Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * HID support for Linux
4 : *
5 : * Copyright (c) 1999 Andreas Gal
6 : * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 : * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 : * Copyright (c) 2006-2012 Jiri Kosina
9 : */
10 :
11 : /*
12 : */
13 :
14 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 :
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/init.h>
19 : #include <linux/kernel.h>
20 : #include <linux/list.h>
21 : #include <linux/mm.h>
22 : #include <linux/spinlock.h>
23 : #include <asm/unaligned.h>
24 : #include <asm/byteorder.h>
25 : #include <linux/input.h>
26 : #include <linux/wait.h>
27 : #include <linux/vmalloc.h>
28 : #include <linux/sched.h>
29 : #include <linux/semaphore.h>
30 :
31 : #include <linux/hid.h>
32 : #include <linux/hiddev.h>
33 : #include <linux/hid-debug.h>
34 : #include <linux/hidraw.h>
35 :
36 : #include "hid-ids.h"
37 :
38 : /*
39 : * Version Information
40 : */
41 :
42 : #define DRIVER_DESC "HID core driver"
43 :
44 : static int hid_ignore_special_drivers = 0;
45 : module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 : MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 :
48 : /*
49 : * Register a new report for a device.
50 : */
51 :
52 0 : struct hid_report *hid_register_report(struct hid_device *device,
53 : enum hid_report_type type, unsigned int id,
54 : unsigned int application)
55 : {
56 0 : struct hid_report_enum *report_enum = device->report_enum + type;
57 : struct hid_report *report;
58 :
59 0 : if (id >= HID_MAX_IDS)
60 : return NULL;
61 0 : if (report_enum->report_id_hash[id])
62 : return report_enum->report_id_hash[id];
63 :
64 0 : report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 0 : if (!report)
66 : return NULL;
67 :
68 0 : if (id != 0)
69 0 : report_enum->numbered = 1;
70 :
71 0 : report->id = id;
72 0 : report->type = type;
73 0 : report->size = 0;
74 0 : report->device = device;
75 0 : report->application = application;
76 0 : report_enum->report_id_hash[id] = report;
77 :
78 0 : list_add_tail(&report->list, &report_enum->report_list);
79 0 : INIT_LIST_HEAD(&report->field_entry_list);
80 :
81 0 : return report;
82 : }
83 : EXPORT_SYMBOL_GPL(hid_register_report);
84 :
85 : /*
86 : * Register a new field for this report.
87 : */
88 :
89 0 : static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 : {
91 : struct hid_field *field;
92 :
93 0 : if (report->maxfield == HID_MAX_FIELDS) {
94 0 : hid_err(report->device, "too many fields in report\n");
95 0 : return NULL;
96 : }
97 :
98 0 : field = kzalloc((sizeof(struct hid_field) +
99 0 : usages * sizeof(struct hid_usage) +
100 0 : 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 0 : if (!field)
102 : return NULL;
103 :
104 0 : field->index = report->maxfield++;
105 0 : report->field[field->index] = field;
106 0 : field->usage = (struct hid_usage *)(field + 1);
107 0 : field->value = (s32 *)(field->usage + usages);
108 0 : field->new_value = (s32 *)(field->value + usages);
109 0 : field->usages_priorities = (s32 *)(field->new_value + usages);
110 0 : field->report = report;
111 :
112 0 : return field;
113 : }
114 :
115 : /*
116 : * Open a collection. The type/usage is pushed on the stack.
117 : */
118 :
119 0 : static int open_collection(struct hid_parser *parser, unsigned type)
120 : {
121 : struct hid_collection *collection;
122 : unsigned usage;
123 : int collection_index;
124 :
125 0 : usage = parser->local.usage[0];
126 :
127 0 : if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 : unsigned int *collection_stack;
129 0 : unsigned int new_size = parser->collection_stack_size +
130 : HID_COLLECTION_STACK_SIZE;
131 :
132 0 : collection_stack = krealloc(parser->collection_stack,
133 : new_size * sizeof(unsigned int),
134 : GFP_KERNEL);
135 0 : if (!collection_stack)
136 : return -ENOMEM;
137 :
138 0 : parser->collection_stack = collection_stack;
139 0 : parser->collection_stack_size = new_size;
140 : }
141 :
142 0 : if (parser->device->maxcollection == parser->device->collection_size) {
143 0 : collection = kmalloc(
144 : array3_size(sizeof(struct hid_collection),
145 : parser->device->collection_size,
146 : 2),
147 : GFP_KERNEL);
148 0 : if (collection == NULL) {
149 0 : hid_err(parser->device, "failed to reallocate collection array\n");
150 0 : return -ENOMEM;
151 : }
152 0 : memcpy(collection, parser->device->collection,
153 : sizeof(struct hid_collection) *
154 : parser->device->collection_size);
155 0 : memset(collection + parser->device->collection_size, 0,
156 : sizeof(struct hid_collection) *
157 : parser->device->collection_size);
158 0 : kfree(parser->device->collection);
159 0 : parser->device->collection = collection;
160 0 : parser->device->collection_size *= 2;
161 : }
162 :
163 0 : parser->collection_stack[parser->collection_stack_ptr++] =
164 0 : parser->device->maxcollection;
165 :
166 0 : collection_index = parser->device->maxcollection++;
167 0 : collection = parser->device->collection + collection_index;
168 0 : collection->type = type;
169 0 : collection->usage = usage;
170 0 : collection->level = parser->collection_stack_ptr - 1;
171 0 : collection->parent_idx = (collection->level == 0) ? -1 :
172 0 : parser->collection_stack[collection->level - 1];
173 :
174 0 : if (type == HID_COLLECTION_APPLICATION)
175 0 : parser->device->maxapplication++;
176 :
177 : return 0;
178 : }
179 :
180 : /*
181 : * Close a collection.
182 : */
183 :
184 : static int close_collection(struct hid_parser *parser)
185 : {
186 0 : if (!parser->collection_stack_ptr) {
187 0 : hid_err(parser->device, "collection stack underflow\n");
188 : return -EINVAL;
189 : }
190 0 : parser->collection_stack_ptr--;
191 : return 0;
192 : }
193 :
194 : /*
195 : * Climb up the stack, search for the specified collection type
196 : * and return the usage.
197 : */
198 :
199 : static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 : {
201 0 : struct hid_collection *collection = parser->device->collection;
202 : int n;
203 :
204 0 : for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 0 : unsigned index = parser->collection_stack[n];
206 0 : if (collection[index].type == type)
207 0 : return collection[index].usage;
208 : }
209 : return 0; /* we know nothing about this usage type */
210 : }
211 :
212 : /*
213 : * Concatenate usage which defines 16 bits or less with the
214 : * currently defined usage page to form a 32 bit usage
215 : */
216 :
217 : static void complete_usage(struct hid_parser *parser, unsigned int index)
218 : {
219 0 : parser->local.usage[index] &= 0xFFFF;
220 0 : parser->local.usage[index] |=
221 0 : (parser->global.usage_page & 0xFFFF) << 16;
222 : }
223 :
224 : /*
225 : * Add a usage to the temporary parser table.
226 : */
227 :
228 0 : static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 : {
230 0 : if (parser->local.usage_index >= HID_MAX_USAGES) {
231 0 : hid_err(parser->device, "usage index exceeded\n");
232 0 : return -1;
233 : }
234 0 : parser->local.usage[parser->local.usage_index] = usage;
235 :
236 : /*
237 : * If Usage item only includes usage id, concatenate it with
238 : * currently defined usage page
239 : */
240 0 : if (size <= 2)
241 0 : complete_usage(parser, parser->local.usage_index);
242 :
243 0 : parser->local.usage_size[parser->local.usage_index] = size;
244 0 : parser->local.collection_index[parser->local.usage_index] =
245 0 : parser->collection_stack_ptr ?
246 0 : parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 0 : parser->local.usage_index++;
248 0 : return 0;
249 : }
250 :
251 : /*
252 : * Register a new field for this report.
253 : */
254 :
255 0 : static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 : {
257 : struct hid_report *report;
258 : struct hid_field *field;
259 0 : unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260 : unsigned int usages;
261 : unsigned int offset;
262 : unsigned int i;
263 : unsigned int application;
264 :
265 0 : application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266 :
267 0 : report = hid_register_report(parser->device, report_type,
268 : parser->global.report_id, application);
269 0 : if (!report) {
270 0 : hid_err(parser->device, "hid_register_report failed\n");
271 0 : return -1;
272 : }
273 :
274 : /* Handle both signed and unsigned cases properly */
275 0 : if ((parser->global.logical_minimum < 0 &&
276 0 : parser->global.logical_maximum <
277 0 : parser->global.logical_minimum) ||
278 0 : (parser->global.logical_minimum >= 0 &&
279 0 : (__u32)parser->global.logical_maximum <
280 0 : (__u32)parser->global.logical_minimum)) {
281 : dbg_hid("logical range invalid 0x%x 0x%x\n",
282 : parser->global.logical_minimum,
283 : parser->global.logical_maximum);
284 : return -1;
285 : }
286 :
287 0 : offset = report->size;
288 0 : report->size += parser->global.report_size * parser->global.report_count;
289 :
290 0 : if (parser->device->ll_driver->max_buffer_size)
291 0 : max_buffer_size = parser->device->ll_driver->max_buffer_size;
292 :
293 : /* Total size check: Allow for possible report index byte */
294 0 : if (report->size > (max_buffer_size - 1) << 3) {
295 0 : hid_err(parser->device, "report is too long\n");
296 0 : return -1;
297 : }
298 :
299 0 : if (!parser->local.usage_index) /* Ignore padding fields */
300 : return 0;
301 :
302 0 : usages = max_t(unsigned, parser->local.usage_index,
303 : parser->global.report_count);
304 :
305 0 : field = hid_register_field(report, usages);
306 0 : if (!field)
307 : return 0;
308 :
309 0 : field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 0 : field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 0 : field->application = application;
312 :
313 0 : for (i = 0; i < usages; i++) {
314 0 : unsigned j = i;
315 : /* Duplicate the last usage we parsed if we have excess values */
316 0 : if (i >= parser->local.usage_index)
317 0 : j = parser->local.usage_index - 1;
318 0 : field->usage[i].hid = parser->local.usage[j];
319 0 : field->usage[i].collection_index =
320 0 : parser->local.collection_index[j];
321 0 : field->usage[i].usage_index = i;
322 0 : field->usage[i].resolution_multiplier = 1;
323 : }
324 :
325 0 : field->maxusage = usages;
326 0 : field->flags = flags;
327 0 : field->report_offset = offset;
328 0 : field->report_type = report_type;
329 0 : field->report_size = parser->global.report_size;
330 0 : field->report_count = parser->global.report_count;
331 0 : field->logical_minimum = parser->global.logical_minimum;
332 0 : field->logical_maximum = parser->global.logical_maximum;
333 0 : field->physical_minimum = parser->global.physical_minimum;
334 0 : field->physical_maximum = parser->global.physical_maximum;
335 0 : field->unit_exponent = parser->global.unit_exponent;
336 0 : field->unit = parser->global.unit;
337 :
338 0 : return 0;
339 : }
340 :
341 : /*
342 : * Read data value from item.
343 : */
344 :
345 : static u32 item_udata(struct hid_item *item)
346 : {
347 0 : switch (item->size) {
348 0 : case 1: return item->data.u8;
349 0 : case 2: return item->data.u16;
350 0 : case 4: return item->data.u32;
351 : }
352 : return 0;
353 : }
354 :
355 : static s32 item_sdata(struct hid_item *item)
356 : {
357 0 : switch (item->size) {
358 0 : case 1: return item->data.s8;
359 0 : case 2: return item->data.s16;
360 0 : case 4: return item->data.s32;
361 : }
362 : return 0;
363 : }
364 :
365 : /*
366 : * Process a global item.
367 : */
368 :
369 0 : static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370 : {
371 : __s32 raw_value;
372 0 : switch (item->tag) {
373 : case HID_GLOBAL_ITEM_TAG_PUSH:
374 :
375 0 : if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 0 : hid_err(parser->device, "global environment stack overflow\n");
377 0 : return -1;
378 : }
379 :
380 0 : memcpy(parser->global_stack + parser->global_stack_ptr++,
381 : &parser->global, sizeof(struct hid_global));
382 0 : return 0;
383 :
384 : case HID_GLOBAL_ITEM_TAG_POP:
385 :
386 0 : if (!parser->global_stack_ptr) {
387 0 : hid_err(parser->device, "global environment stack underflow\n");
388 0 : return -1;
389 : }
390 :
391 0 : memcpy(&parser->global, parser->global_stack +
392 : --parser->global_stack_ptr, sizeof(struct hid_global));
393 0 : return 0;
394 :
395 : case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 0 : parser->global.usage_page = item_udata(item);
397 0 : return 0;
398 :
399 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 0 : parser->global.logical_minimum = item_sdata(item);
401 0 : return 0;
402 :
403 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 0 : if (parser->global.logical_minimum < 0)
405 0 : parser->global.logical_maximum = item_sdata(item);
406 : else
407 0 : parser->global.logical_maximum = item_udata(item);
408 : return 0;
409 :
410 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 0 : parser->global.physical_minimum = item_sdata(item);
412 0 : return 0;
413 :
414 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 0 : if (parser->global.physical_minimum < 0)
416 0 : parser->global.physical_maximum = item_sdata(item);
417 : else
418 0 : parser->global.physical_maximum = item_udata(item);
419 : return 0;
420 :
421 : case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 : /* Many devices provide unit exponent as a two's complement
423 : * nibble due to the common misunderstanding of HID
424 : * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 : * both this and the standard encoding. */
426 0 : raw_value = item_sdata(item);
427 0 : if (!(raw_value & 0xfffffff0))
428 0 : parser->global.unit_exponent = hid_snto32(raw_value, 4);
429 : else
430 0 : parser->global.unit_exponent = raw_value;
431 : return 0;
432 :
433 : case HID_GLOBAL_ITEM_TAG_UNIT:
434 0 : parser->global.unit = item_udata(item);
435 0 : return 0;
436 :
437 : case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 0 : parser->global.report_size = item_udata(item);
439 0 : if (parser->global.report_size > 256) {
440 0 : hid_err(parser->device, "invalid report_size %d\n",
441 : parser->global.report_size);
442 0 : return -1;
443 : }
444 : return 0;
445 :
446 : case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 0 : parser->global.report_count = item_udata(item);
448 0 : if (parser->global.report_count > HID_MAX_USAGES) {
449 0 : hid_err(parser->device, "invalid report_count %d\n",
450 : parser->global.report_count);
451 0 : return -1;
452 : }
453 : return 0;
454 :
455 : case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 0 : parser->global.report_id = item_udata(item);
457 0 : if (parser->global.report_id == 0 ||
458 : parser->global.report_id >= HID_MAX_IDS) {
459 0 : hid_err(parser->device, "report_id %u is invalid\n",
460 : parser->global.report_id);
461 0 : return -1;
462 : }
463 : return 0;
464 :
465 : default:
466 0 : hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467 0 : return -1;
468 : }
469 : }
470 :
471 : /*
472 : * Process a local item.
473 : */
474 :
475 0 : static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476 : {
477 : __u32 data;
478 : unsigned n;
479 : __u32 count;
480 :
481 0 : data = item_udata(item);
482 :
483 0 : switch (item->tag) {
484 : case HID_LOCAL_ITEM_TAG_DELIMITER:
485 :
486 0 : if (data) {
487 : /*
488 : * We treat items before the first delimiter
489 : * as global to all usage sets (branch 0).
490 : * In the moment we process only these global
491 : * items and the first delimiter set.
492 : */
493 0 : if (parser->local.delimiter_depth != 0) {
494 0 : hid_err(parser->device, "nested delimiters\n");
495 0 : return -1;
496 : }
497 0 : parser->local.delimiter_depth++;
498 0 : parser->local.delimiter_branch++;
499 : } else {
500 0 : if (parser->local.delimiter_depth < 1) {
501 0 : hid_err(parser->device, "bogus close delimiter\n");
502 0 : return -1;
503 : }
504 0 : parser->local.delimiter_depth--;
505 : }
506 : return 0;
507 :
508 : case HID_LOCAL_ITEM_TAG_USAGE:
509 :
510 0 : if (parser->local.delimiter_branch > 1) {
511 : dbg_hid("alternative usage ignored\n");
512 : return 0;
513 : }
514 :
515 0 : return hid_add_usage(parser, data, item->size);
516 :
517 : case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518 :
519 0 : if (parser->local.delimiter_branch > 1) {
520 : dbg_hid("alternative usage ignored\n");
521 : return 0;
522 : }
523 :
524 0 : parser->local.usage_minimum = data;
525 0 : return 0;
526 :
527 : case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528 :
529 0 : if (parser->local.delimiter_branch > 1) {
530 : dbg_hid("alternative usage ignored\n");
531 : return 0;
532 : }
533 :
534 0 : count = data - parser->local.usage_minimum;
535 0 : if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536 : /*
537 : * We do not warn if the name is not set, we are
538 : * actually pre-scanning the device.
539 : */
540 0 : if (dev_name(&parser->device->dev))
541 0 : hid_warn(parser->device,
542 : "ignoring exceeding usage max\n");
543 0 : data = HID_MAX_USAGES - parser->local.usage_index +
544 0 : parser->local.usage_minimum - 1;
545 0 : if (data <= 0) {
546 0 : hid_err(parser->device,
547 : "no more usage index available\n");
548 0 : return -1;
549 : }
550 : }
551 :
552 0 : for (n = parser->local.usage_minimum; n <= data; n++)
553 0 : if (hid_add_usage(parser, n, item->size)) {
554 : dbg_hid("hid_add_usage failed\n");
555 : return -1;
556 : }
557 : return 0;
558 :
559 : default:
560 :
561 : dbg_hid("unknown local item tag 0x%x\n", item->tag);
562 : return 0;
563 : }
564 : return 0;
565 : }
566 :
567 : /*
568 : * Concatenate Usage Pages into Usages where relevant:
569 : * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 : * concatenates the last declared Usage Page with a Usage to form a complete
571 : * usage value."
572 : */
573 :
574 0 : static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575 : {
576 : int i;
577 : unsigned int usage_page;
578 : unsigned int current_page;
579 :
580 0 : if (!parser->local.usage_index)
581 : return;
582 :
583 0 : usage_page = parser->global.usage_page;
584 :
585 : /*
586 : * Concatenate usage page again only if last declared Usage Page
587 : * has not been already used in previous usages concatenation
588 : */
589 0 : for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 0 : if (parser->local.usage_size[i] > 2)
591 : /* Ignore extended usages */
592 0 : continue;
593 :
594 0 : current_page = parser->local.usage[i] >> 16;
595 0 : if (current_page == usage_page)
596 : break;
597 :
598 0 : complete_usage(parser, i);
599 : }
600 : }
601 :
602 : /*
603 : * Process a main item.
604 : */
605 :
606 0 : static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607 : {
608 : __u32 data;
609 : int ret;
610 :
611 0 : hid_concatenate_last_usage_page(parser);
612 :
613 0 : data = item_udata(item);
614 :
615 0 : switch (item->tag) {
616 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 0 : ret = open_collection(parser, data & 0xff);
618 0 : break;
619 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 0 : ret = close_collection(parser);
621 : break;
622 : case HID_MAIN_ITEM_TAG_INPUT:
623 0 : ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624 0 : break;
625 : case HID_MAIN_ITEM_TAG_OUTPUT:
626 0 : ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627 0 : break;
628 : case HID_MAIN_ITEM_TAG_FEATURE:
629 0 : ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630 0 : break;
631 : default:
632 0 : hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633 0 : ret = 0;
634 : }
635 :
636 0 : memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
637 :
638 0 : return ret;
639 : }
640 :
641 : /*
642 : * Process a reserved item.
643 : */
644 :
645 0 : static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646 : {
647 : dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648 0 : return 0;
649 : }
650 :
651 : /*
652 : * Free a report and all registered fields. The field->usage and
653 : * field->value table's are allocated behind the field, so we need
654 : * only to free(field) itself.
655 : */
656 :
657 0 : static void hid_free_report(struct hid_report *report)
658 : {
659 : unsigned n;
660 :
661 0 : kfree(report->field_entries);
662 :
663 0 : for (n = 0; n < report->maxfield; n++)
664 0 : kfree(report->field[n]);
665 0 : kfree(report);
666 0 : }
667 :
668 : /*
669 : * Close report. This function returns the device
670 : * state to the point prior to hid_open_report().
671 : */
672 0 : static void hid_close_report(struct hid_device *device)
673 : {
674 : unsigned i, j;
675 :
676 0 : for (i = 0; i < HID_REPORT_TYPES; i++) {
677 0 : struct hid_report_enum *report_enum = device->report_enum + i;
678 :
679 0 : for (j = 0; j < HID_MAX_IDS; j++) {
680 0 : struct hid_report *report = report_enum->report_id_hash[j];
681 0 : if (report)
682 0 : hid_free_report(report);
683 : }
684 0 : memset(report_enum, 0, sizeof(*report_enum));
685 0 : INIT_LIST_HEAD(&report_enum->report_list);
686 : }
687 :
688 0 : kfree(device->rdesc);
689 0 : device->rdesc = NULL;
690 0 : device->rsize = 0;
691 :
692 0 : kfree(device->collection);
693 0 : device->collection = NULL;
694 0 : device->collection_size = 0;
695 0 : device->maxcollection = 0;
696 0 : device->maxapplication = 0;
697 :
698 0 : device->status &= ~HID_STAT_PARSED;
699 0 : }
700 :
701 : /*
702 : * Free a device structure, all reports, and all fields.
703 : */
704 :
705 0 : static void hid_device_release(struct device *dev)
706 : {
707 0 : struct hid_device *hid = to_hid_device(dev);
708 :
709 0 : hid_close_report(hid);
710 0 : kfree(hid->dev_rdesc);
711 0 : kfree(hid);
712 0 : }
713 :
714 : /*
715 : * Fetch a report description item from the data stream. We support long
716 : * items, though they are not used yet.
717 : */
718 :
719 0 : static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
720 : {
721 : u8 b;
722 :
723 0 : if ((end - start) <= 0)
724 : return NULL;
725 :
726 0 : b = *start++;
727 :
728 0 : item->type = (b >> 2) & 3;
729 0 : item->tag = (b >> 4) & 15;
730 :
731 0 : if (item->tag == HID_ITEM_TAG_LONG) {
732 :
733 0 : item->format = HID_ITEM_FORMAT_LONG;
734 :
735 0 : if ((end - start) < 2)
736 : return NULL;
737 :
738 0 : item->size = *start++;
739 0 : item->tag = *start++;
740 :
741 0 : if ((end - start) < item->size)
742 : return NULL;
743 :
744 0 : item->data.longdata = start;
745 0 : start += item->size;
746 0 : return start;
747 : }
748 :
749 0 : item->format = HID_ITEM_FORMAT_SHORT;
750 0 : item->size = b & 3;
751 :
752 0 : switch (item->size) {
753 : case 0:
754 : return start;
755 :
756 : case 1:
757 0 : if ((end - start) < 1)
758 : return NULL;
759 0 : item->data.u8 = *start++;
760 0 : return start;
761 :
762 : case 2:
763 0 : if ((end - start) < 2)
764 : return NULL;
765 0 : item->data.u16 = get_unaligned_le16(start);
766 0 : start = (__u8 *)((__le16 *)start + 1);
767 0 : return start;
768 :
769 : case 3:
770 0 : item->size++;
771 0 : if ((end - start) < 4)
772 : return NULL;
773 0 : item->data.u32 = get_unaligned_le32(start);
774 0 : start = (__u8 *)((__le32 *)start + 1);
775 0 : return start;
776 : }
777 :
778 0 : return NULL;
779 : }
780 :
781 : static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
782 : {
783 0 : struct hid_device *hid = parser->device;
784 :
785 0 : if (usage == HID_DG_CONTACTID)
786 0 : hid->group = HID_GROUP_MULTITOUCH;
787 : }
788 :
789 : static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
790 : {
791 0 : if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
792 : parser->global.report_size == 8)
793 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 :
795 0 : if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
796 : parser->global.report_size == 8)
797 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
798 : }
799 :
800 0 : static void hid_scan_collection(struct hid_parser *parser, unsigned type)
801 : {
802 0 : struct hid_device *hid = parser->device;
803 : int i;
804 :
805 0 : if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
806 : (type == HID_COLLECTION_PHYSICAL ||
807 : type == HID_COLLECTION_APPLICATION))
808 0 : hid->group = HID_GROUP_SENSOR_HUB;
809 :
810 0 : if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 0 : hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 0 : hid->group == HID_GROUP_MULTITOUCH)
813 0 : hid->group = HID_GROUP_GENERIC;
814 :
815 0 : if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 0 : for (i = 0; i < parser->local.usage_index; i++)
817 0 : if (parser->local.usage[i] == HID_GD_POINTER)
818 0 : parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819 :
820 0 : if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 0 : parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822 :
823 0 : if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 0 : for (i = 0; i < parser->local.usage_index; i++)
825 0 : if (parser->local.usage[i] ==
826 : (HID_UP_GOOGLEVENDOR | 0x0001))
827 0 : parser->device->group =
828 : HID_GROUP_VIVALDI;
829 0 : }
830 :
831 0 : static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 : {
833 : __u32 data;
834 : int i;
835 :
836 0 : hid_concatenate_last_usage_page(parser);
837 :
838 0 : data = item_udata(item);
839 :
840 0 : switch (item->tag) {
841 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 0 : hid_scan_collection(parser, data & 0xff);
843 0 : break;
844 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 : break;
846 : case HID_MAIN_ITEM_TAG_INPUT:
847 : /* ignore constant inputs, they will be ignored by hid-input */
848 0 : if (data & HID_MAIN_ITEM_CONSTANT)
849 : break;
850 0 : for (i = 0; i < parser->local.usage_index; i++)
851 0 : hid_scan_input_usage(parser, parser->local.usage[i]);
852 : break;
853 : case HID_MAIN_ITEM_TAG_OUTPUT:
854 : break;
855 : case HID_MAIN_ITEM_TAG_FEATURE:
856 0 : for (i = 0; i < parser->local.usage_index; i++)
857 0 : hid_scan_feature_usage(parser, parser->local.usage[i]);
858 : break;
859 : }
860 :
861 : /* Reset the local parser environment */
862 0 : memset(&parser->local, 0, sizeof(parser->local));
863 :
864 0 : return 0;
865 : }
866 :
867 : /*
868 : * Scan a report descriptor before the device is added to the bus.
869 : * Sets device groups and other properties that determine what driver
870 : * to load.
871 : */
872 0 : static int hid_scan_report(struct hid_device *hid)
873 : {
874 : struct hid_parser *parser;
875 : struct hid_item item;
876 0 : __u8 *start = hid->dev_rdesc;
877 0 : __u8 *end = start + hid->dev_rsize;
878 : static int (*dispatch_type[])(struct hid_parser *parser,
879 : struct hid_item *item) = {
880 : hid_scan_main,
881 : hid_parser_global,
882 : hid_parser_local,
883 : hid_parser_reserved
884 : };
885 :
886 0 : parser = vzalloc(sizeof(struct hid_parser));
887 0 : if (!parser)
888 : return -ENOMEM;
889 :
890 0 : parser->device = hid;
891 0 : hid->group = HID_GROUP_GENERIC;
892 :
893 : /*
894 : * The parsing is simpler than the one in hid_open_report() as we should
895 : * be robust against hid errors. Those errors will be raised by
896 : * hid_open_report() anyway.
897 : */
898 0 : while ((start = fetch_item(start, end, &item)) != NULL)
899 0 : dispatch_type[item.type](parser, &item);
900 :
901 : /*
902 : * Handle special flags set during scanning.
903 : */
904 0 : if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 0 : (hid->group == HID_GROUP_MULTITOUCH))
906 0 : hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907 :
908 : /*
909 : * Vendor specific handlings
910 : */
911 0 : switch (hid->vendor) {
912 : case USB_VENDOR_ID_WACOM:
913 0 : hid->group = HID_GROUP_WACOM;
914 0 : break;
915 : case USB_VENDOR_ID_SYNAPTICS:
916 0 : if (hid->group == HID_GROUP_GENERIC)
917 0 : if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 : && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 : /*
920 : * hid-rmi should take care of them,
921 : * not hid-generic
922 : */
923 0 : hid->group = HID_GROUP_RMI;
924 : break;
925 : }
926 :
927 0 : kfree(parser->collection_stack);
928 0 : vfree(parser);
929 0 : return 0;
930 : }
931 :
932 : /**
933 : * hid_parse_report - parse device report
934 : *
935 : * @hid: hid device
936 : * @start: report start
937 : * @size: report size
938 : *
939 : * Allocate the device report as read by the bus driver. This function should
940 : * only be called from parse() in ll drivers.
941 : */
942 0 : int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 : {
944 0 : hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 0 : if (!hid->dev_rdesc)
946 : return -ENOMEM;
947 0 : hid->dev_rsize = size;
948 0 : return 0;
949 : }
950 : EXPORT_SYMBOL_GPL(hid_parse_report);
951 :
952 : static const char * const hid_report_names[] = {
953 : "HID_INPUT_REPORT",
954 : "HID_OUTPUT_REPORT",
955 : "HID_FEATURE_REPORT",
956 : };
957 : /**
958 : * hid_validate_values - validate existing device report's value indexes
959 : *
960 : * @hid: hid device
961 : * @type: which report type to examine
962 : * @id: which report ID to examine (0 for first)
963 : * @field_index: which report field to examine
964 : * @report_counts: expected number of values
965 : *
966 : * Validate the number of values in a given field of a given report, after
967 : * parsing.
968 : */
969 0 : struct hid_report *hid_validate_values(struct hid_device *hid,
970 : enum hid_report_type type, unsigned int id,
971 : unsigned int field_index,
972 : unsigned int report_counts)
973 : {
974 : struct hid_report *report;
975 :
976 0 : if (type > HID_FEATURE_REPORT) {
977 0 : hid_err(hid, "invalid HID report type %u\n", type);
978 0 : return NULL;
979 : }
980 :
981 0 : if (id >= HID_MAX_IDS) {
982 0 : hid_err(hid, "invalid HID report id %u\n", id);
983 0 : return NULL;
984 : }
985 :
986 : /*
987 : * Explicitly not using hid_get_report() here since it depends on
988 : * ->numbered being checked, which may not always be the case when
989 : * drivers go to access report values.
990 : */
991 0 : if (id == 0) {
992 : /*
993 : * Validating on id 0 means we should examine the first
994 : * report in the list.
995 : */
996 0 : report = list_first_entry_or_null(
997 : &hid->report_enum[type].report_list,
998 : struct hid_report, list);
999 : } else {
1000 0 : report = hid->report_enum[type].report_id_hash[id];
1001 : }
1002 0 : if (!report) {
1003 0 : hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 0 : return NULL;
1005 : }
1006 0 : if (report->maxfield <= field_index) {
1007 0 : hid_err(hid, "not enough fields in %s %u\n",
1008 : hid_report_names[type], id);
1009 0 : return NULL;
1010 : }
1011 0 : if (report->field[field_index]->report_count < report_counts) {
1012 0 : hid_err(hid, "not enough values in %s %u field %u\n",
1013 : hid_report_names[type], id, field_index);
1014 0 : return NULL;
1015 : }
1016 : return report;
1017 : }
1018 : EXPORT_SYMBOL_GPL(hid_validate_values);
1019 :
1020 0 : static int hid_calculate_multiplier(struct hid_device *hid,
1021 : struct hid_field *multiplier)
1022 : {
1023 : int m;
1024 0 : __s32 v = *multiplier->value;
1025 0 : __s32 lmin = multiplier->logical_minimum;
1026 0 : __s32 lmax = multiplier->logical_maximum;
1027 0 : __s32 pmin = multiplier->physical_minimum;
1028 0 : __s32 pmax = multiplier->physical_maximum;
1029 :
1030 : /*
1031 : * "Because OS implementations will generally divide the control's
1032 : * reported count by the Effective Resolution Multiplier, designers
1033 : * should take care not to establish a potential Effective
1034 : * Resolution Multiplier of zero."
1035 : * HID Usage Table, v1.12, Section 4.3.1, p31
1036 : */
1037 0 : if (lmax - lmin == 0)
1038 : return 1;
1039 : /*
1040 : * Handling the unit exponent is left as an exercise to whoever
1041 : * finds a device where that exponent is not 0.
1042 : */
1043 0 : m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 0 : if (unlikely(multiplier->unit_exponent != 0)) {
1045 0 : hid_warn(hid,
1046 : "unsupported Resolution Multiplier unit exponent %d\n",
1047 : multiplier->unit_exponent);
1048 : }
1049 :
1050 : /* There are no devices with an effective multiplier > 255 */
1051 0 : if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 0 : hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 0 : m = 1;
1054 : }
1055 :
1056 : return m;
1057 : }
1058 :
1059 0 : static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 : struct hid_field *field,
1061 : struct hid_collection *multiplier_collection,
1062 : int effective_multiplier)
1063 : {
1064 : struct hid_collection *collection;
1065 : struct hid_usage *usage;
1066 : int i;
1067 :
1068 : /*
1069 : * If multiplier_collection is NULL, the multiplier applies
1070 : * to all fields in the report.
1071 : * Otherwise, it is the Logical Collection the multiplier applies to
1072 : * but our field may be in a subcollection of that collection.
1073 : */
1074 0 : for (i = 0; i < field->maxusage; i++) {
1075 0 : usage = &field->usage[i];
1076 :
1077 0 : collection = &hid->collection[usage->collection_index];
1078 0 : while (collection->parent_idx != -1 &&
1079 : collection != multiplier_collection)
1080 0 : collection = &hid->collection[collection->parent_idx];
1081 :
1082 0 : if (collection->parent_idx != -1 ||
1083 : multiplier_collection == NULL)
1084 0 : usage->resolution_multiplier = effective_multiplier;
1085 :
1086 : }
1087 0 : }
1088 :
1089 0 : static void hid_apply_multiplier(struct hid_device *hid,
1090 : struct hid_field *multiplier)
1091 : {
1092 : struct hid_report_enum *rep_enum;
1093 : struct hid_report *rep;
1094 : struct hid_field *field;
1095 : struct hid_collection *multiplier_collection;
1096 : int effective_multiplier;
1097 : int i;
1098 :
1099 : /*
1100 : * "The Resolution Multiplier control must be contained in the same
1101 : * Logical Collection as the control(s) to which it is to be applied.
1102 : * If no Resolution Multiplier is defined, then the Resolution
1103 : * Multiplier defaults to 1. If more than one control exists in a
1104 : * Logical Collection, the Resolution Multiplier is associated with
1105 : * all controls in the collection. If no Logical Collection is
1106 : * defined, the Resolution Multiplier is associated with all
1107 : * controls in the report."
1108 : * HID Usage Table, v1.12, Section 4.3.1, p30
1109 : *
1110 : * Thus, search from the current collection upwards until we find a
1111 : * logical collection. Then search all fields for that same parent
1112 : * collection. Those are the fields the multiplier applies to.
1113 : *
1114 : * If we have more than one multiplier, it will overwrite the
1115 : * applicable fields later.
1116 : */
1117 0 : multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 0 : while (multiplier_collection->parent_idx != -1 &&
1119 0 : multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 0 : multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121 :
1122 0 : effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123 :
1124 0 : rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 0 : for (i = 0; i < rep->maxfield; i++) {
1127 0 : field = rep->field[i];
1128 0 : hid_apply_multiplier_to_field(hid, field,
1129 : multiplier_collection,
1130 : effective_multiplier);
1131 : }
1132 : }
1133 0 : }
1134 :
1135 : /*
1136 : * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 : *
1138 : * @device: hid device
1139 : *
1140 : * Search for all Resolution Multiplier Feature Reports and apply their
1141 : * value to all matching Input items. This only updates the internal struct
1142 : * fields.
1143 : *
1144 : * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 : * is anything other than 1, the hardware will send pre-multiplied events
1146 : * so that the same physical interaction generates an accumulated
1147 : * accumulated_value = value * * multiplier
1148 : * This may be achieved by sending
1149 : * - "value * multiplier" for each event, or
1150 : * - "value" but "multiplier" times as frequently, or
1151 : * - a combination of the above
1152 : * The only guarantee is that the same physical interaction always generates
1153 : * an accumulated 'value * multiplier'.
1154 : *
1155 : * This function must be called before any event processing and after
1156 : * any SetRequest to the Resolution Multiplier.
1157 : */
1158 0 : void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 : {
1160 : struct hid_report_enum *rep_enum;
1161 : struct hid_report *rep;
1162 : struct hid_usage *usage;
1163 : int i, j;
1164 :
1165 0 : rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 0 : for (i = 0; i < rep->maxfield; i++) {
1168 : /* Ignore if report count is out of bounds. */
1169 0 : if (rep->field[i]->report_count < 1)
1170 0 : continue;
1171 :
1172 0 : for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 0 : usage = &rep->field[i]->usage[j];
1174 0 : if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 0 : hid_apply_multiplier(hid,
1176 : rep->field[i]);
1177 : }
1178 : }
1179 : }
1180 0 : }
1181 : EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182 :
1183 : /**
1184 : * hid_open_report - open a driver-specific device report
1185 : *
1186 : * @device: hid device
1187 : *
1188 : * Parse a report description into a hid_device structure. Reports are
1189 : * enumerated, fields are attached to these reports.
1190 : * 0 returned on success, otherwise nonzero error value.
1191 : *
1192 : * This function (or the equivalent hid_parse() macro) should only be
1193 : * called from probe() in drivers, before starting the device.
1194 : */
1195 0 : int hid_open_report(struct hid_device *device)
1196 : {
1197 : struct hid_parser *parser;
1198 : struct hid_item item;
1199 : unsigned int size;
1200 : __u8 *start;
1201 : __u8 *buf;
1202 : __u8 *end;
1203 : __u8 *next;
1204 : int ret;
1205 : int i;
1206 : static int (*dispatch_type[])(struct hid_parser *parser,
1207 : struct hid_item *item) = {
1208 : hid_parser_main,
1209 : hid_parser_global,
1210 : hid_parser_local,
1211 : hid_parser_reserved
1212 : };
1213 :
1214 0 : if (WARN_ON(device->status & HID_STAT_PARSED))
1215 : return -EBUSY;
1216 :
1217 0 : start = device->dev_rdesc;
1218 0 : if (WARN_ON(!start))
1219 : return -ENODEV;
1220 0 : size = device->dev_rsize;
1221 :
1222 : /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1223 0 : buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1224 0 : if (buf == NULL)
1225 : return -ENOMEM;
1226 :
1227 0 : if (device->driver->report_fixup)
1228 0 : start = device->driver->report_fixup(device, buf, &size);
1229 : else
1230 : start = buf;
1231 :
1232 0 : start = kmemdup(start, size, GFP_KERNEL);
1233 0 : kfree(buf);
1234 0 : if (start == NULL)
1235 : return -ENOMEM;
1236 :
1237 0 : device->rdesc = start;
1238 0 : device->rsize = size;
1239 :
1240 0 : parser = vzalloc(sizeof(struct hid_parser));
1241 0 : if (!parser) {
1242 : ret = -ENOMEM;
1243 : goto alloc_err;
1244 : }
1245 :
1246 0 : parser->device = device;
1247 :
1248 0 : end = start + size;
1249 :
1250 0 : device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1251 : sizeof(struct hid_collection), GFP_KERNEL);
1252 0 : if (!device->collection) {
1253 : ret = -ENOMEM;
1254 : goto err;
1255 : }
1256 0 : device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1257 0 : for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1258 0 : device->collection[i].parent_idx = -1;
1259 :
1260 : ret = -EINVAL;
1261 0 : while ((next = fetch_item(start, end, &item)) != NULL) {
1262 0 : start = next;
1263 :
1264 0 : if (item.format != HID_ITEM_FORMAT_SHORT) {
1265 0 : hid_err(device, "unexpected long global item\n");
1266 0 : goto err;
1267 : }
1268 :
1269 0 : if (dispatch_type[item.type](parser, &item)) {
1270 0 : hid_err(device, "item %u %u %u %u parsing failed\n",
1271 : item.format, (unsigned)item.size,
1272 : (unsigned)item.type, (unsigned)item.tag);
1273 0 : goto err;
1274 : }
1275 :
1276 0 : if (start == end) {
1277 0 : if (parser->collection_stack_ptr) {
1278 0 : hid_err(device, "unbalanced collection at end of report description\n");
1279 0 : goto err;
1280 : }
1281 0 : if (parser->local.delimiter_depth) {
1282 0 : hid_err(device, "unbalanced delimiter at end of report description\n");
1283 0 : goto err;
1284 : }
1285 :
1286 : /*
1287 : * fetch initial values in case the device's
1288 : * default multiplier isn't the recommended 1
1289 : */
1290 0 : hid_setup_resolution_multiplier(device);
1291 :
1292 0 : kfree(parser->collection_stack);
1293 0 : vfree(parser);
1294 0 : device->status |= HID_STAT_PARSED;
1295 :
1296 0 : return 0;
1297 : }
1298 : }
1299 :
1300 0 : hid_err(device, "item fetching failed at offset %u/%u\n",
1301 : size - (unsigned int)(end - start), size);
1302 : err:
1303 0 : kfree(parser->collection_stack);
1304 : alloc_err:
1305 0 : vfree(parser);
1306 0 : hid_close_report(device);
1307 0 : return ret;
1308 : }
1309 : EXPORT_SYMBOL_GPL(hid_open_report);
1310 :
1311 : /*
1312 : * Convert a signed n-bit integer to signed 32-bit integer. Common
1313 : * cases are done through the compiler, the screwed things has to be
1314 : * done by hand.
1315 : */
1316 :
1317 0 : static s32 snto32(__u32 value, unsigned n)
1318 : {
1319 0 : if (!value || !n)
1320 : return 0;
1321 :
1322 0 : if (n > 32)
1323 0 : n = 32;
1324 :
1325 0 : switch (n) {
1326 0 : case 8: return ((__s8)value);
1327 0 : case 16: return ((__s16)value);
1328 0 : case 32: return ((__s32)value);
1329 : }
1330 0 : return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1331 : }
1332 :
1333 0 : s32 hid_snto32(__u32 value, unsigned n)
1334 : {
1335 0 : return snto32(value, n);
1336 : }
1337 : EXPORT_SYMBOL_GPL(hid_snto32);
1338 :
1339 : /*
1340 : * Convert a signed 32-bit integer to a signed n-bit integer.
1341 : */
1342 :
1343 : static u32 s32ton(__s32 value, unsigned n)
1344 : {
1345 0 : s32 a = value >> (n - 1);
1346 0 : if (a && a != -1)
1347 0 : return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1348 0 : return value & ((1 << n) - 1);
1349 : }
1350 :
1351 : /*
1352 : * Extract/implement a data field from/to a little endian report (bit array).
1353 : *
1354 : * Code sort-of follows HID spec:
1355 : * http://www.usb.org/developers/hidpage/HID1_11.pdf
1356 : *
1357 : * While the USB HID spec allows unlimited length bit fields in "report
1358 : * descriptors", most devices never use more than 16 bits.
1359 : * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1360 : * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1361 : */
1362 :
1363 : static u32 __extract(u8 *report, unsigned offset, int n)
1364 : {
1365 0 : unsigned int idx = offset / 8;
1366 0 : unsigned int bit_nr = 0;
1367 0 : unsigned int bit_shift = offset % 8;
1368 0 : int bits_to_copy = 8 - bit_shift;
1369 0 : u32 value = 0;
1370 0 : u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1371 :
1372 0 : while (n > 0) {
1373 0 : value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1374 0 : n -= bits_to_copy;
1375 0 : bit_nr += bits_to_copy;
1376 0 : bits_to_copy = 8;
1377 0 : bit_shift = 0;
1378 0 : idx++;
1379 : }
1380 :
1381 0 : return value & mask;
1382 : }
1383 :
1384 0 : u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1385 : unsigned offset, unsigned n)
1386 : {
1387 0 : if (n > 32) {
1388 0 : hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1389 : __func__, n, current->comm);
1390 : n = 32;
1391 : }
1392 :
1393 0 : return __extract(report, offset, n);
1394 : }
1395 : EXPORT_SYMBOL_GPL(hid_field_extract);
1396 :
1397 : /*
1398 : * "implement" : set bits in a little endian bit stream.
1399 : * Same concepts as "extract" (see comments above).
1400 : * The data mangled in the bit stream remains in little endian
1401 : * order the whole time. It make more sense to talk about
1402 : * endianness of register values by considering a register
1403 : * a "cached" copy of the little endian bit stream.
1404 : */
1405 :
1406 0 : static void __implement(u8 *report, unsigned offset, int n, u32 value)
1407 : {
1408 0 : unsigned int idx = offset / 8;
1409 0 : unsigned int bit_shift = offset % 8;
1410 0 : int bits_to_set = 8 - bit_shift;
1411 :
1412 0 : while (n - bits_to_set >= 0) {
1413 0 : report[idx] &= ~(0xff << bit_shift);
1414 0 : report[idx] |= value << bit_shift;
1415 0 : value >>= bits_to_set;
1416 0 : n -= bits_to_set;
1417 0 : bits_to_set = 8;
1418 0 : bit_shift = 0;
1419 0 : idx++;
1420 : }
1421 :
1422 : /* last nibble */
1423 0 : if (n) {
1424 0 : u8 bit_mask = ((1U << n) - 1);
1425 0 : report[idx] &= ~(bit_mask << bit_shift);
1426 0 : report[idx] |= value << bit_shift;
1427 : }
1428 0 : }
1429 :
1430 0 : static void implement(const struct hid_device *hid, u8 *report,
1431 : unsigned offset, unsigned n, u32 value)
1432 : {
1433 0 : if (unlikely(n > 32)) {
1434 0 : hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1435 : __func__, n, current->comm);
1436 0 : n = 32;
1437 0 : } else if (n < 32) {
1438 0 : u32 m = (1U << n) - 1;
1439 :
1440 0 : if (unlikely(value > m)) {
1441 0 : hid_warn(hid,
1442 : "%s() called with too large value %d (n: %d)! (%s)\n",
1443 : __func__, value, n, current->comm);
1444 0 : WARN_ON(1);
1445 0 : value &= m;
1446 : }
1447 : }
1448 :
1449 0 : __implement(report, offset, n, value);
1450 0 : }
1451 :
1452 : /*
1453 : * Search an array for a value.
1454 : */
1455 :
1456 : static int search(__s32 *array, __s32 value, unsigned n)
1457 : {
1458 0 : while (n--) {
1459 0 : if (*array++ == value)
1460 : return 0;
1461 : }
1462 : return -1;
1463 : }
1464 :
1465 : /**
1466 : * hid_match_report - check if driver's raw_event should be called
1467 : *
1468 : * @hid: hid device
1469 : * @report: hid report to match against
1470 : *
1471 : * compare hid->driver->report_table->report_type to report->type
1472 : */
1473 : static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1474 : {
1475 0 : const struct hid_report_id *id = hid->driver->report_table;
1476 :
1477 0 : if (!id) /* NULL means all */
1478 : return 1;
1479 :
1480 0 : for (; id->report_type != HID_TERMINATOR; id++)
1481 0 : if (id->report_type == HID_ANY_ID ||
1482 0 : id->report_type == report->type)
1483 : return 1;
1484 : return 0;
1485 : }
1486 :
1487 : /**
1488 : * hid_match_usage - check if driver's event should be called
1489 : *
1490 : * @hid: hid device
1491 : * @usage: usage to match against
1492 : *
1493 : * compare hid->driver->usage_table->usage_{type,code} to
1494 : * usage->usage_{type,code}
1495 : */
1496 0 : static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1497 : {
1498 0 : const struct hid_usage_id *id = hid->driver->usage_table;
1499 :
1500 0 : if (!id) /* NULL means all */
1501 : return 1;
1502 :
1503 0 : for (; id->usage_type != HID_ANY_ID - 1; id++)
1504 0 : if ((id->usage_hid == HID_ANY_ID ||
1505 0 : id->usage_hid == usage->hid) &&
1506 0 : (id->usage_type == HID_ANY_ID ||
1507 0 : id->usage_type == usage->type) &&
1508 0 : (id->usage_code == HID_ANY_ID ||
1509 0 : id->usage_code == usage->code))
1510 : return 1;
1511 : return 0;
1512 : }
1513 :
1514 0 : static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1515 : struct hid_usage *usage, __s32 value, int interrupt)
1516 : {
1517 0 : struct hid_driver *hdrv = hid->driver;
1518 : int ret;
1519 :
1520 0 : if (!list_empty(&hid->debug_list))
1521 : hid_dump_input(hid, usage, value);
1522 :
1523 0 : if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1524 0 : ret = hdrv->event(hid, field, usage, value);
1525 0 : if (ret != 0) {
1526 0 : if (ret < 0)
1527 0 : hid_err(hid, "%s's event failed with %d\n",
1528 : hdrv->name, ret);
1529 : return;
1530 : }
1531 : }
1532 :
1533 0 : if (hid->claimed & HID_CLAIMED_INPUT)
1534 0 : hidinput_hid_event(hid, field, usage, value);
1535 0 : if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1536 0 : hid->hiddev_hid_event(hid, field, usage, value);
1537 : }
1538 :
1539 : /*
1540 : * Checks if the given value is valid within this field
1541 : */
1542 : static inline int hid_array_value_is_valid(struct hid_field *field,
1543 : __s32 value)
1544 : {
1545 0 : __s32 min = field->logical_minimum;
1546 :
1547 : /*
1548 : * Value needs to be between logical min and max, and
1549 : * (value - min) is used as an index in the usage array.
1550 : * This array is of size field->maxusage
1551 : */
1552 0 : return value >= min &&
1553 0 : value <= field->logical_maximum &&
1554 0 : value - min < field->maxusage;
1555 : }
1556 :
1557 : /*
1558 : * Fetch the field from the data. The field content is stored for next
1559 : * report processing (we do differential reporting to the layer).
1560 : */
1561 0 : static void hid_input_fetch_field(struct hid_device *hid,
1562 : struct hid_field *field,
1563 : __u8 *data)
1564 : {
1565 : unsigned n;
1566 0 : unsigned count = field->report_count;
1567 0 : unsigned offset = field->report_offset;
1568 0 : unsigned size = field->report_size;
1569 0 : __s32 min = field->logical_minimum;
1570 : __s32 *value;
1571 :
1572 0 : value = field->new_value;
1573 0 : memset(value, 0, count * sizeof(__s32));
1574 0 : field->ignored = false;
1575 :
1576 0 : for (n = 0; n < count; n++) {
1577 :
1578 0 : value[n] = min < 0 ?
1579 0 : snto32(hid_field_extract(hid, data, offset + n * size,
1580 0 : size), size) :
1581 0 : hid_field_extract(hid, data, offset + n * size, size);
1582 :
1583 : /* Ignore report if ErrorRollOver */
1584 0 : if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1585 0 : hid_array_value_is_valid(field, value[n]) &&
1586 0 : field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1587 0 : field->ignored = true;
1588 0 : return;
1589 : }
1590 : }
1591 : }
1592 :
1593 : /*
1594 : * Process a received variable field.
1595 : */
1596 :
1597 0 : static void hid_input_var_field(struct hid_device *hid,
1598 : struct hid_field *field,
1599 : int interrupt)
1600 : {
1601 0 : unsigned int count = field->report_count;
1602 0 : __s32 *value = field->new_value;
1603 : unsigned int n;
1604 :
1605 0 : for (n = 0; n < count; n++)
1606 0 : hid_process_event(hid,
1607 : field,
1608 0 : &field->usage[n],
1609 0 : value[n],
1610 : interrupt);
1611 :
1612 0 : memcpy(field->value, value, count * sizeof(__s32));
1613 0 : }
1614 :
1615 : /*
1616 : * Process a received array field. The field content is stored for
1617 : * next report processing (we do differential reporting to the layer).
1618 : */
1619 :
1620 0 : static void hid_input_array_field(struct hid_device *hid,
1621 : struct hid_field *field,
1622 : int interrupt)
1623 : {
1624 : unsigned int n;
1625 0 : unsigned int count = field->report_count;
1626 0 : __s32 min = field->logical_minimum;
1627 : __s32 *value;
1628 :
1629 0 : value = field->new_value;
1630 :
1631 : /* ErrorRollOver */
1632 0 : if (field->ignored)
1633 : return;
1634 :
1635 0 : for (n = 0; n < count; n++) {
1636 0 : if (hid_array_value_is_valid(field, field->value[n]) &&
1637 0 : search(value, field->value[n], count))
1638 0 : hid_process_event(hid,
1639 : field,
1640 0 : &field->usage[field->value[n] - min],
1641 : 0,
1642 : interrupt);
1643 :
1644 0 : if (hid_array_value_is_valid(field, value[n]) &&
1645 0 : search(field->value, value[n], count))
1646 0 : hid_process_event(hid,
1647 : field,
1648 0 : &field->usage[value[n] - min],
1649 : 1,
1650 : interrupt);
1651 : }
1652 :
1653 0 : memcpy(field->value, value, count * sizeof(__s32));
1654 : }
1655 :
1656 : /*
1657 : * Analyse a received report, and fetch the data from it. The field
1658 : * content is stored for next report processing (we do differential
1659 : * reporting to the layer).
1660 : */
1661 0 : static void hid_process_report(struct hid_device *hid,
1662 : struct hid_report *report,
1663 : __u8 *data,
1664 : int interrupt)
1665 : {
1666 : unsigned int a;
1667 : struct hid_field_entry *entry;
1668 : struct hid_field *field;
1669 :
1670 : /* first retrieve all incoming values in data */
1671 0 : for (a = 0; a < report->maxfield; a++)
1672 0 : hid_input_fetch_field(hid, report->field[a], data);
1673 :
1674 0 : if (!list_empty(&report->field_entry_list)) {
1675 : /* INPUT_REPORT, we have a priority list of fields */
1676 0 : list_for_each_entry(entry,
1677 : &report->field_entry_list,
1678 : list) {
1679 0 : field = entry->field;
1680 :
1681 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1682 0 : hid_process_event(hid,
1683 : field,
1684 0 : &field->usage[entry->index],
1685 0 : field->new_value[entry->index],
1686 : interrupt);
1687 : else
1688 0 : hid_input_array_field(hid, field, interrupt);
1689 : }
1690 :
1691 : /* we need to do the memcpy at the end for var items */
1692 0 : for (a = 0; a < report->maxfield; a++) {
1693 0 : field = report->field[a];
1694 :
1695 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696 0 : memcpy(field->value, field->new_value,
1697 : field->report_count * sizeof(__s32));
1698 : }
1699 : } else {
1700 : /* FEATURE_REPORT, regular processing */
1701 0 : for (a = 0; a < report->maxfield; a++) {
1702 0 : field = report->field[a];
1703 :
1704 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1705 0 : hid_input_var_field(hid, field, interrupt);
1706 : else
1707 0 : hid_input_array_field(hid, field, interrupt);
1708 : }
1709 : }
1710 0 : }
1711 :
1712 : /*
1713 : * Insert a given usage_index in a field in the list
1714 : * of processed usages in the report.
1715 : *
1716 : * The elements of lower priority score are processed
1717 : * first.
1718 : */
1719 : static void __hid_insert_field_entry(struct hid_device *hid,
1720 : struct hid_report *report,
1721 : struct hid_field_entry *entry,
1722 : struct hid_field *field,
1723 : unsigned int usage_index)
1724 : {
1725 : struct hid_field_entry *next;
1726 :
1727 0 : entry->field = field;
1728 0 : entry->index = usage_index;
1729 0 : entry->priority = field->usages_priorities[usage_index];
1730 :
1731 : /* insert the element at the correct position */
1732 0 : list_for_each_entry(next,
1733 : &report->field_entry_list,
1734 : list) {
1735 : /*
1736 : * the priority of our element is strictly higher
1737 : * than the next one, insert it before
1738 : */
1739 0 : if (entry->priority > next->priority) {
1740 0 : list_add_tail(&entry->list, &next->list);
1741 : return;
1742 : }
1743 : }
1744 :
1745 : /* lowest priority score: insert at the end */
1746 0 : list_add_tail(&entry->list, &report->field_entry_list);
1747 : }
1748 :
1749 0 : static void hid_report_process_ordering(struct hid_device *hid,
1750 : struct hid_report *report)
1751 : {
1752 : struct hid_field *field;
1753 : struct hid_field_entry *entries;
1754 : unsigned int a, u, usages;
1755 0 : unsigned int count = 0;
1756 :
1757 : /* count the number of individual fields in the report */
1758 0 : for (a = 0; a < report->maxfield; a++) {
1759 0 : field = report->field[a];
1760 :
1761 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1762 0 : count += field->report_count;
1763 : else
1764 0 : count++;
1765 : }
1766 :
1767 : /* allocate the memory to process the fields */
1768 0 : entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1769 0 : if (!entries)
1770 : return;
1771 :
1772 0 : report->field_entries = entries;
1773 :
1774 : /*
1775 : * walk through all fields in the report and
1776 : * store them by priority order in report->field_entry_list
1777 : *
1778 : * - Var elements are individualized (field + usage_index)
1779 : * - Arrays are taken as one, we can not chose an order for them
1780 : */
1781 0 : usages = 0;
1782 0 : for (a = 0; a < report->maxfield; a++) {
1783 0 : field = report->field[a];
1784 :
1785 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1786 0 : for (u = 0; u < field->report_count; u++) {
1787 0 : __hid_insert_field_entry(hid, report,
1788 0 : &entries[usages],
1789 : field, u);
1790 0 : usages++;
1791 : }
1792 : } else {
1793 0 : __hid_insert_field_entry(hid, report, &entries[usages],
1794 : field, 0);
1795 0 : usages++;
1796 : }
1797 : }
1798 : }
1799 :
1800 : static void hid_process_ordering(struct hid_device *hid)
1801 : {
1802 : struct hid_report *report;
1803 0 : struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1804 :
1805 0 : list_for_each_entry(report, &report_enum->report_list, list)
1806 0 : hid_report_process_ordering(hid, report);
1807 : }
1808 :
1809 : /*
1810 : * Output the field into the report.
1811 : */
1812 :
1813 0 : static void hid_output_field(const struct hid_device *hid,
1814 : struct hid_field *field, __u8 *data)
1815 : {
1816 0 : unsigned count = field->report_count;
1817 0 : unsigned offset = field->report_offset;
1818 0 : unsigned size = field->report_size;
1819 : unsigned n;
1820 :
1821 0 : for (n = 0; n < count; n++) {
1822 0 : if (field->logical_minimum < 0) /* signed values */
1823 0 : implement(hid, data, offset + n * size, size,
1824 0 : s32ton(field->value[n], size));
1825 : else /* unsigned values */
1826 0 : implement(hid, data, offset + n * size, size,
1827 0 : field->value[n]);
1828 : }
1829 0 : }
1830 :
1831 : /*
1832 : * Compute the size of a report.
1833 : */
1834 : static size_t hid_compute_report_size(struct hid_report *report)
1835 : {
1836 0 : if (report->size)
1837 0 : return ((report->size - 1) >> 3) + 1;
1838 :
1839 : return 0;
1840 : }
1841 :
1842 : /*
1843 : * Create a report. 'data' has to be allocated using
1844 : * hid_alloc_report_buf() so that it has proper size.
1845 : */
1846 :
1847 0 : void hid_output_report(struct hid_report *report, __u8 *data)
1848 : {
1849 : unsigned n;
1850 :
1851 0 : if (report->id > 0)
1852 0 : *data++ = report->id;
1853 :
1854 0 : memset(data, 0, hid_compute_report_size(report));
1855 0 : for (n = 0; n < report->maxfield; n++)
1856 0 : hid_output_field(report->device, report->field[n], data);
1857 0 : }
1858 : EXPORT_SYMBOL_GPL(hid_output_report);
1859 :
1860 : /*
1861 : * Allocator for buffer that is going to be passed to hid_output_report()
1862 : */
1863 0 : u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1864 : {
1865 : /*
1866 : * 7 extra bytes are necessary to achieve proper functionality
1867 : * of implement() working on 8 byte chunks
1868 : */
1869 :
1870 0 : u32 len = hid_report_len(report) + 7;
1871 :
1872 0 : return kmalloc(len, flags);
1873 : }
1874 : EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1875 :
1876 : /*
1877 : * Set a field value. The report this field belongs to has to be
1878 : * created and transferred to the device, to set this value in the
1879 : * device.
1880 : */
1881 :
1882 0 : int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1883 : {
1884 : unsigned size;
1885 :
1886 0 : if (!field)
1887 : return -1;
1888 :
1889 0 : size = field->report_size;
1890 :
1891 : hid_dump_input(field->report->device, field->usage + offset, value);
1892 :
1893 0 : if (offset >= field->report_count) {
1894 0 : hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1895 : offset, field->report_count);
1896 0 : return -1;
1897 : }
1898 0 : if (field->logical_minimum < 0) {
1899 0 : if (value != snto32(s32ton(value, size), size)) {
1900 0 : hid_err(field->report->device, "value %d is out of range\n", value);
1901 0 : return -1;
1902 : }
1903 : }
1904 0 : field->value[offset] = value;
1905 0 : return 0;
1906 : }
1907 : EXPORT_SYMBOL_GPL(hid_set_field);
1908 :
1909 : static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1910 : const u8 *data)
1911 : {
1912 : struct hid_report *report;
1913 0 : unsigned int n = 0; /* Normally report number is 0 */
1914 :
1915 : /* Device uses numbered reports, data[0] is report number */
1916 0 : if (report_enum->numbered)
1917 0 : n = *data;
1918 :
1919 0 : report = report_enum->report_id_hash[n];
1920 : if (report == NULL)
1921 : dbg_hid("undefined report_id %u received\n", n);
1922 :
1923 : return report;
1924 : }
1925 :
1926 : /*
1927 : * Implement a generic .request() callback, using .raw_request()
1928 : * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1929 : */
1930 0 : int __hid_request(struct hid_device *hid, struct hid_report *report,
1931 : enum hid_class_request reqtype)
1932 : {
1933 : char *buf;
1934 : int ret;
1935 : u32 len;
1936 :
1937 0 : buf = hid_alloc_report_buf(report, GFP_KERNEL);
1938 0 : if (!buf)
1939 : return -ENOMEM;
1940 :
1941 0 : len = hid_report_len(report);
1942 :
1943 0 : if (reqtype == HID_REQ_SET_REPORT)
1944 0 : hid_output_report(report, buf);
1945 :
1946 0 : ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1947 0 : report->type, reqtype);
1948 0 : if (ret < 0) {
1949 : dbg_hid("unable to complete request: %d\n", ret);
1950 : goto out;
1951 : }
1952 :
1953 0 : if (reqtype == HID_REQ_GET_REPORT)
1954 0 : hid_input_report(hid, report->type, buf, ret, 0);
1955 :
1956 : ret = 0;
1957 :
1958 : out:
1959 0 : kfree(buf);
1960 0 : return ret;
1961 : }
1962 : EXPORT_SYMBOL_GPL(__hid_request);
1963 :
1964 0 : int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1965 : int interrupt)
1966 : {
1967 0 : struct hid_report_enum *report_enum = hid->report_enum + type;
1968 : struct hid_report *report;
1969 : struct hid_driver *hdrv;
1970 0 : int max_buffer_size = HID_MAX_BUFFER_SIZE;
1971 0 : u32 rsize, csize = size;
1972 0 : u8 *cdata = data;
1973 0 : int ret = 0;
1974 :
1975 0 : report = hid_get_report(report_enum, data);
1976 0 : if (!report)
1977 : goto out;
1978 :
1979 0 : if (report_enum->numbered) {
1980 0 : cdata++;
1981 0 : csize--;
1982 : }
1983 :
1984 0 : rsize = hid_compute_report_size(report);
1985 :
1986 0 : if (hid->ll_driver->max_buffer_size)
1987 0 : max_buffer_size = hid->ll_driver->max_buffer_size;
1988 :
1989 0 : if (report_enum->numbered && rsize >= max_buffer_size)
1990 0 : rsize = max_buffer_size - 1;
1991 0 : else if (rsize > max_buffer_size)
1992 0 : rsize = max_buffer_size;
1993 :
1994 0 : if (csize < rsize) {
1995 : dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1996 : csize, rsize);
1997 0 : memset(cdata + csize, 0, rsize - csize);
1998 : }
1999 :
2000 0 : if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2001 0 : hid->hiddev_report_event(hid, report);
2002 0 : if (hid->claimed & HID_CLAIMED_HIDRAW) {
2003 : ret = hidraw_report_event(hid, data, size);
2004 : if (ret)
2005 : goto out;
2006 : }
2007 :
2008 0 : if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2009 0 : hid_process_report(hid, report, cdata, interrupt);
2010 0 : hdrv = hid->driver;
2011 0 : if (hdrv && hdrv->report)
2012 0 : hdrv->report(hid, report);
2013 : }
2014 :
2015 0 : if (hid->claimed & HID_CLAIMED_INPUT)
2016 0 : hidinput_report_event(hid, report);
2017 : out:
2018 0 : return ret;
2019 : }
2020 : EXPORT_SYMBOL_GPL(hid_report_raw_event);
2021 :
2022 : /**
2023 : * hid_input_report - report data from lower layer (usb, bt...)
2024 : *
2025 : * @hid: hid device
2026 : * @type: HID report type (HID_*_REPORT)
2027 : * @data: report contents
2028 : * @size: size of data parameter
2029 : * @interrupt: distinguish between interrupt and control transfers
2030 : *
2031 : * This is data entry for lower layers.
2032 : */
2033 0 : int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2034 : int interrupt)
2035 : {
2036 : struct hid_report_enum *report_enum;
2037 : struct hid_driver *hdrv;
2038 : struct hid_report *report;
2039 0 : int ret = 0;
2040 :
2041 0 : if (!hid)
2042 : return -ENODEV;
2043 :
2044 0 : if (down_trylock(&hid->driver_input_lock))
2045 : return -EBUSY;
2046 :
2047 0 : if (!hid->driver) {
2048 : ret = -ENODEV;
2049 : goto unlock;
2050 : }
2051 0 : report_enum = hid->report_enum + type;
2052 0 : hdrv = hid->driver;
2053 :
2054 0 : data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2055 0 : if (IS_ERR(data)) {
2056 0 : ret = PTR_ERR(data);
2057 0 : goto unlock;
2058 : }
2059 :
2060 0 : if (!size) {
2061 : dbg_hid("empty report\n");
2062 : ret = -1;
2063 : goto unlock;
2064 : }
2065 :
2066 : /* Avoid unnecessary overhead if debugfs is disabled */
2067 0 : if (!list_empty(&hid->debug_list))
2068 : hid_dump_report(hid, type, data, size);
2069 :
2070 0 : report = hid_get_report(report_enum, data);
2071 :
2072 0 : if (!report) {
2073 : ret = -1;
2074 : goto unlock;
2075 : }
2076 :
2077 0 : if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2078 0 : ret = hdrv->raw_event(hid, report, data, size);
2079 0 : if (ret < 0)
2080 : goto unlock;
2081 : }
2082 :
2083 0 : ret = hid_report_raw_event(hid, type, data, size, interrupt);
2084 :
2085 : unlock:
2086 0 : up(&hid->driver_input_lock);
2087 0 : return ret;
2088 : }
2089 : EXPORT_SYMBOL_GPL(hid_input_report);
2090 :
2091 0 : bool hid_match_one_id(const struct hid_device *hdev,
2092 : const struct hid_device_id *id)
2093 : {
2094 0 : return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2095 0 : (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2096 0 : (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2097 0 : (id->product == HID_ANY_ID || id->product == hdev->product);
2098 : }
2099 :
2100 0 : const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2101 : const struct hid_device_id *id)
2102 : {
2103 0 : for (; id->bus; id++)
2104 0 : if (hid_match_one_id(hdev, id))
2105 : return id;
2106 :
2107 : return NULL;
2108 : }
2109 : EXPORT_SYMBOL_GPL(hid_match_id);
2110 :
2111 : static const struct hid_device_id hid_hiddev_list[] = {
2112 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2113 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2114 : { }
2115 : };
2116 :
2117 0 : static bool hid_hiddev(struct hid_device *hdev)
2118 : {
2119 0 : return !!hid_match_id(hdev, hid_hiddev_list);
2120 : }
2121 :
2122 :
2123 : static ssize_t
2124 0 : read_report_descriptor(struct file *filp, struct kobject *kobj,
2125 : struct bin_attribute *attr,
2126 : char *buf, loff_t off, size_t count)
2127 : {
2128 0 : struct device *dev = kobj_to_dev(kobj);
2129 0 : struct hid_device *hdev = to_hid_device(dev);
2130 :
2131 0 : if (off >= hdev->rsize)
2132 : return 0;
2133 :
2134 0 : if (off + count > hdev->rsize)
2135 0 : count = hdev->rsize - off;
2136 :
2137 0 : memcpy(buf, hdev->rdesc + off, count);
2138 :
2139 0 : return count;
2140 : }
2141 :
2142 : static ssize_t
2143 0 : show_country(struct device *dev, struct device_attribute *attr,
2144 : char *buf)
2145 : {
2146 0 : struct hid_device *hdev = to_hid_device(dev);
2147 :
2148 0 : return sprintf(buf, "%02x\n", hdev->country & 0xff);
2149 : }
2150 :
2151 : static struct bin_attribute dev_bin_attr_report_desc = {
2152 : .attr = { .name = "report_descriptor", .mode = 0444 },
2153 : .read = read_report_descriptor,
2154 : .size = HID_MAX_DESCRIPTOR_SIZE,
2155 : };
2156 :
2157 : static const struct device_attribute dev_attr_country = {
2158 : .attr = { .name = "country", .mode = 0444 },
2159 : .show = show_country,
2160 : };
2161 :
2162 0 : int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2163 : {
2164 : static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2165 : "Joystick", "Gamepad", "Keyboard", "Keypad",
2166 : "Multi-Axis Controller"
2167 : };
2168 : const char *type, *bus;
2169 0 : char buf[64] = "";
2170 : unsigned int i;
2171 : int len;
2172 : int ret;
2173 :
2174 0 : ret = hid_bpf_connect_device(hdev);
2175 : if (ret)
2176 : return ret;
2177 :
2178 0 : if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2179 0 : connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2180 0 : if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2181 0 : connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2182 0 : if (hdev->bus != BUS_USB)
2183 0 : connect_mask &= ~HID_CONNECT_HIDDEV;
2184 0 : if (hid_hiddev(hdev))
2185 0 : connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2186 :
2187 0 : if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2188 : connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2189 0 : hdev->claimed |= HID_CLAIMED_INPUT;
2190 :
2191 0 : if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2192 0 : !hdev->hiddev_connect(hdev,
2193 : connect_mask & HID_CONNECT_HIDDEV_FORCE))
2194 0 : hdev->claimed |= HID_CLAIMED_HIDDEV;
2195 : if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2196 : hdev->claimed |= HID_CLAIMED_HIDRAW;
2197 :
2198 0 : if (connect_mask & HID_CONNECT_DRIVER)
2199 0 : hdev->claimed |= HID_CLAIMED_DRIVER;
2200 :
2201 : /* Drivers with the ->raw_event callback set are not required to connect
2202 : * to any other listener. */
2203 0 : if (!hdev->claimed && !hdev->driver->raw_event) {
2204 0 : hid_err(hdev, "device has no listeners, quitting\n");
2205 0 : return -ENODEV;
2206 : }
2207 :
2208 0 : hid_process_ordering(hdev);
2209 :
2210 0 : if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2211 0 : (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2212 0 : hdev->ff_init(hdev);
2213 :
2214 0 : len = 0;
2215 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2216 0 : len += sprintf(buf + len, "input");
2217 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2218 0 : len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2219 0 : ((struct hiddev *)hdev->hiddev)->minor);
2220 0 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2221 0 : len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2222 0 : ((struct hidraw *)hdev->hidraw)->minor);
2223 :
2224 0 : type = "Device";
2225 0 : for (i = 0; i < hdev->maxcollection; i++) {
2226 0 : struct hid_collection *col = &hdev->collection[i];
2227 0 : if (col->type == HID_COLLECTION_APPLICATION &&
2228 0 : (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2229 0 : (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2230 0 : type = types[col->usage & 0xffff];
2231 0 : break;
2232 : }
2233 : }
2234 :
2235 0 : switch (hdev->bus) {
2236 : case BUS_USB:
2237 : bus = "USB";
2238 : break;
2239 : case BUS_BLUETOOTH:
2240 : bus = "BLUETOOTH";
2241 : break;
2242 : case BUS_I2C:
2243 : bus = "I2C";
2244 : break;
2245 : case BUS_VIRTUAL:
2246 : bus = "VIRTUAL";
2247 : break;
2248 : case BUS_INTEL_ISHTP:
2249 : case BUS_AMD_SFH:
2250 : bus = "SENSOR HUB";
2251 : break;
2252 : default:
2253 : bus = "<UNKNOWN>";
2254 : }
2255 :
2256 0 : ret = device_create_file(&hdev->dev, &dev_attr_country);
2257 0 : if (ret)
2258 0 : hid_warn(hdev,
2259 : "can't create sysfs country code attribute err: %d\n", ret);
2260 :
2261 0 : hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2262 : buf, bus, hdev->version >> 8, hdev->version & 0xff,
2263 : type, hdev->name, hdev->phys);
2264 :
2265 0 : return 0;
2266 : }
2267 : EXPORT_SYMBOL_GPL(hid_connect);
2268 :
2269 0 : void hid_disconnect(struct hid_device *hdev)
2270 : {
2271 0 : device_remove_file(&hdev->dev, &dev_attr_country);
2272 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2273 0 : hidinput_disconnect(hdev);
2274 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2275 0 : hdev->hiddev_disconnect(hdev);
2276 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2277 : hidraw_disconnect(hdev);
2278 0 : hdev->claimed = 0;
2279 :
2280 0 : hid_bpf_disconnect_device(hdev);
2281 0 : }
2282 : EXPORT_SYMBOL_GPL(hid_disconnect);
2283 :
2284 : /**
2285 : * hid_hw_start - start underlying HW
2286 : * @hdev: hid device
2287 : * @connect_mask: which outputs to connect, see HID_CONNECT_*
2288 : *
2289 : * Call this in probe function *after* hid_parse. This will setup HW
2290 : * buffers and start the device (if not defeirred to device open).
2291 : * hid_hw_stop must be called if this was successful.
2292 : */
2293 0 : int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2294 : {
2295 : int error;
2296 :
2297 0 : error = hdev->ll_driver->start(hdev);
2298 0 : if (error)
2299 : return error;
2300 :
2301 0 : if (connect_mask) {
2302 0 : error = hid_connect(hdev, connect_mask);
2303 0 : if (error) {
2304 0 : hdev->ll_driver->stop(hdev);
2305 0 : return error;
2306 : }
2307 : }
2308 :
2309 : return 0;
2310 : }
2311 : EXPORT_SYMBOL_GPL(hid_hw_start);
2312 :
2313 : /**
2314 : * hid_hw_stop - stop underlying HW
2315 : * @hdev: hid device
2316 : *
2317 : * This is usually called from remove function or from probe when something
2318 : * failed and hid_hw_start was called already.
2319 : */
2320 0 : void hid_hw_stop(struct hid_device *hdev)
2321 : {
2322 0 : hid_disconnect(hdev);
2323 0 : hdev->ll_driver->stop(hdev);
2324 0 : }
2325 : EXPORT_SYMBOL_GPL(hid_hw_stop);
2326 :
2327 : /**
2328 : * hid_hw_open - signal underlying HW to start delivering events
2329 : * @hdev: hid device
2330 : *
2331 : * Tell underlying HW to start delivering events from the device.
2332 : * This function should be called sometime after successful call
2333 : * to hid_hw_start().
2334 : */
2335 0 : int hid_hw_open(struct hid_device *hdev)
2336 : {
2337 : int ret;
2338 :
2339 0 : ret = mutex_lock_killable(&hdev->ll_open_lock);
2340 0 : if (ret)
2341 : return ret;
2342 :
2343 0 : if (!hdev->ll_open_count++) {
2344 0 : ret = hdev->ll_driver->open(hdev);
2345 0 : if (ret)
2346 0 : hdev->ll_open_count--;
2347 : }
2348 :
2349 0 : mutex_unlock(&hdev->ll_open_lock);
2350 0 : return ret;
2351 : }
2352 : EXPORT_SYMBOL_GPL(hid_hw_open);
2353 :
2354 : /**
2355 : * hid_hw_close - signal underlaying HW to stop delivering events
2356 : *
2357 : * @hdev: hid device
2358 : *
2359 : * This function indicates that we are not interested in the events
2360 : * from this device anymore. Delivery of events may or may not stop,
2361 : * depending on the number of users still outstanding.
2362 : */
2363 0 : void hid_hw_close(struct hid_device *hdev)
2364 : {
2365 0 : mutex_lock(&hdev->ll_open_lock);
2366 0 : if (!--hdev->ll_open_count)
2367 0 : hdev->ll_driver->close(hdev);
2368 0 : mutex_unlock(&hdev->ll_open_lock);
2369 0 : }
2370 : EXPORT_SYMBOL_GPL(hid_hw_close);
2371 :
2372 : /**
2373 : * hid_hw_request - send report request to device
2374 : *
2375 : * @hdev: hid device
2376 : * @report: report to send
2377 : * @reqtype: hid request type
2378 : */
2379 0 : void hid_hw_request(struct hid_device *hdev,
2380 : struct hid_report *report, enum hid_class_request reqtype)
2381 : {
2382 0 : if (hdev->ll_driver->request)
2383 0 : return hdev->ll_driver->request(hdev, report, reqtype);
2384 :
2385 0 : __hid_request(hdev, report, reqtype);
2386 : }
2387 : EXPORT_SYMBOL_GPL(hid_hw_request);
2388 :
2389 : /**
2390 : * hid_hw_raw_request - send report request to device
2391 : *
2392 : * @hdev: hid device
2393 : * @reportnum: report ID
2394 : * @buf: in/out data to transfer
2395 : * @len: length of buf
2396 : * @rtype: HID report type
2397 : * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2398 : *
2399 : * Return: count of data transferred, negative if error
2400 : *
2401 : * Same behavior as hid_hw_request, but with raw buffers instead.
2402 : */
2403 0 : int hid_hw_raw_request(struct hid_device *hdev,
2404 : unsigned char reportnum, __u8 *buf,
2405 : size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2406 : {
2407 0 : unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2408 :
2409 0 : if (hdev->ll_driver->max_buffer_size)
2410 0 : max_buffer_size = hdev->ll_driver->max_buffer_size;
2411 :
2412 0 : if (len < 1 || len > max_buffer_size || !buf)
2413 : return -EINVAL;
2414 :
2415 0 : return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2416 : rtype, reqtype);
2417 : }
2418 : EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2419 :
2420 : /**
2421 : * hid_hw_output_report - send output report to device
2422 : *
2423 : * @hdev: hid device
2424 : * @buf: raw data to transfer
2425 : * @len: length of buf
2426 : *
2427 : * Return: count of data transferred, negative if error
2428 : */
2429 0 : int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2430 : {
2431 0 : unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2432 :
2433 0 : if (hdev->ll_driver->max_buffer_size)
2434 0 : max_buffer_size = hdev->ll_driver->max_buffer_size;
2435 :
2436 0 : if (len < 1 || len > max_buffer_size || !buf)
2437 : return -EINVAL;
2438 :
2439 0 : if (hdev->ll_driver->output_report)
2440 0 : return hdev->ll_driver->output_report(hdev, buf, len);
2441 :
2442 : return -ENOSYS;
2443 : }
2444 : EXPORT_SYMBOL_GPL(hid_hw_output_report);
2445 :
2446 : #ifdef CONFIG_PM
2447 0 : int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2448 : {
2449 0 : if (hdev->driver && hdev->driver->suspend)
2450 0 : return hdev->driver->suspend(hdev, state);
2451 :
2452 : return 0;
2453 : }
2454 : EXPORT_SYMBOL_GPL(hid_driver_suspend);
2455 :
2456 0 : int hid_driver_reset_resume(struct hid_device *hdev)
2457 : {
2458 0 : if (hdev->driver && hdev->driver->reset_resume)
2459 0 : return hdev->driver->reset_resume(hdev);
2460 :
2461 : return 0;
2462 : }
2463 : EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2464 :
2465 0 : int hid_driver_resume(struct hid_device *hdev)
2466 : {
2467 0 : if (hdev->driver && hdev->driver->resume)
2468 0 : return hdev->driver->resume(hdev);
2469 :
2470 : return 0;
2471 : }
2472 : EXPORT_SYMBOL_GPL(hid_driver_resume);
2473 : #endif /* CONFIG_PM */
2474 :
2475 : struct hid_dynid {
2476 : struct list_head list;
2477 : struct hid_device_id id;
2478 : };
2479 :
2480 : /**
2481 : * new_id_store - add a new HID device ID to this driver and re-probe devices
2482 : * @drv: target device driver
2483 : * @buf: buffer for scanning device ID data
2484 : * @count: input size
2485 : *
2486 : * Adds a new dynamic hid device ID to this driver,
2487 : * and causes the driver to probe for all devices again.
2488 : */
2489 0 : static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2490 : size_t count)
2491 : {
2492 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2493 : struct hid_dynid *dynid;
2494 : __u32 bus, vendor, product;
2495 0 : unsigned long driver_data = 0;
2496 : int ret;
2497 :
2498 0 : ret = sscanf(buf, "%x %x %x %lx",
2499 : &bus, &vendor, &product, &driver_data);
2500 0 : if (ret < 3)
2501 : return -EINVAL;
2502 :
2503 0 : dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2504 0 : if (!dynid)
2505 : return -ENOMEM;
2506 :
2507 0 : dynid->id.bus = bus;
2508 0 : dynid->id.group = HID_GROUP_ANY;
2509 0 : dynid->id.vendor = vendor;
2510 0 : dynid->id.product = product;
2511 0 : dynid->id.driver_data = driver_data;
2512 :
2513 0 : spin_lock(&hdrv->dyn_lock);
2514 0 : list_add_tail(&dynid->list, &hdrv->dyn_list);
2515 0 : spin_unlock(&hdrv->dyn_lock);
2516 :
2517 0 : ret = driver_attach(&hdrv->driver);
2518 :
2519 0 : return ret ? : count;
2520 : }
2521 : static DRIVER_ATTR_WO(new_id);
2522 :
2523 : static struct attribute *hid_drv_attrs[] = {
2524 : &driver_attr_new_id.attr,
2525 : NULL,
2526 : };
2527 : ATTRIBUTE_GROUPS(hid_drv);
2528 :
2529 0 : static void hid_free_dynids(struct hid_driver *hdrv)
2530 : {
2531 : struct hid_dynid *dynid, *n;
2532 :
2533 0 : spin_lock(&hdrv->dyn_lock);
2534 0 : list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2535 0 : list_del(&dynid->list);
2536 0 : kfree(dynid);
2537 : }
2538 0 : spin_unlock(&hdrv->dyn_lock);
2539 0 : }
2540 :
2541 0 : const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2542 : struct hid_driver *hdrv)
2543 : {
2544 : struct hid_dynid *dynid;
2545 :
2546 0 : spin_lock(&hdrv->dyn_lock);
2547 0 : list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2548 0 : if (hid_match_one_id(hdev, &dynid->id)) {
2549 0 : spin_unlock(&hdrv->dyn_lock);
2550 0 : return &dynid->id;
2551 : }
2552 : }
2553 0 : spin_unlock(&hdrv->dyn_lock);
2554 :
2555 0 : return hid_match_id(hdev, hdrv->id_table);
2556 : }
2557 : EXPORT_SYMBOL_GPL(hid_match_device);
2558 :
2559 0 : static int hid_bus_match(struct device *dev, struct device_driver *drv)
2560 : {
2561 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2562 0 : struct hid_device *hdev = to_hid_device(dev);
2563 :
2564 0 : return hid_match_device(hdev, hdrv) != NULL;
2565 : }
2566 :
2567 : /**
2568 : * hid_compare_device_paths - check if both devices share the same path
2569 : * @hdev_a: hid device
2570 : * @hdev_b: hid device
2571 : * @separator: char to use as separator
2572 : *
2573 : * Check if two devices share the same path up to the last occurrence of
2574 : * the separator char. Both paths must exist (i.e., zero-length paths
2575 : * don't match).
2576 : */
2577 0 : bool hid_compare_device_paths(struct hid_device *hdev_a,
2578 : struct hid_device *hdev_b, char separator)
2579 : {
2580 0 : int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2581 0 : int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2582 :
2583 0 : if (n1 != n2 || n1 <= 0 || n2 <= 0)
2584 : return false;
2585 :
2586 0 : return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2587 : }
2588 : EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2589 :
2590 0 : static bool hid_check_device_match(struct hid_device *hdev,
2591 : struct hid_driver *hdrv,
2592 : const struct hid_device_id **id)
2593 : {
2594 0 : *id = hid_match_device(hdev, hdrv);
2595 0 : if (!*id)
2596 : return false;
2597 :
2598 0 : if (hdrv->match)
2599 0 : return hdrv->match(hdev, hid_ignore_special_drivers);
2600 :
2601 : /*
2602 : * hid-generic implements .match(), so we must be dealing with a
2603 : * different HID driver here, and can simply check if
2604 : * hid_ignore_special_drivers is set or not.
2605 : */
2606 0 : return !hid_ignore_special_drivers;
2607 : }
2608 :
2609 0 : static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2610 : {
2611 : const struct hid_device_id *id;
2612 : int ret;
2613 :
2614 0 : if (!hid_check_device_match(hdev, hdrv, &id))
2615 : return -ENODEV;
2616 :
2617 0 : hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2618 0 : if (!hdev->devres_group_id)
2619 : return -ENOMEM;
2620 :
2621 : /* reset the quirks that has been previously set */
2622 0 : hdev->quirks = hid_lookup_quirk(hdev);
2623 0 : hdev->driver = hdrv;
2624 :
2625 0 : if (hdrv->probe) {
2626 0 : ret = hdrv->probe(hdev, id);
2627 : } else { /* default probe */
2628 0 : ret = hid_open_report(hdev);
2629 0 : if (!ret)
2630 0 : ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2631 : }
2632 :
2633 : /*
2634 : * Note that we are not closing the devres group opened above so
2635 : * even resources that were attached to the device after probe is
2636 : * run are released when hid_device_remove() is executed. This is
2637 : * needed as some drivers would allocate additional resources,
2638 : * for example when updating firmware.
2639 : */
2640 :
2641 0 : if (ret) {
2642 0 : devres_release_group(&hdev->dev, hdev->devres_group_id);
2643 0 : hid_close_report(hdev);
2644 0 : hdev->driver = NULL;
2645 : }
2646 :
2647 : return ret;
2648 : }
2649 :
2650 0 : static int hid_device_probe(struct device *dev)
2651 : {
2652 0 : struct hid_device *hdev = to_hid_device(dev);
2653 0 : struct hid_driver *hdrv = to_hid_driver(dev->driver);
2654 0 : int ret = 0;
2655 :
2656 0 : if (down_interruptible(&hdev->driver_input_lock))
2657 : return -EINTR;
2658 :
2659 0 : hdev->io_started = false;
2660 0 : clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2661 :
2662 0 : if (!hdev->driver)
2663 0 : ret = __hid_device_probe(hdev, hdrv);
2664 :
2665 0 : if (!hdev->io_started)
2666 0 : up(&hdev->driver_input_lock);
2667 :
2668 : return ret;
2669 : }
2670 :
2671 0 : static void hid_device_remove(struct device *dev)
2672 : {
2673 0 : struct hid_device *hdev = to_hid_device(dev);
2674 : struct hid_driver *hdrv;
2675 :
2676 0 : down(&hdev->driver_input_lock);
2677 0 : hdev->io_started = false;
2678 :
2679 0 : hdrv = hdev->driver;
2680 0 : if (hdrv) {
2681 0 : if (hdrv->remove)
2682 0 : hdrv->remove(hdev);
2683 : else /* default remove */
2684 : hid_hw_stop(hdev);
2685 :
2686 : /* Release all devres resources allocated by the driver */
2687 0 : devres_release_group(&hdev->dev, hdev->devres_group_id);
2688 :
2689 0 : hid_close_report(hdev);
2690 0 : hdev->driver = NULL;
2691 : }
2692 :
2693 0 : if (!hdev->io_started)
2694 0 : up(&hdev->driver_input_lock);
2695 0 : }
2696 :
2697 0 : static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2698 : char *buf)
2699 : {
2700 0 : struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2701 :
2702 0 : return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2703 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product);
2704 : }
2705 : static DEVICE_ATTR_RO(modalias);
2706 :
2707 : static struct attribute *hid_dev_attrs[] = {
2708 : &dev_attr_modalias.attr,
2709 : NULL,
2710 : };
2711 : static struct bin_attribute *hid_dev_bin_attrs[] = {
2712 : &dev_bin_attr_report_desc,
2713 : NULL
2714 : };
2715 : static const struct attribute_group hid_dev_group = {
2716 : .attrs = hid_dev_attrs,
2717 : .bin_attrs = hid_dev_bin_attrs,
2718 : };
2719 : __ATTRIBUTE_GROUPS(hid_dev);
2720 :
2721 0 : static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2722 : {
2723 0 : const struct hid_device *hdev = to_hid_device(dev);
2724 :
2725 0 : if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2726 0 : hdev->bus, hdev->vendor, hdev->product))
2727 : return -ENOMEM;
2728 :
2729 0 : if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2730 : return -ENOMEM;
2731 :
2732 0 : if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2733 : return -ENOMEM;
2734 :
2735 0 : if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2736 : return -ENOMEM;
2737 :
2738 0 : if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2739 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product))
2740 : return -ENOMEM;
2741 :
2742 0 : return 0;
2743 : }
2744 :
2745 : struct bus_type hid_bus_type = {
2746 : .name = "hid",
2747 : .dev_groups = hid_dev_groups,
2748 : .drv_groups = hid_drv_groups,
2749 : .match = hid_bus_match,
2750 : .probe = hid_device_probe,
2751 : .remove = hid_device_remove,
2752 : .uevent = hid_uevent,
2753 : };
2754 : EXPORT_SYMBOL(hid_bus_type);
2755 :
2756 0 : int hid_add_device(struct hid_device *hdev)
2757 : {
2758 : static atomic_t id = ATOMIC_INIT(0);
2759 : int ret;
2760 :
2761 0 : if (WARN_ON(hdev->status & HID_STAT_ADDED))
2762 : return -EBUSY;
2763 :
2764 0 : hdev->quirks = hid_lookup_quirk(hdev);
2765 :
2766 : /* we need to kill them here, otherwise they will stay allocated to
2767 : * wait for coming driver */
2768 0 : if (hid_ignore(hdev))
2769 : return -ENODEV;
2770 :
2771 : /*
2772 : * Check for the mandatory transport channel.
2773 : */
2774 0 : if (!hdev->ll_driver->raw_request) {
2775 0 : hid_err(hdev, "transport driver missing .raw_request()\n");
2776 0 : return -EINVAL;
2777 : }
2778 :
2779 : /*
2780 : * Read the device report descriptor once and use as template
2781 : * for the driver-specific modifications.
2782 : */
2783 0 : ret = hdev->ll_driver->parse(hdev);
2784 0 : if (ret)
2785 : return ret;
2786 0 : if (!hdev->dev_rdesc)
2787 : return -ENODEV;
2788 :
2789 : /*
2790 : * Scan generic devices for group information
2791 : */
2792 0 : if (hid_ignore_special_drivers) {
2793 0 : hdev->group = HID_GROUP_GENERIC;
2794 0 : } else if (!hdev->group &&
2795 0 : !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2796 0 : ret = hid_scan_report(hdev);
2797 0 : if (ret)
2798 0 : hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2799 : }
2800 :
2801 0 : hdev->id = atomic_inc_return(&id);
2802 :
2803 : /* XXX hack, any other cleaner solution after the driver core
2804 : * is converted to allow more than 20 bytes as the device name? */
2805 0 : dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2806 : hdev->vendor, hdev->product, hdev->id);
2807 :
2808 : hid_debug_register(hdev, dev_name(&hdev->dev));
2809 0 : ret = device_add(&hdev->dev);
2810 0 : if (!ret)
2811 0 : hdev->status |= HID_STAT_ADDED;
2812 : else
2813 : hid_debug_unregister(hdev);
2814 :
2815 : return ret;
2816 : }
2817 : EXPORT_SYMBOL_GPL(hid_add_device);
2818 :
2819 : /**
2820 : * hid_allocate_device - allocate new hid device descriptor
2821 : *
2822 : * Allocate and initialize hid device, so that hid_destroy_device might be
2823 : * used to free it.
2824 : *
2825 : * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2826 : * error value.
2827 : */
2828 0 : struct hid_device *hid_allocate_device(void)
2829 : {
2830 : struct hid_device *hdev;
2831 0 : int ret = -ENOMEM;
2832 :
2833 0 : hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2834 0 : if (hdev == NULL)
2835 : return ERR_PTR(ret);
2836 :
2837 0 : device_initialize(&hdev->dev);
2838 0 : hdev->dev.release = hid_device_release;
2839 0 : hdev->dev.bus = &hid_bus_type;
2840 0 : device_enable_async_suspend(&hdev->dev);
2841 :
2842 0 : hid_close_report(hdev);
2843 :
2844 0 : init_waitqueue_head(&hdev->debug_wait);
2845 0 : INIT_LIST_HEAD(&hdev->debug_list);
2846 0 : spin_lock_init(&hdev->debug_list_lock);
2847 0 : sema_init(&hdev->driver_input_lock, 1);
2848 0 : mutex_init(&hdev->ll_open_lock);
2849 :
2850 0 : hid_bpf_device_init(hdev);
2851 :
2852 0 : return hdev;
2853 : }
2854 : EXPORT_SYMBOL_GPL(hid_allocate_device);
2855 :
2856 0 : static void hid_remove_device(struct hid_device *hdev)
2857 : {
2858 0 : if (hdev->status & HID_STAT_ADDED) {
2859 0 : device_del(&hdev->dev);
2860 : hid_debug_unregister(hdev);
2861 0 : hdev->status &= ~HID_STAT_ADDED;
2862 : }
2863 0 : kfree(hdev->dev_rdesc);
2864 0 : hdev->dev_rdesc = NULL;
2865 0 : hdev->dev_rsize = 0;
2866 0 : }
2867 :
2868 : /**
2869 : * hid_destroy_device - free previously allocated device
2870 : *
2871 : * @hdev: hid device
2872 : *
2873 : * If you allocate hid_device through hid_allocate_device, you should ever
2874 : * free by this function.
2875 : */
2876 0 : void hid_destroy_device(struct hid_device *hdev)
2877 : {
2878 0 : hid_bpf_destroy_device(hdev);
2879 0 : hid_remove_device(hdev);
2880 0 : put_device(&hdev->dev);
2881 0 : }
2882 : EXPORT_SYMBOL_GPL(hid_destroy_device);
2883 :
2884 :
2885 0 : static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2886 : {
2887 0 : struct hid_driver *hdrv = data;
2888 0 : struct hid_device *hdev = to_hid_device(dev);
2889 :
2890 0 : if (hdev->driver == hdrv &&
2891 0 : !hdrv->match(hdev, hid_ignore_special_drivers) &&
2892 0 : !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2893 0 : return device_reprobe(dev);
2894 :
2895 : return 0;
2896 : }
2897 :
2898 66 : static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2899 : {
2900 66 : struct hid_driver *hdrv = to_hid_driver(drv);
2901 :
2902 66 : if (hdrv->match) {
2903 11 : bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2904 : __hid_bus_reprobe_drivers);
2905 : }
2906 :
2907 66 : return 0;
2908 : }
2909 :
2910 0 : static int __bus_removed_driver(struct device_driver *drv, void *data)
2911 : {
2912 0 : return bus_rescan_devices(&hid_bus_type);
2913 : }
2914 :
2915 11 : int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2916 : const char *mod_name)
2917 : {
2918 : int ret;
2919 :
2920 11 : hdrv->driver.name = hdrv->name;
2921 11 : hdrv->driver.bus = &hid_bus_type;
2922 11 : hdrv->driver.owner = owner;
2923 11 : hdrv->driver.mod_name = mod_name;
2924 :
2925 22 : INIT_LIST_HEAD(&hdrv->dyn_list);
2926 11 : spin_lock_init(&hdrv->dyn_lock);
2927 :
2928 11 : ret = driver_register(&hdrv->driver);
2929 :
2930 11 : if (ret == 0)
2931 11 : bus_for_each_drv(&hid_bus_type, NULL, NULL,
2932 : __hid_bus_driver_added);
2933 :
2934 11 : return ret;
2935 : }
2936 : EXPORT_SYMBOL_GPL(__hid_register_driver);
2937 :
2938 0 : void hid_unregister_driver(struct hid_driver *hdrv)
2939 : {
2940 0 : driver_unregister(&hdrv->driver);
2941 0 : hid_free_dynids(hdrv);
2942 :
2943 0 : bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2944 0 : }
2945 : EXPORT_SYMBOL_GPL(hid_unregister_driver);
2946 :
2947 0 : int hid_check_keys_pressed(struct hid_device *hid)
2948 : {
2949 : struct hid_input *hidinput;
2950 : int i;
2951 :
2952 0 : if (!(hid->claimed & HID_CLAIMED_INPUT))
2953 : return 0;
2954 :
2955 0 : list_for_each_entry(hidinput, &hid->inputs, list) {
2956 0 : for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2957 0 : if (hidinput->input->key[i])
2958 : return 1;
2959 : }
2960 :
2961 : return 0;
2962 : }
2963 : EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2964 :
2965 : #ifdef CONFIG_HID_BPF
2966 : static struct hid_bpf_ops hid_ops = {
2967 : .hid_get_report = hid_get_report,
2968 : .hid_hw_raw_request = hid_hw_raw_request,
2969 : .owner = THIS_MODULE,
2970 : .bus_type = &hid_bus_type,
2971 : };
2972 : #endif
2973 :
2974 1 : static int __init hid_init(void)
2975 : {
2976 : int ret;
2977 :
2978 1 : ret = bus_register(&hid_bus_type);
2979 1 : if (ret) {
2980 0 : pr_err("can't register hid bus\n");
2981 : goto err;
2982 : }
2983 :
2984 : #ifdef CONFIG_HID_BPF
2985 : hid_bpf_ops = &hid_ops;
2986 : #endif
2987 :
2988 : ret = hidraw_init();
2989 : if (ret)
2990 : goto err_bus;
2991 :
2992 : hid_debug_init();
2993 :
2994 : return 0;
2995 : err_bus:
2996 : bus_unregister(&hid_bus_type);
2997 : err:
2998 0 : return ret;
2999 : }
3000 :
3001 0 : static void __exit hid_exit(void)
3002 : {
3003 : #ifdef CONFIG_HID_BPF
3004 : hid_bpf_ops = NULL;
3005 : #endif
3006 : hid_debug_exit();
3007 : hidraw_exit();
3008 0 : bus_unregister(&hid_bus_type);
3009 0 : hid_quirks_exit(HID_BUS_ANY);
3010 0 : }
3011 :
3012 : module_init(hid_init);
3013 : module_exit(hid_exit);
3014 :
3015 : MODULE_AUTHOR("Andreas Gal");
3016 : MODULE_AUTHOR("Vojtech Pavlik");
3017 : MODULE_AUTHOR("Jiri Kosina");
3018 : MODULE_LICENSE("GPL");
|