))
      80             : static struct kmem_cache *maple_node_cache;
      81             : 
      82             : #ifdef CONFIG_DEBUG_MAPLE_TREE
      83             : static const unsigned long mt_max[] = {
      84             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      85             :         [maple_leaf_64]         = ULONG_MAX,
      86             :         [maple_range_64]        = ULONG_MAX,
      87             :         [maple_arange_64]       = ULONG_MAX,
      88             : };
      89             : #define mt_node_max(x) mt_max[mte_node_type(x)]
      90             : #endif
      91             : 
      92             : static const unsigned char mt_slots[] = {
      93             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      94             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS,
      95             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS,
      96             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS,
      97             : };
      98             : #define mt_slot_count(x) mt_slots[mte_node_type(x)]
      99             : 
     100             : static const unsigned char mt_pivots[] = {
     101             :         [maple_dense]           = 0,
     102             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS - 1,
     103             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS - 1,
     104             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS - 1,
     105             : };
     106             : #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
     107             : 
     108             : static const unsigned char mt_min_slots[] = {
     109             :         [maple_dense]           = MAPLE_NODE_SLOTS / 2,
     110             :         [maple_leaf_64]         = (MAPLE_RANGE64_SLOTS / 2) - 2,
     111             :         [maple_range_64]        = (MAPLE_RANGE64_SLOTS / 2) - 2,
     112             :         [maple_arange_64]       = (MAPLE_ARANGE64_SLOTS / 2) - 1,
     113             : };
     114             : #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
     115             : 
     116             : #define MAPLE_BIG_NODE_SLOTS    (MAPLE_RANGE64_SLOTS * 2 + 2)
     117             : #define MAPLE_BIG_NODE_GAPS     (MAPLE_ARANGE64_SLOTS * 2 + 1)
     118             : 
     119             : struct maple_big_node {
     120             :         struct maple_pnode *parent;
     121             :         unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
     122             :         union {
     123             :                 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
     124             :                 struct {
     125             :                         unsigned long padding[MAPLE_BIG_NODE_GAPS];
     126             :                         unsigned long gap[MAPLE_BIG_NODE_GAPS];
     127             :                 };
     128             :         };
     129             :         unsigned char b_end;
     130             :         enum maple_type type;
     131             : };
     132             : 
     133             : /*
     134             :  * The maple_subtree_state is used to build a tree to replace a segment of an
     135             :  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
     136             :  * dead node and restart on updates.
     137             :  */
     138             : struct maple_subtree_state {
     139             :         struct ma_state *orig_l;        /* Original left side of subtree */
     140             :         struct ma_state *orig_r;        /* Original right side of subtree */
     141             :         struct ma_state *l;             /* New left side of subtree */
     142             :         struct ma_state *m;             /* New middle of subtree (rare) */
     143             :         struct ma_state *r;             /* New right side of subtree */
     144             :         struct ma_topiary *free;        /* nodes to be freed */
     145             :         struct ma_topiary *destroy;     /* Nodes to be destroyed (walked and freed) */
     146             :         struct maple_big_node *bn;
     147             : };
     148             : 
     149             : #ifdef CONFIG_KASAN_STACK
     150             : /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
     151             : #define noinline_for_kasan noinline_for_stack
     152             : #else
     153             : #define noinline_for_kasan inline
     154             : #endif
     155             : 
     156             : /* Functions */
     157             : static inline struct maple_node *mt_alloc_one(gfp_t gfp)
     158             : {
     159           0 :         return kmem_cache_alloc(maple_node_cache, gfp);
     160             : }
     161             : 
     162             : static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
     163             : {
     164           0 :         return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
     165             : }
     166             : 
     167             : static inline void mt_free_bulk(size_t size, void __rcu **nodes)
     168             : {
     169           0 :         kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
     170             : }
     171             : 
     172           0 : static void mt_free_rcu(struct rcu_head *head)
     173             : {
     174           0 :         struct maple_node *node = container_of(head, struct maple_node, rcu);
     175             : 
     176           0 :         kmem_cache_free(maple_node_cache, node);
     177           0 : }
     178             : 
     179             : /*
     180             :  * ma_free_rcu() - Use rcu callback to free a maple node
     181             :  * @node: The node to free
     182             :  *
     183             :  * The maple tree uses the parent pointer to indicate this node is no longer in
     184             :  * use and will be freed.
     185             :  */
     186             : static void ma_free_rcu(struct maple_node *node)
     187             : {
     188           0 :         node->parent = ma_parent_ptr(node);
     189           0 :         call_rcu(&node->rcu, mt_free_rcu);
     190             : }
     191             : 
     192           0 : static void mas_set_height(struct ma_state *mas)
     193             : {
     194           0 :         unsigned int new_flags = mas->tree->ma_flags;
     195             : 
     196           0 :         new_flags &= ~MT_FLAGS_HEIGHT_MASK;
     197           0 :         BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
     198           0 :         new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
     199           0 :         mas->tree->ma_flags = new_flags;
     200           0 : }
     201             : 
     202             : static unsigned int mas_mt_height(struct ma_state *mas)
     203             : {
     204           0 :         return mt_height(mas->tree);
     205             : }
     206             : 
     207             : static inline enum maple_type mte_node_type(const struct maple_enode *entry)
     208             : {
     209           0 :         return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
     210             :                 MAPLE_NODE_TYPE_MASK;
     211             : }
     212             : 
     213             : static inline bool ma_is_dense(const enum maple_type type)
     214             : {
     215           0 :         return type < maple_leaf_64;
     216             : }
     217             : 
     218             : static inline bool ma_is_leaf(const enum maple_type type)
     219             : {
     220           0 :         return type < maple_range_64;
     221             : }
     222             : 
     223             : static inline bool mte_is_leaf(const struct maple_enode *entry)
     224             : {
     225           0 :         return ma_is_leaf(mte_node_type(entry));
     226             : }
     227             : 
     228             : /*
     229             :  * We also reserve values with the bottom two bits set to '10' which are
     230             :  * below 4096
     231             :  */
     232             : static inline bool mt_is_reserved(const void *entry)
     233             : {
     234           0 :         return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
     235           0 :                 xa_is_internal(entry);
     236             : }
     237             : 
     238             : static inline void mas_set_err(struct ma_state *mas, long err)
     239             : {
     240           0 :         mas->node = MA_ERROR(err);
     241             : }
     242             : 
     243             : static inline bool mas_is_ptr(struct ma_state *mas)
     244             : {
     245           0 :         return mas->node == MAS_ROOT;
     246             : }
     247             : 
     248             : static inline bool mas_is_start(struct ma_state *mas)
     249             : {
     250           0 :         return mas->node == MAS_START;
     251             : }
     252             : 
     253           0 : bool mas_is_err(struct ma_state *mas)
     254             : {
     255           0 :         return xa_is_err(mas->node);
     256             : }
     257             : 
     258             : static inline bool mas_searchable(struct ma_state *mas)
     259             : {
     260           0 :         if (mas_is_none(mas))
     261             :                 return false;
     262             : 
     263           0 :         if (mas_is_ptr(mas))
     264             :                 return false;
     265             : 
     266             :         return true;
     267             : }
     268             : 
     269             : static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
     270             : {
     271           0 :         return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
     272             : }
     273             : 
     274             : /*
     275             :  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
     276             :  * @entry: The maple encoded node
     277             :  *
     278             :  * Return: a maple topiary pointer
     279             :  */
     280             : static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
     281             : {
     282           0 :         return (struct maple_topiary *)
     283           0 :                 ((unsigned long)entry & ~MAPLE_NODE_MASK);
     284             : }
     285             : 
     286             : /*
     287             :  * mas_mn() - Get the maple state node.
     288             :  * @mas: The maple state
     289             :  *
     290             :  * Return: the maple node (not encoded - bare pointer).
     291             :  */
     292             : static inline struct maple_node *mas_mn(const struct ma_state *mas)
     293             : {
     294           0 :         return mte_to_node(mas->node);
     295             : }
     296             : 
     297             : /*
     298             :  * mte_set_node_dead() - Set a maple encoded node as dead.
     299             :  * @mn: The maple encoded node.
     300             :  */
     301             : static inline void mte_set_node_dead(struct maple_enode *mn)
     302             : {
     303           0 :         mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
     304           0 :         smp_wmb(); /* Needed for RCU */
     305             : }
     306             : 
     307             : /* Bit 1 indicates the root is a node */
     308             : #define MAPLE_ROOT_NODE                 0x02
     309             : /* maple_type stored bit 3-6 */
     310             : #define MAPLE_ENODE_TYPE_SHIFT          0x03
     311             : /* Bit 2 means a NULL somewhere below */
     312             : #define MAPLE_ENODE_NULL                0x04
     313             : 
     314             : static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
     315             :                                              enum maple_type type)
     316             : {
     317           0 :         return (void *)((unsigned long)node |
     318           0 :                         (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
     319             : }
     320             : 
     321             : static inline void *mte_mk_root(const struct maple_enode *node)
     322             : {
     323           0 :         return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
     324             : }
     325             : 
     326             : static inline void *mte_safe_root(const struct maple_enode *node)
     327             : {
     328           0 :         return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
     329             : }
     330             : 
     331             : static inline void *mte_set_full(const struct maple_enode *node)
     332             : {
     333             :         return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
     334             : }
     335             : 
     336             : static inline void *mte_clear_full(const struct maple_enode *node)
     337             : {
     338             :         return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
     339             : }
     340             : 
     341             : static inline bool mte_has_null(const struct maple_enode *node)
     342             : {
     343             :         return (unsigned long)node & MAPLE_ENODE_NULL;
     344             : }
     345             : 
     346             : static inline bool ma_is_root(struct maple_node *node)
     347             : {
     348           0 :         return ((unsigned long)node->parent & MA_ROOT_PARENT);
     349             : }
     350             : 
     351             : static inline bool mte_is_root(const struct maple_enode *node)
     352             : {
     353           0 :         return ma_is_root(mte_to_node(node));
     354             : }
     355             : 
     356             : static inline bool mas_is_root_limits(const struct ma_state *mas)
     357             : {
     358           0 :         return !mas->min && mas->max == ULONG_MAX;
     359             : }
     360             : 
     361             : static inline bool mt_is_alloc(struct maple_tree *mt)
     362             : {
     363           0 :         return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
     364             : }
     365             : 
     366             : /*
     367             :  * The Parent Pointer
     368             :  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
     369             :  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
     370             :  * bit values need an extra bit to store the offset.  This extra bit comes from
     371             :  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
     372             :  * indicate if bit 2 is part of the type or the slot.
     373             :  *
     374             :  * Note types:
     375             :  *  0x??1 = Root
     376             :  *  0x?00 = 16 bit nodes
     377             :  *  0x010 = 32 bit nodes
     378             :  *  0x110 = 64 bit nodes
     379             :  *
     380             :  * Slot size and alignment
     381             :  *  0b??1 : Root
     382             :  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
     383             :  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
     384             :  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
     385             :  */
     386             : 
     387             : #define MAPLE_PARENT_ROOT               0x01
     388             : 
     389             : #define MAPLE_PARENT_SLOT_SHIFT         0x03
     390             : #define MAPLE_PARENT_SLOT_MASK          0xF8
     391             : 
     392             : #define MAPLE_PARENT_16B_SLOT_SHIFT     0x02
     393             : #define MAPLE_PARENT_16B_SLOT_MASK      0xFC
     394             : 
     395             : #define MAPLE_PARENT_RANGE64            0x06
     396             : #define MAPLE_PARENT_RANGE32            0x04
     397             : #define MAPLE_PARENT_NOT_RANGE16        0x02
     398             : 
     399             : /*
     400             :  * mte_parent_shift() - Get the parent shift for the slot storage.
     401             :  * @parent: The parent pointer cast as an unsigned long
     402             :  * Return: The shift into that pointer to the star to of the slot
     403             :  */
     404             : static inline unsigned long mte_parent_shift(unsigned long parent)
     405             : {
     406             :         /* Note bit 1 == 0 means 16B */
     407           0 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     408             :                 return MAPLE_PARENT_SLOT_SHIFT;
     409             : 
     410             :         return MAPLE_PARENT_16B_SLOT_SHIFT;
     411             : }
     412             : 
     413             : /*
     414             :  * mte_parent_slot_mask() - Get the slot mask for the parent.
     415             :  * @parent: The parent pointer cast as an unsigned long.
     416             :  * Return: The slot mask for that parent.
     417             :  */
     418             : static inline unsigned long mte_parent_slot_mask(unsigned long parent)
     419             : {
     420             :         /* Note bit 1 == 0 means 16B */
     421           0 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     422             :                 return MAPLE_PARENT_SLOT_MASK;
     423             : 
     424             :         return MAPLE_PARENT_16B_SLOT_MASK;
     425             : }
     426             : 
     427             : /*
     428             :  * mas_parent_enum() - Return the maple_type of the parent from the stored
     429             :  * parent type.
     430             :  * @mas: The maple state
     431             :  * @node: The maple_enode to extract the parent's enum
     432             :  * Return: The node->parent maple_type
     433             :  */
     434             : static inline
     435             : enum maple_type mte_parent_enum(struct maple_enode *p_enode,
     436             :                                 struct maple_tree *mt)
     437             : {
     438             :         unsigned long p_type;
     439             : 
     440           0 :         p_type = (unsigned long)p_enode;
     441           0 :         if (p_type & MAPLE_PARENT_ROOT)
     442             :                 return 0; /* Validated in the caller. */
     443             : 
     444           0 :         p_type &= MAPLE_NODE_MASK;
     445           0 :         p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
     446             : 
     447           0 :         switch (p_type) {
     448             :         case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
     449           0 :                 if (mt_is_alloc(mt))
     450             :                         return maple_arange_64;
     451             :                 return maple_range_64;
     452             :         }
     453             : 
     454             :         return 0;
     455             : }
     456             : 
     457             : static inline
     458           0 : enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
     459             : {
     460           0 :         return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
     461             : }
     462             : 
     463             : /*
     464             :  * mte_set_parent() - Set the parent node and encode the slot
     465             :  * @enode: The encoded maple node.
     466             :  * @parent: The encoded maple node that is the parent of @enode.
     467             :  * @slot: The slot that @enode resides in @parent.
     468             :  *
     469             :  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
     470             :  * parent type.
     471             :  */
     472             : static inline
     473           0 : void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
     474             :                     unsigned char slot)
     475             : {
     476           0 :         unsigned long val = (unsigned long)parent;
     477             :         unsigned long shift;
     478             :         unsigned long type;
     479           0 :         enum maple_type p_type = mte_node_type(parent);
     480             : 
     481           0 :         BUG_ON(p_type == maple_dense);
     482           0 :         BUG_ON(p_type == maple_leaf_64);
     483             : 
     484           0 :         switch (p_type) {
     485             :         case maple_range_64:
     486             :         case maple_arange_64:
     487             :                 shift = MAPLE_PARENT_SLOT_SHIFT;
     488             :                 type = MAPLE_PARENT_RANGE64;
     489             :                 break;
     490             :         default:
     491             :         case maple_dense:
     492             :         case maple_leaf_64:
     493           0 :                 shift = type = 0;
     494           0 :                 break;
     495             :         }
     496             : 
     497           0 :         val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
     498           0 :         val |= (slot << shift) | type;
     499           0 :         mte_to_node(enode)->parent = ma_parent_ptr(val);
     500           0 : }
     501             : 
     502             : /*
     503             :  * mte_parent_slot() - get the parent slot of @enode.
     504             :  * @enode: The encoded maple node.
     505             :  *
     506             :  * Return: The slot in the parent node where @enode resides.
     507             :  */
     508             : static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
     509             : {
     510           0 :         unsigned long val = (unsigned long)mte_to_node(enode)->parent;
     511             : 
     512           0 :         if (val & MA_ROOT_PARENT)
     513             :                 return 0;
     514             : 
     515             :         /*
     516             :          * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
     517             :          * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
     518             :          */
     519           0 :         return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
     520             : }
     521             : 
     522             : /*
     523             :  * mte_parent() - Get the parent of @node.
     524             :  * @node: The encoded maple node.
     525             :  *
     526             :  * Return: The parent maple node.
     527             :  */
     528             : static inline struct maple_node *mte_parent(const struct maple_enode *enode)
     529             : {
     530           0 :         return (void *)((unsigned long)
     531           0 :                         (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
     532             : }
     533             : 
     534             : /*
     535             :  * ma_dead_node() - check if the @enode is dead.
     536             :  * @enode: The encoded maple node
     537             :  *
     538             :  * Return: true if dead, false otherwise.
     539             :  */
     540             : static inline bool ma_dead_node(const struct maple_node *node)
     541             : {
     542           0 :         struct maple_node *parent = (void *)((unsigned long)
     543           0 :                                              node->parent & ~MAPLE_NODE_MASK);
     544             : 
     545           0 :         return (parent == node);
     546             : }
     547             : /*
     548             :  * mte_dead_node() - check if the @enode is dead.
     549             :  * @enode: The encoded maple node
     550             :  *
     551             :  * Return: true if dead, false otherwise.
     552             :  */
     553             : static inline bool mte_dead_node(const struct maple_enode *enode)
     554             : {
     555             :         struct maple_node *parent, *node;
     556             : 
     557           0 :         node = mte_to_node(enode);
     558           0 :         parent = mte_parent(enode);
     559           0 :         return (parent == node);
     560             : }
     561             : 
     562             : /*
     563             :  * mas_allocated() - Get the number of nodes allocated in a maple state.
     564             :  * @mas: The maple state
     565             :  *
     566             :  * The ma_state alloc member is overloaded to hold a pointer to the first
     567             :  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
     568             :  * set, then the alloc contains the number of requested nodes.  If there is an
     569             :  * allocated node, then the total allocated nodes is in that node.
     570             :  *
     571             :  * Return: The total number of nodes allocated
     572             :  */
     573             : static inline unsigned long mas_allocated(const struct ma_state *mas)
     574             : {
     575           0 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
     576             :                 return 0;
     577             : 
     578           0 :         return mas->alloc->total;
     579             : }
     580             : 
     581             : /*
     582             :  * mas_set_alloc_req() - Set the requested number of allocations.
     583             :  * @mas: the maple state
     584             :  * @count: the number of allocations.
     585             :  *
     586             :  * The requested number of allocations is either in the first allocated node,
     587             :  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
     588             :  * no allocated node.  Set the request either in the node or do the necessary
     589             :  * encoding to store in @mas->alloc directly.
     590             :  */
     591             : static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
     592             : {
     593           0 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
     594           0 :                 if (!count)
     595           0 :                         mas->alloc = NULL;
     596             :                 else
     597           0 :                         mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
     598             :                 return;
     599             :         }
     600             : 
     601           0 :         mas->alloc->request_count = count;
     602             : }
     603             : 
     604             : /*
     605             :  * mas_alloc_req() - get the requested number of allocations.
     606             :  * @mas: The maple state
     607             :  *
     608             :  * The alloc count is either stored directly in @mas, or in
     609             :  * @mas->alloc->request_count if there is at least one node allocated.  Decode
     610             :  * the request count if it's stored directly in @mas->alloc.
     611             :  *
     612             :  * Return: The allocation request count.
     613             :  */
     614             : static inline unsigned int mas_alloc_req(const struct ma_state *mas)
     615             : {
     616           0 :         if ((unsigned long)mas->alloc & 0x1)
     617           0 :                 return (unsigned long)(mas->alloc) >> 1;
     618           0 :         else if (mas->alloc)
     619           0 :                 return mas->alloc->request_count;
     620             :         return 0;
     621             : }
     622             : 
     623             : /*
     624             :  * ma_pivots() - Get a pointer to the maple node pivots.
     625             :  * @node - the maple node
     626             :  * @type - the node type
     627             :  *
     628             :  * Return: A pointer to the maple node pivots
     629             :  */
     630             : static inline unsigned long *ma_pivots(struct maple_node *node,
     631             :                                            enum maple_type type)
     632             : {
     633           0 :         switch (type) {
     634             :         case maple_arange_64:
     635           0 :                 return node->ma64.pivot;
     636             :         case maple_range_64:
     637             :         case maple_leaf_64:
     638           0 :                 return node->mr64.pivot;
     639             :         case maple_dense:
     640             :                 return NULL;
     641             :         }
     642             :         return NULL;
     643             : }
     644             : 
     645             : /*
     646             :  * ma_gaps() - Get a pointer to the maple node gaps.
     647             :  * @node - the maple node
     648             :  * @type - the node type
     649             :  *
     650             :  * Return: A pointer to the maple node gaps
     651             :  */
     652             : static inline unsigned long *ma_gaps(struct maple_node *node,
     653             :                                      enum maple_type type)
     654             : {
     655           0 :         switch (type) {
     656             :         case maple_arange_64:
     657           0 :                 return node->ma64.gap;
     658             :         case maple_range_64:
     659             :         case maple_leaf_64:
     660             :         case maple_dense:
     661             :                 return NULL;
     662             :         }
     663             :         return NULL;
     664             : }
     665             : 
     666             : /*
     667             :  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
     668             :  * @mn: The maple encoded node.
     669             :  * @piv: The pivot.
     670             :  *
     671             :  * Return: the pivot at @piv of @mn.
     672             :  */
     673           0 : static inline unsigned long mte_pivot(const struct maple_enode *mn,
     674             :                                  unsigned char piv)
     675             : {
     676           0 :         struct maple_node *node = mte_to_node(mn);
     677           0 :         enum maple_type type = mte_node_type(mn);
     678             : 
     679           0 :         if (piv >= mt_pivots[type]) {
     680           0 :                 WARN_ON(1);
     681           0 :                 return 0;
     682             :         }
     683           0 :         switch (type) {
     684             :         case maple_arange_64:
     685           0 :                 return node->ma64.pivot[piv];
     686             :         case maple_range_64:
     687             :         case maple_leaf_64:
     688           0 :                 return node->mr64.pivot[piv];
     689             :         case maple_dense:
     690             :                 return 0;
     691             :         }
     692             :         return 0;
     693             : }
     694             : 
     695             : /*
     696             :  * mas_safe_pivot() - get the pivot at @piv or mas->max.
     697             :  * @mas: The maple state
     698             :  * @pivots: The pointer to the maple node pivots
     699             :  * @piv: The pivot to fetch
     700             :  * @type: The maple node type
     701             :  *
     702             :  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
     703             :  * otherwise.
     704             :  */
     705             : static inline unsigned long
     706             : mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
     707             :                unsigned char piv, enum maple_type type)
     708             : {
     709           0 :         if (piv >= mt_pivots[type])
     710           0 :                 return mas->max;
     711             : 
     712           0 :         return pivots[piv];
     713             : }
     714             : 
     715             : /*
     716             :  * mas_safe_min() - Return the minimum for a given offset.
     717             :  * @mas: The maple state
     718             :  * @pivots: The pointer to the maple node pivots
     719             :  * @offset: The offset into the pivot array
     720             :  *
     721             :  * Return: The minimum range value that is contained in @offset.
     722             :  */
     723             : static inline unsigned long
     724             : mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
     725             : {
     726           0 :         if (likely(offset))
     727           0 :                 return pivots[offset - 1] + 1;
     728             : 
     729           0 :         return mas->min;
     730             : }
     731             : 
     732             : /*
     733             :  * mas_logical_pivot() - Get the logical pivot of a given offset.
     734             :  * @mas: The maple state
     735             :  * @pivots: The pointer to the maple node pivots
     736             :  * @offset: The offset into the pivot array
     737             :  * @type: The maple node type
     738             :  *
     739             :  * When there is no value at a pivot (beyond the end of the data), then the
     740             :  * pivot is actually @mas->max.
     741             :  *
     742             :  * Return: the logical pivot of a given @offset.
     743             :  */
     744             : static inline unsigned long
     745             : mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
     746             :                   unsigned char offset, enum maple_type type)
     747             : {
     748           0 :         unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
     749             : 
     750           0 :         if (likely(lpiv))
     751             :                 return lpiv;
     752             : 
     753           0 :         if (likely(offset))
     754             :                 return mas->max;
     755             : 
     756             :         return lpiv;
     757             : }
     758             : 
     759             : /*
     760             :  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
     761             :  * @mn: The encoded maple node
     762             :  * @piv: The pivot offset
     763             :  * @val: The value of the pivot
     764             :  */
     765           0 : static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
     766             :                                 unsigned long val)
     767             : {
     768           0 :         struct maple_node *node = mte_to_node(mn);
     769           0 :         enum maple_type type = mte_node_type(mn);
     770             : 
     771           0 :         BUG_ON(piv >= mt_pivots[type]);
     772           0 :         switch (type) {
     773             :         default:
     774             :         case maple_range_64:
     775             :         case maple_leaf_64:
     776           0 :                 node->mr64.pivot[piv] = val;
     777           0 :                 break;
     778             :         case maple_arange_64:
     779           0 :                 node->ma64.pivot[piv] = val;
     780           0 :                 break;
     781             :         case maple_dense:
     782             :                 break;
     783             :         }
     784             : 
     785           0 : }
     786             : 
     787             : /*
     788             :  * ma_slots() - Get a pointer to the maple node slots.
     789             :  * @mn: The maple node
     790             :  * @mt: The maple node type
     791             :  *
     792             :  * Return: A pointer to the maple node slots
     793             :  */
     794             : static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
     795             : {
     796           0 :         switch (mt) {
     797             :         default:
     798             :         case maple_arange_64:
     799           0 :                 return mn->ma64.slot;
     800             :         case maple_range_64:
     801             :         case maple_leaf_64:
     802           0 :                 return mn->mr64.slot;
     803             :         case maple_dense:
     804           0 :                 return mn->slot;
     805             :         }
     806             : }
     807             : 
     808             : static inline bool mt_locked(const struct maple_tree *mt)
     809             : {
     810             :         return mt_external_lock(mt) ? mt_lock_is_held(mt) :
     811             :                 lockdep_is_held(&mt->ma_lock);
     812             : }
     813             : 
     814             : static inline void *mt_slot(const struct maple_tree *mt,
     815             :                 void __rcu **slots, unsigned char offset)
     816             : {
     817           0 :         return rcu_dereference_check(slots[offset], mt_locked(mt));
     818             : }
     819             : 
     820             : /*
     821             :  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
     822             :  * @mas: The maple state
     823             :  * @slots: The pointer to the slots
     824             :  * @offset: The offset into the slots array to fetch
     825             :  *
     826             :  * Return: The entry stored in @slots at the @offset.
     827             :  */
     828             : static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
     829             :                                        unsigned char offset)
     830             : {
     831           0 :         return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
     832             : }
     833             : 
     834             : /*
     835             :  * mas_slot() - Get the slot value when not holding the maple tree lock.
     836             :  * @mas: The maple state
     837             :  * @slots: The pointer to the slots
     838             :  * @offset: The offset into the slots array to fetch
     839             :  *
     840             :  * Return: The entry stored in @slots at the @offset
     841             :  */
     842             : static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
     843             :                              unsigned char offset)
     844             : {
     845           0 :         return mt_slot(mas->tree, slots, offset);
     846             : }
     847             : 
     848             : /*
     849             :  * mas_root() - Get the maple tree root.
     850             :  * @mas: The maple state.
     851             :  *
     852             :  * Return: The pointer to the root of the tree
     853             :  */
     854             : static inline void *mas_root(struct ma_state *mas)
     855             : {
     856           0 :         return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
     857             : }
     858             : 
     859             : static inline void *mt_root_locked(struct maple_tree *mt)
     860             : {
     861             :         return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
     862             : }
     863             : 
     864             : /*
     865             :  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
     866             :  * @mas: The maple state.
     867             :  *
     868             :  * Return: The pointer to the root of the tree
     869             :  */
     870             : static inline void *mas_root_locked(struct ma_state *mas)
     871             : {
     872           0 :         return mt_root_locked(mas->tree);
     873             : }
     874             : 
     875             : static inline struct maple_metadata *ma_meta(struct maple_node *mn,
     876             :                                              enum maple_type mt)
     877             : {
     878           0 :         switch (mt) {
     879             :         case maple_arange_64:
     880           0 :                 return &mn->ma64.meta;
     881             :         default:
     882           0 :                 return &mn->mr64.meta;
     883             :         }
     884             : }
     885             : 
     886             : /*
     887             :  * ma_set_meta() - Set the metadata information of a node.
     888             :  * @mn: The maple node
     889             :  * @mt: The maple node type
     890             :  * @offset: The offset of the highest sub-gap in this node.
     891             :  * @end: The end of the data in this node.
     892             :  */
     893             : static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
     894             :                                unsigned char offset, unsigned char end)
     895             : {
     896           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     897             : 
     898           0 :         meta->gap = offset;
     899           0 :         meta->end = end;
     900             : }
     901             : 
     902             : /*
     903             :  * ma_meta_end() - Get the data end of a node from the metadata
     904             :  * @mn: The maple node
     905             :  * @mt: The maple node type
     906             :  */
     907             : static inline unsigned char ma_meta_end(struct maple_node *mn,
     908             :                                         enum maple_type mt)
     909             : {
     910           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     911             : 
     912           0 :         return meta->end;
     913             : }
     914             : 
     915             : /*
     916             :  * ma_meta_gap() - Get the largest gap location of a node from the metadata
     917             :  * @mn: The maple node
     918             :  * @mt: The maple node type
     919             :  */
     920           0 : static inline unsigned char ma_meta_gap(struct maple_node *mn,
     921             :                                         enum maple_type mt)
     922             : {
     923           0 :         BUG_ON(mt != maple_arange_64);
     924             : 
     925           0 :         return mn->ma64.meta.gap;
     926             : }
     927             : 
     928             : /*
     929             :  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
     930             :  * @mn: The maple node
     931             :  * @mn: The maple node type
     932             :  * @offset: The location of the largest gap.
     933             :  */
     934             : static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
     935             :                                    unsigned char offset)
     936             : {
     937             : 
     938           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     939             : 
     940           0 :         meta->gap = offset;
     941             : }
     942             : 
     943             : /*
     944             :  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
     945             :  * @mat - the ma_topiary, a linked list of dead nodes.
     946             :  * @dead_enode - the node to be marked as dead and added to the tail of the list
     947             :  *
     948             :  * Add the @dead_enode to the linked list in @mat.
     949             :  */
     950             : static inline void mat_add(struct ma_topiary *mat,
     951             :                            struct maple_enode *dead_enode)
     952             : {
     953           0 :         mte_set_node_dead(dead_enode);
     954           0 :         mte_to_mat(dead_enode)->next = NULL;
     955           0 :         if (!mat->tail) {
     956           0 :                 mat->tail = mat->head = dead_enode;
     957             :                 return;
     958             :         }
     959             : 
     960           0 :         mte_to_mat(mat->tail)->next = dead_enode;
     961           0 :         mat->tail = dead_enode;
     962             : }
     963             : 
     964             : static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
     965             : static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
     966             : 
     967             : /*
     968             :  * mas_mat_free() - Free all nodes in a dead list.
     969             :  * @mas - the maple state
     970             :  * @mat - the ma_topiary linked list of dead nodes to free.
     971             :  *
     972             :  * Free walk a dead list.
     973             :  */
     974             : static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
     975             : {
     976             :         struct maple_enode *next;
     977             : 
     978           0 :         while (mat->head) {
     979           0 :                 next = mte_to_mat(mat->head)->next;
     980           0 :                 mas_free(mas, mat->head);
     981           0 :                 mat->head = next;
     982             :         }
     983             : }
     984             : 
     985             : /*
     986             :  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
     987             :  * @mas - the maple state
     988             :  * @mat - the ma_topiary linked list of dead nodes to free.
     989             :  *
     990             :  * Destroy walk a dead list.
     991             :  */
     992             : static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
     993             : {
     994             :         struct maple_enode *next;
     995             : 
     996           0 :         while (mat->head) {
     997           0 :                 next = mte_to_mat(mat->head)->next;
     998           0 :                 mte_destroy_walk(mat->head, mat->mtree);
     999           0 :                 mat->head = next;
    1000             :         }
    1001             : }
    1002             : /*
    1003             :  * mas_descend() - Descend into the slot stored in the ma_state.
    1004             :  * @mas - the maple state.
    1005             :  *
    1006             :  * Note: Not RCU safe, only use in write side or debug code.
    1007             :  */
    1008           0 : static inline void mas_descend(struct ma_state *mas)
    1009             : {
    1010             :         enum maple_type type;
    1011             :         unsigned long *pivots;
    1012             :         struct maple_node *node;
    1013             :         void __rcu **slots;
    1014             : 
    1015           0 :         node = mas_mn(mas);
    1016           0 :         type = mte_node_type(mas->node);
    1017           0 :         pivots = ma_pivots(node, type);
    1018           0 :         slots = ma_slots(node, type);
    1019             : 
    1020           0 :         if (mas->offset)
    1021           0 :                 mas->min = pivots[mas->offset - 1] + 1;
    1022           0 :         mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
    1023           0 :         mas->node = mas_slot(mas, slots, mas->offset);
    1024           0 : }
    1025             : 
    1026             : /*
    1027             :  * mte_set_gap() - Set a maple node gap.
    1028             :  * @mn: The encoded maple node
    1029             :  * @gap: The offset of the gap to set
    1030             :  * @val: The gap value
    1031             :  */
    1032             : static inline void mte_set_gap(const struct maple_enode *mn,
    1033             :                                  unsigned char gap, unsigned long val)
    1034             : {
    1035           0 :         switch (mte_node_type(mn)) {
    1036             :         default:
    1037             :                 break;
    1038             :         case maple_arange_64:
    1039           0 :                 mte_to_node(mn)->ma64.gap[gap] = val;
    1040             :                 break;
    1041             :         }
    1042             : }
    1043             : 
    1044             : /*
    1045             :  * mas_ascend() - Walk up a level of the tree.
    1046             :  * @mas: The maple state
    1047             :  *
    1048             :  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
    1049             :  * may cause several levels of walking up to find the correct min and max.
    1050             :  * May find a dead node which will cause a premature return.
    1051             :  * Return: 1 on dead node, 0 otherwise
    1052             :  */
    1053           0 : static int mas_ascend(struct ma_state *mas)
    1054             : {
    1055             :         struct maple_enode *p_enode; /* parent enode. */
    1056             :         struct maple_enode *a_enode; /* ancestor enode. */
    1057             :         struct maple_node *a_node; /* ancestor node. */
    1058             :         struct maple_node *p_node; /* parent node. */
    1059             :         unsigned char a_slot;
    1060             :         enum maple_type a_type;
    1061             :         unsigned long min, max;
    1062             :         unsigned long *pivots;
    1063             :         unsigned char offset;
    1064           0 :         bool set_max = false, set_min = false;
    1065             : 
    1066           0 :         a_node = mas_mn(mas);
    1067           0 :         if (ma_is_root(a_node)) {
    1068           0 :                 mas->offset = 0;
    1069           0 :                 return 0;
    1070             :         }
    1071             : 
    1072           0 :         p_node = mte_parent(mas->node);
    1073           0 :         if (unlikely(a_node == p_node))
    1074             :                 return 1;
    1075           0 :         a_type = mas_parent_enum(mas, mas->node);
    1076           0 :         offset = mte_parent_slot(mas->node);
    1077           0 :         a_enode = mt_mk_node(p_node, a_type);
    1078             : 
    1079             :         /* Check to make sure all parent information is still accurate */
    1080           0 :         if (p_node != mte_parent(mas->node))
    1081             :                 return 1;
    1082             : 
    1083           0 :         mas->node = a_enode;
    1084           0 :         mas->offset = offset;
    1085             : 
    1086           0 :         if (mte_is_root(a_enode)) {
    1087           0 :                 mas->max = ULONG_MAX;
    1088           0 :                 mas->min = 0;
    1089           0 :                 return 0;
    1090             :         }
    1091             : 
    1092             :         min = 0;
    1093             :         max = ULONG_MAX;
    1094             :         do {
    1095           0 :                 p_enode = a_enode;
    1096           0 :                 a_type = mas_parent_enum(mas, p_enode);
    1097           0 :                 a_node = mte_parent(p_enode);
    1098           0 :                 a_slot = mte_parent_slot(p_enode);
    1099           0 :                 pivots = ma_pivots(a_node, a_type);
    1100           0 :                 a_enode = mt_mk_node(a_node, a_type);
    1101             : 
    1102           0 :                 if (!set_min && a_slot) {
    1103           0 :                         set_min = true;
    1104           0 :                         min = pivots[a_slot - 1] + 1;
    1105             :                 }
    1106             : 
    1107           0 :                 if (!set_max && a_slot < mt_pivots[a_type]) {
    1108           0 :                         set_max = true;
    1109           0 :                         max = pivots[a_slot];
    1110             :                 }
    1111             : 
    1112           0 :                 if (unlikely(ma_dead_node(a_node)))
    1113             :                         return 1;
    1114             : 
    1115           0 :                 if (unlikely(ma_is_root(a_node)))
    1116             :                         break;
    1117             : 
    1118           0 :         } while (!set_min || !set_max);
    1119             : 
    1120           0 :         mas->max = max;
    1121           0 :         mas->min = min;
    1122           0 :         return 0;
    1123             : }
    1124             : 
    1125             : /*
    1126             :  * mas_pop_node() - Get a previously allocated maple node from the maple state.
    1127             :  * @mas: The maple state
    1128             :  *
    1129             :  * Return: A pointer to a maple node.
    1130             :  */
    1131           0 : static inline struct maple_node *mas_pop_node(struct ma_state *mas)
    1132             : {
    1133           0 :         struct maple_alloc *ret, *node = mas->alloc;
    1134           0 :         unsigned long total = mas_allocated(mas);
    1135           0 :         unsigned int req = mas_alloc_req(mas);
    1136             : 
    1137             :         /* nothing or a request pending. */
    1138           0 :         if (WARN_ON(!total))
    1139             :                 return NULL;
    1140             : 
    1141           0 :         if (total == 1) {
    1142             :                 /* single allocation in this ma_state */
    1143           0 :                 mas->alloc = NULL;
    1144           0 :                 ret = node;
    1145           0 :                 goto single_node;
    1146             :         }
    1147             : 
    1148           0 :         if (node->node_count == 1) {
    1149             :                 /* Single allocation in this node. */
    1150           0 :                 mas->alloc = node->slot[0];
    1151           0 :                 mas->alloc->total = node->total - 1;
    1152           0 :                 ret = node;
    1153           0 :                 goto new_head;
    1154             :         }
    1155           0 :         node->total--;
    1156           0 :         ret = node->slot[--node->node_count];
    1157           0 :         node->slot[node->node_count] = NULL;
    1158             : 
    1159             : single_node:
    1160             : new_head:
    1161           0 :         if (req) {
    1162           0 :                 req++;
    1163           0 :                 mas_set_alloc_req(mas, req);
    1164             :         }
    1165             : 
    1166           0 :         memset(ret, 0, sizeof(*ret));
    1167           0 :         return (struct maple_node *)ret;
    1168             : }
    1169             : 
    1170             : /*
    1171             :  * mas_push_node() - Push a node back on the maple state allocation.
    1172             :  * @mas: The maple state
    1173             :  * @used: The used maple node
    1174             :  *
    1175             :  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
    1176             :  * requested node count as necessary.
    1177             :  */
    1178           0 : static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
    1179             : {
    1180           0 :         struct maple_alloc *reuse = (struct maple_alloc *)used;
    1181           0 :         struct maple_alloc *head = mas->alloc;
    1182             :         unsigned long count;
    1183           0 :         unsigned int requested = mas_alloc_req(mas);
    1184             : 
    1185           0 :         count = mas_allocated(mas);
    1186             : 
    1187           0 :         reuse->request_count = 0;
    1188           0 :         reuse->node_count = 0;
    1189           0 :         if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
    1190           0 :                 head->slot[head->node_count++] = reuse;
    1191           0 :                 head->total++;
    1192           0 :                 goto done;
    1193             :         }
    1194             : 
    1195           0 :         reuse->total = 1;
    1196           0 :         if ((head) && !((unsigned long)head & 0x1)) {
    1197           0 :                 reuse->slot[0] = head;
    1198           0 :                 reuse->node_count = 1;
    1199           0 :                 reuse->total += head->total;
    1200             :         }
    1201             : 
    1202           0 :         mas->alloc = reuse;
    1203             : done:
    1204           0 :         if (requested > 1)
    1205           0 :                 mas_set_alloc_req(mas, requested - 1);
    1206           0 : }
    1207             : 
    1208             : /*
    1209             :  * mas_alloc_nodes() - Allocate nodes into a maple state
    1210             :  * @mas: The maple state
    1211             :  * @gfp: The GFP Flags
    1212             :  */
    1213           0 : static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
    1214             : {
    1215             :         struct maple_alloc *node;
    1216           0 :         unsigned long allocated = mas_allocated(mas);
    1217           0 :         unsigned int requested = mas_alloc_req(mas);
    1218             :         unsigned int count;
    1219           0 :         void **slots = NULL;
    1220           0 :         unsigned int max_req = 0;
    1221             : 
    1222           0 :         if (!requested)
    1223             :                 return;
    1224             : 
    1225           0 :         mas_set_alloc_req(mas, 0);
    1226           0 :         if (mas->mas_flags & MA_STATE_PREALLOC) {
    1227           0 :                 if (allocated)
    1228             :                         return;
    1229           0 :                 WARN_ON(!allocated);
    1230             :         }
    1231             : 
    1232           0 :         if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
    1233           0 :                 node = (struct maple_alloc *)mt_alloc_one(gfp);
    1234           0 :                 if (!node)
    1235             :                         goto nomem_one;
    1236             : 
    1237           0 :                 if (allocated) {
    1238           0 :                         node->slot[0] = mas->alloc;
    1239           0 :                         node->node_count = 1;
    1240             :                 } else {
    1241           0 :                         node->node_count = 0;
    1242             :                 }
    1243             : 
    1244           0 :                 mas->alloc = node;
    1245           0 :                 node->total = ++allocated;
    1246           0 :                 requested--;
    1247             :         }
    1248             : 
    1249           0 :         node = mas->alloc;
    1250           0 :         node->request_count = 0;
    1251           0 :         while (requested) {
    1252           0 :                 max_req = MAPLE_ALLOC_SLOTS;
    1253           0 :                 if (node->node_count) {
    1254           0 :                         unsigned int offset = node->node_count;
    1255             : 
    1256           0 :                         slots = (void **)&node->slot[offset];
    1257           0 :                         max_req -= offset;
    1258             :                 } else {
    1259           0 :                         slots = (void **)&node->slot;
    1260             :                 }
    1261             : 
    1262           0 :                 max_req = min(requested, max_req);
    1263           0 :                 count = mt_alloc_bulk(gfp, max_req, slots);
    1264           0 :                 if (!count)
    1265             :                         goto nomem_bulk;
    1266             : 
    1267           0 :                 node->node_count += count;
    1268           0 :                 allocated += count;
    1269           0 :                 node = node->slot[0];
    1270           0 :                 node->node_count = 0;
    1271           0 :                 node->request_count = 0;
    1272           0 :                 requested -= count;
    1273             :         }
    1274           0 :         mas->alloc->total = allocated;
    1275           0 :         return;
    1276             : 
    1277             : nomem_bulk:
    1278             :         /* Clean up potential freed allocations on bulk failure */
    1279           0 :         memset(slots, 0, max_req * sizeof(unsigned long));
    1280             : nomem_one:
    1281           0 :         mas_set_alloc_req(mas, requested);
    1282           0 :         if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
    1283           0 :                 mas->alloc->total = allocated;
    1284           0 :         mas_set_err(mas, -ENOMEM);
    1285             : }
    1286             : 
    1287             : /*
    1288             :  * mas_free() - Free an encoded maple node
    1289             :  * @mas: The maple state
    1290             :  * @used: The encoded maple node to free.
    1291             :  *
    1292             :  * Uses rcu free if necessary, pushes @used back on the maple state allocations
    1293             :  * otherwise.
    1294             :  */
    1295           0 : static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
    1296             : {
    1297           0 :         struct maple_node *tmp = mte_to_node(used);
    1298             : 
    1299           0 :         if (mt_in_rcu(mas->tree))
    1300             :                 ma_free_rcu(tmp);
    1301             :         else
    1302           0 :                 mas_push_node(mas, tmp);
    1303           0 : }
    1304             : 
    1305             : /*
    1306             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1307             :  * there is not enough nodes.
    1308             :  * @mas: The maple state
    1309             :  * @count: The number of nodes needed
    1310             :  * @gfp: the gfp flags
    1311             :  */
    1312           0 : static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
    1313             : {
    1314           0 :         unsigned long allocated = mas_allocated(mas);
    1315             : 
    1316           0 :         if (allocated < count) {
    1317           0 :                 mas_set_alloc_req(mas, count - allocated);
    1318           0 :                 mas_alloc_nodes(mas, gfp);
    1319             :         }
    1320           0 : }
    1321             : 
    1322             : /*
    1323             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1324             :  * there is not enough nodes.
    1325             :  * @mas: The maple state
    1326             :  * @count: The number of nodes needed
    1327             :  *
    1328             :  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
    1329             :  */
    1330             : static void mas_node_count(struct ma_state *mas, int count)
    1331             : {
    1332           0 :         return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
    1333             : }
    1334             : 
    1335             : /*
    1336             :  * mas_start() - Sets up maple state for operations.
    1337             :  * @mas: The maple state.
    1338             :  *
    1339             :  * If mas->node == MAS_START, then set the min, max and depth to
    1340             :  * defaults.
    1341             :  *
    1342             :  * Return:
    1343             :  * - If mas->node is an error or not MAS_START, return NULL.
    1344             :  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
    1345             :  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
    1346             :  * - If it's a tree:            NULL & mas->node == safe root node.
    1347             :  */
    1348           0 : static inline struct maple_enode *mas_start(struct ma_state *mas)
    1349             : {
    1350           0 :         if (likely(mas_is_start(mas))) {
    1351             :                 struct maple_enode *root;
    1352             : 
    1353           0 :                 mas->min = 0;
    1354           0 :                 mas->max = ULONG_MAX;
    1355           0 :                 mas->depth = 0;
    1356             : 
    1357           0 :                 root = mas_root(mas);
    1358             :                 /* Tree with nodes */
    1359           0 :                 if (likely(xa_is_node(root))) {
    1360           0 :                         mas->depth = 1;
    1361           0 :                         mas->node = mte_safe_root(root);
    1362           0 :                         mas->offset = 0;
    1363           0 :                         return NULL;
    1364             :                 }
    1365             : 
    1366             :                 /* empty tree */
    1367           0 :                 if (unlikely(!root)) {
    1368           0 :                         mas->node = MAS_NONE;
    1369           0 :                         mas->offset = MAPLE_NODE_SLOTS;
    1370           0 :                         return NULL;
    1371             :                 }
    1372             : 
    1373             :                 /* Single entry tree */
    1374           0 :                 mas->node = MAS_ROOT;
    1375           0 :                 mas->offset = MAPLE_NODE_SLOTS;
    1376             : 
    1377             :                 /* Single entry tree. */
    1378           0 :                 if (mas->index > 0)
    1379             :                         return NULL;
    1380             : 
    1381           0 :                 return root;
    1382             :         }
    1383             : 
    1384             :         return NULL;
    1385             : }
    1386             : 
    1387             : /*
    1388             :  * ma_data_end() - Find the end of the data in a node.
    1389             :  * @node: The maple node
    1390             :  * @type: The maple node type
    1391             :  * @pivots: The array of pivots in the node
    1392             :  * @max: The maximum value in the node
    1393             :  *
    1394             :  * Uses metadata to find the end of the data when possible.
    1395             :  * Return: The zero indexed last slot with data (may be null).
    1396             :  */
    1397           0 : static inline unsigned char ma_data_end(struct maple_node *node,
    1398             :                                         enum maple_type type,
    1399             :                                         unsigned long *pivots,
    1400             :                                         unsigned long max)
    1401             : {
    1402             :         unsigned char offset;
    1403             : 
    1404           0 :         if (type == maple_arange_64)
    1405           0 :                 return ma_meta_end(node, type);
    1406             : 
    1407           0 :         offset = mt_pivots[type] - 1;
    1408           0 :         if (likely(!pivots[offset]))
    1409           0 :                 return ma_meta_end(node, type);
    1410             : 
    1411           0 :         if (likely(pivots[offset] == max))
    1412             :                 return offset;
    1413             : 
    1414           0 :         return mt_pivots[type];
    1415             : }
    1416             : 
    1417             : /*
    1418             :  * mas_data_end() - Find the end of the data (slot).
    1419             :  * @mas: the maple state
    1420             :  *
    1421             :  * This method is optimized to check the metadata of a node if the node type
    1422             :  * supports data end metadata.
    1423             :  *
    1424             :  * Return: The zero indexed last slot with data (may be null).
    1425             :  */
    1426           0 : static inline unsigned char mas_data_end(struct ma_state *mas)
    1427             : {
    1428             :         enum maple_type type;
    1429             :         struct maple_node *node;
    1430             :         unsigned char offset;
    1431             :         unsigned long *pivots;
    1432             : 
    1433           0 :         type = mte_node_type(mas->node);
    1434           0 :         node = mas_mn(mas);
    1435           0 :         if (type == maple_arange_64)
    1436           0 :                 return ma_meta_end(node, type);
    1437             : 
    1438           0 :         pivots = ma_pivots(node, type);
    1439           0 :         offset = mt_pivots[type] - 1;
    1440           0 :         if (likely(!pivots[offset]))
    1441           0 :                 return ma_meta_end(node, type);
    1442             : 
    1443           0 :         if (likely(pivots[offset] == mas->max))
    1444             :                 return offset;
    1445             : 
    1446             :         return mt_pivots[type];
    1447             : }
    1448             : 
    1449             : /*
    1450             :  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
    1451             :  * @mas - the maple state
    1452             :  *
    1453             :  * Return: The maximum gap in the leaf.
    1454             :  */
    1455           0 : static unsigned long mas_leaf_max_gap(struct ma_state *mas)
    1456             : {
    1457             :         enum maple_type mt;
    1458             :         unsigned long pstart, gap, max_gap;
    1459             :         struct maple_node *mn;
    1460             :         unsigned long *pivots;
    1461             :         void __rcu **slots;
    1462             :         unsigned char i;
    1463             :         unsigned char max_piv;
    1464             : 
    1465           0 :         mt = mte_node_type(mas->node);
    1466           0 :         mn = mas_mn(mas);
    1467           0 :         slots = ma_slots(mn, mt);
    1468           0 :         max_gap = 0;
    1469           0 :         if (unlikely(ma_is_dense(mt))) {
    1470             :                 gap = 0;
    1471           0 :                 for (i = 0; i < mt_slots[mt]; i++) {
    1472           0 :                         if (slots[i]) {
    1473           0 :                                 if (gap > max_gap)
    1474           0 :                                         max_gap = gap;
    1475             :                                 gap = 0;
    1476             :                         } else {
    1477           0 :                                 gap++;
    1478             :                         }
    1479             :                 }
    1480           0 :                 if (gap > max_gap)
    1481           0 :                         max_gap = gap;
    1482             :                 return max_gap;
    1483             :         }
    1484             : 
    1485             :         /*
    1486             :          * Check the first implied pivot optimizes the loop below and slot 1 may
    1487             :          * be skipped if there is a gap in slot 0.
    1488             :          */
    1489           0 :         pivots = ma_pivots(mn, mt);
    1490           0 :         if (likely(!slots[0])) {
    1491           0 :                 max_gap = pivots[0] - mas->min + 1;
    1492           0 :                 i = 2;
    1493             :         } else {
    1494             :                 i = 1;
    1495             :         }
    1496             : 
    1497             :         /* reduce max_piv as the special case is checked before the loop */
    1498           0 :         max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
    1499             :         /*
    1500             :          * Check end implied pivot which can only be a gap on the right most
    1501             :          * node.
    1502             :          */
    1503           0 :         if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
    1504           0 :                 gap = ULONG_MAX - pivots[max_piv];
    1505           0 :                 if (gap > max_gap)
    1506           0 :                         max_gap = gap;
    1507             :         }
    1508             : 
    1509           0 :         for (; i <= max_piv; i++) {
    1510             :                 /* data == no gap. */
    1511           0 :                 if (likely(slots[i]))
    1512           0 :                         continue;
    1513             : 
    1514           0 :                 pstart = pivots[i - 1];
    1515           0 :                 gap = pivots[i] - pstart;
    1516           0 :                 if (gap > max_gap)
    1517           0 :                         max_gap = gap;
    1518             : 
    1519             :                 /* There cannot be two gaps in a row. */
    1520           0 :                 i++;
    1521             :         }
    1522             :         return max_gap;
    1523             : }
    1524             : 
    1525             : /*
    1526             :  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
    1527             :  * @node: The maple node
    1528             :  * @gaps: The pointer to the gaps
    1529             :  * @mt: The maple node type
    1530             :  * @*off: Pointer to store the offset location of the gap.
    1531             :  *
    1532             :  * Uses the metadata data end to scan backwards across set gaps.
    1533             :  *
    1534             :  * Return: The maximum gap value
    1535             :  */
    1536             : static inline unsigned long
    1537             : ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
    1538             :             unsigned char *off)
    1539             : {
    1540             :         unsigned char offset, i;
    1541           0 :         unsigned long max_gap = 0;
    1542             : 
    1543           0 :         i = offset = ma_meta_end(node, mt);
    1544             :         do {
    1545           0 :                 if (gaps[i] > max_gap) {
    1546           0 :                         max_gap = gaps[i];
    1547           0 :                         offset = i;
    1548             :                 }
    1549           0 :         } while (i--);
    1550             : 
    1551           0 :         *off = offset;
    1552             :         return max_gap;
    1553             : }
    1554             : 
    1555             : /*
    1556             :  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
    1557             :  * @mas: The maple state.
    1558             :  *
    1559             :  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
    1560             :  *
    1561             :  * Return: The gap value.
    1562             :  */
    1563           0 : static inline unsigned long mas_max_gap(struct ma_state *mas)
    1564             : {
    1565             :         unsigned long *gaps;
    1566             :         unsigned char offset;
    1567             :         enum maple_type mt;
    1568             :         struct maple_node *node;
    1569             : 
    1570           0 :         mt = mte_node_type(mas->node);
    1571           0 :         if (ma_is_leaf(mt))
    1572           0 :                 return mas_leaf_max_gap(mas);
    1573             : 
    1574           0 :         node = mas_mn(mas);
    1575           0 :         offset = ma_meta_gap(node, mt);
    1576           0 :         if (offset == MAPLE_ARANGE64_META_MAX)
    1577             :                 return 0;
    1578             : 
    1579           0 :         gaps = ma_gaps(node, mt);
    1580           0 :         return gaps[offset];
    1581             : }
    1582             : 
    1583             : /*
    1584             :  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
    1585             :  * @mas: The maple state
    1586             :  * @offset: The gap offset in the parent to set
    1587             :  * @new: The new gap value.
    1588             :  *
    1589             :  * Set the parent gap then continue to set the gap upwards, using the metadata
    1590             :  * of the parent to see if it is necessary to check the node above.
    1591             :  */
    1592           0 : static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
    1593             :                 unsigned long new)
    1594             : {
    1595           0 :         unsigned long meta_gap = 0;
    1596             :         struct maple_node *pnode;
    1597             :         struct maple_enode *penode;
    1598             :         unsigned long *pgaps;
    1599             :         unsigned char meta_offset;
    1600             :         enum maple_type pmt;
    1601             : 
    1602           0 :         pnode = mte_parent(mas->node);
    1603           0 :         pmt = mas_parent_enum(mas, mas->node);
    1604           0 :         penode = mt_mk_node(pnode, pmt);
    1605             :         pgaps = ma_gaps(pnode, pmt);
    1606             : 
    1607             : ascend:
    1608           0 :         meta_offset = ma_meta_gap(pnode, pmt);
    1609           0 :         if (meta_offset == MAPLE_ARANGE64_META_MAX)
    1610             :                 meta_gap = 0;
    1611             :         else
    1612           0 :                 meta_gap = pgaps[meta_offset];
    1613             : 
    1614           0 :         pgaps[offset] = new;
    1615             : 
    1616           0 :         if (meta_gap == new)
    1617             :                 return;
    1618             : 
    1619           0 :         if (offset != meta_offset) {
    1620           0 :                 if (meta_gap > new)
    1621             :                         return;
    1622             : 
    1623           0 :                 ma_set_meta_gap(pnode, pmt, offset);
    1624           0 :         } else if (new < meta_gap) {
    1625           0 :                 meta_offset = 15;
    1626           0 :                 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
    1627           0 :                 ma_set_meta_gap(pnode, pmt, meta_offset);
    1628             :         }
    1629             : 
    1630           0 :         if (ma_is_root(pnode))
    1631             :                 return;
    1632             : 
    1633             :         /* Go to the parent node. */
    1634           0 :         pnode = mte_parent(penode);
    1635           0 :         pmt = mas_parent_enum(mas, penode);
    1636           0 :         pgaps = ma_gaps(pnode, pmt);
    1637           0 :         offset = mte_parent_slot(penode);
    1638           0 :         penode = mt_mk_node(pnode, pmt);
    1639           0 :         goto ascend;
    1640             : }
    1641             : 
    1642             : /*
    1643             :  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
    1644             :  * @mas - the maple state.
    1645             :  */
    1646           0 : static inline void mas_update_gap(struct ma_state *mas)
    1647             : {
    1648             :         unsigned char pslot;
    1649             :         unsigned long p_gap;
    1650             :         unsigned long max_gap;
    1651             : 
    1652           0 :         if (!mt_is_alloc(mas->tree))
    1653             :                 return;
    1654             : 
    1655           0 :         if (mte_is_root(mas->node))
    1656             :                 return;
    1657             : 
    1658           0 :         max_gap = mas_max_gap(mas);
    1659             : 
    1660           0 :         pslot = mte_parent_slot(mas->node);
    1661           0 :         p_gap = ma_gaps(mte_parent(mas->node),
    1662           0 :                         mas_parent_enum(mas, mas->node))[pslot];
    1663             : 
    1664           0 :         if (p_gap != max_gap)
    1665           0 :                 mas_parent_gap(mas, pslot, max_gap);
    1666             : }
    1667             : 
    1668             : /*
    1669             :  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
    1670             :  * @parent with the slot encoded.
    1671             :  * @mas - the maple state (for the tree)
    1672             :  * @parent - the maple encoded node containing the children.
    1673             :  */
    1674           0 : static inline void mas_adopt_children(struct ma_state *mas,
    1675             :                 struct maple_enode *parent)
    1676             : {
    1677           0 :         enum maple_type type = mte_node_type(parent);
    1678           0 :         struct maple_node *node = mas_mn(mas);
    1679           0 :         void __rcu **slots = ma_slots(node, type);
    1680           0 :         unsigned long *pivots = ma_pivots(node, type);
    1681             :         struct maple_enode *child;
    1682             :         unsigned char offset;
    1683             : 
    1684           0 :         offset = ma_data_end(node, type, pivots, mas->max);
    1685             :         do {
    1686           0 :                 child = mas_slot_locked(mas, slots, offset);
    1687           0 :                 mte_set_parent(child, parent, offset);
    1688           0 :         } while (offset--);
    1689           0 : }
    1690             : 
    1691             : /*
    1692             :  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
    1693             :  * parent encoding to locate the maple node in the tree.
    1694             :  * @mas - the ma_state to use for operations.
    1695             :  * @advanced - boolean to adopt the child nodes and free the old node (false) or
    1696             :  * leave the node (true) and handle the adoption and free elsewhere.
    1697             :  */
    1698           0 : static inline void mas_replace(struct ma_state *mas, bool advanced)
    1699             :         __must_hold(mas->tree->lock)
    1700             : {
    1701           0 :         struct maple_node *mn = mas_mn(mas);
    1702             :         struct maple_enode *old_enode;
    1703           0 :         unsigned char offset = 0;
    1704           0 :         void __rcu **slots = NULL;
    1705             : 
    1706           0 :         if (ma_is_root(mn)) {
    1707           0 :                 old_enode = mas_root_locked(mas);
    1708             :         } else {
    1709           0 :                 offset = mte_parent_slot(mas->node);
    1710           0 :                 slots = ma_slots(mte_parent(mas->node),
    1711             :                                  mas_parent_enum(mas, mas->node));
    1712           0 :                 old_enode = mas_slot_locked(mas, slots, offset);
    1713             :         }
    1714             : 
    1715           0 :         if (!advanced && !mte_is_leaf(mas->node))
    1716           0 :                 mas_adopt_children(mas, mas->node);
    1717             : 
    1718           0 :         if (mte_is_root(mas->node)) {
    1719           0 :                 mn->parent = ma_parent_ptr(
    1720             :                               ((unsigned long)mas->tree | MA_ROOT_PARENT));
    1721           0 :                 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    1722           0 :                 mas_set_height(mas);
    1723             :         } else {
    1724           0 :                 rcu_assign_pointer(slots[offset], mas->node);
    1725             :         }
    1726             : 
    1727           0 :         if (!advanced)
    1728           0 :                 mas_free(mas, old_enode);
    1729           0 : }
    1730             : 
    1731             : /*
    1732             :  * mas_new_child() - Find the new child of a node.
    1733             :  * @mas: the maple state
    1734             :  * @child: the maple state to store the child.
    1735             :  */
    1736           0 : static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
    1737             :         __must_hold(mas->tree->lock)
    1738             : {
    1739             :         enum maple_type mt;
    1740             :         unsigned char offset;
    1741             :         unsigned char end;
    1742             :         unsigned long *pivots;
    1743             :         struct maple_enode *entry;
    1744             :         struct maple_node *node;
    1745             :         void __rcu **slots;
    1746             : 
    1747           0 :         mt = mte_node_type(mas->node);
    1748           0 :         node = mas_mn(mas);
    1749           0 :         slots = ma_slots(node, mt);
    1750           0 :         pivots = ma_pivots(node, mt);
    1751           0 :         end = ma_data_end(node, mt, pivots, mas->max);
    1752           0 :         for (offset = mas->offset; offset <= end; offset++) {
    1753           0 :                 entry = mas_slot_locked(mas, slots, offset);
    1754           0 :                 if (mte_parent(entry) == node) {
    1755           0 :                         *child = *mas;
    1756           0 :                         mas->offset = offset + 1;
    1757           0 :                         child->offset = offset;
    1758           0 :                         mas_descend(child);
    1759           0 :                         child->offset = 0;
    1760           0 :                         return true;
    1761             :                 }
    1762             :         }
    1763             :         return false;
    1764             : }
    1765             : 
    1766             : /*
    1767             :  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
    1768             :  * old data or set b_node->b_end.
    1769             :  * @b_node: the maple_big_node
    1770             :  * @shift: the shift count
    1771             :  */
    1772           0 : static inline void mab_shift_right(struct maple_big_node *b_node,
    1773             :                                  unsigned char shift)
    1774             : {
    1775           0 :         unsigned long size = b_node->b_end * sizeof(unsigned long);
    1776             : 
    1777           0 :         memmove(b_node->pivot + shift, b_node->pivot, size);
    1778           0 :         memmove(b_node->slot + shift, b_node->slot, size);
    1779           0 :         if (b_node->type == maple_arange_64)
    1780           0 :                 memmove(b_node->gap + shift, b_node->gap, size);
    1781           0 : }
    1782             : 
    1783             : /*
    1784             :  * mab_middle_node() - Check if a middle node is needed (unlikely)
    1785             :  * @b_node: the maple_big_node that contains the data.
    1786             :  * @size: the amount of data in the b_node
    1787             :  * @split: the potential split location
    1788             :  * @slot_count: the size that can be stored in a single node being considered.
    1789             :  *
    1790             :  * Return: true if a middle node is required.
    1791             :  */
    1792             : static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
    1793             :                                    unsigned char slot_count)
    1794             : {
    1795           0 :         unsigned char size = b_node->b_end;
    1796             : 
    1797           0 :         if (size >= 2 * slot_count)
    1798             :                 return true;
    1799             : 
    1800           0 :         if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
    1801             :                 return true;
    1802             : 
    1803             :         return false;
    1804             : }
    1805             : 
    1806             : /*
    1807             :  * mab_no_null_split() - ensure the split doesn't fall on a NULL
    1808             :  * @b_node: the maple_big_node with the data
    1809             :  * @split: the suggested split location
    1810             :  * @slot_count: the number of slots in the node being considered.
    1811             :  *
    1812             :  * Return: the split location.
    1813             :  */
    1814             : static inline int mab_no_null_split(struct maple_big_node *b_node,
    1815             :                                     unsigned char split, unsigned char slot_count)
    1816             : {
    1817           0 :         if (!b_node->slot[split]) {
    1818             :                 /*
    1819             :                  * If the split is less than the max slot && the right side will
    1820             :                  * still be sufficient, then increment the split on NULL.
    1821             :                  */
    1822           0 :                 if ((split < slot_count - 1) &&
    1823           0 :                     (b_node->b_end - split) > (mt_min_slots[b_node->type]))
    1824           0 :                         split++;
    1825             :                 else
    1826           0 :                         split--;
    1827             :         }
    1828           0 :         return split;
    1829             : }
    1830             : 
    1831             : /*
    1832             :  * mab_calc_split() - Calculate the split location and if there needs to be two
    1833             :  * splits.
    1834             :  * @bn: The maple_big_node with the data
    1835             :  * @mid_split: The second split, if required.  0 otherwise.
    1836             :  *
    1837             :  * Return: The first split location.  The middle split is set in @mid_split.
    1838             :  */
    1839           0 : static inline int mab_calc_split(struct ma_state *mas,
    1840             :          struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
    1841             : {
    1842           0 :         unsigned char b_end = bn->b_end;
    1843           0 :         int split = b_end / 2; /* Assume equal split. */
    1844           0 :         unsigned char slot_min, slot_count = mt_slots[bn->type];
    1845             : 
    1846             :         /*
    1847             :          * To support gap tracking, all NULL entries are kept together and a node cannot
    1848             :          * end on a NULL entry, with the exception of the left-most leaf.  The
    1849             :          * limitation means that the split of a node must be checked for this condition
    1850             :          * and be able to put more data in one direction or the other.
    1851             :          */
    1852           0 :         if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
    1853           0 :                 *mid_split = 0;
    1854           0 :                 split = b_end - mt_min_slots[bn->type];
    1855             : 
    1856           0 :                 if (!ma_is_leaf(bn->type))
    1857             :                         return split;
    1858             : 
    1859           0 :                 mas->mas_flags |= MA_STATE_REBALANCE;
    1860           0 :                 if (!bn->slot[split])
    1861           0 :                         split--;
    1862             :                 return split;
    1863             :         }
    1864             : 
    1865             :         /*
    1866             :          * Although extremely rare, it is possible to enter what is known as the 3-way
    1867             :          * split scenario.  The 3-way split comes about by means of a store of a range
    1868             :          * that overwrites the end and beginning of two full nodes.  The result is a set
    1869             :          * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
    1870             :          * also be located in different parent nodes which are also full.  This can
    1871             :          * carry upwards all the way to the root in the worst case.
    1872             :          */
    1873           0 :         if (unlikely(mab_middle_node(bn, split, slot_count))) {
    1874           0 :                 split = b_end / 3;
    1875           0 :                 *mid_split = split * 2;
    1876             :         } else {
    1877           0 :                 slot_min = mt_min_slots[bn->type];
    1878             : 
    1879           0 :                 *mid_split = 0;
    1880             :                 /*
    1881             :                  * Avoid having a range less than the slot count unless it
    1882             :                  * causes one node to be deficient.
    1883             :                  * NOTE: mt_min_slots is 1 based, b_end and split are zero.
    1884             :                  */
    1885           0 :                 while (((bn->pivot[split] - min) < slot_count - 1) &&
    1886           0 :                        (split < slot_count - 1) && (b_end - split > slot_min))
    1887           0 :                         split++;
    1888             :         }
    1889             : 
    1890             :         /* Avoid ending a node on a NULL entry */
    1891           0 :         split = mab_no_null_split(bn, split, slot_count);
    1892             : 
    1893           0 :         if (unlikely(*mid_split))
    1894           0 :                 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
    1895             : 
    1896             :         return split;
    1897             : }
    1898             : 
    1899             : /*
    1900             :  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
    1901             :  * and set @b_node->b_end to the next free slot.
    1902             :  * @mas: The maple state
    1903             :  * @mas_start: The starting slot to copy
    1904             :  * @mas_end: The end slot to copy (inclusively)
    1905             :  * @b_node: The maple_big_node to place the data
    1906             :  * @mab_start: The starting location in maple_big_node to store the data.
    1907             :  */
    1908           0 : static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
    1909             :                         unsigned char mas_end, struct maple_big_node *b_node,
    1910             :                         unsigned char mab_start)
    1911             : {
    1912             :         enum maple_type mt;
    1913             :         struct maple_node *node;
    1914             :         void __rcu **slots;
    1915             :         unsigned long *pivots, *gaps;
    1916           0 :         int i = mas_start, j = mab_start;
    1917             :         unsigned char piv_end;
    1918             : 
    1919           0 :         node = mas_mn(mas);
    1920           0 :         mt = mte_node_type(mas->node);
    1921           0 :         pivots = ma_pivots(node, mt);
    1922           0 :         if (!i) {
    1923           0 :                 b_node->pivot[j] = pivots[i++];
    1924           0 :                 if (unlikely(i > mas_end))
    1925             :                         goto complete;
    1926           0 :                 j++;
    1927             :         }
    1928             : 
    1929           0 :         piv_end = min(mas_end, mt_pivots[mt]);
    1930           0 :         for (; i < piv_end; i++, j++) {
    1931           0 :                 b_node->pivot[j] = pivots[i];
    1932           0 :                 if (unlikely(!b_node->pivot[j]))
    1933             :                         break;
    1934             : 
    1935           0 :                 if (unlikely(mas->max == b_node->pivot[j]))
    1936             :                         goto complete;
    1937             :         }
    1938             : 
    1939           0 :         if (likely(i <= mas_end))
    1940           0 :                 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
    1941             : 
    1942             : complete:
    1943           0 :         b_node->b_end = ++j;
    1944           0 :         j -= mab_start;
    1945           0 :         slots = ma_slots(node, mt);
    1946           0 :         memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
    1947           0 :         if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
    1948           0 :                 gaps = ma_gaps(node, mt);
    1949           0 :                 memcpy(b_node->gap + mab_start, gaps + mas_start,
    1950             :                        sizeof(unsigned long) * j);
    1951             :         }
    1952           0 : }
    1953             : 
    1954             : /*
    1955             :  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
    1956             :  * @mas: The maple state
    1957             :  * @node: The maple node
    1958             :  * @pivots: pointer to the maple node pivots
    1959             :  * @mt: The maple type
    1960             :  * @end: The assumed end
    1961             :  *
    1962             :  * Note, end may be incremented within this function but not modified at the
    1963             :  * source.  This is fine since the metadata is the last thing to be stored in a
    1964             :  * node during a write.
    1965             :  */
    1966           0 : static inline void mas_leaf_set_meta(struct ma_state *mas,
    1967             :                 struct maple_node *node, unsigned long *pivots,
    1968             :                 enum maple_type mt, unsigned char end)
    1969             : {
    1970             :         /* There is no room for metadata already */
    1971           0 :         if (mt_pivots[mt] <= end)
    1972             :                 return;
    1973             : 
    1974           0 :         if (pivots[end] && pivots[end] < mas->max)
    1975           0 :                 end++;
    1976             : 
    1977           0 :         if (end < mt_slots[mt] - 1)
    1978           0 :                 ma_set_meta(node, mt, 0, end);
    1979             : }
    1980             : 
    1981             : /*
    1982             :  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
    1983             :  * @b_node: the maple_big_node that has the data
    1984             :  * @mab_start: the start location in @b_node.
    1985             :  * @mab_end: The end location in @b_node (inclusively)
    1986             :  * @mas: The maple state with the maple encoded node.
    1987             :  */
    1988           0 : static inline void mab_mas_cp(struct maple_big_node *b_node,
    1989             :                               unsigned char mab_start, unsigned char mab_end,
    1990             :                               struct ma_state *mas, bool new_max)
    1991             : {
    1992           0 :         int i, j = 0;
    1993           0 :         enum maple_type mt = mte_node_type(mas->node);
    1994           0 :         struct maple_node *node = mte_to_node(mas->node);
    1995           0 :         void __rcu **slots = ma_slots(node, mt);
    1996           0 :         unsigned long *pivots = ma_pivots(node, mt);
    1997           0 :         unsigned long *gaps = NULL;
    1998             :         unsigned char end;
    1999             : 
    2000           0 :         if (mab_end - mab_start > mt_pivots[mt])
    2001           0 :                 mab_end--;
    2002             : 
    2003           0 :         if (!pivots[mt_pivots[mt] - 1])
    2004           0 :                 slots[mt_pivots[mt]] = NULL;
    2005             : 
    2006             :         i = mab_start;
    2007             :         do {
    2008           0 :                 pivots[j++] = b_node->pivot[i++];
    2009           0 :         } while (i <= mab_end && likely(b_node->pivot[i]));
    2010             : 
    2011           0 :         memcpy(slots, b_node->slot + mab_start,
    2012           0 :                sizeof(void *) * (i - mab_start));
    2013             : 
    2014           0 :         if (new_max)
    2015           0 :                 mas->max = b_node->pivot[i - 1];
    2016             : 
    2017           0 :         end = j - 1;
    2018           0 :         if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
    2019           0 :                 unsigned long max_gap = 0;
    2020           0 :                 unsigned char offset = 15;
    2021             : 
    2022           0 :                 gaps = ma_gaps(node, mt);
    2023             :                 do {
    2024           0 :                         gaps[--j] = b_node->gap[--i];
    2025           0 :                         if (gaps[j] > max_gap) {
    2026           0 :                                 offset = j;
    2027           0 :                                 max_gap = gaps[j];
    2028             :                         }
    2029           0 :                 } while (j);
    2030             : 
    2031           0 :                 ma_set_meta(node, mt, offset, end);
    2032             :         } else {
    2033           0 :                 mas_leaf_set_meta(mas, node, pivots, mt, end);
    2034             :         }
    2035           0 : }
    2036             : 
    2037             : /*
    2038             :  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
    2039             :  * @mas: the maple state with the maple encoded node of the sub-tree.
    2040             :  *
    2041             :  * Descend through a sub-tree and adopt children who do not have the correct
    2042             :  * parents set.  Follow the parents which have the correct parents as they are
    2043             :  * the new entries which need to be followed to find other incorrectly set
    2044             :  * parents.
    2045             :  */
    2046           0 : static inline void mas_descend_adopt(struct ma_state *mas)
    2047             : {
    2048             :         struct ma_state list[3], next[3];
    2049             :         int i, n;
    2050             : 
    2051             :         /*
    2052             :          * At each level there may be up to 3 correct parent pointers which indicates
    2053             :          * the new nodes which need to be walked to find any new nodes at a lower level.
    2054             :          */
    2055             : 
    2056           0 :         for (i = 0; i < 3; i++) {
    2057           0 :                 list[i] = *mas;
    2058           0 :                 list[i].offset = 0;
    2059           0 :                 next[i].offset = 0;
    2060             :         }
    2061           0 :         next[0] = *mas;
    2062             : 
    2063           0 :         while (!mte_is_leaf(list[0].node)) {
    2064             :                 n = 0;
    2065           0 :                 for (i = 0; i < 3; i++) {
    2066           0 :                         if (mas_is_none(&list[i]))
    2067           0 :                                 continue;
    2068             : 
    2069           0 :                         if (i && list[i-1].node == list[i].node)
    2070           0 :                                 continue;
    2071             : 
    2072           0 :                         while ((n < 3) && (mas_new_child(&list[i], &next[n])))
    2073           0 :                                 n++;
    2074             : 
    2075           0 :                         mas_adopt_children(&list[i], list[i].node);
    2076             :                 }
    2077             : 
    2078           0 :                 while (n < 3)
    2079           0 :                         next[n++].node = MAS_NONE;
    2080             : 
    2081             :                 /* descend by setting the list to the children */
    2082           0 :                 for (i = 0; i < 3; i++)
    2083           0 :                         list[i] = next[i];
    2084             :         }
    2085           0 : }
    2086             : 
    2087             : /*
    2088             :  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
    2089             :  * @mas: The maple state
    2090             :  * @end: The maple node end
    2091             :  * @mt: The maple node type
    2092             :  */
    2093             : static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
    2094             :                                       enum maple_type mt)
    2095             : {
    2096           0 :         if (!(mas->mas_flags & MA_STATE_BULK))
    2097             :                 return;
    2098             : 
    2099           0 :         if (mte_is_root(mas->node))
    2100             :                 return;
    2101             : 
    2102           0 :         if (end > mt_min_slots[mt]) {
    2103           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    2104             :                 return;
    2105             :         }
    2106             : }
    2107             : 
    2108             : /*
    2109             :  * mas_store_b_node() - Store an @entry into the b_node while also copying the
    2110             :  * data from a maple encoded node.
    2111             :  * @wr_mas: the maple write state
    2112             :  * @b_node: the maple_big_node to fill with data
    2113             :  * @offset_end: the offset to end copying
    2114             :  *
    2115             :  * Return: The actual end of the data stored in @b_node
    2116             :  */
    2117           0 : static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
    2118             :                 struct maple_big_node *b_node, unsigned char offset_end)
    2119             : {
    2120             :         unsigned char slot;
    2121             :         unsigned char b_end;
    2122             :         /* Possible underflow of piv will wrap back to 0 before use. */
    2123             :         unsigned long piv;
    2124           0 :         struct ma_state *mas = wr_mas->mas;
    2125             : 
    2126           0 :         b_node->type = wr_mas->type;
    2127           0 :         b_end = 0;
    2128           0 :         slot = mas->offset;
    2129           0 :         if (slot) {
    2130             :                 /* Copy start data up to insert. */
    2131           0 :                 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
    2132           0 :                 b_end = b_node->b_end;
    2133           0 :                 piv = b_node->pivot[b_end - 1];
    2134             :         } else
    2135           0 :                 piv = mas->min - 1;
    2136             : 
    2137           0 :         if (piv + 1 < mas->index) {
    2138             :                 /* Handle range starting after old range */
    2139           0 :                 b_node->slot[b_end] = wr_mas->content;
    2140           0 :                 if (!wr_mas->content)
    2141           0 :                         b_node->gap[b_end] = mas->index - 1 - piv;
    2142           0 :                 b_node->pivot[b_end++] = mas->index - 1;
    2143             :         }
    2144             : 
    2145             :         /* Store the new entry. */
    2146           0 :         mas->offset = b_end;
    2147           0 :         b_node->slot[b_end] = wr_mas->entry;
    2148           0 :         b_node->pivot[b_end] = mas->last;
    2149             : 
    2150             :         /* Appended. */
    2151           0 :         if (mas->last >= mas->max)
    2152             :                 goto b_end;
    2153             : 
    2154             :         /* Handle new range ending before old range ends */
    2155           0 :         piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
    2156           0 :         if (piv > mas->last) {
    2157           0 :                 if (piv == ULONG_MAX)
    2158           0 :                         mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
    2159             : 
    2160           0 :                 if (offset_end != slot)
    2161           0 :                         wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    2162             :                                                           offset_end);
    2163             : 
    2164           0 :                 b_node->slot[++b_end] = wr_mas->content;
    2165           0 :                 if (!wr_mas->content)
    2166           0 :                         b_node->gap[b_end] = piv - mas->last + 1;
    2167           0 :                 b_node->pivot[b_end] = piv;
    2168             :         }
    2169             : 
    2170           0 :         slot = offset_end + 1;
    2171           0 :         if (slot > wr_mas->node_end)
    2172             :                 goto b_end;
    2173             : 
    2174             :         /* Copy end data to the end of the node. */
    2175           0 :         mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
    2176           0 :         b_node->b_end--;
    2177           0 :         return;
    2178             : 
    2179             : b_end:
    2180           0 :         b_node->b_end = b_end;
    2181             : }
    2182             : 
    2183             : /*
    2184             :  * mas_prev_sibling() - Find the previous node with the same parent.
    2185             :  * @mas: the maple state
    2186             :  *
    2187             :  * Return: True if there is a previous sibling, false otherwise.
    2188             :  */
    2189           0 : static inline bool mas_prev_sibling(struct ma_state *mas)
    2190             : {
    2191           0 :         unsigned int p_slot = mte_parent_slot(mas->node);
    2192             : 
    2193           0 :         if (mte_is_root(mas->node))
    2194             :                 return false;
    2195             : 
    2196           0 :         if (!p_slot)
    2197             :                 return false;
    2198             : 
    2199           0 :         mas_ascend(mas);
    2200           0 :         mas->offset = p_slot - 1;
    2201           0 :         mas_descend(mas);
    2202           0 :         return true;
    2203             : }
    2204             : 
    2205             : /*
    2206             :  * mas_next_sibling() - Find the next node with the same parent.
    2207             :  * @mas: the maple state
    2208             :  *
    2209             :  * Return: true if there is a next sibling, false otherwise.
    2210             :  */
    2211           0 : static inline bool mas_next_sibling(struct ma_state *mas)
    2212             : {
    2213           0 :         MA_STATE(parent, mas->tree, mas->index, mas->last);
    2214             : 
    2215           0 :         if (mte_is_root(mas->node))
    2216             :                 return false;
    2217             : 
    2218           0 :         parent = *mas;
    2219           0 :         mas_ascend(&parent);
    2220           0 :         parent.offset = mte_parent_slot(mas->node) + 1;
    2221           0 :         if (parent.offset > mas_data_end(&parent))
    2222             :                 return false;
    2223             : 
    2224           0 :         *mas = parent;
    2225           0 :         mas_descend(mas);
    2226           0 :         return true;
    2227             : }
    2228             : 
    2229             : /*
    2230             :  * mte_node_or_node() - Return the encoded node or MAS_NONE.
    2231             :  * @enode: The encoded maple node.
    2232             :  *
    2233             :  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
    2234             :  *
    2235             :  * Return: @enode or MAS_NONE
    2236             :  */
    2237             : static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
    2238             : {
    2239           0 :         if (enode)
    2240             :                 return enode;
    2241             : 
    2242             :         return ma_enode_ptr(MAS_NONE);
    2243             : }
    2244             : 
    2245             : /*
    2246             :  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
    2247             :  * @wr_mas: The maple write state
    2248             :  *
    2249             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    2250             :  */
    2251           0 : static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
    2252             : {
    2253           0 :         struct ma_state *mas = wr_mas->mas;
    2254             :         unsigned char count;
    2255             :         unsigned char offset;
    2256             :         unsigned long index, min, max;
    2257             : 
    2258           0 :         if (unlikely(ma_is_dense(wr_mas->type))) {
    2259           0 :                 wr_mas->r_max = wr_mas->r_min = mas->index;
    2260           0 :                 mas->offset = mas->index = mas->min;
    2261           0 :                 return;
    2262             :         }
    2263             : 
    2264           0 :         wr_mas->node = mas_mn(wr_mas->mas);
    2265           0 :         wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
    2266           0 :         count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
    2267             :                                                wr_mas->pivots, mas->max);
    2268           0 :         offset = mas->offset;
    2269           0 :         min = mas_safe_min(mas, wr_mas->pivots, offset);
    2270           0 :         if (unlikely(offset == count))
    2271             :                 goto max;
    2272             : 
    2273           0 :         max = wr_mas->pivots[offset];
    2274           0 :         index = mas->index;
    2275           0 :         if (unlikely(index <= max))
    2276             :                 goto done;
    2277             : 
    2278           0 :         if (unlikely(!max && offset))
    2279             :                 goto max;
    2280             : 
    2281           0 :         min = max + 1;
    2282           0 :         while (++offset < count) {
    2283           0 :                 max = wr_mas->pivots[offset];
    2284           0 :                 if (index <= max)
    2285             :                         goto done;
    2286           0 :                 else if (unlikely(!max))
    2287             :                         break;
    2288             : 
    2289           0 :                 min = max + 1;
    2290             :         }
    2291             : 
    2292             : max:
    2293           0 :         max = mas->max;
    2294             : done:
    2295           0 :         wr_mas->r_max = max;
    2296           0 :         wr_mas->r_min = min;
    2297           0 :         wr_mas->offset_end = mas->offset = offset;
    2298             : }
    2299             : 
    2300             : /*
    2301             :  * mas_topiary_range() - Add a range of slots to the topiary.
    2302             :  * @mas: The maple state
    2303             :  * @destroy: The topiary to add the slots (usually destroy)
    2304             :  * @start: The starting slot inclusively
    2305             :  * @end: The end slot inclusively
    2306             :  */
    2307           0 : static inline void mas_topiary_range(struct ma_state *mas,
    2308             :         struct ma_topiary *destroy, unsigned char start, unsigned char end)
    2309             : {
    2310             :         void __rcu **slots;
    2311             :         unsigned char offset;
    2312             : 
    2313           0 :         MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
    2314           0 :         slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
    2315           0 :         for (offset = start; offset <= end; offset++) {
    2316           0 :                 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
    2317             : 
    2318           0 :                 if (mte_dead_node(enode))
    2319           0 :                         continue;
    2320             : 
    2321           0 :                 mat_add(destroy, enode);
    2322             :         }
    2323           0 : }
    2324             : 
    2325             : /*
    2326             :  * mast_topiary() - Add the portions of the tree to the removal list; either to
    2327             :  * be freed or discarded (destroy walk).
    2328             :  * @mast: The maple_subtree_state.
    2329             :  */
    2330           0 : static inline void mast_topiary(struct maple_subtree_state *mast)
    2331             : {
    2332           0 :         MA_WR_STATE(wr_mas, mast->orig_l, NULL);
    2333             :         unsigned char r_start, r_end;
    2334             :         unsigned char l_start, l_end;
    2335             :         void __rcu **l_slots, **r_slots;
    2336             : 
    2337           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2338           0 :         mast->orig_l->index = mast->orig_l->last;
    2339           0 :         mas_wr_node_walk(&wr_mas);
    2340           0 :         l_start = mast->orig_l->offset + 1;
    2341           0 :         l_end = mas_data_end(mast->orig_l);
    2342           0 :         r_start = 0;
    2343           0 :         r_end = mast->orig_r->offset;
    2344             : 
    2345           0 :         if (r_end)
    2346           0 :                 r_end--;
    2347             : 
    2348           0 :         l_slots = ma_slots(mas_mn(mast->orig_l),
    2349           0 :                            mte_node_type(mast->orig_l->node));
    2350             : 
    2351           0 :         r_slots = ma_slots(mas_mn(mast->orig_r),
    2352           0 :                            mte_node_type(mast->orig_r->node));
    2353             : 
    2354           0 :         if ((l_start < l_end) &&
    2355           0 :             mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
    2356           0 :                 l_start++;
    2357             :         }
    2358             : 
    2359           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
    2360           0 :                 if (r_end)
    2361           0 :                         r_end--;
    2362             :         }
    2363             : 
    2364           0 :         if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
    2365           0 :                 return;
    2366             : 
    2367             :         /* At the node where left and right sides meet, add the parts between */
    2368           0 :         if (mast->orig_l->node == mast->orig_r->node) {
    2369           0 :                 return mas_topiary_range(mast->orig_l, mast->destroy,
    2370             :                                              l_start, r_end);
    2371             :         }
    2372             : 
    2373             :         /* mast->orig_r is different and consumed. */
    2374           0 :         if (mte_is_leaf(mast->orig_r->node))
    2375             :                 return;
    2376             : 
    2377           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
    2378           0 :                 l_end--;
    2379             : 
    2380             : 
    2381           0 :         if (l_start <= l_end)
    2382           0 :                 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
    2383             : 
    2384           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
    2385           0 :                 r_start++;
    2386             : 
    2387           0 :         if (r_start <= r_end)
    2388           0 :                 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
    2389             : }
    2390             : 
    2391             : /*
    2392             :  * mast_rebalance_next() - Rebalance against the next node
    2393             :  * @mast: The maple subtree state
    2394             :  * @old_r: The encoded maple node to the right (next node).
    2395             :  */
    2396           0 : static inline void mast_rebalance_next(struct maple_subtree_state *mast)
    2397             : {
    2398           0 :         unsigned char b_end = mast->bn->b_end;
    2399             : 
    2400           0 :         mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
    2401             :                    mast->bn, b_end);
    2402           0 :         mast->orig_r->last = mast->orig_r->max;
    2403           0 : }
    2404             : 
    2405             : /*
    2406             :  * mast_rebalance_prev() - Rebalance against the previous node
    2407             :  * @mast: The maple subtree state
    2408             :  * @old_l: The encoded maple node to the left (previous node)
    2409             :  */
    2410           0 : static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
    2411             : {
    2412           0 :         unsigned char end = mas_data_end(mast->orig_l) + 1;
    2413           0 :         unsigned char b_end = mast->bn->b_end;
    2414             : 
    2415           0 :         mab_shift_right(mast->bn, end);
    2416           0 :         mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
    2417           0 :         mast->l->min = mast->orig_l->min;
    2418           0 :         mast->orig_l->index = mast->orig_l->min;
    2419           0 :         mast->bn->b_end = end + b_end;
    2420           0 :         mast->l->offset += end;
    2421           0 : }
    2422             : 
    2423             : /*
    2424             :  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
    2425             :  * the node to the right.  Checking the nodes to the right then the left at each
    2426             :  * level upwards until root is reached.  Free and destroy as needed.
    2427             :  * Data is copied into the @mast->bn.
    2428             :  * @mast: The maple_subtree_state.
    2429             :  */
    2430             : static inline
    2431           0 : bool mast_spanning_rebalance(struct maple_subtree_state *mast)
    2432             : {
    2433           0 :         struct ma_state r_tmp = *mast->orig_r;
    2434           0 :         struct ma_state l_tmp = *mast->orig_l;
    2435           0 :         struct maple_enode *ancestor = NULL;
    2436             :         unsigned char start, end;
    2437           0 :         unsigned char depth = 0;
    2438             : 
    2439           0 :         r_tmp = *mast->orig_r;
    2440           0 :         l_tmp = *mast->orig_l;
    2441             :         do {
    2442           0 :                 mas_ascend(mast->orig_r);
    2443           0 :                 mas_ascend(mast->orig_l);
    2444           0 :                 depth++;
    2445           0 :                 if (!ancestor &&
    2446           0 :                     (mast->orig_r->node == mast->orig_l->node)) {
    2447           0 :                         ancestor = mast->orig_r->node;
    2448           0 :                         end = mast->orig_r->offset - 1;
    2449           0 :                         start = mast->orig_l->offset + 1;
    2450             :                 }
    2451             : 
    2452           0 :                 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
    2453           0 :                         if (!ancestor) {
    2454           0 :                                 ancestor = mast->orig_r->node;
    2455           0 :                                 start = 0;
    2456             :                         }
    2457             : 
    2458           0 :                         mast->orig_r->offset++;
    2459             :                         do {
    2460           0 :                                 mas_descend(mast->orig_r);
    2461           0 :                                 mast->orig_r->offset = 0;
    2462           0 :                                 depth--;
    2463           0 :                         } while (depth);
    2464             : 
    2465           0 :                         mast_rebalance_next(mast);
    2466             :                         do {
    2467           0 :                                 unsigned char l_off = 0;
    2468           0 :                                 struct maple_enode *child = r_tmp.node;
    2469             : 
    2470           0 :                                 mas_ascend(&r_tmp);
    2471           0 :                                 if (ancestor == r_tmp.node)
    2472           0 :                                         l_off = start;
    2473             : 
    2474           0 :                                 if (r_tmp.offset)
    2475           0 :                                         r_tmp.offset--;
    2476             : 
    2477           0 :                                 if (l_off < r_tmp.offset)
    2478           0 :                                         mas_topiary_range(&r_tmp, mast->destroy,
    2479             :                                                           l_off, r_tmp.offset);
    2480             : 
    2481           0 :                                 if (l_tmp.node != child)
    2482           0 :                                         mat_add(mast->free, child);
    2483             : 
    2484           0 :                         } while (r_tmp.node != ancestor);
    2485             : 
    2486           0 :                         *mast->orig_l = l_tmp;
    2487           0 :                         return true;
    2488             : 
    2489           0 :                 } else if (mast->orig_l->offset != 0) {
    2490           0 :                         if (!ancestor) {
    2491           0 :                                 ancestor = mast->orig_l->node;
    2492           0 :                                 end = mas_data_end(mast->orig_l);
    2493             :                         }
    2494             : 
    2495           0 :                         mast->orig_l->offset--;
    2496             :                         do {
    2497           0 :                                 mas_descend(mast->orig_l);
    2498           0 :                                 mast->orig_l->offset =
    2499           0 :                                         mas_data_end(mast->orig_l);
    2500           0 :                                 depth--;
    2501           0 :                         } while (depth);
    2502             : 
    2503           0 :                         mast_rebalance_prev(mast);
    2504             :                         do {
    2505             :                                 unsigned char r_off;
    2506           0 :                                 struct maple_enode *child = l_tmp.node;
    2507             : 
    2508           0 :                                 mas_ascend(&l_tmp);
    2509           0 :                                 if (ancestor == l_tmp.node)
    2510             :                                         r_off = end;
    2511             :                                 else
    2512           0 :                                         r_off = mas_data_end(&l_tmp);
    2513             : 
    2514           0 :                                 if (l_tmp.offset < r_off)
    2515           0 :                                         l_tmp.offset++;
    2516             : 
    2517           0 :                                 if (l_tmp.offset < r_off)
    2518           0 :                                         mas_topiary_range(&l_tmp, mast->destroy,
    2519             :                                                           l_tmp.offset, r_off);
    2520             : 
    2521           0 :                                 if (r_tmp.node != child)
    2522           0 :                                         mat_add(mast->free, child);
    2523             : 
    2524           0 :                         } while (l_tmp.node != ancestor);
    2525             : 
    2526           0 :                         *mast->orig_r = r_tmp;
    2527           0 :                         return true;
    2528             :                 }
    2529           0 :         } while (!mte_is_root(mast->orig_r->node));
    2530             : 
    2531           0 :         *mast->orig_r = r_tmp;
    2532           0 :         *mast->orig_l = l_tmp;
    2533           0 :         return false;
    2534             : }
    2535             : 
    2536             : /*
    2537             :  * mast_ascend_free() - Add current original maple state nodes to the free list
    2538             :  * and ascend.
    2539             :  * @mast: the maple subtree state.
    2540             :  *
    2541             :  * Ascend the original left and right sides and add the previous nodes to the
    2542             :  * free list.  Set the slots to point to the correct location in the new nodes.
    2543             :  */
    2544             : static inline void
    2545           0 : mast_ascend_free(struct maple_subtree_state *mast)
    2546             : {
    2547           0 :         MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
    2548           0 :         struct maple_enode *left = mast->orig_l->node;
    2549           0 :         struct maple_enode *right = mast->orig_r->node;
    2550             : 
    2551           0 :         mas_ascend(mast->orig_l);
    2552           0 :         mas_ascend(mast->orig_r);
    2553           0 :         mat_add(mast->free, left);
    2554             : 
    2555           0 :         if (left != right)
    2556           0 :                 mat_add(mast->free, right);
    2557             : 
    2558           0 :         mast->orig_r->offset = 0;
    2559           0 :         mast->orig_r->index = mast->r->max;
    2560             :         /* last should be larger than or equal to index */
    2561           0 :         if (mast->orig_r->last < mast->orig_r->index)
    2562           0 :                 mast->orig_r->last = mast->orig_r->index;
    2563             :         /*
    2564             :          * The node may not contain the value so set slot to ensure all
    2565             :          * of the nodes contents are freed or destroyed.
    2566             :          */
    2567           0 :         wr_mas.type = mte_node_type(mast->orig_r->node);
    2568           0 :         mas_wr_node_walk(&wr_mas);
    2569             :         /* Set up the left side of things */
    2570           0 :         mast->orig_l->offset = 0;
    2571           0 :         mast->orig_l->index = mast->l->min;
    2572           0 :         wr_mas.mas = mast->orig_l;
    2573           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2574           0 :         mas_wr_node_walk(&wr_mas);
    2575             : 
    2576           0 :         mast->bn->type = wr_mas.type;
    2577           0 : }
    2578             : 
    2579             : /*
    2580             :  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
    2581             :  * @mas: the maple state with the allocations.
    2582             :  * @b_node: the maple_big_node with the type encoding.
    2583             :  *
    2584             :  * Use the node type from the maple_big_node to allocate a new node from the
    2585             :  * ma_state.  This function exists mainly for code readability.
    2586             :  *
    2587             :  * Return: A new maple encoded node
    2588             :  */
    2589             : static inline struct maple_enode
    2590             : *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
    2591             : {
    2592           0 :         return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
    2593             : }
    2594             : 
    2595             : /*
    2596             :  * mas_mab_to_node() - Set up right and middle nodes
    2597             :  *
    2598             :  * @mas: the maple state that contains the allocations.
    2599             :  * @b_node: the node which contains the data.
    2600             :  * @left: The pointer which will have the left node
    2601             :  * @right: The pointer which may have the right node
    2602             :  * @middle: the pointer which may have the middle node (rare)
    2603             :  * @mid_split: the split location for the middle node
    2604             :  *
    2605             :  * Return: the split of left.
    2606             :  */
    2607           0 : static inline unsigned char mas_mab_to_node(struct ma_state *mas,
    2608             :         struct maple_big_node *b_node, struct maple_enode **left,
    2609             :         struct maple_enode **right, struct maple_enode **middle,
    2610             :         unsigned char *mid_split, unsigned long min)
    2611             : {
    2612           0 :         unsigned char split = 0;
    2613           0 :         unsigned char slot_count = mt_slots[b_node->type];
    2614             : 
    2615           0 :         *left = mas_new_ma_node(mas, b_node);
    2616           0 :         *right = NULL;
    2617           0 :         *middle = NULL;
    2618           0 :         *mid_split = 0;
    2619             : 
    2620           0 :         if (b_node->b_end < slot_count) {
    2621             :                 split = b_node->b_end;
    2622             :         } else {
    2623           0 :                 split = mab_calc_split(mas, b_node, mid_split, min);
    2624           0 :                 *right = mas_new_ma_node(mas, b_node);
    2625             :         }
    2626             : 
    2627           0 :         if (*mid_split)
    2628           0 :                 *middle = mas_new_ma_node(mas, b_node);
    2629             : 
    2630           0 :         return split;
    2631             : 
    2632             : }
    2633             : 
    2634             : /*
    2635             :  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
    2636             :  * pointer.
    2637             :  * @b_node - the big node to add the entry
    2638             :  * @mas - the maple state to get the pivot (mas->max)
    2639             :  * @entry - the entry to add, if NULL nothing happens.
    2640             :  */
    2641           0 : static inline void mab_set_b_end(struct maple_big_node *b_node,
    2642             :                                  struct ma_state *mas,
    2643             :                                  void *entry)
    2644             : {
    2645           0 :         if (!entry)
    2646             :                 return;
    2647             : 
    2648           0 :         b_node->slot[b_node->b_end] = entry;
    2649           0 :         if (mt_is_alloc(mas->tree))
    2650           0 :                 b_node->gap[b_node->b_end] = mas_max_gap(mas);
    2651           0 :         b_node->pivot[b_node->b_end++] = mas->max;
    2652             : }
    2653             : 
    2654             : /*
    2655             :  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
    2656             :  * of @mas->node to either @left or @right, depending on @slot and @split
    2657             :  *
    2658             :  * @mas - the maple state with the node that needs a parent
    2659             :  * @left - possible parent 1
    2660             :  * @right - possible parent 2
    2661             :  * @slot - the slot the mas->node was placed
    2662             :  * @split - the split location between @left and @right
    2663             :  */
    2664           0 : static inline void mas_set_split_parent(struct ma_state *mas,
    2665             :                                         struct maple_enode *left,
    2666             :                                         struct maple_enode *right,
    2667             :                                         unsigned char *slot, unsigned char split)
    2668             : {
    2669           0 :         if (mas_is_none(mas))
    2670             :                 return;
    2671             : 
    2672           0 :         if ((*slot) <= split)
    2673           0 :                 mte_set_parent(mas->node, left, *slot);
    2674           0 :         else if (right)
    2675           0 :                 mte_set_parent(mas->node, right, (*slot) - split - 1);
    2676             : 
    2677           0 :         (*slot)++;
    2678             : }
    2679             : 
    2680             : /*
    2681             :  * mte_mid_split_check() - Check if the next node passes the mid-split
    2682             :  * @**l: Pointer to left encoded maple node.
    2683             :  * @**m: Pointer to middle encoded maple node.
    2684             :  * @**r: Pointer to right encoded maple node.
    2685             :  * @slot: The offset
    2686             :  * @*split: The split location.
    2687             :  * @mid_split: The middle split.
    2688             :  */
    2689             : static inline void mte_mid_split_check(struct maple_enode **l,
    2690             :                                        struct maple_enode **r,
    2691             :                                        struct maple_enode *right,
    2692             :                                        unsigned char slot,
    2693             :                                        unsigned char *split,
    2694             :                                        unsigned char mid_split)
    2695             : {
    2696           0 :         if (*r == right)
    2697             :                 return;
    2698             : 
    2699           0 :         if (slot < mid_split)
    2700             :                 return;
    2701             : 
    2702           0 :         *l = *r;
    2703           0 :         *r = right;
    2704           0 :         *split = mid_split;
    2705             : }
    2706             : 
    2707             : /*
    2708             :  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
    2709             :  * is taken from @mast->l.
    2710             :  * @mast - the maple subtree state
    2711             :  * @left - the left node
    2712             :  * @right - the right node
    2713             :  * @split - the split location.
    2714             :  */
    2715           0 : static inline void mast_set_split_parents(struct maple_subtree_state *mast,
    2716             :                                           struct maple_enode *left,
    2717             :                                           struct maple_enode *middle,
    2718             :                                           struct maple_enode *right,
    2719             :                                           unsigned char split,
    2720             :                                           unsigned char mid_split)
    2721             : {
    2722             :         unsigned char slot;
    2723           0 :         struct maple_enode *l = left;
    2724           0 :         struct maple_enode *r = right;
    2725             : 
    2726           0 :         if (mas_is_none(mast->l))
    2727           0 :                 return;
    2728             : 
    2729           0 :         if (middle)
    2730           0 :                 r = middle;
    2731             : 
    2732           0 :         slot = mast->l->offset;
    2733             : 
    2734           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2735           0 :         mas_set_split_parent(mast->l, l, r, &slot, split);
    2736             : 
    2737           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2738           0 :         mas_set_split_parent(mast->m, l, r, &slot, split);
    2739             : 
    2740           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2741           0 :         mas_set_split_parent(mast->r, l, r, &slot, split);
    2742             : }
    2743             : 
    2744             : /*
    2745             :  * mas_wmb_replace() - Write memory barrier and replace
    2746             :  * @mas: The maple state
    2747             :  * @free: the maple topiary list of nodes to free
    2748             :  * @destroy: The maple topiary list of nodes to destroy (walk and free)
    2749             :  *
    2750             :  * Updates gap as necessary.
    2751             :  */
    2752           0 : static inline void mas_wmb_replace(struct ma_state *mas,
    2753             :                                    struct ma_topiary *free,
    2754             :                                    struct ma_topiary *destroy)
    2755             : {
    2756             :         /* All nodes must see old data as dead prior to replacing that data */
    2757           0 :         smp_wmb(); /* Needed for RCU */
    2758             : 
    2759             :         /* Insert the new data in the tree */
    2760           0 :         mas_replace(mas, true);
    2761             : 
    2762           0 :         if (!mte_is_leaf(mas->node))
    2763           0 :                 mas_descend_adopt(mas);
    2764             : 
    2765           0 :         mas_mat_free(mas, free);
    2766             : 
    2767           0 :         if (destroy)
    2768             :                 mas_mat_destroy(mas, destroy);
    2769             : 
    2770           0 :         if (mte_is_leaf(mas->node))
    2771             :                 return;
    2772             : 
    2773           0 :         mas_update_gap(mas);
    2774             : }
    2775             : 
    2776             : /*
    2777             :  * mast_new_root() - Set a new tree root during subtree creation
    2778             :  * @mast: The maple subtree state
    2779             :  * @mas: The maple state
    2780             :  */
    2781           0 : static inline void mast_new_root(struct maple_subtree_state *mast,
    2782             :                                  struct ma_state *mas)
    2783             : {
    2784           0 :         mas_mn(mast->l)->parent =
    2785           0 :                 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
    2786           0 :         if (!mte_dead_node(mast->orig_l->node) &&
    2787           0 :             !mte_is_root(mast->orig_l->node)) {
    2788             :                 do {
    2789           0 :                         mast_ascend_free(mast);
    2790           0 :                         mast_topiary(mast);
    2791           0 :                 } while (!mte_is_root(mast->orig_l->node));
    2792             :         }
    2793           0 :         if ((mast->orig_l->node != mas->node) &&
    2794           0 :                    (mast->l->depth > mas_mt_height(mas))) {
    2795           0 :                 mat_add(mast->free, mas->node);
    2796             :         }
    2797           0 : }
    2798             : 
    2799             : /*
    2800             :  * mast_cp_to_nodes() - Copy data out to nodes.
    2801             :  * @mast: The maple subtree state
    2802             :  * @left: The left encoded maple node
    2803             :  * @middle: The middle encoded maple node
    2804             :  * @right: The right encoded maple node
    2805             :  * @split: The location to split between left and (middle ? middle : right)
    2806             :  * @mid_split: The location to split between middle and right.
    2807             :  */
    2808           0 : static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
    2809             :         struct maple_enode *left, struct maple_enode *middle,
    2810             :         struct maple_enode *right, unsigned char split, unsigned char mid_split)
    2811             : {
    2812           0 :         bool new_lmax = true;
    2813             : 
    2814           0 :         mast->l->node = mte_node_or_none(left);
    2815           0 :         mast->m->node = mte_node_or_none(middle);
    2816           0 :         mast->r->node = mte_node_or_none(right);
    2817             : 
    2818           0 :         mast->l->min = mast->orig_l->min;
    2819           0 :         if (split == mast->bn->b_end) {
    2820           0 :                 mast->l->max = mast->orig_r->max;
    2821           0 :                 new_lmax = false;
    2822             :         }
    2823             : 
    2824           0 :         mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
    2825             : 
    2826           0 :         if (middle) {
    2827           0 :                 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
    2828           0 :                 mast->m->min = mast->bn->pivot[split] + 1;
    2829           0 :                 split = mid_split;
    2830             :         }
    2831             : 
    2832           0 :         mast->r->max = mast->orig_r->max;
    2833           0 :         if (right) {
    2834           0 :                 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
    2835           0 :                 mast->r->min = mast->bn->pivot[split] + 1;
    2836             :         }
    2837           0 : }
    2838             : 
    2839             : /*
    2840             :  * mast_combine_cp_left - Copy in the original left side of the tree into the
    2841             :  * combined data set in the maple subtree state big node.
    2842             :  * @mast: The maple subtree state
    2843             :  */
    2844             : static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
    2845             : {
    2846           0 :         unsigned char l_slot = mast->orig_l->offset;
    2847             : 
    2848           0 :         if (!l_slot)
    2849             :                 return;
    2850             : 
    2851           0 :         mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
    2852             : }
    2853             : 
    2854             : /*
    2855             :  * mast_combine_cp_right: Copy in the original right side of the tree into the
    2856             :  * combined data set in the maple subtree state big node.
    2857             :  * @mast: The maple subtree state
    2858             :  */
    2859           0 : static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
    2860             : {
    2861           0 :         if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
    2862             :                 return;
    2863             : 
    2864           0 :         mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
    2865           0 :                    mt_slot_count(mast->orig_r->node), mast->bn,
    2866             :                    mast->bn->b_end);
    2867           0 :         mast->orig_r->last = mast->orig_r->max;
    2868             : }
    2869             : 
    2870             : /*
    2871             :  * mast_sufficient: Check if the maple subtree state has enough data in the big
    2872             :  * node to create at least one sufficient node
    2873             :  * @mast: the maple subtree state
    2874             :  */
    2875             : static inline bool mast_sufficient(struct maple_subtree_state *mast)
    2876             : {
    2877           0 :         if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
    2878             :                 return true;
    2879             : 
    2880             :         return false;
    2881             : }
    2882             : 
    2883             : /*
    2884             :  * mast_overflow: Check if there is too much data in the subtree state for a
    2885             :  * single node.
    2886             :  * @mast: The maple subtree state
    2887             :  */
    2888             : static inline bool mast_overflow(struct maple_subtree_state *mast)
    2889             : {
    2890           0 :         if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
    2891             :                 return true;
    2892             : 
    2893             :         return false;
    2894             : }
    2895             : 
    2896           0 : static inline void *mtree_range_walk(struct ma_state *mas)
    2897             : {
    2898             :         unsigned long *pivots;
    2899             :         unsigned char offset;
    2900             :         struct maple_node *node;
    2901             :         struct maple_enode *next, *last;
    2902             :         enum maple_type type;
    2903             :         void __rcu **slots;
    2904             :         unsigned char end;
    2905             :         unsigned long max, min;
    2906             :         unsigned long prev_max, prev_min;
    2907             : 
    2908           0 :         next = mas->node;
    2909           0 :         min = mas->min;
    2910           0 :         max = mas->max;
    2911             :         do {
    2912           0 :                 offset = 0;
    2913           0 :                 last = next;
    2914           0 :                 node = mte_to_node(next);
    2915           0 :                 type = mte_node_type(next);
    2916           0 :                 pivots = ma_pivots(node, type);
    2917           0 :                 end = ma_data_end(node, type, pivots, max);
    2918           0 :                 if (unlikely(ma_dead_node(node)))
    2919             :                         goto dead_node;
    2920             : 
    2921           0 :                 if (pivots[offset] >= mas->index) {
    2922             :                         prev_max = max;
    2923             :                         prev_min = min;
    2924             :                         max = pivots[offset];
    2925             :                         goto next;
    2926             :                 }
    2927             : 
    2928             :                 do {
    2929           0 :                         offset++;
    2930           0 :                 } while ((offset < end) && (pivots[offset] < mas->index));
    2931             : 
    2932           0 :                 prev_min = min;
    2933           0 :                 min = pivots[offset - 1] + 1;
    2934           0 :                 prev_max = max;
    2935           0 :                 if (likely(offset < end && pivots[offset]))
    2936           0 :                         max = pivots[offset];
    2937             : 
    2938             : next:
    2939           0 :                 slots = ma_slots(node, type);
    2940           0 :                 next = mt_slot(mas->tree, slots, offset);
    2941           0 :                 if (unlikely(ma_dead_node(node)))
    2942             :                         goto dead_node;
    2943           0 :         } while (!ma_is_leaf(type));
    2944             : 
    2945           0 :         mas->offset = offset;
    2946           0 :         mas->index = min;
    2947           0 :         mas->last = max;
    2948           0 :         mas->min = prev_min;
    2949           0 :         mas->max = prev_max;
    2950           0 :         mas->node = last;
    2951           0 :         return (void *)next;
    2952             : 
    2953             : dead_node:
    2954           0 :         mas_reset(mas);
    2955           0 :         return NULL;
    2956             : }
    2957             : 
    2958             : /*
    2959             :  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
    2960             :  * @mas: The starting maple state
    2961             :  * @mast: The maple_subtree_state, keeps track of 4 maple states.
    2962             :  * @count: The estimated count of iterations needed.
    2963             :  *
    2964             :  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
    2965             :  * is hit.  First @b_node is split into two entries which are inserted into the
    2966             :  * next iteration of the loop.  @b_node is returned populated with the final
    2967             :  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
    2968             :  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
    2969             :  * to account of what has been copied into the new sub-tree.  The update of
    2970             :  * orig_l_mas->last is used in mas_consume to find the slots that will need to
    2971             :  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
    2972             :  * the new sub-tree in case the sub-tree becomes the full tree.
    2973             :  *
    2974             :  * Return: the number of elements in b_node during the last loop.
    2975             :  */
    2976           0 : static int mas_spanning_rebalance(struct ma_state *mas,
    2977             :                 struct maple_subtree_state *mast, unsigned char count)
    2978             : {
    2979             :         unsigned char split, mid_split;
    2980           0 :         unsigned char slot = 0;
    2981           0 :         struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
    2982             : 
    2983           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->index);
    2984           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    2985           0 :         MA_STATE(m_mas, mas->tree, mas->index, mas->index);
    2986           0 :         MA_TOPIARY(free, mas->tree);
    2987           0 :         MA_TOPIARY(destroy, mas->tree);
    2988             : 
    2989             :         /*
    2990             :          * The tree needs to be rebalanced and leaves need to be kept at the same level.
    2991             :          * Rebalancing is done by use of the ``struct maple_topiary``.
    2992             :          */
    2993           0 :         mast->l = &l_mas;
    2994           0 :         mast->m = &m_mas;
    2995           0 :         mast->r = &r_mas;
    2996           0 :         mast->free = &free;
    2997           0 :         mast->destroy = &destroy;
    2998           0 :         l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
    2999             : 
    3000             :         /* Check if this is not root and has sufficient data.  */
    3001           0 :         if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
    3002           0 :             unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
    3003           0 :                 mast_spanning_rebalance(mast);
    3004             : 
    3005           0 :         mast->orig_l->depth = 0;
    3006             : 
    3007             :         /*
    3008             :          * Each level of the tree is examined and balanced, pushing data to the left or
    3009             :          * right, or rebalancing against left or right nodes is employed to avoid
    3010             :          * rippling up the tree to limit the amount of churn.  Once a new sub-section of
    3011             :          * the tree is created, there may be a mix of new and old nodes.  The old nodes
    3012             :          * will have the incorrect parent pointers and currently be in two trees: the
    3013             :          * original tree and the partially new tree.  To remedy the parent pointers in
    3014             :          * the old tree, the new data is swapped into the active tree and a walk down
    3015             :          * the tree is performed and the parent pointers are updated.
    3016             :          * See mas_descend_adopt() for more information..
    3017             :          */
    3018           0 :         while (count--) {
    3019           0 :                 mast->bn->b_end--;
    3020           0 :                 mast->bn->type = mte_node_type(mast->orig_l->node);
    3021           0 :                 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
    3022           0 :                                         &mid_split, mast->orig_l->min);
    3023           0 :                 mast_set_split_parents(mast, left, middle, right, split,
    3024             :                                        mid_split);
    3025           0 :                 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
    3026             : 
    3027             :                 /*
    3028             :                  * Copy data from next level in the tree to mast->bn from next
    3029             :                  * iteration
    3030             :                  */
    3031           0 :                 memset(mast->bn, 0, sizeof(struct maple_big_node));
    3032           0 :                 mast->bn->type = mte_node_type(left);
    3033           0 :                 mast->orig_l->depth++;
    3034             : 
    3035             :                 /* Root already stored in l->node. */
    3036           0 :                 if (mas_is_root_limits(mast->l))
    3037             :                         goto new_root;
    3038             : 
    3039           0 :                 mast_ascend_free(mast);
    3040           0 :                 mast_combine_cp_left(mast);
    3041           0 :                 l_mas.offset = mast->bn->b_end;
    3042           0 :                 mab_set_b_end(mast->bn, &l_mas, left);
    3043           0 :                 mab_set_b_end(mast->bn, &m_mas, middle);
    3044           0 :                 mab_set_b_end(mast->bn, &r_mas, right);
    3045             : 
    3046             :                 /* Copy anything necessary out of the right node. */
    3047           0 :                 mast_combine_cp_right(mast);
    3048           0 :                 mast_topiary(mast);
    3049           0 :                 mast->orig_l->last = mast->orig_l->max;
    3050             : 
    3051           0 :                 if (mast_sufficient(mast))
    3052           0 :                         continue;
    3053             : 
    3054           0 :                 if (mast_overflow(mast))
    3055           0 :                         continue;
    3056             : 
    3057             :                 /* May be a new root stored in mast->bn */
    3058           0 :                 if (mas_is_root_limits(mast->orig_l))
    3059             :                         break;
    3060             : 
    3061           0 :                 mast_spanning_rebalance(mast);
    3062             : 
    3063             :                 /* rebalancing from other nodes may require another loop. */
    3064           0 :                 if (!count)
    3065           0 :                         count++;
    3066             :         }
    3067             : 
    3068           0 :         l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
    3069           0 :                                 mte_node_type(mast->orig_l->node));
    3070           0 :         mast->orig_l->depth++;
    3071           0 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
    3072           0 :         mte_set_parent(left, l_mas.node, slot);
    3073           0 :         if (middle)
    3074           0 :                 mte_set_parent(middle, l_mas.node, ++slot);
    3075             : 
    3076           0 :         if (right)
    3077           0 :                 mte_set_parent(right, l_mas.node, ++slot);
    3078             : 
    3079           0 :         if (mas_is_root_limits(mast->l)) {
    3080             : new_root:
    3081           0 :                 mast_new_root(mast, mas);
    3082             :         } else {
    3083           0 :                 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
    3084             :         }
    3085             : 
    3086           0 :         if (!mte_dead_node(mast->orig_l->node))
    3087           0 :                 mat_add(&free, mast->orig_l->node);
    3088             : 
    3089           0 :         mas->depth = mast->orig_l->depth;
    3090           0 :         *mast->orig_l = l_mas;
    3091           0 :         mte_set_node_dead(mas->node);
    3092             : 
    3093             :         /* Set up mas for insertion. */
    3094           0 :         mast->orig_l->depth = mas->depth;
    3095           0 :         mast->orig_l->alloc = mas->alloc;
    3096           0 :         *mas = *mast->orig_l;
    3097           0 :         mas_wmb_replace(mas, &free, &destroy);
    3098           0 :         mtree_range_walk(mas);
    3099           0 :         return mast->bn->b_end;
    3100             : }
    3101             : 
    3102             : /*
    3103             :  * mas_rebalance() - Rebalance a given node.
    3104             :  * @mas: The maple state
    3105             :  * @b_node: The big maple node.
    3106             :  *
    3107             :  * Rebalance two nodes into a single node or two new nodes that are sufficient.
    3108             :  * Continue upwards until tree is sufficient.
    3109             :  *
    3110             :  * Return: the number of elements in b_node during the last loop.
    3111             :  */
    3112           0 : static inline int mas_rebalance(struct ma_state *mas,
    3113             :                                 struct maple_big_node *b_node)
    3114             : {
    3115           0 :         char empty_count = mas_mt_height(mas);
    3116             :         struct maple_subtree_state mast;
    3117           0 :         unsigned char shift, b_end = ++b_node->b_end;
    3118             : 
    3119           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3120           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3121             : 
    3122           0 :         trace_ma_op(__func__, mas);
    3123             : 
    3124             :         /*
    3125             :          * Rebalancing occurs if a node is insufficient.  Data is rebalanced
    3126             :          * against the node to the right if it exists, otherwise the node to the
    3127             :          * left of this node is rebalanced against this node.  If rebalancing
    3128             :          * causes just one node to be produced instead of two, then the parent
    3129             :          * is also examined and rebalanced if it is insufficient.  Every level
    3130             :          * tries to combine the data in the same way.  If one node contains the
    3131             :          * entire range of the tree, then that node is used as a new root node.
    3132             :          */
    3133           0 :         mas_node_count(mas, 1 + empty_count * 3);
    3134           0 :         if (mas_is_err(mas))
    3135             :                 return 0;
    3136             : 
    3137           0 :         mast.orig_l = &l_mas;
    3138           0 :         mast.orig_r = &r_mas;
    3139           0 :         mast.bn = b_node;
    3140           0 :         mast.bn->type = mte_node_type(mas->node);
    3141             : 
    3142           0 :         l_mas = r_mas = *mas;
    3143             : 
    3144           0 :         if (mas_next_sibling(&r_mas)) {
    3145           0 :                 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
    3146           0 :                 r_mas.last = r_mas.index = r_mas.max;
    3147             :         } else {
    3148           0 :                 mas_prev_sibling(&l_mas);
    3149           0 :                 shift = mas_data_end(&l_mas) + 1;
    3150           0 :                 mab_shift_right(b_node, shift);
    3151           0 :                 mas->offset += shift;
    3152           0 :                 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
    3153           0 :                 b_node->b_end = shift + b_end;
    3154           0 :                 l_mas.index = l_mas.last = l_mas.min;
    3155             :         }
    3156             : 
    3157           0 :         return mas_spanning_rebalance(mas, &mast, empty_count);
    3158             : }
    3159             : 
    3160             : /*
    3161             :  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
    3162             :  * state.
    3163             :  * @mas: The maple state
    3164             :  * @end: The end of the left-most node.
    3165             :  *
    3166             :  * During a mass-insert event (such as forking), it may be necessary to
    3167             :  * rebalance the left-most node when it is not sufficient.
    3168             :  */
    3169           0 : static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
    3170             : {
    3171           0 :         enum maple_type mt = mte_node_type(mas->node);
    3172             :         struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
    3173             :         struct maple_enode *eparent;
    3174           0 :         unsigned char offset, tmp, split = mt_slots[mt] / 2;
    3175             :         void __rcu **l_slots, **slots;
    3176             :         unsigned long *l_pivs, *pivs, gap;
    3177           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    3178             : 
    3179             :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3180             : 
    3181           0 :         l_mas = *mas;
    3182           0 :         mas_prev_sibling(&l_mas);
    3183             : 
    3184             :         /* set up node. */
    3185           0 :         if (in_rcu) {
    3186             :                 /* Allocate for both left and right as well as parent. */
    3187           0 :                 mas_node_count(mas, 3);
    3188           0 :                 if (mas_is_err(mas))
    3189           0 :                         return;
    3190             : 
    3191           0 :                 newnode = mas_pop_node(mas);
    3192             :         } else {
    3193             :                 newnode = &reuse;
    3194             :         }
    3195             : 
    3196           0 :         node = mas_mn(mas);
    3197           0 :         newnode->parent = node->parent;
    3198           0 :         slots = ma_slots(newnode, mt);
    3199           0 :         pivs = ma_pivots(newnode, mt);
    3200           0 :         left = mas_mn(&l_mas);
    3201           0 :         l_slots = ma_slots(left, mt);
    3202           0 :         l_pivs = ma_pivots(left, mt);
    3203           0 :         if (!l_slots[split])
    3204           0 :                 split++;
    3205           0 :         tmp = mas_data_end(&l_mas) - split;
    3206             : 
    3207           0 :         memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
    3208           0 :         memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
    3209           0 :         pivs[tmp] = l_mas.max;
    3210           0 :         memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
    3211           0 :         memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
    3212             : 
    3213           0 :         l_mas.max = l_pivs[split];
    3214           0 :         mas->min = l_mas.max + 1;
    3215           0 :         eparent = mt_mk_node(mte_parent(l_mas.node),
    3216             :                              mas_parent_enum(&l_mas, l_mas.node));
    3217           0 :         tmp += end;
    3218           0 :         if (!in_rcu) {
    3219           0 :                 unsigned char max_p = mt_pivots[mt];
    3220           0 :                 unsigned char max_s = mt_slots[mt];
    3221             : 
    3222           0 :                 if (tmp < max_p)
    3223           0 :                         memset(pivs + tmp, 0,
    3224           0 :                                sizeof(unsigned long *) * (max_p - tmp));
    3225             : 
    3226           0 :                 if (tmp < mt_slots[mt])
    3227           0 :                         memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3228             : 
    3229           0 :                 memcpy(node, newnode, sizeof(struct maple_node));
    3230           0 :                 ma_set_meta(node, mt, 0, tmp - 1);
    3231           0 :                 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
    3232             :                               l_pivs[split]);
    3233             : 
    3234             :                 /* Remove data from l_pivs. */
    3235           0 :                 tmp = split + 1;
    3236           0 :                 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
    3237           0 :                 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3238           0 :                 ma_set_meta(left, mt, 0, split);
    3239             : 
    3240             :                 goto done;
    3241             :         }
    3242             : 
    3243             :         /* RCU requires replacing both l_mas, mas, and parent. */
    3244           0 :         mas->node = mt_mk_node(newnode, mt);
    3245           0 :         ma_set_meta(newnode, mt, 0, tmp);
    3246             : 
    3247           0 :         new_left = mas_pop_node(mas);
    3248           0 :         new_left->parent = left->parent;
    3249           0 :         mt = mte_node_type(l_mas.node);
    3250           0 :         slots = ma_slots(new_left, mt);
    3251           0 :         pivs = ma_pivots(new_left, mt);
    3252           0 :         memcpy(slots, l_slots, sizeof(void *) * split);
    3253           0 :         memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
    3254           0 :         ma_set_meta(new_left, mt, 0, split);
    3255           0 :         l_mas.node = mt_mk_node(new_left, mt);
    3256             : 
    3257             :         /* replace parent. */
    3258           0 :         offset = mte_parent_slot(mas->node);
    3259           0 :         mt = mas_parent_enum(&l_mas, l_mas.node);
    3260           0 :         parent = mas_pop_node(mas);
    3261           0 :         slots = ma_slots(parent, mt);
    3262           0 :         pivs = ma_pivots(parent, mt);
    3263           0 :         memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
    3264           0 :         rcu_assign_pointer(slots[offset], mas->node);
    3265           0 :         rcu_assign_pointer(slots[offset - 1], l_mas.node);
    3266           0 :         pivs[offset - 1] = l_mas.max;
    3267           0 :         eparent = mt_mk_node(parent, mt);
    3268             : done:
    3269           0 :         gap = mas_leaf_max_gap(mas);
    3270           0 :         mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
    3271           0 :         gap = mas_leaf_max_gap(&l_mas);
    3272           0 :         mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
    3273           0 :         mas_ascend(mas);
    3274             : 
    3275           0 :         if (in_rcu)
    3276           0 :                 mas_replace(mas, false);
    3277             : 
    3278           0 :         mas_update_gap(mas);
    3279             : }
    3280             : 
    3281             : /*
    3282             :  * mas_split_final_node() - Split the final node in a subtree operation.
    3283             :  * @mast: the maple subtree state
    3284             :  * @mas: The maple state
    3285             :  * @height: The height of the tree in case it's a new root.
    3286             :  */
    3287           0 : static inline bool mas_split_final_node(struct maple_subtree_state *mast,
    3288             :                                         struct ma_state *mas, int height)
    3289             : {
    3290             :         struct maple_enode *ancestor;
    3291             : 
    3292           0 :         if (mte_is_root(mas->node)) {
    3293           0 :                 if (mt_is_alloc(mas->tree))
    3294           0 :                         mast->bn->type = maple_arange_64;
    3295             :                 else
    3296           0 :                         mast->bn->type = maple_range_64;
    3297           0 :                 mas->depth = height;
    3298             :         }
    3299             :         /*
    3300             :          * Only a single node is used here, could be root.
    3301             :          * The Big_node data should just fit in a single node.
    3302             :          */
    3303           0 :         ancestor = mas_new_ma_node(mas, mast->bn);
    3304           0 :         mte_set_parent(mast->l->node, ancestor, mast->l->offset);
    3305           0 :         mte_set_parent(mast->r->node, ancestor, mast->r->offset);
    3306           0 :         mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
    3307             : 
    3308           0 :         mast->l->node = ancestor;
    3309           0 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
    3310           0 :         mas->offset = mast->bn->b_end - 1;
    3311           0 :         return true;
    3312             : }
    3313             : 
    3314             : /*
    3315             :  * mast_fill_bnode() - Copy data into the big node in the subtree state
    3316             :  * @mast: The maple subtree state
    3317             :  * @mas: the maple state
    3318             :  * @skip: The number of entries to skip for new nodes insertion.
    3319             :  */
    3320           0 : static inline void mast_fill_bnode(struct maple_subtree_state *mast,
    3321             :                                          struct ma_state *mas,
    3322             :                                          unsigned char skip)
    3323             : {
    3324           0 :         bool cp = true;
    3325           0 :         struct maple_enode *old = mas->node;
    3326             :         unsigned char split;
    3327             : 
    3328           0 :         memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
    3329           0 :         memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
    3330           0 :         memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
    3331           0 :         mast->bn->b_end = 0;
    3332             : 
    3333           0 :         if (mte_is_root(mas->node)) {
    3334             :                 cp = false;
    3335             :         } else {
    3336           0 :                 mas_ascend(mas);
    3337           0 :                 mat_add(mast->free, old);
    3338           0 :                 mas->offset = mte_parent_slot(mas->node);
    3339             :         }
    3340             : 
    3341           0 :         if (cp && mast->l->offset)
    3342           0 :                 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
    3343             : 
    3344           0 :         split = mast->bn->b_end;
    3345           0 :         mab_set_b_end(mast->bn, mast->l, mast->l->node);
    3346           0 :         mast->r->offset = mast->bn->b_end;
    3347           0 :         mab_set_b_end(mast->bn, mast->r, mast->r->node);
    3348           0 :         if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
    3349           0 :                 cp = false;
    3350             : 
    3351           0 :         if (cp)
    3352           0 :                 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
    3353             :                            mast->bn, mast->bn->b_end);
    3354             : 
    3355           0 :         mast->bn->b_end--;
    3356           0 :         mast->bn->type = mte_node_type(mas->node);
    3357           0 : }
    3358             : 
    3359             : /*
    3360             :  * mast_split_data() - Split the data in the subtree state big node into regular
    3361             :  * nodes.
    3362             :  * @mast: The maple subtree state
    3363             :  * @mas: The maple state
    3364             :  * @split: The location to split the big node
    3365             :  */
    3366           0 : static inline void mast_split_data(struct maple_subtree_state *mast,
    3367             :            struct ma_state *mas, unsigned char split)
    3368             : {
    3369             :         unsigned char p_slot;
    3370             : 
    3371           0 :         mab_mas_cp(mast->bn, 0, split, mast->l, true);
    3372           0 :         mte_set_pivot(mast->r->node, 0, mast->r->max);
    3373           0 :         mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
    3374           0 :         mast->l->offset = mte_parent_slot(mas->node);
    3375           0 :         mast->l->max = mast->bn->pivot[split];
    3376           0 :         mast->r->min = mast->l->max + 1;
    3377           0 :         if (mte_is_leaf(mas->node))
    3378           0 :                 return;
    3379             : 
    3380           0 :         p_slot = mast->orig_l->offset;
    3381           0 :         mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
    3382             :                              &p_slot, split);
    3383           0 :         mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
    3384             :                              &p_slot, split);
    3385             : }
    3386             : 
    3387             : /*
    3388             :  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
    3389             :  * data to the right or left node if there is room.
    3390             :  * @mas: The maple state
    3391             :  * @height: The current height of the maple state
    3392             :  * @mast: The maple subtree state
    3393             :  * @left: Push left or not.
    3394             :  *
    3395             :  * Keeping the height of the tree low means faster lookups.
    3396             :  *
    3397             :  * Return: True if pushed, false otherwise.
    3398             :  */
    3399           0 : static inline bool mas_push_data(struct ma_state *mas, int height,
    3400             :                                  struct maple_subtree_state *mast, bool left)
    3401             : {
    3402           0 :         unsigned char slot_total = mast->bn->b_end;
    3403             :         unsigned char end, space, split;
    3404             : 
    3405             :         MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
    3406           0 :         tmp_mas = *mas;
    3407           0 :         tmp_mas.depth = mast->l->depth;
    3408             : 
    3409           0 :         if (left && !mas_prev_sibling(&tmp_mas))
    3410             :                 return false;
    3411           0 :         else if (!left && !mas_next_sibling(&tmp_mas))
    3412             :                 return false;
    3413             : 
    3414           0 :         end = mas_data_end(&tmp_mas);
    3415           0 :         slot_total += end;
    3416           0 :         space = 2 * mt_slot_count(mas->node) - 2;
    3417             :         /* -2 instead of -1 to ensure there isn't a triple split */
    3418           0 :         if (ma_is_leaf(mast->bn->type))
    3419           0 :                 space--;
    3420             : 
    3421           0 :         if (mas->max == ULONG_MAX)
    3422           0 :                 space--;
    3423             : 
    3424           0 :         if (slot_total >= space)
    3425             :                 return false;
    3426             : 
    3427             :         /* Get the data; Fill mast->bn */
    3428           0 :         mast->bn->b_end++;
    3429           0 :         if (left) {
    3430           0 :                 mab_shift_right(mast->bn, end + 1);
    3431           0 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
    3432           0 :                 mast->bn->b_end = slot_total + 1;
    3433             :         } else {
    3434           0 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
    3435             :         }
    3436             : 
    3437             :         /* Configure mast for splitting of mast->bn */
    3438           0 :         split = mt_slots[mast->bn->type] - 2;
    3439           0 :         if (left) {
    3440             :                 /*  Switch mas to prev node  */
    3441           0 :                 mat_add(mast->free, mas->node);
    3442           0 :                 *mas = tmp_mas;
    3443             :                 /* Start using mast->l for the left side. */
    3444           0 :                 tmp_mas.node = mast->l->node;
    3445           0 :                 *mast->l = tmp_mas;
    3446             :         } else {
    3447           0 :                 mat_add(mast->free, tmp_mas.node);
    3448           0 :                 tmp_mas.node = mast->r->node;
    3449           0 :                 *mast->r = tmp_mas;
    3450           0 :                 split = slot_total - split;
    3451             :         }
    3452           0 :         split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
    3453             :         /* Update parent slot for split calculation. */
    3454           0 :         if (left)
    3455           0 :                 mast->orig_l->offset += end + 1;
    3456             : 
    3457           0 :         mast_split_data(mast, mas, split);
    3458           0 :         mast_fill_bnode(mast, mas, 2);
    3459           0 :         mas_split_final_node(mast, mas, height + 1);
    3460           0 :         return true;
    3461             : }
    3462             : 
    3463             : /*
    3464             :  * mas_split() - Split data that is too big for one node into two.
    3465             :  * @mas: The maple state
    3466             :  * @b_node: The maple big node
    3467             :  * Return: 1 on success, 0 on failure.
    3468             :  */
    3469           0 : static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
    3470             : {
    3471             :         struct maple_subtree_state mast;
    3472           0 :         int height = 0;
    3473           0 :         unsigned char mid_split, split = 0;
    3474             : 
    3475             :         /*
    3476             :          * Splitting is handled differently from any other B-tree; the Maple
    3477             :          * Tree splits upwards.  Splitting up means that the split operation
    3478             :          * occurs when the walk of the tree hits the leaves and not on the way
    3479             :          * down.  The reason for splitting up is that it is impossible to know
    3480             :          * how much space will be needed until the leaf is (or leaves are)
    3481             :          * reached.  Since overwriting data is allowed and a range could
    3482             :          * overwrite more than one range or result in changing one entry into 3
    3483             :          * entries, it is impossible to know if a split is required until the
    3484             :          * data is examined.
    3485             :          *
    3486             :          * Splitting is a balancing act between keeping allocations to a minimum
    3487             :          * and avoiding a 'jitter' event where a tree is expanded to make room
    3488             :          * for an entry followed by a contraction when the entry is removed.  To
    3489             :          * accomplish the balance, there are empty slots remaining in both left
    3490             :          * and right nodes after a split.
    3491             :          */
    3492           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3493           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3494           0 :         MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
    3495           0 :         MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
    3496           0 :         MA_TOPIARY(mat, mas->tree);
    3497             : 
    3498           0 :         trace_ma_op(__func__, mas);
    3499           0 :         mas->depth = mas_mt_height(mas);
    3500             :         /* Allocation failures will happen early. */
    3501           0 :         mas_node_count(mas, 1 + mas->depth * 2);
    3502           0 :         if (mas_is_err(mas))
    3503             :                 return 0;
    3504             : 
    3505           0 :         mast.l = &l_mas;
    3506           0 :         mast.r = &r_mas;
    3507           0 :         mast.orig_l = &prev_l_mas;
    3508           0 :         mast.orig_r = &prev_r_mas;
    3509           0 :         mast.free = &mat;
    3510           0 :         mast.bn = b_node;
    3511             : 
    3512           0 :         while (height++ <= mas->depth) {
    3513           0 :                 if (mt_slots[b_node->type] > b_node->b_end) {
    3514           0 :                         mas_split_final_node(&mast, mas, height);
    3515           0 :                         break;
    3516             :                 }
    3517             : 
    3518           0 :                 l_mas = r_mas = *mas;
    3519           0 :                 l_mas.node = mas_new_ma_node(mas, b_node);
    3520           0 :                 r_mas.node = mas_new_ma_node(mas, b_node);
    3521             :                 /*
    3522             :                  * Another way that 'jitter' is avoided is to terminate a split up early if the
    3523             :                  * left or right node has space to spare.  This is referred to as "pushing left"
    3524             :                  * or "pushing right" and is similar to the B* tree, except the nodes left or
    3525             :                  * right can rarely be reused due to RCU, but the ripple upwards is halted which
    3526             :                  * is a significant savings.
    3527             :                  */
    3528             :                 /* Try to push left. */
    3529           0 :                 if (mas_push_data(mas, height, &mast, true))
    3530             :                         break;
    3531             : 
    3532             :                 /* Try to push right. */
    3533           0 :                 if (mas_push_data(mas, height, &mast, false))
    3534             :                         break;
    3535             : 
    3536           0 :                 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
    3537           0 :                 mast_split_data(&mast, mas, split);
    3538             :                 /*
    3539             :                  * Usually correct, mab_mas_cp in the above call overwrites
    3540             :                  * r->max.
    3541             :                  */
    3542           0 :                 mast.r->max = mas->max;
    3543           0 :                 mast_fill_bnode(&mast, mas, 1);
    3544           0 :                 prev_l_mas = *mast.l;
    3545           0 :                 prev_r_mas = *mast.r;
    3546             :         }
    3547             : 
    3548             :         /* Set the original node as dead */
    3549           0 :         mat_add(mast.free, mas->node);
    3550           0 :         mas->node = l_mas.node;
    3551           0 :         mas_wmb_replace(mas, mast.free, NULL);
    3552           0 :         mtree_range_walk(mas);
    3553           0 :         return 1;
    3554             : }
    3555             : 
    3556             : /*
    3557             :  * mas_reuse_node() - Reuse the node to store the data.
    3558             :  * @wr_mas: The maple write state
    3559             :  * @bn: The maple big node
    3560             :  * @end: The end of the data.
    3561             :  *
    3562             :  * Will always return false in RCU mode.
    3563             :  *
    3564             :  * Return: True if node was reused, false otherwise.
    3565             :  */
    3566           0 : static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
    3567             :                           struct maple_big_node *bn, unsigned char end)
    3568             : {
    3569             :         /* Need to be rcu safe. */
    3570           0 :         if (mt_in_rcu(wr_mas->mas->tree))
    3571             :                 return false;
    3572             : 
    3573           0 :         if (end > bn->b_end) {
    3574           0 :                 int clear = mt_slots[wr_mas->type] - bn->b_end;
    3575             : 
    3576           0 :                 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
    3577           0 :                 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
    3578             :         }
    3579           0 :         mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
    3580           0 :         return true;
    3581             : }
    3582             : 
    3583             : /*
    3584             :  * mas_commit_b_node() - Commit the big node into the tree.
    3585             :  * @wr_mas: The maple write state
    3586             :  * @b_node: The maple big node
    3587             :  * @end: The end of the data.
    3588             :  */
    3589           0 : static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
    3590             :                             struct maple_big_node *b_node, unsigned char end)
    3591             : {
    3592             :         struct maple_node *node;
    3593           0 :         unsigned char b_end = b_node->b_end;
    3594           0 :         enum maple_type b_type = b_node->type;
    3595             : 
    3596           0 :         if ((b_end < mt_min_slots[b_type]) &&
    3597           0 :             (!mte_is_root(wr_mas->mas->node)) &&
    3598           0 :             (mas_mt_height(wr_mas->mas) > 1))
    3599           0 :                 return mas_rebalance(wr_mas->mas, b_node);
    3600             : 
    3601           0 :         if (b_end >= mt_slots[b_type])
    3602           0 :                 return mas_split(wr_mas->mas, b_node);
    3603             : 
    3604           0 :         if (mas_reuse_node(wr_mas, b_node, end))
    3605             :                 goto reuse_node;
    3606             : 
    3607           0 :         mas_node_count(wr_mas->mas, 1);
    3608           0 :         if (mas_is_err(wr_mas->mas))
    3609             :                 return 0;
    3610             : 
    3611           0 :         node = mas_pop_node(wr_mas->mas);
    3612           0 :         node->parent = mas_mn(wr_mas->mas)->parent;
    3613           0 :         wr_mas->mas->node = mt_mk_node(node, b_type);
    3614           0 :         mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
    3615           0 :         mas_replace(wr_mas->mas, false);
    3616             : reuse_node:
    3617           0 :         mas_update_gap(wr_mas->mas);
    3618           0 :         return 1;
    3619             : }
    3620             : 
    3621             : /*
    3622             :  * mas_root_expand() - Expand a root to a node
    3623             :  * @mas: The maple state
    3624             :  * @entry: The entry to store into the tree
    3625             :  */
    3626           0 : static inline int mas_root_expand(struct ma_state *mas, void *entry)
    3627             : {
    3628           0 :         void *contents = mas_root_locked(mas);
    3629           0 :         enum maple_type type = maple_leaf_64;
    3630             :         struct maple_node *node;
    3631             :         void __rcu **slots;
    3632             :         unsigned long *pivots;
    3633           0 :         int slot = 0;
    3634             : 
    3635           0 :         mas_node_count(mas, 1);
    3636           0 :         if (unlikely(mas_is_err(mas)))
    3637             :                 return 0;
    3638             : 
    3639           0 :         node = mas_pop_node(mas);
    3640           0 :         pivots = ma_pivots(node, type);
    3641           0 :         slots = ma_slots(node, type);
    3642           0 :         node->parent = ma_parent_ptr(
    3643             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3644           0 :         mas->node = mt_mk_node(node, type);
    3645             : 
    3646           0 :         if (mas->index) {
    3647           0 :                 if (contents) {
    3648           0 :                         rcu_assign_pointer(slots[slot], contents);
    3649           0 :                         if (likely(mas->index > 1))
    3650           0 :                                 slot++;
    3651             :                 }
    3652           0 :                 pivots[slot++] = mas->index - 1;
    3653             :         }
    3654             : 
    3655           0 :         rcu_assign_pointer(slots[slot], entry);
    3656           0 :         mas->offset = slot;
    3657           0 :         pivots[slot] = mas->last;
    3658           0 :         if (mas->last != ULONG_MAX)
    3659           0 :                 slot++;
    3660           0 :         mas->depth = 1;
    3661           0 :         mas_set_height(mas);
    3662             : 
    3663             :         /* swap the new root into the tree */
    3664           0 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3665           0 :         ma_set_meta(node, maple_leaf_64, 0, slot);
    3666           0 :         return slot;
    3667             : }
    3668             : 
    3669           0 : static inline void mas_store_root(struct ma_state *mas, void *entry)
    3670             : {
    3671           0 :         if (likely((mas->last != 0) || (mas->index != 0)))
    3672           0 :                 mas_root_expand(mas, entry);
    3673           0 :         else if (((unsigned long) (entry) & 3) == 2)
    3674           0 :                 mas_root_expand(mas, entry);
    3675             :         else {
    3676           0 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3677           0 :                 mas->node = MAS_START;
    3678             :         }
    3679           0 : }
    3680             : 
    3681             : /*
    3682             :  * mas_is_span_wr() - Check if the write needs to be treated as a write that
    3683             :  * spans the node.
    3684             :  * @mas: The maple state
    3685             :  * @piv: The pivot value being written
    3686             :  * @type: The maple node type
    3687             :  * @entry: The data to write
    3688             :  *
    3689             :  * Spanning writes are writes that start in one node and end in another OR if
    3690             :  * the write of a %NULL will cause the node to end with a %NULL.
    3691             :  *
    3692             :  * Return: True if this is a spanning write, false otherwise.
    3693             :  */
    3694           0 : static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
    3695             : {
    3696             :         unsigned long max;
    3697           0 :         unsigned long last = wr_mas->mas->last;
    3698           0 :         unsigned long piv = wr_mas->r_max;
    3699           0 :         enum maple_type type = wr_mas->type;
    3700           0 :         void *entry = wr_mas->entry;
    3701             : 
    3702             :         /* Contained in this pivot */
    3703           0 :         if (piv > last)
    3704             :                 return false;
    3705             : 
    3706           0 :         max = wr_mas->mas->max;
    3707           0 :         if (unlikely(ma_is_leaf(type))) {
    3708             :                 /* Fits in the node, but may span slots. */
    3709           0 :                 if (last < max)
    3710             :                         return false;
    3711             : 
    3712             :                 /* Writes to the end of the node but not null. */
    3713           0 :                 if ((last == max) && entry)
    3714             :                         return false;
    3715             : 
    3716             :                 /*
    3717             :                  * Writing ULONG_MAX is not a spanning write regardless of the
    3718             :                  * value being written as long as the range fits in the node.
    3719             :                  */
    3720           0 :                 if ((last == ULONG_MAX) && (last == max))
    3721             :                         return false;
    3722           0 :         } else if (piv == last) {
    3723           0 :                 if (entry)
    3724             :                         return false;
    3725             : 
    3726             :                 /* Detect spanning store wr walk */
    3727           0 :                 if (last == ULONG_MAX)
    3728             :                         return false;
    3729             :         }
    3730             : 
    3731           0 :         trace_ma_write(__func__, wr_mas->mas, piv, entry);
    3732             : 
    3733           0 :         return true;
    3734             : }
    3735             : 
    3736           0 : static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
    3737             : {
    3738           0 :         wr_mas->type = mte_node_type(wr_mas->mas->node);
    3739           0 :         mas_wr_node_walk(wr_mas);
    3740           0 :         wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
    3741           0 : }
    3742             : 
    3743             : static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
    3744             : {
    3745           0 :         wr_mas->mas->max = wr_mas->r_max;
    3746           0 :         wr_mas->mas->min = wr_mas->r_min;
    3747           0 :         wr_mas->mas->node = wr_mas->content;
    3748           0 :         wr_mas->mas->offset = 0;
    3749           0 :         wr_mas->mas->depth++;
    3750             : }
    3751             : /*
    3752             :  * mas_wr_walk() - Walk the tree for a write.
    3753             :  * @wr_mas: The maple write state
    3754             :  *
    3755             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    3756             :  *
    3757             :  * Return: True if it's contained in a node, false on spanning write.
    3758             :  */
    3759           0 : static bool mas_wr_walk(struct ma_wr_state *wr_mas)
    3760             : {
    3761           0 :         struct ma_state *mas = wr_mas->mas;
    3762             : 
    3763             :         while (true) {
    3764           0 :                 mas_wr_walk_descend(wr_mas);
    3765           0 :                 if (unlikely(mas_is_span_wr(wr_mas)))
    3766             :                         return false;
    3767             : 
    3768           0 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3769           0 :                                                   mas->offset);
    3770           0 :                 if (ma_is_leaf(wr_mas->type))
    3771             :                         return true;
    3772             : 
    3773             :                 mas_wr_walk_traverse(wr_mas);
    3774             :         }
    3775             : 
    3776             :         return true;
    3777             : }
    3778             : 
    3779           0 : static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
    3780             : {
    3781           0 :         struct ma_state *mas = wr_mas->mas;
    3782             : 
    3783             :         while (true) {
    3784           0 :                 mas_wr_walk_descend(wr_mas);
    3785           0 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3786           0 :                                                   mas->offset);
    3787           0 :                 if (ma_is_leaf(wr_mas->type))
    3788             :                         return true;
    3789             :                 mas_wr_walk_traverse(wr_mas);
    3790             : 
    3791             :         }
    3792             :         return true;
    3793             : }
    3794             : /*
    3795             :  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
    3796             :  * @l_wr_mas: The left maple write state
    3797             :  * @r_wr_mas: The right maple write state
    3798             :  */
    3799           0 : static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
    3800             :                                             struct ma_wr_state *r_wr_mas)
    3801             : {
    3802           0 :         struct ma_state *r_mas = r_wr_mas->mas;
    3803           0 :         struct ma_state *l_mas = l_wr_mas->mas;
    3804             :         unsigned char l_slot;
    3805             : 
    3806           0 :         l_slot = l_mas->offset;
    3807           0 :         if (!l_wr_mas->content)
    3808           0 :                 l_mas->index = l_wr_mas->r_min;
    3809             : 
    3810           0 :         if ((l_mas->index == l_wr_mas->r_min) &&
    3811           0 :                  (l_slot &&
    3812           0 :                   !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
    3813           0 :                 if (l_slot > 1)
    3814           0 :                         l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
    3815             :                 else
    3816           0 :                         l_mas->index = l_mas->min;
    3817             : 
    3818           0 :                 l_mas->offset = l_slot - 1;
    3819             :         }
    3820             : 
    3821           0 :         if (!r_wr_mas->content) {
    3822           0 :                 if (r_mas->last < r_wr_mas->r_max)
    3823           0 :                         r_mas->last = r_wr_mas->r_max;
    3824           0 :                 r_mas->offset++;
    3825           0 :         } else if ((r_mas->last == r_wr_mas->r_max) &&
    3826           0 :             (r_mas->last < r_mas->max) &&
    3827           0 :             !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
    3828           0 :                 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
    3829           0 :                                              r_wr_mas->type, r_mas->offset + 1);
    3830           0 :                 r_mas->offset++;
    3831             :         }
    3832           0 : }
    3833             : 
    3834           0 : static inline void *mas_state_walk(struct ma_state *mas)
    3835             : {
    3836             :         void *entry;
    3837             : 
    3838           0 :         entry = mas_start(mas);
    3839           0 :         if (mas_is_none(mas))
    3840             :                 return NULL;
    3841             : 
    3842           0 :         if (mas_is_ptr(mas))
    3843             :                 return entry;
    3844             : 
    3845           0 :         return mtree_range_walk(mas);
    3846             : }
    3847             : 
    3848             : /*
    3849             :  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
    3850             :  * to date.
    3851             :  *
    3852             :  * @mas: The maple state.
    3853             :  *
    3854             :  * Note: Leaves mas in undesirable state.
    3855             :  * Return: The entry for @mas->index or %NULL on dead node.
    3856             :  */
    3857           0 : static inline void *mtree_lookup_walk(struct ma_state *mas)
    3858             : {
    3859             :         unsigned long *pivots;
    3860             :         unsigned char offset;
    3861             :         struct maple_node *node;
    3862             :         struct maple_enode *next;
    3863             :         enum maple_type type;
    3864             :         void __rcu **slots;
    3865             :         unsigned char end;
    3866             :         unsigned long max;
    3867             : 
    3868           0 :         next = mas->node;
    3869           0 :         max = ULONG_MAX;
    3870             :         do {
    3871           0 :                 offset = 0;
    3872           0 :                 node = mte_to_node(next);
    3873           0 :                 type = mte_node_type(next);
    3874           0 :                 pivots = ma_pivots(node, type);
    3875           0 :                 end = ma_data_end(node, type, pivots, max);
    3876           0 :                 if (unlikely(ma_dead_node(node)))
    3877             :                         goto dead_node;
    3878             : 
    3879           0 :                 if (pivots[offset] >= mas->index)
    3880             :                         goto next;
    3881             : 
    3882             :                 do {
    3883           0 :                         offset++;
    3884           0 :                 } while ((offset < end) && (pivots[offset] < mas->index));
    3885             : 
    3886           0 :                 if (likely(offset > end))
    3887           0 :                         max = pivots[offset];
    3888             : 
    3889             : next:
    3890           0 :                 slots = ma_slots(node, type);
    3891           0 :                 next = mt_slot(mas->tree, slots, offset);
    3892           0 :                 if (unlikely(ma_dead_node(node)))
    3893             :                         goto dead_node;
    3894           0 :         } while (!ma_is_leaf(type));
    3895             : 
    3896             :         return (void *)next;
    3897             : 
    3898             : dead_node:
    3899           0 :         mas_reset(mas);
    3900           0 :         return NULL;
    3901             : }
    3902             : 
    3903             : /*
    3904             :  * mas_new_root() - Create a new root node that only contains the entry passed
    3905             :  * in.
    3906             :  * @mas: The maple state
    3907             :  * @entry: The entry to store.
    3908             :  *
    3909             :  * Only valid when the index == 0 and the last == ULONG_MAX
    3910             :  *
    3911             :  * Return 0 on error, 1 on success.
    3912             :  */
    3913           0 : static inline int mas_new_root(struct ma_state *mas, void *entry)
    3914             : {
    3915           0 :         struct maple_enode *root = mas_root_locked(mas);
    3916           0 :         enum maple_type type = maple_leaf_64;
    3917             :         struct maple_node *node;
    3918             :         void __rcu **slots;
    3919             :         unsigned long *pivots;
    3920             : 
    3921           0 :         if (!entry && !mas->index && mas->last == ULONG_MAX) {
    3922           0 :                 mas->depth = 0;
    3923           0 :                 mas_set_height(mas);
    3924           0 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3925           0 :                 mas->node = MAS_START;
    3926           0 :                 goto done;
    3927             :         }
    3928             : 
    3929           0 :         mas_node_count(mas, 1);
    3930           0 :         if (mas_is_err(mas))
    3931             :                 return 0;
    3932             : 
    3933           0 :         node = mas_pop_node(mas);
    3934           0 :         pivots = ma_pivots(node, type);
    3935           0 :         slots = ma_slots(node, type);
    3936           0 :         node->parent = ma_parent_ptr(
    3937             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3938           0 :         mas->node = mt_mk_node(node, type);
    3939           0 :         rcu_assign_pointer(slots[0], entry);
    3940           0 :         pivots[0] = mas->last;
    3941           0 :         mas->depth = 1;
    3942           0 :         mas_set_height(mas);
    3943           0 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3944             : 
    3945             : done:
    3946           0 :         if (xa_is_node(root))
    3947           0 :                 mte_destroy_walk(root, mas->tree);
    3948             : 
    3949             :         return 1;
    3950             : }
    3951             : /*
    3952             :  * mas_wr_spanning_store() - Create a subtree with the store operation completed
    3953             :  * and new nodes where necessary, then place the sub-tree in the actual tree.
    3954             :  * Note that mas is expected to point to the node which caused the store to
    3955             :  * span.
    3956             :  * @wr_mas: The maple write state
    3957             :  *
    3958             :  * Return: 0 on error, positive on success.
    3959             :  */
    3960           0 : static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
    3961             : {
    3962             :         struct maple_subtree_state mast;
    3963             :         struct maple_big_node b_node;
    3964             :         struct ma_state *mas;
    3965             :         unsigned char height;
    3966             : 
    3967             :         /* Left and Right side of spanning store */
    3968           0 :         MA_STATE(l_mas, NULL, 0, 0);
    3969           0 :         MA_STATE(r_mas, NULL, 0, 0);
    3970             : 
    3971           0 :         MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
    3972           0 :         MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
    3973             : 
    3974             :         /*
    3975             :          * A store operation that spans multiple nodes is called a spanning
    3976             :          * store and is handled early in the store call stack by the function
    3977             :          * mas_is_span_wr().  When a spanning store is identified, the maple
    3978             :          * state is duplicated.  The first maple state walks the left tree path
    3979             :          * to ``index``, the duplicate walks the right tree path to ``last``.
    3980             :          * The data in the two nodes are combined into a single node, two nodes,
    3981             :          * or possibly three nodes (see the 3-way split above).  A ``NULL``
    3982             :          * written to the last entry of a node is considered a spanning store as
    3983             :          * a rebalance is required for the operation to complete and an overflow
    3984             :          * of data may happen.
    3985             :          */
    3986           0 :         mas = wr_mas->mas;
    3987           0 :         trace_ma_op(__func__, mas);
    3988             : 
    3989           0 :         if (unlikely(!mas->index && mas->last == ULONG_MAX))
    3990           0 :                 return mas_new_root(mas, wr_mas->entry);
    3991             :         /*
    3992             :          * Node rebalancing may occur due to this store, so there may be three new
    3993             :          * entries per level plus a new root.
    3994             :          */
    3995           0 :         height = mas_mt_height(mas);
    3996           0 :         mas_node_count(mas, 1 + height * 3);
    3997           0 :         if (mas_is_err(mas))
    3998             :                 return 0;
    3999             : 
    4000             :         /*
    4001             :          * Set up right side.  Need to get to the next offset after the spanning
    4002             :          * store to ensure it's not NULL and to combine both the next node and
    4003             :          * the node with the start together.
    4004             :          */
    4005           0 :         r_mas = *mas;
    4006             :         /* Avoid overflow, walk to next slot in the tree. */
    4007           0 :         if (r_mas.last + 1)
    4008           0 :                 r_mas.last++;
    4009             : 
    4010           0 :         r_mas.index = r_mas.last;
    4011           0 :         mas_wr_walk_index(&r_wr_mas);
    4012           0 :         r_mas.last = r_mas.index = mas->last;
    4013             : 
    4014             :         /* Set up left side. */
    4015           0 :         l_mas = *mas;
    4016           0 :         mas_wr_walk_index(&l_wr_mas);
    4017             : 
    4018           0 :         if (!wr_mas->entry) {
    4019           0 :                 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
    4020           0 :                 mas->offset = l_mas.offset;
    4021           0 :                 mas->index = l_mas.index;
    4022           0 :                 mas->last = l_mas.last = r_mas.last;
    4023             :         }
    4024             : 
    4025             :         /* expanding NULLs may make this cover the entire range */
    4026           0 :         if (!l_mas.index && r_mas.last == ULONG_MAX) {
    4027           0 :                 mas_set_range(mas, 0, ULONG_MAX);
    4028           0 :                 return mas_new_root(mas, wr_mas->entry);
    4029             :         }
    4030             : 
    4031           0 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4032             :         /* Copy l_mas and store the value in b_node. */
    4033           0 :         mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
    4034             :         /* Copy r_mas into b_node. */
    4035           0 :         if (r_mas.offset <= r_wr_mas.node_end)
    4036           0 :                 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
    4037           0 :                            &b_node, b_node.b_end + 1);
    4038             :         else
    4039           0 :                 b_node.b_end++;
    4040             : 
    4041             :         /* Stop spanning searches by searching for just index. */
    4042           0 :         l_mas.index = l_mas.last = mas->index;
    4043             : 
    4044           0 :         mast.bn = &b_node;
    4045           0 :         mast.orig_l = &l_mas;
    4046           0 :         mast.orig_r = &r_mas;
    4047             :         /* Combine l_mas and r_mas and split them up evenly again. */
    4048           0 :         return mas_spanning_rebalance(mas, &mast, height + 1);
    4049             : }
    4050             : 
    4051             : /*
    4052             :  * mas_wr_node_store() - Attempt to store the value in a node
    4053             :  * @wr_mas: The maple write state
    4054             :  *
    4055             :  * Attempts to reuse the node, but may allocate.
    4056             :  *
    4057             :  * Return: True if stored, false otherwise
    4058             :  */
    4059           0 : static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
    4060             : {
    4061           0 :         struct ma_state *mas = wr_mas->mas;
    4062             :         void __rcu **dst_slots;
    4063             :         unsigned long *dst_pivots;
    4064             :         unsigned char dst_offset;
    4065           0 :         unsigned char new_end = wr_mas->node_end;
    4066             :         unsigned char offset;
    4067           0 :         unsigned char node_slots = mt_slots[wr_mas->type];
    4068             :         struct maple_node reuse, *newnode;
    4069           0 :         unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
    4070           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    4071             : 
    4072           0 :         offset = mas->offset;
    4073           0 :         if (mas->last == wr_mas->r_max) {
    4074             :                 /* runs right to the end of the node */
    4075           0 :                 if (mas->last == mas->max)
    4076           0 :                         new_end = offset;
    4077             :                 /* don't copy this offset */
    4078           0 :                 wr_mas->offset_end++;
    4079           0 :         } else if (mas->last < wr_mas->r_max) {
    4080             :                 /* new range ends in this range */
    4081           0 :                 if (unlikely(wr_mas->r_max == ULONG_MAX))
    4082           0 :                         mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
    4083             : 
    4084           0 :                 new_end++;
    4085             :         } else {
    4086           0 :                 if (wr_mas->end_piv == mas->last)
    4087           0 :                         wr_mas->offset_end++;
    4088             : 
    4089           0 :                 new_end -= wr_mas->offset_end - offset - 1;
    4090             :         }
    4091             : 
    4092             :         /* new range starts within a range */
    4093           0 :         if (wr_mas->r_min < mas->index)
    4094           0 :                 new_end++;
    4095             : 
    4096             :         /* Not enough room */
    4097           0 :         if (new_end >= node_slots)
    4098             :                 return false;
    4099             : 
    4100             :         /* Not enough data. */
    4101           0 :         if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
    4102           0 :             !(mas->mas_flags & MA_STATE_BULK))
    4103             :                 return false;
    4104             : 
    4105             :         /* set up node. */
    4106           0 :         if (in_rcu) {
    4107           0 :                 mas_node_count(mas, 1);
    4108           0 :                 if (mas_is_err(mas))
    4109             :                         return false;
    4110             : 
    4111           0 :                 newnode = mas_pop_node(mas);
    4112             :         } else {
    4113           0 :                 memset(&reuse, 0, sizeof(struct maple_node));
    4114           0 :                 newnode = &reuse;
    4115             :         }
    4116             : 
    4117           0 :         newnode->parent = mas_mn(mas)->parent;
    4118           0 :         dst_pivots = ma_pivots(newnode, wr_mas->type);
    4119           0 :         dst_slots = ma_slots(newnode, wr_mas->type);
    4120             :         /* Copy from start to insert point */
    4121           0 :         memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
    4122           0 :         memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
    4123           0 :         dst_offset = offset;
    4124             : 
    4125             :         /* Handle insert of new range starting after old range */
    4126           0 :         if (wr_mas->r_min < mas->index) {
    4127           0 :                 mas->offset++;
    4128           0 :                 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
    4129           0 :                 dst_pivots[dst_offset++] = mas->index - 1;
    4130             :         }
    4131             : 
    4132             :         /* Store the new entry and range end. */
    4133           0 :         if (dst_offset < max_piv)
    4134           0 :                 dst_pivots[dst_offset] = mas->last;
    4135           0 :         mas->offset = dst_offset;
    4136           0 :         rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
    4137             : 
    4138             :         /*
    4139             :          * this range wrote to the end of the node or it overwrote the rest of
    4140             :          * the data
    4141             :          */
    4142           0 :         if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
    4143             :                 new_end = dst_offset;
    4144             :                 goto done;
    4145             :         }
    4146             : 
    4147           0 :         dst_offset++;
    4148             :         /* Copy to the end of node if necessary. */
    4149           0 :         copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
    4150           0 :         memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
    4151             :                sizeof(void *) * copy_size);
    4152           0 :         if (dst_offset < max_piv) {
    4153           0 :                 if (copy_size > max_piv - dst_offset)
    4154           0 :                         copy_size = max_piv - dst_offset;
    4155             : 
    4156           0 :                 memcpy(dst_pivots + dst_offset,
    4157           0 :                        wr_mas->pivots + wr_mas->offset_end,
    4158             :                        sizeof(unsigned long) * copy_size);
    4159             :         }
    4160             : 
    4161           0 :         if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
    4162           0 :                 dst_pivots[new_end] = mas->max;
    4163             : 
    4164             : done:
    4165           0 :         mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
    4166           0 :         if (in_rcu) {
    4167           0 :                 mas->node = mt_mk_node(newnode, wr_mas->type);
    4168           0 :                 mas_replace(mas, false);
    4169             :         } else {
    4170           0 :                 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
    4171             :         }
    4172           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4173           0 :         mas_update_gap(mas);
    4174           0 :         return true;
    4175             : }
    4176             : 
    4177             : /*
    4178             :  * mas_wr_slot_store: Attempt to store a value in a slot.
    4179             :  * @wr_mas: the maple write state
    4180             :  *
    4181             :  * Return: True if stored, false otherwise
    4182             :  */
    4183           0 : static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
    4184             : {
    4185           0 :         struct ma_state *mas = wr_mas->mas;
    4186             :         unsigned long lmax; /* Logical max. */
    4187           0 :         unsigned char offset = mas->offset;
    4188             : 
    4189           0 :         if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
    4190           0 :                                   (offset != wr_mas->node_end)))
    4191             :                 return false;
    4192             : 
    4193           0 :         if (offset == wr_mas->node_end - 1)
    4194           0 :                 lmax = mas->max;
    4195             :         else
    4196           0 :                 lmax = wr_mas->pivots[offset + 1];
    4197             : 
    4198             :         /* going to overwrite too many slots. */
    4199           0 :         if (lmax < mas->last)
    4200             :                 return false;
    4201             : 
    4202           0 :         if (wr_mas->r_min == mas->index) {
    4203             :                 /* overwriting two or more ranges with one. */
    4204           0 :                 if (lmax == mas->last)
    4205             :                         return false;
    4206             : 
    4207             :                 /* Overwriting all of offset and a portion of offset + 1. */
    4208           0 :                 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
    4209           0 :                 wr_mas->pivots[offset] = mas->last;
    4210           0 :                 goto done;
    4211             :         }
    4212             : 
    4213             :         /* Doesn't end on the next range end. */
    4214           0 :         if (lmax != mas->last)
    4215             :                 return false;
    4216             : 
    4217             :         /* Overwriting a portion of offset and all of offset + 1 */
    4218           0 :         if ((offset + 1 < mt_pivots[wr_mas->type]) &&
    4219           0 :             (wr_mas->entry || wr_mas->pivots[offset + 1]))
    4220           0 :                 wr_mas->pivots[offset + 1] = mas->last;
    4221             : 
    4222           0 :         rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
    4223           0 :         wr_mas->pivots[offset] = mas->index - 1;
    4224           0 :         mas->offset++; /* Keep mas accurate. */
    4225             : 
    4226             : done:
    4227           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4228           0 :         mas_update_gap(mas);
    4229           0 :         return true;
    4230             : }
    4231             : 
    4232             : static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
    4233             : {
    4234           0 :         while ((wr_mas->mas->last > wr_mas->end_piv) &&
    4235           0 :                (wr_mas->offset_end < wr_mas->node_end))
    4236           0 :                 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
    4237             : 
    4238           0 :         if (wr_mas->mas->last > wr_mas->end_piv)
    4239           0 :                 wr_mas->end_piv = wr_mas->mas->max;
    4240             : }
    4241             : 
    4242           0 : static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
    4243             : {
    4244           0 :         struct ma_state *mas = wr_mas->mas;
    4245             : 
    4246           0 :         if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
    4247           0 :                 mas->last = wr_mas->end_piv;
    4248             : 
    4249             :         /* Check next slot(s) if we are overwriting the end */
    4250           0 :         if ((mas->last == wr_mas->end_piv) &&
    4251           0 :             (wr_mas->node_end != wr_mas->offset_end) &&
    4252           0 :             !wr_mas->slots[wr_mas->offset_end + 1]) {
    4253           0 :                 wr_mas->offset_end++;
    4254           0 :                 if (wr_mas->offset_end == wr_mas->node_end)
    4255           0 :                         mas->last = mas->max;
    4256             :                 else
    4257           0 :                         mas->last = wr_mas->pivots[wr_mas->offset_end];
    4258           0 :                 wr_mas->end_piv = mas->last;
    4259             :         }
    4260             : 
    4261           0 :         if (!wr_mas->content) {
    4262             :                 /* If this one is null, the next and prev are not */
    4263           0 :                 mas->index = wr_mas->r_min;
    4264             :         } else {
    4265             :                 /* Check prev slot if we are overwriting the start */
    4266           0 :                 if (mas->index == wr_mas->r_min && mas->offset &&
    4267           0 :                     !wr_mas->slots[mas->offset - 1]) {
    4268           0 :                         mas->offset--;
    4269           0 :                         wr_mas->r_min = mas->index =
    4270           0 :                                 mas_safe_min(mas, wr_mas->pivots, mas->offset);
    4271           0 :                         wr_mas->r_max = wr_mas->pivots[mas->offset];
    4272             :                 }
    4273             :         }
    4274           0 : }
    4275             : 
    4276           0 : static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
    4277             : {
    4278           0 :         unsigned char end = wr_mas->node_end;
    4279           0 :         unsigned char new_end = end + 1;
    4280           0 :         struct ma_state *mas = wr_mas->mas;
    4281           0 :         unsigned char node_pivots = mt_pivots[wr_mas->type];
    4282             : 
    4283           0 :         if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
    4284           0 :                 if (new_end < node_pivots)
    4285           0 :                         wr_mas->pivots[new_end] = wr_mas->pivots[end];
    4286             : 
    4287           0 :                 if (new_end < node_pivots)
    4288           0 :                         ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
    4289             : 
    4290           0 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
    4291           0 :                 mas->offset = new_end;
    4292           0 :                 wr_mas->pivots[end] = mas->index - 1;
    4293             : 
    4294           0 :                 return true;
    4295             :         }
    4296             : 
    4297           0 :         if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
    4298           0 :                 if (new_end < node_pivots)
    4299           0 :                         wr_mas->pivots[new_end] = wr_mas->pivots[end];
    4300             : 
    4301           0 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
    4302           0 :                 if (new_end < node_pivots)
    4303           0 :                         ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
    4304             : 
    4305           0 :                 wr_mas->pivots[end] = mas->last;
    4306           0 :                 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
    4307           0 :                 return true;
    4308             :         }
    4309             : 
    4310             :         return false;
    4311             : }
    4312             : 
    4313             : /*
    4314             :  * mas_wr_bnode() - Slow path for a modification.
    4315             :  * @wr_mas: The write maple state
    4316             :  *
    4317             :  * This is where split, rebalance end up.
    4318             :  */
    4319           0 : static void mas_wr_bnode(struct ma_wr_state *wr_mas)
    4320             : {
    4321             :         struct maple_big_node b_node;
    4322             : 
    4323           0 :         trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
    4324           0 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4325           0 :         mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
    4326           0 :         mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
    4327           0 : }
    4328             : 
    4329           0 : static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
    4330             : {
    4331             :         unsigned char node_slots;
    4332             :         unsigned char node_size;
    4333           0 :         struct ma_state *mas = wr_mas->mas;
    4334             : 
    4335             :         /* Direct replacement */
    4336           0 :         if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
    4337           0 :                 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
    4338           0 :                 if (!!wr_mas->entry ^ !!wr_mas->content)
    4339           0 :                         mas_update_gap(mas);
    4340             :                 return;
    4341             :         }
    4342             : 
    4343             :         /* Attempt to append */
    4344           0 :         node_slots = mt_slots[wr_mas->type];
    4345           0 :         node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
    4346           0 :         if (mas->max == ULONG_MAX)
    4347           0 :                 node_size++;
    4348             : 
    4349             :         /* slot and node store will not fit, go to the slow path */
    4350           0 :         if (unlikely(node_size >= node_slots))
    4351             :                 goto slow_path;
    4352             : 
    4353           0 :         if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
    4354           0 :             (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
    4355           0 :                 if (!wr_mas->content || !wr_mas->entry)
    4356           0 :                         mas_update_gap(mas);
    4357             :                 return;
    4358             :         }
    4359             : 
    4360           0 :         if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
    4361             :                 return;
    4362           0 :         else if (mas_wr_node_store(wr_mas))
    4363             :                 return;
    4364             : 
    4365           0 :         if (mas_is_err(mas))
    4366             :                 return;
    4367             : 
    4368             : slow_path:
    4369           0 :         mas_wr_bnode(wr_mas);
    4370             : }
    4371             : 
    4372             : /*
    4373             :  * mas_wr_store_entry() - Internal call to store a value
    4374             :  * @mas: The maple state
    4375             :  * @entry: The entry to store.
    4376             :  *
    4377             :  * Return: The contents that was stored at the index.
    4378             :  */
    4379           0 : static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
    4380             : {
    4381           0 :         struct ma_state *mas = wr_mas->mas;
    4382             : 
    4383           0 :         wr_mas->content = mas_start(mas);
    4384           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4385           0 :                 mas_store_root(mas, wr_mas->entry);
    4386           0 :                 return wr_mas->content;
    4387             :         }
    4388             : 
    4389           0 :         if (unlikely(!mas_wr_walk(wr_mas))) {
    4390           0 :                 mas_wr_spanning_store(wr_mas);
    4391           0 :                 return wr_mas->content;
    4392             :         }
    4393             : 
    4394             :         /* At this point, we are at the leaf node that needs to be altered. */
    4395           0 :         wr_mas->end_piv = wr_mas->r_max;
    4396           0 :         mas_wr_end_piv(wr_mas);
    4397             : 
    4398           0 :         if (!wr_mas->entry)
    4399           0 :                 mas_wr_extend_null(wr_mas);
    4400             : 
    4401             :         /* New root for a single pointer */
    4402           0 :         if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
    4403           0 :                 mas_new_root(mas, wr_mas->entry);
    4404           0 :                 return wr_mas->content;
    4405             :         }
    4406             : 
    4407           0 :         mas_wr_modify(wr_mas);
    4408           0 :         return wr_mas->content;
    4409             : }
    4410             : 
    4411             : /**
    4412             :  * mas_insert() - Internal call to insert a value
    4413             :  * @mas: The maple state
    4414             :  * @entry: The entry to store
    4415             :  *
    4416             :  * Return: %NULL or the contents that already exists at the requested index
    4417             :  * otherwise.  The maple state needs to be checked for error conditions.
    4418             :  */
    4419           0 : static inline void *mas_insert(struct ma_state *mas, void *entry)
    4420             : {
    4421           0 :         MA_WR_STATE(wr_mas, mas, entry);
    4422             : 
    4423             :         /*
    4424             :          * Inserting a new range inserts either 0, 1, or 2 pivots within the
    4425             :          * tree.  If the insert fits exactly into an existing gap with a value
    4426             :          * of NULL, then the slot only needs to be written with the new value.
    4427             :          * If the range being inserted is adjacent to another range, then only a
    4428             :          * single pivot needs to be inserted (as well as writing the entry).  If
    4429             :          * the new range is within a gap but does not touch any other ranges,
    4430             :          * then two pivots need to be inserted: the start - 1, and the end.  As
    4431             :          * usual, the entry must be written.  Most operations require a new node
    4432             :          * to be allocated and replace an existing node to ensure RCU safety,
    4433             :          * when in RCU mode.  The exception to requiring a newly allocated node
    4434             :          * is when inserting at the end of a node (appending).  When done
    4435             :          * carefully, appending can reuse the node in place.
    4436             :          */
    4437           0 :         wr_mas.content = mas_start(mas);
    4438           0 :         if (wr_mas.content)
    4439             :                 goto exists;
    4440             : 
    4441           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4442           0 :                 mas_store_root(mas, entry);
    4443           0 :                 return NULL;
    4444             :         }
    4445             : 
    4446             :         /* spanning writes always overwrite something */
    4447           0 :         if (!mas_wr_walk(&wr_mas))
    4448             :                 goto exists;
    4449             : 
    4450             :         /* At this point, we are at the leaf node that needs to be altered. */
    4451           0 :         wr_mas.offset_end = mas->offset;
    4452           0 :         wr_mas.end_piv = wr_mas.r_max;
    4453             : 
    4454           0 :         if (wr_mas.content || (mas->last > wr_mas.r_max))
    4455             :                 goto exists;
    4456             : 
    4457           0 :         if (!entry)
    4458             :                 return NULL;
    4459             : 
    4460           0 :         mas_wr_modify(&wr_mas);
    4461           0 :         return wr_mas.content;
    4462             : 
    4463             : exists:
    4464           0 :         mas_set_err(mas, -EEXIST);
    4465           0 :         return wr_mas.content;
    4466             : 
    4467             : }
    4468             : 
    4469             : /*
    4470             :  * mas_prev_node() - Find the prev non-null entry at the same level in the
    4471             :  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
    4472             :  * @mas: The maple state
    4473             :  * @min: The lower limit to search
    4474             :  *
    4475             :  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
    4476             :  * Return: 1 if the node is dead, 0 otherwise.
    4477             :  */
    4478           0 : static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
    4479             : {
    4480             :         enum maple_type mt;
    4481             :         int offset, level;
    4482             :         void __rcu **slots;
    4483             :         struct maple_node *node;
    4484             :         struct maple_enode *enode;
    4485             :         unsigned long *pivots;
    4486             : 
    4487           0 :         if (mas_is_none(mas))
    4488             :                 return 0;
    4489             : 
    4490             :         level = 0;
    4491             :         do {
    4492           0 :                 node = mas_mn(mas);
    4493           0 :                 if (ma_is_root(node))
    4494             :                         goto no_entry;
    4495             : 
    4496             :                 /* Walk up. */
    4497           0 :                 if (unlikely(mas_ascend(mas)))
    4498             :                         return 1;
    4499           0 :                 offset = mas->offset;
    4500           0 :                 level++;
    4501           0 :         } while (!offset);
    4502             : 
    4503           0 :         offset--;
    4504           0 :         mt = mte_node_type(mas->node);
    4505           0 :         node = mas_mn(mas);
    4506           0 :         slots = ma_slots(node, mt);
    4507           0 :         pivots = ma_pivots(node, mt);
    4508           0 :         mas->max = pivots[offset];
    4509           0 :         if (offset)
    4510           0 :                 mas->min = pivots[offset - 1] + 1;
    4511           0 :         if (unlikely(ma_dead_node(node)))
    4512             :                 return 1;
    4513             : 
    4514           0 :         if (mas->max < min)
    4515             :                 goto no_entry_min;
    4516             : 
    4517           0 :         while (level > 1) {
    4518           0 :                 level--;
    4519           0 :                 enode = mas_slot(mas, slots, offset);
    4520           0 :                 if (unlikely(ma_dead_node(node)))
    4521             :                         return 1;
    4522             : 
    4523           0 :                 mas->node = enode;
    4524           0 :                 mt = mte_node_type(mas->node);
    4525           0 :                 node = mas_mn(mas);
    4526           0 :                 slots = ma_slots(node, mt);
    4527           0 :                 pivots = ma_pivots(node, mt);
    4528           0 :                 offset = ma_data_end(node, mt, pivots, mas->max);
    4529           0 :                 if (offset)
    4530           0 :                         mas->min = pivots[offset - 1] + 1;
    4531             : 
    4532           0 :                 if (offset < mt_pivots[mt])
    4533           0 :                         mas->max = pivots[offset];
    4534             : 
    4535           0 :                 if (mas->max < min)
    4536             :                         goto no_entry;
    4537             :         }
    4538             : 
    4539           0 :         mas->node = mas_slot(mas, slots, offset);
    4540           0 :         if (unlikely(ma_dead_node(node)))
    4541             :                 return 1;
    4542             : 
    4543           0 :         mas->offset = mas_data_end(mas);
    4544           0 :         if (unlikely(mte_dead_node(mas->node)))
    4545             :                 return 1;
    4546             : 
    4547           0 :         return 0;
    4548             : 
    4549             : no_entry_min:
    4550           0 :         mas->offset = offset;
    4551           0 :         if (offset)
    4552           0 :                 mas->min = pivots[offset - 1] + 1;
    4553             : no_entry:
    4554           0 :         if (unlikely(ma_dead_node(node)))
    4555             :                 return 1;
    4556             : 
    4557           0 :         mas->node = MAS_NONE;
    4558           0 :         return 0;
    4559             : }
    4560             : 
    4561             : /*
    4562             :  * mas_next_node() - Get the next node at the same level in the tree.
    4563             :  * @mas: The maple state
    4564             :  * @max: The maximum pivot value to check.
    4565             :  *
    4566             :  * The next value will be mas->node[mas->offset] or MAS_NONE.
    4567             :  * Return: 1 on dead node, 0 otherwise.
    4568             :  */
    4569           0 : static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
    4570             :                                 unsigned long max)
    4571             : {
    4572             :         unsigned long min, pivot;
    4573             :         unsigned long *pivots;
    4574             :         struct maple_enode *enode;
    4575           0 :         int level = 0;
    4576             :         unsigned char offset;
    4577             :         enum maple_type mt;
    4578             :         void __rcu **slots;
    4579             : 
    4580           0 :         if (mas->max >= max)
    4581             :                 goto no_entry;
    4582             : 
    4583             :         level = 0;
    4584             :         do {
    4585           0 :                 if (ma_is_root(node))
    4586             :                         goto no_entry;
    4587             : 
    4588           0 :                 min = mas->max + 1;
    4589           0 :                 if (min > max)
    4590             :                         goto no_entry;
    4591             : 
    4592           0 :                 if (unlikely(mas_ascend(mas)))
    4593             :                         return 1;
    4594             : 
    4595           0 :                 offset = mas->offset;
    4596           0 :                 level++;
    4597           0 :                 node = mas_mn(mas);
    4598           0 :                 mt = mte_node_type(mas->node);
    4599           0 :                 pivots = ma_pivots(node, mt);
    4600           0 :         } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
    4601             : 
    4602           0 :         slots = ma_slots(node, mt);
    4603           0 :         pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
    4604           0 :         while (unlikely(level > 1)) {
    4605             :                 /* Descend, if necessary */
    4606           0 :                 enode = mas_slot(mas, slots, offset);
    4607           0 :                 if (unlikely(ma_dead_node(node)))
    4608             :                         return 1;
    4609             : 
    4610           0 :                 mas->node = enode;
    4611           0 :                 level--;
    4612           0 :                 node = mas_mn(mas);
    4613           0 :                 mt = mte_node_type(mas->node);
    4614           0 :                 slots = ma_slots(node, mt);
    4615           0 :                 pivots = ma_pivots(node, mt);
    4616           0 :                 offset = 0;
    4617           0 :                 pivot = pivots[0];
    4618             :         }
    4619             : 
    4620           0 :         enode = mas_slot(mas, slots, offset);
    4621           0 :         if (unlikely(ma_dead_node(node)))
    4622             :                 return 1;
    4623             : 
    4624           0 :         mas->node = enode;
    4625           0 :         mas->min = min;
    4626           0 :         mas->max = pivot;
    4627           0 :         return 0;
    4628             : 
    4629             : no_entry:
    4630           0 :         if (unlikely(ma_dead_node(node)))
    4631             :                 return 1;
    4632             : 
    4633           0 :         mas->node = MAS_NONE;
    4634           0 :         return 0;
    4635             : }
    4636             : 
    4637             : /*
    4638             :  * mas_next_nentry() - Get the next node entry
    4639             :  * @mas: The maple state
    4640             :  * @max: The maximum value to check
    4641             :  * @*range_start: Pointer to store the start of the range.
    4642             :  *
    4643             :  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
    4644             :  * pivot of the entry.
    4645             :  *
    4646             :  * Return: The next entry, %NULL otherwise
    4647             :  */
    4648           0 : static inline void *mas_next_nentry(struct ma_state *mas,
    4649             :             struct maple_node *node, unsigned long max, enum maple_type type)
    4650             : {
    4651             :         unsigned char count;
    4652             :         unsigned long pivot;
    4653             :         unsigned long *pivots;
    4654             :         void __rcu **slots;
    4655             :         void *entry;
    4656             : 
    4657           0 :         if (mas->last == mas->max) {
    4658           0 :                 mas->index = mas->max;
    4659           0 :                 return NULL;
    4660             :         }
    4661             : 
    4662           0 :         pivots = ma_pivots(node, type);
    4663           0 :         slots = ma_slots(node, type);
    4664           0 :         mas->index = mas_safe_min(mas, pivots, mas->offset);
    4665           0 :         count = ma_data_end(node, type, pivots, mas->max);
    4666           0 :         if (ma_dead_node(node))
    4667             :                 return NULL;
    4668             : 
    4669           0 :         if (mas->index > max)
    4670             :                 return NULL;
    4671             : 
    4672           0 :         if (mas->offset > count)
    4673             :                 return NULL;
    4674             : 
    4675           0 :         while (mas->offset < count) {
    4676           0 :                 pivot = pivots[mas->offset];
    4677           0 :                 entry = mas_slot(mas, slots, mas->offset);
    4678           0 :                 if (ma_dead_node(node))
    4679             :                         return NULL;
    4680             : 
    4681           0 :                 if (entry)
    4682             :                         goto found;
    4683             : 
    4684           0 :                 if (pivot >= max)
    4685             :                         return NULL;
    4686             : 
    4687           0 :                 mas->index = pivot + 1;
    4688           0 :                 mas->offset++;
    4689             :         }
    4690             : 
    4691           0 :         if (mas->index > mas->max) {
    4692           0 :                 mas->index = mas->last;
    4693           0 :                 return NULL;
    4694             :         }
    4695             : 
    4696           0 :         pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
    4697           0 :         entry = mas_slot(mas, slots, mas->offset);
    4698           0 :         if (ma_dead_node(node))
    4699             :                 return NULL;
    4700             : 
    4701           0 :         if (!pivot)
    4702             :                 return NULL;
    4703             : 
    4704           0 :         if (!entry)
    4705             :                 return NULL;
    4706             : 
    4707             : found:
    4708           0 :         mas->last = pivot;
    4709           0 :         return entry;
    4710             : }
    4711             : 
    4712             : static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
    4713             : {
    4714             : retry:
    4715           0 :         mas_set(mas, index);
    4716           0 :         mas_state_walk(mas);
    4717           0 :         if (mas_is_start(mas))
    4718             :                 goto retry;
    4719             : }
    4720             : 
    4721             : /*
    4722             :  * mas_next_entry() - Internal function to get the next entry.
    4723             :  * @mas: The maple state
    4724             :  * @limit: The maximum range start.
    4725             :  *
    4726             :  * Set the @mas->node to the next entry and the range_start to
    4727             :  * the beginning value for the entry.  Does not check beyond @limit.
    4728             :  * Sets @mas->index and @mas->last to the limit if it is hit.
    4729             :  * Restarts on dead nodes.
    4730             :  *
    4731             :  * Return: the next entry or %NULL.
    4732             :  */
    4733           0 : static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
    4734             : {
    4735           0 :         void *entry = NULL;
    4736             :         struct maple_enode *prev_node;
    4737             :         struct maple_node *node;
    4738             :         unsigned char offset;
    4739             :         unsigned long last;
    4740             :         enum maple_type mt;
    4741             : 
    4742           0 :         if (mas->index > limit) {
    4743           0 :                 mas->index = mas->last = limit;
    4744           0 :                 mas_pause(mas);
    4745           0 :                 return NULL;
    4746             :         }
    4747           0 :         last = mas->last;
    4748             : retry:
    4749           0 :         offset = mas->offset;
    4750           0 :         prev_node = mas->node;
    4751           0 :         node = mas_mn(mas);
    4752           0 :         mt = mte_node_type(mas->node);
    4753           0 :         mas->offset++;
    4754           0 :         if (unlikely(mas->offset >= mt_slots[mt])) {
    4755           0 :                 mas->offset = mt_slots[mt] - 1;
    4756           0 :                 goto next_node;
    4757             :         }
    4758             : 
    4759           0 :         while (!mas_is_none(mas)) {
    4760           0 :                 entry = mas_next_nentry(mas, node, limit, mt);
    4761           0 :                 if (unlikely(ma_dead_node(node))) {
    4762             :                         mas_rewalk(mas, last);
    4763             :                         goto retry;
    4764             :                 }
    4765             : 
    4766           0 :                 if (likely(entry))
    4767             :                         return entry;
    4768             : 
    4769           0 :                 if (unlikely((mas->index > limit)))
    4770             :                         break;
    4771             : 
    4772             : next_node:
    4773           0 :                 prev_node = mas->node;
    4774           0 :                 offset = mas->offset;
    4775           0 :                 if (unlikely(mas_next_node(mas, node, limit))) {
    4776             :                         mas_rewalk(mas, last);
    4777             :                         goto retry;
    4778             :                 }
    4779           0 :                 mas->offset = 0;
    4780           0 :                 node = mas_mn(mas);
    4781           0 :                 mt = mte_node_type(mas->node);
    4782             :         }
    4783             : 
    4784           0 :         mas->index = mas->last = limit;
    4785           0 :         mas->offset = offset;
    4786           0 :         mas->node = prev_node;
    4787           0 :         return NULL;
    4788             : }
    4789             : 
    4790             : /*
    4791             :  * mas_prev_nentry() - Get the previous node entry.
    4792             :  * @mas: The maple state.
    4793             :  * @limit: The lower limit to check for a value.
    4794             :  *
    4795             :  * Return: the entry, %NULL otherwise.
    4796             :  */
    4797           0 : static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
    4798             :                                     unsigned long index)
    4799             : {
    4800             :         unsigned long pivot, min;
    4801             :         unsigned char offset;
    4802             :         struct maple_node *mn;
    4803             :         enum maple_type mt;
    4804             :         unsigned long *pivots;
    4805             :         void __rcu **slots;
    4806             :         void *entry;
    4807             : 
    4808             : retry:
    4809           0 :         if (!mas->offset)
    4810             :                 return NULL;
    4811             : 
    4812           0 :         mn = mas_mn(mas);
    4813           0 :         mt = mte_node_type(mas->node);
    4814           0 :         offset = mas->offset - 1;
    4815           0 :         if (offset >= mt_slots[mt])
    4816           0 :                 offset = mt_slots[mt] - 1;
    4817             : 
    4818           0 :         slots = ma_slots(mn, mt);
    4819           0 :         pivots = ma_pivots(mn, mt);
    4820           0 :         if (offset == mt_pivots[mt])
    4821           0 :                 pivot = mas->max;
    4822             :         else
    4823           0 :                 pivot = pivots[offset];
    4824             : 
    4825           0 :         if (unlikely(ma_dead_node(mn))) {
    4826             :                 mas_rewalk(mas, index);
    4827             :                 goto retry;
    4828             :         }
    4829             : 
    4830           0 :         while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
    4831             :                !pivot))
    4832           0 :                 pivot = pivots[--offset];
    4833             : 
    4834           0 :         min = mas_safe_min(mas, pivots, offset);
    4835           0 :         entry = mas_slot(mas, slots, offset);
    4836           0 :         if (unlikely(ma_dead_node(mn))) {
    4837             :                 mas_rewalk(mas, index);
    4838             :                 goto retry;
    4839             :         }
    4840             : 
    4841           0 :         if (likely(entry)) {
    4842           0 :                 mas->offset = offset;
    4843           0 :                 mas->last = pivot;
    4844           0 :                 mas->index = min;
    4845             :         }
    4846             :         return entry;
    4847             : }
    4848             : 
    4849           0 : static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
    4850             : {
    4851             :         void *entry;
    4852             : 
    4853           0 :         if (mas->index < min) {
    4854           0 :                 mas->index = mas->last = min;
    4855           0 :                 mas->node = MAS_NONE;
    4856           0 :                 return NULL;
    4857             :         }
    4858             : retry:
    4859           0 :         while (likely(!mas_is_none(mas))) {
    4860           0 :                 entry = mas_prev_nentry(mas, min, mas->index);
    4861           0 :                 if (unlikely(mas->last < min))
    4862             :                         goto not_found;
    4863             : 
    4864           0 :                 if (likely(entry))
    4865             :                         return entry;
    4866             : 
    4867           0 :                 if (unlikely(mas_prev_node(mas, min))) {
    4868           0 :                         mas_rewalk(mas, mas->index);
    4869             :                         goto retry;
    4870             :                 }
    4871             : 
    4872           0 :                 mas->offset++;
    4873             :         }
    4874             : 
    4875           0 :         mas->offset--;
    4876             : not_found:
    4877           0 :         mas->index = mas->last = min;
    4878           0 :         return NULL;
    4879             : }
    4880             : 
    4881             : /*
    4882             :  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
    4883             :  * highest gap address of a given size in a given node and descend.
    4884             :  * @mas: The maple state
    4885             :  * @size: The needed size.
    4886             :  *
    4887             :  * Return: True if found in a leaf, false otherwise.
    4888             :  *
    4889             :  */
    4890           0 : static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
    4891             : {
    4892           0 :         enum maple_type type = mte_node_type(mas->node);
    4893           0 :         struct maple_node *node = mas_mn(mas);
    4894             :         unsigned long *pivots, *gaps;
    4895             :         void __rcu **slots;
    4896           0 :         unsigned long gap = 0;
    4897             :         unsigned long max, min;
    4898             :         unsigned char offset;
    4899             : 
    4900           0 :         if (unlikely(mas_is_err(mas)))
    4901             :                 return true;
    4902             : 
    4903           0 :         if (ma_is_dense(type)) {
    4904             :                 /* dense nodes. */
    4905           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    4906           0 :                 return true;
    4907             :         }
    4908             : 
    4909           0 :         pivots = ma_pivots(node, type);
    4910           0 :         slots = ma_slots(node, type);
    4911           0 :         gaps = ma_gaps(node, type);
    4912           0 :         offset = mas->offset;
    4913           0 :         min = mas_safe_min(mas, pivots, offset);
    4914             :         /* Skip out of bounds. */
    4915           0 :         while (mas->last < min)
    4916           0 :                 min = mas_safe_min(mas, pivots, --offset);
    4917             : 
    4918           0 :         max = mas_safe_pivot(mas, pivots, offset, type);
    4919           0 :         while (mas->index <= max) {
    4920           0 :                 gap = 0;
    4921           0 :                 if (gaps)
    4922           0 :                         gap = gaps[offset];
    4923           0 :                 else if (!mas_slot(mas, slots, offset))
    4924           0 :                         gap = max - min + 1;
    4925             : 
    4926           0 :                 if (gap) {
    4927           0 :                         if ((size <= gap) && (size <= mas->last - min + 1))
    4928             :                                 break;
    4929             : 
    4930           0 :                         if (!gaps) {
    4931             :                                 /* Skip the next slot, it cannot be a gap. */
    4932           0 :                                 if (offset < 2)
    4933             :                                         goto ascend;
    4934             : 
    4935           0 :                                 offset -= 2;
    4936           0 :                                 max = pivots[offset];
    4937           0 :                                 min = mas_safe_min(mas, pivots, offset);
    4938           0 :                                 continue;
    4939             :                         }
    4940             :                 }
    4941             : 
    4942           0 :                 if (!offset)
    4943             :                         goto ascend;
    4944             : 
    4945           0 :                 offset--;
    4946           0 :                 max = min - 1;
    4947           0 :                 min = mas_safe_min(mas, pivots, offset);
    4948             :         }
    4949             : 
    4950           0 :         if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
    4951             :                 goto no_space;
    4952             : 
    4953           0 :         if (unlikely(ma_is_leaf(type))) {
    4954           0 :                 mas->offset = offset;
    4955           0 :                 mas->min = min;
    4956           0 :                 mas->max = min + gap - 1;
    4957           0 :                 return true;
    4958             :         }
    4959             : 
    4960             :         /* descend, only happens under lock. */
    4961           0 :         mas->node = mas_slot(mas, slots, offset);
    4962           0 :         mas->min = min;
    4963           0 :         mas->max = max;
    4964           0 :         mas->offset = mas_data_end(mas);
    4965           0 :         return false;
    4966             : 
    4967             : ascend:
    4968           0 :         if (!mte_is_root(mas->node))
    4969             :                 return false;
    4970             : 
    4971             : no_space:
    4972           0 :         mas_set_err(mas, -EBUSY);
    4973           0 :         return false;
    4974             : }
    4975             : 
    4976           0 : static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
    4977             : {
    4978           0 :         enum maple_type type = mte_node_type(mas->node);
    4979           0 :         unsigned long pivot, min, gap = 0;
    4980             :         unsigned char offset;
    4981             :         unsigned long *gaps;
    4982           0 :         unsigned long *pivots = ma_pivots(mas_mn(mas), type);
    4983           0 :         void __rcu **slots = ma_slots(mas_mn(mas), type);
    4984           0 :         bool found = false;
    4985             : 
    4986           0 :         if (ma_is_dense(type)) {
    4987           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    4988           0 :                 return true;
    4989             :         }
    4990             : 
    4991           0 :         gaps = ma_gaps(mte_to_node(mas->node), type);
    4992           0 :         offset = mas->offset;
    4993           0 :         min = mas_safe_min(mas, pivots, offset);
    4994           0 :         for (; offset < mt_slots[type]; offset++) {
    4995           0 :                 pivot = mas_safe_pivot(mas, pivots, offset, type);
    4996           0 :                 if (offset && !pivot)
    4997             :                         break;
    4998             : 
    4999             :                 /* Not within lower bounds */
    5000           0 :                 if (mas->index > pivot)
    5001             :                         goto next_slot;
    5002             : 
    5003           0 :                 if (gaps)
    5004           0 :                         gap = gaps[offset];
    5005           0 :                 else if (!mas_slot(mas, slots, offset))
    5006           0 :                         gap = min(pivot, mas->last) - max(mas->index, min) + 1;
    5007             :                 else
    5008             :                         goto next_slot;
    5009             : 
    5010           0 :                 if (gap >= size) {
    5011           0 :                         if (ma_is_leaf(type)) {
    5012             :                                 found = true;
    5013             :                                 goto done;
    5014             :                         }
    5015             :                         if (mas->index <= pivot) {
    5016           0 :                                 mas->node = mas_slot(mas, slots, offset);
    5017           0 :                                 mas->min = min;
    5018           0 :                                 mas->max = pivot;
    5019           0 :                                 offset = 0;
    5020           0 :                                 break;
    5021             :                         }
    5022             :                 }
    5023             : next_slot:
    5024           0 :                 min = pivot + 1;
    5025           0 :                 if (mas->last <= pivot) {
    5026           0 :                         mas_set_err(mas, -EBUSY);
    5027           0 :                         return true;
    5028             :                 }
    5029             :         }
    5030             : 
    5031           0 :         if (mte_is_root(mas->node))
    5032           0 :                 found = true;
    5033             : done:
    5034           0 :         mas->offset = offset;
    5035           0 :         return found;
    5036             : }
    5037             : 
    5038             : /**
    5039             :  * mas_walk() - Search for @mas->index in the tree.
    5040             :  * @mas: The maple state.
    5041             :  *
    5042             :  * mas->index and mas->last will be set to the range if there is a value.  If
    5043             :  * mas->node is MAS_NONE, reset to MAS_START.
    5044             :  *
    5045             :  * Return: the entry at the location or %NULL.
    5046             :  */
    5047           0 : void *mas_walk(struct ma_state *mas)
    5048             : {
    5049             :         void *entry;
    5050             : 
    5051             : retry:
    5052           0 :         entry = mas_state_walk(mas);
    5053           0 :         if (mas_is_start(mas))
    5054             :                 goto retry;
    5055             : 
    5056           0 :         if (mas_is_ptr(mas)) {
    5057           0 :                 if (!mas->index) {
    5058           0 :                         mas->last = 0;
    5059             :                 } else {
    5060           0 :                         mas->index = 1;
    5061           0 :                         mas->last = ULONG_MAX;
    5062             :                 }
    5063             :                 return entry;
    5064             :         }
    5065             : 
    5066           0 :         if (mas_is_none(mas)) {
    5067           0 :                 mas->index = 0;
    5068           0 :                 mas->last = ULONG_MAX;
    5069             :         }
    5070             : 
    5071             :         return entry;
    5072             : }
    5073             : EXPORT_SYMBOL_GPL(mas_walk);
    5074             : 
    5075           0 : static inline bool mas_rewind_node(struct ma_state *mas)
    5076             : {
    5077             :         unsigned char slot;
    5078             : 
    5079             :         do {
    5080           0 :                 if (mte_is_root(mas->node)) {
    5081           0 :                         slot = mas->offset;
    5082           0 :                         if (!slot)
    5083             :                                 return false;
    5084             :                 } else {
    5085           0 :                         mas_ascend(mas);
    5086           0 :                         slot = mas->offset;
    5087             :                 }
    5088           0 :         } while (!slot);
    5089             : 
    5090           0 :         mas->offset = --slot;
    5091           0 :         return true;
    5092             : }
    5093             : 
    5094             : /*
    5095             :  * mas_skip_node() - Internal function.  Skip over a node.
    5096             :  * @mas: The maple state.
    5097             :  *
    5098             :  * Return: true if there is another node, false otherwise.
    5099             :  */
    5100           0 : static inline bool mas_skip_node(struct ma_state *mas)
    5101             : {
    5102             :         unsigned char slot, slot_count;
    5103             :         unsigned long *pivots;
    5104             :         enum maple_type mt;
    5105             : 
    5106           0 :         mt = mte_node_type(mas->node);
    5107           0 :         slot_count = mt_slots[mt] - 1;
    5108             :         do {
    5109           0 :                 if (mte_is_root(mas->node)) {
    5110           0 :                         slot = mas->offset;
    5111           0 :                         if (slot > slot_count) {
    5112           0 :                                 mas_set_err(mas, -EBUSY);
    5113           0 :                                 return false;
    5114             :                         }
    5115             :                 } else {
    5116           0 :                         mas_ascend(mas);
    5117           0 :                         slot = mas->offset;
    5118           0 :                         mt = mte_node_type(mas->node);
    5119           0 :                         slot_count = mt_slots[mt] - 1;
    5120             :                 }
    5121           0 :         } while (slot > slot_count);
    5122             : 
    5123           0 :         mas->offset = ++slot;
    5124           0 :         pivots = ma_pivots(mas_mn(mas), mt);
    5125           0 :         if (slot > 0)
    5126           0 :                 mas->min = pivots[slot - 1] + 1;
    5127             : 
    5128           0 :         if (slot <= slot_count)
    5129           0 :                 mas->max = pivots[slot];
    5130             : 
    5131             :         return true;
    5132             : }
    5133             : 
    5134             : /*
    5135             :  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
    5136             :  * @size
    5137             :  * @mas: The maple state
    5138             :  * @size: The size of the gap required
    5139             :  *
    5140             :  * Search between @mas->index and @mas->last for a gap of @size.
    5141             :  */
    5142           0 : static inline void mas_awalk(struct ma_state *mas, unsigned long size)
    5143             : {
    5144           0 :         struct maple_enode *last = NULL;
    5145             : 
    5146             :         /*
    5147             :          * There are 4 options:
    5148             :          * go to child (descend)
    5149             :          * go back to parent (ascend)
    5150             :          * no gap found. (return, slot == MAPLE_NODE_SLOTS)
    5151             :          * found the gap. (return, slot != MAPLE_NODE_SLOTS)
    5152             :          */
    5153           0 :         while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
    5154           0 :                 if (last == mas->node)
    5155           0 :                         mas_skip_node(mas);
    5156             :                 else
    5157             :                         last = mas->node;
    5158             :         }
    5159           0 : }
    5160             : 
    5161             : /*
    5162             :  * mas_fill_gap() - Fill a located gap with @entry.
    5163             :  * @mas: The maple state
    5164             :  * @entry: The value to store
    5165             :  * @slot: The offset into the node to store the @entry
    5166             :  * @size: The size of the entry
    5167             :  * @index: The start location
    5168             :  */
    5169           0 : static inline void mas_fill_gap(struct ma_state *mas, void *entry,
    5170             :                 unsigned char slot, unsigned long size, unsigned long *index)
    5171             : {
    5172           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5173           0 :         unsigned char pslot = mte_parent_slot(mas->node);
    5174           0 :         struct maple_enode *mn = mas->node;
    5175             :         unsigned long *pivots;
    5176             :         enum maple_type ptype;
    5177             :         /*
    5178             :          * mas->index is the start address for the search
    5179             :          *  which may no longer be needed.
    5180             :          * mas->last is the end address for the search
    5181             :          */
    5182             : 
    5183           0 :         *index = mas->index;
    5184           0 :         mas->last = mas->index + size - 1;
    5185             : 
    5186             :         /*
    5187             :          * It is possible that using mas->max and mas->min to correctly
    5188             :          * calculate the index and last will cause an issue in the gap
    5189             :          * calculation, so fix the ma_state here
    5190             :          */
    5191           0 :         mas_ascend(mas);
    5192           0 :         ptype = mte_node_type(mas->node);
    5193           0 :         pivots = ma_pivots(mas_mn(mas), ptype);
    5194           0 :         mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
    5195           0 :         mas->min = mas_safe_min(mas, pivots, pslot);
    5196           0 :         mas->node = mn;
    5197           0 :         mas->offset = slot;
    5198           0 :         mas_wr_store_entry(&wr_mas);
    5199           0 : }
    5200             : 
    5201             : /*
    5202             :  * mas_sparse_area() - Internal function.  Return upper or lower limit when
    5203             :  * searching for a gap in an empty tree.
    5204             :  * @mas: The maple state
    5205             :  * @min: the minimum range
    5206             :  * @max: The maximum range
    5207             :  * @size: The size of the gap
    5208             :  * @fwd: Searching forward or back
    5209             :  */
    5210             : static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
    5211             :                                 unsigned long max, unsigned long size, bool fwd)
    5212             : {
    5213           0 :         unsigned long start = 0;
    5214             : 
    5215           0 :         if (!unlikely(mas_is_none(mas)))
    5216           0 :                 start++;
    5217             :         /* mas_is_ptr */
    5218             : 
    5219           0 :         if (start < min)
    5220           0 :                 start = min;
    5221             : 
    5222             :         if (fwd) {
    5223           0 :                 mas->index = start;
    5224           0 :                 mas->last = start + size - 1;
    5225             :                 return;
    5226             :         }
    5227             : 
    5228           0 :         mas->index = max;
    5229             : }
    5230             : 
    5231             : /*
    5232             :  * mas_empty_area() - Get the lowest address within the range that is
    5233             :  * sufficient for the size requested.
    5234             :  * @mas: The maple state
    5235             :  * @min: The lowest value of the range
    5236             :  * @max: The highest value of the range
    5237             :  * @size: The size needed
    5238             :  */
    5239           0 : int mas_empty_area(struct ma_state *mas, unsigned long min,
    5240             :                 unsigned long max, unsigned long size)
    5241             : {
    5242             :         unsigned char offset;
    5243             :         unsigned long *pivots;
    5244             :         enum maple_type mt;
    5245             : 
    5246           0 :         if (mas_is_start(mas))
    5247           0 :                 mas_start(mas);
    5248           0 :         else if (mas->offset >= 2)
    5249           0 :                 mas->offset -= 2;
    5250           0 :         else if (!mas_skip_node(mas))
    5251             :                 return -EBUSY;
    5252             : 
    5253             :         /* Empty set */
    5254           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    5255           0 :                 mas_sparse_area(mas, min, max, size, true);
    5256           0 :                 return 0;
    5257             :         }
    5258             : 
    5259             :         /* The start of the window can only be within these values */
    5260           0 :         mas->index = min;
    5261           0 :         mas->last = max;
    5262           0 :         mas_awalk(mas, size);
    5263             : 
    5264           0 :         if (unlikely(mas_is_err(mas)))
    5265           0 :                 return xa_err(mas->node);
    5266             : 
    5267           0 :         offset = mas->offset;
    5268           0 :         if (unlikely(offset == MAPLE_NODE_SLOTS))
    5269             :                 return -EBUSY;
    5270             : 
    5271           0 :         mt = mte_node_type(mas->node);
    5272           0 :         pivots = ma_pivots(mas_mn(mas), mt);
    5273           0 :         if (offset)
    5274           0 :                 mas->min = pivots[offset - 1] + 1;
    5275             : 
    5276           0 :         if (offset < mt_pivots[mt])
    5277           0 :                 mas->max = pivots[offset];
    5278             : 
    5279           0 :         if (mas->index < mas->min)
    5280           0 :                 mas->index = mas->min;
    5281             : 
    5282           0 :         mas->last = mas->index + size - 1;
    5283           0 :         return 0;
    5284             : }
    5285             : EXPORT_SYMBOL_GPL(mas_empty_area);
    5286             : 
    5287             : /*
    5288             :  * mas_empty_area_rev() - Get the highest address within the range that is
    5289             :  * sufficient for the size requested.
    5290             :  * @mas: The maple state
    5291             :  * @min: The lowest value of the range
    5292             :  * @max: The highest value of the range
    5293             :  * @size: The size needed
    5294             :  */
    5295           0 : int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
    5296             :                 unsigned long max, unsigned long size)
    5297             : {
    5298           0 :         struct maple_enode *last = mas->node;
    5299             : 
    5300           0 :         if (mas_is_start(mas)) {
    5301           0 :                 mas_start(mas);
    5302           0 :                 mas->offset = mas_data_end(mas);
    5303           0 :         } else if (mas->offset >= 2) {
    5304           0 :                 mas->offset -= 2;
    5305           0 :         } else if (!mas_rewind_node(mas)) {
    5306             :                 return -EBUSY;
    5307             :         }
    5308             : 
    5309             :         /* Empty set. */
    5310           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    5311           0 :                 mas_sparse_area(mas, min, max, size, false);
    5312           0 :                 return 0;
    5313             :         }
    5314             : 
    5315             :         /* The start of the window can only be within these values. */
    5316           0 :         mas->index = min;
    5317           0 :         mas->last = max;
    5318             : 
    5319           0 :         while (!mas_rev_awalk(mas, size)) {
    5320           0 :                 if (last == mas->node) {
    5321           0 :                         if (!mas_rewind_node(mas))
    5322             :                                 return -EBUSY;
    5323             :                 } else {
    5324             :                         last = mas->node;
    5325             :                 }
    5326             :         }
    5327             : 
    5328           0 :         if (mas_is_err(mas))
    5329           0 :                 return xa_err(mas->node);
    5330             : 
    5331           0 :         if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
    5332             :                 return -EBUSY;
    5333             : 
    5334             :         /*
    5335             :          * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
    5336             :          * the maximum is outside the window we are searching, then use the last
    5337             :          * location in the search.
    5338             :          * mas->max and mas->min is the range of the gap.
    5339             :          * mas->index and mas->last are currently set to the search range.
    5340             :          */
    5341             : 
    5342             :         /* Trim the upper limit to the max. */
    5343           0 :         if (mas->max <= mas->last)
    5344           0 :                 mas->last = mas->max;
    5345             : 
    5346           0 :         mas->index = mas->last - size + 1;
    5347           0 :         return 0;
    5348             : }
    5349             : EXPORT_SYMBOL_GPL(mas_empty_area_rev);
    5350             : 
    5351           0 : static inline int mas_alloc(struct ma_state *mas, void *entry,
    5352             :                 unsigned long size, unsigned long *index)
    5353             : {
    5354             :         unsigned long min;
    5355             : 
    5356           0 :         mas_start(mas);
    5357           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    5358           0 :                 mas_root_expand(mas, entry);
    5359           0 :                 if (mas_is_err(mas))
    5360           0 :                         return xa_err(mas->node);
    5361             : 
    5362           0 :                 if (!mas->index)
    5363           0 :                         return mte_pivot(mas->node, 0);
    5364           0 :                 return mte_pivot(mas->node, 1);
    5365             :         }
    5366             : 
    5367             :         /* Must be walking a tree. */
    5368           0 :         mas_awalk(mas, size);
    5369           0 :         if (mas_is_err(mas))
    5370           0 :                 return xa_err(mas->node);
    5371             : 
    5372           0 :         if (mas->offset == MAPLE_NODE_SLOTS)
    5373             :                 goto no_gap;
    5374             : 
    5375             :         /*
    5376             :          * At this point, mas->node points to the right node and we have an
    5377             :          * offset that has a sufficient gap.
    5378             :          */
    5379           0 :         min = mas->min;
    5380           0 :         if (mas->offset)
    5381           0 :                 min = mte_pivot(mas->node, mas->offset - 1) + 1;
    5382             : 
    5383           0 :         if (mas->index < min)
    5384           0 :                 mas->index = min;
    5385             : 
    5386           0 :         mas_fill_gap(mas, entry, mas->offset, size, index);
    5387           0 :         return 0;
    5388             : 
    5389             : no_gap:
    5390             :         return -EBUSY;
    5391             : }
    5392             : 
    5393           0 : static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
    5394             :                                 unsigned long max, void *entry,
    5395             :                                 unsigned long size, unsigned long *index)
    5396             : {
    5397           0 :         int ret = 0;
    5398             : 
    5399           0 :         ret = mas_empty_area_rev(mas, min, max, size);
    5400           0 :         if (ret)
    5401             :                 return ret;
    5402             : 
    5403           0 :         if (mas_is_err(mas))
    5404           0 :                 return xa_err(mas->node);
    5405             : 
    5406           0 :         if (mas->offset == MAPLE_NODE_SLOTS)
    5407             :                 goto no_gap;
    5408             : 
    5409           0 :         mas_fill_gap(mas, entry, mas->offset, size, index);
    5410           0 :         return 0;
    5411             : 
    5412             : no_gap:
    5413             :         return -EBUSY;
    5414             : }
    5415             : 
    5416             : /*
    5417             :  * mas_dead_leaves() - Mark all leaves of a node as dead.
    5418             :  * @mas: The maple state
    5419             :  * @slots: Pointer to the slot array
    5420             :  *
    5421             :  * Must hold the write lock.
    5422             :  *
    5423             :  * Return: The number of leaves marked as dead.
    5424             :  */
    5425             : static inline
    5426           0 : unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
    5427             : {
    5428             :         struct maple_node *node;
    5429             :         enum maple_type type;
    5430             :         void *entry;
    5431             :         int offset;
    5432             : 
    5433           0 :         for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
    5434           0 :                 entry = mas_slot_locked(mas, slots, offset);
    5435           0 :                 type = mte_node_type(entry);
    5436           0 :                 node = mte_to_node(entry);
    5437             :                 /* Use both node and type to catch LE & BE metadata */
    5438           0 :                 if (!node || !type)
    5439             :                         break;
    5440             : 
    5441           0 :                 mte_set_node_dead(entry);
    5442           0 :                 smp_wmb(); /* Needed for RCU */
    5443           0 :                 node->type = type;
    5444           0 :                 rcu_assign_pointer(slots[offset], node);
    5445             :         }
    5446             : 
    5447           0 :         return offset;
    5448             : }
    5449             : 
    5450             : static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
    5451             : {
    5452             :         struct maple_node *node, *next;
    5453           0 :         void __rcu **slots = NULL;
    5454             : 
    5455           0 :         next = mas_mn(mas);
    5456             :         do {
    5457           0 :                 mas->node = ma_enode_ptr(next);
    5458           0 :                 node = mas_mn(mas);
    5459           0 :                 slots = ma_slots(node, node->type);
    5460           0 :                 next = mas_slot_locked(mas, slots, offset);
    5461           0 :                 offset = 0;
    5462           0 :         } while (!ma_is_leaf(next->type));
    5463             : 
    5464             :         return slots;
    5465             : }
    5466             : 
    5467           0 : static void mt_free_walk(struct rcu_head *head)
    5468             : {
    5469             :         void __rcu **slots;
    5470             :         struct maple_node *node, *start;
    5471             :         struct maple_tree mt;
    5472             :         unsigned char offset;
    5473             :         enum maple_type type;
    5474           0 :         MA_STATE(mas, &mt, 0, 0);
    5475             : 
    5476           0 :         node = container_of(head, struct maple_node, rcu);
    5477             : 
    5478           0 :         if (ma_is_leaf(node->type))
    5479             :                 goto free_leaf;
    5480             : 
    5481           0 :         mt_init_flags(&mt, node->ma_flags);
    5482           0 :         mas_lock(&mas);
    5483           0 :         start = node;
    5484           0 :         mas.node = mt_mk_node(node, node->type);
    5485             :         slots = mas_dead_walk(&mas, 0);
    5486             :         node = mas_mn(&mas);
    5487             :         do {
    5488           0 :                 mt_free_bulk(node->slot_len, slots);
    5489           0 :                 offset = node->parent_slot + 1;
    5490           0 :                 mas.node = node->piv_parent;
    5491           0 :                 if (mas_mn(&mas) == node)
    5492             :                         goto start_slots_free;
    5493             : 
    5494           0 :                 type = mte_node_type(mas.node);
    5495           0 :                 slots = ma_slots(mte_to_node(mas.node), type);
    5496           0 :                 if ((offset < mt_slots[type]) && (slots[offset]))
    5497             :                         slots = mas_dead_walk(&mas, offset);
    5498             : 
    5499           0 :                 node = mas_mn(&mas);
    5500           0 :         } while ((node != start) || (node->slot_len < offset));
    5501             : 
    5502           0 :         slots = ma_slots(node, node->type);
    5503           0 :         mt_free_bulk(node->slot_len, slots);
    5504             : 
    5505             : start_slots_free:
    5506           0 :         mas_unlock(&mas);
    5507             : free_leaf:
    5508           0 :         mt_free_rcu(&node->rcu);
    5509           0 : }
    5510             : 
    5511           0 : static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
    5512             :                         struct maple_enode *prev, unsigned char offset)
    5513             : {
    5514             :         struct maple_node *node;
    5515           0 :         struct maple_enode *next = mas->node;
    5516           0 :         void __rcu **slots = NULL;
    5517             : 
    5518             :         do {
    5519           0 :                 mas->node = next;
    5520           0 :                 node = mas_mn(mas);
    5521           0 :                 slots = ma_slots(node, mte_node_type(mas->node));
    5522           0 :                 next = mas_slot_locked(mas, slots, 0);
    5523           0 :                 if ((mte_dead_node(next)))
    5524           0 :                         next = mas_slot_locked(mas, slots, 1);
    5525             : 
    5526           0 :                 mte_set_node_dead(mas->node);
    5527           0 :                 node->type = mte_node_type(mas->node);
    5528           0 :                 node->piv_parent = prev;
    5529           0 :                 node->parent_slot = offset;
    5530           0 :                 offset = 0;
    5531           0 :                 prev = mas->node;
    5532           0 :         } while (!mte_is_leaf(next));
    5533             : 
    5534           0 :         return slots;
    5535             : }
    5536             : 
    5537           0 : static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
    5538             :                             bool free)
    5539             : {
    5540             :         void __rcu **slots;
    5541           0 :         struct maple_node *node = mte_to_node(enode);
    5542             :         struct maple_enode *start;
    5543             :         struct maple_tree mt;
    5544             : 
    5545           0 :         MA_STATE(mas, &mt, 0, 0);
    5546             : 
    5547           0 :         if (mte_is_leaf(enode))
    5548             :                 goto free_leaf;
    5549             : 
    5550           0 :         mt_init_flags(&mt, ma_flags);
    5551           0 :         mas_lock(&mas);
    5552             : 
    5553           0 :         mas.node = start = enode;
    5554           0 :         slots = mas_destroy_descend(&mas, start, 0);
    5555           0 :         node = mas_mn(&mas);
    5556             :         do {
    5557             :                 enum maple_type type;
    5558             :                 unsigned char offset;
    5559             :                 struct maple_enode *parent, *tmp;
    5560             : 
    5561           0 :                 node->slot_len = mas_dead_leaves(&mas, slots);
    5562           0 :                 if (free)
    5563           0 :                         mt_free_bulk(node->slot_len, slots);
    5564           0 :                 offset = node->parent_slot + 1;
    5565           0 :                 mas.node = node->piv_parent;
    5566           0 :                 if (mas_mn(&mas) == node)
    5567             :                         goto start_slots_free;
    5568             : 
    5569           0 :                 type = mte_node_type(mas.node);
    5570           0 :                 slots = ma_slots(mte_to_node(mas.node), type);
    5571           0 :                 if (offset >= mt_slots[type])
    5572             :                         goto next;
    5573             : 
    5574           0 :                 tmp = mas_slot_locked(&mas, slots, offset);
    5575           0 :                 if (mte_node_type(tmp) && mte_to_node(tmp)) {
    5576           0 :                         parent = mas.node;
    5577           0 :                         mas.node = tmp;
    5578           0 :                         slots = mas_destroy_descend(&mas, parent, offset);
    5579             :                 }
    5580             : next:
    5581           0 :                 node = mas_mn(&mas);
    5582           0 :         } while (start != mas.node);
    5583             : 
    5584           0 :         node = mas_mn(&mas);
    5585           0 :         node->slot_len = mas_dead_leaves(&mas, slots);
    5586           0 :         if (free)
    5587           0 :                 mt_free_bulk(node->slot_len, slots);
    5588             : 
    5589             : start_slots_free:
    5590           0 :         mas_unlock(&mas);
    5591             : 
    5592             : free_leaf:
    5593           0 :         if (free)
    5594           0 :                 mt_free_rcu(&node->rcu);
    5595           0 : }
    5596             : 
    5597             : /*
    5598             :  * mte_destroy_walk() - Free a tree or sub-tree.
    5599             :  * @enode: the encoded maple node (maple_enode) to start
    5600             :  * @mt: the tree to free - needed for node types.
    5601             :  *
    5602             :  * Must hold the write lock.
    5603             :  */
    5604           0 : static inline void mte_destroy_walk(struct maple_enode *enode,
    5605             :                                     struct maple_tree *mt)
    5606             : {
    5607           0 :         struct maple_node *node = mte_to_node(enode);
    5608             : 
    5609           0 :         if (mt_in_rcu(mt)) {
    5610           0 :                 mt_destroy_walk(enode, mt->ma_flags, false);
    5611           0 :                 call_rcu(&node->rcu, mt_free_walk);
    5612             :         } else {
    5613           0 :                 mt_destroy_walk(enode, mt->ma_flags, true);
    5614             :         }
    5615           0 : }
    5616             : 
    5617           0 : static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
    5618             : {
    5619           0 :         if (unlikely(mas_is_paused(wr_mas->mas)))
    5620           0 :                 mas_reset(wr_mas->mas);
    5621             : 
    5622           0 :         if (!mas_is_start(wr_mas->mas)) {
    5623           0 :                 if (mas_is_none(wr_mas->mas)) {
    5624           0 :                         mas_reset(wr_mas->mas);
    5625             :                 } else {
    5626           0 :                         wr_mas->r_max = wr_mas->mas->max;
    5627           0 :                         wr_mas->type = mte_node_type(wr_mas->mas->node);
    5628           0 :                         if (mas_is_span_wr(wr_mas))
    5629           0 :                                 mas_reset(wr_mas->mas);
    5630             :                 }
    5631             :         }
    5632           0 : }
    5633             : 
    5634             : /* Interface */
    5635             : 
    5636             : /**
    5637             :  * mas_store() - Store an @entry.
    5638             :  * @mas: The maple state.
    5639             :  * @entry: The entry to store.
    5640             :  *
    5641             :  * The @mas->index and @mas->last is used to set the range for the @entry.
    5642             :  * Note: The @mas should have pre-allocated entries to ensure there is memory to
    5643             :  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
    5644             :  *
    5645             :  * Return: the first entry between mas->index and mas->last or %NULL.
    5646             :  */
    5647           0 : void *mas_store(struct ma_state *mas, void *entry)
    5648             : {
    5649           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5650             : 
    5651           0 :         trace_ma_write(__func__, mas, 0, entry);
    5652             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    5653             :         if (mas->index > mas->last)
    5654             :                 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
    5655             :         MT_BUG_ON(mas->tree, mas->index > mas->last);
    5656             :         if (mas->index > mas->last) {
    5657             :                 mas_set_err(mas, -EINVAL);
    5658             :                 return NULL;
    5659             :         }
    5660             : 
    5661             : #endif
    5662             : 
    5663             :         /*
    5664             :          * Storing is the same operation as insert with the added caveat that it
    5665             :          * can overwrite entries.  Although this seems simple enough, one may
    5666             :          * want to examine what happens if a single store operation was to
    5667             :          * overwrite multiple entries within a self-balancing B-Tree.
    5668             :          */
    5669           0 :         mas_wr_store_setup(&wr_mas);
    5670           0 :         mas_wr_store_entry(&wr_mas);
    5671           0 :         return wr_mas.content;
    5672             : }
    5673             : EXPORT_SYMBOL_GPL(mas_store);
    5674             : 
    5675             : /**
    5676             :  * mas_store_gfp() - Store a value into the tree.
    5677             :  * @mas: The maple state
    5678             :  * @entry: The entry to store
    5679             :  * @gfp: The GFP_FLAGS to use for allocations if necessary.
    5680             :  *
    5681             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    5682             :  * be allocated.
    5683             :  */
    5684           0 : int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
    5685             : {
    5686           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5687             : 
    5688           0 :         mas_wr_store_setup(&wr_mas);
    5689           0 :         trace_ma_write(__func__, mas, 0, entry);
    5690             : retry:
    5691           0 :         mas_wr_store_entry(&wr_mas);
    5692           0 :         if (unlikely(mas_nomem(mas, gfp)))
    5693             :                 goto retry;
    5694             : 
    5695           0 :         if (unlikely(mas_is_err(mas)))
    5696           0 :                 return xa_err(mas->node);
    5697             : 
    5698             :         return 0;
    5699             : }
    5700             : EXPORT_SYMBOL_GPL(mas_store_gfp);
    5701             : 
    5702             : /**
    5703             :  * mas_store_prealloc() - Store a value into the tree using memory
    5704             :  * preallocated in the maple state.
    5705             :  * @mas: The maple state
    5706             :  * @entry: The entry to store.
    5707             :  */
    5708           0 : void mas_store_prealloc(struct ma_state *mas, void *entry)
    5709             : {
    5710           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5711             : 
    5712           0 :         mas_wr_store_setup(&wr_mas);
    5713           0 :         trace_ma_write(__func__, mas, 0, entry);
    5714           0 :         mas_wr_store_entry(&wr_mas);
    5715           0 :         BUG_ON(mas_is_err(mas));
    5716           0 :         mas_destroy(mas);
    5717           0 : }
    5718             : EXPORT_SYMBOL_GPL(mas_store_prealloc);
    5719             : 
    5720             : /**
    5721             :  * mas_preallocate() - Preallocate enough nodes for a store operation
    5722             :  * @mas: The maple state
    5723             :  * @gfp: The GFP_FLAGS to use for allocations.
    5724             :  *
    5725             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5726             :  */
    5727           0 : int mas_preallocate(struct ma_state *mas, gfp_t gfp)
    5728             : {
    5729             :         int ret;
    5730             : 
    5731           0 :         mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
    5732           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5733           0 :         if (likely(!mas_is_err(mas)))
    5734             :                 return 0;
    5735             : 
    5736           0 :         mas_set_alloc_req(mas, 0);
    5737           0 :         ret = xa_err(mas->node);
    5738           0 :         mas_reset(mas);
    5739           0 :         mas_destroy(mas);
    5740           0 :         mas_reset(mas);
    5741           0 :         return ret;
    5742             : }
    5743             : 
    5744             : /*
    5745             :  * mas_destroy() - destroy a maple state.
    5746             :  * @mas: The maple state
    5747             :  *
    5748             :  * Upon completion, check the left-most node and rebalance against the node to
    5749             :  * the right if necessary.  Frees any allocated nodes associated with this maple
    5750             :  * state.
    5751             :  */
    5752           0 : void mas_destroy(struct ma_state *mas)
    5753             : {
    5754             :         struct maple_alloc *node;
    5755             :         unsigned long total;
    5756             : 
    5757             :         /*
    5758             :          * When using mas_for_each() to insert an expected number of elements,
    5759             :          * it is possible that the number inserted is less than the expected
    5760             :          * number.  To fix an invalid final node, a check is performed here to
    5761             :          * rebalance the previous node with the final node.
    5762             :          */
    5763           0 :         if (mas->mas_flags & MA_STATE_REBALANCE) {
    5764             :                 unsigned char end;
    5765             : 
    5766           0 :                 if (mas_is_start(mas))
    5767           0 :                         mas_start(mas);
    5768             : 
    5769           0 :                 mtree_range_walk(mas);
    5770           0 :                 end = mas_data_end(mas) + 1;
    5771           0 :                 if (end < mt_min_slot_count(mas->node) - 1)
    5772           0 :                         mas_destroy_rebalance(mas, end);
    5773             : 
    5774           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    5775             :         }
    5776           0 :         mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
    5777             : 
    5778           0 :         total = mas_allocated(mas);
    5779           0 :         while (total) {
    5780           0 :                 node = mas->alloc;
    5781           0 :                 mas->alloc = node->slot[0];
    5782           0 :                 if (node->node_count > 1) {
    5783           0 :                         size_t count = node->node_count - 1;
    5784             : 
    5785           0 :                         mt_free_bulk(count, (void __rcu **)&node->slot[1]);
    5786           0 :                         total -= count;
    5787             :                 }
    5788           0 :                 kmem_cache_free(maple_node_cache, node);
    5789           0 :                 total--;
    5790             :         }
    5791             : 
    5792           0 :         mas->alloc = NULL;
    5793           0 : }
    5794             : EXPORT_SYMBOL_GPL(mas_destroy);
    5795             : 
    5796             : /*
    5797             :  * mas_expected_entries() - Set the expected number of entries that will be inserted.
    5798             :  * @mas: The maple state
    5799             :  * @nr_entries: The number of expected entries.
    5800             :  *
    5801             :  * This will attempt to pre-allocate enough nodes to store the expected number
    5802             :  * of entries.  The allocations will occur using the bulk allocator interface
    5803             :  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
    5804             :  * to ensure any unused nodes are freed.
    5805             :  *
    5806             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5807             :  */
    5808           0 : int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
    5809             : {
    5810           0 :         int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
    5811           0 :         struct maple_enode *enode = mas->node;
    5812             :         int nr_nodes;
    5813             :         int ret;
    5814             : 
    5815             :         /*
    5816             :          * Sometimes it is necessary to duplicate a tree to a new tree, such as
    5817             :          * forking a process and duplicating the VMAs from one tree to a new
    5818             :          * tree.  When such a situation arises, it is known that the new tree is
    5819             :          * not going to be used until the entire tree is populated.  For
    5820             :          * performance reasons, it is best to use a bulk load with RCU disabled.
    5821             :          * This allows for optimistic splitting that favours the left and reuse
    5822             :          * of nodes during the operation.
    5823             :          */
    5824             : 
    5825             :         /* Optimize splitting for bulk insert in-order */
    5826           0 :         mas->mas_flags |= MA_STATE_BULK;
    5827             : 
    5828             :         /*
    5829             :          * Avoid overflow, assume a gap between each entry and a trailing null.
    5830             :          * If this is wrong, it just means allocation can happen during
    5831             :          * insertion of entries.
    5832             :          */
    5833           0 :         nr_nodes = max(nr_entries, nr_entries * 2 + 1);
    5834           0 :         if (!mt_is_alloc(mas->tree))
    5835           0 :                 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
    5836             : 
    5837             :         /* Leaves; reduce slots to keep space for expansion */
    5838           0 :         nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
    5839             :         /* Internal nodes */
    5840           0 :         nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
    5841             :         /* Add working room for split (2 nodes) + new parents */
    5842           0 :         mas_node_count(mas, nr_nodes + 3);
    5843             : 
    5844             :         /* Detect if allocations run out */
    5845           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5846             : 
    5847           0 :         if (!mas_is_err(mas))
    5848             :                 return 0;
    5849             : 
    5850           0 :         ret = xa_err(mas->node);
    5851           0 :         mas->node = enode;
    5852           0 :         mas_destroy(mas);
    5853           0 :         return ret;
    5854             : 
    5855             : }
    5856             : EXPORT_SYMBOL_GPL(mas_expected_entries);
    5857             : 
    5858             : /**
    5859             :  * mas_next() - Get the next entry.
    5860             :  * @mas: The maple state
    5861             :  * @max: The maximum index to check.
    5862             :  *
    5863             :  * Returns the next entry after @mas->index.
    5864             :  * Must hold rcu_read_lock or the write lock.
    5865             :  * Can return the zero entry.
    5866             :  *
    5867             :  * Return: The next entry or %NULL
    5868             :  */
    5869           0 : void *mas_next(struct ma_state *mas, unsigned long max)
    5870             : {
    5871           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5872           0 :                 mas->node = MAS_START;
    5873             : 
    5874           0 :         if (mas_is_start(mas))
    5875           0 :                 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
    5876             : 
    5877           0 :         if (mas_is_ptr(mas)) {
    5878           0 :                 if (!mas->index) {
    5879           0 :                         mas->index = 1;
    5880           0 :                         mas->last = ULONG_MAX;
    5881             :                 }
    5882             :                 return NULL;
    5883             :         }
    5884             : 
    5885           0 :         if (mas->last == ULONG_MAX)
    5886             :                 return NULL;
    5887             : 
    5888             :         /* Retries on dead nodes handled by mas_next_entry */
    5889           0 :         return mas_next_entry(mas, max);
    5890             : }
    5891             : EXPORT_SYMBOL_GPL(mas_next);
    5892             : 
    5893             : /**
    5894             :  * mt_next() - get the next value in the maple tree
    5895             :  * @mt: The maple tree
    5896             :  * @index: The start index
    5897             :  * @max: The maximum index to check
    5898             :  *
    5899             :  * Return: The entry at @index or higher, or %NULL if nothing is found.
    5900             :  */
    5901           0 : void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
    5902             : {
    5903           0 :         void *entry = NULL;
    5904           0 :         MA_STATE(mas, mt, index, index);
    5905             : 
    5906             :         rcu_read_lock();
    5907           0 :         entry = mas_next(&mas, max);
    5908             :         rcu_read_unlock();
    5909           0 :         return entry;
    5910             : }
    5911             : EXPORT_SYMBOL_GPL(mt_next);
    5912             : 
    5913             : /**
    5914             :  * mas_prev() - Get the previous entry
    5915             :  * @mas: The maple state
    5916             :  * @min: The minimum value to check.
    5917             :  *
    5918             :  * Must hold rcu_read_lock or the write lock.
    5919             :  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
    5920             :  * searchable nodes.
    5921             :  *
    5922             :  * Return: the previous value or %NULL.
    5923             :  */
    5924           0 : void *mas_prev(struct ma_state *mas, unsigned long min)
    5925             : {
    5926           0 :         if (!mas->index) {
    5927             :                 /* Nothing comes before 0 */
    5928           0 :                 mas->last = 0;
    5929           0 :                 mas->node = MAS_NONE;
    5930           0 :                 return NULL;
    5931             :         }
    5932             : 
    5933           0 :         if (unlikely(mas_is_ptr(mas)))
    5934             :                 return NULL;
    5935             : 
    5936           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5937           0 :                 mas->node = MAS_START;
    5938             : 
    5939           0 :         if (mas_is_start(mas)) {
    5940           0 :                 mas_walk(mas);
    5941           0 :                 if (!mas->index)
    5942             :                         return NULL;
    5943             :         }
    5944             : 
    5945           0 :         if (mas_is_ptr(mas)) {
    5946           0 :                 if (!mas->index) {
    5947           0 :                         mas->last = 0;
    5948           0 :                         return NULL;
    5949             :                 }
    5950             : 
    5951           0 :                 mas->index = mas->last = 0;
    5952           0 :                 return mas_root_locked(mas);
    5953             :         }
    5954           0 :         return mas_prev_entry(mas, min);
    5955             : }
    5956             : EXPORT_SYMBOL_GPL(mas_prev);
    5957             : 
    5958             : /**
    5959             :  * mt_prev() - get the previous value in the maple tree
    5960             :  * @mt: The maple tree
    5961             :  * @index: The start index
    5962             :  * @min: The minimum index to check
    5963             :  *
    5964             :  * Return: The entry at @index or lower, or %NULL if nothing is found.
    5965             :  */
    5966           0 : void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
    5967             : {
    5968           0 :         void *entry = NULL;
    5969           0 :         MA_STATE(mas, mt, index, index);
    5970             : 
    5971             :         rcu_read_lock();
    5972           0 :         entry = mas_prev(&mas, min);
    5973             :         rcu_read_unlock();
    5974           0 :         return entry;
    5975             : }
    5976             : EXPORT_SYMBOL_GPL(mt_prev);
    5977             : 
    5978             : /**
    5979             :  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
    5980             :  * @mas: The maple state to pause
    5981             :  *
    5982             :  * Some users need to pause a walk and drop the lock they're holding in
    5983             :  * order to yield to a higher priority thread or carry out an operation
    5984             :  * on an entry.  Those users should call this function before they drop
    5985             :  * the lock.  It resets the @mas to be suitable for the next iteration
    5986             :  * of the loop after the user has reacquired the lock.  If most entries
    5987             :  * found during a walk require you to call mas_pause(), the mt_for_each()
    5988             :  * iterator may be more appropriate.
    5989             :  *
    5990             :  */
    5991           0 : void mas_pause(struct ma_state *mas)
    5992             : {
    5993           0 :         mas->node = MAS_PAUSE;
    5994           0 : }
    5995             : EXPORT_SYMBOL_GPL(mas_pause);
    5996             : 
    5997             : /**
    5998             :  * mas_find() - On the first call, find the entry at or after mas->index up to
    5999             :  * %max.  Otherwise, find the entry after mas->index.
    6000             :  * @mas: The maple state
    6001             :  * @max: The maximum value to check.
    6002             :  *
    6003             :  * Must hold rcu_read_lock or the write lock.
    6004             :  * If an entry exists, last and index are updated accordingly.
    6005             :  * May set @mas->node to MAS_NONE.
    6006             :  *
    6007             :  * Return: The entry or %NULL.
    6008             :  */
    6009           0 : void *mas_find(struct ma_state *mas, unsigned long max)
    6010             : {
    6011           0 :         if (unlikely(mas_is_paused(mas))) {
    6012           0 :                 if (unlikely(mas->last == ULONG_MAX)) {
    6013           0 :                         mas->node = MAS_NONE;
    6014           0 :                         return NULL;
    6015             :                 }
    6016           0 :                 mas->node = MAS_START;
    6017           0 :                 mas->index = ++mas->last;
    6018             :         }
    6019             : 
    6020           0 :         if (unlikely(mas_is_none(mas)))
    6021           0 :                 mas->node = MAS_START;
    6022             : 
    6023           0 :         if (unlikely(mas_is_start(mas))) {
    6024             :                 /* First run or continue */
    6025             :                 void *entry;
    6026             : 
    6027           0 :                 if (mas->index > max)
    6028             :                         return NULL;
    6029             : 
    6030           0 :                 entry = mas_walk(mas);
    6031           0 :                 if (entry)
    6032             :                         return entry;
    6033             :         }
    6034             : 
    6035           0 :         if (unlikely(!mas_searchable(mas)))
    6036             :                 return NULL;
    6037             : 
    6038             :         /* Retries on dead nodes handled by mas_next_entry */
    6039           0 :         return mas_next_entry(mas, max);
    6040             : }
    6041             : EXPORT_SYMBOL_GPL(mas_find);
    6042             : 
    6043             : /**
    6044             :  * mas_find_rev: On the first call, find the first non-null entry at or below
    6045             :  * mas->index down to %min.  Otherwise find the first non-null entry below
    6046             :  * mas->index down to %min.
    6047             :  * @mas: The maple state
    6048             :  * @min: The minimum value to check.
    6049             :  *
    6050             :  * Must hold rcu_read_lock or the write lock.
    6051             :  * If an entry exists, last and index are updated accordingly.
    6052             :  * May set @mas->node to MAS_NONE.
    6053             :  *
    6054             :  * Return: The entry or %NULL.
    6055             :  */
    6056           0 : void *mas_find_rev(struct ma_state *mas, unsigned long min)
    6057             : {
    6058           0 :         if (unlikely(mas_is_paused(mas))) {
    6059           0 :                 if (unlikely(mas->last == ULONG_MAX)) {
    6060           0 :                         mas->node = MAS_NONE;
    6061           0 :                         return NULL;
    6062             :                 }
    6063           0 :                 mas->node = MAS_START;
    6064           0 :                 mas->last = --mas->index;
    6065             :         }
    6066             : 
    6067           0 :         if (unlikely(mas_is_start(mas))) {
    6068             :                 /* First run or continue */
    6069             :                 void *entry;
    6070             : 
    6071           0 :                 if (mas->index < min)
    6072             :                         return NULL;
    6073             : 
    6074           0 :                 entry = mas_walk(mas);
    6075           0 :                 if (entry)
    6076             :                         return entry;
    6077             :         }
    6078             : 
    6079           0 :         if (unlikely(!mas_searchable(mas)))
    6080             :                 return NULL;
    6081             : 
    6082           0 :         if (mas->index < min)
    6083             :                 return NULL;
    6084             : 
    6085             :         /* Retries on dead nodes handled by mas_prev_entry */
    6086           0 :         return mas_prev_entry(mas, min);
    6087             : }
    6088             : EXPORT_SYMBOL_GPL(mas_find_rev);
    6089             : 
    6090             : /**
    6091             :  * mas_erase() - Find the range in which index resides and erase the entire
    6092             :  * range.
    6093             :  * @mas: The maple state
    6094             :  *
    6095             :  * Must hold the write lock.
    6096             :  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
    6097             :  * erases that range.
    6098             :  *
    6099             :  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
    6100             :  */
    6101           0 : void *mas_erase(struct ma_state *mas)
    6102             : {
    6103             :         void *entry;
    6104           0 :         MA_WR_STATE(wr_mas, mas, NULL);
    6105             : 
    6106           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    6107           0 :                 mas->node = MAS_START;
    6108             : 
    6109             :         /* Retry unnecessary when holding the write lock. */
    6110           0 :         entry = mas_state_walk(mas);
    6111           0 :         if (!entry)
    6112             :                 return NULL;
    6113             : 
    6114             : write_retry:
    6115             :         /* Must reset to ensure spanning writes of last slot are detected */
    6116           0 :         mas_reset(mas);
    6117           0 :         mas_wr_store_setup(&wr_mas);
    6118           0 :         mas_wr_store_entry(&wr_mas);
    6119           0 :         if (mas_nomem(mas, GFP_KERNEL))
    6120             :                 goto write_retry;
    6121             : 
    6122             :         return entry;
    6123             : }
    6124             : EXPORT_SYMBOL_GPL(mas_erase);
    6125             : 
    6126             : /**
    6127             :  * mas_nomem() - Check if there was an error allocating and do the allocation
    6128             :  * if necessary If there are allocations, then free them.
    6129             :  * @mas: The maple state
    6130             :  * @gfp: The GFP_FLAGS to use for allocations
    6131             :  * Return: true on allocation, false otherwise.
    6132             :  */
    6133           0 : bool mas_nomem(struct ma_state *mas, gfp_t gfp)
    6134             :         __must_hold(mas->tree->lock)
    6135             : {
    6136           0 :         if (likely(mas->node != MA_ERROR(-ENOMEM))) {
    6137           0 :                 mas_destroy(mas);
    6138           0 :                 return false;
    6139             :         }
    6140             : 
    6141           0 :         if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
    6142           0 :                 mtree_unlock(mas->tree);
    6143           0 :                 mas_alloc_nodes(mas, gfp);
    6144           0 :                 mtree_lock(mas->tree);
    6145             :         } else {
    6146           0 :                 mas_alloc_nodes(mas, gfp);
    6147             :         }
    6148             : 
    6149           0 :         if (!mas_allocated(mas))
    6150             :                 return false;
    6151             : 
    6152           0 :         mas->node = MAS_START;
    6153           0 :         return true;
    6154             : }
    6155             : 
    6156           1 : void __init maple_tree_init(void)
    6157             : {
    6158           1 :         maple_node_cache = kmem_cache_create("maple_node",
    6159             :                         sizeof(struct maple_node), sizeof(struct maple_node),
    6160             :                         SLAB_PANIC, NULL);
    6161           1 : }
    6162             : 
    6163             : /**
    6164             :  * mtree_load() - Load a value stored in a maple tree
    6165             :  * @mt: The maple tree
    6166             :  * @index: The index to load
    6167             :  *
    6168             :  * Return: the entry or %NULL
    6169             :  */
    6170           0 : void *mtree_load(struct maple_tree *mt, unsigned long index)
    6171             : {
    6172           0 :         MA_STATE(mas, mt, index, index);
    6173             :         void *entry;
    6174             : 
    6175           0 :         trace_ma_read(__func__, &mas);
    6176             :         rcu_read_lock();
    6177             : retry:
    6178           0 :         entry = mas_start(&mas);
    6179           0 :         if (unlikely(mas_is_none(&mas)))
    6180             :                 goto unlock;
    6181             : 
    6182           0 :         if (unlikely(mas_is_ptr(&mas))) {
    6183           0 :                 if (index)
    6184           0 :                         entry = NULL;
    6185             : 
    6186             :                 goto unlock;
    6187             :         }
    6188             : 
    6189           0 :         entry = mtree_lookup_walk(&mas);
    6190           0 :         if (!entry && unlikely(mas_is_start(&mas)))
    6191             :                 goto retry;
    6192             : unlock:
    6193           0 :         rcu_read_unlock();
    6194           0 :         if (xa_is_zero(entry))
    6195             :                 return NULL;
    6196             : 
    6197           0 :         return entry;
    6198             : }
    6199             : EXPORT_SYMBOL(mtree_load);
    6200             : 
    6201             : /**
    6202             :  * mtree_store_range() - Store an entry at a given range.
    6203             :  * @mt: The maple tree
    6204             :  * @index: The start of the range
    6205             :  * @last: The end of the range
    6206             :  * @entry: The entry to store
    6207             :  * @gfp: The GFP_FLAGS to use for allocations
    6208             :  *
    6209             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6210             :  * be allocated.
    6211             :  */
    6212           0 : int mtree_store_range(struct maple_tree *mt, unsigned long index,
    6213             :                 unsigned long last, void *entry, gfp_t gfp)
    6214             : {
    6215           0 :         MA_STATE(mas, mt, index, last);
    6216           0 :         MA_WR_STATE(wr_mas, &mas, entry);
    6217             : 
    6218           0 :         trace_ma_write(__func__, &mas, 0, entry);
    6219           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6220             :                 return -EINVAL;
    6221             : 
    6222           0 :         if (index > last)
    6223             :                 return -EINVAL;
    6224             : 
    6225           0 :         mtree_lock(mt);
    6226             : retry:
    6227           0 :         mas_wr_store_entry(&wr_mas);
    6228           0 :         if (mas_nomem(&mas, gfp))
    6229             :                 goto retry;
    6230             : 
    6231           0 :         mtree_unlock(mt);
    6232           0 :         if (mas_is_err(&mas))
    6233           0 :                 return xa_err(mas.node);
    6234             : 
    6235             :         return 0;
    6236             : }
    6237             : EXPORT_SYMBOL(mtree_store_range);
    6238             : 
    6239             : /**
    6240             :  * mtree_store() - Store an entry at a given index.
    6241             :  * @mt: The maple tree
    6242             :  * @index: The index to store the value
    6243             :  * @entry: The entry to store
    6244             :  * @gfp: The GFP_FLAGS to use for allocations
    6245             :  *
    6246             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6247             :  * be allocated.
    6248             :  */
    6249           0 : int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
    6250             :                  gfp_t gfp)
    6251             : {
    6252           0 :         return mtree_store_range(mt, index, index, entry, gfp);
    6253             : }
    6254             : EXPORT_SYMBOL(mtree_store);
    6255             : 
    6256             : /**
    6257             :  * mtree_insert_range() - Insert an entry at a give range if there is no value.
    6258             :  * @mt: The maple tree
    6259             :  * @first: The start of the range
    6260             :  * @last: The end of the range
    6261             :  * @entry: The entry to store
    6262             :  * @gfp: The GFP_FLAGS to use for allocations.
    6263             :  *
    6264             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6265             :  * request, -ENOMEM if memory could not be allocated.
    6266             :  */
    6267           0 : int mtree_insert_range(struct maple_tree *mt, unsigned long first,
    6268             :                 unsigned long last, void *entry, gfp_t gfp)
    6269             : {
    6270           0 :         MA_STATE(ms, mt, first, last);
    6271             : 
    6272           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6273             :                 return -EINVAL;
    6274             : 
    6275           0 :         if (first > last)
    6276             :                 return -EINVAL;
    6277             : 
    6278           0 :         mtree_lock(mt);
    6279             : retry:
    6280           0 :         mas_insert(&ms, entry);
    6281           0 :         if (mas_nomem(&ms, gfp))
    6282             :                 goto retry;
    6283             : 
    6284           0 :         mtree_unlock(mt);
    6285           0 :         if (mas_is_err(&ms))
    6286           0 :                 return xa_err(ms.node);
    6287             : 
    6288             :         return 0;
    6289             : }
    6290             : EXPORT_SYMBOL(mtree_insert_range);
    6291             : 
    6292             : /**
    6293             :  * mtree_insert() - Insert an entry at a give index if there is no value.
    6294             :  * @mt: The maple tree
    6295             :  * @index : The index to store the value
    6296             :  * @entry: The entry to store
    6297             :  * @gfp: The FGP_FLAGS to use for allocations.
    6298             :  *
    6299             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6300             :  * request, -ENOMEM if memory could not be allocated.
    6301             :  */
    6302           0 : int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
    6303             :                  gfp_t gfp)
    6304             : {
    6305           0 :         return mtree_insert_range(mt, index, index, entry, gfp);
    6306             : }
    6307             : EXPORT_SYMBOL(mtree_insert);
    6308             : 
    6309           0 : int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
    6310             :                 void *entry, unsigned long size, unsigned long min,
    6311             :                 unsigned long max, gfp_t gfp)
    6312             : {
    6313           0 :         int ret = 0;
    6314             : 
    6315           0 :         MA_STATE(mas, mt, min, max - size);
    6316           0 :         if (!mt_is_alloc(mt))
    6317             :                 return -EINVAL;
    6318             : 
    6319           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6320             :                 return -EINVAL;
    6321             : 
    6322           0 :         if (min > max)
    6323             :                 return -EINVAL;
    6324             : 
    6325           0 :         if (max < size)
    6326             :                 return -EINVAL;
    6327             : 
    6328           0 :         if (!size)
    6329             :                 return -EINVAL;
    6330             : 
    6331           0 :         mtree_lock(mt);
    6332             : retry:
    6333           0 :         mas.offset = 0;
    6334           0 :         mas.index = min;
    6335           0 :         mas.last = max - size;
    6336           0 :         ret = mas_alloc(&mas, entry, size, startp);
    6337           0 :         if (mas_nomem(&mas, gfp))
    6338             :                 goto retry;
    6339             : 
    6340           0 :         mtree_unlock(mt);
    6341           0 :         return ret;
    6342             : }
    6343             : EXPORT_SYMBOL(mtree_alloc_range);
    6344             : 
    6345           0 : int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
    6346             :                 void *entry, unsigned long size, unsigned long min,
    6347             :                 unsigned long max, gfp_t gfp)
    6348             : {
    6349           0 :         int ret = 0;
    6350             : 
    6351           0 :         MA_STATE(mas, mt, min, max - size);
    6352           0 :         if (!mt_is_alloc(mt))
    6353             :                 return -EINVAL;
    6354             : 
    6355           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6356             :                 return -EINVAL;
    6357             : 
    6358           0 :         if (min >= max)
    6359             :                 return -EINVAL;
    6360             : 
    6361           0 :         if (max < size - 1)
    6362             :                 return -EINVAL;
    6363             : 
    6364           0 :         if (!size)
    6365             :                 return -EINVAL;
    6366             : 
    6367           0 :         mtree_lock(mt);
    6368             : retry:
    6369           0 :         ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
    6370           0 :         if (mas_nomem(&mas, gfp))
    6371             :                 goto retry;
    6372             : 
    6373           0 :         mtree_unlock(mt);
    6374           0 :         return ret;
    6375             : }
    6376             : EXPORT_SYMBOL(mtree_alloc_rrange);
    6377             : 
    6378             : /**
    6379             :  * mtree_erase() - Find an index and erase the entire range.
    6380             :  * @mt: The maple tree
    6381             :  * @index: The index to erase
    6382             :  *
    6383             :  * Erasing is the same as a walk to an entry then a store of a NULL to that
    6384             :  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
    6385             :  *
    6386             :  * Return: The entry stored at the @index or %NULL
    6387             :  */
    6388           0 : void *mtree_erase(struct maple_tree *mt, unsigned long index)
    6389             : {
    6390           0 :         void *entry = NULL;
    6391             : 
    6392           0 :         MA_STATE(mas, mt, index, index);
    6393           0 :         trace_ma_op(__func__, &mas);
    6394             : 
    6395           0 :         mtree_lock(mt);
    6396           0 :         entry = mas_erase(&mas);
    6397           0 :         mtree_unlock(mt);
    6398             : 
    6399           0 :         return entry;
    6400             : }
    6401             : EXPORT_SYMBOL(mtree_erase);
    6402             : 
    6403             : /**
    6404             :  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
    6405             :  * @mt: The maple tree
    6406             :  *
    6407             :  * Note: Does not handle locking.
    6408             :  */
    6409           0 : void __mt_destroy(struct maple_tree *mt)
    6410             : {
    6411           0 :         void *root = mt_root_locked(mt);
    6412             : 
    6413           0 :         rcu_assign_pointer(mt->ma_root, NULL);
    6414           0 :         if (xa_is_node(root))
    6415           0 :                 mte_destroy_walk(root, mt);
    6416             : 
    6417           0 :         mt->ma_flags = 0;
    6418           0 : }
    6419             : EXPORT_SYMBOL_GPL(__mt_destroy);
    6420             : 
    6421             : /**
    6422             :  * mtree_destroy() - Destroy a maple tree
    6423             :  * @mt: The maple tree
    6424             :  *
    6425             :  * Frees all resources used by the tree.  Handles locking.
    6426             :  */
    6427           0 : void mtree_destroy(struct maple_tree *mt)
    6428             : {
    6429           0 :         mtree_lock(mt);
    6430           0 :         __mt_destroy(mt);
    6431           0 :         mtree_unlock(mt);
    6432           0 : }
    6433             : EXPORT_SYMBOL(mtree_destroy);
    6434             : 
    6435             : /**
    6436             :  * mt_find() - Search from the start up until an entry is found.
    6437             :  * @mt: The maple tree
    6438             :  * @index: Pointer which contains the start location of the search
    6439             :  * @max: The maximum value to check
    6440             :  *
    6441             :  * Handles locking.  @index will be incremented to one beyond the range.
    6442             :  *
    6443             :  * Return: The entry at or after the @index or %NULL
    6444             :  */
    6445           0 : void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
    6446             : {
    6447           0 :         MA_STATE(mas, mt, *index, *index);
    6448             :         void *entry;
    6449             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6450             :         unsigned long copy = *index;
    6451             : #endif
    6452             : 
    6453           0 :         trace_ma_read(__func__, &mas);
    6454             : 
    6455           0 :         if ((*index) > max)
    6456             :                 return NULL;
    6457             : 
    6458             :         rcu_read_lock();
    6459             : retry:
    6460           0 :         entry = mas_state_walk(&mas);
    6461           0 :         if (mas_is_start(&mas))
    6462             :                 goto retry;
    6463             : 
    6464           0 :         if (unlikely(xa_is_zero(entry)))
    6465           0 :                 entry = NULL;
    6466             : 
    6467           0 :         if (entry)
    6468             :                 goto unlock;
    6469             : 
    6470           0 :         while (mas_searchable(&mas) && (mas.index < max)) {
    6471           0 :                 entry = mas_next_entry(&mas, max);
    6472           0 :                 if (likely(entry && !xa_is_zero(entry)))
    6473             :                         break;
    6474             :         }
    6475             : 
    6476           0 :         if (unlikely(xa_is_zero(entry)))
    6477           0 :                 entry = NULL;
    6478             : unlock:
    6479             :         rcu_read_unlock();
    6480           0 :         if (likely(entry)) {
    6481           0 :                 *index = mas.last + 1;
    6482             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6483             :                 if ((*index) && (*index) <= copy)
    6484             :                         pr_err("index not increased! %lx <= %lx\n",
    6485             :                                *index, copy);
    6486             :                 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
    6487             : #endif
    6488             :         }
    6489             : 
    6490             :         return entry;
    6491             : }
    6492             : EXPORT_SYMBOL(mt_find);
    6493             : 
    6494             : /**
    6495             :  * mt_find_after() - Search from the start up until an entry is found.
    6496             :  * @mt: The maple tree
    6497             :  * @index: Pointer which contains the start location of the search
    6498             :  * @max: The maximum value to check
    6499             :  *
    6500             :  * Handles locking, detects wrapping on index == 0
    6501             :  *
    6502             :  * Return: The entry at or after the @index or %NULL
    6503             :  */
    6504           0 : void *mt_find_after(struct maple_tree *mt, unsigned long *index,
    6505             :                     unsigned long max)
    6506             : {
    6507           0 :         if (!(*index))
    6508             :                 return NULL;
    6509             : 
    6510           0 :         return mt_find(mt, index, max);
    6511             : }
    6512             : EXPORT_SYMBOL(mt_find_after);
    6513             : 
    6514             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6515             : atomic_t maple_tree_tests_run;
    6516             : EXPORT_SYMBOL_GPL(maple_tree_tests_run);
    6517             : atomic_t maple_tree_tests_passed;
    6518             : EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
    6519             : 
    6520             : #ifndef __KERNEL__
    6521             : extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
    6522             : void mt_set_non_kernel(unsigned int val)
    6523             : {
    6524             :         kmem_cache_set_non_kernel(maple_node_cache, val);
    6525             : }
    6526             : 
    6527             : extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
    6528             : unsigned long mt_get_alloc_size(void)
    6529             : {
    6530             :         return kmem_cache_get_alloc(maple_node_cache);
    6531             : }
    6532             : 
    6533             : extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
    6534             : void mt_zero_nr_tallocated(void)
    6535             : {
    6536             :         kmem_cache_zero_nr_tallocated(maple_node_cache);
    6537             : }
    6538             : 
    6539             : extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
    6540             : unsigned int mt_nr_tallocated(void)
    6541             : {
    6542             :         return kmem_cache_nr_tallocated(maple_node_cache);
    6543             : }
    6544             : 
    6545             : extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
    6546             : unsigned int mt_nr_allocated(void)
    6547             : {
    6548             :         return kmem_cache_nr_allocated(maple_node_cache);
    6549             : }
    6550             : 
    6551             : /*
    6552             :  * mas_dead_node() - Check if the maple state is pointing to a dead node.
    6553             :  * @mas: The maple state
    6554             :  * @index: The index to restore in @mas.
    6555             :  *
    6556             :  * Used in test code.
    6557             :  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
    6558             :  */
    6559             : static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
    6560             : {
    6561             :         if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
    6562             :                 return 0;
    6563             : 
    6564             :         if (likely(!mte_dead_node(mas->node)))
    6565             :                 return 0;
    6566             : 
    6567             :         mas_rewalk(mas, index);
    6568             :         return 1;
    6569             : }
    6570             : 
    6571             : void mt_cache_shrink(void)
    6572             : {
    6573             : }
    6574             : #else
    6575             : /*
    6576             :  * mt_cache_shrink() - For testing, don't use this.
    6577             :  *
    6578             :  * Certain testcases can trigger an OOM when combined with other memory
    6579             :  * debugging configuration options.  This function is used to reduce the
    6580             :  * possibility of an out of memory even due to kmem_cache objects remaining
    6581             :  * around for longer than usual.
    6582             :  */
    6583             : void mt_cache_shrink(void)
    6584             : {
    6585             :         kmem_cache_shrink(maple_node_cache);
    6586             : 
    6587             : }
    6588             : EXPORT_SYMBOL_GPL(mt_cache_shrink);
    6589             : 
    6590             : #endif /* not defined __KERNEL__ */
    6591             : /*
    6592             :  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
    6593             :  * @mas: The maple state
    6594             :  * @offset: The offset into the slot array to fetch.
    6595             :  *
    6596             :  * Return: The entry stored at @offset.
    6597             :  */
    6598             : static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
    6599             :                 unsigned char offset)
    6600             : {
    6601             :         return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
    6602             :                         offset);
    6603             : }
    6604             : 
    6605             : 
    6606             : /*
    6607             :  * mas_first_entry() - Go the first leaf and find the first entry.
    6608             :  * @mas: the maple state.
    6609             :  * @limit: the maximum index to check.
    6610             :  * @*r_start: Pointer to set to the range start.
    6611             :  *
    6612             :  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
    6613             :  *
    6614             :  * Return: The first entry or MAS_NONE.
    6615             :  */
    6616             : static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
    6617             :                 unsigned long limit, enum maple_type mt)
    6618             : 
    6619             : {
    6620             :         unsigned long max;
    6621             :         unsigned long *pivots;
    6622             :         void __rcu **slots;
    6623             :         void *entry = NULL;
    6624             : 
    6625             :         mas->index = mas->min;
    6626             :         if (mas->index > limit)
    6627             :                 goto none;
    6628             : 
    6629             :         max = mas->max;
    6630             :         mas->offset = 0;
    6631             :         while (likely(!ma_is_leaf(mt))) {
    6632             :                 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
    6633             :                 slots = ma_slots(mn, mt);
    6634             :                 pivots = ma_pivots(mn, mt);
    6635             :                 max = pivots[0];
    6636             :                 entry = mas_slot(mas, slots, 0);
    6637             :                 if (unlikely(ma_dead_node(mn)))
    6638             :                         return NULL;
    6639             :                 mas->node = entry;
    6640             :                 mn = mas_mn(mas);
    6641             :                 mt = mte_node_type(mas->node);
    6642             :         }
    6643             :         MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
    6644             : 
    6645             :         mas->max = max;
    6646             :         slots = ma_slots(mn, mt);
    6647             :         entry = mas_slot(mas, slots, 0);
    6648             :         if (unlikely(ma_dead_node(mn)))
    6649             :                 return NULL;
    6650             : 
    6651             :         /* Slot 0 or 1 must be set */
    6652             :         if (mas->index > limit)
    6653             :                 goto none;
    6654             : 
    6655             :         if (likely(entry))
    6656             :                 return entry;
    6657             : 
    6658             :         pivots = ma_pivots(mn, mt);
    6659             :         mas->index = pivots[0] + 1;
    6660             :         mas->offset = 1;
    6661             :         entry = mas_slot(mas, slots, 1);
    6662             :         if (unlikely(ma_dead_node(mn)))
    6663             :                 return NULL;
    6664             : 
    6665             :         if (mas->index > limit)
    6666             :                 goto none;
    6667             : 
    6668             :         if (likely(entry))
    6669             :                 return entry;
    6670             : 
    6671             : none:
    6672             :         if (likely(!ma_dead_node(mn)))
    6673             :                 mas->node = MAS_NONE;
    6674             :         return NULL;
    6675             : }
    6676             : 
    6677             : /* Depth first search, post-order */
    6678             : static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
    6679             : {
    6680             : 
    6681             :         struct maple_enode *p = MAS_NONE, *mn = mas->node;
    6682             :         unsigned long p_min, p_max;
    6683             : 
    6684             :         mas_next_node(mas, mas_mn(mas), max);
    6685             :         if (!mas_is_none(mas))
    6686             :                 return;
    6687             : 
    6688             :         if (mte_is_root(mn))
    6689             :                 return;
    6690             : 
    6691             :         mas->node = mn;
    6692             :         mas_ascend(mas);
    6693             :         while (mas->node != MAS_NONE) {
    6694             :                 p = mas->node;
    6695             :                 p_min = mas->min;
    6696             :                 p_max = mas->max;
    6697             :                 mas_prev_node(mas, 0);
    6698             :         }
    6699             : 
    6700             :         if (p == MAS_NONE)
    6701             :                 return;
    6702             : 
    6703             :         mas->node = p;
    6704             :         mas->max = p_max;
    6705             :         mas->min = p_min;
    6706             : }
    6707             : 
    6708             : /* Tree validations */
    6709             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6710             :                 unsigned long min, unsigned long max, unsigned int depth);
    6711             : static void mt_dump_range(unsigned long min, unsigned long max,
    6712             :                           unsigned int depth)
    6713             : {
    6714             :         static const char spaces[] = "                                ";
    6715             : 
    6716             :         if (min == max)
    6717             :                 pr_info("%.*s%lu: ", depth * 2, spaces, min);
    6718             :         else
    6719             :                 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
    6720             : }
    6721             : 
    6722             : static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
    6723             :                           unsigned int depth)
    6724             : {
    6725             :         mt_dump_range(min, max, depth);
    6726             : 
    6727             :         if (xa_is_value(entry))
    6728             :                 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
    6729             :                                 xa_to_value(entry), entry);
    6730             :         else if (xa_is_zero(entry))
    6731             :                 pr_cont("zero (%ld)\n", xa_to_internal(entry));
    6732             :         else if (mt_is_reserved(entry))
    6733             :                 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
    6734             :         else
    6735             :                 pr_cont("%p\n", entry);
    6736             : }
    6737             : 
    6738             : static void mt_dump_range64(const struct maple_tree *mt, void *entry,
    6739             :                         unsigned long min, unsigned long max, unsigned int depth)
    6740             : {
    6741             :         struct maple_range_64 *node = &mte_to_node(entry)->mr64;
    6742             :         bool leaf = mte_is_leaf(entry);
    6743             :         unsigned long first = min;
    6744             :         int i;
    6745             : 
    6746             :         pr_cont(" contents: ");
    6747             :         for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
    6748             :                 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6749             :         pr_cont("%p\n", node->slot[i]);
    6750             :         for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
    6751             :                 unsigned long last = max;
    6752             : 
    6753             :                 if (i < (MAPLE_RANGE64_SLOTS - 1))
    6754             :                         last = node->pivot[i];
    6755             :                 else if (!node->slot[i] && max != mt_node_max(entry))
    6756             :                         break;
    6757             :                 if (last == 0 && i > 0)
    6758             :                         break;
    6759             :                 if (leaf)
    6760             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6761             :                                         first, last, depth + 1);
    6762             :                 else if (node->slot[i])
    6763             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6764             :                                         first, last, depth + 1);
    6765             : 
    6766             :                 if (last == max)
    6767             :                         break;
    6768             :                 if (last > max) {
    6769             :                         pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6770             :                                         node, last, max, i);
    6771             :                         break;
    6772             :                 }
    6773             :                 first = last + 1;
    6774             :         }
    6775             : }
    6776             : 
    6777             : static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
    6778             :                         unsigned long min, unsigned long max, unsigned int depth)
    6779             : {
    6780             :         struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
    6781             :         bool leaf = mte_is_leaf(entry);
    6782             :         unsigned long first = min;
    6783             :         int i;
    6784             : 
    6785             :         pr_cont(" contents: ");
    6786             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
    6787             :                 pr_cont("%lu ", node->gap[i]);
    6788             :         pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
    6789             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
    6790             :                 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6791             :         pr_cont("%p\n", node->slot[i]);
    6792             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
    6793             :                 unsigned long last = max;
    6794             : 
    6795             :                 if (i < (MAPLE_ARANGE64_SLOTS - 1))
    6796             :                         last = node->pivot[i];
    6797             :                 else if (!node->slot[i])
    6798             :                         break;
    6799             :                 if (last == 0 && i > 0)
    6800             :                         break;
    6801             :                 if (leaf)
    6802             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6803             :                                         first, last, depth + 1);
    6804             :                 else if (node->slot[i])
    6805             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6806             :                                         first, last, depth + 1);
    6807             : 
    6808             :                 if (last == max)
    6809             :                         break;
    6810             :                 if (last > max) {
    6811             :                         pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6812             :                                         node, last, max, i);
    6813             :                         break;
    6814             :                 }
    6815             :                 first = last + 1;
    6816             :         }
    6817             : }
    6818             : 
    6819             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6820             :                 unsigned long min, unsigned long max, unsigned int depth)
    6821             : {
    6822             :         struct maple_node *node = mte_to_node(entry);
    6823             :         unsigned int type = mte_node_type(entry);
    6824             :         unsigned int i;
    6825             : 
    6826             :         mt_dump_range(min, max, depth);
    6827             : 
    6828             :         pr_cont("node %p depth %d type %d parent %p", node, depth, type,
    6829             :                         node ? node->parent : NULL);
    6830             :         switch (type) {
    6831             :         case maple_dense:
    6832             :                 pr_cont("\n");
    6833             :                 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
    6834             :                         if (min + i > max)
    6835             :                                 pr_cont("OUT OF RANGE: ");
    6836             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6837             :                                         min + i, min + i, depth);
    6838             :                 }
    6839             :                 break;
    6840             :         case maple_leaf_64:
    6841             :         case maple_range_64:
    6842             :                 mt_dump_range64(mt, entry, min, max, depth);
    6843             :                 break;
    6844             :         case maple_arange_64:
    6845             :                 mt_dump_arange64(mt, entry, min, max, depth);
    6846             :                 break;
    6847             : 
    6848             :         default:
    6849             :                 pr_cont(" UNKNOWN TYPE\n");
    6850             :         }
    6851             : }
    6852             : 
    6853             : void mt_dump(const struct maple_tree *mt)
    6854             : {
    6855             :         void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
    6856             : 
    6857             :         pr_info("maple_tree(%p) flags %X, height %u root %p\n",
    6858             :                  mt, mt->ma_flags, mt_height(mt), entry);
    6859             :         if (!xa_is_node(entry))
    6860             :                 mt_dump_entry(entry, 0, 0, 0);
    6861             :         else if (entry)
    6862             :                 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
    6863             : }
    6864             : EXPORT_SYMBOL_GPL(mt_dump);
    6865             : 
    6866             : /*
    6867             :  * Calculate the maximum gap in a node and check if that's what is reported in
    6868             :  * the parent (unless root).
    6869             :  */
    6870             : static void mas_validate_gaps(struct ma_state *mas)
    6871             : {
    6872             :         struct maple_enode *mte = mas->node;
    6873             :         struct maple_node *p_mn;
    6874             :         unsigned long gap = 0, max_gap = 0;
    6875             :         unsigned long p_end, p_start = mas->min;
    6876             :         unsigned char p_slot;
    6877             :         unsigned long *gaps = NULL;
    6878             :         unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
    6879             :         int i;
    6880             : 
    6881             :         if (ma_is_dense(mte_node_type(mte))) {
    6882             :                 for (i = 0; i < mt_slot_count(mte); i++) {
    6883             :                         if (mas_get_slot(mas, i)) {
    6884             :                                 if (gap > max_gap)
    6885             :                                         max_gap = gap;
    6886             :                                 gap = 0;
    6887             :                                 continue;
    6888             :                         }
    6889             :                         gap++;
    6890             :                 }
    6891             :                 goto counted;
    6892             :         }
    6893             : 
    6894             :         gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
    6895             :         for (i = 0; i < mt_slot_count(mte); i++) {
    6896             :                 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
    6897             : 
    6898             :                 if (!gaps) {
    6899             :                         if (mas_get_slot(mas, i)) {
    6900             :                                 gap = 0;
    6901             :                                 goto not_empty;
    6902             :                         }
    6903             : 
    6904             :                         gap += p_end - p_start + 1;
    6905             :                 } else {
    6906             :                         void *entry = mas_get_slot(mas, i);
    6907             : 
    6908             :                         gap = gaps[i];
    6909             :                         if (!entry) {
    6910             :                                 if (gap != p_end - p_start + 1) {
    6911             :                                         pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
    6912             :                                                 mas_mn(mas), i,
    6913             :                                                 mas_get_slot(mas, i), gap,
    6914             :                                                 p_end, p_start);
    6915             :                                         mt_dump(mas->tree);
    6916             : 
    6917             :                                         MT_BUG_ON(mas->tree,
    6918             :                                                 gap != p_end - p_start + 1);
    6919             :                                 }
    6920             :                         } else {
    6921             :                                 if (gap > p_end - p_start + 1) {
    6922             :                                         pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
    6923             :                                         mas_mn(mas), i, gap, p_end, p_start,
    6924             :                                         p_end - p_start + 1);
    6925             :                                         MT_BUG_ON(mas->tree,
    6926             :                                                 gap > p_end - p_start + 1);
    6927             :                                 }
    6928             :                         }
    6929             :                 }
    6930             : 
    6931             :                 if (gap > max_gap)
    6932             :                         max_gap = gap;
    6933             : not_empty:
    6934             :                 p_start = p_end + 1;
    6935             :                 if (p_end >= mas->max)
    6936             :                         break;
    6937             :         }
    6938             : 
    6939             : counted:
    6940             :         if (mte_is_root(mte))
    6941             :                 return;
    6942             : 
    6943             :         p_slot = mte_parent_slot(mas->node);
    6944             :         p_mn = mte_parent(mte);
    6945             :         MT_BUG_ON(mas->tree, max_gap > mas->max);
    6946             :         if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
    6947             :                 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
    6948             :                 mt_dump(mas->tree);
    6949             :         }
    6950             : 
    6951             :         MT_BUG_ON(mas->tree,
    6952             :                   ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
    6953             : }
    6954             : 
    6955             : static void mas_validate_parent_slot(struct ma_state *mas)
    6956             : {
    6957             :         struct maple_node *parent;
    6958             :         struct maple_enode *node;
    6959             :         enum maple_type p_type = mas_parent_enum(mas, mas->node);
    6960             :         unsigned char p_slot = mte_parent_slot(mas->node);
    6961             :         void __rcu **slots;
    6962             :         int i;
    6963             : 
    6964             :         if (mte_is_root(mas->node))
    6965             :                 return;
    6966             : 
    6967             :         parent = mte_parent(mas->node);
    6968             :         slots = ma_slots(parent, p_type);
    6969             :         MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
    6970             : 
    6971             :         /* Check prev/next parent slot for duplicate node entry */
    6972             : 
    6973             :         for (i = 0; i < mt_slots[p_type]; i++) {
    6974             :                 node = mas_slot(mas, slots, i);
    6975             :                 if (i == p_slot) {
    6976             :                         if (node != mas->node)
    6977             :                                 pr_err("parent %p[%u] does not have %p\n",
    6978             :                                         parent, i, mas_mn(mas));
    6979             :                         MT_BUG_ON(mas->tree, node != mas->node);
    6980             :                 } else if (node == mas->node) {
    6981             :                         pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
    6982             :                                mas_mn(mas), parent, i, p_slot);
    6983             :                         MT_BUG_ON(mas->tree, node == mas->node);
    6984             :                 }
    6985             :         }
    6986             : }
    6987             : 
    6988             : static void mas_validate_child_slot(struct ma_state *mas)
    6989             : {
    6990             :         enum maple_type type = mte_node_type(mas->node);
    6991             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    6992             :         unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
    6993             :         struct maple_enode *child;
    6994             :         unsigned char i;
    6995             : 
    6996             :         if (mte_is_leaf(mas->node))
    6997             :                 return;
    6998             : 
    6999             :         for (i = 0; i < mt_slots[type]; i++) {
    7000             :                 child = mas_slot(mas, slots, i);
    7001             :                 if (!pivots[i] || pivots[i] == mas->max)
    7002             :                         break;
    7003             : 
    7004             :                 if (!child)
    7005             :                         break;
    7006             : 
    7007             :                 if (mte_parent_slot(child) != i) {
    7008             :                         pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
    7009             :                                mas_mn(mas), i, mte_to_node(child),
    7010             :                                mte_parent_slot(child));
    7011             :                         MT_BUG_ON(mas->tree, 1);
    7012             :                 }
    7013             : 
    7014             :                 if (mte_parent(child) != mte_to_node(mas->node)) {
    7015             :                         pr_err("child %p has parent %p not %p\n",
    7016             :                                mte_to_node(child), mte_parent(child),
    7017             :                                mte_to_node(mas->node));
    7018             :                         MT_BUG_ON(mas->tree, 1);
    7019             :                 }
    7020             :         }
    7021             : }
    7022             : 
    7023             : /*
    7024             :  * Validate all pivots are within mas->min and mas->max.
    7025             :  */
    7026             : static void mas_validate_limits(struct ma_state *mas)
    7027             : {
    7028             :         int i;
    7029             :         unsigned long prev_piv = 0;
    7030             :         enum maple_type type = mte_node_type(mas->node);
    7031             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    7032             :         unsigned long *pivots = ma_pivots(mas_mn(mas), type);
    7033             : 
    7034             :         /* all limits are fine here. */
    7035             :         if (mte_is_root(mas->node))
    7036             :                 return;
    7037             : 
    7038             :         for (i = 0; i < mt_slots[type]; i++) {
    7039             :                 unsigned long piv;
    7040             : 
    7041             :                 piv = mas_safe_pivot(mas, pivots, i, type);
    7042             : 
    7043             :                 if (!piv && (i != 0))
    7044             :                         break;
    7045             : 
    7046             :                 if (!mte_is_leaf(mas->node)) {
    7047             :                         void *entry = mas_slot(mas, slots, i);
    7048             : 
    7049             :                         if (!entry)
    7050             :                                 pr_err("%p[%u] cannot be null\n",
    7051             :                                        mas_mn(mas), i);
    7052             : 
    7053             :                         MT_BUG_ON(mas->tree, !entry);
    7054             :                 }
    7055             : 
    7056             :                 if (prev_piv > piv) {
    7057             :                         pr_err("%p[%u] piv %lu < prev_piv %lu\n",
    7058             :                                 mas_mn(mas), i, piv, prev_piv);
    7059             :                         MT_BUG_ON(mas->tree, piv < prev_piv);
    7060             :                 }
    7061             : 
    7062             :                 if (piv < mas->min) {
    7063             :                         pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
    7064             :                                 piv, mas->min);
    7065             :                         MT_BUG_ON(mas->tree, piv < mas->min);
    7066             :                 }
    7067             :                 if (piv > mas->max) {
    7068             :                         pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
    7069             :                                 piv, mas->max);
    7070             :                         MT_BUG_ON(mas->tree, piv > mas->max);
    7071             :                 }
    7072             :                 prev_piv = piv;
    7073             :                 if (piv == mas->max)
    7074             :                         break;
    7075             :         }
    7076             :         for (i += 1; i < mt_slots[type]; i++) {
    7077             :                 void *entry = mas_slot(mas, slots, i);
    7078             : 
    7079             :                 if (entry && (i != mt_slots[type] - 1)) {
    7080             :                         pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
    7081             :                                i, entry);
    7082             :                         MT_BUG_ON(mas->tree, entry != NULL);
    7083             :                 }
    7084             : 
    7085             :                 if (i < mt_pivots[type]) {
    7086             :                         unsigned long piv = pivots[i];
    7087             : 
    7088             :                         if (!piv)
    7089             :                                 continue;
    7090             : 
    7091             :                         pr_err("%p[%u] should not have piv %lu\n",
    7092             :                                mas_mn(mas), i, piv);
    7093             :                         MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
    7094             :                 }
    7095             :         }
    7096             : }
    7097             : 
    7098             : static void mt_validate_nulls(struct maple_tree *mt)
    7099             : {
    7100             :         void *entry, *last = (void *)1;
    7101             :         unsigned char offset = 0;
    7102             :         void __rcu **slots;
    7103             :         MA_STATE(mas, mt, 0, 0);
    7104             : 
    7105             :         mas_start(&mas);
    7106             :         if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
    7107             :                 return;
    7108             : 
    7109             :         while (!mte_is_leaf(mas.node))
    7110             :                 mas_descend(&mas);
    7111             : 
    7112             :         slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
    7113             :         do {
    7114             :                 entry = mas_slot(&mas, slots, offset);
    7115             :                 if (!last && !entry) {
    7116             :                         pr_err("Sequential nulls end at %p[%u]\n",
    7117             :                                 mas_mn(&mas), offset);
    7118             :                 }
    7119             :                 MT_BUG_ON(mt, !last && !entry);
    7120             :                 last = entry;
    7121             :                 if (offset == mas_data_end(&mas)) {
    7122             :                         mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
    7123             :                         if (mas_is_none(&mas))
    7124             :                                 return;
    7125             :                         offset = 0;
    7126             :                         slots = ma_slots(mte_to_node(mas.node),
    7127             :                                          mte_node_type(mas.node));
    7128             :                 } else {
    7129             :                         offset++;
    7130             :                 }
    7131             : 
    7132             :         } while (!mas_is_none(&mas));
    7133             : }
    7134             : 
    7135             : /*
    7136             :  * validate a maple tree by checking:
    7137             :  * 1. The limits (pivots are within mas->min to mas->max)
    7138             :  * 2. The gap is correctly set in the parents
    7139             :  */
    7140             : void mt_validate(struct maple_tree *mt)
    7141             : {
    7142             :         unsigned char end;
    7143             : 
    7144             :         MA_STATE(mas, mt, 0, 0);
    7145             :         rcu_read_lock();
    7146             :         mas_start(&mas);
    7147             :         if (!mas_searchable(&mas))
    7148             :                 goto done;
    7149             : 
    7150             :         mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
    7151             :         while (!mas_is_none(&mas)) {
    7152             :                 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
    7153             :                 if (!mte_is_root(mas.node)) {
    7154             :                         end = mas_data_end(&mas);
    7155             :                         if ((end < mt_min_slot_count(mas.node)) &&
    7156             :                             (mas.max != ULONG_MAX)) {
    7157             :                                 pr_err("Invalid size %u of %p\n", end,
    7158             :                                 mas_mn(&mas));
    7159             :                                 MT_BUG_ON(mas.tree, 1);
    7160             :                         }
    7161             : 
    7162             :                 }
    7163             :                 mas_validate_parent_slot(&mas);
    7164             :                 mas_validate_child_slot(&mas);
    7165             :                 mas_validate_limits(&mas);
    7166             :                 if (mt_is_alloc(mt))
    7167             :                         mas_validate_gaps(&mas);
    7168             :                 mas_dfs_postorder(&mas, ULONG_MAX);
    7169             :         }
    7170             :         mt_validate_nulls(mt);
    7171             : done:
    7172             :         rcu_read_unlock();
    7173             : 
    7174             : }
    7175             : EXPORT_SYMBOL_GPL(mt_validate);
    7176             : 
    7177             : #endif /* CONFIG_DEBUG_MAPLE_TREE */

Generated by: LCOV version 1.14