Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 : */
5 :
6 : #include <linux/mm.h>
7 : #include <linux/sched/signal.h>
8 : #include <linux/hardirq.h>
9 : #include <linux/module.h>
10 : #include <linux/uaccess.h>
11 : #include <linux/sched/debug.h>
12 : #include <asm/current.h>
13 : #include <asm/tlbflush.h>
14 : #include <arch.h>
15 : #include <as-layout.h>
16 : #include <kern_util.h>
17 : #include <os.h>
18 : #include <skas.h>
19 :
20 : /*
21 : * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
22 : * segv().
23 : */
24 0 : int handle_page_fault(unsigned long address, unsigned long ip,
25 : int is_write, int is_user, int *code_out)
26 : {
27 0 : struct mm_struct *mm = current->mm;
28 : struct vm_area_struct *vma;
29 : pmd_t *pmd;
30 : pte_t *pte;
31 0 : int err = -EFAULT;
32 0 : unsigned int flags = FAULT_FLAG_DEFAULT;
33 :
34 0 : *code_out = SEGV_MAPERR;
35 :
36 : /*
37 : * If the fault was with pagefaults disabled, don't take the fault, just
38 : * fail.
39 : */
40 0 : if (faulthandler_disabled())
41 : goto out_nosemaphore;
42 :
43 0 : if (is_user)
44 0 : flags |= FAULT_FLAG_USER;
45 : retry:
46 0 : mmap_read_lock(mm);
47 0 : vma = find_vma(mm, address);
48 0 : if (!vma)
49 : goto out;
50 0 : if (vma->vm_start <= address)
51 : goto good_area;
52 0 : if (!(vma->vm_flags & VM_GROWSDOWN))
53 : goto out;
54 0 : if (is_user && !ARCH_IS_STACKGROW(address))
55 : goto out;
56 0 : vma = expand_stack(mm, address);
57 0 : if (!vma)
58 : goto out_nosemaphore;
59 :
60 : good_area:
61 0 : *code_out = SEGV_ACCERR;
62 0 : if (is_write) {
63 0 : if (!(vma->vm_flags & VM_WRITE))
64 : goto out;
65 0 : flags |= FAULT_FLAG_WRITE;
66 : } else {
67 : /* Don't require VM_READ|VM_EXEC for write faults! */
68 0 : if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
69 : goto out;
70 : }
71 :
72 : do {
73 : vm_fault_t fault;
74 :
75 0 : fault = handle_mm_fault(vma, address, flags, NULL);
76 :
77 0 : if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
78 : goto out_nosemaphore;
79 :
80 : /* The fault is fully completed (including releasing mmap lock) */
81 0 : if (fault & VM_FAULT_COMPLETED)
82 : return 0;
83 :
84 0 : if (unlikely(fault & VM_FAULT_ERROR)) {
85 0 : if (fault & VM_FAULT_OOM) {
86 : goto out_of_memory;
87 0 : } else if (fault & VM_FAULT_SIGSEGV) {
88 : goto out;
89 0 : } else if (fault & VM_FAULT_SIGBUS) {
90 : err = -EACCES;
91 : goto out;
92 : }
93 0 : BUG();
94 : }
95 0 : if (fault & VM_FAULT_RETRY) {
96 0 : flags |= FAULT_FLAG_TRIED;
97 :
98 0 : goto retry;
99 : }
100 :
101 0 : pmd = pmd_off(mm, address);
102 0 : pte = pte_offset_kernel(pmd, address);
103 0 : } while (!pte_present(*pte));
104 0 : err = 0;
105 : /*
106 : * The below warning was added in place of
107 : * pte_mkyoung(); if (is_write) pte_mkdirty();
108 : * If it's triggered, we'd see normally a hang here (a clean pte is
109 : * marked read-only to emulate the dirty bit).
110 : * However, the generic code can mark a PTE writable but clean on a
111 : * concurrent read fault, triggering this harmlessly. So comment it out.
112 : */
113 : #if 0
114 : WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
115 : #endif
116 0 : flush_tlb_page(vma, address);
117 : out:
118 : mmap_read_unlock(mm);
119 : out_nosemaphore:
120 : return err;
121 :
122 : out_of_memory:
123 : /*
124 : * We ran out of memory, call the OOM killer, and return the userspace
125 : * (which will retry the fault, or kill us if we got oom-killed).
126 : */
127 0 : mmap_read_unlock(mm);
128 0 : if (!is_user)
129 : goto out_nosemaphore;
130 0 : pagefault_out_of_memory();
131 0 : return 0;
132 : }
133 :
134 0 : static void show_segv_info(struct uml_pt_regs *regs)
135 : {
136 0 : struct task_struct *tsk = current;
137 0 : struct faultinfo *fi = UPT_FAULTINFO(regs);
138 :
139 0 : if (!unhandled_signal(tsk, SIGSEGV))
140 : return;
141 :
142 0 : if (!printk_ratelimit())
143 : return;
144 :
145 0 : printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
146 : task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
147 : tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
148 : (void *)UPT_IP(regs), (void *)UPT_SP(regs),
149 : fi->error_code);
150 :
151 0 : print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
152 0 : printk(KERN_CONT "\n");
153 : }
154 :
155 0 : static void bad_segv(struct faultinfo fi, unsigned long ip)
156 : {
157 0 : current->thread.arch.faultinfo = fi;
158 0 : force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
159 0 : }
160 :
161 0 : void fatal_sigsegv(void)
162 : {
163 0 : force_fatal_sig(SIGSEGV);
164 0 : do_signal(¤t->thread.regs);
165 : /*
166 : * This is to tell gcc that we're not returning - do_signal
167 : * can, in general, return, but in this case, it's not, since
168 : * we just got a fatal SIGSEGV queued.
169 : */
170 0 : os_dump_core();
171 : }
172 :
173 : /**
174 : * segv_handler() - the SIGSEGV handler
175 : * @sig: the signal number
176 : * @unused_si: the signal info struct; unused in this handler
177 : * @regs: the ptrace register information
178 : *
179 : * The handler first extracts the faultinfo from the UML ptrace regs struct.
180 : * If the userfault did not happen in an UML userspace process, bad_segv is called.
181 : * Otherwise the signal did happen in a cloned userspace process, handle it.
182 : */
183 0 : void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
184 : {
185 0 : struct faultinfo * fi = UPT_FAULTINFO(regs);
186 :
187 0 : if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
188 0 : show_segv_info(regs);
189 0 : bad_segv(*fi, UPT_IP(regs));
190 0 : return;
191 : }
192 0 : segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
193 : }
194 :
195 : /*
196 : * We give a *copy* of the faultinfo in the regs to segv.
197 : * This must be done, since nesting SEGVs could overwrite
198 : * the info in the regs. A pointer to the info then would
199 : * give us bad data!
200 : */
201 0 : unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
202 : struct uml_pt_regs *regs)
203 : {
204 : jmp_buf *catcher;
205 : int si_code;
206 : int err;
207 0 : int is_write = FAULT_WRITE(fi);
208 0 : unsigned long address = FAULT_ADDRESS(fi);
209 :
210 0 : if (!is_user && regs)
211 0 : current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
212 :
213 0 : if (!is_user && (address >= start_vm) && (address < end_vm)) {
214 0 : flush_tlb_kernel_vm();
215 0 : goto out;
216 : }
217 0 : else if (current->mm == NULL) {
218 0 : show_regs(container_of(regs, struct pt_regs, regs));
219 0 : panic("Segfault with no mm");
220 : }
221 0 : else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
222 0 : show_regs(container_of(regs, struct pt_regs, regs));
223 0 : panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
224 : address, ip);
225 : }
226 :
227 0 : if (SEGV_IS_FIXABLE(&fi))
228 0 : err = handle_page_fault(address, ip, is_write, is_user,
229 : &si_code);
230 : else {
231 : err = -EFAULT;
232 : /*
233 : * A thread accessed NULL, we get a fault, but CR2 is invalid.
234 : * This code is used in __do_copy_from_user() of TT mode.
235 : * XXX tt mode is gone, so maybe this isn't needed any more
236 : */
237 : address = 0;
238 : }
239 :
240 0 : catcher = current->thread.fault_catcher;
241 0 : if (!err)
242 : goto out;
243 0 : else if (catcher != NULL) {
244 0 : current->thread.fault_addr = (void *) address;
245 0 : UML_LONGJMP(catcher, 1);
246 : }
247 0 : else if (current->thread.fault_addr != NULL)
248 0 : panic("fault_addr set but no fault catcher");
249 0 : else if (!is_user && arch_fixup(ip, regs))
250 : goto out;
251 :
252 0 : if (!is_user) {
253 0 : show_regs(container_of(regs, struct pt_regs, regs));
254 0 : panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
255 : address, ip);
256 : }
257 :
258 0 : show_segv_info(regs);
259 :
260 0 : if (err == -EACCES) {
261 0 : current->thread.arch.faultinfo = fi;
262 0 : force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
263 : } else {
264 0 : BUG_ON(err != -EFAULT);
265 0 : current->thread.arch.faultinfo = fi;
266 0 : force_sig_fault(SIGSEGV, si_code, (void __user *) address);
267 : }
268 :
269 : out:
270 0 : if (regs)
271 0 : current->thread.segv_regs = NULL;
272 :
273 0 : return 0;
274 : }
275 :
276 0 : void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
277 : {
278 : int code, err;
279 0 : if (!UPT_IS_USER(regs)) {
280 0 : if (sig == SIGBUS)
281 0 : printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
282 : "mount likely just ran out of space\n");
283 0 : panic("Kernel mode signal %d", sig);
284 : }
285 :
286 0 : arch_examine_signal(sig, regs);
287 :
288 : /* Is the signal layout for the signal known?
289 : * Signal data must be scrubbed to prevent information leaks.
290 : */
291 0 : code = si->si_code;
292 0 : err = si->si_errno;
293 0 : if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
294 0 : struct faultinfo *fi = UPT_FAULTINFO(regs);
295 0 : current->thread.arch.faultinfo = *fi;
296 0 : force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
297 : } else {
298 0 : printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
299 : sig, code, err);
300 0 : force_sig(sig);
301 : }
302 0 : }
303 :
304 0 : void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
305 : {
306 0 : if (current->thread.fault_catcher != NULL)
307 0 : UML_LONGJMP(current->thread.fault_catcher, 1);
308 : else
309 0 : relay_signal(sig, si, regs);
310 0 : }
311 :
312 0 : void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
313 : {
314 0 : do_IRQ(WINCH_IRQ, regs);
315 0 : }
|