Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/mm/swap_state.c
4 : *
5 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 : * Swap reorganised 29.12.95, Stephen Tweedie
7 : *
8 : * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 : */
10 : #include <linux/mm.h>
11 : #include <linux/gfp.h>
12 : #include <linux/kernel_stat.h>
13 : #include <linux/swap.h>
14 : #include <linux/swapops.h>
15 : #include <linux/init.h>
16 : #include <linux/pagemap.h>
17 : #include <linux/backing-dev.h>
18 : #include <linux/blkdev.h>
19 : #include <linux/pagevec.h>
20 : #include <linux/migrate.h>
21 : #include <linux/vmalloc.h>
22 : #include <linux/swap_slots.h>
23 : #include <linux/huge_mm.h>
24 : #include <linux/shmem_fs.h>
25 : #include "internal.h"
26 : #include "swap.h"
27 :
28 : /*
29 : * swapper_space is a fiction, retained to simplify the path through
30 : * vmscan's shrink_page_list.
31 : */
32 : static const struct address_space_operations swap_aops = {
33 : .writepage = swap_writepage,
34 : .dirty_folio = noop_dirty_folio,
35 : #ifdef CONFIG_MIGRATION
36 : .migrate_folio = migrate_folio,
37 : #endif
38 : };
39 :
40 : struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 : static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 : static bool enable_vma_readahead __read_mostly = true;
43 :
44 : #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 : #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 : #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 : #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 :
49 : #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 : #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 : #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52 :
53 : #define SWAP_RA_VAL(addr, win, hits) \
54 : (((addr) & PAGE_MASK) | \
55 : (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 : ((hits) & SWAP_RA_HITS_MASK))
57 :
58 : /* Initial readahead hits is 4 to start up with a small window */
59 : #define GET_SWAP_RA_VAL(vma) \
60 : (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 :
62 : static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 :
64 0 : void show_swap_cache_info(void)
65 : {
66 0 : printk("%lu pages in swap cache\n", total_swapcache_pages());
67 0 : printk("Free swap = %ldkB\n",
68 : get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 0 : printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 0 : }
71 :
72 0 : void *get_shadow_from_swap_cache(swp_entry_t entry)
73 : {
74 0 : struct address_space *address_space = swap_address_space(entry);
75 0 : pgoff_t idx = swp_offset(entry);
76 : struct page *page;
77 :
78 0 : page = xa_load(&address_space->i_pages, idx);
79 0 : if (xa_is_value(page))
80 : return page;
81 0 : return NULL;
82 : }
83 :
84 : /*
85 : * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86 : * but sets SwapCache flag and private instead of mapping and index.
87 : */
88 0 : int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 : gfp_t gfp, void **shadowp)
90 : {
91 0 : struct address_space *address_space = swap_address_space(entry);
92 0 : pgoff_t idx = swp_offset(entry);
93 0 : XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 0 : unsigned long i, nr = folio_nr_pages(folio);
95 : void *old;
96 :
97 0 : xas_set_update(&xas, workingset_update_node);
98 :
99 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 : VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 : VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102 :
103 0 : folio_ref_add(folio, nr);
104 : folio_set_swapcache(folio);
105 :
106 : do {
107 0 : xas_lock_irq(&xas);
108 0 : xas_create_range(&xas);
109 0 : if (xas_error(&xas))
110 : goto unlock;
111 0 : for (i = 0; i < nr; i++) {
112 : VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 0 : old = xas_load(&xas);
114 0 : if (xa_is_value(old)) {
115 0 : if (shadowp)
116 0 : *shadowp = old;
117 : }
118 0 : set_page_private(folio_page(folio, i), entry.val + i);
119 0 : xas_store(&xas, folio);
120 0 : xas_next(&xas);
121 : }
122 0 : address_space->nrpages += nr;
123 0 : __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 0 : __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125 : unlock:
126 0 : xas_unlock_irq(&xas);
127 0 : } while (xas_nomem(&xas, gfp));
128 :
129 0 : if (!xas_error(&xas))
130 : return 0;
131 :
132 0 : folio_clear_swapcache(folio);
133 0 : folio_ref_sub(folio, nr);
134 0 : return xas_error(&xas);
135 : }
136 :
137 : /*
138 : * This must be called only on folios that have
139 : * been verified to be in the swap cache.
140 : */
141 0 : void __delete_from_swap_cache(struct folio *folio,
142 : swp_entry_t entry, void *shadow)
143 : {
144 0 : struct address_space *address_space = swap_address_space(entry);
145 : int i;
146 0 : long nr = folio_nr_pages(folio);
147 0 : pgoff_t idx = swp_offset(entry);
148 0 : XA_STATE(xas, &address_space->i_pages, idx);
149 :
150 0 : xas_set_update(&xas, workingset_update_node);
151 :
152 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 : VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 : VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155 :
156 0 : for (i = 0; i < nr; i++) {
157 0 : void *entry = xas_store(&xas, shadow);
158 : VM_BUG_ON_PAGE(entry != folio, entry);
159 0 : set_page_private(folio_page(folio, i), 0);
160 0 : xas_next(&xas);
161 : }
162 0 : folio_clear_swapcache(folio);
163 0 : address_space->nrpages -= nr;
164 0 : __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 0 : __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166 0 : }
167 :
168 : /**
169 : * add_to_swap - allocate swap space for a folio
170 : * @folio: folio we want to move to swap
171 : *
172 : * Allocate swap space for the folio and add the folio to the
173 : * swap cache.
174 : *
175 : * Context: Caller needs to hold the folio lock.
176 : * Return: Whether the folio was added to the swap cache.
177 : */
178 0 : bool add_to_swap(struct folio *folio)
179 : {
180 : swp_entry_t entry;
181 : int err;
182 :
183 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 : VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185 :
186 0 : entry = folio_alloc_swap(folio);
187 0 : if (!entry.val)
188 : return false;
189 :
190 : /*
191 : * XArray node allocations from PF_MEMALLOC contexts could
192 : * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 : * stops emergency reserves from being allocated.
194 : *
195 : * TODO: this could cause a theoretical memory reclaim
196 : * deadlock in the swap out path.
197 : */
198 : /*
199 : * Add it to the swap cache.
200 : */
201 0 : err = add_to_swap_cache(folio, entry,
202 : __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
203 0 : if (err)
204 : /*
205 : * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 : * clear SWAP_HAS_CACHE flag.
207 : */
208 : goto fail;
209 : /*
210 : * Normally the folio will be dirtied in unmap because its
211 : * pte should be dirty. A special case is MADV_FREE page. The
212 : * page's pte could have dirty bit cleared but the folio's
213 : * SwapBacked flag is still set because clearing the dirty bit
214 : * and SwapBacked flag has no lock protected. For such folio,
215 : * unmap will not set dirty bit for it, so folio reclaim will
216 : * not write the folio out. This can cause data corruption when
217 : * the folio is swapped in later. Always setting the dirty flag
218 : * for the folio solves the problem.
219 : */
220 0 : folio_mark_dirty(folio);
221 :
222 0 : return true;
223 :
224 : fail:
225 0 : put_swap_folio(folio, entry);
226 0 : return false;
227 : }
228 :
229 : /*
230 : * This must be called only on folios that have
231 : * been verified to be in the swap cache and locked.
232 : * It will never put the folio into the free list,
233 : * the caller has a reference on the folio.
234 : */
235 0 : void delete_from_swap_cache(struct folio *folio)
236 : {
237 0 : swp_entry_t entry = folio_swap_entry(folio);
238 0 : struct address_space *address_space = swap_address_space(entry);
239 :
240 0 : xa_lock_irq(&address_space->i_pages);
241 0 : __delete_from_swap_cache(folio, entry, NULL);
242 0 : xa_unlock_irq(&address_space->i_pages);
243 :
244 0 : put_swap_folio(folio, entry);
245 0 : folio_ref_sub(folio, folio_nr_pages(folio));
246 0 : }
247 :
248 0 : void clear_shadow_from_swap_cache(int type, unsigned long begin,
249 : unsigned long end)
250 : {
251 0 : unsigned long curr = begin;
252 : void *old;
253 :
254 0 : for (;;) {
255 0 : swp_entry_t entry = swp_entry(type, curr);
256 0 : struct address_space *address_space = swap_address_space(entry);
257 0 : XA_STATE(xas, &address_space->i_pages, curr);
258 :
259 0 : xas_set_update(&xas, workingset_update_node);
260 :
261 0 : xa_lock_irq(&address_space->i_pages);
262 0 : xas_for_each(&xas, old, end) {
263 0 : if (!xa_is_value(old))
264 0 : continue;
265 0 : xas_store(&xas, NULL);
266 : }
267 0 : xa_unlock_irq(&address_space->i_pages);
268 :
269 : /* search the next swapcache until we meet end */
270 0 : curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271 0 : curr++;
272 0 : curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273 0 : if (curr > end)
274 : break;
275 : }
276 0 : }
277 :
278 : /*
279 : * If we are the only user, then try to free up the swap cache.
280 : *
281 : * Its ok to check the swapcache flag without the folio lock
282 : * here because we are going to recheck again inside
283 : * folio_free_swap() _with_ the lock.
284 : * - Marcelo
285 : */
286 0 : void free_swap_cache(struct page *page)
287 : {
288 0 : struct folio *folio = page_folio(page);
289 :
290 0 : if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
291 0 : folio_trylock(folio)) {
292 0 : folio_free_swap(folio);
293 0 : folio_unlock(folio);
294 : }
295 0 : }
296 :
297 : /*
298 : * Perform a free_page(), also freeing any swap cache associated with
299 : * this page if it is the last user of the page.
300 : */
301 0 : void free_page_and_swap_cache(struct page *page)
302 : {
303 0 : free_swap_cache(page);
304 0 : if (!is_huge_zero_page(page))
305 0 : put_page(page);
306 0 : }
307 :
308 : /*
309 : * Passed an array of pages, drop them all from swapcache and then release
310 : * them. They are removed from the LRU and freed if this is their last use.
311 : */
312 0 : void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313 : {
314 0 : lru_add_drain();
315 0 : for (int i = 0; i < nr; i++)
316 0 : free_swap_cache(encoded_page_ptr(pages[i]));
317 0 : release_pages(pages, nr);
318 0 : }
319 :
320 : static inline bool swap_use_vma_readahead(void)
321 : {
322 0 : return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
323 : }
324 :
325 : /*
326 : * Lookup a swap entry in the swap cache. A found folio will be returned
327 : * unlocked and with its refcount incremented - we rely on the kernel
328 : * lock getting page table operations atomic even if we drop the folio
329 : * lock before returning.
330 : *
331 : * Caller must lock the swap device or hold a reference to keep it valid.
332 : */
333 0 : struct folio *swap_cache_get_folio(swp_entry_t entry,
334 : struct vm_area_struct *vma, unsigned long addr)
335 : {
336 : struct folio *folio;
337 :
338 0 : folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
339 0 : if (folio) {
340 0 : bool vma_ra = swap_use_vma_readahead();
341 : bool readahead;
342 :
343 : /*
344 : * At the moment, we don't support PG_readahead for anon THP
345 : * so let's bail out rather than confusing the readahead stat.
346 : */
347 0 : if (unlikely(folio_test_large(folio)))
348 : return folio;
349 :
350 0 : readahead = folio_test_clear_readahead(folio);
351 0 : if (vma && vma_ra) {
352 : unsigned long ra_val;
353 : int win, hits;
354 :
355 0 : ra_val = GET_SWAP_RA_VAL(vma);
356 0 : win = SWAP_RA_WIN(ra_val);
357 0 : hits = SWAP_RA_HITS(ra_val);
358 0 : if (readahead)
359 0 : hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
360 0 : atomic_long_set(&vma->swap_readahead_info,
361 0 : SWAP_RA_VAL(addr, win, hits));
362 : }
363 :
364 0 : if (readahead) {
365 0 : count_vm_event(SWAP_RA_HIT);
366 0 : if (!vma || !vma_ra)
367 : atomic_inc(&swapin_readahead_hits);
368 : }
369 : }
370 :
371 : return folio;
372 : }
373 :
374 : /**
375 : * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
376 : * @mapping: The address_space to search.
377 : * @index: The page cache index.
378 : *
379 : * This differs from filemap_get_folio() in that it will also look for the
380 : * folio in the swap cache.
381 : *
382 : * Return: The found folio or %NULL.
383 : */
384 0 : struct folio *filemap_get_incore_folio(struct address_space *mapping,
385 : pgoff_t index)
386 : {
387 : swp_entry_t swp;
388 : struct swap_info_struct *si;
389 0 : struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
390 :
391 0 : if (!xa_is_value(folio))
392 : goto out;
393 0 : if (!shmem_mapping(mapping))
394 : return NULL;
395 :
396 0 : swp = radix_to_swp_entry(folio);
397 : /* There might be swapin error entries in shmem mapping. */
398 0 : if (non_swap_entry(swp))
399 : return NULL;
400 : /* Prevent swapoff from happening to us */
401 0 : si = get_swap_device(swp);
402 0 : if (!si)
403 : return NULL;
404 0 : index = swp_offset(swp);
405 0 : folio = filemap_get_folio(swap_address_space(swp), index);
406 : put_swap_device(si);
407 : out:
408 : return folio;
409 : }
410 :
411 0 : struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
412 : struct vm_area_struct *vma, unsigned long addr,
413 : bool *new_page_allocated)
414 : {
415 : struct swap_info_struct *si;
416 : struct folio *folio;
417 0 : void *shadow = NULL;
418 :
419 0 : *new_page_allocated = false;
420 :
421 0 : for (;;) {
422 : int err;
423 : /*
424 : * First check the swap cache. Since this is normally
425 : * called after swap_cache_get_folio() failed, re-calling
426 : * that would confuse statistics.
427 : */
428 0 : si = get_swap_device(entry);
429 0 : if (!si)
430 : return NULL;
431 0 : folio = filemap_get_folio(swap_address_space(entry),
432 : swp_offset(entry));
433 0 : put_swap_device(si);
434 0 : if (folio)
435 0 : return folio_file_page(folio, swp_offset(entry));
436 :
437 : /*
438 : * Just skip read ahead for unused swap slot.
439 : * During swap_off when swap_slot_cache is disabled,
440 : * we have to handle the race between putting
441 : * swap entry in swap cache and marking swap slot
442 : * as SWAP_HAS_CACHE. That's done in later part of code or
443 : * else swap_off will be aborted if we return NULL.
444 : */
445 0 : if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
446 : return NULL;
447 :
448 : /*
449 : * Get a new page to read into from swap. Allocate it now,
450 : * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
451 : * cause any racers to loop around until we add it to cache.
452 : */
453 0 : folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
454 0 : if (!folio)
455 : return NULL;
456 :
457 : /*
458 : * Swap entry may have been freed since our caller observed it.
459 : */
460 0 : err = swapcache_prepare(entry);
461 0 : if (!err)
462 : break;
463 :
464 0 : folio_put(folio);
465 0 : if (err != -EEXIST)
466 : return NULL;
467 :
468 : /*
469 : * We might race against __delete_from_swap_cache(), and
470 : * stumble across a swap_map entry whose SWAP_HAS_CACHE
471 : * has not yet been cleared. Or race against another
472 : * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
473 : * in swap_map, but not yet added its page to swap cache.
474 : */
475 0 : schedule_timeout_uninterruptible(1);
476 : }
477 :
478 : /*
479 : * The swap entry is ours to swap in. Prepare the new page.
480 : */
481 :
482 0 : __folio_set_locked(folio);
483 0 : __folio_set_swapbacked(folio);
484 :
485 0 : if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
486 : goto fail_unlock;
487 :
488 : /* May fail (-ENOMEM) if XArray node allocation failed. */
489 0 : if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
490 : goto fail_unlock;
491 :
492 0 : mem_cgroup_swapin_uncharge_swap(entry);
493 :
494 0 : if (shadow)
495 0 : workingset_refault(folio, shadow);
496 :
497 : /* Caller will initiate read into locked folio */
498 0 : folio_add_lru(folio);
499 0 : *new_page_allocated = true;
500 0 : return &folio->page;
501 :
502 : fail_unlock:
503 0 : put_swap_folio(folio, entry);
504 0 : folio_unlock(folio);
505 : folio_put(folio);
506 : return NULL;
507 : }
508 :
509 : /*
510 : * Locate a page of swap in physical memory, reserving swap cache space
511 : * and reading the disk if it is not already cached.
512 : * A failure return means that either the page allocation failed or that
513 : * the swap entry is no longer in use.
514 : */
515 0 : struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
516 : struct vm_area_struct *vma,
517 : unsigned long addr, bool do_poll,
518 : struct swap_iocb **plug)
519 : {
520 : bool page_was_allocated;
521 0 : struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
522 : vma, addr, &page_was_allocated);
523 :
524 0 : if (page_was_allocated)
525 0 : swap_readpage(retpage, do_poll, plug);
526 :
527 0 : return retpage;
528 : }
529 :
530 : static unsigned int __swapin_nr_pages(unsigned long prev_offset,
531 : unsigned long offset,
532 : int hits,
533 : int max_pages,
534 : int prev_win)
535 : {
536 : unsigned int pages, last_ra;
537 :
538 : /*
539 : * This heuristic has been found to work well on both sequential and
540 : * random loads, swapping to hard disk or to SSD: please don't ask
541 : * what the "+ 2" means, it just happens to work well, that's all.
542 : */
543 0 : pages = hits + 2;
544 0 : if (pages == 2) {
545 : /*
546 : * We can have no readahead hits to judge by: but must not get
547 : * stuck here forever, so check for an adjacent offset instead
548 : * (and don't even bother to check whether swap type is same).
549 : */
550 0 : if (offset != prev_offset + 1 && offset != prev_offset - 1)
551 0 : pages = 1;
552 : } else {
553 : unsigned int roundup = 4;
554 0 : while (roundup < pages)
555 0 : roundup <<= 1;
556 : pages = roundup;
557 : }
558 :
559 0 : if (pages > max_pages)
560 0 : pages = max_pages;
561 :
562 : /* Don't shrink readahead too fast */
563 0 : last_ra = prev_win / 2;
564 0 : if (pages < last_ra)
565 0 : pages = last_ra;
566 :
567 : return pages;
568 : }
569 :
570 0 : static unsigned long swapin_nr_pages(unsigned long offset)
571 : {
572 : static unsigned long prev_offset;
573 : unsigned int hits, pages, max_pages;
574 : static atomic_t last_readahead_pages;
575 :
576 0 : max_pages = 1 << READ_ONCE(page_cluster);
577 0 : if (max_pages <= 1)
578 : return 1;
579 :
580 0 : hits = atomic_xchg(&swapin_readahead_hits, 0);
581 0 : pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
582 : max_pages,
583 : atomic_read(&last_readahead_pages));
584 0 : if (!hits)
585 0 : WRITE_ONCE(prev_offset, offset);
586 0 : atomic_set(&last_readahead_pages, pages);
587 :
588 0 : return pages;
589 : }
590 :
591 : /**
592 : * swap_cluster_readahead - swap in pages in hope we need them soon
593 : * @entry: swap entry of this memory
594 : * @gfp_mask: memory allocation flags
595 : * @vmf: fault information
596 : *
597 : * Returns the struct page for entry and addr, after queueing swapin.
598 : *
599 : * Primitive swap readahead code. We simply read an aligned block of
600 : * (1 << page_cluster) entries in the swap area. This method is chosen
601 : * because it doesn't cost us any seek time. We also make sure to queue
602 : * the 'original' request together with the readahead ones...
603 : *
604 : * This has been extended to use the NUMA policies from the mm triggering
605 : * the readahead.
606 : *
607 : * Caller must hold read mmap_lock if vmf->vma is not NULL.
608 : */
609 0 : struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
610 : struct vm_fault *vmf)
611 : {
612 : struct page *page;
613 0 : unsigned long entry_offset = swp_offset(entry);
614 0 : unsigned long offset = entry_offset;
615 : unsigned long start_offset, end_offset;
616 : unsigned long mask;
617 0 : struct swap_info_struct *si = swp_swap_info(entry);
618 : struct blk_plug plug;
619 0 : struct swap_iocb *splug = NULL;
620 0 : bool do_poll = true, page_allocated;
621 0 : struct vm_area_struct *vma = vmf->vma;
622 0 : unsigned long addr = vmf->address;
623 :
624 0 : mask = swapin_nr_pages(offset) - 1;
625 0 : if (!mask)
626 : goto skip;
627 :
628 0 : do_poll = false;
629 : /* Read a page_cluster sized and aligned cluster around offset. */
630 0 : start_offset = offset & ~mask;
631 0 : end_offset = offset | mask;
632 0 : if (!start_offset) /* First page is swap header. */
633 0 : start_offset++;
634 0 : if (end_offset >= si->max)
635 0 : end_offset = si->max - 1;
636 :
637 0 : blk_start_plug(&plug);
638 0 : for (offset = start_offset; offset <= end_offset ; offset++) {
639 : /* Ok, do the async read-ahead now */
640 0 : page = __read_swap_cache_async(
641 : swp_entry(swp_type(entry), offset),
642 : gfp_mask, vma, addr, &page_allocated);
643 0 : if (!page)
644 0 : continue;
645 0 : if (page_allocated) {
646 0 : swap_readpage(page, false, &splug);
647 0 : if (offset != entry_offset) {
648 0 : SetPageReadahead(page);
649 0 : count_vm_event(SWAP_RA);
650 : }
651 : }
652 0 : put_page(page);
653 : }
654 0 : blk_finish_plug(&plug);
655 0 : swap_read_unplug(splug);
656 :
657 0 : lru_add_drain(); /* Push any new pages onto the LRU now */
658 : skip:
659 : /* The page was likely read above, so no need for plugging here */
660 0 : return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
661 : }
662 :
663 0 : int init_swap_address_space(unsigned int type, unsigned long nr_pages)
664 : {
665 : struct address_space *spaces, *space;
666 : unsigned int i, nr;
667 :
668 0 : nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
669 0 : spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
670 0 : if (!spaces)
671 : return -ENOMEM;
672 0 : for (i = 0; i < nr; i++) {
673 0 : space = spaces + i;
674 0 : xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
675 0 : atomic_set(&space->i_mmap_writable, 0);
676 0 : space->a_ops = &swap_aops;
677 : /* swap cache doesn't use writeback related tags */
678 0 : mapping_set_no_writeback_tags(space);
679 : }
680 0 : nr_swapper_spaces[type] = nr;
681 0 : swapper_spaces[type] = spaces;
682 :
683 0 : return 0;
684 : }
685 :
686 0 : void exit_swap_address_space(unsigned int type)
687 : {
688 : int i;
689 0 : struct address_space *spaces = swapper_spaces[type];
690 :
691 0 : for (i = 0; i < nr_swapper_spaces[type]; i++)
692 : VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
693 0 : kvfree(spaces);
694 0 : nr_swapper_spaces[type] = 0;
695 0 : swapper_spaces[type] = NULL;
696 0 : }
697 :
698 0 : static void swap_ra_info(struct vm_fault *vmf,
699 : struct vma_swap_readahead *ra_info)
700 : {
701 0 : struct vm_area_struct *vma = vmf->vma;
702 : unsigned long ra_val;
703 : unsigned long faddr, pfn, fpfn, lpfn, rpfn;
704 : unsigned long start, end;
705 : pte_t *pte, *orig_pte;
706 : unsigned int max_win, hits, prev_win, win;
707 : #ifndef CONFIG_64BIT
708 : pte_t *tpte;
709 : #endif
710 :
711 0 : max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
712 : SWAP_RA_ORDER_CEILING);
713 0 : if (max_win == 1) {
714 0 : ra_info->win = 1;
715 0 : return;
716 : }
717 :
718 0 : faddr = vmf->address;
719 0 : fpfn = PFN_DOWN(faddr);
720 0 : ra_val = GET_SWAP_RA_VAL(vma);
721 0 : pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
722 0 : prev_win = SWAP_RA_WIN(ra_val);
723 0 : hits = SWAP_RA_HITS(ra_val);
724 0 : ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
725 : max_win, prev_win);
726 0 : atomic_long_set(&vma->swap_readahead_info,
727 0 : SWAP_RA_VAL(faddr, win, 0));
728 :
729 0 : if (win == 1)
730 : return;
731 :
732 : /* Copy the PTEs because the page table may be unmapped */
733 0 : orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
734 0 : if (fpfn == pfn + 1) {
735 0 : lpfn = fpfn;
736 0 : rpfn = fpfn + win;
737 0 : } else if (pfn == fpfn + 1) {
738 0 : lpfn = fpfn - win + 1;
739 0 : rpfn = fpfn + 1;
740 : } else {
741 0 : unsigned int left = (win - 1) / 2;
742 :
743 0 : lpfn = fpfn - left;
744 0 : rpfn = fpfn + win - left;
745 : }
746 0 : start = max3(lpfn, PFN_DOWN(vma->vm_start),
747 : PFN_DOWN(faddr & PMD_MASK));
748 0 : end = min3(rpfn, PFN_DOWN(vma->vm_end),
749 : PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
750 :
751 0 : ra_info->nr_pte = end - start;
752 0 : ra_info->offset = fpfn - start;
753 0 : pte -= ra_info->offset;
754 : #ifdef CONFIG_64BIT
755 0 : ra_info->ptes = pte;
756 : #else
757 : tpte = ra_info->ptes;
758 : for (pfn = start; pfn != end; pfn++)
759 : *tpte++ = *pte++;
760 : #endif
761 : pte_unmap(orig_pte);
762 : }
763 :
764 : /**
765 : * swap_vma_readahead - swap in pages in hope we need them soon
766 : * @fentry: swap entry of this memory
767 : * @gfp_mask: memory allocation flags
768 : * @vmf: fault information
769 : *
770 : * Returns the struct page for entry and addr, after queueing swapin.
771 : *
772 : * Primitive swap readahead code. We simply read in a few pages whose
773 : * virtual addresses are around the fault address in the same vma.
774 : *
775 : * Caller must hold read mmap_lock if vmf->vma is not NULL.
776 : *
777 : */
778 0 : static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
779 : struct vm_fault *vmf)
780 : {
781 : struct blk_plug plug;
782 0 : struct swap_iocb *splug = NULL;
783 0 : struct vm_area_struct *vma = vmf->vma;
784 : struct page *page;
785 : pte_t *pte, pentry;
786 : swp_entry_t entry;
787 : unsigned int i;
788 : bool page_allocated;
789 0 : struct vma_swap_readahead ra_info = {
790 : .win = 1,
791 : };
792 :
793 0 : swap_ra_info(vmf, &ra_info);
794 0 : if (ra_info.win == 1)
795 : goto skip;
796 :
797 0 : blk_start_plug(&plug);
798 0 : for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
799 0 : i++, pte++) {
800 0 : pentry = *pte;
801 0 : if (!is_swap_pte(pentry))
802 0 : continue;
803 0 : entry = pte_to_swp_entry(pentry);
804 0 : if (unlikely(non_swap_entry(entry)))
805 0 : continue;
806 0 : page = __read_swap_cache_async(entry, gfp_mask, vma,
807 : vmf->address, &page_allocated);
808 0 : if (!page)
809 0 : continue;
810 0 : if (page_allocated) {
811 0 : swap_readpage(page, false, &splug);
812 0 : if (i != ra_info.offset) {
813 0 : SetPageReadahead(page);
814 0 : count_vm_event(SWAP_RA);
815 : }
816 : }
817 0 : put_page(page);
818 : }
819 0 : blk_finish_plug(&plug);
820 0 : swap_read_unplug(splug);
821 0 : lru_add_drain();
822 : skip:
823 : /* The page was likely read above, so no need for plugging here */
824 0 : return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
825 0 : ra_info.win == 1, NULL);
826 : }
827 :
828 : /**
829 : * swapin_readahead - swap in pages in hope we need them soon
830 : * @entry: swap entry of this memory
831 : * @gfp_mask: memory allocation flags
832 : * @vmf: fault information
833 : *
834 : * Returns the struct page for entry and addr, after queueing swapin.
835 : *
836 : * It's a main entry function for swap readahead. By the configuration,
837 : * it will read ahead blocks by cluster-based(ie, physical disk based)
838 : * or vma-based(ie, virtual address based on faulty address) readahead.
839 : */
840 0 : struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
841 : struct vm_fault *vmf)
842 : {
843 : return swap_use_vma_readahead() ?
844 0 : swap_vma_readahead(entry, gfp_mask, vmf) :
845 : swap_cluster_readahead(entry, gfp_mask, vmf);
846 : }
847 :
848 : #ifdef CONFIG_SYSFS
849 0 : static ssize_t vma_ra_enabled_show(struct kobject *kobj,
850 : struct kobj_attribute *attr, char *buf)
851 : {
852 0 : return sysfs_emit(buf, "%s\n",
853 0 : enable_vma_readahead ? "true" : "false");
854 : }
855 0 : static ssize_t vma_ra_enabled_store(struct kobject *kobj,
856 : struct kobj_attribute *attr,
857 : const char *buf, size_t count)
858 : {
859 : ssize_t ret;
860 :
861 0 : ret = kstrtobool(buf, &enable_vma_readahead);
862 0 : if (ret)
863 : return ret;
864 :
865 0 : return count;
866 : }
867 : static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
868 :
869 : static struct attribute *swap_attrs[] = {
870 : &vma_ra_enabled_attr.attr,
871 : NULL,
872 : };
873 :
874 : static const struct attribute_group swap_attr_group = {
875 : .attrs = swap_attrs,
876 : };
877 :
878 1 : static int __init swap_init_sysfs(void)
879 : {
880 : int err;
881 : struct kobject *swap_kobj;
882 :
883 1 : swap_kobj = kobject_create_and_add("swap", mm_kobj);
884 1 : if (!swap_kobj) {
885 0 : pr_err("failed to create swap kobject\n");
886 0 : return -ENOMEM;
887 : }
888 1 : err = sysfs_create_group(swap_kobj, &swap_attr_group);
889 1 : if (err) {
890 0 : pr_err("failed to register swap group\n");
891 : goto delete_obj;
892 : }
893 : return 0;
894 :
895 : delete_obj:
896 0 : kobject_put(swap_kobj);
897 0 : return err;
898 : }
899 : subsys_initcall(swap_init_sysfs);
900 : #endif
|