Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 :
3 : #include "blk-rq-qos.h"
4 :
5 : /*
6 : * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7 : * false if 'v' + 1 would be bigger than 'below'.
8 : */
9 : static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 : {
11 0 : unsigned int cur = atomic_read(v);
12 :
13 : do {
14 0 : if (cur >= below)
15 : return false;
16 0 : } while (!atomic_try_cmpxchg(v, &cur, cur + 1));
17 :
18 : return true;
19 : }
20 :
21 0 : bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
22 : {
23 0 : return atomic_inc_below(&rq_wait->inflight, limit);
24 : }
25 :
26 0 : void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
27 : {
28 : do {
29 0 : if (rqos->ops->cleanup)
30 0 : rqos->ops->cleanup(rqos, bio);
31 0 : rqos = rqos->next;
32 0 : } while (rqos);
33 0 : }
34 :
35 0 : void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
36 : {
37 : do {
38 0 : if (rqos->ops->done)
39 0 : rqos->ops->done(rqos, rq);
40 0 : rqos = rqos->next;
41 0 : } while (rqos);
42 0 : }
43 :
44 0 : void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
45 : {
46 : do {
47 0 : if (rqos->ops->issue)
48 0 : rqos->ops->issue(rqos, rq);
49 0 : rqos = rqos->next;
50 0 : } while (rqos);
51 0 : }
52 :
53 0 : void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
54 : {
55 : do {
56 0 : if (rqos->ops->requeue)
57 0 : rqos->ops->requeue(rqos, rq);
58 0 : rqos = rqos->next;
59 0 : } while (rqos);
60 0 : }
61 :
62 0 : void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
63 : {
64 : do {
65 0 : if (rqos->ops->throttle)
66 0 : rqos->ops->throttle(rqos, bio);
67 0 : rqos = rqos->next;
68 0 : } while (rqos);
69 0 : }
70 :
71 0 : void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
72 : {
73 : do {
74 0 : if (rqos->ops->track)
75 0 : rqos->ops->track(rqos, rq, bio);
76 0 : rqos = rqos->next;
77 0 : } while (rqos);
78 0 : }
79 :
80 0 : void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
81 : {
82 : do {
83 0 : if (rqos->ops->merge)
84 0 : rqos->ops->merge(rqos, rq, bio);
85 0 : rqos = rqos->next;
86 0 : } while (rqos);
87 0 : }
88 :
89 0 : void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
90 : {
91 : do {
92 0 : if (rqos->ops->done_bio)
93 0 : rqos->ops->done_bio(rqos, bio);
94 0 : rqos = rqos->next;
95 0 : } while (rqos);
96 0 : }
97 :
98 0 : void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
99 : {
100 : do {
101 0 : if (rqos->ops->queue_depth_changed)
102 0 : rqos->ops->queue_depth_changed(rqos);
103 0 : rqos = rqos->next;
104 0 : } while (rqos);
105 0 : }
106 :
107 : /*
108 : * Return true, if we can't increase the depth further by scaling
109 : */
110 0 : bool rq_depth_calc_max_depth(struct rq_depth *rqd)
111 : {
112 : unsigned int depth;
113 0 : bool ret = false;
114 :
115 : /*
116 : * For QD=1 devices, this is a special case. It's important for those
117 : * to have one request ready when one completes, so force a depth of
118 : * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
119 : * since the device can't have more than that in flight. If we're
120 : * scaling down, then keep a setting of 1/1/1.
121 : */
122 0 : if (rqd->queue_depth == 1) {
123 0 : if (rqd->scale_step > 0)
124 0 : rqd->max_depth = 1;
125 : else {
126 0 : rqd->max_depth = 2;
127 0 : ret = true;
128 : }
129 : } else {
130 : /*
131 : * scale_step == 0 is our default state. If we have suffered
132 : * latency spikes, step will be > 0, and we shrink the
133 : * allowed write depths. If step is < 0, we're only doing
134 : * writes, and we allow a temporarily higher depth to
135 : * increase performance.
136 : */
137 0 : depth = min_t(unsigned int, rqd->default_depth,
138 : rqd->queue_depth);
139 0 : if (rqd->scale_step > 0)
140 0 : depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
141 0 : else if (rqd->scale_step < 0) {
142 0 : unsigned int maxd = 3 * rqd->queue_depth / 4;
143 :
144 0 : depth = 1 + ((depth - 1) << -rqd->scale_step);
145 0 : if (depth > maxd) {
146 0 : depth = maxd;
147 0 : ret = true;
148 : }
149 : }
150 :
151 0 : rqd->max_depth = depth;
152 : }
153 :
154 0 : return ret;
155 : }
156 :
157 : /* Returns true on success and false if scaling up wasn't possible */
158 0 : bool rq_depth_scale_up(struct rq_depth *rqd)
159 : {
160 : /*
161 : * Hit max in previous round, stop here
162 : */
163 0 : if (rqd->scaled_max)
164 : return false;
165 :
166 0 : rqd->scale_step--;
167 :
168 0 : rqd->scaled_max = rq_depth_calc_max_depth(rqd);
169 0 : return true;
170 : }
171 :
172 : /*
173 : * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
174 : * had a latency violation. Returns true on success and returns false if
175 : * scaling down wasn't possible.
176 : */
177 0 : bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
178 : {
179 : /*
180 : * Stop scaling down when we've hit the limit. This also prevents
181 : * ->scale_step from going to crazy values, if the device can't
182 : * keep up.
183 : */
184 0 : if (rqd->max_depth == 1)
185 : return false;
186 :
187 0 : if (rqd->scale_step < 0 && hard_throttle)
188 0 : rqd->scale_step = 0;
189 : else
190 0 : rqd->scale_step++;
191 :
192 0 : rqd->scaled_max = false;
193 0 : rq_depth_calc_max_depth(rqd);
194 0 : return true;
195 : }
196 :
197 : struct rq_qos_wait_data {
198 : struct wait_queue_entry wq;
199 : struct task_struct *task;
200 : struct rq_wait *rqw;
201 : acquire_inflight_cb_t *cb;
202 : void *private_data;
203 : bool got_token;
204 : };
205 :
206 0 : static int rq_qos_wake_function(struct wait_queue_entry *curr,
207 : unsigned int mode, int wake_flags, void *key)
208 : {
209 0 : struct rq_qos_wait_data *data = container_of(curr,
210 : struct rq_qos_wait_data,
211 : wq);
212 :
213 : /*
214 : * If we fail to get a budget, return -1 to interrupt the wake up loop
215 : * in __wake_up_common.
216 : */
217 0 : if (!data->cb(data->rqw, data->private_data))
218 : return -1;
219 :
220 0 : data->got_token = true;
221 0 : smp_wmb();
222 0 : list_del_init(&curr->entry);
223 0 : wake_up_process(data->task);
224 0 : return 1;
225 : }
226 :
227 : /**
228 : * rq_qos_wait - throttle on a rqw if we need to
229 : * @rqw: rqw to throttle on
230 : * @private_data: caller provided specific data
231 : * @acquire_inflight_cb: inc the rqw->inflight counter if we can
232 : * @cleanup_cb: the callback to cleanup in case we race with a waker
233 : *
234 : * This provides a uniform place for the rq_qos users to do their throttling.
235 : * Since you can end up with a lot of things sleeping at once, this manages the
236 : * waking up based on the resources available. The acquire_inflight_cb should
237 : * inc the rqw->inflight if we have the ability to do so, or return false if not
238 : * and then we will sleep until the room becomes available.
239 : *
240 : * cleanup_cb is in case that we race with a waker and need to cleanup the
241 : * inflight count accordingly.
242 : */
243 0 : void rq_qos_wait(struct rq_wait *rqw, void *private_data,
244 : acquire_inflight_cb_t *acquire_inflight_cb,
245 : cleanup_cb_t *cleanup_cb)
246 : {
247 0 : struct rq_qos_wait_data data = {
248 : .wq = {
249 : .func = rq_qos_wake_function,
250 : .entry = LIST_HEAD_INIT(data.wq.entry),
251 : },
252 0 : .task = current,
253 : .rqw = rqw,
254 : .cb = acquire_inflight_cb,
255 : .private_data = private_data,
256 : };
257 : bool has_sleeper;
258 :
259 0 : has_sleeper = wq_has_sleeper(&rqw->wait);
260 0 : if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
261 0 : return;
262 :
263 0 : has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
264 0 : TASK_UNINTERRUPTIBLE);
265 : do {
266 : /* The memory barrier in set_task_state saves us here. */
267 0 : if (data.got_token)
268 : break;
269 0 : if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
270 0 : finish_wait(&rqw->wait, &data.wq);
271 :
272 : /*
273 : * We raced with wbt_wake_function() getting a token,
274 : * which means we now have two. Put our local token
275 : * and wake anyone else potentially waiting for one.
276 : */
277 0 : smp_rmb();
278 0 : if (data.got_token)
279 0 : cleanup_cb(rqw, private_data);
280 : break;
281 : }
282 0 : io_schedule();
283 0 : has_sleeper = true;
284 0 : set_current_state(TASK_UNINTERRUPTIBLE);
285 : } while (1);
286 0 : finish_wait(&rqw->wait, &data.wq);
287 : }
288 :
289 0 : void rq_qos_exit(struct request_queue *q)
290 : {
291 0 : mutex_lock(&q->rq_qos_mutex);
292 0 : while (q->rq_qos) {
293 0 : struct rq_qos *rqos = q->rq_qos;
294 0 : q->rq_qos = rqos->next;
295 0 : rqos->ops->exit(rqos);
296 : }
297 0 : mutex_unlock(&q->rq_qos_mutex);
298 0 : }
299 :
300 0 : int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id,
301 : const struct rq_qos_ops *ops)
302 : {
303 0 : struct request_queue *q = disk->queue;
304 :
305 : lockdep_assert_held(&q->rq_qos_mutex);
306 :
307 0 : rqos->disk = disk;
308 0 : rqos->id = id;
309 0 : rqos->ops = ops;
310 :
311 : /*
312 : * No IO can be in-flight when adding rqos, so freeze queue, which
313 : * is fine since we only support rq_qos for blk-mq queue.
314 : */
315 0 : blk_mq_freeze_queue(q);
316 :
317 0 : if (rq_qos_id(q, rqos->id))
318 : goto ebusy;
319 0 : rqos->next = q->rq_qos;
320 0 : q->rq_qos = rqos;
321 :
322 0 : blk_mq_unfreeze_queue(q);
323 :
324 0 : if (rqos->ops->debugfs_attrs) {
325 0 : mutex_lock(&q->debugfs_mutex);
326 0 : blk_mq_debugfs_register_rqos(rqos);
327 0 : mutex_unlock(&q->debugfs_mutex);
328 : }
329 :
330 : return 0;
331 : ebusy:
332 0 : blk_mq_unfreeze_queue(q);
333 0 : return -EBUSY;
334 : }
335 :
336 0 : void rq_qos_del(struct rq_qos *rqos)
337 : {
338 0 : struct request_queue *q = rqos->disk->queue;
339 : struct rq_qos **cur;
340 :
341 : lockdep_assert_held(&q->rq_qos_mutex);
342 :
343 0 : blk_mq_freeze_queue(q);
344 0 : for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) {
345 0 : if (*cur == rqos) {
346 0 : *cur = rqos->next;
347 0 : break;
348 : }
349 : }
350 0 : blk_mq_unfreeze_queue(q);
351 :
352 0 : mutex_lock(&q->debugfs_mutex);
353 0 : blk_mq_debugfs_unregister_rqos(rqos);
354 0 : mutex_unlock(&q->debugfs_mutex);
355 0 : }
|