LCOV - code coverage report
Current view: top level - lib - xarray.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 193 689 28.0 %
Date: 2023-03-27 20:00:47 Functions: 17 47 36.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0+
       2             : /*
       3             :  * XArray implementation
       4             :  * Copyright (c) 2017-2018 Microsoft Corporation
       5             :  * Copyright (c) 2018-2020 Oracle
       6             :  * Author: Matthew Wilcox <willy@infradead.org>
       7             :  */
       8             : 
       9             : #include <linux/bitmap.h>
      10             : #include <linux/export.h>
      11             : #include <linux/list.h>
      12             : #include <linux/slab.h>
      13             : #include <linux/xarray.h>
      14             : 
      15             : /*
      16             :  * Coding conventions in this file:
      17             :  *
      18             :  * @xa is used to refer to the entire xarray.
      19             :  * @xas is the 'xarray operation state'.  It may be either a pointer to
      20             :  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
      21             :  * ambiguity.
      22             :  * @index is the index of the entry being operated on
      23             :  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
      24             :  * @node refers to an xa_node; usually the primary one being operated on by
      25             :  * this function.
      26             :  * @offset is the index into the slots array inside an xa_node.
      27             :  * @parent refers to the @xa_node closer to the head than @node.
      28             :  * @entry refers to something stored in a slot in the xarray
      29             :  */
      30             : 
      31             : static inline unsigned int xa_lock_type(const struct xarray *xa)
      32             : {
      33           2 :         return (__force unsigned int)xa->xa_flags & 3;
      34             : }
      35             : 
      36             : static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
      37             : {
      38           0 :         if (lock_type == XA_LOCK_IRQ)
      39           0 :                 xas_lock_irq(xas);
      40           0 :         else if (lock_type == XA_LOCK_BH)
      41           0 :                 xas_lock_bh(xas);
      42             :         else
      43           0 :                 xas_lock(xas);
      44             : }
      45             : 
      46           0 : static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
      47             : {
      48           0 :         if (lock_type == XA_LOCK_IRQ)
      49           0 :                 xas_unlock_irq(xas);
      50           0 :         else if (lock_type == XA_LOCK_BH)
      51           0 :                 xas_unlock_bh(xas);
      52             :         else
      53           0 :                 xas_unlock(xas);
      54           0 : }
      55             : 
      56             : static inline bool xa_track_free(const struct xarray *xa)
      57             : {
      58          78 :         return xa->xa_flags & XA_FLAGS_TRACK_FREE;
      59             : }
      60             : 
      61             : static inline bool xa_zero_busy(const struct xarray *xa)
      62             : {
      63          32 :         return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
      64             : }
      65             : 
      66             : static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
      67             : {
      68           0 :         if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
      69           0 :                 xa->xa_flags |= XA_FLAGS_MARK(mark);
      70             : }
      71             : 
      72             : static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
      73             : {
      74           0 :         if (xa->xa_flags & XA_FLAGS_MARK(mark))
      75           0 :                 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
      76             : }
      77             : 
      78             : static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
      79             : {
      80           0 :         return node->marks[(__force unsigned)mark];
      81             : }
      82             : 
      83             : static inline bool node_get_mark(struct xa_node *node,
      84             :                 unsigned int offset, xa_mark_t mark)
      85             : {
      86           0 :         return test_bit(offset, node_marks(node, mark));
      87             : }
      88             : 
      89             : /* returns true if the bit was set */
      90             : static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
      91             :                                 xa_mark_t mark)
      92             : {
      93           0 :         return __test_and_set_bit(offset, node_marks(node, mark));
      94             : }
      95             : 
      96             : /* returns true if the bit was set */
      97             : static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
      98             :                                 xa_mark_t mark)
      99             : {
     100           0 :         return __test_and_clear_bit(offset, node_marks(node, mark));
     101             : }
     102             : 
     103             : static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
     104             : {
     105           0 :         return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
     106             : }
     107             : 
     108             : static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
     109             : {
     110           0 :         bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
     111             : }
     112             : 
     113             : #define mark_inc(mark) do { \
     114             :         mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
     115             : } while (0)
     116             : 
     117             : /*
     118             :  * xas_squash_marks() - Merge all marks to the first entry
     119             :  * @xas: Array operation state.
     120             :  *
     121             :  * Set a mark on the first entry if any entry has it set.  Clear marks on
     122             :  * all sibling entries.
     123             :  */
     124           0 : static void xas_squash_marks(const struct xa_state *xas)
     125             : {
     126           0 :         unsigned int mark = 0;
     127           0 :         unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
     128             : 
     129           0 :         if (!xas->xa_sibs)
     130             :                 return;
     131             : 
     132             :         do {
     133           0 :                 unsigned long *marks = xas->xa_node->marks[mark];
     134           0 :                 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
     135           0 :                         continue;
     136           0 :                 __set_bit(xas->xa_offset, marks);
     137           0 :                 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
     138           0 :         } while (mark++ != (__force unsigned)XA_MARK_MAX);
     139             : }
     140             : 
     141             : /* extracts the offset within this node from the index */
     142             : static unsigned int get_offset(unsigned long index, struct xa_node *node)
     143             : {
     144           6 :         return (index >> node->shift) & XA_CHUNK_MASK;
     145             : }
     146             : 
     147             : static void xas_set_offset(struct xa_state *xas)
     148             : {
     149           0 :         xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
     150             : }
     151             : 
     152             : /* move the index either forwards (find) or backwards (sibling slot) */
     153             : static void xas_move_index(struct xa_state *xas, unsigned long offset)
     154             : {
     155           0 :         unsigned int shift = xas->xa_node->shift;
     156           0 :         xas->xa_index &= ~XA_CHUNK_MASK << shift;
     157           0 :         xas->xa_index += offset << shift;
     158             : }
     159             : 
     160             : static void xas_next_offset(struct xa_state *xas)
     161             : {
     162           0 :         xas->xa_offset++;
     163           0 :         xas_move_index(xas, xas->xa_offset);
     164             : }
     165             : 
     166             : static void *set_bounds(struct xa_state *xas)
     167             : {
     168           1 :         xas->xa_node = XAS_BOUNDS;
     169             :         return NULL;
     170             : }
     171             : 
     172             : /*
     173             :  * Starts a walk.  If the @xas is already valid, we assume that it's on
     174             :  * the right path and just return where we've got to.  If we're in an
     175             :  * error state, return NULL.  If the index is outside the current scope
     176             :  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
     177             :  * set @xas->xa_node to NULL and return the current head of the array.
     178             :  */
     179         101 : static void *xas_start(struct xa_state *xas)
     180             : {
     181             :         void *entry;
     182             : 
     183         101 :         if (xas_valid(xas))
     184             :                 return xas_reload(xas);
     185         154 :         if (xas_error(xas))
     186             :                 return NULL;
     187             : 
     188         154 :         entry = xa_head(xas->xa);
     189          77 :         if (!xa_is_node(entry)) {
     190          76 :                 if (xas->xa_index)
     191           2 :                         return set_bounds(xas);
     192             :         } else {
     193           2 :                 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
     194           0 :                         return set_bounds(xas);
     195             :         }
     196             : 
     197          76 :         xas->xa_node = NULL;
     198          76 :         return entry;
     199             : }
     200             : 
     201             : static void *xas_descend(struct xa_state *xas, struct xa_node *node)
     202             : {
     203          12 :         unsigned int offset = get_offset(xas->xa_index, node);
     204          12 :         void *entry = xa_entry(xas->xa, node, offset);
     205             : 
     206           6 :         xas->xa_node = node;
     207             :         if (xa_is_sibling(entry)) {
     208             :                 offset = xa_to_sibling(entry);
     209             :                 entry = xa_entry(xas->xa, node, offset);
     210             :                 if (node->shift && xa_is_node(entry))
     211             :                         entry = XA_RETRY_ENTRY;
     212             :         }
     213             : 
     214           6 :         xas->xa_offset = offset;
     215             :         return entry;
     216             : }
     217             : 
     218             : /**
     219             :  * xas_load() - Load an entry from the XArray (advanced).
     220             :  * @xas: XArray operation state.
     221             :  *
     222             :  * Usually walks the @xas to the appropriate state to load the entry
     223             :  * stored at xa_index.  However, it will do nothing and return %NULL if
     224             :  * @xas is in an error state.  xas_load() will never expand the tree.
     225             :  *
     226             :  * If the xa_state is set up to operate on a multi-index entry, xas_load()
     227             :  * may return %NULL or an internal entry, even if there are entries
     228             :  * present within the range specified by @xas.
     229             :  *
     230             :  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
     231             :  * Return: Usually an entry in the XArray, but see description for exceptions.
     232             :  */
     233         101 : void *xas_load(struct xa_state *xas)
     234             : {
     235         101 :         void *entry = xas_start(xas);
     236             : 
     237         203 :         while (xa_is_node(entry)) {
     238           2 :                 struct xa_node *node = xa_to_node(entry);
     239             : 
     240           2 :                 if (xas->xa_shift > node->shift)
     241             :                         break;
     242           2 :                 entry = xas_descend(xas, node);
     243           2 :                 if (node->shift == 0)
     244             :                         break;
     245             :         }
     246         101 :         return entry;
     247             : }
     248             : EXPORT_SYMBOL_GPL(xas_load);
     249             : 
     250             : /* Move the radix tree node cache here */
     251             : extern struct kmem_cache *radix_tree_node_cachep;
     252             : extern void radix_tree_node_rcu_free(struct rcu_head *head);
     253             : 
     254             : #define XA_RCU_FREE     ((struct xarray *)1)
     255             : 
     256             : static void xa_node_free(struct xa_node *node)
     257             : {
     258             :         XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
     259           0 :         node->array = XA_RCU_FREE;
     260           0 :         call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
     261             : }
     262             : 
     263             : /*
     264             :  * xas_destroy() - Free any resources allocated during the XArray operation.
     265             :  * @xas: XArray operation state.
     266             :  *
     267             :  * Most users will not need to call this function; it is called for you
     268             :  * by xas_nomem().
     269             :  */
     270           0 : void xas_destroy(struct xa_state *xas)
     271             : {
     272         268 :         struct xa_node *next, *node = xas->xa_alloc;
     273             : 
     274         268 :         while (node) {
     275             :                 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
     276           0 :                 next = rcu_dereference_raw(node->parent);
     277           0 :                 radix_tree_node_rcu_free(&node->rcu_head);
     278           0 :                 xas->xa_alloc = node = next;
     279             :         }
     280           0 : }
     281             : 
     282             : /**
     283             :  * xas_nomem() - Allocate memory if needed.
     284             :  * @xas: XArray operation state.
     285             :  * @gfp: Memory allocation flags.
     286             :  *
     287             :  * If we need to add new nodes to the XArray, we try to allocate memory
     288             :  * with GFP_NOWAIT while holding the lock, which will usually succeed.
     289             :  * If it fails, @xas is flagged as needing memory to continue.  The caller
     290             :  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
     291             :  * the caller should retry the operation.
     292             :  *
     293             :  * Forward progress is guaranteed as one node is allocated here and
     294             :  * stored in the xa_state where it will be found by xas_alloc().  More
     295             :  * nodes will likely be found in the slab allocator, but we do not tie
     296             :  * them up here.
     297             :  *
     298             :  * Return: true if memory was needed, and was successfully allocated.
     299             :  */
     300         266 : bool xas_nomem(struct xa_state *xas, gfp_t gfp)
     301             : {
     302         266 :         if (xas->xa_node != XA_ERROR(-ENOMEM)) {
     303             :                 xas_destroy(xas);
     304             :                 return false;
     305             :         }
     306           0 :         if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
     307           0 :                 gfp |= __GFP_ACCOUNT;
     308           0 :         xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
     309           0 :         if (!xas->xa_alloc)
     310             :                 return false;
     311           0 :         xas->xa_alloc->parent = NULL;
     312             :         XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
     313           0 :         xas->xa_node = XAS_RESTART;
     314           0 :         return true;
     315             : }
     316             : EXPORT_SYMBOL_GPL(xas_nomem);
     317             : 
     318             : /*
     319             :  * __xas_nomem() - Drop locks and allocate memory if needed.
     320             :  * @xas: XArray operation state.
     321             :  * @gfp: Memory allocation flags.
     322             :  *
     323             :  * Internal variant of xas_nomem().
     324             :  *
     325             :  * Return: true if memory was needed, and was successfully allocated.
     326             :  */
     327           2 : static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
     328             :         __must_hold(xas->xa->xa_lock)
     329             : {
     330           4 :         unsigned int lock_type = xa_lock_type(xas->xa);
     331             : 
     332           2 :         if (xas->xa_node != XA_ERROR(-ENOMEM)) {
     333             :                 xas_destroy(xas);
     334             :                 return false;
     335             :         }
     336           0 :         if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
     337           0 :                 gfp |= __GFP_ACCOUNT;
     338           0 :         if (gfpflags_allow_blocking(gfp)) {
     339           0 :                 xas_unlock_type(xas, lock_type);
     340           0 :                 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
     341           0 :                 xas_lock_type(xas, lock_type);
     342             :         } else {
     343           0 :                 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
     344             :         }
     345           0 :         if (!xas->xa_alloc)
     346             :                 return false;
     347           0 :         xas->xa_alloc->parent = NULL;
     348             :         XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
     349           0 :         xas->xa_node = XAS_RESTART;
     350           0 :         return true;
     351             : }
     352             : 
     353             : static void xas_update(struct xa_state *xas, struct xa_node *node)
     354             : {
     355           3 :         if (xas->xa_update)
     356           0 :                 xas->xa_update(node);
     357             :         else
     358             :                 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
     359             : }
     360             : 
     361           2 : static void *xas_alloc(struct xa_state *xas, unsigned int shift)
     362             : {
     363           2 :         struct xa_node *parent = xas->xa_node;
     364           2 :         struct xa_node *node = xas->xa_alloc;
     365             : 
     366           4 :         if (xas_invalid(xas))
     367             :                 return NULL;
     368             : 
     369           2 :         if (node) {
     370           0 :                 xas->xa_alloc = NULL;
     371             :         } else {
     372           2 :                 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
     373             : 
     374           2 :                 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
     375           0 :                         gfp |= __GFP_ACCOUNT;
     376             : 
     377           2 :                 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
     378           2 :                 if (!node) {
     379           0 :                         xas_set_err(xas, -ENOMEM);
     380           0 :                         return NULL;
     381             :                 }
     382             :         }
     383             : 
     384           2 :         if (parent) {
     385           1 :                 node->offset = xas->xa_offset;
     386           1 :                 parent->count++;
     387             :                 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
     388           1 :                 xas_update(xas, parent);
     389             :         }
     390             :         XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
     391             :         XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
     392           2 :         node->shift = shift;
     393           2 :         node->count = 0;
     394           2 :         node->nr_values = 0;
     395           2 :         RCU_INIT_POINTER(node->parent, xas->xa_node);
     396           2 :         node->array = xas->xa;
     397             : 
     398           2 :         return node;
     399             : }
     400             : 
     401             : #ifdef CONFIG_XARRAY_MULTI
     402             : /* Returns the number of indices covered by a given xa_state */
     403             : static unsigned long xas_size(const struct xa_state *xas)
     404             : {
     405             :         return (xas->xa_sibs + 1UL) << xas->xa_shift;
     406             : }
     407             : #endif
     408             : 
     409             : /*
     410             :  * Use this to calculate the maximum index that will need to be created
     411             :  * in order to add the entry described by @xas.  Because we cannot store a
     412             :  * multi-index entry at index 0, the calculation is a little more complex
     413             :  * than you might expect.
     414             :  */
     415             : static unsigned long xas_max(struct xa_state *xas)
     416             : {
     417         184 :         unsigned long max = xas->xa_index;
     418             : 
     419             : #ifdef CONFIG_XARRAY_MULTI
     420             :         if (xas->xa_shift || xas->xa_sibs) {
     421             :                 unsigned long mask = xas_size(xas) - 1;
     422             :                 max |= mask;
     423             :                 if (mask == max)
     424             :                         max++;
     425             :         }
     426             : #endif
     427             : 
     428             :         return max;
     429             : }
     430             : 
     431             : /* The maximum index that can be contained in the array without expanding it */
     432             : static unsigned long max_index(void *entry)
     433             : {
     434         418 :         if (!xa_is_node(entry))
     435             :                 return 0;
     436           1 :         return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
     437             : }
     438             : 
     439           0 : static void xas_shrink(struct xa_state *xas)
     440             : {
     441           0 :         struct xarray *xa = xas->xa;
     442           0 :         struct xa_node *node = xas->xa_node;
     443             : 
     444           0 :         for (;;) {
     445             :                 void *entry;
     446             : 
     447             :                 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
     448           0 :                 if (node->count != 1)
     449             :                         break;
     450           0 :                 entry = xa_entry_locked(xa, node, 0);
     451           0 :                 if (!entry)
     452             :                         break;
     453           0 :                 if (!xa_is_node(entry) && node->shift)
     454             :                         break;
     455           0 :                 if (xa_is_zero(entry) && xa_zero_busy(xa))
     456           0 :                         entry = NULL;
     457           0 :                 xas->xa_node = XAS_BOUNDS;
     458             : 
     459           0 :                 RCU_INIT_POINTER(xa->xa_head, entry);
     460           0 :                 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
     461           0 :                         xa_mark_clear(xa, XA_FREE_MARK);
     462             : 
     463           0 :                 node->count = 0;
     464           0 :                 node->nr_values = 0;
     465           0 :                 if (!xa_is_node(entry))
     466           0 :                         RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
     467           0 :                 xas_update(xas, node);
     468           0 :                 xa_node_free(node);
     469           0 :                 if (!xa_is_node(entry))
     470             :                         break;
     471           0 :                 node = xa_to_node(entry);
     472           0 :                 node->parent = NULL;
     473             :         }
     474           0 : }
     475             : 
     476             : /*
     477             :  * xas_delete_node() - Attempt to delete an xa_node
     478             :  * @xas: Array operation state.
     479             :  *
     480             :  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
     481             :  * a non-zero reference count.
     482             :  */
     483           0 : static void xas_delete_node(struct xa_state *xas)
     484             : {
     485           0 :         struct xa_node *node = xas->xa_node;
     486             : 
     487             :         for (;;) {
     488             :                 struct xa_node *parent;
     489             : 
     490             :                 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
     491           0 :                 if (node->count)
     492             :                         break;
     493             : 
     494           0 :                 parent = xa_parent_locked(xas->xa, node);
     495           0 :                 xas->xa_node = parent;
     496           0 :                 xas->xa_offset = node->offset;
     497           0 :                 xa_node_free(node);
     498             : 
     499           0 :                 if (!parent) {
     500           0 :                         xas->xa->xa_head = NULL;
     501           0 :                         xas->xa_node = XAS_BOUNDS;
     502           0 :                         return;
     503             :                 }
     504             : 
     505           0 :                 parent->slots[xas->xa_offset] = NULL;
     506           0 :                 parent->count--;
     507             :                 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
     508           0 :                 node = parent;
     509           0 :                 xas_update(xas, node);
     510             :         }
     511             : 
     512           0 :         if (!node->parent)
     513           0 :                 xas_shrink(xas);
     514             : }
     515             : 
     516             : /**
     517             :  * xas_free_nodes() - Free this node and all nodes that it references
     518             :  * @xas: Array operation state.
     519             :  * @top: Node to free
     520             :  *
     521             :  * This node has been removed from the tree.  We must now free it and all
     522             :  * of its subnodes.  There may be RCU walkers with references into the tree,
     523             :  * so we must replace all entries with retry markers.
     524             :  */
     525           0 : static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
     526             : {
     527           0 :         unsigned int offset = 0;
     528           0 :         struct xa_node *node = top;
     529             : 
     530             :         for (;;) {
     531           0 :                 void *entry = xa_entry_locked(xas->xa, node, offset);
     532             : 
     533           0 :                 if (node->shift && xa_is_node(entry)) {
     534           0 :                         node = xa_to_node(entry);
     535           0 :                         offset = 0;
     536           0 :                         continue;
     537             :                 }
     538           0 :                 if (entry)
     539           0 :                         RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
     540           0 :                 offset++;
     541           0 :                 while (offset == XA_CHUNK_SIZE) {
     542             :                         struct xa_node *parent;
     543             : 
     544           0 :                         parent = xa_parent_locked(xas->xa, node);
     545           0 :                         offset = node->offset + 1;
     546           0 :                         node->count = 0;
     547           0 :                         node->nr_values = 0;
     548           0 :                         xas_update(xas, node);
     549           0 :                         xa_node_free(node);
     550           0 :                         if (node == top)
     551           0 :                                 return;
     552             :                         node = parent;
     553             :                 }
     554             :         }
     555             : }
     556             : 
     557             : /*
     558             :  * xas_expand adds nodes to the head of the tree until it has reached
     559             :  * sufficient height to be able to contain @xas->xa_index
     560             :  */
     561         184 : static int xas_expand(struct xa_state *xas, void *head)
     562             : {
     563         184 :         struct xarray *xa = xas->xa;
     564         184 :         struct xa_node *node = NULL;
     565         184 :         unsigned int shift = 0;
     566         368 :         unsigned long max = xas_max(xas);
     567             : 
     568         184 :         if (!head) {
     569          32 :                 if (max == 0)
     570             :                         return 0;
     571           2 :                 while ((max >> shift) >= XA_CHUNK_SIZE)
     572           1 :                         shift += XA_CHUNK_SHIFT;
     573           1 :                 return shift + XA_CHUNK_SHIFT;
     574         152 :         } else if (xa_is_node(head)) {
     575           1 :                 node = xa_to_node(head);
     576           1 :                 shift = node->shift + XA_CHUNK_SHIFT;
     577             :         }
     578         152 :         xas->xa_node = NULL;
     579             : 
     580         304 :         while (max > max_index(head)) {
     581           0 :                 xa_mark_t mark = 0;
     582             : 
     583             :                 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
     584           0 :                 node = xas_alloc(xas, shift);
     585           0 :                 if (!node)
     586             :                         return -ENOMEM;
     587             : 
     588           0 :                 node->count = 1;
     589           0 :                 if (xa_is_value(head))
     590           0 :                         node->nr_values = 1;
     591           0 :                 RCU_INIT_POINTER(node->slots[0], head);
     592             : 
     593             :                 /* Propagate the aggregated mark info to the new child */
     594             :                 for (;;) {
     595           0 :                         if (xa_track_free(xa) && mark == XA_FREE_MARK) {
     596           0 :                                 node_mark_all(node, XA_FREE_MARK);
     597           0 :                                 if (!xa_marked(xa, XA_FREE_MARK)) {
     598           0 :                                         node_clear_mark(node, 0, XA_FREE_MARK);
     599           0 :                                         xa_mark_set(xa, XA_FREE_MARK);
     600             :                                 }
     601           0 :                         } else if (xa_marked(xa, mark)) {
     602             :                                 node_set_mark(node, 0, mark);
     603             :                         }
     604           0 :                         if (mark == XA_MARK_MAX)
     605             :                                 break;
     606           0 :                         mark_inc(mark);
     607             :                 }
     608             : 
     609             :                 /*
     610             :                  * Now that the new node is fully initialised, we can add
     611             :                  * it to the tree
     612             :                  */
     613           0 :                 if (xa_is_node(head)) {
     614           0 :                         xa_to_node(head)->offset = 0;
     615           0 :                         rcu_assign_pointer(xa_to_node(head)->parent, node);
     616             :                 }
     617           0 :                 head = xa_mk_node(node);
     618           0 :                 rcu_assign_pointer(xa->xa_head, head);
     619           0 :                 xas_update(xas, node);
     620             : 
     621           0 :                 shift += XA_CHUNK_SHIFT;
     622             :         }
     623             : 
     624         152 :         xas->xa_node = node;
     625         152 :         return shift;
     626             : }
     627             : 
     628             : /*
     629             :  * xas_create() - Create a slot to store an entry in.
     630             :  * @xas: XArray operation state.
     631             :  * @allow_root: %true if we can store the entry in the root directly
     632             :  *
     633             :  * Most users will not need to call this function directly, as it is called
     634             :  * by xas_store().  It is useful for doing conditional store operations
     635             :  * (see the xa_cmpxchg() implementation for an example).
     636             :  *
     637             :  * Return: If the slot already existed, returns the contents of this slot.
     638             :  * If the slot was newly created, returns %NULL.  If it failed to create the
     639             :  * slot, returns %NULL and indicates the error in @xas.
     640             :  */
     641         184 : static void *xas_create(struct xa_state *xas, bool allow_root)
     642             : {
     643         184 :         struct xarray *xa = xas->xa;
     644             :         void *entry;
     645             :         void __rcu **slot;
     646         184 :         struct xa_node *node = xas->xa_node;
     647             :         int shift;
     648         184 :         unsigned int order = xas->xa_shift;
     649             : 
     650         184 :         if (xas_top(node)) {
     651         184 :                 entry = xa_head_locked(xa);
     652         184 :                 xas->xa_node = NULL;
     653         216 :                 if (!entry && xa_zero_busy(xa))
     654           0 :                         entry = XA_ZERO_ENTRY;
     655         184 :                 shift = xas_expand(xas, entry);
     656         184 :                 if (shift < 0)
     657             :                         return NULL;
     658         184 :                 if (!shift && !allow_root)
     659           0 :                         shift = XA_CHUNK_SHIFT;
     660         184 :                 entry = xa_head_locked(xa);
     661         184 :                 slot = &xa->xa_head;
     662           0 :         } else if (xas_error(xas)) {
     663             :                 return NULL;
     664           0 :         } else if (node) {
     665           0 :                 unsigned int offset = xas->xa_offset;
     666             : 
     667           0 :                 shift = node->shift;
     668           0 :                 entry = xa_entry_locked(xa, node, offset);
     669           0 :                 slot = &node->slots[offset];
     670             :         } else {
     671           0 :                 shift = 0;
     672           0 :                 entry = xa_head_locked(xa);
     673           0 :                 slot = &xa->xa_head;
     674             :         }
     675             : 
     676         188 :         while (shift > order) {
     677           4 :                 shift -= XA_CHUNK_SHIFT;
     678           4 :                 if (!entry) {
     679           2 :                         node = xas_alloc(xas, shift);
     680           2 :                         if (!node)
     681             :                                 break;
     682           4 :                         if (xa_track_free(xa))
     683             :                                 node_mark_all(node, XA_FREE_MARK);
     684           2 :                         rcu_assign_pointer(*slot, xa_mk_node(node));
     685           2 :                 } else if (xa_is_node(entry)) {
     686           2 :                         node = xa_to_node(entry);
     687             :                 } else {
     688             :                         break;
     689             :                 }
     690           4 :                 entry = xas_descend(xas, node);
     691           4 :                 slot = &node->slots[xas->xa_offset];
     692             :         }
     693             : 
     694             :         return entry;
     695             : }
     696             : 
     697             : /**
     698             :  * xas_create_range() - Ensure that stores to this range will succeed
     699             :  * @xas: XArray operation state.
     700             :  *
     701             :  * Creates all of the slots in the range covered by @xas.  Sets @xas to
     702             :  * create single-index entries and positions it at the beginning of the
     703             :  * range.  This is for the benefit of users which have not yet been
     704             :  * converted to use multi-index entries.
     705             :  */
     706           0 : void xas_create_range(struct xa_state *xas)
     707             : {
     708           0 :         unsigned long index = xas->xa_index;
     709           0 :         unsigned char shift = xas->xa_shift;
     710           0 :         unsigned char sibs = xas->xa_sibs;
     711             : 
     712           0 :         xas->xa_index |= ((sibs + 1UL) << shift) - 1;
     713           0 :         if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
     714           0 :                 xas->xa_offset |= sibs;
     715           0 :         xas->xa_shift = 0;
     716           0 :         xas->xa_sibs = 0;
     717             : 
     718             :         for (;;) {
     719           0 :                 xas_create(xas, true);
     720           0 :                 if (xas_error(xas))
     721             :                         goto restore;
     722           0 :                 if (xas->xa_index <= (index | XA_CHUNK_MASK))
     723             :                         goto success;
     724           0 :                 xas->xa_index -= XA_CHUNK_SIZE;
     725             : 
     726             :                 for (;;) {
     727           0 :                         struct xa_node *node = xas->xa_node;
     728           0 :                         if (node->shift >= shift)
     729             :                                 break;
     730           0 :                         xas->xa_node = xa_parent_locked(xas->xa, node);
     731           0 :                         xas->xa_offset = node->offset - 1;
     732           0 :                         if (node->offset != 0)
     733             :                                 break;
     734             :                 }
     735             :         }
     736             : 
     737             : restore:
     738           0 :         xas->xa_shift = shift;
     739           0 :         xas->xa_sibs = sibs;
     740           0 :         xas->xa_index = index;
     741           0 :         return;
     742             : success:
     743           0 :         xas->xa_index = index;
     744           0 :         if (xas->xa_node)
     745             :                 xas_set_offset(xas);
     746             : }
     747             : EXPORT_SYMBOL_GPL(xas_create_range);
     748             : 
     749         208 : static void update_node(struct xa_state *xas, struct xa_node *node,
     750             :                 int count, int values)
     751             : {
     752         208 :         if (!node || (!count && !values))
     753             :                 return;
     754             : 
     755           2 :         node->count += count;
     756           2 :         node->nr_values += values;
     757             :         XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
     758             :         XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
     759           4 :         xas_update(xas, node);
     760           2 :         if (count < 0)
     761           0 :                 xas_delete_node(xas);
     762             : }
     763             : 
     764             : /**
     765             :  * xas_store() - Store this entry in the XArray.
     766             :  * @xas: XArray operation state.
     767             :  * @entry: New entry.
     768             :  *
     769             :  * If @xas is operating on a multi-index entry, the entry returned by this
     770             :  * function is essentially meaningless (it may be an internal entry or it
     771             :  * may be %NULL, even if there are non-NULL entries at some of the indices
     772             :  * covered by the range).  This is not a problem for any current users,
     773             :  * and can be changed if needed.
     774             :  *
     775             :  * Return: The old entry at this index.
     776             :  */
     777         208 : void *xas_store(struct xa_state *xas, void *entry)
     778             : {
     779             :         struct xa_node *node;
     780         208 :         void __rcu **slot = &xas->xa->xa_head;
     781             :         unsigned int offset, max;
     782         208 :         int count = 0;
     783         208 :         int values = 0;
     784             :         void *first, *next;
     785         208 :         bool value = xa_is_value(entry);
     786             : 
     787         208 :         if (entry) {
     788         368 :                 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
     789         184 :                 first = xas_create(xas, allow_root);
     790             :         } else {
     791          24 :                 first = xas_load(xas);
     792             :         }
     793             : 
     794         416 :         if (xas_invalid(xas))
     795             :                 return first;
     796         208 :         node = xas->xa_node;
     797         208 :         if (node && (xas->xa_shift < node->shift))
     798           0 :                 xas->xa_sibs = 0;
     799         208 :         if ((first == entry) && !xas->xa_sibs)
     800             :                 return first;
     801             : 
     802         208 :         next = first;
     803         208 :         offset = xas->xa_offset;
     804         208 :         max = xas->xa_offset + xas->xa_sibs;
     805         208 :         if (node) {
     806           2 :                 slot = &node->slots[offset];
     807           2 :                 if (xas->xa_sibs)
     808           0 :                         xas_squash_marks(xas);
     809             :         }
     810         208 :         if (!entry)
     811          24 :                 xas_init_marks(xas);
     812             : 
     813             :         for (;;) {
     814             :                 /*
     815             :                  * Must clear the marks before setting the entry to NULL,
     816             :                  * otherwise xas_for_each_marked may find a NULL entry and
     817             :                  * stop early.  rcu_assign_pointer contains a release barrier
     818             :                  * so the mark clearing will appear to happen before the
     819             :                  * entry is set to NULL.
     820             :                  */
     821         208 :                 rcu_assign_pointer(*slot, entry);
     822         208 :                 if (xa_is_node(next) && (!node || node->shift))
     823           0 :                         xas_free_nodes(xas, xa_to_node(next));
     824         208 :                 if (!node)
     825             :                         break;
     826           2 :                 count += !next - !entry;
     827           2 :                 values += !xa_is_value(first) - !value;
     828           2 :                 if (entry) {
     829           2 :                         if (offset == max)
     830             :                                 break;
     831           0 :                         if (!xa_is_sibling(entry))
     832           0 :                                 entry = xa_mk_sibling(xas->xa_offset);
     833             :                 } else {
     834           0 :                         if (offset == XA_CHUNK_MASK)
     835             :                                 break;
     836             :                 }
     837           0 :                 next = xa_entry_locked(xas->xa, node, ++offset);
     838             :                 if (!xa_is_sibling(next)) {
     839           0 :                         if (!entry && (offset > max))
     840             :                                 break;
     841           0 :                         first = next;
     842             :                 }
     843           0 :                 slot++;
     844             :         }
     845             : 
     846         208 :         update_node(xas, node, count, values);
     847         208 :         return first;
     848             : }
     849             : EXPORT_SYMBOL_GPL(xas_store);
     850             : 
     851             : /**
     852             :  * xas_get_mark() - Returns the state of this mark.
     853             :  * @xas: XArray operation state.
     854             :  * @mark: Mark number.
     855             :  *
     856             :  * Return: true if the mark is set, false if the mark is clear or @xas
     857             :  * is in an error state.
     858             :  */
     859           0 : bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
     860             : {
     861           0 :         if (xas_invalid(xas))
     862             :                 return false;
     863           0 :         if (!xas->xa_node)
     864           0 :                 return xa_marked(xas->xa, mark);
     865           0 :         return node_get_mark(xas->xa_node, xas->xa_offset, mark);
     866             : }
     867             : EXPORT_SYMBOL_GPL(xas_get_mark);
     868             : 
     869             : /**
     870             :  * xas_set_mark() - Sets the mark on this entry and its parents.
     871             :  * @xas: XArray operation state.
     872             :  * @mark: Mark number.
     873             :  *
     874             :  * Sets the specified mark on this entry, and walks up the tree setting it
     875             :  * on all the ancestor entries.  Does nothing if @xas has not been walked to
     876             :  * an entry, or is in an error state.
     877             :  */
     878          24 : void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
     879             : {
     880          24 :         struct xa_node *node = xas->xa_node;
     881          24 :         unsigned int offset = xas->xa_offset;
     882             : 
     883          48 :         if (xas_invalid(xas))
     884             :                 return;
     885             : 
     886          24 :         while (node) {
     887           0 :                 if (node_set_mark(node, offset, mark))
     888             :                         return;
     889           0 :                 offset = node->offset;
     890           0 :                 node = xa_parent_locked(xas->xa, node);
     891             :         }
     892             : 
     893          48 :         if (!xa_marked(xas->xa, mark))
     894           0 :                 xa_mark_set(xas->xa, mark);
     895             : }
     896             : EXPORT_SYMBOL_GPL(xas_set_mark);
     897             : 
     898             : /**
     899             :  * xas_clear_mark() - Clears the mark on this entry and its parents.
     900             :  * @xas: XArray operation state.
     901             :  * @mark: Mark number.
     902             :  *
     903             :  * Clears the specified mark on this entry, and walks back to the head
     904             :  * attempting to clear it on all the ancestor entries.  Does nothing if
     905             :  * @xas has not been walked to an entry, or is in an error state.
     906             :  */
     907          48 : void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
     908             : {
     909          48 :         struct xa_node *node = xas->xa_node;
     910          48 :         unsigned int offset = xas->xa_offset;
     911             : 
     912          96 :         if (xas_invalid(xas))
     913             :                 return;
     914             : 
     915          48 :         while (node) {
     916           0 :                 if (!node_clear_mark(node, offset, mark))
     917             :                         return;
     918           0 :                 if (node_any_mark(node, mark))
     919             :                         return;
     920             : 
     921           0 :                 offset = node->offset;
     922           0 :                 node = xa_parent_locked(xas->xa, node);
     923             :         }
     924             : 
     925          96 :         if (xa_marked(xas->xa, mark))
     926           0 :                 xa_mark_clear(xas->xa, mark);
     927             : }
     928             : EXPORT_SYMBOL_GPL(xas_clear_mark);
     929             : 
     930             : /**
     931             :  * xas_init_marks() - Initialise all marks for the entry
     932             :  * @xas: Array operations state.
     933             :  *
     934             :  * Initialise all marks for the entry specified by @xas.  If we're tracking
     935             :  * free entries with a mark, we need to set it on all entries.  All other
     936             :  * marks are cleared.
     937             :  *
     938             :  * This implementation is not as efficient as it could be; we may walk
     939             :  * up the tree multiple times.
     940             :  */
     941          24 : void xas_init_marks(const struct xa_state *xas)
     942             : {
     943          24 :         xa_mark_t mark = 0;
     944             : 
     945             :         for (;;) {
     946         192 :                 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
     947          24 :                         xas_set_mark(xas, mark);
     948             :                 else
     949          48 :                         xas_clear_mark(xas, mark);
     950          72 :                 if (mark == XA_MARK_MAX)
     951             :                         break;
     952          48 :                 mark_inc(mark);
     953             :         }
     954          24 : }
     955             : EXPORT_SYMBOL_GPL(xas_init_marks);
     956             : 
     957             : #ifdef CONFIG_XARRAY_MULTI
     958             : static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
     959             : {
     960             :         unsigned int marks = 0;
     961             :         xa_mark_t mark = XA_MARK_0;
     962             : 
     963             :         for (;;) {
     964             :                 if (node_get_mark(node, offset, mark))
     965             :                         marks |= 1 << (__force unsigned int)mark;
     966             :                 if (mark == XA_MARK_MAX)
     967             :                         break;
     968             :                 mark_inc(mark);
     969             :         }
     970             : 
     971             :         return marks;
     972             : }
     973             : 
     974             : static void node_set_marks(struct xa_node *node, unsigned int offset,
     975             :                         struct xa_node *child, unsigned int marks)
     976             : {
     977             :         xa_mark_t mark = XA_MARK_0;
     978             : 
     979             :         for (;;) {
     980             :                 if (marks & (1 << (__force unsigned int)mark)) {
     981             :                         node_set_mark(node, offset, mark);
     982             :                         if (child)
     983             :                                 node_mark_all(child, mark);
     984             :                 }
     985             :                 if (mark == XA_MARK_MAX)
     986             :                         break;
     987             :                 mark_inc(mark);
     988             :         }
     989             : }
     990             : 
     991             : /**
     992             :  * xas_split_alloc() - Allocate memory for splitting an entry.
     993             :  * @xas: XArray operation state.
     994             :  * @entry: New entry which will be stored in the array.
     995             :  * @order: Current entry order.
     996             :  * @gfp: Memory allocation flags.
     997             :  *
     998             :  * This function should be called before calling xas_split().
     999             :  * If necessary, it will allocate new nodes (and fill them with @entry)
    1000             :  * to prepare for the upcoming split of an entry of @order size into
    1001             :  * entries of the order stored in the @xas.
    1002             :  *
    1003             :  * Context: May sleep if @gfp flags permit.
    1004             :  */
    1005             : void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
    1006             :                 gfp_t gfp)
    1007             : {
    1008             :         unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
    1009             :         unsigned int mask = xas->xa_sibs;
    1010             : 
    1011             :         /* XXX: no support for splitting really large entries yet */
    1012             :         if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
    1013             :                 goto nomem;
    1014             :         if (xas->xa_shift + XA_CHUNK_SHIFT > order)
    1015             :                 return;
    1016             : 
    1017             :         do {
    1018             :                 unsigned int i;
    1019             :                 void *sibling = NULL;
    1020             :                 struct xa_node *node;
    1021             : 
    1022             :                 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
    1023             :                 if (!node)
    1024             :                         goto nomem;
    1025             :                 node->array = xas->xa;
    1026             :                 for (i = 0; i < XA_CHUNK_SIZE; i++) {
    1027             :                         if ((i & mask) == 0) {
    1028             :                                 RCU_INIT_POINTER(node->slots[i], entry);
    1029             :                                 sibling = xa_mk_sibling(i);
    1030             :                         } else {
    1031             :                                 RCU_INIT_POINTER(node->slots[i], sibling);
    1032             :                         }
    1033             :                 }
    1034             :                 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
    1035             :                 xas->xa_alloc = node;
    1036             :         } while (sibs-- > 0);
    1037             : 
    1038             :         return;
    1039             : nomem:
    1040             :         xas_destroy(xas);
    1041             :         xas_set_err(xas, -ENOMEM);
    1042             : }
    1043             : EXPORT_SYMBOL_GPL(xas_split_alloc);
    1044             : 
    1045             : /**
    1046             :  * xas_split() - Split a multi-index entry into smaller entries.
    1047             :  * @xas: XArray operation state.
    1048             :  * @entry: New entry to store in the array.
    1049             :  * @order: Current entry order.
    1050             :  *
    1051             :  * The size of the new entries is set in @xas.  The value in @entry is
    1052             :  * copied to all the replacement entries.
    1053             :  *
    1054             :  * Context: Any context.  The caller should hold the xa_lock.
    1055             :  */
    1056             : void xas_split(struct xa_state *xas, void *entry, unsigned int order)
    1057             : {
    1058             :         unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
    1059             :         unsigned int offset, marks;
    1060             :         struct xa_node *node;
    1061             :         void *curr = xas_load(xas);
    1062             :         int values = 0;
    1063             : 
    1064             :         node = xas->xa_node;
    1065             :         if (xas_top(node))
    1066             :                 return;
    1067             : 
    1068             :         marks = node_get_marks(node, xas->xa_offset);
    1069             : 
    1070             :         offset = xas->xa_offset + sibs;
    1071             :         do {
    1072             :                 if (xas->xa_shift < node->shift) {
    1073             :                         struct xa_node *child = xas->xa_alloc;
    1074             : 
    1075             :                         xas->xa_alloc = rcu_dereference_raw(child->parent);
    1076             :                         child->shift = node->shift - XA_CHUNK_SHIFT;
    1077             :                         child->offset = offset;
    1078             :                         child->count = XA_CHUNK_SIZE;
    1079             :                         child->nr_values = xa_is_value(entry) ?
    1080             :                                         XA_CHUNK_SIZE : 0;
    1081             :                         RCU_INIT_POINTER(child->parent, node);
    1082             :                         node_set_marks(node, offset, child, marks);
    1083             :                         rcu_assign_pointer(node->slots[offset],
    1084             :                                         xa_mk_node(child));
    1085             :                         if (xa_is_value(curr))
    1086             :                                 values--;
    1087             :                         xas_update(xas, child);
    1088             :                 } else {
    1089             :                         unsigned int canon = offset - xas->xa_sibs;
    1090             : 
    1091             :                         node_set_marks(node, canon, NULL, marks);
    1092             :                         rcu_assign_pointer(node->slots[canon], entry);
    1093             :                         while (offset > canon)
    1094             :                                 rcu_assign_pointer(node->slots[offset--],
    1095             :                                                 xa_mk_sibling(canon));
    1096             :                         values += (xa_is_value(entry) - xa_is_value(curr)) *
    1097             :                                         (xas->xa_sibs + 1);
    1098             :                 }
    1099             :         } while (offset-- > xas->xa_offset);
    1100             : 
    1101             :         node->nr_values += values;
    1102             :         xas_update(xas, node);
    1103             : }
    1104             : EXPORT_SYMBOL_GPL(xas_split);
    1105             : #endif
    1106             : 
    1107             : /**
    1108             :  * xas_pause() - Pause a walk to drop a lock.
    1109             :  * @xas: XArray operation state.
    1110             :  *
    1111             :  * Some users need to pause a walk and drop the lock they're holding in
    1112             :  * order to yield to a higher priority thread or carry out an operation
    1113             :  * on an entry.  Those users should call this function before they drop
    1114             :  * the lock.  It resets the @xas to be suitable for the next iteration
    1115             :  * of the loop after the user has reacquired the lock.  If most entries
    1116             :  * found during a walk require you to call xas_pause(), the xa_for_each()
    1117             :  * iterator may be more appropriate.
    1118             :  *
    1119             :  * Note that xas_pause() only works for forward iteration.  If a user needs
    1120             :  * to pause a reverse iteration, we will need a xas_pause_rev().
    1121             :  */
    1122           0 : void xas_pause(struct xa_state *xas)
    1123             : {
    1124           0 :         struct xa_node *node = xas->xa_node;
    1125             : 
    1126           0 :         if (xas_invalid(xas))
    1127             :                 return;
    1128             : 
    1129           0 :         xas->xa_node = XAS_RESTART;
    1130           0 :         if (node) {
    1131           0 :                 unsigned long offset = xas->xa_offset;
    1132           0 :                 while (++offset < XA_CHUNK_SIZE) {
    1133           0 :                         if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
    1134             :                                 break;
    1135             :                 }
    1136           0 :                 xas->xa_index += (offset - xas->xa_offset) << node->shift;
    1137           0 :                 if (xas->xa_index == 0)
    1138           0 :                         xas->xa_node = XAS_BOUNDS;
    1139             :         } else {
    1140           0 :                 xas->xa_index++;
    1141             :         }
    1142             : }
    1143             : EXPORT_SYMBOL_GPL(xas_pause);
    1144             : 
    1145             : /*
    1146             :  * __xas_prev() - Find the previous entry in the XArray.
    1147             :  * @xas: XArray operation state.
    1148             :  *
    1149             :  * Helper function for xas_prev() which handles all the complex cases
    1150             :  * out of line.
    1151             :  */
    1152           0 : void *__xas_prev(struct xa_state *xas)
    1153             : {
    1154             :         void *entry;
    1155             : 
    1156           0 :         if (!xas_frozen(xas->xa_node))
    1157           0 :                 xas->xa_index--;
    1158           0 :         if (!xas->xa_node)
    1159           0 :                 return set_bounds(xas);
    1160           0 :         if (xas_not_node(xas->xa_node))
    1161           0 :                 return xas_load(xas);
    1162             : 
    1163           0 :         if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
    1164           0 :                 xas->xa_offset--;
    1165             : 
    1166           0 :         while (xas->xa_offset == 255) {
    1167           0 :                 xas->xa_offset = xas->xa_node->offset - 1;
    1168           0 :                 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
    1169           0 :                 if (!xas->xa_node)
    1170           0 :                         return set_bounds(xas);
    1171             :         }
    1172             : 
    1173             :         for (;;) {
    1174           0 :                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
    1175           0 :                 if (!xa_is_node(entry))
    1176             :                         return entry;
    1177             : 
    1178           0 :                 xas->xa_node = xa_to_node(entry);
    1179             :                 xas_set_offset(xas);
    1180             :         }
    1181             : }
    1182             : EXPORT_SYMBOL_GPL(__xas_prev);
    1183             : 
    1184             : /*
    1185             :  * __xas_next() - Find the next entry in the XArray.
    1186             :  * @xas: XArray operation state.
    1187             :  *
    1188             :  * Helper function for xas_next() which handles all the complex cases
    1189             :  * out of line.
    1190             :  */
    1191           0 : void *__xas_next(struct xa_state *xas)
    1192             : {
    1193             :         void *entry;
    1194             : 
    1195           0 :         if (!xas_frozen(xas->xa_node))
    1196           0 :                 xas->xa_index++;
    1197           0 :         if (!xas->xa_node)
    1198           0 :                 return set_bounds(xas);
    1199           0 :         if (xas_not_node(xas->xa_node))
    1200           0 :                 return xas_load(xas);
    1201             : 
    1202           0 :         if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
    1203           0 :                 xas->xa_offset++;
    1204             : 
    1205           0 :         while (xas->xa_offset == XA_CHUNK_SIZE) {
    1206           0 :                 xas->xa_offset = xas->xa_node->offset + 1;
    1207           0 :                 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
    1208           0 :                 if (!xas->xa_node)
    1209           0 :                         return set_bounds(xas);
    1210             :         }
    1211             : 
    1212             :         for (;;) {
    1213           0 :                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
    1214           0 :                 if (!xa_is_node(entry))
    1215             :                         return entry;
    1216             : 
    1217           0 :                 xas->xa_node = xa_to_node(entry);
    1218             :                 xas_set_offset(xas);
    1219             :         }
    1220             : }
    1221             : EXPORT_SYMBOL_GPL(__xas_next);
    1222             : 
    1223             : /**
    1224             :  * xas_find() - Find the next present entry in the XArray.
    1225             :  * @xas: XArray operation state.
    1226             :  * @max: Highest index to return.
    1227             :  *
    1228             :  * If the @xas has not yet been walked to an entry, return the entry
    1229             :  * which has an index >= xas.xa_index.  If it has been walked, the entry
    1230             :  * currently being pointed at has been processed, and so we move to the
    1231             :  * next entry.
    1232             :  *
    1233             :  * If no entry is found and the array is smaller than @max, the iterator
    1234             :  * is set to the smallest index not yet in the array.  This allows @xas
    1235             :  * to be immediately passed to xas_store().
    1236             :  *
    1237             :  * Return: The entry, if found, otherwise %NULL.
    1238             :  */
    1239          17 : void *xas_find(struct xa_state *xas, unsigned long max)
    1240             : {
    1241             :         void *entry;
    1242             : 
    1243          34 :         if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
    1244             :                 return NULL;
    1245          17 :         if (xas->xa_index > max)
    1246           0 :                 return set_bounds(xas);
    1247             : 
    1248          17 :         if (!xas->xa_node) {
    1249           0 :                 xas->xa_index = 1;
    1250           0 :                 return set_bounds(xas);
    1251          17 :         } else if (xas->xa_node == XAS_RESTART) {
    1252          17 :                 entry = xas_load(xas);
    1253          34 :                 if (entry || xas_not_node(xas->xa_node))
    1254             :                         return entry;
    1255           0 :         } else if (!xas->xa_node->shift &&
    1256           0 :                     xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
    1257           0 :                 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
    1258             :         }
    1259             : 
    1260             :         xas_next_offset(xas);
    1261             : 
    1262           0 :         while (xas->xa_node && (xas->xa_index <= max)) {
    1263           0 :                 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
    1264           0 :                         xas->xa_offset = xas->xa_node->offset + 1;
    1265           0 :                         xas->xa_node = xa_parent(xas->xa, xas->xa_node);
    1266           0 :                         continue;
    1267             :                 }
    1268             : 
    1269           0 :                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
    1270           0 :                 if (xa_is_node(entry)) {
    1271           0 :                         xas->xa_node = xa_to_node(entry);
    1272           0 :                         xas->xa_offset = 0;
    1273           0 :                         continue;
    1274             :                 }
    1275           0 :                 if (entry && !xa_is_sibling(entry))
    1276             :                         return entry;
    1277             : 
    1278             :                 xas_next_offset(xas);
    1279             :         }
    1280             : 
    1281           0 :         if (!xas->xa_node)
    1282           0 :                 xas->xa_node = XAS_BOUNDS;
    1283             :         return NULL;
    1284             : }
    1285             : EXPORT_SYMBOL_GPL(xas_find);
    1286             : 
    1287             : /**
    1288             :  * xas_find_marked() - Find the next marked entry in the XArray.
    1289             :  * @xas: XArray operation state.
    1290             :  * @max: Highest index to return.
    1291             :  * @mark: Mark number to search for.
    1292             :  *
    1293             :  * If the @xas has not yet been walked to an entry, return the marked entry
    1294             :  * which has an index >= xas.xa_index.  If it has been walked, the entry
    1295             :  * currently being pointed at has been processed, and so we return the
    1296             :  * first marked entry with an index > xas.xa_index.
    1297             :  *
    1298             :  * If no marked entry is found and the array is smaller than @max, @xas is
    1299             :  * set to the bounds state and xas->xa_index is set to the smallest index
    1300             :  * not yet in the array.  This allows @xas to be immediately passed to
    1301             :  * xas_store().
    1302             :  *
    1303             :  * If no entry is found before @max is reached, @xas is set to the restart
    1304             :  * state.
    1305             :  *
    1306             :  * Return: The entry, if found, otherwise %NULL.
    1307             :  */
    1308         266 : void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
    1309             : {
    1310         266 :         bool advance = true;
    1311             :         unsigned int offset;
    1312             :         void *entry;
    1313             : 
    1314         532 :         if (xas_error(xas))
    1315             :                 return NULL;
    1316         266 :         if (xas->xa_index > max)
    1317             :                 goto max;
    1318             : 
    1319         266 :         if (!xas->xa_node) {
    1320           0 :                 xas->xa_index = 1;
    1321           0 :                 goto out;
    1322         266 :         } else if (xas_top(xas->xa_node)) {
    1323         266 :                 advance = false;
    1324         532 :                 entry = xa_head(xas->xa);
    1325         266 :                 xas->xa_node = NULL;
    1326         532 :                 if (xas->xa_index > max_index(entry))
    1327             :                         goto out;
    1328         266 :                 if (!xa_is_node(entry)) {
    1329         532 :                         if (xa_marked(xas->xa, mark))
    1330             :                                 return entry;
    1331           0 :                         xas->xa_index = 1;
    1332           0 :                         goto out;
    1333             :                 }
    1334           0 :                 xas->xa_node = xa_to_node(entry);
    1335           0 :                 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
    1336             :         }
    1337             : 
    1338           0 :         while (xas->xa_index <= max) {
    1339           0 :                 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
    1340           0 :                         xas->xa_offset = xas->xa_node->offset + 1;
    1341           0 :                         xas->xa_node = xa_parent(xas->xa, xas->xa_node);
    1342           0 :                         if (!xas->xa_node)
    1343             :                                 break;
    1344           0 :                         advance = false;
    1345           0 :                         continue;
    1346             :                 }
    1347             : 
    1348           0 :                 if (!advance) {
    1349           0 :                         entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
    1350             :                         if (xa_is_sibling(entry)) {
    1351             :                                 xas->xa_offset = xa_to_sibling(entry);
    1352             :                                 xas_move_index(xas, xas->xa_offset);
    1353             :                         }
    1354             :                 }
    1355             : 
    1356           0 :                 offset = xas_find_chunk(xas, advance, mark);
    1357           0 :                 if (offset > xas->xa_offset) {
    1358           0 :                         advance = false;
    1359           0 :                         xas_move_index(xas, offset);
    1360             :                         /* Mind the wrap */
    1361           0 :                         if ((xas->xa_index - 1) >= max)
    1362             :                                 goto max;
    1363           0 :                         xas->xa_offset = offset;
    1364           0 :                         if (offset == XA_CHUNK_SIZE)
    1365           0 :                                 continue;
    1366             :                 }
    1367             : 
    1368           0 :                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
    1369           0 :                 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
    1370           0 :                         continue;
    1371           0 :                 if (!xa_is_node(entry))
    1372             :                         return entry;
    1373           0 :                 xas->xa_node = xa_to_node(entry);
    1374             :                 xas_set_offset(xas);
    1375             :         }
    1376             : 
    1377             : out:
    1378           0 :         if (xas->xa_index > max)
    1379             :                 goto max;
    1380           0 :         return set_bounds(xas);
    1381             : max:
    1382           0 :         xas->xa_node = XAS_RESTART;
    1383           0 :         return NULL;
    1384             : }
    1385             : EXPORT_SYMBOL_GPL(xas_find_marked);
    1386             : 
    1387             : /**
    1388             :  * xas_find_conflict() - Find the next present entry in a range.
    1389             :  * @xas: XArray operation state.
    1390             :  *
    1391             :  * The @xas describes both a range and a position within that range.
    1392             :  *
    1393             :  * Context: Any context.  Expects xa_lock to be held.
    1394             :  * Return: The next entry in the range covered by @xas or %NULL.
    1395             :  */
    1396           0 : void *xas_find_conflict(struct xa_state *xas)
    1397             : {
    1398             :         void *curr;
    1399             : 
    1400           0 :         if (xas_error(xas))
    1401             :                 return NULL;
    1402             : 
    1403           0 :         if (!xas->xa_node)
    1404             :                 return NULL;
    1405             : 
    1406           0 :         if (xas_top(xas->xa_node)) {
    1407           0 :                 curr = xas_start(xas);
    1408           0 :                 if (!curr)
    1409             :                         return NULL;
    1410           0 :                 while (xa_is_node(curr)) {
    1411           0 :                         struct xa_node *node = xa_to_node(curr);
    1412           0 :                         curr = xas_descend(xas, node);
    1413             :                 }
    1414           0 :                 if (curr)
    1415             :                         return curr;
    1416             :         }
    1417             : 
    1418           0 :         if (xas->xa_node->shift > xas->xa_shift)
    1419             :                 return NULL;
    1420             : 
    1421             :         for (;;) {
    1422           0 :                 if (xas->xa_node->shift == xas->xa_shift) {
    1423           0 :                         if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
    1424             :                                 break;
    1425           0 :                 } else if (xas->xa_offset == XA_CHUNK_MASK) {
    1426           0 :                         xas->xa_offset = xas->xa_node->offset;
    1427           0 :                         xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
    1428           0 :                         if (!xas->xa_node)
    1429             :                                 break;
    1430           0 :                         continue;
    1431             :                 }
    1432           0 :                 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
    1433             :                 if (xa_is_sibling(curr))
    1434             :                         continue;
    1435           0 :                 while (xa_is_node(curr)) {
    1436           0 :                         xas->xa_node = xa_to_node(curr);
    1437           0 :                         xas->xa_offset = 0;
    1438           0 :                         curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
    1439             :                 }
    1440           0 :                 if (curr)
    1441             :                         return curr;
    1442             :         }
    1443           0 :         xas->xa_offset -= xas->xa_sibs;
    1444           0 :         return NULL;
    1445             : }
    1446             : EXPORT_SYMBOL_GPL(xas_find_conflict);
    1447             : 
    1448             : /**
    1449             :  * xa_load() - Load an entry from an XArray.
    1450             :  * @xa: XArray.
    1451             :  * @index: index into array.
    1452             :  *
    1453             :  * Context: Any context.  Takes and releases the RCU lock.
    1454             :  * Return: The entry at @index in @xa.
    1455             :  */
    1456           2 : void *xa_load(struct xarray *xa, unsigned long index)
    1457             : {
    1458           2 :         XA_STATE(xas, xa, index);
    1459             :         void *entry;
    1460             : 
    1461             :         rcu_read_lock();
    1462             :         do {
    1463           2 :                 entry = xas_load(&xas);
    1464           2 :                 if (xa_is_zero(entry))
    1465           0 :                         entry = NULL;
    1466           2 :         } while (xas_retry(&xas, entry));
    1467             :         rcu_read_unlock();
    1468             : 
    1469           2 :         return entry;
    1470             : }
    1471             : EXPORT_SYMBOL(xa_load);
    1472             : 
    1473             : static void *xas_result(struct xa_state *xas, void *curr)
    1474             : {
    1475           2 :         if (xa_is_zero(curr))
    1476             :                 return NULL;
    1477           4 :         if (xas_error(xas))
    1478           0 :                 curr = xas->xa_node;
    1479             :         return curr;
    1480             : }
    1481             : 
    1482             : /**
    1483             :  * __xa_erase() - Erase this entry from the XArray while locked.
    1484             :  * @xa: XArray.
    1485             :  * @index: Index into array.
    1486             :  *
    1487             :  * After this function returns, loading from @index will return %NULL.
    1488             :  * If the index is part of a multi-index entry, all indices will be erased
    1489             :  * and none of the entries will be part of a multi-index entry.
    1490             :  *
    1491             :  * Context: Any context.  Expects xa_lock to be held on entry.
    1492             :  * Return: The entry which used to be at this index.
    1493             :  */
    1494           0 : void *__xa_erase(struct xarray *xa, unsigned long index)
    1495             : {
    1496           0 :         XA_STATE(xas, xa, index);
    1497           0 :         return xas_result(&xas, xas_store(&xas, NULL));
    1498             : }
    1499             : EXPORT_SYMBOL(__xa_erase);
    1500             : 
    1501             : /**
    1502             :  * xa_erase() - Erase this entry from the XArray.
    1503             :  * @xa: XArray.
    1504             :  * @index: Index of entry.
    1505             :  *
    1506             :  * After this function returns, loading from @index will return %NULL.
    1507             :  * If the index is part of a multi-index entry, all indices will be erased
    1508             :  * and none of the entries will be part of a multi-index entry.
    1509             :  *
    1510             :  * Context: Any context.  Takes and releases the xa_lock.
    1511             :  * Return: The entry which used to be at this index.
    1512             :  */
    1513           0 : void *xa_erase(struct xarray *xa, unsigned long index)
    1514             : {
    1515             :         void *entry;
    1516             : 
    1517           0 :         xa_lock(xa);
    1518           0 :         entry = __xa_erase(xa, index);
    1519           0 :         xa_unlock(xa);
    1520             : 
    1521           0 :         return entry;
    1522             : }
    1523             : EXPORT_SYMBOL(xa_erase);
    1524             : 
    1525             : /**
    1526             :  * __xa_store() - Store this entry in the XArray.
    1527             :  * @xa: XArray.
    1528             :  * @index: Index into array.
    1529             :  * @entry: New entry.
    1530             :  * @gfp: Memory allocation flags.
    1531             :  *
    1532             :  * You must already be holding the xa_lock when calling this function.
    1533             :  * It will drop the lock if needed to allocate memory, and then reacquire
    1534             :  * it afterwards.
    1535             :  *
    1536             :  * Context: Any context.  Expects xa_lock to be held on entry.  May
    1537             :  * release and reacquire xa_lock if @gfp flags permit.
    1538             :  * Return: The old entry at this index or xa_err() if an error happened.
    1539             :  */
    1540           2 : void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
    1541             : {
    1542           2 :         XA_STATE(xas, xa, index);
    1543             :         void *curr;
    1544             : 
    1545           2 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    1546             :                 return XA_ERROR(-EINVAL);
    1547           4 :         if (xa_track_free(xa) && !entry)
    1548           0 :                 entry = XA_ZERO_ENTRY;
    1549             : 
    1550             :         do {
    1551           2 :                 curr = xas_store(&xas, entry);
    1552           4 :                 if (xa_track_free(xa))
    1553           0 :                         xas_clear_mark(&xas, XA_FREE_MARK);
    1554           2 :         } while (__xas_nomem(&xas, gfp));
    1555             : 
    1556             :         return xas_result(&xas, curr);
    1557             : }
    1558             : EXPORT_SYMBOL(__xa_store);
    1559             : 
    1560             : /**
    1561             :  * xa_store() - Store this entry in the XArray.
    1562             :  * @xa: XArray.
    1563             :  * @index: Index into array.
    1564             :  * @entry: New entry.
    1565             :  * @gfp: Memory allocation flags.
    1566             :  *
    1567             :  * After this function returns, loads from this index will return @entry.
    1568             :  * Storing into an existing multi-index entry updates the entry of every index.
    1569             :  * The marks associated with @index are unaffected unless @entry is %NULL.
    1570             :  *
    1571             :  * Context: Any context.  Takes and releases the xa_lock.
    1572             :  * May sleep if the @gfp flags permit.
    1573             :  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
    1574             :  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
    1575             :  * failed.
    1576             :  */
    1577           2 : void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
    1578             : {
    1579             :         void *curr;
    1580             : 
    1581           4 :         xa_lock(xa);
    1582           2 :         curr = __xa_store(xa, index, entry, gfp);
    1583           4 :         xa_unlock(xa);
    1584             : 
    1585           2 :         return curr;
    1586             : }
    1587             : EXPORT_SYMBOL(xa_store);
    1588             : 
    1589             : /**
    1590             :  * __xa_cmpxchg() - Store this entry in the XArray.
    1591             :  * @xa: XArray.
    1592             :  * @index: Index into array.
    1593             :  * @old: Old value to test against.
    1594             :  * @entry: New entry.
    1595             :  * @gfp: Memory allocation flags.
    1596             :  *
    1597             :  * You must already be holding the xa_lock when calling this function.
    1598             :  * It will drop the lock if needed to allocate memory, and then reacquire
    1599             :  * it afterwards.
    1600             :  *
    1601             :  * Context: Any context.  Expects xa_lock to be held on entry.  May
    1602             :  * release and reacquire xa_lock if @gfp flags permit.
    1603             :  * Return: The old entry at this index or xa_err() if an error happened.
    1604             :  */
    1605           0 : void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
    1606             :                         void *old, void *entry, gfp_t gfp)
    1607             : {
    1608           0 :         XA_STATE(xas, xa, index);
    1609             :         void *curr;
    1610             : 
    1611           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    1612             :                 return XA_ERROR(-EINVAL);
    1613             : 
    1614             :         do {
    1615           0 :                 curr = xas_load(&xas);
    1616           0 :                 if (curr == old) {
    1617           0 :                         xas_store(&xas, entry);
    1618           0 :                         if (xa_track_free(xa) && entry && !curr)
    1619           0 :                                 xas_clear_mark(&xas, XA_FREE_MARK);
    1620             :                 }
    1621           0 :         } while (__xas_nomem(&xas, gfp));
    1622             : 
    1623             :         return xas_result(&xas, curr);
    1624             : }
    1625             : EXPORT_SYMBOL(__xa_cmpxchg);
    1626             : 
    1627             : /**
    1628             :  * __xa_insert() - Store this entry in the XArray if no entry is present.
    1629             :  * @xa: XArray.
    1630             :  * @index: Index into array.
    1631             :  * @entry: New entry.
    1632             :  * @gfp: Memory allocation flags.
    1633             :  *
    1634             :  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
    1635             :  * if no entry is present.  Inserting will fail if a reserved entry is
    1636             :  * present, even though loading from this index will return NULL.
    1637             :  *
    1638             :  * Context: Any context.  Expects xa_lock to be held on entry.  May
    1639             :  * release and reacquire xa_lock if @gfp flags permit.
    1640             :  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
    1641             :  * -ENOMEM if memory could not be allocated.
    1642             :  */
    1643           0 : int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
    1644             : {
    1645           0 :         XA_STATE(xas, xa, index);
    1646             :         void *curr;
    1647             : 
    1648           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    1649             :                 return -EINVAL;
    1650           0 :         if (!entry)
    1651           0 :                 entry = XA_ZERO_ENTRY;
    1652             : 
    1653             :         do {
    1654           0 :                 curr = xas_load(&xas);
    1655           0 :                 if (!curr) {
    1656           0 :                         xas_store(&xas, entry);
    1657           0 :                         if (xa_track_free(xa))
    1658           0 :                                 xas_clear_mark(&xas, XA_FREE_MARK);
    1659             :                 } else {
    1660           0 :                         xas_set_err(&xas, -EBUSY);
    1661             :                 }
    1662           0 :         } while (__xas_nomem(&xas, gfp));
    1663             : 
    1664           0 :         return xas_error(&xas);
    1665             : }
    1666             : EXPORT_SYMBOL(__xa_insert);
    1667             : 
    1668             : #ifdef CONFIG_XARRAY_MULTI
    1669             : static void xas_set_range(struct xa_state *xas, unsigned long first,
    1670             :                 unsigned long last)
    1671             : {
    1672             :         unsigned int shift = 0;
    1673             :         unsigned long sibs = last - first;
    1674             :         unsigned int offset = XA_CHUNK_MASK;
    1675             : 
    1676             :         xas_set(xas, first);
    1677             : 
    1678             :         while ((first & XA_CHUNK_MASK) == 0) {
    1679             :                 if (sibs < XA_CHUNK_MASK)
    1680             :                         break;
    1681             :                 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
    1682             :                         break;
    1683             :                 shift += XA_CHUNK_SHIFT;
    1684             :                 if (offset == XA_CHUNK_MASK)
    1685             :                         offset = sibs & XA_CHUNK_MASK;
    1686             :                 sibs >>= XA_CHUNK_SHIFT;
    1687             :                 first >>= XA_CHUNK_SHIFT;
    1688             :         }
    1689             : 
    1690             :         offset = first & XA_CHUNK_MASK;
    1691             :         if (offset + sibs > XA_CHUNK_MASK)
    1692             :                 sibs = XA_CHUNK_MASK - offset;
    1693             :         if ((((first + sibs + 1) << shift) - 1) > last)
    1694             :                 sibs -= 1;
    1695             : 
    1696             :         xas->xa_shift = shift;
    1697             :         xas->xa_sibs = sibs;
    1698             : }
    1699             : 
    1700             : /**
    1701             :  * xa_store_range() - Store this entry at a range of indices in the XArray.
    1702             :  * @xa: XArray.
    1703             :  * @first: First index to affect.
    1704             :  * @last: Last index to affect.
    1705             :  * @entry: New entry.
    1706             :  * @gfp: Memory allocation flags.
    1707             :  *
    1708             :  * After this function returns, loads from any index between @first and @last,
    1709             :  * inclusive will return @entry.
    1710             :  * Storing into an existing multi-index entry updates the entry of every index.
    1711             :  * The marks associated with @index are unaffected unless @entry is %NULL.
    1712             :  *
    1713             :  * Context: Process context.  Takes and releases the xa_lock.  May sleep
    1714             :  * if the @gfp flags permit.
    1715             :  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
    1716             :  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
    1717             :  */
    1718             : void *xa_store_range(struct xarray *xa, unsigned long first,
    1719             :                 unsigned long last, void *entry, gfp_t gfp)
    1720             : {
    1721             :         XA_STATE(xas, xa, 0);
    1722             : 
    1723             :         if (WARN_ON_ONCE(xa_is_internal(entry)))
    1724             :                 return XA_ERROR(-EINVAL);
    1725             :         if (last < first)
    1726             :                 return XA_ERROR(-EINVAL);
    1727             : 
    1728             :         do {
    1729             :                 xas_lock(&xas);
    1730             :                 if (entry) {
    1731             :                         unsigned int order = BITS_PER_LONG;
    1732             :                         if (last + 1)
    1733             :                                 order = __ffs(last + 1);
    1734             :                         xas_set_order(&xas, last, order);
    1735             :                         xas_create(&xas, true);
    1736             :                         if (xas_error(&xas))
    1737             :                                 goto unlock;
    1738             :                 }
    1739             :                 do {
    1740             :                         xas_set_range(&xas, first, last);
    1741             :                         xas_store(&xas, entry);
    1742             :                         if (xas_error(&xas))
    1743             :                                 goto unlock;
    1744             :                         first += xas_size(&xas);
    1745             :                 } while (first <= last);
    1746             : unlock:
    1747             :                 xas_unlock(&xas);
    1748             :         } while (xas_nomem(&xas, gfp));
    1749             : 
    1750             :         return xas_result(&xas, NULL);
    1751             : }
    1752             : EXPORT_SYMBOL(xa_store_range);
    1753             : 
    1754             : /**
    1755             :  * xa_get_order() - Get the order of an entry.
    1756             :  * @xa: XArray.
    1757             :  * @index: Index of the entry.
    1758             :  *
    1759             :  * Return: A number between 0 and 63 indicating the order of the entry.
    1760             :  */
    1761             : int xa_get_order(struct xarray *xa, unsigned long index)
    1762             : {
    1763             :         XA_STATE(xas, xa, index);
    1764             :         void *entry;
    1765             :         int order = 0;
    1766             : 
    1767             :         rcu_read_lock();
    1768             :         entry = xas_load(&xas);
    1769             : 
    1770             :         if (!entry)
    1771             :                 goto unlock;
    1772             : 
    1773             :         if (!xas.xa_node)
    1774             :                 goto unlock;
    1775             : 
    1776             :         for (;;) {
    1777             :                 unsigned int slot = xas.xa_offset + (1 << order);
    1778             : 
    1779             :                 if (slot >= XA_CHUNK_SIZE)
    1780             :                         break;
    1781             :                 if (!xa_is_sibling(xas.xa_node->slots[slot]))
    1782             :                         break;
    1783             :                 order++;
    1784             :         }
    1785             : 
    1786             :         order += xas.xa_node->shift;
    1787             : unlock:
    1788             :         rcu_read_unlock();
    1789             : 
    1790             :         return order;
    1791             : }
    1792             : EXPORT_SYMBOL(xa_get_order);
    1793             : #endif /* CONFIG_XARRAY_MULTI */
    1794             : 
    1795             : /**
    1796             :  * __xa_alloc() - Find somewhere to store this entry in the XArray.
    1797             :  * @xa: XArray.
    1798             :  * @id: Pointer to ID.
    1799             :  * @limit: Range for allocated ID.
    1800             :  * @entry: New entry.
    1801             :  * @gfp: Memory allocation flags.
    1802             :  *
    1803             :  * Finds an empty entry in @xa between @limit.min and @limit.max,
    1804             :  * stores the index into the @id pointer, then stores the entry at
    1805             :  * that index.  A concurrent lookup will not see an uninitialised @id.
    1806             :  *
    1807             :  * Context: Any context.  Expects xa_lock to be held on entry.  May
    1808             :  * release and reacquire xa_lock if @gfp flags permit.
    1809             :  * Return: 0 on success, -ENOMEM if memory could not be allocated or
    1810             :  * -EBUSY if there are no free entries in @limit.
    1811             :  */
    1812           0 : int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
    1813             :                 struct xa_limit limit, gfp_t gfp)
    1814             : {
    1815           0 :         XA_STATE(xas, xa, 0);
    1816             : 
    1817           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    1818             :                 return -EINVAL;
    1819           0 :         if (WARN_ON_ONCE(!xa_track_free(xa)))
    1820             :                 return -EINVAL;
    1821             : 
    1822           0 :         if (!entry)
    1823           0 :                 entry = XA_ZERO_ENTRY;
    1824             : 
    1825             :         do {
    1826           0 :                 xas.xa_index = limit.min;
    1827           0 :                 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
    1828           0 :                 if (xas.xa_node == XAS_RESTART)
    1829           0 :                         xas_set_err(&xas, -EBUSY);
    1830             :                 else
    1831           0 :                         *id = xas.xa_index;
    1832           0 :                 xas_store(&xas, entry);
    1833           0 :                 xas_clear_mark(&xas, XA_FREE_MARK);
    1834           0 :         } while (__xas_nomem(&xas, gfp));
    1835             : 
    1836           0 :         return xas_error(&xas);
    1837             : }
    1838             : EXPORT_SYMBOL(__xa_alloc);
    1839             : 
    1840             : /**
    1841             :  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
    1842             :  * @xa: XArray.
    1843             :  * @id: Pointer to ID.
    1844             :  * @entry: New entry.
    1845             :  * @limit: Range of allocated ID.
    1846             :  * @next: Pointer to next ID to allocate.
    1847             :  * @gfp: Memory allocation flags.
    1848             :  *
    1849             :  * Finds an empty entry in @xa between @limit.min and @limit.max,
    1850             :  * stores the index into the @id pointer, then stores the entry at
    1851             :  * that index.  A concurrent lookup will not see an uninitialised @id.
    1852             :  * The search for an empty entry will start at @next and will wrap
    1853             :  * around if necessary.
    1854             :  *
    1855             :  * Context: Any context.  Expects xa_lock to be held on entry.  May
    1856             :  * release and reacquire xa_lock if @gfp flags permit.
    1857             :  * Return: 0 if the allocation succeeded without wrapping.  1 if the
    1858             :  * allocation succeeded after wrapping, -ENOMEM if memory could not be
    1859             :  * allocated or -EBUSY if there are no free entries in @limit.
    1860             :  */
    1861           0 : int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
    1862             :                 struct xa_limit limit, u32 *next, gfp_t gfp)
    1863             : {
    1864           0 :         u32 min = limit.min;
    1865             :         int ret;
    1866             : 
    1867           0 :         limit.min = max(min, *next);
    1868           0 :         ret = __xa_alloc(xa, id, entry, limit, gfp);
    1869           0 :         if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
    1870           0 :                 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
    1871           0 :                 ret = 1;
    1872             :         }
    1873             : 
    1874           0 :         if (ret < 0 && limit.min > min) {
    1875           0 :                 limit.min = min;
    1876           0 :                 ret = __xa_alloc(xa, id, entry, limit, gfp);
    1877           0 :                 if (ret == 0)
    1878           0 :                         ret = 1;
    1879             :         }
    1880             : 
    1881           0 :         if (ret >= 0) {
    1882           0 :                 *next = *id + 1;
    1883           0 :                 if (*next == 0)
    1884           0 :                         xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
    1885             :         }
    1886           0 :         return ret;
    1887             : }
    1888             : EXPORT_SYMBOL(__xa_alloc_cyclic);
    1889             : 
    1890             : /**
    1891             :  * __xa_set_mark() - Set this mark on this entry while locked.
    1892             :  * @xa: XArray.
    1893             :  * @index: Index of entry.
    1894             :  * @mark: Mark number.
    1895             :  *
    1896             :  * Attempting to set a mark on a %NULL entry does not succeed.
    1897             :  *
    1898             :  * Context: Any context.  Expects xa_lock to be held on entry.
    1899             :  */
    1900           0 : void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
    1901             : {
    1902           0 :         XA_STATE(xas, xa, index);
    1903           0 :         void *entry = xas_load(&xas);
    1904             : 
    1905           0 :         if (entry)
    1906           0 :                 xas_set_mark(&xas, mark);
    1907           0 : }
    1908             : EXPORT_SYMBOL(__xa_set_mark);
    1909             : 
    1910             : /**
    1911             :  * __xa_clear_mark() - Clear this mark on this entry while locked.
    1912             :  * @xa: XArray.
    1913             :  * @index: Index of entry.
    1914             :  * @mark: Mark number.
    1915             :  *
    1916             :  * Context: Any context.  Expects xa_lock to be held on entry.
    1917             :  */
    1918           0 : void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
    1919             : {
    1920           0 :         XA_STATE(xas, xa, index);
    1921           0 :         void *entry = xas_load(&xas);
    1922             : 
    1923           0 :         if (entry)
    1924           0 :                 xas_clear_mark(&xas, mark);
    1925           0 : }
    1926             : EXPORT_SYMBOL(__xa_clear_mark);
    1927             : 
    1928             : /**
    1929             :  * xa_get_mark() - Inquire whether this mark is set on this entry.
    1930             :  * @xa: XArray.
    1931             :  * @index: Index of entry.
    1932             :  * @mark: Mark number.
    1933             :  *
    1934             :  * This function uses the RCU read lock, so the result may be out of date
    1935             :  * by the time it returns.  If you need the result to be stable, use a lock.
    1936             :  *
    1937             :  * Context: Any context.  Takes and releases the RCU lock.
    1938             :  * Return: True if the entry at @index has this mark set, false if it doesn't.
    1939             :  */
    1940           0 : bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
    1941             : {
    1942           0 :         XA_STATE(xas, xa, index);
    1943             :         void *entry;
    1944             : 
    1945             :         rcu_read_lock();
    1946           0 :         entry = xas_start(&xas);
    1947           0 :         while (xas_get_mark(&xas, mark)) {
    1948           0 :                 if (!xa_is_node(entry))
    1949             :                         goto found;
    1950           0 :                 entry = xas_descend(&xas, xa_to_node(entry));
    1951             :         }
    1952             :         rcu_read_unlock();
    1953           0 :         return false;
    1954             :  found:
    1955             :         rcu_read_unlock();
    1956           0 :         return true;
    1957             : }
    1958             : EXPORT_SYMBOL(xa_get_mark);
    1959             : 
    1960             : /**
    1961             :  * xa_set_mark() - Set this mark on this entry.
    1962             :  * @xa: XArray.
    1963             :  * @index: Index of entry.
    1964             :  * @mark: Mark number.
    1965             :  *
    1966             :  * Attempting to set a mark on a %NULL entry does not succeed.
    1967             :  *
    1968             :  * Context: Process context.  Takes and releases the xa_lock.
    1969             :  */
    1970           0 : void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
    1971             : {
    1972           0 :         xa_lock(xa);
    1973           0 :         __xa_set_mark(xa, index, mark);
    1974           0 :         xa_unlock(xa);
    1975           0 : }
    1976             : EXPORT_SYMBOL(xa_set_mark);
    1977             : 
    1978             : /**
    1979             :  * xa_clear_mark() - Clear this mark on this entry.
    1980             :  * @xa: XArray.
    1981             :  * @index: Index of entry.
    1982             :  * @mark: Mark number.
    1983             :  *
    1984             :  * Clearing a mark always succeeds.
    1985             :  *
    1986             :  * Context: Process context.  Takes and releases the xa_lock.
    1987             :  */
    1988           0 : void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
    1989             : {
    1990           0 :         xa_lock(xa);
    1991           0 :         __xa_clear_mark(xa, index, mark);
    1992           0 :         xa_unlock(xa);
    1993           0 : }
    1994             : EXPORT_SYMBOL(xa_clear_mark);
    1995             : 
    1996             : /**
    1997             :  * xa_find() - Search the XArray for an entry.
    1998             :  * @xa: XArray.
    1999             :  * @indexp: Pointer to an index.
    2000             :  * @max: Maximum index to search to.
    2001             :  * @filter: Selection criterion.
    2002             :  *
    2003             :  * Finds the entry in @xa which matches the @filter, and has the lowest
    2004             :  * index that is at least @indexp and no more than @max.
    2005             :  * If an entry is found, @indexp is updated to be the index of the entry.
    2006             :  * This function is protected by the RCU read lock, so it may not find
    2007             :  * entries which are being simultaneously added.  It will not return an
    2008             :  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
    2009             :  *
    2010             :  * Context: Any context.  Takes and releases the RCU lock.
    2011             :  * Return: The entry, if found, otherwise %NULL.
    2012             :  */
    2013           0 : void *xa_find(struct xarray *xa, unsigned long *indexp,
    2014             :                         unsigned long max, xa_mark_t filter)
    2015             : {
    2016           0 :         XA_STATE(xas, xa, *indexp);
    2017             :         void *entry;
    2018             : 
    2019             :         rcu_read_lock();
    2020             :         do {
    2021           0 :                 if ((__force unsigned int)filter < XA_MAX_MARKS)
    2022           0 :                         entry = xas_find_marked(&xas, max, filter);
    2023             :                 else
    2024           0 :                         entry = xas_find(&xas, max);
    2025           0 :         } while (xas_retry(&xas, entry));
    2026             :         rcu_read_unlock();
    2027             : 
    2028           0 :         if (entry)
    2029           0 :                 *indexp = xas.xa_index;
    2030           0 :         return entry;
    2031             : }
    2032             : EXPORT_SYMBOL(xa_find);
    2033             : 
    2034             : static bool xas_sibling(struct xa_state *xas)
    2035             : {
    2036           0 :         struct xa_node *node = xas->xa_node;
    2037             :         unsigned long mask;
    2038             : 
    2039             :         if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
    2040             :                 return false;
    2041             :         mask = (XA_CHUNK_SIZE << node->shift) - 1;
    2042             :         return (xas->xa_index & mask) >
    2043             :                 ((unsigned long)xas->xa_offset << node->shift);
    2044             : }
    2045             : 
    2046             : /**
    2047             :  * xa_find_after() - Search the XArray for a present entry.
    2048             :  * @xa: XArray.
    2049             :  * @indexp: Pointer to an index.
    2050             :  * @max: Maximum index to search to.
    2051             :  * @filter: Selection criterion.
    2052             :  *
    2053             :  * Finds the entry in @xa which matches the @filter and has the lowest
    2054             :  * index that is above @indexp and no more than @max.
    2055             :  * If an entry is found, @indexp is updated to be the index of the entry.
    2056             :  * This function is protected by the RCU read lock, so it may miss entries
    2057             :  * which are being simultaneously added.  It will not return an
    2058             :  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
    2059             :  *
    2060             :  * Context: Any context.  Takes and releases the RCU lock.
    2061             :  * Return: The pointer, if found, otherwise %NULL.
    2062             :  */
    2063           0 : void *xa_find_after(struct xarray *xa, unsigned long *indexp,
    2064             :                         unsigned long max, xa_mark_t filter)
    2065             : {
    2066           0 :         XA_STATE(xas, xa, *indexp + 1);
    2067             :         void *entry;
    2068             : 
    2069           0 :         if (xas.xa_index == 0)
    2070             :                 return NULL;
    2071             : 
    2072             :         rcu_read_lock();
    2073             :         for (;;) {
    2074           0 :                 if ((__force unsigned int)filter < XA_MAX_MARKS)
    2075           0 :                         entry = xas_find_marked(&xas, max, filter);
    2076             :                 else
    2077           0 :                         entry = xas_find(&xas, max);
    2078             : 
    2079           0 :                 if (xas_invalid(&xas))
    2080             :                         break;
    2081           0 :                 if (xas_sibling(&xas))
    2082             :                         continue;
    2083           0 :                 if (!xas_retry(&xas, entry))
    2084             :                         break;
    2085             :         }
    2086             :         rcu_read_unlock();
    2087             : 
    2088           0 :         if (entry)
    2089           0 :                 *indexp = xas.xa_index;
    2090             :         return entry;
    2091             : }
    2092             : EXPORT_SYMBOL(xa_find_after);
    2093             : 
    2094           0 : static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
    2095             :                         unsigned long max, unsigned int n)
    2096             : {
    2097             :         void *entry;
    2098           0 :         unsigned int i = 0;
    2099             : 
    2100             :         rcu_read_lock();
    2101           0 :         xas_for_each(xas, entry, max) {
    2102           0 :                 if (xas_retry(xas, entry))
    2103           0 :                         continue;
    2104           0 :                 dst[i++] = entry;
    2105           0 :                 if (i == n)
    2106             :                         break;
    2107             :         }
    2108             :         rcu_read_unlock();
    2109             : 
    2110           0 :         return i;
    2111             : }
    2112             : 
    2113           0 : static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
    2114             :                         unsigned long max, unsigned int n, xa_mark_t mark)
    2115             : {
    2116             :         void *entry;
    2117           0 :         unsigned int i = 0;
    2118             : 
    2119             :         rcu_read_lock();
    2120           0 :         xas_for_each_marked(xas, entry, max, mark) {
    2121           0 :                 if (xas_retry(xas, entry))
    2122           0 :                         continue;
    2123           0 :                 dst[i++] = entry;
    2124           0 :                 if (i == n)
    2125             :                         break;
    2126             :         }
    2127             :         rcu_read_unlock();
    2128             : 
    2129           0 :         return i;
    2130             : }
    2131             : 
    2132             : /**
    2133             :  * xa_extract() - Copy selected entries from the XArray into a normal array.
    2134             :  * @xa: The source XArray to copy from.
    2135             :  * @dst: The buffer to copy entries into.
    2136             :  * @start: The first index in the XArray eligible to be selected.
    2137             :  * @max: The last index in the XArray eligible to be selected.
    2138             :  * @n: The maximum number of entries to copy.
    2139             :  * @filter: Selection criterion.
    2140             :  *
    2141             :  * Copies up to @n entries that match @filter from the XArray.  The
    2142             :  * copied entries will have indices between @start and @max, inclusive.
    2143             :  *
    2144             :  * The @filter may be an XArray mark value, in which case entries which are
    2145             :  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
    2146             :  * which case all entries which are not %NULL will be copied.
    2147             :  *
    2148             :  * The entries returned may not represent a snapshot of the XArray at a
    2149             :  * moment in time.  For example, if another thread stores to index 5, then
    2150             :  * index 10, calling xa_extract() may return the old contents of index 5
    2151             :  * and the new contents of index 10.  Indices not modified while this
    2152             :  * function is running will not be skipped.
    2153             :  *
    2154             :  * If you need stronger guarantees, holding the xa_lock across calls to this
    2155             :  * function will prevent concurrent modification.
    2156             :  *
    2157             :  * Context: Any context.  Takes and releases the RCU lock.
    2158             :  * Return: The number of entries copied.
    2159             :  */
    2160           0 : unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
    2161             :                         unsigned long max, unsigned int n, xa_mark_t filter)
    2162             : {
    2163           0 :         XA_STATE(xas, xa, start);
    2164             : 
    2165           0 :         if (!n)
    2166             :                 return 0;
    2167             : 
    2168           0 :         if ((__force unsigned int)filter < XA_MAX_MARKS)
    2169           0 :                 return xas_extract_marked(&xas, dst, max, n, filter);
    2170           0 :         return xas_extract_present(&xas, dst, max, n);
    2171             : }
    2172             : EXPORT_SYMBOL(xa_extract);
    2173             : 
    2174             : /**
    2175             :  * xa_delete_node() - Private interface for workingset code.
    2176             :  * @node: Node to be removed from the tree.
    2177             :  * @update: Function to call to update ancestor nodes.
    2178             :  *
    2179             :  * Context: xa_lock must be held on entry and will not be released.
    2180             :  */
    2181           0 : void xa_delete_node(struct xa_node *node, xa_update_node_t update)
    2182             : {
    2183           0 :         struct xa_state xas = {
    2184           0 :                 .xa = node->array,
    2185           0 :                 .xa_index = (unsigned long)node->offset <<
    2186           0 :                                 (node->shift + XA_CHUNK_SHIFT),
    2187           0 :                 .xa_shift = node->shift + XA_CHUNK_SHIFT,
    2188             :                 .xa_offset = node->offset,
    2189           0 :                 .xa_node = xa_parent_locked(node->array, node),
    2190             :                 .xa_update = update,
    2191             :         };
    2192             : 
    2193           0 :         xas_store(&xas, NULL);
    2194           0 : }
    2195             : EXPORT_SYMBOL_GPL(xa_delete_node);      /* For the benefit of the test suite */
    2196             : 
    2197             : /**
    2198             :  * xa_destroy() - Free all internal data structures.
    2199             :  * @xa: XArray.
    2200             :  *
    2201             :  * After calling this function, the XArray is empty and has freed all memory
    2202             :  * allocated for its internal data structures.  You are responsible for
    2203             :  * freeing the objects referenced by the XArray.
    2204             :  *
    2205             :  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
    2206             :  */
    2207           0 : void xa_destroy(struct xarray *xa)
    2208             : {
    2209           0 :         XA_STATE(xas, xa, 0);
    2210             :         unsigned long flags;
    2211             :         void *entry;
    2212             : 
    2213           0 :         xas.xa_node = NULL;
    2214           0 :         xas_lock_irqsave(&xas, flags);
    2215           0 :         entry = xa_head_locked(xa);
    2216           0 :         RCU_INIT_POINTER(xa->xa_head, NULL);
    2217           0 :         xas_init_marks(&xas);
    2218           0 :         if (xa_zero_busy(xa))
    2219           0 :                 xa_mark_clear(xa, XA_FREE_MARK);
    2220             :         /* lockdep checks we're still holding the lock in xas_free_nodes() */
    2221           0 :         if (xa_is_node(entry))
    2222           0 :                 xas_free_nodes(&xas, xa_to_node(entry));
    2223           0 :         xas_unlock_irqrestore(&xas, flags);
    2224           0 : }
    2225             : EXPORT_SYMBOL(xa_destroy);
    2226             : 
    2227             : #ifdef XA_DEBUG
    2228             : void xa_dump_node(const struct xa_node *node)
    2229             : {
    2230             :         unsigned i, j;
    2231             : 
    2232             :         if (!node)
    2233             :                 return;
    2234             :         if ((unsigned long)node & 3) {
    2235             :                 pr_cont("node %px\n", node);
    2236             :                 return;
    2237             :         }
    2238             : 
    2239             :         pr_cont("node %px %s %d parent %px shift %d count %d values %d "
    2240             :                 "array %px list %px %px marks",
    2241             :                 node, node->parent ? "offset" : "max", node->offset,
    2242             :                 node->parent, node->shift, node->count, node->nr_values,
    2243             :                 node->array, node->private_list.prev, node->private_list.next);
    2244             :         for (i = 0; i < XA_MAX_MARKS; i++)
    2245             :                 for (j = 0; j < XA_MARK_LONGS; j++)
    2246             :                         pr_cont(" %lx", node->marks[i][j]);
    2247             :         pr_cont("\n");
    2248             : }
    2249             : 
    2250             : void xa_dump_index(unsigned long index, unsigned int shift)
    2251             : {
    2252             :         if (!shift)
    2253             :                 pr_info("%lu: ", index);
    2254             :         else if (shift >= BITS_PER_LONG)
    2255             :                 pr_info("0-%lu: ", ~0UL);
    2256             :         else
    2257             :                 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
    2258             : }
    2259             : 
    2260             : void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
    2261             : {
    2262             :         if (!entry)
    2263             :                 return;
    2264             : 
    2265             :         xa_dump_index(index, shift);
    2266             : 
    2267             :         if (xa_is_node(entry)) {
    2268             :                 if (shift == 0) {
    2269             :                         pr_cont("%px\n", entry);
    2270             :                 } else {
    2271             :                         unsigned long i;
    2272             :                         struct xa_node *node = xa_to_node(entry);
    2273             :                         xa_dump_node(node);
    2274             :                         for (i = 0; i < XA_CHUNK_SIZE; i++)
    2275             :                                 xa_dump_entry(node->slots[i],
    2276             :                                       index + (i << node->shift), node->shift);
    2277             :                 }
    2278             :         } else if (xa_is_value(entry))
    2279             :                 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
    2280             :                                                 xa_to_value(entry), entry);
    2281             :         else if (!xa_is_internal(entry))
    2282             :                 pr_cont("%px\n", entry);
    2283             :         else if (xa_is_retry(entry))
    2284             :                 pr_cont("retry (%ld)\n", xa_to_internal(entry));
    2285             :         else if (xa_is_sibling(entry))
    2286             :                 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
    2287             :         else if (xa_is_zero(entry))
    2288             :                 pr_cont("zero (%ld)\n", xa_to_internal(entry));
    2289             :         else
    2290             :                 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
    2291             : }
    2292             : 
    2293             : void xa_dump(const struct xarray *xa)
    2294             : {
    2295             :         void *entry = xa->xa_head;
    2296             :         unsigned int shift = 0;
    2297             : 
    2298             :         pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
    2299             :                         xa->xa_flags, xa_marked(xa, XA_MARK_0),
    2300             :                         xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
    2301             :         if (xa_is_node(entry))
    2302             :                 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
    2303             :         xa_dump_entry(entry, 0, shift);
    2304             : }
    2305             : #endif

Generated by: LCOV version 1.14