LCOV - code coverage report
Current view: top level - mm - slab_common.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 202 375 53.9 %
Date: 2023-03-27 20:00:47 Functions: 26 48 54.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Slab allocator functions that are independent of the allocator strategy
       4             :  *
       5             :  * (C) 2012 Christoph Lameter <cl@linux.com>
       6             :  */
       7             : #include <linux/slab.h>
       8             : 
       9             : #include <linux/mm.h>
      10             : #include <linux/poison.h>
      11             : #include <linux/interrupt.h>
      12             : #include <linux/memory.h>
      13             : #include <linux/cache.h>
      14             : #include <linux/compiler.h>
      15             : #include <linux/kfence.h>
      16             : #include <linux/module.h>
      17             : #include <linux/cpu.h>
      18             : #include <linux/uaccess.h>
      19             : #include <linux/seq_file.h>
      20             : #include <linux/proc_fs.h>
      21             : #include <linux/debugfs.h>
      22             : #include <linux/kasan.h>
      23             : #include <asm/cacheflush.h>
      24             : #include <asm/tlbflush.h>
      25             : #include <asm/page.h>
      26             : #include <linux/memcontrol.h>
      27             : #include <linux/stackdepot.h>
      28             : 
      29             : #include "internal.h"
      30             : #include "slab.h"
      31             : 
      32             : #define CREATE_TRACE_POINTS
      33             : #include <trace/events/kmem.h>
      34             : 
      35             : enum slab_state slab_state;
      36             : LIST_HEAD(slab_caches);
      37             : DEFINE_MUTEX(slab_mutex);
      38             : struct kmem_cache *kmem_cache;
      39             : 
      40             : static LIST_HEAD(slab_caches_to_rcu_destroy);
      41             : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
      42             : static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
      43             :                     slab_caches_to_rcu_destroy_workfn);
      44             : 
      45             : /*
      46             :  * Set of flags that will prevent slab merging
      47             :  */
      48             : #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
      49             :                 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
      50             :                 SLAB_FAILSLAB | kasan_never_merge())
      51             : 
      52             : #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
      53             :                          SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
      54             : 
      55             : /*
      56             :  * Merge control. If this is set then no merging of slab caches will occur.
      57             :  */
      58             : static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
      59             : 
      60           0 : static int __init setup_slab_nomerge(char *str)
      61             : {
      62           0 :         slab_nomerge = true;
      63           0 :         return 1;
      64             : }
      65             : 
      66           0 : static int __init setup_slab_merge(char *str)
      67             : {
      68           0 :         slab_nomerge = false;
      69           0 :         return 1;
      70             : }
      71             : 
      72             : #ifdef CONFIG_SLUB
      73             : __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
      74             : __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
      75             : #endif
      76             : 
      77             : __setup("slab_nomerge", setup_slab_nomerge);
      78             : __setup("slab_merge", setup_slab_merge);
      79             : 
      80             : /*
      81             :  * Determine the size of a slab object
      82             :  */
      83           0 : unsigned int kmem_cache_size(struct kmem_cache *s)
      84             : {
      85           0 :         return s->object_size;
      86             : }
      87             : EXPORT_SYMBOL(kmem_cache_size);
      88             : 
      89             : #ifdef CONFIG_DEBUG_VM
      90             : static int kmem_cache_sanity_check(const char *name, unsigned int size)
      91             : {
      92             :         if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
      93             :                 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
      94             :                 return -EINVAL;
      95             :         }
      96             : 
      97             :         WARN_ON(strchr(name, ' '));     /* It confuses parsers */
      98             :         return 0;
      99             : }
     100             : #else
     101             : static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
     102             : {
     103             :         return 0;
     104             : }
     105             : #endif
     106             : 
     107             : /*
     108             :  * Figure out what the alignment of the objects will be given a set of
     109             :  * flags, a user specified alignment and the size of the objects.
     110             :  */
     111             : static unsigned int calculate_alignment(slab_flags_t flags,
     112             :                 unsigned int align, unsigned int size)
     113             : {
     114             :         /*
     115             :          * If the user wants hardware cache aligned objects then follow that
     116             :          * suggestion if the object is sufficiently large.
     117             :          *
     118             :          * The hardware cache alignment cannot override the specified
     119             :          * alignment though. If that is greater then use it.
     120             :          */
     121         102 :         if (flags & SLAB_HWCACHE_ALIGN) {
     122             :                 unsigned int ralign;
     123             : 
     124          29 :                 ralign = cache_line_size();
     125          29 :                 while (size <= ralign / 2)
     126             :                         ralign /= 2;
     127          29 :                 align = max(align, ralign);
     128             :         }
     129             : 
     130         102 :         align = max(align, arch_slab_minalign());
     131             : 
     132         102 :         return ALIGN(align, sizeof(void *));
     133             : }
     134             : 
     135             : /*
     136             :  * Find a mergeable slab cache
     137             :  */
     138          52 : int slab_unmergeable(struct kmem_cache *s)
     139             : {
     140        1119 :         if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
     141             :                 return 1;
     142             : 
     143        1082 :         if (s->ctor)
     144             :                 return 1;
     145             : 
     146             : #ifdef CONFIG_HARDENED_USERCOPY
     147             :         if (s->usersize)
     148             :                 return 1;
     149             : #endif
     150             : 
     151             :         /*
     152             :          * We may have set a slab to be unmergeable during bootstrap.
     153             :          */
     154        1025 :         if (s->refcount < 0)
     155             :                 return 1;
     156             : 
     157          41 :         return 0;
     158             : }
     159             : 
     160          57 : struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
     161             :                 slab_flags_t flags, const char *name, void (*ctor)(void *))
     162             : {
     163             :         struct kmem_cache *s;
     164             : 
     165          57 :         if (slab_nomerge)
     166             :                 return NULL;
     167             : 
     168          57 :         if (ctor)
     169             :                 return NULL;
     170             : 
     171          50 :         size = ALIGN(size, sizeof(void *));
     172          50 :         align = calculate_alignment(flags, align, size);
     173          50 :         size = ALIGN(size, align);
     174          50 :         flags = kmem_cache_flags(size, flags, name);
     175             : 
     176          50 :         if (flags & SLAB_NEVER_MERGE)
     177             :                 return NULL;
     178             : 
     179        1082 :         list_for_each_entry_reverse(s, &slab_caches, list) {
     180        1067 :                 if (slab_unmergeable(s))
     181         181 :                         continue;
     182             : 
     183         886 :                 if (size > s->size)
     184         457 :                         continue;
     185             : 
     186         429 :                 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
     187         171 :                         continue;
     188             :                 /*
     189             :                  * Check if alignment is compatible.
     190             :                  * Courtesy of Adrian Drzewiecki
     191             :                  */
     192         258 :                 if ((s->size & ~(align - 1)) != s->size)
     193           2 :                         continue;
     194             : 
     195         256 :                 if (s->size - size >= sizeof(void *))
     196         223 :                         continue;
     197             : 
     198             :                 if (IS_ENABLED(CONFIG_SLAB) && align &&
     199             :                         (align > s->align || s->align % align))
     200             :                         continue;
     201             : 
     202             :                 return s;
     203             :         }
     204             :         return NULL;
     205             : }
     206             : 
     207          24 : static struct kmem_cache *create_cache(const char *name,
     208             :                 unsigned int object_size, unsigned int align,
     209             :                 slab_flags_t flags, unsigned int useroffset,
     210             :                 unsigned int usersize, void (*ctor)(void *),
     211             :                 struct kmem_cache *root_cache)
     212             : {
     213             :         struct kmem_cache *s;
     214             :         int err;
     215             : 
     216          24 :         if (WARN_ON(useroffset + usersize > object_size))
     217             :                 useroffset = usersize = 0;
     218             : 
     219          24 :         err = -ENOMEM;
     220          48 :         s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
     221          24 :         if (!s)
     222             :                 goto out;
     223             : 
     224          24 :         s->name = name;
     225          24 :         s->size = s->object_size = object_size;
     226          24 :         s->align = align;
     227          24 :         s->ctor = ctor;
     228             : #ifdef CONFIG_HARDENED_USERCOPY
     229             :         s->useroffset = useroffset;
     230             :         s->usersize = usersize;
     231             : #endif
     232             : 
     233          24 :         err = __kmem_cache_create(s, flags);
     234          24 :         if (err)
     235             :                 goto out_free_cache;
     236             : 
     237          24 :         s->refcount = 1;
     238          24 :         list_add(&s->list, &slab_caches);
     239             : out:
     240          24 :         if (err)
     241           0 :                 return ERR_PTR(err);
     242             :         return s;
     243             : 
     244             : out_free_cache:
     245           0 :         kmem_cache_free(kmem_cache, s);
     246             :         goto out;
     247             : }
     248             : 
     249             : /**
     250             :  * kmem_cache_create_usercopy - Create a cache with a region suitable
     251             :  * for copying to userspace
     252             :  * @name: A string which is used in /proc/slabinfo to identify this cache.
     253             :  * @size: The size of objects to be created in this cache.
     254             :  * @align: The required alignment for the objects.
     255             :  * @flags: SLAB flags
     256             :  * @useroffset: Usercopy region offset
     257             :  * @usersize: Usercopy region size
     258             :  * @ctor: A constructor for the objects.
     259             :  *
     260             :  * Cannot be called within a interrupt, but can be interrupted.
     261             :  * The @ctor is run when new pages are allocated by the cache.
     262             :  *
     263             :  * The flags are
     264             :  *
     265             :  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
     266             :  * to catch references to uninitialised memory.
     267             :  *
     268             :  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
     269             :  * for buffer overruns.
     270             :  *
     271             :  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
     272             :  * cacheline.  This can be beneficial if you're counting cycles as closely
     273             :  * as davem.
     274             :  *
     275             :  * Return: a pointer to the cache on success, NULL on failure.
     276             :  */
     277             : struct kmem_cache *
     278          57 : kmem_cache_create_usercopy(const char *name,
     279             :                   unsigned int size, unsigned int align,
     280             :                   slab_flags_t flags,
     281             :                   unsigned int useroffset, unsigned int usersize,
     282             :                   void (*ctor)(void *))
     283             : {
     284          57 :         struct kmem_cache *s = NULL;
     285             :         const char *cache_name;
     286             :         int err;
     287             : 
     288             : #ifdef CONFIG_SLUB_DEBUG
     289             :         /*
     290             :          * If no slub_debug was enabled globally, the static key is not yet
     291             :          * enabled by setup_slub_debug(). Enable it if the cache is being
     292             :          * created with any of the debugging flags passed explicitly.
     293             :          * It's also possible that this is the first cache created with
     294             :          * SLAB_STORE_USER and we should init stack_depot for it.
     295             :          */
     296          57 :         if (flags & SLAB_DEBUG_FLAGS)
     297           0 :                 static_branch_enable(&slub_debug_enabled);
     298          57 :         if (flags & SLAB_STORE_USER)
     299           0 :                 stack_depot_init();
     300             : #endif
     301             : 
     302          57 :         mutex_lock(&slab_mutex);
     303             : 
     304          57 :         err = kmem_cache_sanity_check(name, size);
     305             :         if (err) {
     306             :                 goto out_unlock;
     307             :         }
     308             : 
     309             :         /* Refuse requests with allocator specific flags */
     310          57 :         if (flags & ~SLAB_FLAGS_PERMITTED) {
     311             :                 err = -EINVAL;
     312             :                 goto out_unlock;
     313             :         }
     314             : 
     315             :         /*
     316             :          * Some allocators will constraint the set of valid flags to a subset
     317             :          * of all flags. We expect them to define CACHE_CREATE_MASK in this
     318             :          * case, and we'll just provide them with a sanitized version of the
     319             :          * passed flags.
     320             :          */
     321          57 :         flags &= CACHE_CREATE_MASK;
     322             : 
     323             :         /* Fail closed on bad usersize of useroffset values. */
     324             :         if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
     325             :             WARN_ON(!usersize && useroffset) ||
     326             :             WARN_ON(size < usersize || size - usersize < useroffset))
     327          57 :                 usersize = useroffset = 0;
     328             : 
     329             :         if (!usersize)
     330          57 :                 s = __kmem_cache_alias(name, size, align, flags, ctor);
     331          57 :         if (s)
     332             :                 goto out_unlock;
     333             : 
     334          24 :         cache_name = kstrdup_const(name, GFP_KERNEL);
     335          24 :         if (!cache_name) {
     336             :                 err = -ENOMEM;
     337             :                 goto out_unlock;
     338             :         }
     339             : 
     340          24 :         s = create_cache(cache_name, size,
     341             :                          calculate_alignment(flags, align, size),
     342             :                          flags, useroffset, usersize, ctor, NULL);
     343          24 :         if (IS_ERR(s)) {
     344           0 :                 err = PTR_ERR(s);
     345           0 :                 kfree_const(cache_name);
     346             :         }
     347             : 
     348             : out_unlock:
     349          57 :         mutex_unlock(&slab_mutex);
     350             : 
     351          57 :         if (err) {
     352           0 :                 if (flags & SLAB_PANIC)
     353           0 :                         panic("%s: Failed to create slab '%s'. Error %d\n",
     354             :                                 __func__, name, err);
     355             :                 else {
     356           0 :                         pr_warn("%s(%s) failed with error %d\n",
     357             :                                 __func__, name, err);
     358           0 :                         dump_stack();
     359             :                 }
     360           0 :                 return NULL;
     361             :         }
     362             :         return s;
     363             : }
     364             : EXPORT_SYMBOL(kmem_cache_create_usercopy);
     365             : 
     366             : /**
     367             :  * kmem_cache_create - Create a cache.
     368             :  * @name: A string which is used in /proc/slabinfo to identify this cache.
     369             :  * @size: The size of objects to be created in this cache.
     370             :  * @align: The required alignment for the objects.
     371             :  * @flags: SLAB flags
     372             :  * @ctor: A constructor for the objects.
     373             :  *
     374             :  * Cannot be called within a interrupt, but can be interrupted.
     375             :  * The @ctor is run when new pages are allocated by the cache.
     376             :  *
     377             :  * The flags are
     378             :  *
     379             :  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
     380             :  * to catch references to uninitialised memory.
     381             :  *
     382             :  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
     383             :  * for buffer overruns.
     384             :  *
     385             :  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
     386             :  * cacheline.  This can be beneficial if you're counting cycles as closely
     387             :  * as davem.
     388             :  *
     389             :  * Return: a pointer to the cache on success, NULL on failure.
     390             :  */
     391             : struct kmem_cache *
     392          51 : kmem_cache_create(const char *name, unsigned int size, unsigned int align,
     393             :                 slab_flags_t flags, void (*ctor)(void *))
     394             : {
     395          51 :         return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
     396             :                                           ctor);
     397             : }
     398             : EXPORT_SYMBOL(kmem_cache_create);
     399             : 
     400             : #ifdef SLAB_SUPPORTS_SYSFS
     401             : /*
     402             :  * For a given kmem_cache, kmem_cache_destroy() should only be called
     403             :  * once or there will be a use-after-free problem. The actual deletion
     404             :  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
     405             :  * protection. So they are now done without holding those locks.
     406             :  *
     407             :  * Note that there will be a slight delay in the deletion of sysfs files
     408             :  * if kmem_cache_release() is called indrectly from a work function.
     409             :  */
     410             : static void kmem_cache_release(struct kmem_cache *s)
     411             : {
     412           0 :         sysfs_slab_unlink(s);
     413           0 :         sysfs_slab_release(s);
     414             : }
     415             : #else
     416             : static void kmem_cache_release(struct kmem_cache *s)
     417             : {
     418             :         slab_kmem_cache_release(s);
     419             : }
     420             : #endif
     421             : 
     422           0 : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
     423             : {
     424           0 :         LIST_HEAD(to_destroy);
     425             :         struct kmem_cache *s, *s2;
     426             : 
     427             :         /*
     428             :          * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
     429             :          * @slab_caches_to_rcu_destroy list.  The slab pages are freed
     430             :          * through RCU and the associated kmem_cache are dereferenced
     431             :          * while freeing the pages, so the kmem_caches should be freed only
     432             :          * after the pending RCU operations are finished.  As rcu_barrier()
     433             :          * is a pretty slow operation, we batch all pending destructions
     434             :          * asynchronously.
     435             :          */
     436           0 :         mutex_lock(&slab_mutex);
     437           0 :         list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
     438           0 :         mutex_unlock(&slab_mutex);
     439             : 
     440           0 :         if (list_empty(&to_destroy))
     441           0 :                 return;
     442             : 
     443           0 :         rcu_barrier();
     444             : 
     445           0 :         list_for_each_entry_safe(s, s2, &to_destroy, list) {
     446           0 :                 debugfs_slab_release(s);
     447           0 :                 kfence_shutdown_cache(s);
     448           0 :                 kmem_cache_release(s);
     449             :         }
     450             : }
     451             : 
     452           0 : static int shutdown_cache(struct kmem_cache *s)
     453             : {
     454             :         /* free asan quarantined objects */
     455           0 :         kasan_cache_shutdown(s);
     456             : 
     457           0 :         if (__kmem_cache_shutdown(s) != 0)
     458             :                 return -EBUSY;
     459             : 
     460           0 :         list_del(&s->list);
     461             : 
     462           0 :         if (s->flags & SLAB_TYPESAFE_BY_RCU) {
     463           0 :                 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
     464             :                 schedule_work(&slab_caches_to_rcu_destroy_work);
     465             :         } else {
     466             :                 kfence_shutdown_cache(s);
     467             :                 debugfs_slab_release(s);
     468             :         }
     469             : 
     470             :         return 0;
     471             : }
     472             : 
     473           0 : void slab_kmem_cache_release(struct kmem_cache *s)
     474             : {
     475           0 :         __kmem_cache_release(s);
     476           0 :         kfree_const(s->name);
     477           0 :         kmem_cache_free(kmem_cache, s);
     478           0 : }
     479             : 
     480           0 : void kmem_cache_destroy(struct kmem_cache *s)
     481             : {
     482             :         int refcnt;
     483             :         bool rcu_set;
     484             : 
     485           0 :         if (unlikely(!s) || !kasan_check_byte(s))
     486             :                 return;
     487             : 
     488             :         cpus_read_lock();
     489           0 :         mutex_lock(&slab_mutex);
     490             : 
     491           0 :         rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
     492             : 
     493           0 :         refcnt = --s->refcount;
     494           0 :         if (refcnt)
     495             :                 goto out_unlock;
     496             : 
     497           0 :         WARN(shutdown_cache(s),
     498             :              "%s %s: Slab cache still has objects when called from %pS",
     499             :              __func__, s->name, (void *)_RET_IP_);
     500             : out_unlock:
     501           0 :         mutex_unlock(&slab_mutex);
     502             :         cpus_read_unlock();
     503           0 :         if (!refcnt && !rcu_set)
     504             :                 kmem_cache_release(s);
     505             : }
     506             : EXPORT_SYMBOL(kmem_cache_destroy);
     507             : 
     508             : /**
     509             :  * kmem_cache_shrink - Shrink a cache.
     510             :  * @cachep: The cache to shrink.
     511             :  *
     512             :  * Releases as many slabs as possible for a cache.
     513             :  * To help debugging, a zero exit status indicates all slabs were released.
     514             :  *
     515             :  * Return: %0 if all slabs were released, non-zero otherwise
     516             :  */
     517           0 : int kmem_cache_shrink(struct kmem_cache *cachep)
     518             : {
     519           0 :         kasan_cache_shrink(cachep);
     520             : 
     521           0 :         return __kmem_cache_shrink(cachep);
     522             : }
     523             : EXPORT_SYMBOL(kmem_cache_shrink);
     524             : 
     525          22 : bool slab_is_available(void)
     526             : {
     527          22 :         return slab_state >= UP;
     528             : }
     529             : 
     530             : #ifdef CONFIG_PRINTK
     531             : /**
     532             :  * kmem_valid_obj - does the pointer reference a valid slab object?
     533             :  * @object: pointer to query.
     534             :  *
     535             :  * Return: %true if the pointer is to a not-yet-freed object from
     536             :  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
     537             :  * is to an already-freed object, and %false otherwise.
     538             :  */
     539           0 : bool kmem_valid_obj(void *object)
     540             : {
     541             :         struct folio *folio;
     542             : 
     543             :         /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
     544           0 :         if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
     545             :                 return false;
     546           0 :         folio = virt_to_folio(object);
     547           0 :         return folio_test_slab(folio);
     548             : }
     549             : EXPORT_SYMBOL_GPL(kmem_valid_obj);
     550             : 
     551             : static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
     552             : {
     553           0 :         if (__kfence_obj_info(kpp, object, slab))
     554             :                 return;
     555           0 :         __kmem_obj_info(kpp, object, slab);
     556             : }
     557             : 
     558             : /**
     559             :  * kmem_dump_obj - Print available slab provenance information
     560             :  * @object: slab object for which to find provenance information.
     561             :  *
     562             :  * This function uses pr_cont(), so that the caller is expected to have
     563             :  * printed out whatever preamble is appropriate.  The provenance information
     564             :  * depends on the type of object and on how much debugging is enabled.
     565             :  * For a slab-cache object, the fact that it is a slab object is printed,
     566             :  * and, if available, the slab name, return address, and stack trace from
     567             :  * the allocation and last free path of that object.
     568             :  *
     569             :  * This function will splat if passed a pointer to a non-slab object.
     570             :  * If you are not sure what type of object you have, you should instead
     571             :  * use mem_dump_obj().
     572             :  */
     573           0 : void kmem_dump_obj(void *object)
     574             : {
     575           0 :         char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
     576             :         int i;
     577             :         struct slab *slab;
     578             :         unsigned long ptroffset;
     579           0 :         struct kmem_obj_info kp = { };
     580             : 
     581           0 :         if (WARN_ON_ONCE(!virt_addr_valid(object)))
     582           0 :                 return;
     583           0 :         slab = virt_to_slab(object);
     584           0 :         if (WARN_ON_ONCE(!slab)) {
     585           0 :                 pr_cont(" non-slab memory.\n");
     586           0 :                 return;
     587             :         }
     588           0 :         kmem_obj_info(&kp, object, slab);
     589           0 :         if (kp.kp_slab_cache)
     590           0 :                 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
     591             :         else
     592           0 :                 pr_cont(" slab%s", cp);
     593           0 :         if (is_kfence_address(object))
     594             :                 pr_cont(" (kfence)");
     595           0 :         if (kp.kp_objp)
     596           0 :                 pr_cont(" start %px", kp.kp_objp);
     597           0 :         if (kp.kp_data_offset)
     598           0 :                 pr_cont(" data offset %lu", kp.kp_data_offset);
     599           0 :         if (kp.kp_objp) {
     600           0 :                 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
     601           0 :                 pr_cont(" pointer offset %lu", ptroffset);
     602             :         }
     603           0 :         if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
     604           0 :                 pr_cont(" size %u", kp.kp_slab_cache->object_size);
     605           0 :         if (kp.kp_ret)
     606           0 :                 pr_cont(" allocated at %pS\n", kp.kp_ret);
     607             :         else
     608           0 :                 pr_cont("\n");
     609           0 :         for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
     610           0 :                 if (!kp.kp_stack[i])
     611             :                         break;
     612           0 :                 pr_info("    %pS\n", kp.kp_stack[i]);
     613             :         }
     614             : 
     615           0 :         if (kp.kp_free_stack[0])
     616           0 :                 pr_cont(" Free path:\n");
     617             : 
     618           0 :         for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
     619           0 :                 if (!kp.kp_free_stack[i])
     620             :                         break;
     621           0 :                 pr_info("    %pS\n", kp.kp_free_stack[i]);
     622             :         }
     623             : 
     624             : }
     625             : EXPORT_SYMBOL_GPL(kmem_dump_obj);
     626             : #endif
     627             : 
     628             : #ifndef CONFIG_SLOB
     629             : /* Create a cache during boot when no slab services are available yet */
     630          28 : void __init create_boot_cache(struct kmem_cache *s, const char *name,
     631             :                 unsigned int size, slab_flags_t flags,
     632             :                 unsigned int useroffset, unsigned int usersize)
     633             : {
     634             :         int err;
     635          28 :         unsigned int align = ARCH_KMALLOC_MINALIGN;
     636             : 
     637          28 :         s->name = name;
     638          28 :         s->size = s->object_size = size;
     639             : 
     640             :         /*
     641             :          * For power of two sizes, guarantee natural alignment for kmalloc
     642             :          * caches, regardless of SL*B debugging options.
     643             :          */
     644          56 :         if (is_power_of_2(size))
     645          22 :                 align = max(align, size);
     646          28 :         s->align = calculate_alignment(flags, align, size);
     647             : 
     648             : #ifdef CONFIG_HARDENED_USERCOPY
     649             :         s->useroffset = useroffset;
     650             :         s->usersize = usersize;
     651             : #endif
     652             : 
     653          28 :         err = __kmem_cache_create(s, flags);
     654             : 
     655          28 :         if (err)
     656           0 :                 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
     657             :                                         name, size, err);
     658             : 
     659          28 :         s->refcount = -1;    /* Exempt from merging for now */
     660          28 : }
     661             : 
     662          26 : struct kmem_cache *__init create_kmalloc_cache(const char *name,
     663             :                 unsigned int size, slab_flags_t flags,
     664             :                 unsigned int useroffset, unsigned int usersize)
     665             : {
     666          52 :         struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
     667             : 
     668          26 :         if (!s)
     669           0 :                 panic("Out of memory when creating slab %s\n", name);
     670             : 
     671          26 :         create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
     672             :                                                                 usersize);
     673          52 :         list_add(&s->list, &slab_caches);
     674          26 :         s->refcount = 1;
     675          26 :         return s;
     676             : }
     677             : 
     678             : struct kmem_cache *
     679             : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
     680             : { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
     681             : EXPORT_SYMBOL(kmalloc_caches);
     682             : 
     683             : /*
     684             :  * Conversion table for small slabs sizes / 8 to the index in the
     685             :  * kmalloc array. This is necessary for slabs < 192 since we have non power
     686             :  * of two cache sizes there. The size of larger slabs can be determined using
     687             :  * fls.
     688             :  */
     689             : static u8 size_index[24] __ro_after_init = {
     690             :         3,      /* 8 */
     691             :         4,      /* 16 */
     692             :         5,      /* 24 */
     693             :         5,      /* 32 */
     694             :         6,      /* 40 */
     695             :         6,      /* 48 */
     696             :         6,      /* 56 */
     697             :         6,      /* 64 */
     698             :         1,      /* 72 */
     699             :         1,      /* 80 */
     700             :         1,      /* 88 */
     701             :         1,      /* 96 */
     702             :         7,      /* 104 */
     703             :         7,      /* 112 */
     704             :         7,      /* 120 */
     705             :         7,      /* 128 */
     706             :         2,      /* 136 */
     707             :         2,      /* 144 */
     708             :         2,      /* 152 */
     709             :         2,      /* 160 */
     710             :         2,      /* 168 */
     711             :         2,      /* 176 */
     712             :         2,      /* 184 */
     713             :         2       /* 192 */
     714             : };
     715             : 
     716             : static inline unsigned int size_index_elem(unsigned int bytes)
     717             : {
     718        4311 :         return (bytes - 1) / 8;
     719             : }
     720             : 
     721             : /*
     722             :  * Find the kmem_cache structure that serves a given size of
     723             :  * allocation
     724             :  */
     725        5012 : struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
     726             : {
     727             :         unsigned int index;
     728             : 
     729        5012 :         if (size <= 192) {
     730        4315 :                 if (!size)
     731             :                         return ZERO_SIZE_PTR;
     732             : 
     733        8622 :                 index = size_index[size_index_elem(size)];
     734             :         } else {
     735         697 :                 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
     736             :                         return NULL;
     737        1394 :                 index = fls(size - 1);
     738             :         }
     739             : 
     740        5008 :         return kmalloc_caches[kmalloc_type(flags)][index];
     741             : }
     742             : 
     743          17 : size_t kmalloc_size_roundup(size_t size)
     744             : {
     745             :         struct kmem_cache *c;
     746             : 
     747             :         /* Short-circuit the 0 size case. */
     748          17 :         if (unlikely(size == 0))
     749             :                 return 0;
     750             :         /* Short-circuit saturated "too-large" case. */
     751          17 :         if (unlikely(size == SIZE_MAX))
     752             :                 return SIZE_MAX;
     753             :         /* Above the smaller buckets, size is a multiple of page size. */
     754          17 :         if (size > KMALLOC_MAX_CACHE_SIZE)
     755           0 :                 return PAGE_SIZE << get_order(size);
     756             : 
     757             :         /* The flags don't matter since size_index is common to all. */
     758          17 :         c = kmalloc_slab(size, GFP_KERNEL);
     759          17 :         return c ? c->object_size : 0;
     760             : }
     761             : EXPORT_SYMBOL(kmalloc_size_roundup);
     762             : 
     763             : #ifdef CONFIG_ZONE_DMA
     764             : #define KMALLOC_DMA_NAME(sz)    .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
     765             : #else
     766             : #define KMALLOC_DMA_NAME(sz)
     767             : #endif
     768             : 
     769             : #ifdef CONFIG_MEMCG_KMEM
     770             : #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
     771             : #else
     772             : #define KMALLOC_CGROUP_NAME(sz)
     773             : #endif
     774             : 
     775             : #ifndef CONFIG_SLUB_TINY
     776             : #define KMALLOC_RCL_NAME(sz)    .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
     777             : #else
     778             : #define KMALLOC_RCL_NAME(sz)
     779             : #endif
     780             : 
     781             : #define INIT_KMALLOC_INFO(__size, __short_size)                 \
     782             : {                                                               \
     783             :         .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,    \
     784             :         KMALLOC_RCL_NAME(__short_size)                          \
     785             :         KMALLOC_CGROUP_NAME(__short_size)                       \
     786             :         KMALLOC_DMA_NAME(__short_size)                          \
     787             :         .size = __size,                                         \
     788             : }
     789             : 
     790             : /*
     791             :  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
     792             :  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
     793             :  * kmalloc-2M.
     794             :  */
     795             : const struct kmalloc_info_struct kmalloc_info[] __initconst = {
     796             :         INIT_KMALLOC_INFO(0, 0),
     797             :         INIT_KMALLOC_INFO(96, 96),
     798             :         INIT_KMALLOC_INFO(192, 192),
     799             :         INIT_KMALLOC_INFO(8, 8),
     800             :         INIT_KMALLOC_INFO(16, 16),
     801             :         INIT_KMALLOC_INFO(32, 32),
     802             :         INIT_KMALLOC_INFO(64, 64),
     803             :         INIT_KMALLOC_INFO(128, 128),
     804             :         INIT_KMALLOC_INFO(256, 256),
     805             :         INIT_KMALLOC_INFO(512, 512),
     806             :         INIT_KMALLOC_INFO(1024, 1k),
     807             :         INIT_KMALLOC_INFO(2048, 2k),
     808             :         INIT_KMALLOC_INFO(4096, 4k),
     809             :         INIT_KMALLOC_INFO(8192, 8k),
     810             :         INIT_KMALLOC_INFO(16384, 16k),
     811             :         INIT_KMALLOC_INFO(32768, 32k),
     812             :         INIT_KMALLOC_INFO(65536, 64k),
     813             :         INIT_KMALLOC_INFO(131072, 128k),
     814             :         INIT_KMALLOC_INFO(262144, 256k),
     815             :         INIT_KMALLOC_INFO(524288, 512k),
     816             :         INIT_KMALLOC_INFO(1048576, 1M),
     817             :         INIT_KMALLOC_INFO(2097152, 2M)
     818             : };
     819             : 
     820             : /*
     821             :  * Patch up the size_index table if we have strange large alignment
     822             :  * requirements for the kmalloc array. This is only the case for
     823             :  * MIPS it seems. The standard arches will not generate any code here.
     824             :  *
     825             :  * Largest permitted alignment is 256 bytes due to the way we
     826             :  * handle the index determination for the smaller caches.
     827             :  *
     828             :  * Make sure that nothing crazy happens if someone starts tinkering
     829             :  * around with ARCH_KMALLOC_MINALIGN
     830             :  */
     831           1 : void __init setup_kmalloc_cache_index_table(void)
     832             : {
     833             :         unsigned int i;
     834             : 
     835           1 :         BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
     836             :                 !is_power_of_2(KMALLOC_MIN_SIZE));
     837             : 
     838           1 :         for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
     839             :                 unsigned int elem = size_index_elem(i);
     840             : 
     841             :                 if (elem >= ARRAY_SIZE(size_index))
     842             :                         break;
     843             :                 size_index[elem] = KMALLOC_SHIFT_LOW;
     844             :         }
     845             : 
     846             :         if (KMALLOC_MIN_SIZE >= 64) {
     847             :                 /*
     848             :                  * The 96 byte sized cache is not used if the alignment
     849             :                  * is 64 byte.
     850             :                  */
     851             :                 for (i = 64 + 8; i <= 96; i += 8)
     852             :                         size_index[size_index_elem(i)] = 7;
     853             : 
     854             :         }
     855             : 
     856             :         if (KMALLOC_MIN_SIZE >= 128) {
     857             :                 /*
     858             :                  * The 192 byte sized cache is not used if the alignment
     859             :                  * is 128 byte. Redirect kmalloc to use the 256 byte cache
     860             :                  * instead.
     861             :                  */
     862             :                 for (i = 128 + 8; i <= 192; i += 8)
     863             :                         size_index[size_index_elem(i)] = 8;
     864             :         }
     865           1 : }
     866             : 
     867             : static void __init
     868          26 : new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
     869             : {
     870          26 :         if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
     871          13 :                 flags |= SLAB_RECLAIM_ACCOUNT;
     872             :         } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
     873             :                 if (mem_cgroup_kmem_disabled()) {
     874             :                         kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
     875             :                         return;
     876             :                 }
     877             :                 flags |= SLAB_ACCOUNT;
     878             :         } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
     879             :                 flags |= SLAB_CACHE_DMA;
     880             :         }
     881             : 
     882          26 :         kmalloc_caches[type][idx] = create_kmalloc_cache(
     883             :                                         kmalloc_info[idx].name[type],
     884             :                                         kmalloc_info[idx].size, flags, 0,
     885             :                                         kmalloc_info[idx].size);
     886             : 
     887             :         /*
     888             :          * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
     889             :          * KMALLOC_NORMAL caches.
     890             :          */
     891             :         if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
     892             :                 kmalloc_caches[type][idx]->refcount = -1;
     893             : }
     894             : 
     895             : /*
     896             :  * Create the kmalloc array. Some of the regular kmalloc arrays
     897             :  * may already have been created because they were needed to
     898             :  * enable allocations for slab creation.
     899             :  */
     900           1 : void __init create_kmalloc_caches(slab_flags_t flags)
     901             : {
     902             :         int i;
     903             :         enum kmalloc_cache_type type;
     904             : 
     905             :         /*
     906             :          * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
     907             :          */
     908           3 :         for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
     909          22 :                 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
     910          22 :                         if (!kmalloc_caches[type][i])
     911          22 :                                 new_kmalloc_cache(i, type, flags);
     912             : 
     913             :                         /*
     914             :                          * Caches that are not of the two-to-the-power-of size.
     915             :                          * These have to be created immediately after the
     916             :                          * earlier power of two caches
     917             :                          */
     918          24 :                         if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
     919           2 :                                         !kmalloc_caches[type][1])
     920           2 :                                 new_kmalloc_cache(1, type, flags);
     921          24 :                         if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
     922           2 :                                         !kmalloc_caches[type][2])
     923           2 :                                 new_kmalloc_cache(2, type, flags);
     924             :                 }
     925             :         }
     926             : 
     927             :         /* Kmalloc array is now usable */
     928           1 :         slab_state = UP;
     929           1 : }
     930             : 
     931           6 : void free_large_kmalloc(struct folio *folio, void *object)
     932             : {
     933           6 :         unsigned int order = folio_order(folio);
     934             : 
     935           6 :         if (WARN_ON_ONCE(order == 0))
     936           0 :                 pr_warn_once("object pointer: 0x%p\n", object);
     937             : 
     938           6 :         kmemleak_free(object);
     939           6 :         kasan_kfree_large(object);
     940           6 :         kmsan_kfree_large(object);
     941             : 
     942          12 :         mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
     943           6 :                               -(PAGE_SIZE << order));
     944           6 :         __free_pages(folio_page(folio, 0), order);
     945           6 : }
     946             : 
     947             : static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
     948             : static __always_inline
     949             : void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
     950             : {
     951             :         struct kmem_cache *s;
     952             :         void *ret;
     953             : 
     954        5001 :         if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
     955           6 :                 ret = __kmalloc_large_node(size, flags, node);
     956             :                 trace_kmalloc(caller, ret, size,
     957             :                               PAGE_SIZE << get_order(size), flags, node);
     958             :                 return ret;
     959             :         }
     960             : 
     961        4995 :         s = kmalloc_slab(size, flags);
     962             : 
     963        4995 :         if (unlikely(ZERO_OR_NULL_PTR(s)))
     964             :                 return s;
     965             : 
     966        4991 :         ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
     967        4991 :         ret = kasan_kmalloc(s, ret, size, flags);
     968        4991 :         trace_kmalloc(caller, ret, size, s->size, flags, node);
     969             :         return ret;
     970             : }
     971             : 
     972         277 : void *__kmalloc_node(size_t size, gfp_t flags, int node)
     973             : {
     974         554 :         return __do_kmalloc_node(size, flags, node, _RET_IP_);
     975             : }
     976             : EXPORT_SYMBOL(__kmalloc_node);
     977             : 
     978        1817 : void *__kmalloc(size_t size, gfp_t flags)
     979             : {
     980        3634 :         return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
     981             : }
     982             : EXPORT_SYMBOL(__kmalloc);
     983             : 
     984        2907 : void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
     985             :                                   int node, unsigned long caller)
     986             : {
     987        2907 :         return __do_kmalloc_node(size, flags, node, caller);
     988             : }
     989             : EXPORT_SYMBOL(__kmalloc_node_track_caller);
     990             : 
     991             : /**
     992             :  * kfree - free previously allocated memory
     993             :  * @object: pointer returned by kmalloc.
     994             :  *
     995             :  * If @object is NULL, no operation is performed.
     996             :  *
     997             :  * Don't free memory not originally allocated by kmalloc()
     998             :  * or you will run into trouble.
     999             :  */
    1000       44577 : void kfree(const void *object)
    1001             : {
    1002             :         struct folio *folio;
    1003             :         struct slab *slab;
    1004             :         struct kmem_cache *s;
    1005             : 
    1006       44577 :         trace_kfree(_RET_IP_, object);
    1007             : 
    1008       44577 :         if (unlikely(ZERO_OR_NULL_PTR(object)))
    1009             :                 return;
    1010             : 
    1011       42831 :         folio = virt_to_folio(object);
    1012       42831 :         if (unlikely(!folio_test_slab(folio))) {
    1013           6 :                 free_large_kmalloc(folio, (void *)object);
    1014           6 :                 return;
    1015             :         }
    1016             : 
    1017       42825 :         slab = folio_slab(folio);
    1018       42825 :         s = slab->slab_cache;
    1019       42825 :         __kmem_cache_free(s, (void *)object, _RET_IP_);
    1020             : }
    1021             : EXPORT_SYMBOL(kfree);
    1022             : 
    1023             : /**
    1024             :  * __ksize -- Report full size of underlying allocation
    1025             :  * @object: pointer to the object
    1026             :  *
    1027             :  * This should only be used internally to query the true size of allocations.
    1028             :  * It is not meant to be a way to discover the usable size of an allocation
    1029             :  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
    1030             :  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
    1031             :  * and/or FORTIFY_SOURCE.
    1032             :  *
    1033             :  * Return: size of the actual memory used by @object in bytes
    1034             :  */
    1035         113 : size_t __ksize(const void *object)
    1036             : {
    1037             :         struct folio *folio;
    1038             : 
    1039         113 :         if (unlikely(object == ZERO_SIZE_PTR))
    1040             :                 return 0;
    1041             : 
    1042         113 :         folio = virt_to_folio(object);
    1043             : 
    1044         113 :         if (unlikely(!folio_test_slab(folio))) {
    1045           0 :                 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
    1046             :                         return 0;
    1047           0 :                 if (WARN_ON(object != folio_address(folio)))
    1048             :                         return 0;
    1049           0 :                 return folio_size(folio);
    1050             :         }
    1051             : 
    1052             : #ifdef CONFIG_SLUB_DEBUG
    1053         113 :         skip_orig_size_check(folio_slab(folio)->slab_cache, object);
    1054             : #endif
    1055             : 
    1056         113 :         return slab_ksize(folio_slab(folio)->slab_cache);
    1057             : }
    1058             : 
    1059       41277 : void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
    1060             : {
    1061       41277 :         void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
    1062       41277 :                                             size, _RET_IP_);
    1063             : 
    1064       41277 :         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
    1065             : 
    1066       41277 :         ret = kasan_kmalloc(s, ret, size, gfpflags);
    1067       41277 :         return ret;
    1068             : }
    1069             : EXPORT_SYMBOL(kmalloc_trace);
    1070             : 
    1071         285 : void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
    1072             :                          int node, size_t size)
    1073             : {
    1074         285 :         void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
    1075             : 
    1076         285 :         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
    1077             : 
    1078         285 :         ret = kasan_kmalloc(s, ret, size, gfpflags);
    1079         285 :         return ret;
    1080             : }
    1081             : EXPORT_SYMBOL(kmalloc_node_trace);
    1082             : #endif /* !CONFIG_SLOB */
    1083             : 
    1084           0 : gfp_t kmalloc_fix_flags(gfp_t flags)
    1085             : {
    1086           0 :         gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
    1087             : 
    1088           0 :         flags &= ~GFP_SLAB_BUG_MASK;
    1089           0 :         pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
    1090             :                         invalid_mask, &invalid_mask, flags, &flags);
    1091           0 :         dump_stack();
    1092             : 
    1093           0 :         return flags;
    1094             : }
    1095             : 
    1096             : /*
    1097             :  * To avoid unnecessary overhead, we pass through large allocation requests
    1098             :  * directly to the page allocator. We use __GFP_COMP, because we will need to
    1099             :  * know the allocation order to free the pages properly in kfree.
    1100             :  */
    1101             : 
    1102           6 : static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
    1103             : {
    1104             :         struct page *page;
    1105           6 :         void *ptr = NULL;
    1106           6 :         unsigned int order = get_order(size);
    1107             : 
    1108           6 :         if (unlikely(flags & GFP_SLAB_BUG_MASK))
    1109           0 :                 flags = kmalloc_fix_flags(flags);
    1110             : 
    1111           6 :         flags |= __GFP_COMP;
    1112           6 :         page = alloc_pages_node(node, flags, order);
    1113           6 :         if (page) {
    1114           6 :                 ptr = page_address(page);
    1115           6 :                 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
    1116           6 :                                       PAGE_SIZE << order);
    1117             :         }
    1118             : 
    1119           6 :         ptr = kasan_kmalloc_large(ptr, size, flags);
    1120             :         /* As ptr might get tagged, call kmemleak hook after KASAN. */
    1121           6 :         kmemleak_alloc(ptr, size, 1, flags);
    1122           6 :         kmsan_kmalloc_large(ptr, size, flags);
    1123             : 
    1124           6 :         return ptr;
    1125             : }
    1126             : 
    1127           0 : void *kmalloc_large(size_t size, gfp_t flags)
    1128             : {
    1129           0 :         void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
    1130             : 
    1131           0 :         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
    1132             :                       flags, NUMA_NO_NODE);
    1133           0 :         return ret;
    1134             : }
    1135             : EXPORT_SYMBOL(kmalloc_large);
    1136             : 
    1137           0 : void *kmalloc_large_node(size_t size, gfp_t flags, int node)
    1138             : {
    1139           0 :         void *ret = __kmalloc_large_node(size, flags, node);
    1140             : 
    1141           0 :         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
    1142             :                       flags, node);
    1143           0 :         return ret;
    1144             : }
    1145             : EXPORT_SYMBOL(kmalloc_large_node);
    1146             : 
    1147             : #ifdef CONFIG_SLAB_FREELIST_RANDOM
    1148             : /* Randomize a generic freelist */
    1149             : static void freelist_randomize(struct rnd_state *state, unsigned int *list,
    1150             :                                unsigned int count)
    1151             : {
    1152             :         unsigned int rand;
    1153             :         unsigned int i;
    1154             : 
    1155             :         for (i = 0; i < count; i++)
    1156             :                 list[i] = i;
    1157             : 
    1158             :         /* Fisher-Yates shuffle */
    1159             :         for (i = count - 1; i > 0; i--) {
    1160             :                 rand = prandom_u32_state(state);
    1161             :                 rand %= (i + 1);
    1162             :                 swap(list[i], list[rand]);
    1163             :         }
    1164             : }
    1165             : 
    1166             : /* Create a random sequence per cache */
    1167             : int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
    1168             :                                     gfp_t gfp)
    1169             : {
    1170             :         struct rnd_state state;
    1171             : 
    1172             :         if (count < 2 || cachep->random_seq)
    1173             :                 return 0;
    1174             : 
    1175             :         cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
    1176             :         if (!cachep->random_seq)
    1177             :                 return -ENOMEM;
    1178             : 
    1179             :         /* Get best entropy at this stage of boot */
    1180             :         prandom_seed_state(&state, get_random_long());
    1181             : 
    1182             :         freelist_randomize(&state, cachep->random_seq, count);
    1183             :         return 0;
    1184             : }
    1185             : 
    1186             : /* Destroy the per-cache random freelist sequence */
    1187             : void cache_random_seq_destroy(struct kmem_cache *cachep)
    1188             : {
    1189             :         kfree(cachep->random_seq);
    1190             :         cachep->random_seq = NULL;
    1191             : }
    1192             : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
    1193             : 
    1194             : #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
    1195             : #ifdef CONFIG_SLAB
    1196             : #define SLABINFO_RIGHTS (0600)
    1197             : #else
    1198             : #define SLABINFO_RIGHTS (0400)
    1199             : #endif
    1200             : 
    1201           0 : static void print_slabinfo_header(struct seq_file *m)
    1202             : {
    1203             :         /*
    1204             :          * Output format version, so at least we can change it
    1205             :          * without _too_ many complaints.
    1206             :          */
    1207             : #ifdef CONFIG_DEBUG_SLAB
    1208             :         seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
    1209             : #else
    1210           0 :         seq_puts(m, "slabinfo - version: 2.1\n");
    1211             : #endif
    1212           0 :         seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
    1213           0 :         seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
    1214           0 :         seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
    1215             : #ifdef CONFIG_DEBUG_SLAB
    1216             :         seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
    1217             :         seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
    1218             : #endif
    1219           0 :         seq_putc(m, '\n');
    1220           0 : }
    1221             : 
    1222           0 : static void *slab_start(struct seq_file *m, loff_t *pos)
    1223             : {
    1224           0 :         mutex_lock(&slab_mutex);
    1225           0 :         return seq_list_start(&slab_caches, *pos);
    1226             : }
    1227             : 
    1228           0 : static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
    1229             : {
    1230           0 :         return seq_list_next(p, &slab_caches, pos);
    1231             : }
    1232             : 
    1233           0 : static void slab_stop(struct seq_file *m, void *p)
    1234             : {
    1235           0 :         mutex_unlock(&slab_mutex);
    1236           0 : }
    1237             : 
    1238           0 : static void cache_show(struct kmem_cache *s, struct seq_file *m)
    1239             : {
    1240             :         struct slabinfo sinfo;
    1241             : 
    1242           0 :         memset(&sinfo, 0, sizeof(sinfo));
    1243           0 :         get_slabinfo(s, &sinfo);
    1244             : 
    1245           0 :         seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
    1246             :                    s->name, sinfo.active_objs, sinfo.num_objs, s->size,
    1247           0 :                    sinfo.objects_per_slab, (1 << sinfo.cache_order));
    1248             : 
    1249           0 :         seq_printf(m, " : tunables %4u %4u %4u",
    1250             :                    sinfo.limit, sinfo.batchcount, sinfo.shared);
    1251           0 :         seq_printf(m, " : slabdata %6lu %6lu %6lu",
    1252             :                    sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
    1253           0 :         slabinfo_show_stats(m, s);
    1254           0 :         seq_putc(m, '\n');
    1255           0 : }
    1256             : 
    1257           0 : static int slab_show(struct seq_file *m, void *p)
    1258             : {
    1259           0 :         struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
    1260             : 
    1261           0 :         if (p == slab_caches.next)
    1262           0 :                 print_slabinfo_header(m);
    1263           0 :         cache_show(s, m);
    1264           0 :         return 0;
    1265             : }
    1266             : 
    1267           0 : void dump_unreclaimable_slab(void)
    1268             : {
    1269             :         struct kmem_cache *s;
    1270             :         struct slabinfo sinfo;
    1271             : 
    1272             :         /*
    1273             :          * Here acquiring slab_mutex is risky since we don't prefer to get
    1274             :          * sleep in oom path. But, without mutex hold, it may introduce a
    1275             :          * risk of crash.
    1276             :          * Use mutex_trylock to protect the list traverse, dump nothing
    1277             :          * without acquiring the mutex.
    1278             :          */
    1279           0 :         if (!mutex_trylock(&slab_mutex)) {
    1280           0 :                 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
    1281           0 :                 return;
    1282             :         }
    1283             : 
    1284           0 :         pr_info("Unreclaimable slab info:\n");
    1285           0 :         pr_info("Name                      Used          Total\n");
    1286             : 
    1287           0 :         list_for_each_entry(s, &slab_caches, list) {
    1288           0 :                 if (s->flags & SLAB_RECLAIM_ACCOUNT)
    1289           0 :                         continue;
    1290             : 
    1291           0 :                 get_slabinfo(s, &sinfo);
    1292             : 
    1293           0 :                 if (sinfo.num_objs > 0)
    1294           0 :                         pr_info("%-17s %10luKB %10luKB\n", s->name,
    1295             :                                 (sinfo.active_objs * s->size) / 1024,
    1296             :                                 (sinfo.num_objs * s->size) / 1024);
    1297             :         }
    1298           0 :         mutex_unlock(&slab_mutex);
    1299             : }
    1300             : 
    1301             : /*
    1302             :  * slabinfo_op - iterator that generates /proc/slabinfo
    1303             :  *
    1304             :  * Output layout:
    1305             :  * cache-name
    1306             :  * num-active-objs
    1307             :  * total-objs
    1308             :  * object size
    1309             :  * num-active-slabs
    1310             :  * total-slabs
    1311             :  * num-pages-per-slab
    1312             :  * + further values on SMP and with statistics enabled
    1313             :  */
    1314             : static const struct seq_operations slabinfo_op = {
    1315             :         .start = slab_start,
    1316             :         .next = slab_next,
    1317             :         .stop = slab_stop,
    1318             :         .show = slab_show,
    1319             : };
    1320             : 
    1321           0 : static int slabinfo_open(struct inode *inode, struct file *file)
    1322             : {
    1323           0 :         return seq_open(file, &slabinfo_op);
    1324             : }
    1325             : 
    1326             : static const struct proc_ops slabinfo_proc_ops = {
    1327             :         .proc_flags     = PROC_ENTRY_PERMANENT,
    1328             :         .proc_open      = slabinfo_open,
    1329             :         .proc_read      = seq_read,
    1330             :         .proc_write     = slabinfo_write,
    1331             :         .proc_lseek     = seq_lseek,
    1332             :         .proc_release   = seq_release,
    1333             : };
    1334             : 
    1335           1 : static int __init slab_proc_init(void)
    1336             : {
    1337           1 :         proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
    1338           1 :         return 0;
    1339             : }
    1340             : module_init(slab_proc_init);
    1341             : 
    1342             : #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
    1343             : 
    1344             : static __always_inline __realloc_size(2) void *
    1345             : __do_krealloc(const void *p, size_t new_size, gfp_t flags)
    1346             : {
    1347             :         void *ret;
    1348             :         size_t ks;
    1349             : 
    1350             :         /* Check for double-free before calling ksize. */
    1351          96 :         if (likely(!ZERO_OR_NULL_PTR(p))) {
    1352          96 :                 if (!kasan_check_byte(p))
    1353             :                         return NULL;
    1354          96 :                 ks = ksize(p);
    1355             :         } else
    1356             :                 ks = 0;
    1357             : 
    1358             :         /* If the object still fits, repoison it precisely. */
    1359          96 :         if (ks >= new_size) {
    1360             :                 p = kasan_krealloc((void *)p, new_size, flags);
    1361             :                 return (void *)p;
    1362             :         }
    1363             : 
    1364          76 :         ret = kmalloc_track_caller(new_size, flags);
    1365          76 :         if (ret && p) {
    1366             :                 /* Disable KASAN checks as the object's redzone is accessed. */
    1367             :                 kasan_disable_current();
    1368          76 :                 memcpy(ret, kasan_reset_tag(p), ks);
    1369             :                 kasan_enable_current();
    1370             :         }
    1371             : 
    1372             :         return ret;
    1373             : }
    1374             : 
    1375             : /**
    1376             :  * krealloc - reallocate memory. The contents will remain unchanged.
    1377             :  * @p: object to reallocate memory for.
    1378             :  * @new_size: how many bytes of memory are required.
    1379             :  * @flags: the type of memory to allocate.
    1380             :  *
    1381             :  * The contents of the object pointed to are preserved up to the
    1382             :  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
    1383             :  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
    1384             :  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
    1385             :  *
    1386             :  * Return: pointer to the allocated memory or %NULL in case of error
    1387             :  */
    1388          96 : void *krealloc(const void *p, size_t new_size, gfp_t flags)
    1389             : {
    1390             :         void *ret;
    1391             : 
    1392          96 :         if (unlikely(!new_size)) {
    1393           0 :                 kfree(p);
    1394           0 :                 return ZERO_SIZE_PTR;
    1395             :         }
    1396             : 
    1397          96 :         ret = __do_krealloc(p, new_size, flags);
    1398          96 :         if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
    1399          76 :                 kfree(p);
    1400             : 
    1401             :         return ret;
    1402             : }
    1403             : EXPORT_SYMBOL(krealloc);
    1404             : 
    1405             : /**
    1406             :  * kfree_sensitive - Clear sensitive information in memory before freeing
    1407             :  * @p: object to free memory of
    1408             :  *
    1409             :  * The memory of the object @p points to is zeroed before freed.
    1410             :  * If @p is %NULL, kfree_sensitive() does nothing.
    1411             :  *
    1412             :  * Note: this function zeroes the whole allocated buffer which can be a good
    1413             :  * deal bigger than the requested buffer size passed to kmalloc(). So be
    1414             :  * careful when using this function in performance sensitive code.
    1415             :  */
    1416           0 : void kfree_sensitive(const void *p)
    1417             : {
    1418             :         size_t ks;
    1419           0 :         void *mem = (void *)p;
    1420             : 
    1421           0 :         ks = ksize(mem);
    1422           0 :         if (ks) {
    1423           0 :                 kasan_unpoison_range(mem, ks);
    1424             :                 memzero_explicit(mem, ks);
    1425             :         }
    1426           0 :         kfree(mem);
    1427           0 : }
    1428             : EXPORT_SYMBOL(kfree_sensitive);
    1429             : 
    1430         113 : size_t ksize(const void *objp)
    1431             : {
    1432             :         /*
    1433             :          * We need to first check that the pointer to the object is valid.
    1434             :          * The KASAN report printed from ksize() is more useful, then when
    1435             :          * it's printed later when the behaviour could be undefined due to
    1436             :          * a potential use-after-free or double-free.
    1437             :          *
    1438             :          * We use kasan_check_byte(), which is supported for the hardware
    1439             :          * tag-based KASAN mode, unlike kasan_check_read/write().
    1440             :          *
    1441             :          * If the pointed to memory is invalid, we return 0 to avoid users of
    1442             :          * ksize() writing to and potentially corrupting the memory region.
    1443             :          *
    1444             :          * We want to perform the check before __ksize(), to avoid potentially
    1445             :          * crashing in __ksize() due to accessing invalid metadata.
    1446             :          */
    1447         113 :         if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
    1448             :                 return 0;
    1449             : 
    1450         113 :         return kfence_ksize(objp) ?: __ksize(objp);
    1451             : }
    1452             : EXPORT_SYMBOL(ksize);
    1453             : 
    1454             : /* Tracepoints definitions. */
    1455             : EXPORT_TRACEPOINT_SYMBOL(kmalloc);
    1456             : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
    1457             : EXPORT_TRACEPOINT_SYMBOL(kfree);
    1458             : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
    1459             : 
    1460       78089 : int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
    1461             : {
    1462       78089 :         if (__should_failslab(s, gfpflags))
    1463             :                 return -ENOMEM;
    1464             :         return 0;
    1465             : }
    1466             : ALLOW_ERROR_INJECTION(should_failslab, ERRNO);

Generated by: LCOV version 1.14