Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Fence mechanism for dma-buf and to allow for asynchronous dma access
4 : *
5 : * Copyright (C) 2012 Canonical Ltd
6 : * Copyright (C) 2012 Texas Instruments
7 : *
8 : * Authors:
9 : * Rob Clark <robdclark@gmail.com>
10 : * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11 : */
12 :
13 : #include <linux/slab.h>
14 : #include <linux/export.h>
15 : #include <linux/atomic.h>
16 : #include <linux/dma-fence.h>
17 : #include <linux/sched/signal.h>
18 : #include <linux/seq_file.h>
19 :
20 : #define CREATE_TRACE_POINTS
21 : #include <trace/events/dma_fence.h>
22 :
23 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 :
27 : static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 : static struct dma_fence dma_fence_stub;
29 :
30 : /*
31 : * fence context counter: each execution context should have its own
32 : * fence context, this allows checking if fences belong to the same
33 : * context or not. One device can have multiple separate contexts,
34 : * and they're used if some engine can run independently of another.
35 : */
36 : static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 :
38 : /**
39 : * DOC: DMA fences overview
40 : *
41 : * DMA fences, represented by &struct dma_fence, are the kernel internal
42 : * synchronization primitive for DMA operations like GPU rendering, video
43 : * encoding/decoding, or displaying buffers on a screen.
44 : *
45 : * A fence is initialized using dma_fence_init() and completed using
46 : * dma_fence_signal(). Fences are associated with a context, allocated through
47 : * dma_fence_context_alloc(), and all fences on the same context are
48 : * fully ordered.
49 : *
50 : * Since the purposes of fences is to facilitate cross-device and
51 : * cross-application synchronization, there's multiple ways to use one:
52 : *
53 : * - Individual fences can be exposed as a &sync_file, accessed as a file
54 : * descriptor from userspace, created by calling sync_file_create(). This is
55 : * called explicit fencing, since userspace passes around explicit
56 : * synchronization points.
57 : *
58 : * - Some subsystems also have their own explicit fencing primitives, like
59 : * &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60 : * fence to be updated.
61 : *
62 : * - Then there's also implicit fencing, where the synchronization points are
63 : * implicitly passed around as part of shared &dma_buf instances. Such
64 : * implicit fences are stored in &struct dma_resv through the
65 : * &dma_buf.resv pointer.
66 : */
67 :
68 : /**
69 : * DOC: fence cross-driver contract
70 : *
71 : * Since &dma_fence provide a cross driver contract, all drivers must follow the
72 : * same rules:
73 : *
74 : * * Fences must complete in a reasonable time. Fences which represent kernels
75 : * and shaders submitted by userspace, which could run forever, must be backed
76 : * up by timeout and gpu hang recovery code. Minimally that code must prevent
77 : * further command submission and force complete all in-flight fences, e.g.
78 : * when the driver or hardware do not support gpu reset, or if the gpu reset
79 : * failed for some reason. Ideally the driver supports gpu recovery which only
80 : * affects the offending userspace context, and no other userspace
81 : * submissions.
82 : *
83 : * * Drivers may have different ideas of what completion within a reasonable
84 : * time means. Some hang recovery code uses a fixed timeout, others a mix
85 : * between observing forward progress and increasingly strict timeouts.
86 : * Drivers should not try to second guess timeout handling of fences from
87 : * other drivers.
88 : *
89 : * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90 : * drivers should annotate all code required to reach dma_fence_signal(),
91 : * which completes the fences, with dma_fence_begin_signalling() and
92 : * dma_fence_end_signalling().
93 : *
94 : * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95 : * This means any code required for fence completion cannot acquire a
96 : * &dma_resv lock. Note that this also pulls in the entire established
97 : * locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98 : *
99 : * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100 : * callbacks. This means any code required for fence completion cannot
101 : * allocate memory with GFP_KERNEL.
102 : *
103 : * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104 : * respectively &mmu_interval_notifier callbacks. This means any code required
105 : * for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106 : * Only GFP_ATOMIC is permissible, which might fail.
107 : *
108 : * Note that only GPU drivers have a reasonable excuse for both requiring
109 : * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110 : * track asynchronous compute work using &dma_fence. No driver outside of
111 : * drivers/gpu should ever call dma_fence_wait() in such contexts.
112 : */
113 :
114 0 : static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 : {
116 0 : return "stub";
117 : }
118 :
119 : static const struct dma_fence_ops dma_fence_stub_ops = {
120 : .get_driver_name = dma_fence_stub_get_name,
121 : .get_timeline_name = dma_fence_stub_get_name,
122 : };
123 :
124 : /**
125 : * dma_fence_get_stub - return a signaled fence
126 : *
127 : * Return a stub fence which is already signaled. The fence's
128 : * timestamp corresponds to the first time after boot this
129 : * function is called.
130 : */
131 0 : struct dma_fence *dma_fence_get_stub(void)
132 : {
133 0 : spin_lock(&dma_fence_stub_lock);
134 0 : if (!dma_fence_stub.ops) {
135 0 : dma_fence_init(&dma_fence_stub,
136 : &dma_fence_stub_ops,
137 : &dma_fence_stub_lock,
138 : 0, 0);
139 :
140 0 : set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
141 : &dma_fence_stub.flags);
142 :
143 : dma_fence_signal_locked(&dma_fence_stub);
144 : }
145 0 : spin_unlock(&dma_fence_stub_lock);
146 :
147 0 : return dma_fence_get(&dma_fence_stub);
148 : }
149 : EXPORT_SYMBOL(dma_fence_get_stub);
150 :
151 : /**
152 : * dma_fence_allocate_private_stub - return a private, signaled fence
153 : * @timestamp: timestamp when the fence was signaled
154 : *
155 : * Return a newly allocated and signaled stub fence.
156 : */
157 0 : struct dma_fence *dma_fence_allocate_private_stub(ktime_t timestamp)
158 : {
159 : struct dma_fence *fence;
160 :
161 0 : fence = kzalloc(sizeof(*fence), GFP_KERNEL);
162 0 : if (fence == NULL)
163 : return NULL;
164 :
165 0 : dma_fence_init(fence,
166 : &dma_fence_stub_ops,
167 : &dma_fence_stub_lock,
168 : 0, 0);
169 :
170 0 : set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
171 0 : &fence->flags);
172 :
173 0 : dma_fence_signal_timestamp(fence, timestamp);
174 :
175 0 : return fence;
176 : }
177 : EXPORT_SYMBOL(dma_fence_allocate_private_stub);
178 :
179 : /**
180 : * dma_fence_context_alloc - allocate an array of fence contexts
181 : * @num: amount of contexts to allocate
182 : *
183 : * This function will return the first index of the number of fence contexts
184 : * allocated. The fence context is used for setting &dma_fence.context to a
185 : * unique number by passing the context to dma_fence_init().
186 : */
187 0 : u64 dma_fence_context_alloc(unsigned num)
188 : {
189 0 : WARN_ON(!num);
190 0 : return atomic64_fetch_add(num, &dma_fence_context_counter);
191 : }
192 : EXPORT_SYMBOL(dma_fence_context_alloc);
193 :
194 : /**
195 : * DOC: fence signalling annotation
196 : *
197 : * Proving correctness of all the kernel code around &dma_fence through code
198 : * review and testing is tricky for a few reasons:
199 : *
200 : * * It is a cross-driver contract, and therefore all drivers must follow the
201 : * same rules for lock nesting order, calling contexts for various functions
202 : * and anything else significant for in-kernel interfaces. But it is also
203 : * impossible to test all drivers in a single machine, hence brute-force N vs.
204 : * N testing of all combinations is impossible. Even just limiting to the
205 : * possible combinations is infeasible.
206 : *
207 : * * There is an enormous amount of driver code involved. For render drivers
208 : * there's the tail of command submission, after fences are published,
209 : * scheduler code, interrupt and workers to process job completion,
210 : * and timeout, gpu reset and gpu hang recovery code. Plus for integration
211 : * with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
212 : * and &shrinker. For modesetting drivers there's the commit tail functions
213 : * between when fences for an atomic modeset are published, and when the
214 : * corresponding vblank completes, including any interrupt processing and
215 : * related workers. Auditing all that code, across all drivers, is not
216 : * feasible.
217 : *
218 : * * Due to how many other subsystems are involved and the locking hierarchies
219 : * this pulls in there is extremely thin wiggle-room for driver-specific
220 : * differences. &dma_fence interacts with almost all of the core memory
221 : * handling through page fault handlers via &dma_resv, dma_resv_lock() and
222 : * dma_resv_unlock(). On the other side it also interacts through all
223 : * allocation sites through &mmu_notifier and &shrinker.
224 : *
225 : * Furthermore lockdep does not handle cross-release dependencies, which means
226 : * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
227 : * at runtime with some quick testing. The simplest example is one thread
228 : * waiting on a &dma_fence while holding a lock::
229 : *
230 : * lock(A);
231 : * dma_fence_wait(B);
232 : * unlock(A);
233 : *
234 : * while the other thread is stuck trying to acquire the same lock, which
235 : * prevents it from signalling the fence the previous thread is stuck waiting
236 : * on::
237 : *
238 : * lock(A);
239 : * unlock(A);
240 : * dma_fence_signal(B);
241 : *
242 : * By manually annotating all code relevant to signalling a &dma_fence we can
243 : * teach lockdep about these dependencies, which also helps with the validation
244 : * headache since now lockdep can check all the rules for us::
245 : *
246 : * cookie = dma_fence_begin_signalling();
247 : * lock(A);
248 : * unlock(A);
249 : * dma_fence_signal(B);
250 : * dma_fence_end_signalling(cookie);
251 : *
252 : * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
253 : * annotate critical sections the following rules need to be observed:
254 : *
255 : * * All code necessary to complete a &dma_fence must be annotated, from the
256 : * point where a fence is accessible to other threads, to the point where
257 : * dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
258 : * and due to the very strict rules and many corner cases it is infeasible to
259 : * catch these just with review or normal stress testing.
260 : *
261 : * * &struct dma_resv deserves a special note, since the readers are only
262 : * protected by rcu. This means the signalling critical section starts as soon
263 : * as the new fences are installed, even before dma_resv_unlock() is called.
264 : *
265 : * * The only exception are fast paths and opportunistic signalling code, which
266 : * calls dma_fence_signal() purely as an optimization, but is not required to
267 : * guarantee completion of a &dma_fence. The usual example is a wait IOCTL
268 : * which calls dma_fence_signal(), while the mandatory completion path goes
269 : * through a hardware interrupt and possible job completion worker.
270 : *
271 : * * To aid composability of code, the annotations can be freely nested, as long
272 : * as the overall locking hierarchy is consistent. The annotations also work
273 : * both in interrupt and process context. Due to implementation details this
274 : * requires that callers pass an opaque cookie from
275 : * dma_fence_begin_signalling() to dma_fence_end_signalling().
276 : *
277 : * * Validation against the cross driver contract is implemented by priming
278 : * lockdep with the relevant hierarchy at boot-up. This means even just
279 : * testing with a single device is enough to validate a driver, at least as
280 : * far as deadlocks with dma_fence_wait() against dma_fence_signal() are
281 : * concerned.
282 : */
283 : #ifdef CONFIG_LOCKDEP
284 : static struct lockdep_map dma_fence_lockdep_map = {
285 : .name = "dma_fence_map"
286 : };
287 :
288 : /**
289 : * dma_fence_begin_signalling - begin a critical DMA fence signalling section
290 : *
291 : * Drivers should use this to annotate the beginning of any code section
292 : * required to eventually complete &dma_fence by calling dma_fence_signal().
293 : *
294 : * The end of these critical sections are annotated with
295 : * dma_fence_end_signalling().
296 : *
297 : * Returns:
298 : *
299 : * Opaque cookie needed by the implementation, which needs to be passed to
300 : * dma_fence_end_signalling().
301 : */
302 : bool dma_fence_begin_signalling(void)
303 : {
304 : /* explicitly nesting ... */
305 : if (lock_is_held_type(&dma_fence_lockdep_map, 1))
306 : return true;
307 :
308 : /* rely on might_sleep check for soft/hardirq locks */
309 : if (in_atomic())
310 : return true;
311 :
312 : /* ... and non-recursive readlock */
313 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
314 :
315 : return false;
316 : }
317 : EXPORT_SYMBOL(dma_fence_begin_signalling);
318 :
319 : /**
320 : * dma_fence_end_signalling - end a critical DMA fence signalling section
321 : * @cookie: opaque cookie from dma_fence_begin_signalling()
322 : *
323 : * Closes a critical section annotation opened by dma_fence_begin_signalling().
324 : */
325 : void dma_fence_end_signalling(bool cookie)
326 : {
327 : if (cookie)
328 : return;
329 :
330 : lock_release(&dma_fence_lockdep_map, _RET_IP_);
331 : }
332 : EXPORT_SYMBOL(dma_fence_end_signalling);
333 :
334 : void __dma_fence_might_wait(void)
335 : {
336 : bool tmp;
337 :
338 : tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
339 : if (tmp)
340 : lock_release(&dma_fence_lockdep_map, _THIS_IP_);
341 : lock_map_acquire(&dma_fence_lockdep_map);
342 : lock_map_release(&dma_fence_lockdep_map);
343 : if (tmp)
344 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
345 : }
346 : #endif
347 :
348 :
349 : /**
350 : * dma_fence_signal_timestamp_locked - signal completion of a fence
351 : * @fence: the fence to signal
352 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
353 : *
354 : * Signal completion for software callbacks on a fence, this will unblock
355 : * dma_fence_wait() calls and run all the callbacks added with
356 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
357 : * can only go from the unsignaled to the signaled state and not back, it will
358 : * only be effective the first time. Set the timestamp provided as the fence
359 : * signal timestamp.
360 : *
361 : * Unlike dma_fence_signal_timestamp(), this function must be called with
362 : * &dma_fence.lock held.
363 : *
364 : * Returns 0 on success and a negative error value when @fence has been
365 : * signalled already.
366 : */
367 0 : int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
368 : ktime_t timestamp)
369 : {
370 : struct dma_fence_cb *cur, *tmp;
371 : struct list_head cb_list;
372 :
373 : lockdep_assert_held(fence->lock);
374 :
375 0 : if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
376 : &fence->flags)))
377 : return -EINVAL;
378 :
379 : /* Stash the cb_list before replacing it with the timestamp */
380 0 : list_replace(&fence->cb_list, &cb_list);
381 :
382 0 : fence->timestamp = timestamp;
383 0 : set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
384 0 : trace_dma_fence_signaled(fence);
385 :
386 0 : list_for_each_entry_safe(cur, tmp, &cb_list, node) {
387 0 : INIT_LIST_HEAD(&cur->node);
388 0 : cur->func(fence, cur);
389 : }
390 :
391 : return 0;
392 : }
393 : EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
394 :
395 : /**
396 : * dma_fence_signal_timestamp - signal completion of a fence
397 : * @fence: the fence to signal
398 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
399 : *
400 : * Signal completion for software callbacks on a fence, this will unblock
401 : * dma_fence_wait() calls and run all the callbacks added with
402 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
403 : * can only go from the unsignaled to the signaled state and not back, it will
404 : * only be effective the first time. Set the timestamp provided as the fence
405 : * signal timestamp.
406 : *
407 : * Returns 0 on success and a negative error value when @fence has been
408 : * signalled already.
409 : */
410 0 : int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
411 : {
412 : unsigned long flags;
413 : int ret;
414 :
415 0 : if (!fence)
416 : return -EINVAL;
417 :
418 0 : spin_lock_irqsave(fence->lock, flags);
419 0 : ret = dma_fence_signal_timestamp_locked(fence, timestamp);
420 0 : spin_unlock_irqrestore(fence->lock, flags);
421 :
422 0 : return ret;
423 : }
424 : EXPORT_SYMBOL(dma_fence_signal_timestamp);
425 :
426 : /**
427 : * dma_fence_signal_locked - signal completion of a fence
428 : * @fence: the fence to signal
429 : *
430 : * Signal completion for software callbacks on a fence, this will unblock
431 : * dma_fence_wait() calls and run all the callbacks added with
432 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
433 : * can only go from the unsignaled to the signaled state and not back, it will
434 : * only be effective the first time.
435 : *
436 : * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
437 : * held.
438 : *
439 : * Returns 0 on success and a negative error value when @fence has been
440 : * signalled already.
441 : */
442 0 : int dma_fence_signal_locked(struct dma_fence *fence)
443 : {
444 0 : return dma_fence_signal_timestamp_locked(fence, ktime_get());
445 : }
446 : EXPORT_SYMBOL(dma_fence_signal_locked);
447 :
448 : /**
449 : * dma_fence_signal - signal completion of a fence
450 : * @fence: the fence to signal
451 : *
452 : * Signal completion for software callbacks on a fence, this will unblock
453 : * dma_fence_wait() calls and run all the callbacks added with
454 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
455 : * can only go from the unsignaled to the signaled state and not back, it will
456 : * only be effective the first time.
457 : *
458 : * Returns 0 on success and a negative error value when @fence has been
459 : * signalled already.
460 : */
461 0 : int dma_fence_signal(struct dma_fence *fence)
462 : {
463 : unsigned long flags;
464 : int ret;
465 : bool tmp;
466 :
467 0 : if (!fence)
468 : return -EINVAL;
469 :
470 0 : tmp = dma_fence_begin_signalling();
471 :
472 0 : spin_lock_irqsave(fence->lock, flags);
473 0 : ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
474 0 : spin_unlock_irqrestore(fence->lock, flags);
475 :
476 0 : dma_fence_end_signalling(tmp);
477 :
478 0 : return ret;
479 : }
480 : EXPORT_SYMBOL(dma_fence_signal);
481 :
482 : /**
483 : * dma_fence_wait_timeout - sleep until the fence gets signaled
484 : * or until timeout elapses
485 : * @fence: the fence to wait on
486 : * @intr: if true, do an interruptible wait
487 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
488 : *
489 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
490 : * remaining timeout in jiffies on success. Other error values may be
491 : * returned on custom implementations.
492 : *
493 : * Performs a synchronous wait on this fence. It is assumed the caller
494 : * directly or indirectly (buf-mgr between reservation and committing)
495 : * holds a reference to the fence, otherwise the fence might be
496 : * freed before return, resulting in undefined behavior.
497 : *
498 : * See also dma_fence_wait() and dma_fence_wait_any_timeout().
499 : */
500 : signed long
501 0 : dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
502 : {
503 : signed long ret;
504 :
505 0 : if (WARN_ON(timeout < 0))
506 : return -EINVAL;
507 :
508 : might_sleep();
509 :
510 : __dma_fence_might_wait();
511 :
512 0 : dma_fence_enable_sw_signaling(fence);
513 :
514 0 : trace_dma_fence_wait_start(fence);
515 0 : if (fence->ops->wait)
516 0 : ret = fence->ops->wait(fence, intr, timeout);
517 : else
518 0 : ret = dma_fence_default_wait(fence, intr, timeout);
519 : trace_dma_fence_wait_end(fence);
520 : return ret;
521 : }
522 : EXPORT_SYMBOL(dma_fence_wait_timeout);
523 :
524 : /**
525 : * dma_fence_release - default relese function for fences
526 : * @kref: &dma_fence.recfount
527 : *
528 : * This is the default release functions for &dma_fence. Drivers shouldn't call
529 : * this directly, but instead call dma_fence_put().
530 : */
531 0 : void dma_fence_release(struct kref *kref)
532 : {
533 0 : struct dma_fence *fence =
534 0 : container_of(kref, struct dma_fence, refcount);
535 :
536 0 : trace_dma_fence_destroy(fence);
537 :
538 0 : if (WARN(!list_empty(&fence->cb_list) &&
539 : !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
540 : "Fence %s:%s:%llx:%llx released with pending signals!\n",
541 : fence->ops->get_driver_name(fence),
542 : fence->ops->get_timeline_name(fence),
543 : fence->context, fence->seqno)) {
544 : unsigned long flags;
545 :
546 : /*
547 : * Failed to signal before release, likely a refcounting issue.
548 : *
549 : * This should never happen, but if it does make sure that we
550 : * don't leave chains dangling. We set the error flag first
551 : * so that the callbacks know this signal is due to an error.
552 : */
553 0 : spin_lock_irqsave(fence->lock, flags);
554 0 : fence->error = -EDEADLK;
555 0 : dma_fence_signal_locked(fence);
556 0 : spin_unlock_irqrestore(fence->lock, flags);
557 : }
558 :
559 0 : if (fence->ops->release)
560 0 : fence->ops->release(fence);
561 : else
562 : dma_fence_free(fence);
563 0 : }
564 : EXPORT_SYMBOL(dma_fence_release);
565 :
566 : /**
567 : * dma_fence_free - default release function for &dma_fence.
568 : * @fence: fence to release
569 : *
570 : * This is the default implementation for &dma_fence_ops.release. It calls
571 : * kfree_rcu() on @fence.
572 : */
573 0 : void dma_fence_free(struct dma_fence *fence)
574 : {
575 0 : kfree_rcu(fence, rcu);
576 0 : }
577 : EXPORT_SYMBOL(dma_fence_free);
578 :
579 0 : static bool __dma_fence_enable_signaling(struct dma_fence *fence)
580 : {
581 : bool was_set;
582 :
583 : lockdep_assert_held(fence->lock);
584 :
585 0 : was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
586 0 : &fence->flags);
587 :
588 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
589 : return false;
590 :
591 0 : if (!was_set && fence->ops->enable_signaling) {
592 0 : trace_dma_fence_enable_signal(fence);
593 :
594 0 : if (!fence->ops->enable_signaling(fence)) {
595 0 : dma_fence_signal_locked(fence);
596 0 : return false;
597 : }
598 : }
599 :
600 : return true;
601 : }
602 :
603 : /**
604 : * dma_fence_enable_sw_signaling - enable signaling on fence
605 : * @fence: the fence to enable
606 : *
607 : * This will request for sw signaling to be enabled, to make the fence
608 : * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
609 : * internally.
610 : */
611 0 : void dma_fence_enable_sw_signaling(struct dma_fence *fence)
612 : {
613 : unsigned long flags;
614 :
615 0 : spin_lock_irqsave(fence->lock, flags);
616 0 : __dma_fence_enable_signaling(fence);
617 0 : spin_unlock_irqrestore(fence->lock, flags);
618 0 : }
619 : EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
620 :
621 : /**
622 : * dma_fence_add_callback - add a callback to be called when the fence
623 : * is signaled
624 : * @fence: the fence to wait on
625 : * @cb: the callback to register
626 : * @func: the function to call
627 : *
628 : * Add a software callback to the fence. The caller should keep a reference to
629 : * the fence.
630 : *
631 : * @cb will be initialized by dma_fence_add_callback(), no initialization
632 : * by the caller is required. Any number of callbacks can be registered
633 : * to a fence, but a callback can only be registered to one fence at a time.
634 : *
635 : * If fence is already signaled, this function will return -ENOENT (and
636 : * *not* call the callback).
637 : *
638 : * Note that the callback can be called from an atomic context or irq context.
639 : *
640 : * Returns 0 in case of success, -ENOENT if the fence is already signaled
641 : * and -EINVAL in case of error.
642 : */
643 0 : int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
644 : dma_fence_func_t func)
645 : {
646 : unsigned long flags;
647 0 : int ret = 0;
648 :
649 0 : if (WARN_ON(!fence || !func))
650 : return -EINVAL;
651 :
652 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
653 0 : INIT_LIST_HEAD(&cb->node);
654 0 : return -ENOENT;
655 : }
656 :
657 0 : spin_lock_irqsave(fence->lock, flags);
658 :
659 0 : if (__dma_fence_enable_signaling(fence)) {
660 0 : cb->func = func;
661 0 : list_add_tail(&cb->node, &fence->cb_list);
662 : } else {
663 0 : INIT_LIST_HEAD(&cb->node);
664 0 : ret = -ENOENT;
665 : }
666 :
667 0 : spin_unlock_irqrestore(fence->lock, flags);
668 :
669 0 : return ret;
670 : }
671 : EXPORT_SYMBOL(dma_fence_add_callback);
672 :
673 : /**
674 : * dma_fence_get_status - returns the status upon completion
675 : * @fence: the dma_fence to query
676 : *
677 : * This wraps dma_fence_get_status_locked() to return the error status
678 : * condition on a signaled fence. See dma_fence_get_status_locked() for more
679 : * details.
680 : *
681 : * Returns 0 if the fence has not yet been signaled, 1 if the fence has
682 : * been signaled without an error condition, or a negative error code
683 : * if the fence has been completed in err.
684 : */
685 0 : int dma_fence_get_status(struct dma_fence *fence)
686 : {
687 : unsigned long flags;
688 : int status;
689 :
690 0 : spin_lock_irqsave(fence->lock, flags);
691 0 : status = dma_fence_get_status_locked(fence);
692 0 : spin_unlock_irqrestore(fence->lock, flags);
693 :
694 0 : return status;
695 : }
696 : EXPORT_SYMBOL(dma_fence_get_status);
697 :
698 : /**
699 : * dma_fence_remove_callback - remove a callback from the signaling list
700 : * @fence: the fence to wait on
701 : * @cb: the callback to remove
702 : *
703 : * Remove a previously queued callback from the fence. This function returns
704 : * true if the callback is successfully removed, or false if the fence has
705 : * already been signaled.
706 : *
707 : * *WARNING*:
708 : * Cancelling a callback should only be done if you really know what you're
709 : * doing, since deadlocks and race conditions could occur all too easily. For
710 : * this reason, it should only ever be done on hardware lockup recovery,
711 : * with a reference held to the fence.
712 : *
713 : * Behaviour is undefined if @cb has not been added to @fence using
714 : * dma_fence_add_callback() beforehand.
715 : */
716 : bool
717 0 : dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
718 : {
719 : unsigned long flags;
720 : bool ret;
721 :
722 0 : spin_lock_irqsave(fence->lock, flags);
723 :
724 0 : ret = !list_empty(&cb->node);
725 0 : if (ret)
726 0 : list_del_init(&cb->node);
727 :
728 0 : spin_unlock_irqrestore(fence->lock, flags);
729 :
730 0 : return ret;
731 : }
732 : EXPORT_SYMBOL(dma_fence_remove_callback);
733 :
734 : struct default_wait_cb {
735 : struct dma_fence_cb base;
736 : struct task_struct *task;
737 : };
738 :
739 : static void
740 0 : dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
741 : {
742 0 : struct default_wait_cb *wait =
743 0 : container_of(cb, struct default_wait_cb, base);
744 :
745 0 : wake_up_state(wait->task, TASK_NORMAL);
746 0 : }
747 :
748 : /**
749 : * dma_fence_default_wait - default sleep until the fence gets signaled
750 : * or until timeout elapses
751 : * @fence: the fence to wait on
752 : * @intr: if true, do an interruptible wait
753 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
754 : *
755 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
756 : * remaining timeout in jiffies on success. If timeout is zero the value one is
757 : * returned if the fence is already signaled for consistency with other
758 : * functions taking a jiffies timeout.
759 : */
760 : signed long
761 0 : dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
762 : {
763 : struct default_wait_cb cb;
764 : unsigned long flags;
765 0 : signed long ret = timeout ? timeout : 1;
766 :
767 0 : spin_lock_irqsave(fence->lock, flags);
768 :
769 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
770 : goto out;
771 :
772 0 : if (intr && signal_pending(current)) {
773 : ret = -ERESTARTSYS;
774 : goto out;
775 : }
776 :
777 0 : if (!timeout) {
778 : ret = 0;
779 : goto out;
780 : }
781 :
782 0 : cb.base.func = dma_fence_default_wait_cb;
783 0 : cb.task = current;
784 0 : list_add(&cb.base.node, &fence->cb_list);
785 :
786 0 : while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
787 0 : if (intr)
788 0 : __set_current_state(TASK_INTERRUPTIBLE);
789 : else
790 0 : __set_current_state(TASK_UNINTERRUPTIBLE);
791 0 : spin_unlock_irqrestore(fence->lock, flags);
792 :
793 0 : ret = schedule_timeout(ret);
794 :
795 0 : spin_lock_irqsave(fence->lock, flags);
796 0 : if (ret > 0 && intr && signal_pending(current))
797 0 : ret = -ERESTARTSYS;
798 : }
799 :
800 0 : if (!list_empty(&cb.base.node))
801 : list_del(&cb.base.node);
802 0 : __set_current_state(TASK_RUNNING);
803 :
804 : out:
805 0 : spin_unlock_irqrestore(fence->lock, flags);
806 0 : return ret;
807 : }
808 : EXPORT_SYMBOL(dma_fence_default_wait);
809 :
810 : static bool
811 0 : dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
812 : uint32_t *idx)
813 : {
814 : int i;
815 :
816 0 : for (i = 0; i < count; ++i) {
817 0 : struct dma_fence *fence = fences[i];
818 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
819 0 : if (idx)
820 0 : *idx = i;
821 : return true;
822 : }
823 : }
824 : return false;
825 : }
826 :
827 : /**
828 : * dma_fence_wait_any_timeout - sleep until any fence gets signaled
829 : * or until timeout elapses
830 : * @fences: array of fences to wait on
831 : * @count: number of fences to wait on
832 : * @intr: if true, do an interruptible wait
833 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
834 : * @idx: used to store the first signaled fence index, meaningful only on
835 : * positive return
836 : *
837 : * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
838 : * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
839 : * on success.
840 : *
841 : * Synchronous waits for the first fence in the array to be signaled. The
842 : * caller needs to hold a reference to all fences in the array, otherwise a
843 : * fence might be freed before return, resulting in undefined behavior.
844 : *
845 : * See also dma_fence_wait() and dma_fence_wait_timeout().
846 : */
847 : signed long
848 0 : dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
849 : bool intr, signed long timeout, uint32_t *idx)
850 : {
851 : struct default_wait_cb *cb;
852 0 : signed long ret = timeout;
853 : unsigned i;
854 :
855 0 : if (WARN_ON(!fences || !count || timeout < 0))
856 : return -EINVAL;
857 :
858 0 : if (timeout == 0) {
859 0 : for (i = 0; i < count; ++i)
860 0 : if (dma_fence_is_signaled(fences[i])) {
861 0 : if (idx)
862 0 : *idx = i;
863 : return 1;
864 : }
865 :
866 : return 0;
867 : }
868 :
869 0 : cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
870 0 : if (cb == NULL) {
871 : ret = -ENOMEM;
872 : goto err_free_cb;
873 : }
874 :
875 0 : for (i = 0; i < count; ++i) {
876 0 : struct dma_fence *fence = fences[i];
877 :
878 0 : cb[i].task = current;
879 0 : if (dma_fence_add_callback(fence, &cb[i].base,
880 : dma_fence_default_wait_cb)) {
881 : /* This fence is already signaled */
882 0 : if (idx)
883 0 : *idx = i;
884 : goto fence_rm_cb;
885 : }
886 : }
887 :
888 0 : while (ret > 0) {
889 0 : if (intr)
890 0 : set_current_state(TASK_INTERRUPTIBLE);
891 : else
892 0 : set_current_state(TASK_UNINTERRUPTIBLE);
893 :
894 0 : if (dma_fence_test_signaled_any(fences, count, idx))
895 : break;
896 :
897 0 : ret = schedule_timeout(ret);
898 :
899 0 : if (ret > 0 && intr && signal_pending(current))
900 0 : ret = -ERESTARTSYS;
901 : }
902 :
903 0 : __set_current_state(TASK_RUNNING);
904 :
905 : fence_rm_cb:
906 0 : while (i-- > 0)
907 0 : dma_fence_remove_callback(fences[i], &cb[i].base);
908 :
909 : err_free_cb:
910 0 : kfree(cb);
911 :
912 0 : return ret;
913 : }
914 : EXPORT_SYMBOL(dma_fence_wait_any_timeout);
915 :
916 : /**
917 : * DOC: deadline hints
918 : *
919 : * In an ideal world, it would be possible to pipeline a workload sufficiently
920 : * that a utilization based device frequency governor could arrive at a minimum
921 : * frequency that meets the requirements of the use-case, in order to minimize
922 : * power consumption. But in the real world there are many workloads which
923 : * defy this ideal. For example, but not limited to:
924 : *
925 : * * Workloads that ping-pong between device and CPU, with alternating periods
926 : * of CPU waiting for device, and device waiting on CPU. This can result in
927 : * devfreq and cpufreq seeing idle time in their respective domains and in
928 : * result reduce frequency.
929 : *
930 : * * Workloads that interact with a periodic time based deadline, such as double
931 : * buffered GPU rendering vs vblank sync'd page flipping. In this scenario,
932 : * missing a vblank deadline results in an *increase* in idle time on the GPU
933 : * (since it has to wait an additional vblank period), sending a signal to
934 : * the GPU's devfreq to reduce frequency, when in fact the opposite is what is
935 : * needed.
936 : *
937 : * To this end, deadline hint(s) can be set on a &dma_fence via &dma_fence_set_deadline.
938 : * The deadline hint provides a way for the waiting driver, or userspace, to
939 : * convey an appropriate sense of urgency to the signaling driver.
940 : *
941 : * A deadline hint is given in absolute ktime (CLOCK_MONOTONIC for userspace
942 : * facing APIs). The time could either be some point in the future (such as
943 : * the vblank based deadline for page-flipping, or the start of a compositor's
944 : * composition cycle), or the current time to indicate an immediate deadline
945 : * hint (Ie. forward progress cannot be made until this fence is signaled).
946 : *
947 : * Multiple deadlines may be set on a given fence, even in parallel. See the
948 : * documentation for &dma_fence_ops.set_deadline.
949 : *
950 : * The deadline hint is just that, a hint. The driver that created the fence
951 : * may react by increasing frequency, making different scheduling choices, etc.
952 : * Or doing nothing at all.
953 : */
954 :
955 : /**
956 : * dma_fence_set_deadline - set desired fence-wait deadline hint
957 : * @fence: the fence that is to be waited on
958 : * @deadline: the time by which the waiter hopes for the fence to be
959 : * signaled
960 : *
961 : * Give the fence signaler a hint about an upcoming deadline, such as
962 : * vblank, by which point the waiter would prefer the fence to be
963 : * signaled by. This is intended to give feedback to the fence signaler
964 : * to aid in power management decisions, such as boosting GPU frequency
965 : * if a periodic vblank deadline is approaching but the fence is not
966 : * yet signaled..
967 : */
968 0 : void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline)
969 : {
970 0 : if (fence->ops->set_deadline && !dma_fence_is_signaled(fence))
971 0 : fence->ops->set_deadline(fence, deadline);
972 0 : }
973 : EXPORT_SYMBOL(dma_fence_set_deadline);
974 :
975 : /**
976 : * dma_fence_describe - Dump fence describtion into seq_file
977 : * @fence: the 6fence to describe
978 : * @seq: the seq_file to put the textual description into
979 : *
980 : * Dump a textual description of the fence and it's state into the seq_file.
981 : */
982 0 : void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
983 : {
984 0 : seq_printf(seq, "%s %s seq %llu %ssignalled\n",
985 0 : fence->ops->get_driver_name(fence),
986 0 : fence->ops->get_timeline_name(fence), fence->seqno,
987 0 : dma_fence_is_signaled(fence) ? "" : "un");
988 0 : }
989 : EXPORT_SYMBOL(dma_fence_describe);
990 :
991 : /**
992 : * dma_fence_init - Initialize a custom fence.
993 : * @fence: the fence to initialize
994 : * @ops: the dma_fence_ops for operations on this fence
995 : * @lock: the irqsafe spinlock to use for locking this fence
996 : * @context: the execution context this fence is run on
997 : * @seqno: a linear increasing sequence number for this context
998 : *
999 : * Initializes an allocated fence, the caller doesn't have to keep its
1000 : * refcount after committing with this fence, but it will need to hold a
1001 : * refcount again if &dma_fence_ops.enable_signaling gets called.
1002 : *
1003 : * context and seqno are used for easy comparison between fences, allowing
1004 : * to check which fence is later by simply using dma_fence_later().
1005 : */
1006 : void
1007 0 : dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1008 : spinlock_t *lock, u64 context, u64 seqno)
1009 : {
1010 0 : BUG_ON(!lock);
1011 0 : BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
1012 :
1013 0 : kref_init(&fence->refcount);
1014 0 : fence->ops = ops;
1015 0 : INIT_LIST_HEAD(&fence->cb_list);
1016 0 : fence->lock = lock;
1017 0 : fence->context = context;
1018 0 : fence->seqno = seqno;
1019 0 : fence->flags = 0UL;
1020 0 : fence->error = 0;
1021 :
1022 0 : trace_dma_fence_init(fence);
1023 0 : }
1024 : EXPORT_SYMBOL(dma_fence_init);
|