LCOV - code coverage report
Current view: top level - block - bio.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 47 585 8.0 %
Date: 2023-08-24 13:40:31 Functions: 4 62 6.5 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
       4             :  */
       5             : #include <linux/mm.h>
       6             : #include <linux/swap.h>
       7             : #include <linux/bio.h>
       8             : #include <linux/blkdev.h>
       9             : #include <linux/uio.h>
      10             : #include <linux/iocontext.h>
      11             : #include <linux/slab.h>
      12             : #include <linux/init.h>
      13             : #include <linux/kernel.h>
      14             : #include <linux/export.h>
      15             : #include <linux/mempool.h>
      16             : #include <linux/workqueue.h>
      17             : #include <linux/cgroup.h>
      18             : #include <linux/highmem.h>
      19             : #include <linux/sched/sysctl.h>
      20             : #include <linux/blk-crypto.h>
      21             : #include <linux/xarray.h>
      22             : 
      23             : #include <trace/events/block.h>
      24             : #include "blk.h"
      25             : #include "blk-rq-qos.h"
      26             : #include "blk-cgroup.h"
      27             : 
      28             : #define ALLOC_CACHE_THRESHOLD   16
      29             : #define ALLOC_CACHE_MAX         256
      30             : 
      31             : struct bio_alloc_cache {
      32             :         struct bio              *free_list;
      33             :         struct bio              *free_list_irq;
      34             :         unsigned int            nr;
      35             :         unsigned int            nr_irq;
      36             : };
      37             : 
      38             : static struct biovec_slab {
      39             :         int nr_vecs;
      40             :         char *name;
      41             :         struct kmem_cache *slab;
      42             : } bvec_slabs[] __read_mostly = {
      43             :         { .nr_vecs = 16, .name = "biovec-16" },
      44             :         { .nr_vecs = 64, .name = "biovec-64" },
      45             :         { .nr_vecs = 128, .name = "biovec-128" },
      46             :         { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
      47             : };
      48             : 
      49           0 : static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
      50             : {
      51           0 :         switch (nr_vecs) {
      52             :         /* smaller bios use inline vecs */
      53             :         case 5 ... 16:
      54             :                 return &bvec_slabs[0];
      55             :         case 17 ... 64:
      56           0 :                 return &bvec_slabs[1];
      57             :         case 65 ... 128:
      58           0 :                 return &bvec_slabs[2];
      59             :         case 129 ... BIO_MAX_VECS:
      60           0 :                 return &bvec_slabs[3];
      61             :         default:
      62           0 :                 BUG();
      63             :                 return NULL;
      64             :         }
      65             : }
      66             : 
      67             : /*
      68             :  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
      69             :  * IO code that does not need private memory pools.
      70             :  */
      71             : struct bio_set fs_bio_set;
      72             : EXPORT_SYMBOL(fs_bio_set);
      73             : 
      74             : /*
      75             :  * Our slab pool management
      76             :  */
      77             : struct bio_slab {
      78             :         struct kmem_cache *slab;
      79             :         unsigned int slab_ref;
      80             :         unsigned int slab_size;
      81             :         char name[8];
      82             : };
      83             : static DEFINE_MUTEX(bio_slab_lock);
      84             : static DEFINE_XARRAY(bio_slabs);
      85             : 
      86           2 : static struct bio_slab *create_bio_slab(unsigned int size)
      87             : {
      88           2 :         struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
      89             : 
      90           2 :         if (!bslab)
      91             :                 return NULL;
      92             : 
      93           2 :         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
      94           2 :         bslab->slab = kmem_cache_create(bslab->name, size,
      95             :                         ARCH_KMALLOC_MINALIGN,
      96             :                         SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
      97           2 :         if (!bslab->slab)
      98             :                 goto fail_alloc_slab;
      99             : 
     100           2 :         bslab->slab_ref = 1;
     101           2 :         bslab->slab_size = size;
     102             : 
     103           4 :         if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
     104             :                 return bslab;
     105             : 
     106           0 :         kmem_cache_destroy(bslab->slab);
     107             : 
     108             : fail_alloc_slab:
     109           0 :         kfree(bslab);
     110           0 :         return NULL;
     111             : }
     112             : 
     113             : static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
     114             : {
     115           2 :         return bs->front_pad + sizeof(struct bio) + bs->back_pad;
     116             : }
     117             : 
     118           2 : static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
     119             : {
     120           4 :         unsigned int size = bs_bio_slab_size(bs);
     121             :         struct bio_slab *bslab;
     122             : 
     123           2 :         mutex_lock(&bio_slab_lock);
     124           2 :         bslab = xa_load(&bio_slabs, size);
     125           2 :         if (bslab)
     126           0 :                 bslab->slab_ref++;
     127             :         else
     128           2 :                 bslab = create_bio_slab(size);
     129           2 :         mutex_unlock(&bio_slab_lock);
     130             : 
     131           2 :         if (bslab)
     132           2 :                 return bslab->slab;
     133             :         return NULL;
     134             : }
     135             : 
     136           0 : static void bio_put_slab(struct bio_set *bs)
     137             : {
     138           0 :         struct bio_slab *bslab = NULL;
     139           0 :         unsigned int slab_size = bs_bio_slab_size(bs);
     140             : 
     141           0 :         mutex_lock(&bio_slab_lock);
     142             : 
     143           0 :         bslab = xa_load(&bio_slabs, slab_size);
     144           0 :         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
     145             :                 goto out;
     146             : 
     147           0 :         WARN_ON_ONCE(bslab->slab != bs->bio_slab);
     148             : 
     149           0 :         WARN_ON(!bslab->slab_ref);
     150             : 
     151           0 :         if (--bslab->slab_ref)
     152             :                 goto out;
     153             : 
     154           0 :         xa_erase(&bio_slabs, slab_size);
     155             : 
     156           0 :         kmem_cache_destroy(bslab->slab);
     157           0 :         kfree(bslab);
     158             : 
     159             : out:
     160           0 :         mutex_unlock(&bio_slab_lock);
     161           0 : }
     162             : 
     163           0 : void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
     164             : {
     165           0 :         BUG_ON(nr_vecs > BIO_MAX_VECS);
     166             : 
     167           0 :         if (nr_vecs == BIO_MAX_VECS)
     168           0 :                 mempool_free(bv, pool);
     169           0 :         else if (nr_vecs > BIO_INLINE_VECS)
     170           0 :                 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
     171           0 : }
     172             : 
     173             : /*
     174             :  * Make the first allocation restricted and don't dump info on allocation
     175             :  * failures, since we'll fall back to the mempool in case of failure.
     176             :  */
     177             : static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
     178             : {
     179             :         return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
     180           0 :                 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
     181             : }
     182             : 
     183           0 : struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
     184             :                 gfp_t gfp_mask)
     185             : {
     186           0 :         struct biovec_slab *bvs = biovec_slab(*nr_vecs);
     187             : 
     188           0 :         if (WARN_ON_ONCE(!bvs))
     189             :                 return NULL;
     190             : 
     191             :         /*
     192             :          * Upgrade the nr_vecs request to take full advantage of the allocation.
     193             :          * We also rely on this in the bvec_free path.
     194             :          */
     195           0 :         *nr_vecs = bvs->nr_vecs;
     196             : 
     197             :         /*
     198             :          * Try a slab allocation first for all smaller allocations.  If that
     199             :          * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
     200             :          * The mempool is sized to handle up to BIO_MAX_VECS entries.
     201             :          */
     202           0 :         if (*nr_vecs < BIO_MAX_VECS) {
     203             :                 struct bio_vec *bvl;
     204             : 
     205           0 :                 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
     206           0 :                 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
     207             :                         return bvl;
     208           0 :                 *nr_vecs = BIO_MAX_VECS;
     209             :         }
     210             : 
     211           0 :         return mempool_alloc(pool, gfp_mask);
     212             : }
     213             : 
     214           0 : void bio_uninit(struct bio *bio)
     215             : {
     216             : #ifdef CONFIG_BLK_CGROUP
     217             :         if (bio->bi_blkg) {
     218             :                 blkg_put(bio->bi_blkg);
     219             :                 bio->bi_blkg = NULL;
     220             :         }
     221             : #endif
     222           0 :         if (bio_integrity(bio))
     223             :                 bio_integrity_free(bio);
     224             : 
     225           0 :         bio_crypt_free_ctx(bio);
     226           0 : }
     227             : EXPORT_SYMBOL(bio_uninit);
     228             : 
     229           0 : static void bio_free(struct bio *bio)
     230             : {
     231           0 :         struct bio_set *bs = bio->bi_pool;
     232           0 :         void *p = bio;
     233             : 
     234           0 :         WARN_ON_ONCE(!bs);
     235             : 
     236           0 :         bio_uninit(bio);
     237           0 :         bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
     238           0 :         mempool_free(p - bs->front_pad, &bs->bio_pool);
     239           0 : }
     240             : 
     241             : /*
     242             :  * Users of this function have their own bio allocation. Subsequently,
     243             :  * they must remember to pair any call to bio_init() with bio_uninit()
     244             :  * when IO has completed, or when the bio is released.
     245             :  */
     246           0 : void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
     247             :               unsigned short max_vecs, blk_opf_t opf)
     248             : {
     249           0 :         bio->bi_next = NULL;
     250           0 :         bio->bi_bdev = bdev;
     251           0 :         bio->bi_opf = opf;
     252           0 :         bio->bi_flags = 0;
     253           0 :         bio->bi_ioprio = 0;
     254           0 :         bio->bi_status = 0;
     255           0 :         bio->bi_iter.bi_sector = 0;
     256           0 :         bio->bi_iter.bi_size = 0;
     257           0 :         bio->bi_iter.bi_idx = 0;
     258           0 :         bio->bi_iter.bi_bvec_done = 0;
     259           0 :         bio->bi_end_io = NULL;
     260           0 :         bio->bi_private = NULL;
     261             : #ifdef CONFIG_BLK_CGROUP
     262             :         bio->bi_blkg = NULL;
     263             :         bio->bi_issue.value = 0;
     264             :         if (bdev)
     265             :                 bio_associate_blkg(bio);
     266             : #ifdef CONFIG_BLK_CGROUP_IOCOST
     267             :         bio->bi_iocost_cost = 0;
     268             : #endif
     269             : #endif
     270             : #ifdef CONFIG_BLK_INLINE_ENCRYPTION
     271             :         bio->bi_crypt_context = NULL;
     272             : #endif
     273             : #ifdef CONFIG_BLK_DEV_INTEGRITY
     274             :         bio->bi_integrity = NULL;
     275             : #endif
     276           0 :         bio->bi_vcnt = 0;
     277             : 
     278           0 :         atomic_set(&bio->__bi_remaining, 1);
     279           0 :         atomic_set(&bio->__bi_cnt, 1);
     280           0 :         bio->bi_cookie = BLK_QC_T_NONE;
     281             : 
     282           0 :         bio->bi_max_vecs = max_vecs;
     283           0 :         bio->bi_io_vec = table;
     284           0 :         bio->bi_pool = NULL;
     285           0 : }
     286             : EXPORT_SYMBOL(bio_init);
     287             : 
     288             : /**
     289             :  * bio_reset - reinitialize a bio
     290             :  * @bio:        bio to reset
     291             :  * @bdev:       block device to use the bio for
     292             :  * @opf:        operation and flags for bio
     293             :  *
     294             :  * Description:
     295             :  *   After calling bio_reset(), @bio will be in the same state as a freshly
     296             :  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
     297             :  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
     298             :  *   comment in struct bio.
     299             :  */
     300           0 : void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
     301             : {
     302           0 :         bio_uninit(bio);
     303           0 :         memset(bio, 0, BIO_RESET_BYTES);
     304           0 :         atomic_set(&bio->__bi_remaining, 1);
     305           0 :         bio->bi_bdev = bdev;
     306             :         if (bio->bi_bdev)
     307             :                 bio_associate_blkg(bio);
     308           0 :         bio->bi_opf = opf;
     309           0 : }
     310             : EXPORT_SYMBOL(bio_reset);
     311             : 
     312             : static struct bio *__bio_chain_endio(struct bio *bio)
     313             : {
     314           0 :         struct bio *parent = bio->bi_private;
     315             : 
     316           0 :         if (bio->bi_status && !parent->bi_status)
     317           0 :                 parent->bi_status = bio->bi_status;
     318           0 :         bio_put(bio);
     319             :         return parent;
     320             : }
     321             : 
     322           0 : static void bio_chain_endio(struct bio *bio)
     323             : {
     324           0 :         bio_endio(__bio_chain_endio(bio));
     325           0 : }
     326             : 
     327             : /**
     328             :  * bio_chain - chain bio completions
     329             :  * @bio: the target bio
     330             :  * @parent: the parent bio of @bio
     331             :  *
     332             :  * The caller won't have a bi_end_io called when @bio completes - instead,
     333             :  * @parent's bi_end_io won't be called until both @parent and @bio have
     334             :  * completed; the chained bio will also be freed when it completes.
     335             :  *
     336             :  * The caller must not set bi_private or bi_end_io in @bio.
     337             :  */
     338           0 : void bio_chain(struct bio *bio, struct bio *parent)
     339             : {
     340           0 :         BUG_ON(bio->bi_private || bio->bi_end_io);
     341             : 
     342           0 :         bio->bi_private = parent;
     343           0 :         bio->bi_end_io       = bio_chain_endio;
     344           0 :         bio_inc_remaining(parent);
     345           0 : }
     346             : EXPORT_SYMBOL(bio_chain);
     347             : 
     348           0 : struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
     349             :                 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
     350             : {
     351           0 :         struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
     352             : 
     353           0 :         if (bio) {
     354           0 :                 bio_chain(bio, new);
     355           0 :                 submit_bio(bio);
     356             :         }
     357             : 
     358           0 :         return new;
     359             : }
     360             : EXPORT_SYMBOL_GPL(blk_next_bio);
     361             : 
     362           0 : static void bio_alloc_rescue(struct work_struct *work)
     363             : {
     364           0 :         struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
     365             :         struct bio *bio;
     366             : 
     367             :         while (1) {
     368           0 :                 spin_lock(&bs->rescue_lock);
     369           0 :                 bio = bio_list_pop(&bs->rescue_list);
     370           0 :                 spin_unlock(&bs->rescue_lock);
     371             : 
     372           0 :                 if (!bio)
     373             :                         break;
     374             : 
     375           0 :                 submit_bio_noacct(bio);
     376             :         }
     377           0 : }
     378             : 
     379           0 : static void punt_bios_to_rescuer(struct bio_set *bs)
     380             : {
     381             :         struct bio_list punt, nopunt;
     382             :         struct bio *bio;
     383             : 
     384           0 :         if (WARN_ON_ONCE(!bs->rescue_workqueue))
     385           0 :                 return;
     386             :         /*
     387             :          * In order to guarantee forward progress we must punt only bios that
     388             :          * were allocated from this bio_set; otherwise, if there was a bio on
     389             :          * there for a stacking driver higher up in the stack, processing it
     390             :          * could require allocating bios from this bio_set, and doing that from
     391             :          * our own rescuer would be bad.
     392             :          *
     393             :          * Since bio lists are singly linked, pop them all instead of trying to
     394             :          * remove from the middle of the list:
     395             :          */
     396             : 
     397           0 :         bio_list_init(&punt);
     398             :         bio_list_init(&nopunt);
     399             : 
     400           0 :         while ((bio = bio_list_pop(&current->bio_list[0])))
     401           0 :                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
     402           0 :         current->bio_list[0] = nopunt;
     403             : 
     404             :         bio_list_init(&nopunt);
     405           0 :         while ((bio = bio_list_pop(&current->bio_list[1])))
     406           0 :                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
     407           0 :         current->bio_list[1] = nopunt;
     408             : 
     409           0 :         spin_lock(&bs->rescue_lock);
     410           0 :         bio_list_merge(&bs->rescue_list, &punt);
     411           0 :         spin_unlock(&bs->rescue_lock);
     412             : 
     413           0 :         queue_work(bs->rescue_workqueue, &bs->rescue_work);
     414             : }
     415             : 
     416           0 : static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
     417             : {
     418             :         unsigned long flags;
     419             : 
     420             :         /* cache->free_list must be empty */
     421           0 :         if (WARN_ON_ONCE(cache->free_list))
     422             :                 return;
     423             : 
     424           0 :         local_irq_save(flags);
     425           0 :         cache->free_list = cache->free_list_irq;
     426           0 :         cache->free_list_irq = NULL;
     427           0 :         cache->nr += cache->nr_irq;
     428           0 :         cache->nr_irq = 0;
     429           0 :         local_irq_restore(flags);
     430             : }
     431             : 
     432           0 : static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
     433             :                 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
     434             :                 struct bio_set *bs)
     435             : {
     436             :         struct bio_alloc_cache *cache;
     437             :         struct bio *bio;
     438             : 
     439           0 :         cache = per_cpu_ptr(bs->cache, get_cpu());
     440           0 :         if (!cache->free_list) {
     441           0 :                 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
     442           0 :                         bio_alloc_irq_cache_splice(cache);
     443           0 :                 if (!cache->free_list) {
     444           0 :                         put_cpu();
     445           0 :                         return NULL;
     446             :                 }
     447             :         }
     448           0 :         bio = cache->free_list;
     449           0 :         cache->free_list = bio->bi_next;
     450           0 :         cache->nr--;
     451           0 :         put_cpu();
     452             : 
     453           0 :         bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
     454           0 :         bio->bi_pool = bs;
     455           0 :         return bio;
     456             : }
     457             : 
     458             : /**
     459             :  * bio_alloc_bioset - allocate a bio for I/O
     460             :  * @bdev:       block device to allocate the bio for (can be %NULL)
     461             :  * @nr_vecs:    number of bvecs to pre-allocate
     462             :  * @opf:        operation and flags for bio
     463             :  * @gfp_mask:   the GFP_* mask given to the slab allocator
     464             :  * @bs:         the bio_set to allocate from.
     465             :  *
     466             :  * Allocate a bio from the mempools in @bs.
     467             :  *
     468             :  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
     469             :  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
     470             :  * callers must never allocate more than 1 bio at a time from the general pool.
     471             :  * Callers that need to allocate more than 1 bio must always submit the
     472             :  * previously allocated bio for IO before attempting to allocate a new one.
     473             :  * Failure to do so can cause deadlocks under memory pressure.
     474             :  *
     475             :  * Note that when running under submit_bio_noacct() (i.e. any block driver),
     476             :  * bios are not submitted until after you return - see the code in
     477             :  * submit_bio_noacct() that converts recursion into iteration, to prevent
     478             :  * stack overflows.
     479             :  *
     480             :  * This would normally mean allocating multiple bios under submit_bio_noacct()
     481             :  * would be susceptible to deadlocks, but we have
     482             :  * deadlock avoidance code that resubmits any blocked bios from a rescuer
     483             :  * thread.
     484             :  *
     485             :  * However, we do not guarantee forward progress for allocations from other
     486             :  * mempools. Doing multiple allocations from the same mempool under
     487             :  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
     488             :  * for per bio allocations.
     489             :  *
     490             :  * Returns: Pointer to new bio on success, NULL on failure.
     491             :  */
     492           0 : struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
     493             :                              blk_opf_t opf, gfp_t gfp_mask,
     494             :                              struct bio_set *bs)
     495             : {
     496           0 :         gfp_t saved_gfp = gfp_mask;
     497             :         struct bio *bio;
     498             :         void *p;
     499             : 
     500             :         /* should not use nobvec bioset for nr_vecs > 0 */
     501           0 :         if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
     502             :                 return NULL;
     503             : 
     504           0 :         if (opf & REQ_ALLOC_CACHE) {
     505           0 :                 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
     506           0 :                         bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
     507             :                                                      gfp_mask, bs);
     508           0 :                         if (bio)
     509             :                                 return bio;
     510             :                         /*
     511             :                          * No cached bio available, bio returned below marked with
     512             :                          * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
     513             :                          */
     514             :                 } else {
     515           0 :                         opf &= ~REQ_ALLOC_CACHE;
     516             :                 }
     517             :         }
     518             : 
     519             :         /*
     520             :          * submit_bio_noacct() converts recursion to iteration; this means if
     521             :          * we're running beneath it, any bios we allocate and submit will not be
     522             :          * submitted (and thus freed) until after we return.
     523             :          *
     524             :          * This exposes us to a potential deadlock if we allocate multiple bios
     525             :          * from the same bio_set() while running underneath submit_bio_noacct().
     526             :          * If we were to allocate multiple bios (say a stacking block driver
     527             :          * that was splitting bios), we would deadlock if we exhausted the
     528             :          * mempool's reserve.
     529             :          *
     530             :          * We solve this, and guarantee forward progress, with a rescuer
     531             :          * workqueue per bio_set. If we go to allocate and there are bios on
     532             :          * current->bio_list, we first try the allocation without
     533             :          * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
     534             :          * blocking to the rescuer workqueue before we retry with the original
     535             :          * gfp_flags.
     536             :          */
     537           0 :         if (current->bio_list &&
     538           0 :             (!bio_list_empty(&current->bio_list[0]) ||
     539           0 :              !bio_list_empty(&current->bio_list[1])) &&
     540           0 :             bs->rescue_workqueue)
     541           0 :                 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
     542             : 
     543           0 :         p = mempool_alloc(&bs->bio_pool, gfp_mask);
     544           0 :         if (!p && gfp_mask != saved_gfp) {
     545           0 :                 punt_bios_to_rescuer(bs);
     546           0 :                 gfp_mask = saved_gfp;
     547           0 :                 p = mempool_alloc(&bs->bio_pool, gfp_mask);
     548             :         }
     549           0 :         if (unlikely(!p))
     550             :                 return NULL;
     551           0 :         if (!mempool_is_saturated(&bs->bio_pool))
     552           0 :                 opf &= ~REQ_ALLOC_CACHE;
     553             : 
     554           0 :         bio = p + bs->front_pad;
     555           0 :         if (nr_vecs > BIO_INLINE_VECS) {
     556           0 :                 struct bio_vec *bvl = NULL;
     557             : 
     558           0 :                 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
     559           0 :                 if (!bvl && gfp_mask != saved_gfp) {
     560           0 :                         punt_bios_to_rescuer(bs);
     561           0 :                         gfp_mask = saved_gfp;
     562           0 :                         bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
     563             :                 }
     564           0 :                 if (unlikely(!bvl))
     565             :                         goto err_free;
     566             : 
     567           0 :                 bio_init(bio, bdev, bvl, nr_vecs, opf);
     568           0 :         } else if (nr_vecs) {
     569           0 :                 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
     570             :         } else {
     571             :                 bio_init(bio, bdev, NULL, 0, opf);
     572             :         }
     573             : 
     574           0 :         bio->bi_pool = bs;
     575           0 :         return bio;
     576             : 
     577             : err_free:
     578           0 :         mempool_free(p, &bs->bio_pool);
     579           0 :         return NULL;
     580             : }
     581             : EXPORT_SYMBOL(bio_alloc_bioset);
     582             : 
     583             : /**
     584             :  * bio_kmalloc - kmalloc a bio
     585             :  * @nr_vecs:    number of bio_vecs to allocate
     586             :  * @gfp_mask:   the GFP_* mask given to the slab allocator
     587             :  *
     588             :  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
     589             :  * using bio_init() before use.  To free a bio returned from this function use
     590             :  * kfree() after calling bio_uninit().  A bio returned from this function can
     591             :  * be reused by calling bio_uninit() before calling bio_init() again.
     592             :  *
     593             :  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
     594             :  * function are not backed by a mempool can fail.  Do not use this function
     595             :  * for allocations in the file system I/O path.
     596             :  *
     597             :  * Returns: Pointer to new bio on success, NULL on failure.
     598             :  */
     599           0 : struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
     600             : {
     601             :         struct bio *bio;
     602             : 
     603           0 :         if (nr_vecs > UIO_MAXIOV)
     604             :                 return NULL;
     605           0 :         return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
     606             : }
     607             : EXPORT_SYMBOL(bio_kmalloc);
     608             : 
     609           0 : void zero_fill_bio(struct bio *bio)
     610             : {
     611             :         struct bio_vec bv;
     612             :         struct bvec_iter iter;
     613             : 
     614           0 :         bio_for_each_segment(bv, bio, iter)
     615           0 :                 memzero_bvec(&bv);
     616           0 : }
     617             : EXPORT_SYMBOL(zero_fill_bio);
     618             : 
     619             : /**
     620             :  * bio_truncate - truncate the bio to small size of @new_size
     621             :  * @bio:        the bio to be truncated
     622             :  * @new_size:   new size for truncating the bio
     623             :  *
     624             :  * Description:
     625             :  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
     626             :  *   REQ_OP_READ, zero the truncated part. This function should only
     627             :  *   be used for handling corner cases, such as bio eod.
     628             :  */
     629           0 : static void bio_truncate(struct bio *bio, unsigned new_size)
     630             : {
     631             :         struct bio_vec bv;
     632             :         struct bvec_iter iter;
     633           0 :         unsigned int done = 0;
     634           0 :         bool truncated = false;
     635             : 
     636           0 :         if (new_size >= bio->bi_iter.bi_size)
     637           0 :                 return;
     638             : 
     639           0 :         if (bio_op(bio) != REQ_OP_READ)
     640             :                 goto exit;
     641             : 
     642           0 :         bio_for_each_segment(bv, bio, iter) {
     643           0 :                 if (done + bv.bv_len > new_size) {
     644             :                         unsigned offset;
     645             : 
     646           0 :                         if (!truncated)
     647           0 :                                 offset = new_size - done;
     648             :                         else
     649             :                                 offset = 0;
     650           0 :                         zero_user(bv.bv_page, bv.bv_offset + offset,
     651             :                                   bv.bv_len - offset);
     652           0 :                         truncated = true;
     653             :                 }
     654           0 :                 done += bv.bv_len;
     655             :         }
     656             : 
     657             :  exit:
     658             :         /*
     659             :          * Don't touch bvec table here and make it really immutable, since
     660             :          * fs bio user has to retrieve all pages via bio_for_each_segment_all
     661             :          * in its .end_bio() callback.
     662             :          *
     663             :          * It is enough to truncate bio by updating .bi_size since we can make
     664             :          * correct bvec with the updated .bi_size for drivers.
     665             :          */
     666           0 :         bio->bi_iter.bi_size = new_size;
     667             : }
     668             : 
     669             : /**
     670             :  * guard_bio_eod - truncate a BIO to fit the block device
     671             :  * @bio:        bio to truncate
     672             :  *
     673             :  * This allows us to do IO even on the odd last sectors of a device, even if the
     674             :  * block size is some multiple of the physical sector size.
     675             :  *
     676             :  * We'll just truncate the bio to the size of the device, and clear the end of
     677             :  * the buffer head manually.  Truly out-of-range accesses will turn into actual
     678             :  * I/O errors, this only handles the "we need to be able to do I/O at the final
     679             :  * sector" case.
     680             :  */
     681           0 : void guard_bio_eod(struct bio *bio)
     682             : {
     683           0 :         sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
     684             : 
     685           0 :         if (!maxsector)
     686             :                 return;
     687             : 
     688             :         /*
     689             :          * If the *whole* IO is past the end of the device,
     690             :          * let it through, and the IO layer will turn it into
     691             :          * an EIO.
     692             :          */
     693           0 :         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
     694             :                 return;
     695             : 
     696           0 :         maxsector -= bio->bi_iter.bi_sector;
     697           0 :         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
     698             :                 return;
     699             : 
     700           0 :         bio_truncate(bio, maxsector << 9);
     701             : }
     702             : 
     703             : static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
     704             :                                    unsigned int nr)
     705             : {
     706             :         unsigned int i = 0;
     707             :         struct bio *bio;
     708             : 
     709           0 :         while ((bio = cache->free_list) != NULL) {
     710           0 :                 cache->free_list = bio->bi_next;
     711           0 :                 cache->nr--;
     712           0 :                 bio_free(bio);
     713           0 :                 if (++i == nr)
     714             :                         break;
     715             :         }
     716             :         return i;
     717             : }
     718             : 
     719           0 : static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
     720             :                                   unsigned int nr)
     721             : {
     722           0 :         nr -= __bio_alloc_cache_prune(cache, nr);
     723           0 :         if (!READ_ONCE(cache->free_list)) {
     724           0 :                 bio_alloc_irq_cache_splice(cache);
     725           0 :                 __bio_alloc_cache_prune(cache, nr);
     726             :         }
     727           0 : }
     728             : 
     729           0 : static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
     730             : {
     731             :         struct bio_set *bs;
     732             : 
     733           0 :         bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
     734           0 :         if (bs->cache) {
     735           0 :                 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
     736             : 
     737           0 :                 bio_alloc_cache_prune(cache, -1U);
     738             :         }
     739           0 :         return 0;
     740             : }
     741             : 
     742           0 : static void bio_alloc_cache_destroy(struct bio_set *bs)
     743             : {
     744             :         int cpu;
     745             : 
     746           0 :         if (!bs->cache)
     747             :                 return;
     748             : 
     749           0 :         cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
     750           0 :         for_each_possible_cpu(cpu) {
     751             :                 struct bio_alloc_cache *cache;
     752             : 
     753           0 :                 cache = per_cpu_ptr(bs->cache, cpu);
     754           0 :                 bio_alloc_cache_prune(cache, -1U);
     755             :         }
     756           0 :         free_percpu(bs->cache);
     757           0 :         bs->cache = NULL;
     758             : }
     759             : 
     760           0 : static inline void bio_put_percpu_cache(struct bio *bio)
     761             : {
     762             :         struct bio_alloc_cache *cache;
     763             : 
     764           0 :         cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
     765           0 :         if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
     766           0 :                 put_cpu();
     767           0 :                 bio_free(bio);
     768           0 :                 return;
     769             :         }
     770             : 
     771           0 :         bio_uninit(bio);
     772             : 
     773           0 :         if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
     774           0 :                 bio->bi_next = cache->free_list;
     775           0 :                 bio->bi_bdev = NULL;
     776           0 :                 cache->free_list = bio;
     777           0 :                 cache->nr++;
     778             :         } else {
     779             :                 unsigned long flags;
     780             : 
     781           0 :                 local_irq_save(flags);
     782           0 :                 bio->bi_next = cache->free_list_irq;
     783           0 :                 cache->free_list_irq = bio;
     784           0 :                 cache->nr_irq++;
     785           0 :                 local_irq_restore(flags);
     786             :         }
     787           0 :         put_cpu();
     788             : }
     789             : 
     790             : /**
     791             :  * bio_put - release a reference to a bio
     792             :  * @bio:   bio to release reference to
     793             :  *
     794             :  * Description:
     795             :  *   Put a reference to a &struct bio, either one you have gotten with
     796             :  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
     797             :  **/
     798           0 : void bio_put(struct bio *bio)
     799             : {
     800           0 :         if (unlikely(bio_flagged(bio, BIO_REFFED))) {
     801           0 :                 BUG_ON(!atomic_read(&bio->__bi_cnt));
     802           0 :                 if (!atomic_dec_and_test(&bio->__bi_cnt))
     803             :                         return;
     804             :         }
     805           0 :         if (bio->bi_opf & REQ_ALLOC_CACHE)
     806           0 :                 bio_put_percpu_cache(bio);
     807             :         else
     808           0 :                 bio_free(bio);
     809             : }
     810             : EXPORT_SYMBOL(bio_put);
     811             : 
     812             : static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
     813             : {
     814           0 :         bio_set_flag(bio, BIO_CLONED);
     815           0 :         bio->bi_ioprio = bio_src->bi_ioprio;
     816           0 :         bio->bi_iter = bio_src->bi_iter;
     817             : 
     818           0 :         if (bio->bi_bdev) {
     819           0 :                 if (bio->bi_bdev == bio_src->bi_bdev &&
     820           0 :                     bio_flagged(bio_src, BIO_REMAPPED))
     821             :                         bio_set_flag(bio, BIO_REMAPPED);
     822             :                 bio_clone_blkg_association(bio, bio_src);
     823             :         }
     824             : 
     825           0 :         if (bio_crypt_clone(bio, bio_src, gfp) < 0)
     826             :                 return -ENOMEM;
     827           0 :         if (bio_integrity(bio_src) &&
     828             :             bio_integrity_clone(bio, bio_src, gfp) < 0)
     829             :                 return -ENOMEM;
     830             :         return 0;
     831             : }
     832             : 
     833             : /**
     834             :  * bio_alloc_clone - clone a bio that shares the original bio's biovec
     835             :  * @bdev: block_device to clone onto
     836             :  * @bio_src: bio to clone from
     837             :  * @gfp: allocation priority
     838             :  * @bs: bio_set to allocate from
     839             :  *
     840             :  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
     841             :  * bio, but not the actual data it points to.
     842             :  *
     843             :  * The caller must ensure that the return bio is not freed before @bio_src.
     844             :  */
     845           0 : struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
     846             :                 gfp_t gfp, struct bio_set *bs)
     847             : {
     848             :         struct bio *bio;
     849             : 
     850           0 :         bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
     851           0 :         if (!bio)
     852             :                 return NULL;
     853             : 
     854           0 :         if (__bio_clone(bio, bio_src, gfp) < 0) {
     855             :                 bio_put(bio);
     856             :                 return NULL;
     857             :         }
     858           0 :         bio->bi_io_vec = bio_src->bi_io_vec;
     859             : 
     860           0 :         return bio;
     861             : }
     862             : EXPORT_SYMBOL(bio_alloc_clone);
     863             : 
     864             : /**
     865             :  * bio_init_clone - clone a bio that shares the original bio's biovec
     866             :  * @bdev: block_device to clone onto
     867             :  * @bio: bio to clone into
     868             :  * @bio_src: bio to clone from
     869             :  * @gfp: allocation priority
     870             :  *
     871             :  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
     872             :  * The caller owns the returned bio, but not the actual data it points to.
     873             :  *
     874             :  * The caller must ensure that @bio_src is not freed before @bio.
     875             :  */
     876           0 : int bio_init_clone(struct block_device *bdev, struct bio *bio,
     877             :                 struct bio *bio_src, gfp_t gfp)
     878             : {
     879             :         int ret;
     880             : 
     881           0 :         bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
     882           0 :         ret = __bio_clone(bio, bio_src, gfp);
     883             :         if (ret)
     884             :                 bio_uninit(bio);
     885           0 :         return ret;
     886             : }
     887             : EXPORT_SYMBOL(bio_init_clone);
     888             : 
     889             : /**
     890             :  * bio_full - check if the bio is full
     891             :  * @bio:        bio to check
     892             :  * @len:        length of one segment to be added
     893             :  *
     894             :  * Return true if @bio is full and one segment with @len bytes can't be
     895             :  * added to the bio, otherwise return false
     896             :  */
     897             : static inline bool bio_full(struct bio *bio, unsigned len)
     898             : {
     899           0 :         if (bio->bi_vcnt >= bio->bi_max_vecs)
     900             :                 return true;
     901           0 :         if (bio->bi_iter.bi_size > UINT_MAX - len)
     902             :                 return true;
     903             :         return false;
     904             : }
     905             : 
     906           0 : static inline bool page_is_mergeable(const struct bio_vec *bv,
     907             :                 struct page *page, unsigned int len, unsigned int off,
     908             :                 bool *same_page)
     909             : {
     910           0 :         size_t bv_end = bv->bv_offset + bv->bv_len;
     911           0 :         phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
     912           0 :         phys_addr_t page_addr = page_to_phys(page);
     913             : 
     914           0 :         if (vec_end_addr + 1 != page_addr + off)
     915             :                 return false;
     916             :         if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
     917             :                 return false;
     918           0 :         if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
     919             :                 return false;
     920             : 
     921           0 :         *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
     922           0 :         if (*same_page)
     923             :                 return true;
     924             :         else if (IS_ENABLED(CONFIG_KMSAN))
     925             :                 return false;
     926           0 :         return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
     927             : }
     928             : 
     929             : /**
     930             :  * __bio_try_merge_page - try appending data to an existing bvec.
     931             :  * @bio: destination bio
     932             :  * @page: start page to add
     933             :  * @len: length of the data to add
     934             :  * @off: offset of the data relative to @page
     935             :  * @same_page: return if the segment has been merged inside the same page
     936             :  *
     937             :  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
     938             :  * useful optimisation for file systems with a block size smaller than the
     939             :  * page size.
     940             :  *
     941             :  * Warn if (@len, @off) crosses pages in case that @same_page is true.
     942             :  *
     943             :  * Return %true on success or %false on failure.
     944             :  */
     945           0 : static bool __bio_try_merge_page(struct bio *bio, struct page *page,
     946             :                 unsigned int len, unsigned int off, bool *same_page)
     947             : {
     948           0 :         if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
     949             :                 return false;
     950             : 
     951           0 :         if (bio->bi_vcnt > 0) {
     952           0 :                 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
     953             : 
     954           0 :                 if (page_is_mergeable(bv, page, len, off, same_page)) {
     955           0 :                         if (bio->bi_iter.bi_size > UINT_MAX - len) {
     956           0 :                                 *same_page = false;
     957           0 :                                 return false;
     958             :                         }
     959           0 :                         bv->bv_len += len;
     960           0 :                         bio->bi_iter.bi_size += len;
     961           0 :                         return true;
     962             :                 }
     963             :         }
     964             :         return false;
     965             : }
     966             : 
     967             : /*
     968             :  * Try to merge a page into a segment, while obeying the hardware segment
     969             :  * size limit.  This is not for normal read/write bios, but for passthrough
     970             :  * or Zone Append operations that we can't split.
     971             :  */
     972           0 : static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
     973             :                                  struct page *page, unsigned len,
     974             :                                  unsigned offset, bool *same_page)
     975             : {
     976           0 :         struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
     977           0 :         unsigned long mask = queue_segment_boundary(q);
     978           0 :         phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
     979           0 :         phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
     980             : 
     981           0 :         if ((addr1 | mask) != (addr2 | mask))
     982             :                 return false;
     983           0 :         if (bv->bv_len + len > queue_max_segment_size(q))
     984             :                 return false;
     985           0 :         return __bio_try_merge_page(bio, page, len, offset, same_page);
     986             : }
     987             : 
     988             : /**
     989             :  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
     990             :  * @q: the target queue
     991             :  * @bio: destination bio
     992             :  * @page: page to add
     993             :  * @len: vec entry length
     994             :  * @offset: vec entry offset
     995             :  * @max_sectors: maximum number of sectors that can be added
     996             :  * @same_page: return if the segment has been merged inside the same page
     997             :  *
     998             :  * Add a page to a bio while respecting the hardware max_sectors, max_segment
     999             :  * and gap limitations.
    1000             :  */
    1001           0 : int bio_add_hw_page(struct request_queue *q, struct bio *bio,
    1002             :                 struct page *page, unsigned int len, unsigned int offset,
    1003             :                 unsigned int max_sectors, bool *same_page)
    1004             : {
    1005             :         struct bio_vec *bvec;
    1006             : 
    1007           0 :         if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
    1008             :                 return 0;
    1009             : 
    1010           0 :         if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
    1011             :                 return 0;
    1012             : 
    1013           0 :         if (bio->bi_vcnt > 0) {
    1014           0 :                 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
    1015           0 :                         return len;
    1016             : 
    1017             :                 /*
    1018             :                  * If the queue doesn't support SG gaps and adding this segment
    1019             :                  * would create a gap, disallow it.
    1020             :                  */
    1021           0 :                 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
    1022           0 :                 if (bvec_gap_to_prev(&q->limits, bvec, offset))
    1023             :                         return 0;
    1024             :         }
    1025             : 
    1026           0 :         if (bio_full(bio, len))
    1027             :                 return 0;
    1028             : 
    1029           0 :         if (bio->bi_vcnt >= queue_max_segments(q))
    1030             :                 return 0;
    1031             : 
    1032           0 :         bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
    1033           0 :         bio->bi_vcnt++;
    1034           0 :         bio->bi_iter.bi_size += len;
    1035           0 :         return len;
    1036             : }
    1037             : 
    1038             : /**
    1039             :  * bio_add_pc_page      - attempt to add page to passthrough bio
    1040             :  * @q: the target queue
    1041             :  * @bio: destination bio
    1042             :  * @page: page to add
    1043             :  * @len: vec entry length
    1044             :  * @offset: vec entry offset
    1045             :  *
    1046             :  * Attempt to add a page to the bio_vec maplist. This can fail for a
    1047             :  * number of reasons, such as the bio being full or target block device
    1048             :  * limitations. The target block device must allow bio's up to PAGE_SIZE,
    1049             :  * so it is always possible to add a single page to an empty bio.
    1050             :  *
    1051             :  * This should only be used by passthrough bios.
    1052             :  */
    1053           0 : int bio_add_pc_page(struct request_queue *q, struct bio *bio,
    1054             :                 struct page *page, unsigned int len, unsigned int offset)
    1055             : {
    1056           0 :         bool same_page = false;
    1057           0 :         return bio_add_hw_page(q, bio, page, len, offset,
    1058             :                         queue_max_hw_sectors(q), &same_page);
    1059             : }
    1060             : EXPORT_SYMBOL(bio_add_pc_page);
    1061             : 
    1062             : /**
    1063             :  * bio_add_zone_append_page - attempt to add page to zone-append bio
    1064             :  * @bio: destination bio
    1065             :  * @page: page to add
    1066             :  * @len: vec entry length
    1067             :  * @offset: vec entry offset
    1068             :  *
    1069             :  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
    1070             :  * for a zone-append request. This can fail for a number of reasons, such as the
    1071             :  * bio being full or the target block device is not a zoned block device or
    1072             :  * other limitations of the target block device. The target block device must
    1073             :  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
    1074             :  * to an empty bio.
    1075             :  *
    1076             :  * Returns: number of bytes added to the bio, or 0 in case of a failure.
    1077             :  */
    1078           0 : int bio_add_zone_append_page(struct bio *bio, struct page *page,
    1079             :                              unsigned int len, unsigned int offset)
    1080             : {
    1081           0 :         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
    1082           0 :         bool same_page = false;
    1083             : 
    1084           0 :         if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
    1085             :                 return 0;
    1086             : 
    1087           0 :         if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
    1088             :                 return 0;
    1089             : 
    1090             :         return bio_add_hw_page(q, bio, page, len, offset,
    1091             :                                queue_max_zone_append_sectors(q), &same_page);
    1092             : }
    1093             : EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
    1094             : 
    1095             : /**
    1096             :  * __bio_add_page - add page(s) to a bio in a new segment
    1097             :  * @bio: destination bio
    1098             :  * @page: start page to add
    1099             :  * @len: length of the data to add, may cross pages
    1100             :  * @off: offset of the data relative to @page, may cross pages
    1101             :  *
    1102             :  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
    1103             :  * that @bio has space for another bvec.
    1104             :  */
    1105           0 : void __bio_add_page(struct bio *bio, struct page *page,
    1106             :                 unsigned int len, unsigned int off)
    1107             : {
    1108           0 :         WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
    1109           0 :         WARN_ON_ONCE(bio_full(bio, len));
    1110             : 
    1111           0 :         bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
    1112           0 :         bio->bi_iter.bi_size += len;
    1113           0 :         bio->bi_vcnt++;
    1114           0 : }
    1115             : EXPORT_SYMBOL_GPL(__bio_add_page);
    1116             : 
    1117             : /**
    1118             :  *      bio_add_page    -       attempt to add page(s) to bio
    1119             :  *      @bio: destination bio
    1120             :  *      @page: start page to add
    1121             :  *      @len: vec entry length, may cross pages
    1122             :  *      @offset: vec entry offset relative to @page, may cross pages
    1123             :  *
    1124             :  *      Attempt to add page(s) to the bio_vec maplist. This will only fail
    1125             :  *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
    1126             :  */
    1127           0 : int bio_add_page(struct bio *bio, struct page *page,
    1128             :                  unsigned int len, unsigned int offset)
    1129             : {
    1130           0 :         bool same_page = false;
    1131             : 
    1132           0 :         if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
    1133           0 :                 if (bio_full(bio, len))
    1134             :                         return 0;
    1135           0 :                 __bio_add_page(bio, page, len, offset);
    1136             :         }
    1137           0 :         return len;
    1138             : }
    1139             : EXPORT_SYMBOL(bio_add_page);
    1140             : 
    1141           0 : void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
    1142             :                           size_t off)
    1143             : {
    1144           0 :         WARN_ON_ONCE(len > UINT_MAX);
    1145           0 :         WARN_ON_ONCE(off > UINT_MAX);
    1146           0 :         __bio_add_page(bio, &folio->page, len, off);
    1147           0 : }
    1148             : 
    1149             : /**
    1150             :  * bio_add_folio - Attempt to add part of a folio to a bio.
    1151             :  * @bio: BIO to add to.
    1152             :  * @folio: Folio to add.
    1153             :  * @len: How many bytes from the folio to add.
    1154             :  * @off: First byte in this folio to add.
    1155             :  *
    1156             :  * Filesystems that use folios can call this function instead of calling
    1157             :  * bio_add_page() for each page in the folio.  If @off is bigger than
    1158             :  * PAGE_SIZE, this function can create a bio_vec that starts in a page
    1159             :  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
    1160             :  *
    1161             :  * Return: Whether the addition was successful.
    1162             :  */
    1163           0 : bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
    1164             :                    size_t off)
    1165             : {
    1166           0 :         if (len > UINT_MAX || off > UINT_MAX)
    1167             :                 return false;
    1168           0 :         return bio_add_page(bio, &folio->page, len, off) > 0;
    1169             : }
    1170             : EXPORT_SYMBOL(bio_add_folio);
    1171             : 
    1172           0 : void __bio_release_pages(struct bio *bio, bool mark_dirty)
    1173             : {
    1174             :         struct bvec_iter_all iter_all;
    1175             :         struct bio_vec *bvec;
    1176             : 
    1177           0 :         bio_for_each_segment_all(bvec, bio, iter_all) {
    1178           0 :                 if (mark_dirty && !PageCompound(bvec->bv_page))
    1179           0 :                         set_page_dirty_lock(bvec->bv_page);
    1180           0 :                 bio_release_page(bio, bvec->bv_page);
    1181             :         }
    1182           0 : }
    1183             : EXPORT_SYMBOL_GPL(__bio_release_pages);
    1184             : 
    1185           0 : void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
    1186             : {
    1187           0 :         size_t size = iov_iter_count(iter);
    1188             : 
    1189           0 :         WARN_ON_ONCE(bio->bi_max_vecs);
    1190             : 
    1191           0 :         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
    1192           0 :                 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
    1193           0 :                 size_t max_sectors = queue_max_zone_append_sectors(q);
    1194             : 
    1195           0 :                 size = min(size, max_sectors << SECTOR_SHIFT);
    1196             :         }
    1197             : 
    1198           0 :         bio->bi_vcnt = iter->nr_segs;
    1199           0 :         bio->bi_io_vec = (struct bio_vec *)iter->bvec;
    1200           0 :         bio->bi_iter.bi_bvec_done = iter->iov_offset;
    1201           0 :         bio->bi_iter.bi_size = size;
    1202           0 :         bio_set_flag(bio, BIO_CLONED);
    1203           0 : }
    1204             : 
    1205           0 : static int bio_iov_add_page(struct bio *bio, struct page *page,
    1206             :                 unsigned int len, unsigned int offset)
    1207             : {
    1208           0 :         bool same_page = false;
    1209             : 
    1210           0 :         if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
    1211           0 :                 __bio_add_page(bio, page, len, offset);
    1212           0 :                 return 0;
    1213             :         }
    1214             : 
    1215           0 :         if (same_page)
    1216             :                 bio_release_page(bio, page);
    1217             :         return 0;
    1218             : }
    1219             : 
    1220           0 : static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
    1221             :                 unsigned int len, unsigned int offset)
    1222             : {
    1223           0 :         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
    1224           0 :         bool same_page = false;
    1225             : 
    1226           0 :         if (bio_add_hw_page(q, bio, page, len, offset,
    1227             :                         queue_max_zone_append_sectors(q), &same_page) != len)
    1228             :                 return -EINVAL;
    1229           0 :         if (same_page)
    1230             :                 bio_release_page(bio, page);
    1231             :         return 0;
    1232             : }
    1233             : 
    1234             : #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
    1235             : 
    1236             : /**
    1237             :  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
    1238             :  * @bio: bio to add pages to
    1239             :  * @iter: iov iterator describing the region to be mapped
    1240             :  *
    1241             :  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
    1242             :  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
    1243             :  * For a multi-segment *iter, this function only adds pages from the next
    1244             :  * non-empty segment of the iov iterator.
    1245             :  */
    1246           0 : static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
    1247             : {
    1248           0 :         iov_iter_extraction_t extraction_flags = 0;
    1249           0 :         unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
    1250           0 :         unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
    1251           0 :         struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
    1252             :         struct page **pages = (struct page **)bv;
    1253             :         ssize_t size, left;
    1254           0 :         unsigned len, i = 0;
    1255             :         size_t offset, trim;
    1256           0 :         int ret = 0;
    1257             : 
    1258             :         /*
    1259             :          * Move page array up in the allocated memory for the bio vecs as far as
    1260             :          * possible so that we can start filling biovecs from the beginning
    1261             :          * without overwriting the temporary page array.
    1262             :          */
    1263             :         BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
    1264           0 :         pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
    1265             : 
    1266           0 :         if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
    1267           0 :                 extraction_flags |= ITER_ALLOW_P2PDMA;
    1268             : 
    1269             :         /*
    1270             :          * Each segment in the iov is required to be a block size multiple.
    1271             :          * However, we may not be able to get the entire segment if it spans
    1272             :          * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
    1273             :          * result to ensure the bio's total size is correct. The remainder of
    1274             :          * the iov data will be picked up in the next bio iteration.
    1275             :          */
    1276           0 :         size = iov_iter_extract_pages(iter, &pages,
    1277           0 :                                       UINT_MAX - bio->bi_iter.bi_size,
    1278             :                                       nr_pages, extraction_flags, &offset);
    1279           0 :         if (unlikely(size <= 0))
    1280           0 :                 return size ? size : -EFAULT;
    1281             : 
    1282           0 :         nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
    1283             : 
    1284           0 :         trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
    1285           0 :         iov_iter_revert(iter, trim);
    1286             : 
    1287           0 :         size -= trim;
    1288           0 :         if (unlikely(!size)) {
    1289             :                 ret = -EFAULT;
    1290             :                 goto out;
    1291             :         }
    1292             : 
    1293           0 :         for (left = size, i = 0; left > 0; left -= len, i++) {
    1294           0 :                 struct page *page = pages[i];
    1295             : 
    1296           0 :                 len = min_t(size_t, PAGE_SIZE - offset, left);
    1297           0 :                 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
    1298           0 :                         ret = bio_iov_add_zone_append_page(bio, page, len,
    1299             :                                         offset);
    1300           0 :                         if (ret)
    1301             :                                 break;
    1302             :                 } else
    1303           0 :                         bio_iov_add_page(bio, page, len, offset);
    1304             : 
    1305           0 :                 offset = 0;
    1306             :         }
    1307             : 
    1308           0 :         iov_iter_revert(iter, left);
    1309             : out:
    1310           0 :         while (i < nr_pages)
    1311           0 :                 bio_release_page(bio, pages[i++]);
    1312             : 
    1313             :         return ret;
    1314             : }
    1315             : 
    1316             : /**
    1317             :  * bio_iov_iter_get_pages - add user or kernel pages to a bio
    1318             :  * @bio: bio to add pages to
    1319             :  * @iter: iov iterator describing the region to be added
    1320             :  *
    1321             :  * This takes either an iterator pointing to user memory, or one pointing to
    1322             :  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
    1323             :  * map them into the kernel. On IO completion, the caller should put those
    1324             :  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
    1325             :  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
    1326             :  * to ensure the bvecs and pages stay referenced until the submitted I/O is
    1327             :  * completed by a call to ->ki_complete() or returns with an error other than
    1328             :  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
    1329             :  * on IO completion. If it isn't, then pages should be released.
    1330             :  *
    1331             :  * The function tries, but does not guarantee, to pin as many pages as
    1332             :  * fit into the bio, or are requested in @iter, whatever is smaller. If
    1333             :  * MM encounters an error pinning the requested pages, it stops. Error
    1334             :  * is returned only if 0 pages could be pinned.
    1335             :  */
    1336           0 : int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
    1337             : {
    1338           0 :         int ret = 0;
    1339             : 
    1340           0 :         if (iov_iter_is_bvec(iter)) {
    1341           0 :                 bio_iov_bvec_set(bio, iter);
    1342           0 :                 iov_iter_advance(iter, bio->bi_iter.bi_size);
    1343           0 :                 return 0;
    1344             :         }
    1345             : 
    1346           0 :         if (iov_iter_extract_will_pin(iter))
    1347             :                 bio_set_flag(bio, BIO_PAGE_PINNED);
    1348             :         do {
    1349           0 :                 ret = __bio_iov_iter_get_pages(bio, iter);
    1350           0 :         } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
    1351             : 
    1352           0 :         return bio->bi_vcnt ? 0 : ret;
    1353             : }
    1354             : EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
    1355             : 
    1356           0 : static void submit_bio_wait_endio(struct bio *bio)
    1357             : {
    1358           0 :         complete(bio->bi_private);
    1359           0 : }
    1360             : 
    1361             : /**
    1362             :  * submit_bio_wait - submit a bio, and wait until it completes
    1363             :  * @bio: The &struct bio which describes the I/O
    1364             :  *
    1365             :  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
    1366             :  * bio_endio() on failure.
    1367             :  *
    1368             :  * WARNING: Unlike to how submit_bio() is usually used, this function does not
    1369             :  * result in bio reference to be consumed. The caller must drop the reference
    1370             :  * on his own.
    1371             :  */
    1372           0 : int submit_bio_wait(struct bio *bio)
    1373             : {
    1374           0 :         DECLARE_COMPLETION_ONSTACK_MAP(done,
    1375             :                         bio->bi_bdev->bd_disk->lockdep_map);
    1376             :         unsigned long hang_check;
    1377             : 
    1378           0 :         bio->bi_private = &done;
    1379           0 :         bio->bi_end_io = submit_bio_wait_endio;
    1380           0 :         bio->bi_opf |= REQ_SYNC;
    1381           0 :         submit_bio(bio);
    1382             : 
    1383             :         /* Prevent hang_check timer from firing at us during very long I/O */
    1384           0 :         hang_check = sysctl_hung_task_timeout_secs;
    1385             :         if (hang_check)
    1386             :                 while (!wait_for_completion_io_timeout(&done,
    1387             :                                         hang_check * (HZ/2)))
    1388             :                         ;
    1389             :         else
    1390           0 :                 wait_for_completion_io(&done);
    1391             : 
    1392           0 :         return blk_status_to_errno(bio->bi_status);
    1393             : }
    1394             : EXPORT_SYMBOL(submit_bio_wait);
    1395             : 
    1396           0 : void __bio_advance(struct bio *bio, unsigned bytes)
    1397             : {
    1398           0 :         if (bio_integrity(bio))
    1399             :                 bio_integrity_advance(bio, bytes);
    1400             : 
    1401           0 :         bio_crypt_advance(bio, bytes);
    1402           0 :         bio_advance_iter(bio, &bio->bi_iter, bytes);
    1403           0 : }
    1404             : EXPORT_SYMBOL(__bio_advance);
    1405             : 
    1406           0 : void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
    1407             :                         struct bio *src, struct bvec_iter *src_iter)
    1408             : {
    1409           0 :         while (src_iter->bi_size && dst_iter->bi_size) {
    1410           0 :                 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
    1411           0 :                 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
    1412           0 :                 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
    1413           0 :                 void *src_buf = bvec_kmap_local(&src_bv);
    1414           0 :                 void *dst_buf = bvec_kmap_local(&dst_bv);
    1415             : 
    1416           0 :                 memcpy(dst_buf, src_buf, bytes);
    1417             : 
    1418             :                 kunmap_local(dst_buf);
    1419             :                 kunmap_local(src_buf);
    1420             : 
    1421           0 :                 bio_advance_iter_single(src, src_iter, bytes);
    1422           0 :                 bio_advance_iter_single(dst, dst_iter, bytes);
    1423             :         }
    1424           0 : }
    1425             : EXPORT_SYMBOL(bio_copy_data_iter);
    1426             : 
    1427             : /**
    1428             :  * bio_copy_data - copy contents of data buffers from one bio to another
    1429             :  * @src: source bio
    1430             :  * @dst: destination bio
    1431             :  *
    1432             :  * Stops when it reaches the end of either @src or @dst - that is, copies
    1433             :  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
    1434             :  */
    1435           0 : void bio_copy_data(struct bio *dst, struct bio *src)
    1436             : {
    1437           0 :         struct bvec_iter src_iter = src->bi_iter;
    1438           0 :         struct bvec_iter dst_iter = dst->bi_iter;
    1439             : 
    1440           0 :         bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
    1441           0 : }
    1442             : EXPORT_SYMBOL(bio_copy_data);
    1443             : 
    1444           0 : void bio_free_pages(struct bio *bio)
    1445             : {
    1446             :         struct bio_vec *bvec;
    1447             :         struct bvec_iter_all iter_all;
    1448             : 
    1449           0 :         bio_for_each_segment_all(bvec, bio, iter_all)
    1450           0 :                 __free_page(bvec->bv_page);
    1451           0 : }
    1452             : EXPORT_SYMBOL(bio_free_pages);
    1453             : 
    1454             : /*
    1455             :  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
    1456             :  * for performing direct-IO in BIOs.
    1457             :  *
    1458             :  * The problem is that we cannot run set_page_dirty() from interrupt context
    1459             :  * because the required locks are not interrupt-safe.  So what we can do is to
    1460             :  * mark the pages dirty _before_ performing IO.  And in interrupt context,
    1461             :  * check that the pages are still dirty.   If so, fine.  If not, redirty them
    1462             :  * in process context.
    1463             :  *
    1464             :  * We special-case compound pages here: normally this means reads into hugetlb
    1465             :  * pages.  The logic in here doesn't really work right for compound pages
    1466             :  * because the VM does not uniformly chase down the head page in all cases.
    1467             :  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
    1468             :  * handle them at all.  So we skip compound pages here at an early stage.
    1469             :  *
    1470             :  * Note that this code is very hard to test under normal circumstances because
    1471             :  * direct-io pins the pages with get_user_pages().  This makes
    1472             :  * is_page_cache_freeable return false, and the VM will not clean the pages.
    1473             :  * But other code (eg, flusher threads) could clean the pages if they are mapped
    1474             :  * pagecache.
    1475             :  *
    1476             :  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
    1477             :  * deferred bio dirtying paths.
    1478             :  */
    1479             : 
    1480             : /*
    1481             :  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
    1482             :  */
    1483           0 : void bio_set_pages_dirty(struct bio *bio)
    1484             : {
    1485             :         struct bio_vec *bvec;
    1486             :         struct bvec_iter_all iter_all;
    1487             : 
    1488           0 :         bio_for_each_segment_all(bvec, bio, iter_all) {
    1489           0 :                 if (!PageCompound(bvec->bv_page))
    1490           0 :                         set_page_dirty_lock(bvec->bv_page);
    1491             :         }
    1492           0 : }
    1493             : 
    1494             : /*
    1495             :  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
    1496             :  * If they are, then fine.  If, however, some pages are clean then they must
    1497             :  * have been written out during the direct-IO read.  So we take another ref on
    1498             :  * the BIO and re-dirty the pages in process context.
    1499             :  *
    1500             :  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
    1501             :  * here on.  It will unpin each page and will run one bio_put() against the
    1502             :  * BIO.
    1503             :  */
    1504             : 
    1505             : static void bio_dirty_fn(struct work_struct *work);
    1506             : 
    1507             : static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
    1508             : static DEFINE_SPINLOCK(bio_dirty_lock);
    1509             : static struct bio *bio_dirty_list;
    1510             : 
    1511             : /*
    1512             :  * This runs in process context
    1513             :  */
    1514           0 : static void bio_dirty_fn(struct work_struct *work)
    1515             : {
    1516             :         struct bio *bio, *next;
    1517             : 
    1518           0 :         spin_lock_irq(&bio_dirty_lock);
    1519           0 :         next = bio_dirty_list;
    1520           0 :         bio_dirty_list = NULL;
    1521             :         spin_unlock_irq(&bio_dirty_lock);
    1522             : 
    1523           0 :         while ((bio = next) != NULL) {
    1524           0 :                 next = bio->bi_private;
    1525             : 
    1526           0 :                 bio_release_pages(bio, true);
    1527           0 :                 bio_put(bio);
    1528             :         }
    1529           0 : }
    1530             : 
    1531           0 : void bio_check_pages_dirty(struct bio *bio)
    1532             : {
    1533             :         struct bio_vec *bvec;
    1534             :         unsigned long flags;
    1535             :         struct bvec_iter_all iter_all;
    1536             : 
    1537           0 :         bio_for_each_segment_all(bvec, bio, iter_all) {
    1538           0 :                 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
    1539             :                         goto defer;
    1540             :         }
    1541             : 
    1542           0 :         bio_release_pages(bio, false);
    1543           0 :         bio_put(bio);
    1544           0 :         return;
    1545             : defer:
    1546           0 :         spin_lock_irqsave(&bio_dirty_lock, flags);
    1547           0 :         bio->bi_private = bio_dirty_list;
    1548           0 :         bio_dirty_list = bio;
    1549           0 :         spin_unlock_irqrestore(&bio_dirty_lock, flags);
    1550           0 :         schedule_work(&bio_dirty_work);
    1551             : }
    1552             : 
    1553           0 : static inline bool bio_remaining_done(struct bio *bio)
    1554             : {
    1555             :         /*
    1556             :          * If we're not chaining, then ->__bi_remaining is always 1 and
    1557             :          * we always end io on the first invocation.
    1558             :          */
    1559           0 :         if (!bio_flagged(bio, BIO_CHAIN))
    1560             :                 return true;
    1561             : 
    1562           0 :         BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
    1563             : 
    1564           0 :         if (atomic_dec_and_test(&bio->__bi_remaining)) {
    1565           0 :                 bio_clear_flag(bio, BIO_CHAIN);
    1566           0 :                 return true;
    1567             :         }
    1568             : 
    1569             :         return false;
    1570             : }
    1571             : 
    1572             : /**
    1573             :  * bio_endio - end I/O on a bio
    1574             :  * @bio:        bio
    1575             :  *
    1576             :  * Description:
    1577             :  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
    1578             :  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
    1579             :  *   bio unless they own it and thus know that it has an end_io function.
    1580             :  *
    1581             :  *   bio_endio() can be called several times on a bio that has been chained
    1582             :  *   using bio_chain().  The ->bi_end_io() function will only be called the
    1583             :  *   last time.
    1584             :  **/
    1585           0 : void bio_endio(struct bio *bio)
    1586             : {
    1587             : again:
    1588           0 :         if (!bio_remaining_done(bio))
    1589             :                 return;
    1590           0 :         if (!bio_integrity_endio(bio))
    1591             :                 return;
    1592             : 
    1593           0 :         rq_qos_done_bio(bio);
    1594             : 
    1595           0 :         if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
    1596           0 :                 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
    1597             :                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
    1598             :         }
    1599             : 
    1600             :         /*
    1601             :          * Need to have a real endio function for chained bios, otherwise
    1602             :          * various corner cases will break (like stacking block devices that
    1603             :          * save/restore bi_end_io) - however, we want to avoid unbounded
    1604             :          * recursion and blowing the stack. Tail call optimization would
    1605             :          * handle this, but compiling with frame pointers also disables
    1606             :          * gcc's sibling call optimization.
    1607             :          */
    1608           0 :         if (bio->bi_end_io == bio_chain_endio) {
    1609           0 :                 bio = __bio_chain_endio(bio);
    1610           0 :                 goto again;
    1611             :         }
    1612             : 
    1613           0 :         blk_throtl_bio_endio(bio);
    1614             :         /* release cgroup info */
    1615           0 :         bio_uninit(bio);
    1616           0 :         if (bio->bi_end_io)
    1617           0 :                 bio->bi_end_io(bio);
    1618             : }
    1619             : EXPORT_SYMBOL(bio_endio);
    1620             : 
    1621             : /**
    1622             :  * bio_split - split a bio
    1623             :  * @bio:        bio to split
    1624             :  * @sectors:    number of sectors to split from the front of @bio
    1625             :  * @gfp:        gfp mask
    1626             :  * @bs:         bio set to allocate from
    1627             :  *
    1628             :  * Allocates and returns a new bio which represents @sectors from the start of
    1629             :  * @bio, and updates @bio to represent the remaining sectors.
    1630             :  *
    1631             :  * Unless this is a discard request the newly allocated bio will point
    1632             :  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
    1633             :  * neither @bio nor @bs are freed before the split bio.
    1634             :  */
    1635           0 : struct bio *bio_split(struct bio *bio, int sectors,
    1636             :                       gfp_t gfp, struct bio_set *bs)
    1637             : {
    1638             :         struct bio *split;
    1639             : 
    1640           0 :         BUG_ON(sectors <= 0);
    1641           0 :         BUG_ON(sectors >= bio_sectors(bio));
    1642             : 
    1643             :         /* Zone append commands cannot be split */
    1644           0 :         if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
    1645             :                 return NULL;
    1646             : 
    1647           0 :         split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
    1648           0 :         if (!split)
    1649             :                 return NULL;
    1650             : 
    1651           0 :         split->bi_iter.bi_size = sectors << 9;
    1652             : 
    1653           0 :         if (bio_integrity(split))
    1654             :                 bio_integrity_trim(split);
    1655             : 
    1656           0 :         bio_advance(bio, split->bi_iter.bi_size);
    1657             : 
    1658           0 :         if (bio_flagged(bio, BIO_TRACE_COMPLETION))
    1659             :                 bio_set_flag(split, BIO_TRACE_COMPLETION);
    1660             : 
    1661             :         return split;
    1662             : }
    1663             : EXPORT_SYMBOL(bio_split);
    1664             : 
    1665             : /**
    1666             :  * bio_trim - trim a bio
    1667             :  * @bio:        bio to trim
    1668             :  * @offset:     number of sectors to trim from the front of @bio
    1669             :  * @size:       size we want to trim @bio to, in sectors
    1670             :  *
    1671             :  * This function is typically used for bios that are cloned and submitted
    1672             :  * to the underlying device in parts.
    1673             :  */
    1674           0 : void bio_trim(struct bio *bio, sector_t offset, sector_t size)
    1675             : {
    1676           0 :         if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
    1677             :                          offset + size > bio_sectors(bio)))
    1678             :                 return;
    1679             : 
    1680           0 :         size <<= 9;
    1681           0 :         if (offset == 0 && size == bio->bi_iter.bi_size)
    1682             :                 return;
    1683             : 
    1684           0 :         bio_advance(bio, offset << 9);
    1685           0 :         bio->bi_iter.bi_size = size;
    1686             : 
    1687           0 :         if (bio_integrity(bio))
    1688             :                 bio_integrity_trim(bio);
    1689             : }
    1690             : EXPORT_SYMBOL_GPL(bio_trim);
    1691             : 
    1692             : /*
    1693             :  * create memory pools for biovec's in a bio_set.
    1694             :  * use the global biovec slabs created for general use.
    1695             :  */
    1696           0 : int biovec_init_pool(mempool_t *pool, int pool_entries)
    1697             : {
    1698           2 :         struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
    1699             : 
    1700           4 :         return mempool_init_slab_pool(pool, pool_entries, bp->slab);
    1701             : }
    1702             : 
    1703             : /*
    1704             :  * bioset_exit - exit a bioset initialized with bioset_init()
    1705             :  *
    1706             :  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
    1707             :  * kzalloc()).
    1708             :  */
    1709           0 : void bioset_exit(struct bio_set *bs)
    1710             : {
    1711           0 :         bio_alloc_cache_destroy(bs);
    1712           0 :         if (bs->rescue_workqueue)
    1713           0 :                 destroy_workqueue(bs->rescue_workqueue);
    1714           0 :         bs->rescue_workqueue = NULL;
    1715             : 
    1716           0 :         mempool_exit(&bs->bio_pool);
    1717           0 :         mempool_exit(&bs->bvec_pool);
    1718             : 
    1719           0 :         bioset_integrity_free(bs);
    1720           0 :         if (bs->bio_slab)
    1721           0 :                 bio_put_slab(bs);
    1722           0 :         bs->bio_slab = NULL;
    1723           0 : }
    1724             : EXPORT_SYMBOL(bioset_exit);
    1725             : 
    1726             : /**
    1727             :  * bioset_init - Initialize a bio_set
    1728             :  * @bs:         pool to initialize
    1729             :  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
    1730             :  * @front_pad:  Number of bytes to allocate in front of the returned bio
    1731             :  * @flags:      Flags to modify behavior, currently %BIOSET_NEED_BVECS
    1732             :  *              and %BIOSET_NEED_RESCUER
    1733             :  *
    1734             :  * Description:
    1735             :  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
    1736             :  *    to ask for a number of bytes to be allocated in front of the bio.
    1737             :  *    Front pad allocation is useful for embedding the bio inside
    1738             :  *    another structure, to avoid allocating extra data to go with the bio.
    1739             :  *    Note that the bio must be embedded at the END of that structure always,
    1740             :  *    or things will break badly.
    1741             :  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
    1742             :  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
    1743             :  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
    1744             :  *    to dispatch queued requests when the mempool runs out of space.
    1745             :  *
    1746             :  */
    1747           2 : int bioset_init(struct bio_set *bs,
    1748             :                 unsigned int pool_size,
    1749             :                 unsigned int front_pad,
    1750             :                 int flags)
    1751             : {
    1752           2 :         bs->front_pad = front_pad;
    1753           2 :         if (flags & BIOSET_NEED_BVECS)
    1754           2 :                 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
    1755             :         else
    1756           0 :                 bs->back_pad = 0;
    1757             : 
    1758           2 :         spin_lock_init(&bs->rescue_lock);
    1759           4 :         bio_list_init(&bs->rescue_list);
    1760           4 :         INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
    1761             : 
    1762           2 :         bs->bio_slab = bio_find_or_create_slab(bs);
    1763           2 :         if (!bs->bio_slab)
    1764             :                 return -ENOMEM;
    1765             : 
    1766           4 :         if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
    1767             :                 goto bad;
    1768             : 
    1769           4 :         if ((flags & BIOSET_NEED_BVECS) &&
    1770           4 :             biovec_init_pool(&bs->bvec_pool, pool_size))
    1771             :                 goto bad;
    1772             : 
    1773           2 :         if (flags & BIOSET_NEED_RESCUER) {
    1774           0 :                 bs->rescue_workqueue = alloc_workqueue("bioset",
    1775             :                                                         WQ_MEM_RECLAIM, 0);
    1776           0 :                 if (!bs->rescue_workqueue)
    1777             :                         goto bad;
    1778             :         }
    1779           2 :         if (flags & BIOSET_PERCPU_CACHE) {
    1780           2 :                 bs->cache = alloc_percpu(struct bio_alloc_cache);
    1781           2 :                 if (!bs->cache)
    1782             :                         goto bad;
    1783           2 :                 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
    1784             :         }
    1785             : 
    1786             :         return 0;
    1787             : bad:
    1788           0 :         bioset_exit(bs);
    1789           0 :         return -ENOMEM;
    1790             : }
    1791             : EXPORT_SYMBOL(bioset_init);
    1792             : 
    1793           1 : static int __init init_bio(void)
    1794             : {
    1795             :         int i;
    1796             : 
    1797             :         BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
    1798             : 
    1799             :         bio_integrity_init();
    1800             : 
    1801           5 :         for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
    1802           4 :                 struct biovec_slab *bvs = bvec_slabs + i;
    1803             : 
    1804           4 :                 bvs->slab = kmem_cache_create(bvs->name,
    1805           4 :                                 bvs->nr_vecs * sizeof(struct bio_vec), 0,
    1806             :                                 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
    1807             :         }
    1808             : 
    1809           1 :         cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
    1810             :                                         bio_cpu_dead);
    1811             : 
    1812           1 :         if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
    1813             :                         BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
    1814           0 :                 panic("bio: can't allocate bios\n");
    1815             : 
    1816           1 :         if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
    1817             :                 panic("bio: can't create integrity pool\n");
    1818             : 
    1819           1 :         return 0;
    1820             : }
    1821             : subsys_initcall(init_bio);

Generated by: LCOV version 1.14