Line data Source code
1 : #include <linux/gfp.h>
2 : #include <linux/highmem.h>
3 : #include <linux/kernel.h>
4 : #include <linux/mmdebug.h>
5 : #include <linux/mm_types.h>
6 : #include <linux/mm_inline.h>
7 : #include <linux/pagemap.h>
8 : #include <linux/rcupdate.h>
9 : #include <linux/smp.h>
10 : #include <linux/swap.h>
11 : #include <linux/rmap.h>
12 :
13 : #include <asm/pgalloc.h>
14 : #include <asm/tlb.h>
15 :
16 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
17 :
18 0 : static bool tlb_next_batch(struct mmu_gather *tlb)
19 : {
20 : struct mmu_gather_batch *batch;
21 :
22 : /* Limit batching if we have delayed rmaps pending */
23 0 : if (tlb->delayed_rmap && tlb->active != &tlb->local)
24 : return false;
25 :
26 0 : batch = tlb->active;
27 0 : if (batch->next) {
28 0 : tlb->active = batch->next;
29 0 : return true;
30 : }
31 :
32 0 : if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
33 : return false;
34 :
35 0 : batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
36 0 : if (!batch)
37 : return false;
38 :
39 0 : tlb->batch_count++;
40 0 : batch->next = NULL;
41 0 : batch->nr = 0;
42 0 : batch->max = MAX_GATHER_BATCH;
43 :
44 0 : tlb->active->next = batch;
45 0 : tlb->active = batch;
46 :
47 0 : return true;
48 : }
49 :
50 : #ifdef CONFIG_SMP
51 : static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
52 : {
53 : for (int i = 0; i < batch->nr; i++) {
54 : struct encoded_page *enc = batch->encoded_pages[i];
55 :
56 : if (encoded_page_flags(enc)) {
57 : struct page *page = encoded_page_ptr(enc);
58 : page_remove_rmap(page, vma, false);
59 : }
60 : }
61 : }
62 :
63 : /**
64 : * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
65 : * @tlb: the current mmu_gather
66 : *
67 : * Note that because of how tlb_next_batch() above works, we will
68 : * never start multiple new batches with pending delayed rmaps, so
69 : * we only need to walk through the current active batch and the
70 : * original local one.
71 : */
72 : void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
73 : {
74 : if (!tlb->delayed_rmap)
75 : return;
76 :
77 : tlb_flush_rmap_batch(&tlb->local, vma);
78 : if (tlb->active != &tlb->local)
79 : tlb_flush_rmap_batch(tlb->active, vma);
80 : tlb->delayed_rmap = 0;
81 : }
82 : #endif
83 :
84 0 : static void tlb_batch_pages_flush(struct mmu_gather *tlb)
85 : {
86 : struct mmu_gather_batch *batch;
87 :
88 0 : for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
89 0 : struct encoded_page **pages = batch->encoded_pages;
90 :
91 : do {
92 : /*
93 : * limit free batch count when PAGE_SIZE > 4K
94 : */
95 0 : unsigned int nr = min(512U, batch->nr);
96 :
97 0 : free_pages_and_swap_cache(pages, nr);
98 0 : pages += nr;
99 0 : batch->nr -= nr;
100 :
101 0 : cond_resched();
102 0 : } while (batch->nr);
103 : }
104 0 : tlb->active = &tlb->local;
105 0 : }
106 :
107 : static void tlb_batch_list_free(struct mmu_gather *tlb)
108 : {
109 : struct mmu_gather_batch *batch, *next;
110 :
111 0 : for (batch = tlb->local.next; batch; batch = next) {
112 0 : next = batch->next;
113 0 : free_pages((unsigned long)batch, 0);
114 : }
115 0 : tlb->local.next = NULL;
116 : }
117 :
118 0 : bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size)
119 : {
120 : struct mmu_gather_batch *batch;
121 :
122 : VM_BUG_ON(!tlb->end);
123 :
124 : #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
125 : VM_WARN_ON(tlb->page_size != page_size);
126 : #endif
127 :
128 0 : batch = tlb->active;
129 : /*
130 : * Add the page and check if we are full. If so
131 : * force a flush.
132 : */
133 0 : batch->encoded_pages[batch->nr++] = page;
134 0 : if (batch->nr == batch->max) {
135 0 : if (!tlb_next_batch(tlb))
136 : return true;
137 0 : batch = tlb->active;
138 : }
139 : VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page));
140 :
141 : return false;
142 : }
143 :
144 : #endif /* MMU_GATHER_NO_GATHER */
145 :
146 : #ifdef CONFIG_MMU_GATHER_TABLE_FREE
147 :
148 : static void __tlb_remove_table_free(struct mmu_table_batch *batch)
149 : {
150 : int i;
151 :
152 : for (i = 0; i < batch->nr; i++)
153 : __tlb_remove_table(batch->tables[i]);
154 :
155 : free_page((unsigned long)batch);
156 : }
157 :
158 : #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
159 :
160 : /*
161 : * Semi RCU freeing of the page directories.
162 : *
163 : * This is needed by some architectures to implement software pagetable walkers.
164 : *
165 : * gup_fast() and other software pagetable walkers do a lockless page-table
166 : * walk and therefore needs some synchronization with the freeing of the page
167 : * directories. The chosen means to accomplish that is by disabling IRQs over
168 : * the walk.
169 : *
170 : * Architectures that use IPIs to flush TLBs will then automagically DTRT,
171 : * since we unlink the page, flush TLBs, free the page. Since the disabling of
172 : * IRQs delays the completion of the TLB flush we can never observe an already
173 : * freed page.
174 : *
175 : * Architectures that do not have this (PPC) need to delay the freeing by some
176 : * other means, this is that means.
177 : *
178 : * What we do is batch the freed directory pages (tables) and RCU free them.
179 : * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
180 : * holds off grace periods.
181 : *
182 : * However, in order to batch these pages we need to allocate storage, this
183 : * allocation is deep inside the MM code and can thus easily fail on memory
184 : * pressure. To guarantee progress we fall back to single table freeing, see
185 : * the implementation of tlb_remove_table_one().
186 : *
187 : */
188 :
189 : static void tlb_remove_table_smp_sync(void *arg)
190 : {
191 : /* Simply deliver the interrupt */
192 : }
193 :
194 : void tlb_remove_table_sync_one(void)
195 : {
196 : /*
197 : * This isn't an RCU grace period and hence the page-tables cannot be
198 : * assumed to be actually RCU-freed.
199 : *
200 : * It is however sufficient for software page-table walkers that rely on
201 : * IRQ disabling.
202 : */
203 : smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
204 : }
205 :
206 : static void tlb_remove_table_rcu(struct rcu_head *head)
207 : {
208 : __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
209 : }
210 :
211 : static void tlb_remove_table_free(struct mmu_table_batch *batch)
212 : {
213 : call_rcu(&batch->rcu, tlb_remove_table_rcu);
214 : }
215 :
216 : #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
217 :
218 : static void tlb_remove_table_free(struct mmu_table_batch *batch)
219 : {
220 : __tlb_remove_table_free(batch);
221 : }
222 :
223 : #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
224 :
225 : /*
226 : * If we want tlb_remove_table() to imply TLB invalidates.
227 : */
228 : static inline void tlb_table_invalidate(struct mmu_gather *tlb)
229 : {
230 : if (tlb_needs_table_invalidate()) {
231 : /*
232 : * Invalidate page-table caches used by hardware walkers. Then
233 : * we still need to RCU-sched wait while freeing the pages
234 : * because software walkers can still be in-flight.
235 : */
236 : tlb_flush_mmu_tlbonly(tlb);
237 : }
238 : }
239 :
240 : static void tlb_remove_table_one(void *table)
241 : {
242 : tlb_remove_table_sync_one();
243 : __tlb_remove_table(table);
244 : }
245 :
246 : static void tlb_table_flush(struct mmu_gather *tlb)
247 : {
248 : struct mmu_table_batch **batch = &tlb->batch;
249 :
250 : if (*batch) {
251 : tlb_table_invalidate(tlb);
252 : tlb_remove_table_free(*batch);
253 : *batch = NULL;
254 : }
255 : }
256 :
257 : void tlb_remove_table(struct mmu_gather *tlb, void *table)
258 : {
259 : struct mmu_table_batch **batch = &tlb->batch;
260 :
261 : if (*batch == NULL) {
262 : *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
263 : if (*batch == NULL) {
264 : tlb_table_invalidate(tlb);
265 : tlb_remove_table_one(table);
266 : return;
267 : }
268 : (*batch)->nr = 0;
269 : }
270 :
271 : (*batch)->tables[(*batch)->nr++] = table;
272 : if ((*batch)->nr == MAX_TABLE_BATCH)
273 : tlb_table_flush(tlb);
274 : }
275 :
276 : static inline void tlb_table_init(struct mmu_gather *tlb)
277 : {
278 : tlb->batch = NULL;
279 : }
280 :
281 : #else /* !CONFIG_MMU_GATHER_TABLE_FREE */
282 :
283 : static inline void tlb_table_flush(struct mmu_gather *tlb) { }
284 : static inline void tlb_table_init(struct mmu_gather *tlb) { }
285 :
286 : #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
287 :
288 : static void tlb_flush_mmu_free(struct mmu_gather *tlb)
289 : {
290 0 : tlb_table_flush(tlb);
291 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
292 0 : tlb_batch_pages_flush(tlb);
293 : #endif
294 : }
295 :
296 0 : void tlb_flush_mmu(struct mmu_gather *tlb)
297 : {
298 0 : tlb_flush_mmu_tlbonly(tlb);
299 0 : tlb_flush_mmu_free(tlb);
300 0 : }
301 :
302 : static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
303 : bool fullmm)
304 : {
305 0 : tlb->mm = mm;
306 0 : tlb->fullmm = fullmm;
307 :
308 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
309 0 : tlb->need_flush_all = 0;
310 0 : tlb->local.next = NULL;
311 0 : tlb->local.nr = 0;
312 0 : tlb->local.max = ARRAY_SIZE(tlb->__pages);
313 0 : tlb->active = &tlb->local;
314 0 : tlb->batch_count = 0;
315 : #endif
316 0 : tlb->delayed_rmap = 0;
317 :
318 0 : tlb_table_init(tlb);
319 : #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
320 : tlb->page_size = 0;
321 : #endif
322 :
323 0 : __tlb_reset_range(tlb);
324 0 : inc_tlb_flush_pending(tlb->mm);
325 : }
326 :
327 : /**
328 : * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
329 : * @tlb: the mmu_gather structure to initialize
330 : * @mm: the mm_struct of the target address space
331 : *
332 : * Called to initialize an (on-stack) mmu_gather structure for page-table
333 : * tear-down from @mm.
334 : */
335 0 : void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
336 : {
337 0 : __tlb_gather_mmu(tlb, mm, false);
338 0 : }
339 :
340 : /**
341 : * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
342 : * @tlb: the mmu_gather structure to initialize
343 : * @mm: the mm_struct of the target address space
344 : *
345 : * In this case, @mm is without users and we're going to destroy the
346 : * full address space (exit/execve).
347 : *
348 : * Called to initialize an (on-stack) mmu_gather structure for page-table
349 : * tear-down from @mm.
350 : */
351 0 : void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
352 : {
353 0 : __tlb_gather_mmu(tlb, mm, true);
354 0 : }
355 :
356 : /**
357 : * tlb_finish_mmu - finish an mmu_gather structure
358 : * @tlb: the mmu_gather structure to finish
359 : *
360 : * Called at the end of the shootdown operation to free up any resources that
361 : * were required.
362 : */
363 0 : void tlb_finish_mmu(struct mmu_gather *tlb)
364 : {
365 : /*
366 : * If there are parallel threads are doing PTE changes on same range
367 : * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
368 : * flush by batching, one thread may end up seeing inconsistent PTEs
369 : * and result in having stale TLB entries. So flush TLB forcefully
370 : * if we detect parallel PTE batching threads.
371 : *
372 : * However, some syscalls, e.g. munmap(), may free page tables, this
373 : * needs force flush everything in the given range. Otherwise this
374 : * may result in having stale TLB entries for some architectures,
375 : * e.g. aarch64, that could specify flush what level TLB.
376 : */
377 0 : if (mm_tlb_flush_nested(tlb->mm)) {
378 : /*
379 : * The aarch64 yields better performance with fullmm by
380 : * avoiding multiple CPUs spamming TLBI messages at the
381 : * same time.
382 : *
383 : * On x86 non-fullmm doesn't yield significant difference
384 : * against fullmm.
385 : */
386 0 : tlb->fullmm = 1;
387 0 : __tlb_reset_range(tlb);
388 0 : tlb->freed_tables = 1;
389 : }
390 :
391 0 : tlb_flush_mmu(tlb);
392 :
393 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
394 0 : tlb_batch_list_free(tlb);
395 : #endif
396 0 : dec_tlb_flush_pending(tlb->mm);
397 0 : }
|