LCOV - code coverage report
Current view: top level - drivers/input - input.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 14 932 1.5 %
Date: 2023-08-24 13:40:31 Functions: 2 105 1.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * The input core
       4             :  *
       5             :  * Copyright (c) 1999-2002 Vojtech Pavlik
       6             :  */
       7             : 
       8             : 
       9             : #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
      10             : 
      11             : #include <linux/init.h>
      12             : #include <linux/types.h>
      13             : #include <linux/idr.h>
      14             : #include <linux/input/mt.h>
      15             : #include <linux/module.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/random.h>
      18             : #include <linux/major.h>
      19             : #include <linux/proc_fs.h>
      20             : #include <linux/sched.h>
      21             : #include <linux/seq_file.h>
      22             : #include <linux/pm.h>
      23             : #include <linux/poll.h>
      24             : #include <linux/device.h>
      25             : #include <linux/kstrtox.h>
      26             : #include <linux/mutex.h>
      27             : #include <linux/rcupdate.h>
      28             : #include "input-compat.h"
      29             : #include "input-core-private.h"
      30             : #include "input-poller.h"
      31             : 
      32             : MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
      33             : MODULE_DESCRIPTION("Input core");
      34             : MODULE_LICENSE("GPL");
      35             : 
      36             : #define INPUT_MAX_CHAR_DEVICES          1024
      37             : #define INPUT_FIRST_DYNAMIC_DEV         256
      38             : static DEFINE_IDA(input_ida);
      39             : 
      40             : static LIST_HEAD(input_dev_list);
      41             : static LIST_HEAD(input_handler_list);
      42             : 
      43             : /*
      44             :  * input_mutex protects access to both input_dev_list and input_handler_list.
      45             :  * This also causes input_[un]register_device and input_[un]register_handler
      46             :  * be mutually exclusive which simplifies locking in drivers implementing
      47             :  * input handlers.
      48             :  */
      49             : static DEFINE_MUTEX(input_mutex);
      50             : 
      51             : static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
      52             : 
      53             : static const unsigned int input_max_code[EV_CNT] = {
      54             :         [EV_KEY] = KEY_MAX,
      55             :         [EV_REL] = REL_MAX,
      56             :         [EV_ABS] = ABS_MAX,
      57             :         [EV_MSC] = MSC_MAX,
      58             :         [EV_SW] = SW_MAX,
      59             :         [EV_LED] = LED_MAX,
      60             :         [EV_SND] = SND_MAX,
      61             :         [EV_FF] = FF_MAX,
      62             : };
      63             : 
      64           0 : static inline int is_event_supported(unsigned int code,
      65             :                                      unsigned long *bm, unsigned int max)
      66             : {
      67           0 :         return code <= max && test_bit(code, bm);
      68             : }
      69             : 
      70           0 : static int input_defuzz_abs_event(int value, int old_val, int fuzz)
      71             : {
      72           0 :         if (fuzz) {
      73           0 :                 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
      74             :                         return old_val;
      75             : 
      76           0 :                 if (value > old_val - fuzz && value < old_val + fuzz)
      77           0 :                         return (old_val * 3 + value) / 4;
      78             : 
      79           0 :                 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
      80           0 :                         return (old_val + value) / 2;
      81             :         }
      82             : 
      83             :         return value;
      84             : }
      85             : 
      86           0 : static void input_start_autorepeat(struct input_dev *dev, int code)
      87             : {
      88           0 :         if (test_bit(EV_REP, dev->evbit) &&
      89           0 :             dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
      90           0 :             dev->timer.function) {
      91           0 :                 dev->repeat_key = code;
      92           0 :                 mod_timer(&dev->timer,
      93           0 :                           jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
      94             :         }
      95           0 : }
      96             : 
      97             : static void input_stop_autorepeat(struct input_dev *dev)
      98             : {
      99           0 :         del_timer(&dev->timer);
     100             : }
     101             : 
     102             : /*
     103             :  * Pass event first through all filters and then, if event has not been
     104             :  * filtered out, through all open handles. This function is called with
     105             :  * dev->event_lock held and interrupts disabled.
     106             :  */
     107           0 : static unsigned int input_to_handler(struct input_handle *handle,
     108             :                         struct input_value *vals, unsigned int count)
     109             : {
     110           0 :         struct input_handler *handler = handle->handler;
     111           0 :         struct input_value *end = vals;
     112             :         struct input_value *v;
     113             : 
     114           0 :         if (handler->filter) {
     115           0 :                 for (v = vals; v != vals + count; v++) {
     116           0 :                         if (handler->filter(handle, v->type, v->code, v->value))
     117           0 :                                 continue;
     118           0 :                         if (end != v)
     119           0 :                                 *end = *v;
     120           0 :                         end++;
     121             :                 }
     122           0 :                 count = end - vals;
     123             :         }
     124             : 
     125           0 :         if (!count)
     126             :                 return 0;
     127             : 
     128           0 :         if (handler->events)
     129           0 :                 handler->events(handle, vals, count);
     130           0 :         else if (handler->event)
     131           0 :                 for (v = vals; v != vals + count; v++)
     132           0 :                         handler->event(handle, v->type, v->code, v->value);
     133             : 
     134             :         return count;
     135             : }
     136             : 
     137             : /*
     138             :  * Pass values first through all filters and then, if event has not been
     139             :  * filtered out, through all open handles. This function is called with
     140             :  * dev->event_lock held and interrupts disabled.
     141             :  */
     142           0 : static void input_pass_values(struct input_dev *dev,
     143             :                               struct input_value *vals, unsigned int count)
     144             : {
     145             :         struct input_handle *handle;
     146             :         struct input_value *v;
     147             : 
     148             :         lockdep_assert_held(&dev->event_lock);
     149             : 
     150           0 :         if (!count)
     151             :                 return;
     152             : 
     153             :         rcu_read_lock();
     154             : 
     155           0 :         handle = rcu_dereference(dev->grab);
     156           0 :         if (handle) {
     157           0 :                 count = input_to_handler(handle, vals, count);
     158             :         } else {
     159           0 :                 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
     160           0 :                         if (handle->open) {
     161           0 :                                 count = input_to_handler(handle, vals, count);
     162           0 :                                 if (!count)
     163             :                                         break;
     164             :                         }
     165             :         }
     166             : 
     167             :         rcu_read_unlock();
     168             : 
     169             :         /* trigger auto repeat for key events */
     170           0 :         if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
     171           0 :                 for (v = vals; v != vals + count; v++) {
     172           0 :                         if (v->type == EV_KEY && v->value != 2) {
     173           0 :                                 if (v->value)
     174           0 :                                         input_start_autorepeat(dev, v->code);
     175             :                                 else
     176             :                                         input_stop_autorepeat(dev);
     177             :                         }
     178             :                 }
     179             :         }
     180             : }
     181             : 
     182             : #define INPUT_IGNORE_EVENT      0
     183             : #define INPUT_PASS_TO_HANDLERS  1
     184             : #define INPUT_PASS_TO_DEVICE    2
     185             : #define INPUT_SLOT              4
     186             : #define INPUT_FLUSH             8
     187             : #define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
     188             : 
     189           0 : static int input_handle_abs_event(struct input_dev *dev,
     190             :                                   unsigned int code, int *pval)
     191             : {
     192           0 :         struct input_mt *mt = dev->mt;
     193           0 :         bool is_new_slot = false;
     194             :         bool is_mt_event;
     195             :         int *pold;
     196             : 
     197           0 :         if (code == ABS_MT_SLOT) {
     198             :                 /*
     199             :                  * "Stage" the event; we'll flush it later, when we
     200             :                  * get actual touch data.
     201             :                  */
     202           0 :                 if (mt && *pval >= 0 && *pval < mt->num_slots)
     203           0 :                         mt->slot = *pval;
     204             : 
     205             :                 return INPUT_IGNORE_EVENT;
     206             :         }
     207             : 
     208           0 :         is_mt_event = input_is_mt_value(code);
     209             : 
     210           0 :         if (!is_mt_event) {
     211           0 :                 pold = &dev->absinfo[code].value;
     212           0 :         } else if (mt) {
     213           0 :                 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
     214           0 :                 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
     215             :         } else {
     216             :                 /*
     217             :                  * Bypass filtering for multi-touch events when
     218             :                  * not employing slots.
     219             :                  */
     220             :                 pold = NULL;
     221             :         }
     222             : 
     223           0 :         if (pold) {
     224           0 :                 *pval = input_defuzz_abs_event(*pval, *pold,
     225           0 :                                                 dev->absinfo[code].fuzz);
     226           0 :                 if (*pold == *pval)
     227             :                         return INPUT_IGNORE_EVENT;
     228             : 
     229           0 :                 *pold = *pval;
     230             :         }
     231             : 
     232             :         /* Flush pending "slot" event */
     233           0 :         if (is_new_slot) {
     234           0 :                 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
     235             :                 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
     236             :         }
     237             : 
     238             :         return INPUT_PASS_TO_HANDLERS;
     239             : }
     240             : 
     241           0 : static int input_get_disposition(struct input_dev *dev,
     242             :                           unsigned int type, unsigned int code, int *pval)
     243             : {
     244           0 :         int disposition = INPUT_IGNORE_EVENT;
     245           0 :         int value = *pval;
     246             : 
     247             :         /* filter-out events from inhibited devices */
     248           0 :         if (dev->inhibited)
     249             :                 return INPUT_IGNORE_EVENT;
     250             : 
     251           0 :         switch (type) {
     252             : 
     253             :         case EV_SYN:
     254           0 :                 switch (code) {
     255             :                 case SYN_CONFIG:
     256           0 :                         disposition = INPUT_PASS_TO_ALL;
     257           0 :                         break;
     258             : 
     259             :                 case SYN_REPORT:
     260           0 :                         disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
     261           0 :                         break;
     262             :                 case SYN_MT_REPORT:
     263           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     264           0 :                         break;
     265             :                 }
     266             :                 break;
     267             : 
     268             :         case EV_KEY:
     269           0 :                 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
     270             : 
     271             :                         /* auto-repeat bypasses state updates */
     272           0 :                         if (value == 2) {
     273             :                                 disposition = INPUT_PASS_TO_HANDLERS;
     274             :                                 break;
     275             :                         }
     276             : 
     277           0 :                         if (!!test_bit(code, dev->key) != !!value) {
     278             : 
     279           0 :                                 __change_bit(code, dev->key);
     280             :                                 disposition = INPUT_PASS_TO_HANDLERS;
     281             :                         }
     282             :                 }
     283             :                 break;
     284             : 
     285             :         case EV_SW:
     286           0 :                 if (is_event_supported(code, dev->swbit, SW_MAX) &&
     287           0 :                     !!test_bit(code, dev->sw) != !!value) {
     288             : 
     289           0 :                         __change_bit(code, dev->sw);
     290             :                         disposition = INPUT_PASS_TO_HANDLERS;
     291             :                 }
     292             :                 break;
     293             : 
     294             :         case EV_ABS:
     295           0 :                 if (is_event_supported(code, dev->absbit, ABS_MAX))
     296           0 :                         disposition = input_handle_abs_event(dev, code, &value);
     297             : 
     298             :                 break;
     299             : 
     300             :         case EV_REL:
     301           0 :                 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
     302           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     303             : 
     304             :                 break;
     305             : 
     306             :         case EV_MSC:
     307           0 :                 if (is_event_supported(code, dev->mscbit, MSC_MAX))
     308           0 :                         disposition = INPUT_PASS_TO_ALL;
     309             : 
     310             :                 break;
     311             : 
     312             :         case EV_LED:
     313           0 :                 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
     314           0 :                     !!test_bit(code, dev->led) != !!value) {
     315             : 
     316           0 :                         __change_bit(code, dev->led);
     317             :                         disposition = INPUT_PASS_TO_ALL;
     318             :                 }
     319             :                 break;
     320             : 
     321             :         case EV_SND:
     322           0 :                 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
     323             : 
     324           0 :                         if (!!test_bit(code, dev->snd) != !!value)
     325           0 :                                 __change_bit(code, dev->snd);
     326             :                         disposition = INPUT_PASS_TO_ALL;
     327             :                 }
     328             :                 break;
     329             : 
     330             :         case EV_REP:
     331           0 :                 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
     332           0 :                         dev->rep[code] = value;
     333           0 :                         disposition = INPUT_PASS_TO_ALL;
     334             :                 }
     335             :                 break;
     336             : 
     337             :         case EV_FF:
     338           0 :                 if (value >= 0)
     339           0 :                         disposition = INPUT_PASS_TO_ALL;
     340             :                 break;
     341             : 
     342             :         case EV_PWR:
     343           0 :                 disposition = INPUT_PASS_TO_ALL;
     344           0 :                 break;
     345             :         }
     346             : 
     347           0 :         *pval = value;
     348           0 :         return disposition;
     349             : }
     350             : 
     351           0 : static void input_event_dispose(struct input_dev *dev, int disposition,
     352             :                                 unsigned int type, unsigned int code, int value)
     353             : {
     354           0 :         if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
     355           0 :                 dev->event(dev, type, code, value);
     356             : 
     357           0 :         if (!dev->vals)
     358             :                 return;
     359             : 
     360           0 :         if (disposition & INPUT_PASS_TO_HANDLERS) {
     361             :                 struct input_value *v;
     362             : 
     363           0 :                 if (disposition & INPUT_SLOT) {
     364           0 :                         v = &dev->vals[dev->num_vals++];
     365           0 :                         v->type = EV_ABS;
     366           0 :                         v->code = ABS_MT_SLOT;
     367           0 :                         v->value = dev->mt->slot;
     368             :                 }
     369             : 
     370           0 :                 v = &dev->vals[dev->num_vals++];
     371           0 :                 v->type = type;
     372           0 :                 v->code = code;
     373           0 :                 v->value = value;
     374             :         }
     375             : 
     376           0 :         if (disposition & INPUT_FLUSH) {
     377           0 :                 if (dev->num_vals >= 2)
     378           0 :                         input_pass_values(dev, dev->vals, dev->num_vals);
     379           0 :                 dev->num_vals = 0;
     380             :                 /*
     381             :                  * Reset the timestamp on flush so we won't end up
     382             :                  * with a stale one. Note we only need to reset the
     383             :                  * monolithic one as we use its presence when deciding
     384             :                  * whether to generate a synthetic timestamp.
     385             :                  */
     386           0 :                 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
     387           0 :         } else if (dev->num_vals >= dev->max_vals - 2) {
     388           0 :                 dev->vals[dev->num_vals++] = input_value_sync;
     389           0 :                 input_pass_values(dev, dev->vals, dev->num_vals);
     390           0 :                 dev->num_vals = 0;
     391             :         }
     392             : }
     393             : 
     394           0 : void input_handle_event(struct input_dev *dev,
     395             :                         unsigned int type, unsigned int code, int value)
     396             : {
     397             :         int disposition;
     398             : 
     399             :         lockdep_assert_held(&dev->event_lock);
     400             : 
     401           0 :         disposition = input_get_disposition(dev, type, code, &value);
     402           0 :         if (disposition != INPUT_IGNORE_EVENT) {
     403           0 :                 if (type != EV_SYN)
     404           0 :                         add_input_randomness(type, code, value);
     405             : 
     406           0 :                 input_event_dispose(dev, disposition, type, code, value);
     407             :         }
     408           0 : }
     409             : 
     410             : /**
     411             :  * input_event() - report new input event
     412             :  * @dev: device that generated the event
     413             :  * @type: type of the event
     414             :  * @code: event code
     415             :  * @value: value of the event
     416             :  *
     417             :  * This function should be used by drivers implementing various input
     418             :  * devices to report input events. See also input_inject_event().
     419             :  *
     420             :  * NOTE: input_event() may be safely used right after input device was
     421             :  * allocated with input_allocate_device(), even before it is registered
     422             :  * with input_register_device(), but the event will not reach any of the
     423             :  * input handlers. Such early invocation of input_event() may be used
     424             :  * to 'seed' initial state of a switch or initial position of absolute
     425             :  * axis, etc.
     426             :  */
     427           0 : void input_event(struct input_dev *dev,
     428             :                  unsigned int type, unsigned int code, int value)
     429             : {
     430             :         unsigned long flags;
     431             : 
     432           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     433             : 
     434           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     435           0 :                 input_handle_event(dev, type, code, value);
     436           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     437             :         }
     438           0 : }
     439             : EXPORT_SYMBOL(input_event);
     440             : 
     441             : /**
     442             :  * input_inject_event() - send input event from input handler
     443             :  * @handle: input handle to send event through
     444             :  * @type: type of the event
     445             :  * @code: event code
     446             :  * @value: value of the event
     447             :  *
     448             :  * Similar to input_event() but will ignore event if device is
     449             :  * "grabbed" and handle injecting event is not the one that owns
     450             :  * the device.
     451             :  */
     452           0 : void input_inject_event(struct input_handle *handle,
     453             :                         unsigned int type, unsigned int code, int value)
     454             : {
     455           0 :         struct input_dev *dev = handle->dev;
     456             :         struct input_handle *grab;
     457             :         unsigned long flags;
     458             : 
     459           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     460           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     461             : 
     462             :                 rcu_read_lock();
     463           0 :                 grab = rcu_dereference(dev->grab);
     464           0 :                 if (!grab || grab == handle)
     465           0 :                         input_handle_event(dev, type, code, value);
     466             :                 rcu_read_unlock();
     467             : 
     468           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     469             :         }
     470           0 : }
     471             : EXPORT_SYMBOL(input_inject_event);
     472             : 
     473             : /**
     474             :  * input_alloc_absinfo - allocates array of input_absinfo structs
     475             :  * @dev: the input device emitting absolute events
     476             :  *
     477             :  * If the absinfo struct the caller asked for is already allocated, this
     478             :  * functions will not do anything.
     479             :  */
     480           0 : void input_alloc_absinfo(struct input_dev *dev)
     481             : {
     482           0 :         if (dev->absinfo)
     483             :                 return;
     484             : 
     485           0 :         dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
     486           0 :         if (!dev->absinfo) {
     487           0 :                 dev_err(dev->dev.parent ?: &dev->dev,
     488             :                         "%s: unable to allocate memory\n", __func__);
     489             :                 /*
     490             :                  * We will handle this allocation failure in
     491             :                  * input_register_device() when we refuse to register input
     492             :                  * device with ABS bits but without absinfo.
     493             :                  */
     494             :         }
     495             : }
     496             : EXPORT_SYMBOL(input_alloc_absinfo);
     497             : 
     498           0 : void input_set_abs_params(struct input_dev *dev, unsigned int axis,
     499             :                           int min, int max, int fuzz, int flat)
     500             : {
     501             :         struct input_absinfo *absinfo;
     502             : 
     503           0 :         __set_bit(EV_ABS, dev->evbit);
     504           0 :         __set_bit(axis, dev->absbit);
     505             : 
     506           0 :         input_alloc_absinfo(dev);
     507           0 :         if (!dev->absinfo)
     508             :                 return;
     509             : 
     510           0 :         absinfo = &dev->absinfo[axis];
     511           0 :         absinfo->minimum = min;
     512           0 :         absinfo->maximum = max;
     513           0 :         absinfo->fuzz = fuzz;
     514           0 :         absinfo->flat = flat;
     515             : }
     516             : EXPORT_SYMBOL(input_set_abs_params);
     517             : 
     518             : /**
     519             :  * input_copy_abs - Copy absinfo from one input_dev to another
     520             :  * @dst: Destination input device to copy the abs settings to
     521             :  * @dst_axis: ABS_* value selecting the destination axis
     522             :  * @src: Source input device to copy the abs settings from
     523             :  * @src_axis: ABS_* value selecting the source axis
     524             :  *
     525             :  * Set absinfo for the selected destination axis by copying it from
     526             :  * the specified source input device's source axis.
     527             :  * This is useful to e.g. setup a pen/stylus input-device for combined
     528             :  * touchscreen/pen hardware where the pen uses the same coordinates as
     529             :  * the touchscreen.
     530             :  */
     531           0 : void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
     532             :                     const struct input_dev *src, unsigned int src_axis)
     533             : {
     534             :         /* src must have EV_ABS and src_axis set */
     535           0 :         if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
     536             :                       test_bit(src_axis, src->absbit))))
     537             :                 return;
     538             : 
     539             :         /*
     540             :          * input_alloc_absinfo() may have failed for the source. Our caller is
     541             :          * expected to catch this when registering the input devices, which may
     542             :          * happen after the input_copy_abs() call.
     543             :          */
     544           0 :         if (!src->absinfo)
     545             :                 return;
     546             : 
     547           0 :         input_set_capability(dst, EV_ABS, dst_axis);
     548           0 :         if (!dst->absinfo)
     549             :                 return;
     550             : 
     551           0 :         dst->absinfo[dst_axis] = src->absinfo[src_axis];
     552             : }
     553             : EXPORT_SYMBOL(input_copy_abs);
     554             : 
     555             : /**
     556             :  * input_grab_device - grabs device for exclusive use
     557             :  * @handle: input handle that wants to own the device
     558             :  *
     559             :  * When a device is grabbed by an input handle all events generated by
     560             :  * the device are delivered only to this handle. Also events injected
     561             :  * by other input handles are ignored while device is grabbed.
     562             :  */
     563           0 : int input_grab_device(struct input_handle *handle)
     564             : {
     565           0 :         struct input_dev *dev = handle->dev;
     566             :         int retval;
     567             : 
     568           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     569           0 :         if (retval)
     570             :                 return retval;
     571             : 
     572           0 :         if (dev->grab) {
     573             :                 retval = -EBUSY;
     574             :                 goto out;
     575             :         }
     576             : 
     577           0 :         rcu_assign_pointer(dev->grab, handle);
     578             : 
     579             :  out:
     580           0 :         mutex_unlock(&dev->mutex);
     581           0 :         return retval;
     582             : }
     583             : EXPORT_SYMBOL(input_grab_device);
     584             : 
     585           0 : static void __input_release_device(struct input_handle *handle)
     586             : {
     587           0 :         struct input_dev *dev = handle->dev;
     588             :         struct input_handle *grabber;
     589             : 
     590           0 :         grabber = rcu_dereference_protected(dev->grab,
     591             :                                             lockdep_is_held(&dev->mutex));
     592           0 :         if (grabber == handle) {
     593           0 :                 rcu_assign_pointer(dev->grab, NULL);
     594             :                 /* Make sure input_pass_values() notices that grab is gone */
     595           0 :                 synchronize_rcu();
     596             : 
     597           0 :                 list_for_each_entry(handle, &dev->h_list, d_node)
     598           0 :                         if (handle->open && handle->handler->start)
     599           0 :                                 handle->handler->start(handle);
     600             :         }
     601           0 : }
     602             : 
     603             : /**
     604             :  * input_release_device - release previously grabbed device
     605             :  * @handle: input handle that owns the device
     606             :  *
     607             :  * Releases previously grabbed device so that other input handles can
     608             :  * start receiving input events. Upon release all handlers attached
     609             :  * to the device have their start() method called so they have a change
     610             :  * to synchronize device state with the rest of the system.
     611             :  */
     612           0 : void input_release_device(struct input_handle *handle)
     613             : {
     614           0 :         struct input_dev *dev = handle->dev;
     615             : 
     616           0 :         mutex_lock(&dev->mutex);
     617           0 :         __input_release_device(handle);
     618           0 :         mutex_unlock(&dev->mutex);
     619           0 : }
     620             : EXPORT_SYMBOL(input_release_device);
     621             : 
     622             : /**
     623             :  * input_open_device - open input device
     624             :  * @handle: handle through which device is being accessed
     625             :  *
     626             :  * This function should be called by input handlers when they
     627             :  * want to start receive events from given input device.
     628             :  */
     629           0 : int input_open_device(struct input_handle *handle)
     630             : {
     631           0 :         struct input_dev *dev = handle->dev;
     632             :         int retval;
     633             : 
     634           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     635           0 :         if (retval)
     636             :                 return retval;
     637             : 
     638           0 :         if (dev->going_away) {
     639             :                 retval = -ENODEV;
     640             :                 goto out;
     641             :         }
     642             : 
     643           0 :         handle->open++;
     644             : 
     645           0 :         if (dev->users++ || dev->inhibited) {
     646             :                 /*
     647             :                  * Device is already opened and/or inhibited,
     648             :                  * so we can exit immediately and report success.
     649             :                  */
     650             :                 goto out;
     651             :         }
     652             : 
     653           0 :         if (dev->open) {
     654           0 :                 retval = dev->open(dev);
     655           0 :                 if (retval) {
     656           0 :                         dev->users--;
     657           0 :                         handle->open--;
     658             :                         /*
     659             :                          * Make sure we are not delivering any more events
     660             :                          * through this handle
     661             :                          */
     662           0 :                         synchronize_rcu();
     663           0 :                         goto out;
     664             :                 }
     665             :         }
     666             : 
     667           0 :         if (dev->poller)
     668           0 :                 input_dev_poller_start(dev->poller);
     669             : 
     670             :  out:
     671           0 :         mutex_unlock(&dev->mutex);
     672           0 :         return retval;
     673             : }
     674             : EXPORT_SYMBOL(input_open_device);
     675             : 
     676           0 : int input_flush_device(struct input_handle *handle, struct file *file)
     677             : {
     678           0 :         struct input_dev *dev = handle->dev;
     679             :         int retval;
     680             : 
     681           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     682           0 :         if (retval)
     683             :                 return retval;
     684             : 
     685           0 :         if (dev->flush)
     686           0 :                 retval = dev->flush(dev, file);
     687             : 
     688           0 :         mutex_unlock(&dev->mutex);
     689           0 :         return retval;
     690             : }
     691             : EXPORT_SYMBOL(input_flush_device);
     692             : 
     693             : /**
     694             :  * input_close_device - close input device
     695             :  * @handle: handle through which device is being accessed
     696             :  *
     697             :  * This function should be called by input handlers when they
     698             :  * want to stop receive events from given input device.
     699             :  */
     700           0 : void input_close_device(struct input_handle *handle)
     701             : {
     702           0 :         struct input_dev *dev = handle->dev;
     703             : 
     704           0 :         mutex_lock(&dev->mutex);
     705             : 
     706           0 :         __input_release_device(handle);
     707             : 
     708           0 :         if (!--dev->users && !dev->inhibited) {
     709           0 :                 if (dev->poller)
     710           0 :                         input_dev_poller_stop(dev->poller);
     711           0 :                 if (dev->close)
     712           0 :                         dev->close(dev);
     713             :         }
     714             : 
     715           0 :         if (!--handle->open) {
     716             :                 /*
     717             :                  * synchronize_rcu() makes sure that input_pass_values()
     718             :                  * completed and that no more input events are delivered
     719             :                  * through this handle
     720             :                  */
     721           0 :                 synchronize_rcu();
     722             :         }
     723             : 
     724           0 :         mutex_unlock(&dev->mutex);
     725           0 : }
     726             : EXPORT_SYMBOL(input_close_device);
     727             : 
     728             : /*
     729             :  * Simulate keyup events for all keys that are marked as pressed.
     730             :  * The function must be called with dev->event_lock held.
     731             :  */
     732           0 : static bool input_dev_release_keys(struct input_dev *dev)
     733             : {
     734           0 :         bool need_sync = false;
     735             :         int code;
     736             : 
     737             :         lockdep_assert_held(&dev->event_lock);
     738             : 
     739           0 :         if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
     740           0 :                 for_each_set_bit(code, dev->key, KEY_CNT) {
     741           0 :                         input_handle_event(dev, EV_KEY, code, 0);
     742           0 :                         need_sync = true;
     743             :                 }
     744             :         }
     745             : 
     746           0 :         return need_sync;
     747             : }
     748             : 
     749             : /*
     750             :  * Prepare device for unregistering
     751             :  */
     752           0 : static void input_disconnect_device(struct input_dev *dev)
     753             : {
     754             :         struct input_handle *handle;
     755             : 
     756             :         /*
     757             :          * Mark device as going away. Note that we take dev->mutex here
     758             :          * not to protect access to dev->going_away but rather to ensure
     759             :          * that there are no threads in the middle of input_open_device()
     760             :          */
     761           0 :         mutex_lock(&dev->mutex);
     762           0 :         dev->going_away = true;
     763           0 :         mutex_unlock(&dev->mutex);
     764             : 
     765           0 :         spin_lock_irq(&dev->event_lock);
     766             : 
     767             :         /*
     768             :          * Simulate keyup events for all pressed keys so that handlers
     769             :          * are not left with "stuck" keys. The driver may continue
     770             :          * generate events even after we done here but they will not
     771             :          * reach any handlers.
     772             :          */
     773           0 :         if (input_dev_release_keys(dev))
     774           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
     775             : 
     776           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
     777           0 :                 handle->open = 0;
     778             : 
     779           0 :         spin_unlock_irq(&dev->event_lock);
     780           0 : }
     781             : 
     782             : /**
     783             :  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
     784             :  * @ke: keymap entry containing scancode to be converted.
     785             :  * @scancode: pointer to the location where converted scancode should
     786             :  *      be stored.
     787             :  *
     788             :  * This function is used to convert scancode stored in &struct keymap_entry
     789             :  * into scalar form understood by legacy keymap handling methods. These
     790             :  * methods expect scancodes to be represented as 'unsigned int'.
     791             :  */
     792           0 : int input_scancode_to_scalar(const struct input_keymap_entry *ke,
     793             :                              unsigned int *scancode)
     794             : {
     795           0 :         switch (ke->len) {
     796             :         case 1:
     797           0 :                 *scancode = *((u8 *)ke->scancode);
     798           0 :                 break;
     799             : 
     800             :         case 2:
     801           0 :                 *scancode = *((u16 *)ke->scancode);
     802           0 :                 break;
     803             : 
     804             :         case 4:
     805           0 :                 *scancode = *((u32 *)ke->scancode);
     806           0 :                 break;
     807             : 
     808             :         default:
     809             :                 return -EINVAL;
     810             :         }
     811             : 
     812             :         return 0;
     813             : }
     814             : EXPORT_SYMBOL(input_scancode_to_scalar);
     815             : 
     816             : /*
     817             :  * Those routines handle the default case where no [gs]etkeycode() is
     818             :  * defined. In this case, an array indexed by the scancode is used.
     819             :  */
     820             : 
     821             : static unsigned int input_fetch_keycode(struct input_dev *dev,
     822             :                                         unsigned int index)
     823             : {
     824           0 :         switch (dev->keycodesize) {
     825             :         case 1:
     826           0 :                 return ((u8 *)dev->keycode)[index];
     827             : 
     828             :         case 2:
     829           0 :                 return ((u16 *)dev->keycode)[index];
     830             : 
     831             :         default:
     832           0 :                 return ((u32 *)dev->keycode)[index];
     833             :         }
     834             : }
     835             : 
     836           0 : static int input_default_getkeycode(struct input_dev *dev,
     837             :                                     struct input_keymap_entry *ke)
     838             : {
     839             :         unsigned int index;
     840             :         int error;
     841             : 
     842           0 :         if (!dev->keycodesize)
     843             :                 return -EINVAL;
     844             : 
     845           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX)
     846           0 :                 index = ke->index;
     847             :         else {
     848           0 :                 error = input_scancode_to_scalar(ke, &index);
     849           0 :                 if (error)
     850             :                         return error;
     851             :         }
     852             : 
     853           0 :         if (index >= dev->keycodemax)
     854             :                 return -EINVAL;
     855             : 
     856           0 :         ke->keycode = input_fetch_keycode(dev, index);
     857           0 :         ke->index = index;
     858           0 :         ke->len = sizeof(index);
     859           0 :         memcpy(ke->scancode, &index, sizeof(index));
     860             : 
     861           0 :         return 0;
     862             : }
     863             : 
     864           0 : static int input_default_setkeycode(struct input_dev *dev,
     865             :                                     const struct input_keymap_entry *ke,
     866             :                                     unsigned int *old_keycode)
     867             : {
     868             :         unsigned int index;
     869             :         int error;
     870             :         int i;
     871             : 
     872           0 :         if (!dev->keycodesize)
     873             :                 return -EINVAL;
     874             : 
     875           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
     876           0 :                 index = ke->index;
     877             :         } else {
     878           0 :                 error = input_scancode_to_scalar(ke, &index);
     879           0 :                 if (error)
     880             :                         return error;
     881             :         }
     882             : 
     883           0 :         if (index >= dev->keycodemax)
     884             :                 return -EINVAL;
     885             : 
     886           0 :         if (dev->keycodesize < sizeof(ke->keycode) &&
     887           0 :                         (ke->keycode >> (dev->keycodesize * 8)))
     888             :                 return -EINVAL;
     889             : 
     890           0 :         switch (dev->keycodesize) {
     891             :                 case 1: {
     892           0 :                         u8 *k = (u8 *)dev->keycode;
     893           0 :                         *old_keycode = k[index];
     894           0 :                         k[index] = ke->keycode;
     895           0 :                         break;
     896             :                 }
     897             :                 case 2: {
     898           0 :                         u16 *k = (u16 *)dev->keycode;
     899           0 :                         *old_keycode = k[index];
     900           0 :                         k[index] = ke->keycode;
     901           0 :                         break;
     902             :                 }
     903             :                 default: {
     904           0 :                         u32 *k = (u32 *)dev->keycode;
     905           0 :                         *old_keycode = k[index];
     906           0 :                         k[index] = ke->keycode;
     907           0 :                         break;
     908             :                 }
     909             :         }
     910             : 
     911           0 :         if (*old_keycode <= KEY_MAX) {
     912           0 :                 __clear_bit(*old_keycode, dev->keybit);
     913           0 :                 for (i = 0; i < dev->keycodemax; i++) {
     914           0 :                         if (input_fetch_keycode(dev, i) == *old_keycode) {
     915           0 :                                 __set_bit(*old_keycode, dev->keybit);
     916             :                                 /* Setting the bit twice is useless, so break */
     917             :                                 break;
     918             :                         }
     919             :                 }
     920             :         }
     921             : 
     922           0 :         __set_bit(ke->keycode, dev->keybit);
     923             :         return 0;
     924             : }
     925             : 
     926             : /**
     927             :  * input_get_keycode - retrieve keycode currently mapped to a given scancode
     928             :  * @dev: input device which keymap is being queried
     929             :  * @ke: keymap entry
     930             :  *
     931             :  * This function should be called by anyone interested in retrieving current
     932             :  * keymap. Presently evdev handlers use it.
     933             :  */
     934           0 : int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
     935             : {
     936             :         unsigned long flags;
     937             :         int retval;
     938             : 
     939           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     940           0 :         retval = dev->getkeycode(dev, ke);
     941           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     942             : 
     943           0 :         return retval;
     944             : }
     945             : EXPORT_SYMBOL(input_get_keycode);
     946             : 
     947             : /**
     948             :  * input_set_keycode - attribute a keycode to a given scancode
     949             :  * @dev: input device which keymap is being updated
     950             :  * @ke: new keymap entry
     951             :  *
     952             :  * This function should be called by anyone needing to update current
     953             :  * keymap. Presently keyboard and evdev handlers use it.
     954             :  */
     955           0 : int input_set_keycode(struct input_dev *dev,
     956             :                       const struct input_keymap_entry *ke)
     957             : {
     958             :         unsigned long flags;
     959             :         unsigned int old_keycode;
     960             :         int retval;
     961             : 
     962           0 :         if (ke->keycode > KEY_MAX)
     963             :                 return -EINVAL;
     964             : 
     965           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     966             : 
     967           0 :         retval = dev->setkeycode(dev, ke, &old_keycode);
     968           0 :         if (retval)
     969             :                 goto out;
     970             : 
     971             :         /* Make sure KEY_RESERVED did not get enabled. */
     972           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
     973             : 
     974             :         /*
     975             :          * Simulate keyup event if keycode is not present
     976             :          * in the keymap anymore
     977             :          */
     978           0 :         if (old_keycode > KEY_MAX) {
     979           0 :                 dev_warn(dev->dev.parent ?: &dev->dev,
     980             :                          "%s: got too big old keycode %#x\n",
     981             :                          __func__, old_keycode);
     982           0 :         } else if (test_bit(EV_KEY, dev->evbit) &&
     983           0 :                    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
     984           0 :                    __test_and_clear_bit(old_keycode, dev->key)) {
     985             :                 /*
     986             :                  * We have to use input_event_dispose() here directly instead
     987             :                  * of input_handle_event() because the key we want to release
     988             :                  * here is considered no longer supported by the device and
     989             :                  * input_handle_event() will ignore it.
     990             :                  */
     991           0 :                 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
     992             :                                     EV_KEY, old_keycode, 0);
     993           0 :                 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
     994             :                                     EV_SYN, SYN_REPORT, 1);
     995             :         }
     996             : 
     997             :  out:
     998           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     999             : 
    1000           0 :         return retval;
    1001             : }
    1002             : EXPORT_SYMBOL(input_set_keycode);
    1003             : 
    1004           0 : bool input_match_device_id(const struct input_dev *dev,
    1005             :                            const struct input_device_id *id)
    1006             : {
    1007           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
    1008           0 :                 if (id->bustype != dev->id.bustype)
    1009             :                         return false;
    1010             : 
    1011           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
    1012           0 :                 if (id->vendor != dev->id.vendor)
    1013             :                         return false;
    1014             : 
    1015           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
    1016           0 :                 if (id->product != dev->id.product)
    1017             :                         return false;
    1018             : 
    1019           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
    1020           0 :                 if (id->version != dev->id.version)
    1021             :                         return false;
    1022             : 
    1023           0 :         if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
    1024           0 :             !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
    1025           0 :             !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
    1026           0 :             !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
    1027           0 :             !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
    1028           0 :             !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
    1029           0 :             !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
    1030           0 :             !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
    1031           0 :             !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
    1032           0 :             !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
    1033             :                 return false;
    1034             :         }
    1035             : 
    1036             :         return true;
    1037             : }
    1038             : EXPORT_SYMBOL(input_match_device_id);
    1039             : 
    1040           0 : static const struct input_device_id *input_match_device(struct input_handler *handler,
    1041             :                                                         struct input_dev *dev)
    1042             : {
    1043             :         const struct input_device_id *id;
    1044             : 
    1045           0 :         for (id = handler->id_table; id->flags || id->driver_info; id++) {
    1046           0 :                 if (input_match_device_id(dev, id) &&
    1047           0 :                     (!handler->match || handler->match(handler, dev))) {
    1048             :                         return id;
    1049             :                 }
    1050             :         }
    1051             : 
    1052             :         return NULL;
    1053             : }
    1054             : 
    1055           0 : static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
    1056             : {
    1057             :         const struct input_device_id *id;
    1058             :         int error;
    1059             : 
    1060           0 :         id = input_match_device(handler, dev);
    1061           0 :         if (!id)
    1062             :                 return -ENODEV;
    1063             : 
    1064           0 :         error = handler->connect(handler, dev, id);
    1065           0 :         if (error && error != -ENODEV)
    1066           0 :                 pr_err("failed to attach handler %s to device %s, error: %d\n",
    1067             :                        handler->name, kobject_name(&dev->dev.kobj), error);
    1068             : 
    1069             :         return error;
    1070             : }
    1071             : 
    1072             : #ifdef CONFIG_COMPAT
    1073             : 
    1074             : static int input_bits_to_string(char *buf, int buf_size,
    1075             :                                 unsigned long bits, bool skip_empty)
    1076             : {
    1077             :         int len = 0;
    1078             : 
    1079             :         if (in_compat_syscall()) {
    1080             :                 u32 dword = bits >> 32;
    1081             :                 if (dword || !skip_empty)
    1082             :                         len += snprintf(buf, buf_size, "%x ", dword);
    1083             : 
    1084             :                 dword = bits & 0xffffffffUL;
    1085             :                 if (dword || !skip_empty || len)
    1086             :                         len += snprintf(buf + len, max(buf_size - len, 0),
    1087             :                                         "%x", dword);
    1088             :         } else {
    1089             :                 if (bits || !skip_empty)
    1090             :                         len += snprintf(buf, buf_size, "%lx", bits);
    1091             :         }
    1092             : 
    1093             :         return len;
    1094             : }
    1095             : 
    1096             : #else /* !CONFIG_COMPAT */
    1097             : 
    1098             : static int input_bits_to_string(char *buf, int buf_size,
    1099             :                                 unsigned long bits, bool skip_empty)
    1100             : {
    1101           0 :         return bits || !skip_empty ?
    1102           0 :                 snprintf(buf, buf_size, "%lx", bits) : 0;
    1103             : }
    1104             : 
    1105             : #endif
    1106             : 
    1107             : #ifdef CONFIG_PROC_FS
    1108             : 
    1109             : static struct proc_dir_entry *proc_bus_input_dir;
    1110             : static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
    1111             : static int input_devices_state;
    1112             : 
    1113             : static inline void input_wakeup_procfs_readers(void)
    1114             : {
    1115           0 :         input_devices_state++;
    1116           0 :         wake_up(&input_devices_poll_wait);
    1117             : }
    1118             : 
    1119           0 : static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
    1120             : {
    1121           0 :         poll_wait(file, &input_devices_poll_wait, wait);
    1122           0 :         if (file->f_version != input_devices_state) {
    1123           0 :                 file->f_version = input_devices_state;
    1124           0 :                 return EPOLLIN | EPOLLRDNORM;
    1125             :         }
    1126             : 
    1127             :         return 0;
    1128             : }
    1129             : 
    1130             : union input_seq_state {
    1131             :         struct {
    1132             :                 unsigned short pos;
    1133             :                 bool mutex_acquired;
    1134             :         };
    1135             :         void *p;
    1136             : };
    1137             : 
    1138           0 : static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
    1139             : {
    1140           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1141             :         int error;
    1142             : 
    1143             :         /* We need to fit into seq->private pointer */
    1144             :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1145             : 
    1146           0 :         error = mutex_lock_interruptible(&input_mutex);
    1147           0 :         if (error) {
    1148           0 :                 state->mutex_acquired = false;
    1149           0 :                 return ERR_PTR(error);
    1150             :         }
    1151             : 
    1152           0 :         state->mutex_acquired = true;
    1153             : 
    1154           0 :         return seq_list_start(&input_dev_list, *pos);
    1155             : }
    1156             : 
    1157           0 : static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1158             : {
    1159           0 :         return seq_list_next(v, &input_dev_list, pos);
    1160             : }
    1161             : 
    1162           0 : static void input_seq_stop(struct seq_file *seq, void *v)
    1163             : {
    1164           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1165             : 
    1166           0 :         if (state->mutex_acquired)
    1167           0 :                 mutex_unlock(&input_mutex);
    1168           0 : }
    1169             : 
    1170           0 : static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
    1171             :                                    unsigned long *bitmap, int max)
    1172             : {
    1173             :         int i;
    1174           0 :         bool skip_empty = true;
    1175             :         char buf[18];
    1176             : 
    1177           0 :         seq_printf(seq, "B: %s=", name);
    1178             : 
    1179           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1180           0 :                 if (input_bits_to_string(buf, sizeof(buf),
    1181           0 :                                          bitmap[i], skip_empty)) {
    1182           0 :                         skip_empty = false;
    1183           0 :                         seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
    1184             :                 }
    1185             :         }
    1186             : 
    1187             :         /*
    1188             :          * If no output was produced print a single 0.
    1189             :          */
    1190           0 :         if (skip_empty)
    1191           0 :                 seq_putc(seq, '0');
    1192             : 
    1193           0 :         seq_putc(seq, '\n');
    1194           0 : }
    1195             : 
    1196           0 : static int input_devices_seq_show(struct seq_file *seq, void *v)
    1197             : {
    1198           0 :         struct input_dev *dev = container_of(v, struct input_dev, node);
    1199           0 :         const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    1200             :         struct input_handle *handle;
    1201             : 
    1202           0 :         seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
    1203           0 :                    dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
    1204             : 
    1205           0 :         seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
    1206           0 :         seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
    1207           0 :         seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
    1208           0 :         seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
    1209           0 :         seq_puts(seq, "H: Handlers=");
    1210             : 
    1211           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
    1212           0 :                 seq_printf(seq, "%s ", handle->name);
    1213           0 :         seq_putc(seq, '\n');
    1214             : 
    1215           0 :         input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
    1216             : 
    1217           0 :         input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
    1218           0 :         if (test_bit(EV_KEY, dev->evbit))
    1219           0 :                 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
    1220           0 :         if (test_bit(EV_REL, dev->evbit))
    1221           0 :                 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
    1222           0 :         if (test_bit(EV_ABS, dev->evbit))
    1223           0 :                 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
    1224           0 :         if (test_bit(EV_MSC, dev->evbit))
    1225           0 :                 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
    1226           0 :         if (test_bit(EV_LED, dev->evbit))
    1227           0 :                 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
    1228           0 :         if (test_bit(EV_SND, dev->evbit))
    1229           0 :                 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
    1230           0 :         if (test_bit(EV_FF, dev->evbit))
    1231           0 :                 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
    1232           0 :         if (test_bit(EV_SW, dev->evbit))
    1233           0 :                 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
    1234             : 
    1235           0 :         seq_putc(seq, '\n');
    1236             : 
    1237           0 :         kfree(path);
    1238           0 :         return 0;
    1239             : }
    1240             : 
    1241             : static const struct seq_operations input_devices_seq_ops = {
    1242             :         .start  = input_devices_seq_start,
    1243             :         .next   = input_devices_seq_next,
    1244             :         .stop   = input_seq_stop,
    1245             :         .show   = input_devices_seq_show,
    1246             : };
    1247             : 
    1248           0 : static int input_proc_devices_open(struct inode *inode, struct file *file)
    1249             : {
    1250           0 :         return seq_open(file, &input_devices_seq_ops);
    1251             : }
    1252             : 
    1253             : static const struct proc_ops input_devices_proc_ops = {
    1254             :         .proc_open      = input_proc_devices_open,
    1255             :         .proc_poll      = input_proc_devices_poll,
    1256             :         .proc_read      = seq_read,
    1257             :         .proc_lseek     = seq_lseek,
    1258             :         .proc_release   = seq_release,
    1259             : };
    1260             : 
    1261           0 : static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
    1262             : {
    1263           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1264             :         int error;
    1265             : 
    1266             :         /* We need to fit into seq->private pointer */
    1267             :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1268             : 
    1269           0 :         error = mutex_lock_interruptible(&input_mutex);
    1270           0 :         if (error) {
    1271           0 :                 state->mutex_acquired = false;
    1272           0 :                 return ERR_PTR(error);
    1273             :         }
    1274             : 
    1275           0 :         state->mutex_acquired = true;
    1276           0 :         state->pos = *pos;
    1277             : 
    1278           0 :         return seq_list_start(&input_handler_list, *pos);
    1279             : }
    1280             : 
    1281           0 : static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1282             : {
    1283           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1284             : 
    1285           0 :         state->pos = *pos + 1;
    1286           0 :         return seq_list_next(v, &input_handler_list, pos);
    1287             : }
    1288             : 
    1289           0 : static int input_handlers_seq_show(struct seq_file *seq, void *v)
    1290             : {
    1291           0 :         struct input_handler *handler = container_of(v, struct input_handler, node);
    1292           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1293             : 
    1294           0 :         seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
    1295           0 :         if (handler->filter)
    1296           0 :                 seq_puts(seq, " (filter)");
    1297           0 :         if (handler->legacy_minors)
    1298           0 :                 seq_printf(seq, " Minor=%d", handler->minor);
    1299           0 :         seq_putc(seq, '\n');
    1300             : 
    1301           0 :         return 0;
    1302             : }
    1303             : 
    1304             : static const struct seq_operations input_handlers_seq_ops = {
    1305             :         .start  = input_handlers_seq_start,
    1306             :         .next   = input_handlers_seq_next,
    1307             :         .stop   = input_seq_stop,
    1308             :         .show   = input_handlers_seq_show,
    1309             : };
    1310             : 
    1311           0 : static int input_proc_handlers_open(struct inode *inode, struct file *file)
    1312             : {
    1313           0 :         return seq_open(file, &input_handlers_seq_ops);
    1314             : }
    1315             : 
    1316             : static const struct proc_ops input_handlers_proc_ops = {
    1317             :         .proc_open      = input_proc_handlers_open,
    1318             :         .proc_read      = seq_read,
    1319             :         .proc_lseek     = seq_lseek,
    1320             :         .proc_release   = seq_release,
    1321             : };
    1322             : 
    1323           1 : static int __init input_proc_init(void)
    1324             : {
    1325             :         struct proc_dir_entry *entry;
    1326             : 
    1327           1 :         proc_bus_input_dir = proc_mkdir("bus/input", NULL);
    1328           1 :         if (!proc_bus_input_dir)
    1329             :                 return -ENOMEM;
    1330             : 
    1331           1 :         entry = proc_create("devices", 0, proc_bus_input_dir,
    1332             :                             &input_devices_proc_ops);
    1333           1 :         if (!entry)
    1334             :                 goto fail1;
    1335             : 
    1336           1 :         entry = proc_create("handlers", 0, proc_bus_input_dir,
    1337             :                             &input_handlers_proc_ops);
    1338           1 :         if (!entry)
    1339             :                 goto fail2;
    1340             : 
    1341             :         return 0;
    1342             : 
    1343           0 :  fail2: remove_proc_entry("devices", proc_bus_input_dir);
    1344           0 :  fail1: remove_proc_entry("bus/input", NULL);
    1345           0 :         return -ENOMEM;
    1346             : }
    1347             : 
    1348           0 : static void input_proc_exit(void)
    1349             : {
    1350           0 :         remove_proc_entry("devices", proc_bus_input_dir);
    1351           0 :         remove_proc_entry("handlers", proc_bus_input_dir);
    1352           0 :         remove_proc_entry("bus/input", NULL);
    1353           0 : }
    1354             : 
    1355             : #else /* !CONFIG_PROC_FS */
    1356             : static inline void input_wakeup_procfs_readers(void) { }
    1357             : static inline int input_proc_init(void) { return 0; }
    1358             : static inline void input_proc_exit(void) { }
    1359             : #endif
    1360             : 
    1361             : #define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
    1362             : static ssize_t input_dev_show_##name(struct device *dev,                \
    1363             :                                      struct device_attribute *attr,     \
    1364             :                                      char *buf)                         \
    1365             : {                                                                       \
    1366             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1367             :                                                                         \
    1368             :         return scnprintf(buf, PAGE_SIZE, "%s\n",                      \
    1369             :                          input_dev->name ? input_dev->name : "");       \
    1370             : }                                                                       \
    1371             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
    1372             : 
    1373           0 : INPUT_DEV_STRING_ATTR_SHOW(name);
    1374           0 : INPUT_DEV_STRING_ATTR_SHOW(phys);
    1375           0 : INPUT_DEV_STRING_ATTR_SHOW(uniq);
    1376             : 
    1377           0 : static int input_print_modalias_bits(char *buf, int size,
    1378             :                                      char name, const unsigned long *bm,
    1379             :                                      unsigned int min_bit, unsigned int max_bit)
    1380             : {
    1381           0 :         int len = 0, i;
    1382             : 
    1383           0 :         len += snprintf(buf, max(size, 0), "%c", name);
    1384           0 :         for (i = min_bit; i < max_bit; i++)
    1385           0 :                 if (bm[BIT_WORD(i)] & BIT_MASK(i))
    1386           0 :                         len += snprintf(buf + len, max(size - len, 0), "%X,", i);
    1387           0 :         return len;
    1388             : }
    1389             : 
    1390           0 : static int input_print_modalias(char *buf, int size, const struct input_dev *id,
    1391             :                                 int add_cr)
    1392             : {
    1393             :         int len;
    1394             : 
    1395           0 :         len = snprintf(buf, max(size, 0),
    1396             :                        "input:b%04Xv%04Xp%04Xe%04X-",
    1397           0 :                        id->id.bustype, id->id.vendor,
    1398           0 :                        id->id.product, id->id.version);
    1399             : 
    1400           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1401           0 :                                 'e', id->evbit, 0, EV_MAX);
    1402           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1403           0 :                                 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
    1404           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1405           0 :                                 'r', id->relbit, 0, REL_MAX);
    1406           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1407           0 :                                 'a', id->absbit, 0, ABS_MAX);
    1408           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1409           0 :                                 'm', id->mscbit, 0, MSC_MAX);
    1410           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1411           0 :                                 'l', id->ledbit, 0, LED_MAX);
    1412           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1413           0 :                                 's', id->sndbit, 0, SND_MAX);
    1414           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1415           0 :                                 'f', id->ffbit, 0, FF_MAX);
    1416           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1417           0 :                                 'w', id->swbit, 0, SW_MAX);
    1418             : 
    1419           0 :         if (add_cr)
    1420           0 :                 len += snprintf(buf + len, max(size - len, 0), "\n");
    1421             : 
    1422           0 :         return len;
    1423             : }
    1424             : 
    1425           0 : static ssize_t input_dev_show_modalias(struct device *dev,
    1426             :                                        struct device_attribute *attr,
    1427             :                                        char *buf)
    1428             : {
    1429           0 :         struct input_dev *id = to_input_dev(dev);
    1430             :         ssize_t len;
    1431             : 
    1432           0 :         len = input_print_modalias(buf, PAGE_SIZE, id, 1);
    1433             : 
    1434           0 :         return min_t(int, len, PAGE_SIZE);
    1435             : }
    1436             : static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
    1437             : 
    1438             : static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
    1439             :                               int max, int add_cr);
    1440             : 
    1441           0 : static ssize_t input_dev_show_properties(struct device *dev,
    1442             :                                          struct device_attribute *attr,
    1443             :                                          char *buf)
    1444             : {
    1445           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1446           0 :         int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
    1447             :                                      INPUT_PROP_MAX, true);
    1448           0 :         return min_t(int, len, PAGE_SIZE);
    1449             : }
    1450             : static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
    1451             : 
    1452             : static int input_inhibit_device(struct input_dev *dev);
    1453             : static int input_uninhibit_device(struct input_dev *dev);
    1454             : 
    1455           0 : static ssize_t inhibited_show(struct device *dev,
    1456             :                               struct device_attribute *attr,
    1457             :                               char *buf)
    1458             : {
    1459           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1460             : 
    1461           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
    1462             : }
    1463             : 
    1464           0 : static ssize_t inhibited_store(struct device *dev,
    1465             :                                struct device_attribute *attr, const char *buf,
    1466             :                                size_t len)
    1467             : {
    1468           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1469             :         ssize_t rv;
    1470             :         bool inhibited;
    1471             : 
    1472           0 :         if (kstrtobool(buf, &inhibited))
    1473             :                 return -EINVAL;
    1474             : 
    1475           0 :         if (inhibited)
    1476           0 :                 rv = input_inhibit_device(input_dev);
    1477             :         else
    1478           0 :                 rv = input_uninhibit_device(input_dev);
    1479             : 
    1480           0 :         if (rv != 0)
    1481             :                 return rv;
    1482             : 
    1483           0 :         return len;
    1484             : }
    1485             : 
    1486             : static DEVICE_ATTR_RW(inhibited);
    1487             : 
    1488             : static struct attribute *input_dev_attrs[] = {
    1489             :         &dev_attr_name.attr,
    1490             :         &dev_attr_phys.attr,
    1491             :         &dev_attr_uniq.attr,
    1492             :         &dev_attr_modalias.attr,
    1493             :         &dev_attr_properties.attr,
    1494             :         &dev_attr_inhibited.attr,
    1495             :         NULL
    1496             : };
    1497             : 
    1498             : static const struct attribute_group input_dev_attr_group = {
    1499             :         .attrs  = input_dev_attrs,
    1500             : };
    1501             : 
    1502             : #define INPUT_DEV_ID_ATTR(name)                                         \
    1503             : static ssize_t input_dev_show_id_##name(struct device *dev,             \
    1504             :                                         struct device_attribute *attr,  \
    1505             :                                         char *buf)                      \
    1506             : {                                                                       \
    1507             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1508             :         return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);    \
    1509             : }                                                                       \
    1510             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
    1511             : 
    1512           0 : INPUT_DEV_ID_ATTR(bustype);
    1513           0 : INPUT_DEV_ID_ATTR(vendor);
    1514           0 : INPUT_DEV_ID_ATTR(product);
    1515           0 : INPUT_DEV_ID_ATTR(version);
    1516             : 
    1517             : static struct attribute *input_dev_id_attrs[] = {
    1518             :         &dev_attr_bustype.attr,
    1519             :         &dev_attr_vendor.attr,
    1520             :         &dev_attr_product.attr,
    1521             :         &dev_attr_version.attr,
    1522             :         NULL
    1523             : };
    1524             : 
    1525             : static const struct attribute_group input_dev_id_attr_group = {
    1526             :         .name   = "id",
    1527             :         .attrs  = input_dev_id_attrs,
    1528             : };
    1529             : 
    1530           0 : static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
    1531             :                               int max, int add_cr)
    1532             : {
    1533             :         int i;
    1534           0 :         int len = 0;
    1535           0 :         bool skip_empty = true;
    1536             : 
    1537           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1538           0 :                 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
    1539           0 :                                             bitmap[i], skip_empty);
    1540           0 :                 if (len) {
    1541           0 :                         skip_empty = false;
    1542           0 :                         if (i > 0)
    1543           0 :                                 len += snprintf(buf + len, max(buf_size - len, 0), " ");
    1544             :                 }
    1545             :         }
    1546             : 
    1547             :         /*
    1548             :          * If no output was produced print a single 0.
    1549             :          */
    1550           0 :         if (len == 0)
    1551           0 :                 len = snprintf(buf, buf_size, "%d", 0);
    1552             : 
    1553           0 :         if (add_cr)
    1554           0 :                 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
    1555             : 
    1556           0 :         return len;
    1557             : }
    1558             : 
    1559             : #define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
    1560             : static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
    1561             :                                        struct device_attribute *attr,   \
    1562             :                                        char *buf)                       \
    1563             : {                                                                       \
    1564             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1565             :         int len = input_print_bitmap(buf, PAGE_SIZE,                    \
    1566             :                                      input_dev->bm##bit, ev##_MAX,   \
    1567             :                                      true);                             \
    1568             :         return min_t(int, len, PAGE_SIZE);                              \
    1569             : }                                                                       \
    1570             : static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
    1571             : 
    1572           0 : INPUT_DEV_CAP_ATTR(EV, ev);
    1573           0 : INPUT_DEV_CAP_ATTR(KEY, key);
    1574           0 : INPUT_DEV_CAP_ATTR(REL, rel);
    1575           0 : INPUT_DEV_CAP_ATTR(ABS, abs);
    1576           0 : INPUT_DEV_CAP_ATTR(MSC, msc);
    1577           0 : INPUT_DEV_CAP_ATTR(LED, led);
    1578           0 : INPUT_DEV_CAP_ATTR(SND, snd);
    1579           0 : INPUT_DEV_CAP_ATTR(FF, ff);
    1580           0 : INPUT_DEV_CAP_ATTR(SW, sw);
    1581             : 
    1582             : static struct attribute *input_dev_caps_attrs[] = {
    1583             :         &dev_attr_ev.attr,
    1584             :         &dev_attr_key.attr,
    1585             :         &dev_attr_rel.attr,
    1586             :         &dev_attr_abs.attr,
    1587             :         &dev_attr_msc.attr,
    1588             :         &dev_attr_led.attr,
    1589             :         &dev_attr_snd.attr,
    1590             :         &dev_attr_ff.attr,
    1591             :         &dev_attr_sw.attr,
    1592             :         NULL
    1593             : };
    1594             : 
    1595             : static const struct attribute_group input_dev_caps_attr_group = {
    1596             :         .name   = "capabilities",
    1597             :         .attrs  = input_dev_caps_attrs,
    1598             : };
    1599             : 
    1600             : static const struct attribute_group *input_dev_attr_groups[] = {
    1601             :         &input_dev_attr_group,
    1602             :         &input_dev_id_attr_group,
    1603             :         &input_dev_caps_attr_group,
    1604             :         &input_poller_attribute_group,
    1605             :         NULL
    1606             : };
    1607             : 
    1608           0 : static void input_dev_release(struct device *device)
    1609             : {
    1610           0 :         struct input_dev *dev = to_input_dev(device);
    1611             : 
    1612           0 :         input_ff_destroy(dev);
    1613           0 :         input_mt_destroy_slots(dev);
    1614           0 :         kfree(dev->poller);
    1615           0 :         kfree(dev->absinfo);
    1616           0 :         kfree(dev->vals);
    1617           0 :         kfree(dev);
    1618             : 
    1619           0 :         module_put(THIS_MODULE);
    1620           0 : }
    1621             : 
    1622             : /*
    1623             :  * Input uevent interface - loading event handlers based on
    1624             :  * device bitfields.
    1625             :  */
    1626           0 : static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
    1627             :                                    const char *name, const unsigned long *bitmap, int max)
    1628             : {
    1629             :         int len;
    1630             : 
    1631           0 :         if (add_uevent_var(env, "%s", name))
    1632             :                 return -ENOMEM;
    1633             : 
    1634           0 :         len = input_print_bitmap(&env->buf[env->buflen - 1],
    1635           0 :                                  sizeof(env->buf) - env->buflen,
    1636             :                                  bitmap, max, false);
    1637           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1638             :                 return -ENOMEM;
    1639             : 
    1640           0 :         env->buflen += len;
    1641           0 :         return 0;
    1642             : }
    1643             : 
    1644           0 : static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
    1645             :                                          const struct input_dev *dev)
    1646             : {
    1647             :         int len;
    1648             : 
    1649           0 :         if (add_uevent_var(env, "MODALIAS="))
    1650             :                 return -ENOMEM;
    1651             : 
    1652           0 :         len = input_print_modalias(&env->buf[env->buflen - 1],
    1653           0 :                                    sizeof(env->buf) - env->buflen,
    1654             :                                    dev, 0);
    1655           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1656             :                 return -ENOMEM;
    1657             : 
    1658           0 :         env->buflen += len;
    1659           0 :         return 0;
    1660             : }
    1661             : 
    1662             : #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
    1663             :         do {                                                            \
    1664             :                 int err = add_uevent_var(env, fmt, val);                \
    1665             :                 if (err)                                                \
    1666             :                         return err;                                     \
    1667             :         } while (0)
    1668             : 
    1669             : #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
    1670             :         do {                                                            \
    1671             :                 int err = input_add_uevent_bm_var(env, name, bm, max);  \
    1672             :                 if (err)                                                \
    1673             :                         return err;                                     \
    1674             :         } while (0)
    1675             : 
    1676             : #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
    1677             :         do {                                                            \
    1678             :                 int err = input_add_uevent_modalias_var(env, dev);      \
    1679             :                 if (err)                                                \
    1680             :                         return err;                                     \
    1681             :         } while (0)
    1682             : 
    1683           0 : static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
    1684             : {
    1685           0 :         const struct input_dev *dev = to_input_dev(device);
    1686             : 
    1687           0 :         INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
    1688             :                                 dev->id.bustype, dev->id.vendor,
    1689             :                                 dev->id.product, dev->id.version);
    1690           0 :         if (dev->name)
    1691           0 :                 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
    1692           0 :         if (dev->phys)
    1693           0 :                 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
    1694           0 :         if (dev->uniq)
    1695           0 :                 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
    1696             : 
    1697           0 :         INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
    1698             : 
    1699           0 :         INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
    1700           0 :         if (test_bit(EV_KEY, dev->evbit))
    1701           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
    1702           0 :         if (test_bit(EV_REL, dev->evbit))
    1703           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
    1704           0 :         if (test_bit(EV_ABS, dev->evbit))
    1705           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
    1706           0 :         if (test_bit(EV_MSC, dev->evbit))
    1707           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
    1708           0 :         if (test_bit(EV_LED, dev->evbit))
    1709           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
    1710           0 :         if (test_bit(EV_SND, dev->evbit))
    1711           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
    1712           0 :         if (test_bit(EV_FF, dev->evbit))
    1713           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
    1714           0 :         if (test_bit(EV_SW, dev->evbit))
    1715           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
    1716             : 
    1717           0 :         INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
    1718             : 
    1719           0 :         return 0;
    1720             : }
    1721             : 
    1722             : #define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
    1723             :         do {                                                            \
    1724             :                 int i;                                                  \
    1725             :                 bool active;                                            \
    1726             :                                                                         \
    1727             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    1728             :                         break;                                          \
    1729             :                                                                         \
    1730             :                 for_each_set_bit(i, dev->bits##bit, type##_CNT) {    \
    1731             :                         active = test_bit(i, dev->bits);             \
    1732             :                         if (!active && !on)                             \
    1733             :                                 continue;                               \
    1734             :                                                                         \
    1735             :                         dev->event(dev, EV_##type, i, on ? active : 0);      \
    1736             :                 }                                                       \
    1737             :         } while (0)
    1738             : 
    1739           0 : static void input_dev_toggle(struct input_dev *dev, bool activate)
    1740             : {
    1741           0 :         if (!dev->event)
    1742             :                 return;
    1743             : 
    1744           0 :         INPUT_DO_TOGGLE(dev, LED, led, activate);
    1745           0 :         INPUT_DO_TOGGLE(dev, SND, snd, activate);
    1746             : 
    1747           0 :         if (activate && test_bit(EV_REP, dev->evbit)) {
    1748           0 :                 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
    1749           0 :                 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
    1750             :         }
    1751             : }
    1752             : 
    1753             : /**
    1754             :  * input_reset_device() - reset/restore the state of input device
    1755             :  * @dev: input device whose state needs to be reset
    1756             :  *
    1757             :  * This function tries to reset the state of an opened input device and
    1758             :  * bring internal state and state if the hardware in sync with each other.
    1759             :  * We mark all keys as released, restore LED state, repeat rate, etc.
    1760             :  */
    1761           0 : void input_reset_device(struct input_dev *dev)
    1762             : {
    1763             :         unsigned long flags;
    1764             : 
    1765           0 :         mutex_lock(&dev->mutex);
    1766           0 :         spin_lock_irqsave(&dev->event_lock, flags);
    1767             : 
    1768           0 :         input_dev_toggle(dev, true);
    1769           0 :         if (input_dev_release_keys(dev))
    1770           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    1771             : 
    1772           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
    1773           0 :         mutex_unlock(&dev->mutex);
    1774           0 : }
    1775             : EXPORT_SYMBOL(input_reset_device);
    1776             : 
    1777           0 : static int input_inhibit_device(struct input_dev *dev)
    1778             : {
    1779           0 :         mutex_lock(&dev->mutex);
    1780             : 
    1781           0 :         if (dev->inhibited)
    1782             :                 goto out;
    1783             : 
    1784           0 :         if (dev->users) {
    1785           0 :                 if (dev->close)
    1786           0 :                         dev->close(dev);
    1787           0 :                 if (dev->poller)
    1788           0 :                         input_dev_poller_stop(dev->poller);
    1789             :         }
    1790             : 
    1791           0 :         spin_lock_irq(&dev->event_lock);
    1792           0 :         input_mt_release_slots(dev);
    1793           0 :         input_dev_release_keys(dev);
    1794           0 :         input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    1795           0 :         input_dev_toggle(dev, false);
    1796           0 :         spin_unlock_irq(&dev->event_lock);
    1797             : 
    1798           0 :         dev->inhibited = true;
    1799             : 
    1800             : out:
    1801           0 :         mutex_unlock(&dev->mutex);
    1802           0 :         return 0;
    1803             : }
    1804             : 
    1805           0 : static int input_uninhibit_device(struct input_dev *dev)
    1806             : {
    1807           0 :         int ret = 0;
    1808             : 
    1809           0 :         mutex_lock(&dev->mutex);
    1810             : 
    1811           0 :         if (!dev->inhibited)
    1812             :                 goto out;
    1813             : 
    1814           0 :         if (dev->users) {
    1815           0 :                 if (dev->open) {
    1816           0 :                         ret = dev->open(dev);
    1817           0 :                         if (ret)
    1818             :                                 goto out;
    1819             :                 }
    1820           0 :                 if (dev->poller)
    1821           0 :                         input_dev_poller_start(dev->poller);
    1822             :         }
    1823             : 
    1824           0 :         dev->inhibited = false;
    1825           0 :         spin_lock_irq(&dev->event_lock);
    1826           0 :         input_dev_toggle(dev, true);
    1827           0 :         spin_unlock_irq(&dev->event_lock);
    1828             : 
    1829             : out:
    1830           0 :         mutex_unlock(&dev->mutex);
    1831           0 :         return ret;
    1832             : }
    1833             : 
    1834           0 : static int input_dev_suspend(struct device *dev)
    1835             : {
    1836           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1837             : 
    1838           0 :         spin_lock_irq(&input_dev->event_lock);
    1839             : 
    1840             :         /*
    1841             :          * Keys that are pressed now are unlikely to be
    1842             :          * still pressed when we resume.
    1843             :          */
    1844           0 :         if (input_dev_release_keys(input_dev))
    1845           0 :                 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
    1846             : 
    1847             :         /* Turn off LEDs and sounds, if any are active. */
    1848           0 :         input_dev_toggle(input_dev, false);
    1849             : 
    1850           0 :         spin_unlock_irq(&input_dev->event_lock);
    1851             : 
    1852           0 :         return 0;
    1853             : }
    1854             : 
    1855           0 : static int input_dev_resume(struct device *dev)
    1856             : {
    1857           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1858             : 
    1859           0 :         spin_lock_irq(&input_dev->event_lock);
    1860             : 
    1861             :         /* Restore state of LEDs and sounds, if any were active. */
    1862           0 :         input_dev_toggle(input_dev, true);
    1863             : 
    1864           0 :         spin_unlock_irq(&input_dev->event_lock);
    1865             : 
    1866           0 :         return 0;
    1867             : }
    1868             : 
    1869           0 : static int input_dev_freeze(struct device *dev)
    1870             : {
    1871           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1872             : 
    1873           0 :         spin_lock_irq(&input_dev->event_lock);
    1874             : 
    1875             :         /*
    1876             :          * Keys that are pressed now are unlikely to be
    1877             :          * still pressed when we resume.
    1878             :          */
    1879           0 :         if (input_dev_release_keys(input_dev))
    1880           0 :                 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
    1881             : 
    1882           0 :         spin_unlock_irq(&input_dev->event_lock);
    1883             : 
    1884           0 :         return 0;
    1885             : }
    1886             : 
    1887           0 : static int input_dev_poweroff(struct device *dev)
    1888             : {
    1889           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1890             : 
    1891           0 :         spin_lock_irq(&input_dev->event_lock);
    1892             : 
    1893             :         /* Turn off LEDs and sounds, if any are active. */
    1894           0 :         input_dev_toggle(input_dev, false);
    1895             : 
    1896           0 :         spin_unlock_irq(&input_dev->event_lock);
    1897             : 
    1898           0 :         return 0;
    1899             : }
    1900             : 
    1901             : static const struct dev_pm_ops input_dev_pm_ops = {
    1902             :         .suspend        = input_dev_suspend,
    1903             :         .resume         = input_dev_resume,
    1904             :         .freeze         = input_dev_freeze,
    1905             :         .poweroff       = input_dev_poweroff,
    1906             :         .restore        = input_dev_resume,
    1907             : };
    1908             : 
    1909             : static const struct device_type input_dev_type = {
    1910             :         .groups         = input_dev_attr_groups,
    1911             :         .release        = input_dev_release,
    1912             :         .uevent         = input_dev_uevent,
    1913             :         .pm             = pm_sleep_ptr(&input_dev_pm_ops),
    1914             : };
    1915             : 
    1916           0 : static char *input_devnode(const struct device *dev, umode_t *mode)
    1917             : {
    1918           0 :         return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
    1919             : }
    1920             : 
    1921             : struct class input_class = {
    1922             :         .name           = "input",
    1923             :         .devnode        = input_devnode,
    1924             : };
    1925             : EXPORT_SYMBOL_GPL(input_class);
    1926             : 
    1927             : /**
    1928             :  * input_allocate_device - allocate memory for new input device
    1929             :  *
    1930             :  * Returns prepared struct input_dev or %NULL.
    1931             :  *
    1932             :  * NOTE: Use input_free_device() to free devices that have not been
    1933             :  * registered; input_unregister_device() should be used for already
    1934             :  * registered devices.
    1935             :  */
    1936           0 : struct input_dev *input_allocate_device(void)
    1937             : {
    1938             :         static atomic_t input_no = ATOMIC_INIT(-1);
    1939             :         struct input_dev *dev;
    1940             : 
    1941           0 :         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    1942           0 :         if (dev) {
    1943           0 :                 dev->dev.type = &input_dev_type;
    1944           0 :                 dev->dev.class = &input_class;
    1945           0 :                 device_initialize(&dev->dev);
    1946           0 :                 mutex_init(&dev->mutex);
    1947           0 :                 spin_lock_init(&dev->event_lock);
    1948           0 :                 timer_setup(&dev->timer, NULL, 0);
    1949           0 :                 INIT_LIST_HEAD(&dev->h_list);
    1950           0 :                 INIT_LIST_HEAD(&dev->node);
    1951             : 
    1952           0 :                 dev_set_name(&dev->dev, "input%lu",
    1953           0 :                              (unsigned long)atomic_inc_return(&input_no));
    1954             : 
    1955           0 :                 __module_get(THIS_MODULE);
    1956             :         }
    1957             : 
    1958           0 :         return dev;
    1959             : }
    1960             : EXPORT_SYMBOL(input_allocate_device);
    1961             : 
    1962             : struct input_devres {
    1963             :         struct input_dev *input;
    1964             : };
    1965             : 
    1966           0 : static int devm_input_device_match(struct device *dev, void *res, void *data)
    1967             : {
    1968           0 :         struct input_devres *devres = res;
    1969             : 
    1970           0 :         return devres->input == data;
    1971             : }
    1972             : 
    1973           0 : static void devm_input_device_release(struct device *dev, void *res)
    1974             : {
    1975           0 :         struct input_devres *devres = res;
    1976           0 :         struct input_dev *input = devres->input;
    1977             : 
    1978             :         dev_dbg(dev, "%s: dropping reference to %s\n",
    1979             :                 __func__, dev_name(&input->dev));
    1980           0 :         input_put_device(input);
    1981           0 : }
    1982             : 
    1983             : /**
    1984             :  * devm_input_allocate_device - allocate managed input device
    1985             :  * @dev: device owning the input device being created
    1986             :  *
    1987             :  * Returns prepared struct input_dev or %NULL.
    1988             :  *
    1989             :  * Managed input devices do not need to be explicitly unregistered or
    1990             :  * freed as it will be done automatically when owner device unbinds from
    1991             :  * its driver (or binding fails). Once managed input device is allocated,
    1992             :  * it is ready to be set up and registered in the same fashion as regular
    1993             :  * input device. There are no special devm_input_device_[un]register()
    1994             :  * variants, regular ones work with both managed and unmanaged devices,
    1995             :  * should you need them. In most cases however, managed input device need
    1996             :  * not be explicitly unregistered or freed.
    1997             :  *
    1998             :  * NOTE: the owner device is set up as parent of input device and users
    1999             :  * should not override it.
    2000             :  */
    2001           0 : struct input_dev *devm_input_allocate_device(struct device *dev)
    2002             : {
    2003             :         struct input_dev *input;
    2004             :         struct input_devres *devres;
    2005             : 
    2006           0 :         devres = devres_alloc(devm_input_device_release,
    2007             :                               sizeof(*devres), GFP_KERNEL);
    2008           0 :         if (!devres)
    2009             :                 return NULL;
    2010             : 
    2011           0 :         input = input_allocate_device();
    2012           0 :         if (!input) {
    2013           0 :                 devres_free(devres);
    2014           0 :                 return NULL;
    2015             :         }
    2016             : 
    2017           0 :         input->dev.parent = dev;
    2018           0 :         input->devres_managed = true;
    2019             : 
    2020           0 :         devres->input = input;
    2021           0 :         devres_add(dev, devres);
    2022             : 
    2023           0 :         return input;
    2024             : }
    2025             : EXPORT_SYMBOL(devm_input_allocate_device);
    2026             : 
    2027             : /**
    2028             :  * input_free_device - free memory occupied by input_dev structure
    2029             :  * @dev: input device to free
    2030             :  *
    2031             :  * This function should only be used if input_register_device()
    2032             :  * was not called yet or if it failed. Once device was registered
    2033             :  * use input_unregister_device() and memory will be freed once last
    2034             :  * reference to the device is dropped.
    2035             :  *
    2036             :  * Device should be allocated by input_allocate_device().
    2037             :  *
    2038             :  * NOTE: If there are references to the input device then memory
    2039             :  * will not be freed until last reference is dropped.
    2040             :  */
    2041           0 : void input_free_device(struct input_dev *dev)
    2042             : {
    2043           0 :         if (dev) {
    2044           0 :                 if (dev->devres_managed)
    2045           0 :                         WARN_ON(devres_destroy(dev->dev.parent,
    2046             :                                                 devm_input_device_release,
    2047             :                                                 devm_input_device_match,
    2048             :                                                 dev));
    2049             :                 input_put_device(dev);
    2050             :         }
    2051           0 : }
    2052             : EXPORT_SYMBOL(input_free_device);
    2053             : 
    2054             : /**
    2055             :  * input_set_timestamp - set timestamp for input events
    2056             :  * @dev: input device to set timestamp for
    2057             :  * @timestamp: the time at which the event has occurred
    2058             :  *   in CLOCK_MONOTONIC
    2059             :  *
    2060             :  * This function is intended to provide to the input system a more
    2061             :  * accurate time of when an event actually occurred. The driver should
    2062             :  * call this function as soon as a timestamp is acquired ensuring
    2063             :  * clock conversions in input_set_timestamp are done correctly.
    2064             :  *
    2065             :  * The system entering suspend state between timestamp acquisition and
    2066             :  * calling input_set_timestamp can result in inaccurate conversions.
    2067             :  */
    2068           0 : void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
    2069             : {
    2070           0 :         dev->timestamp[INPUT_CLK_MONO] = timestamp;
    2071           0 :         dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
    2072           0 :         dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
    2073             :                                                            TK_OFFS_BOOT);
    2074           0 : }
    2075             : EXPORT_SYMBOL(input_set_timestamp);
    2076             : 
    2077             : /**
    2078             :  * input_get_timestamp - get timestamp for input events
    2079             :  * @dev: input device to get timestamp from
    2080             :  *
    2081             :  * A valid timestamp is a timestamp of non-zero value.
    2082             :  */
    2083           0 : ktime_t *input_get_timestamp(struct input_dev *dev)
    2084             : {
    2085           0 :         const ktime_t invalid_timestamp = ktime_set(0, 0);
    2086             : 
    2087           0 :         if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
    2088           0 :                 input_set_timestamp(dev, ktime_get());
    2089             : 
    2090           0 :         return dev->timestamp;
    2091             : }
    2092             : EXPORT_SYMBOL(input_get_timestamp);
    2093             : 
    2094             : /**
    2095             :  * input_set_capability - mark device as capable of a certain event
    2096             :  * @dev: device that is capable of emitting or accepting event
    2097             :  * @type: type of the event (EV_KEY, EV_REL, etc...)
    2098             :  * @code: event code
    2099             :  *
    2100             :  * In addition to setting up corresponding bit in appropriate capability
    2101             :  * bitmap the function also adjusts dev->evbit.
    2102             :  */
    2103           0 : void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
    2104             : {
    2105           0 :         if (type < EV_CNT && input_max_code[type] &&
    2106             :             code > input_max_code[type]) {
    2107           0 :                 pr_err("%s: invalid code %u for type %u\n", __func__, code,
    2108             :                        type);
    2109           0 :                 dump_stack();
    2110           0 :                 return;
    2111             :         }
    2112             : 
    2113           0 :         switch (type) {
    2114             :         case EV_KEY:
    2115           0 :                 __set_bit(code, dev->keybit);
    2116             :                 break;
    2117             : 
    2118             :         case EV_REL:
    2119           0 :                 __set_bit(code, dev->relbit);
    2120             :                 break;
    2121             : 
    2122             :         case EV_ABS:
    2123           0 :                 input_alloc_absinfo(dev);
    2124           0 :                 __set_bit(code, dev->absbit);
    2125             :                 break;
    2126             : 
    2127             :         case EV_MSC:
    2128           0 :                 __set_bit(code, dev->mscbit);
    2129             :                 break;
    2130             : 
    2131             :         case EV_SW:
    2132           0 :                 __set_bit(code, dev->swbit);
    2133             :                 break;
    2134             : 
    2135             :         case EV_LED:
    2136           0 :                 __set_bit(code, dev->ledbit);
    2137             :                 break;
    2138             : 
    2139             :         case EV_SND:
    2140           0 :                 __set_bit(code, dev->sndbit);
    2141             :                 break;
    2142             : 
    2143             :         case EV_FF:
    2144           0 :                 __set_bit(code, dev->ffbit);
    2145             :                 break;
    2146             : 
    2147             :         case EV_PWR:
    2148             :                 /* do nothing */
    2149             :                 break;
    2150             : 
    2151             :         default:
    2152           0 :                 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
    2153           0 :                 dump_stack();
    2154           0 :                 return;
    2155             :         }
    2156             : 
    2157           0 :         __set_bit(type, dev->evbit);
    2158             : }
    2159             : EXPORT_SYMBOL(input_set_capability);
    2160             : 
    2161           0 : static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
    2162             : {
    2163             :         int mt_slots;
    2164             :         int i;
    2165             :         unsigned int events;
    2166             : 
    2167           0 :         if (dev->mt) {
    2168           0 :                 mt_slots = dev->mt->num_slots;
    2169           0 :         } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
    2170           0 :                 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
    2171           0 :                            dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
    2172           0 :                 mt_slots = clamp(mt_slots, 2, 32);
    2173           0 :         } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
    2174             :                 mt_slots = 2;
    2175             :         } else {
    2176           0 :                 mt_slots = 0;
    2177             :         }
    2178             : 
    2179           0 :         events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
    2180             : 
    2181           0 :         if (test_bit(EV_ABS, dev->evbit))
    2182           0 :                 for_each_set_bit(i, dev->absbit, ABS_CNT)
    2183           0 :                         events += input_is_mt_axis(i) ? mt_slots : 1;
    2184             : 
    2185           0 :         if (test_bit(EV_REL, dev->evbit))
    2186           0 :                 events += bitmap_weight(dev->relbit, REL_CNT);
    2187             : 
    2188             :         /* Make room for KEY and MSC events */
    2189           0 :         events += 7;
    2190             : 
    2191           0 :         return events;
    2192             : }
    2193             : 
    2194             : #define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
    2195             :         do {                                                            \
    2196             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    2197             :                         memset(dev->bits##bit, 0,                    \
    2198             :                                 sizeof(dev->bits##bit));             \
    2199             :         } while (0)
    2200             : 
    2201           0 : static void input_cleanse_bitmasks(struct input_dev *dev)
    2202             : {
    2203           0 :         INPUT_CLEANSE_BITMASK(dev, KEY, key);
    2204           0 :         INPUT_CLEANSE_BITMASK(dev, REL, rel);
    2205           0 :         INPUT_CLEANSE_BITMASK(dev, ABS, abs);
    2206           0 :         INPUT_CLEANSE_BITMASK(dev, MSC, msc);
    2207           0 :         INPUT_CLEANSE_BITMASK(dev, LED, led);
    2208           0 :         INPUT_CLEANSE_BITMASK(dev, SND, snd);
    2209           0 :         INPUT_CLEANSE_BITMASK(dev, FF, ff);
    2210           0 :         INPUT_CLEANSE_BITMASK(dev, SW, sw);
    2211           0 : }
    2212             : 
    2213           0 : static void __input_unregister_device(struct input_dev *dev)
    2214             : {
    2215             :         struct input_handle *handle, *next;
    2216             : 
    2217           0 :         input_disconnect_device(dev);
    2218             : 
    2219           0 :         mutex_lock(&input_mutex);
    2220             : 
    2221           0 :         list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
    2222           0 :                 handle->handler->disconnect(handle);
    2223           0 :         WARN_ON(!list_empty(&dev->h_list));
    2224             : 
    2225           0 :         del_timer_sync(&dev->timer);
    2226           0 :         list_del_init(&dev->node);
    2227             : 
    2228             :         input_wakeup_procfs_readers();
    2229             : 
    2230           0 :         mutex_unlock(&input_mutex);
    2231             : 
    2232           0 :         device_del(&dev->dev);
    2233           0 : }
    2234             : 
    2235           0 : static void devm_input_device_unregister(struct device *dev, void *res)
    2236             : {
    2237           0 :         struct input_devres *devres = res;
    2238           0 :         struct input_dev *input = devres->input;
    2239             : 
    2240             :         dev_dbg(dev, "%s: unregistering device %s\n",
    2241             :                 __func__, dev_name(&input->dev));
    2242           0 :         __input_unregister_device(input);
    2243           0 : }
    2244             : 
    2245             : /*
    2246             :  * Generate software autorepeat event. Note that we take
    2247             :  * dev->event_lock here to avoid racing with input_event
    2248             :  * which may cause keys get "stuck".
    2249             :  */
    2250           0 : static void input_repeat_key(struct timer_list *t)
    2251             : {
    2252           0 :         struct input_dev *dev = from_timer(dev, t, timer);
    2253             :         unsigned long flags;
    2254             : 
    2255           0 :         spin_lock_irqsave(&dev->event_lock, flags);
    2256             : 
    2257           0 :         if (!dev->inhibited &&
    2258           0 :             test_bit(dev->repeat_key, dev->key) &&
    2259           0 :             is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
    2260             : 
    2261           0 :                 input_set_timestamp(dev, ktime_get());
    2262           0 :                 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
    2263           0 :                 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
    2264             : 
    2265           0 :                 if (dev->rep[REP_PERIOD])
    2266           0 :                         mod_timer(&dev->timer, jiffies +
    2267           0 :                                         msecs_to_jiffies(dev->rep[REP_PERIOD]));
    2268             :         }
    2269             : 
    2270           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
    2271           0 : }
    2272             : 
    2273             : /**
    2274             :  * input_enable_softrepeat - enable software autorepeat
    2275             :  * @dev: input device
    2276             :  * @delay: repeat delay
    2277             :  * @period: repeat period
    2278             :  *
    2279             :  * Enable software autorepeat on the input device.
    2280             :  */
    2281           0 : void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
    2282             : {
    2283           0 :         dev->timer.function = input_repeat_key;
    2284           0 :         dev->rep[REP_DELAY] = delay;
    2285           0 :         dev->rep[REP_PERIOD] = period;
    2286           0 : }
    2287             : EXPORT_SYMBOL(input_enable_softrepeat);
    2288             : 
    2289           0 : bool input_device_enabled(struct input_dev *dev)
    2290             : {
    2291             :         lockdep_assert_held(&dev->mutex);
    2292             : 
    2293           0 :         return !dev->inhibited && dev->users > 0;
    2294             : }
    2295             : EXPORT_SYMBOL_GPL(input_device_enabled);
    2296             : 
    2297             : /**
    2298             :  * input_register_device - register device with input core
    2299             :  * @dev: device to be registered
    2300             :  *
    2301             :  * This function registers device with input core. The device must be
    2302             :  * allocated with input_allocate_device() and all it's capabilities
    2303             :  * set up before registering.
    2304             :  * If function fails the device must be freed with input_free_device().
    2305             :  * Once device has been successfully registered it can be unregistered
    2306             :  * with input_unregister_device(); input_free_device() should not be
    2307             :  * called in this case.
    2308             :  *
    2309             :  * Note that this function is also used to register managed input devices
    2310             :  * (ones allocated with devm_input_allocate_device()). Such managed input
    2311             :  * devices need not be explicitly unregistered or freed, their tear down
    2312             :  * is controlled by the devres infrastructure. It is also worth noting
    2313             :  * that tear down of managed input devices is internally a 2-step process:
    2314             :  * registered managed input device is first unregistered, but stays in
    2315             :  * memory and can still handle input_event() calls (although events will
    2316             :  * not be delivered anywhere). The freeing of managed input device will
    2317             :  * happen later, when devres stack is unwound to the point where device
    2318             :  * allocation was made.
    2319             :  */
    2320           0 : int input_register_device(struct input_dev *dev)
    2321             : {
    2322           0 :         struct input_devres *devres = NULL;
    2323             :         struct input_handler *handler;
    2324             :         unsigned int packet_size;
    2325             :         const char *path;
    2326             :         int error;
    2327             : 
    2328           0 :         if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
    2329           0 :                 dev_err(&dev->dev,
    2330             :                         "Absolute device without dev->absinfo, refusing to register\n");
    2331           0 :                 return -EINVAL;
    2332             :         }
    2333             : 
    2334           0 :         if (dev->devres_managed) {
    2335           0 :                 devres = devres_alloc(devm_input_device_unregister,
    2336             :                                       sizeof(*devres), GFP_KERNEL);
    2337           0 :                 if (!devres)
    2338             :                         return -ENOMEM;
    2339             : 
    2340           0 :                 devres->input = dev;
    2341             :         }
    2342             : 
    2343             :         /* Every input device generates EV_SYN/SYN_REPORT events. */
    2344           0 :         __set_bit(EV_SYN, dev->evbit);
    2345             : 
    2346             :         /* KEY_RESERVED is not supposed to be transmitted to userspace. */
    2347           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
    2348             : 
    2349             :         /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
    2350           0 :         input_cleanse_bitmasks(dev);
    2351             : 
    2352           0 :         packet_size = input_estimate_events_per_packet(dev);
    2353           0 :         if (dev->hint_events_per_packet < packet_size)
    2354           0 :                 dev->hint_events_per_packet = packet_size;
    2355             : 
    2356           0 :         dev->max_vals = dev->hint_events_per_packet + 2;
    2357           0 :         dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
    2358           0 :         if (!dev->vals) {
    2359             :                 error = -ENOMEM;
    2360             :                 goto err_devres_free;
    2361             :         }
    2362             : 
    2363             :         /*
    2364             :          * If delay and period are pre-set by the driver, then autorepeating
    2365             :          * is handled by the driver itself and we don't do it in input.c.
    2366             :          */
    2367           0 :         if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
    2368             :                 input_enable_softrepeat(dev, 250, 33);
    2369             : 
    2370           0 :         if (!dev->getkeycode)
    2371           0 :                 dev->getkeycode = input_default_getkeycode;
    2372             : 
    2373           0 :         if (!dev->setkeycode)
    2374           0 :                 dev->setkeycode = input_default_setkeycode;
    2375             : 
    2376           0 :         if (dev->poller)
    2377           0 :                 input_dev_poller_finalize(dev->poller);
    2378             : 
    2379           0 :         error = device_add(&dev->dev);
    2380           0 :         if (error)
    2381             :                 goto err_free_vals;
    2382             : 
    2383           0 :         path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    2384           0 :         pr_info("%s as %s\n",
    2385             :                 dev->name ? dev->name : "Unspecified device",
    2386             :                 path ? path : "N/A");
    2387           0 :         kfree(path);
    2388             : 
    2389           0 :         error = mutex_lock_interruptible(&input_mutex);
    2390           0 :         if (error)
    2391             :                 goto err_device_del;
    2392             : 
    2393           0 :         list_add_tail(&dev->node, &input_dev_list);
    2394             : 
    2395           0 :         list_for_each_entry(handler, &input_handler_list, node)
    2396           0 :                 input_attach_handler(dev, handler);
    2397             : 
    2398             :         input_wakeup_procfs_readers();
    2399             : 
    2400           0 :         mutex_unlock(&input_mutex);
    2401             : 
    2402           0 :         if (dev->devres_managed) {
    2403             :                 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
    2404             :                         __func__, dev_name(&dev->dev));
    2405           0 :                 devres_add(dev->dev.parent, devres);
    2406             :         }
    2407             :         return 0;
    2408             : 
    2409             : err_device_del:
    2410           0 :         device_del(&dev->dev);
    2411             : err_free_vals:
    2412           0 :         kfree(dev->vals);
    2413           0 :         dev->vals = NULL;
    2414             : err_devres_free:
    2415           0 :         devres_free(devres);
    2416           0 :         return error;
    2417             : }
    2418             : EXPORT_SYMBOL(input_register_device);
    2419             : 
    2420             : /**
    2421             :  * input_unregister_device - unregister previously registered device
    2422             :  * @dev: device to be unregistered
    2423             :  *
    2424             :  * This function unregisters an input device. Once device is unregistered
    2425             :  * the caller should not try to access it as it may get freed at any moment.
    2426             :  */
    2427           0 : void input_unregister_device(struct input_dev *dev)
    2428             : {
    2429           0 :         if (dev->devres_managed) {
    2430           0 :                 WARN_ON(devres_destroy(dev->dev.parent,
    2431             :                                         devm_input_device_unregister,
    2432             :                                         devm_input_device_match,
    2433             :                                         dev));
    2434           0 :                 __input_unregister_device(dev);
    2435             :                 /*
    2436             :                  * We do not do input_put_device() here because it will be done
    2437             :                  * when 2nd devres fires up.
    2438             :                  */
    2439             :         } else {
    2440           0 :                 __input_unregister_device(dev);
    2441             :                 input_put_device(dev);
    2442             :         }
    2443           0 : }
    2444             : EXPORT_SYMBOL(input_unregister_device);
    2445             : 
    2446             : /**
    2447             :  * input_register_handler - register a new input handler
    2448             :  * @handler: handler to be registered
    2449             :  *
    2450             :  * This function registers a new input handler (interface) for input
    2451             :  * devices in the system and attaches it to all input devices that
    2452             :  * are compatible with the handler.
    2453             :  */
    2454           0 : int input_register_handler(struct input_handler *handler)
    2455             : {
    2456             :         struct input_dev *dev;
    2457             :         int error;
    2458             : 
    2459           0 :         error = mutex_lock_interruptible(&input_mutex);
    2460           0 :         if (error)
    2461             :                 return error;
    2462             : 
    2463           0 :         INIT_LIST_HEAD(&handler->h_list);
    2464             : 
    2465           0 :         list_add_tail(&handler->node, &input_handler_list);
    2466             : 
    2467           0 :         list_for_each_entry(dev, &input_dev_list, node)
    2468           0 :                 input_attach_handler(dev, handler);
    2469             : 
    2470             :         input_wakeup_procfs_readers();
    2471             : 
    2472           0 :         mutex_unlock(&input_mutex);
    2473           0 :         return 0;
    2474             : }
    2475             : EXPORT_SYMBOL(input_register_handler);
    2476             : 
    2477             : /**
    2478             :  * input_unregister_handler - unregisters an input handler
    2479             :  * @handler: handler to be unregistered
    2480             :  *
    2481             :  * This function disconnects a handler from its input devices and
    2482             :  * removes it from lists of known handlers.
    2483             :  */
    2484           0 : void input_unregister_handler(struct input_handler *handler)
    2485             : {
    2486             :         struct input_handle *handle, *next;
    2487             : 
    2488           0 :         mutex_lock(&input_mutex);
    2489             : 
    2490           0 :         list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
    2491           0 :                 handler->disconnect(handle);
    2492           0 :         WARN_ON(!list_empty(&handler->h_list));
    2493             : 
    2494           0 :         list_del_init(&handler->node);
    2495             : 
    2496             :         input_wakeup_procfs_readers();
    2497             : 
    2498           0 :         mutex_unlock(&input_mutex);
    2499           0 : }
    2500             : EXPORT_SYMBOL(input_unregister_handler);
    2501             : 
    2502             : /**
    2503             :  * input_handler_for_each_handle - handle iterator
    2504             :  * @handler: input handler to iterate
    2505             :  * @data: data for the callback
    2506             :  * @fn: function to be called for each handle
    2507             :  *
    2508             :  * Iterate over @bus's list of devices, and call @fn for each, passing
    2509             :  * it @data and stop when @fn returns a non-zero value. The function is
    2510             :  * using RCU to traverse the list and therefore may be using in atomic
    2511             :  * contexts. The @fn callback is invoked from RCU critical section and
    2512             :  * thus must not sleep.
    2513             :  */
    2514           0 : int input_handler_for_each_handle(struct input_handler *handler, void *data,
    2515             :                                   int (*fn)(struct input_handle *, void *))
    2516             : {
    2517             :         struct input_handle *handle;
    2518           0 :         int retval = 0;
    2519             : 
    2520             :         rcu_read_lock();
    2521             : 
    2522           0 :         list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
    2523           0 :                 retval = fn(handle, data);
    2524           0 :                 if (retval)
    2525             :                         break;
    2526             :         }
    2527             : 
    2528             :         rcu_read_unlock();
    2529             : 
    2530           0 :         return retval;
    2531             : }
    2532             : EXPORT_SYMBOL(input_handler_for_each_handle);
    2533             : 
    2534             : /**
    2535             :  * input_register_handle - register a new input handle
    2536             :  * @handle: handle to register
    2537             :  *
    2538             :  * This function puts a new input handle onto device's
    2539             :  * and handler's lists so that events can flow through
    2540             :  * it once it is opened using input_open_device().
    2541             :  *
    2542             :  * This function is supposed to be called from handler's
    2543             :  * connect() method.
    2544             :  */
    2545           0 : int input_register_handle(struct input_handle *handle)
    2546             : {
    2547           0 :         struct input_handler *handler = handle->handler;
    2548           0 :         struct input_dev *dev = handle->dev;
    2549             :         int error;
    2550             : 
    2551             :         /*
    2552             :          * We take dev->mutex here to prevent race with
    2553             :          * input_release_device().
    2554             :          */
    2555           0 :         error = mutex_lock_interruptible(&dev->mutex);
    2556           0 :         if (error)
    2557             :                 return error;
    2558             : 
    2559             :         /*
    2560             :          * Filters go to the head of the list, normal handlers
    2561             :          * to the tail.
    2562             :          */
    2563           0 :         if (handler->filter)
    2564           0 :                 list_add_rcu(&handle->d_node, &dev->h_list);
    2565             :         else
    2566           0 :                 list_add_tail_rcu(&handle->d_node, &dev->h_list);
    2567             : 
    2568           0 :         mutex_unlock(&dev->mutex);
    2569             : 
    2570             :         /*
    2571             :          * Since we are supposed to be called from ->connect()
    2572             :          * which is mutually exclusive with ->disconnect()
    2573             :          * we can't be racing with input_unregister_handle()
    2574             :          * and so separate lock is not needed here.
    2575             :          */
    2576           0 :         list_add_tail_rcu(&handle->h_node, &handler->h_list);
    2577             : 
    2578           0 :         if (handler->start)
    2579           0 :                 handler->start(handle);
    2580             : 
    2581             :         return 0;
    2582             : }
    2583             : EXPORT_SYMBOL(input_register_handle);
    2584             : 
    2585             : /**
    2586             :  * input_unregister_handle - unregister an input handle
    2587             :  * @handle: handle to unregister
    2588             :  *
    2589             :  * This function removes input handle from device's
    2590             :  * and handler's lists.
    2591             :  *
    2592             :  * This function is supposed to be called from handler's
    2593             :  * disconnect() method.
    2594             :  */
    2595           0 : void input_unregister_handle(struct input_handle *handle)
    2596             : {
    2597           0 :         struct input_dev *dev = handle->dev;
    2598             : 
    2599           0 :         list_del_rcu(&handle->h_node);
    2600             : 
    2601             :         /*
    2602             :          * Take dev->mutex to prevent race with input_release_device().
    2603             :          */
    2604           0 :         mutex_lock(&dev->mutex);
    2605           0 :         list_del_rcu(&handle->d_node);
    2606           0 :         mutex_unlock(&dev->mutex);
    2607             : 
    2608           0 :         synchronize_rcu();
    2609           0 : }
    2610             : EXPORT_SYMBOL(input_unregister_handle);
    2611             : 
    2612             : /**
    2613             :  * input_get_new_minor - allocates a new input minor number
    2614             :  * @legacy_base: beginning or the legacy range to be searched
    2615             :  * @legacy_num: size of legacy range
    2616             :  * @allow_dynamic: whether we can also take ID from the dynamic range
    2617             :  *
    2618             :  * This function allocates a new device minor for from input major namespace.
    2619             :  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
    2620             :  * parameters and whether ID can be allocated from dynamic range if there are
    2621             :  * no free IDs in legacy range.
    2622             :  */
    2623           0 : int input_get_new_minor(int legacy_base, unsigned int legacy_num,
    2624             :                         bool allow_dynamic)
    2625             : {
    2626             :         /*
    2627             :          * This function should be called from input handler's ->connect()
    2628             :          * methods, which are serialized with input_mutex, so no additional
    2629             :          * locking is needed here.
    2630             :          */
    2631           0 :         if (legacy_base >= 0) {
    2632           0 :                 int minor = ida_simple_get(&input_ida,
    2633             :                                            legacy_base,
    2634             :                                            legacy_base + legacy_num,
    2635             :                                            GFP_KERNEL);
    2636           0 :                 if (minor >= 0 || !allow_dynamic)
    2637             :                         return minor;
    2638             :         }
    2639             : 
    2640           0 :         return ida_simple_get(&input_ida,
    2641             :                               INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
    2642             :                               GFP_KERNEL);
    2643             : }
    2644             : EXPORT_SYMBOL(input_get_new_minor);
    2645             : 
    2646             : /**
    2647             :  * input_free_minor - release previously allocated minor
    2648             :  * @minor: minor to be released
    2649             :  *
    2650             :  * This function releases previously allocated input minor so that it can be
    2651             :  * reused later.
    2652             :  */
    2653           0 : void input_free_minor(unsigned int minor)
    2654             : {
    2655           0 :         ida_simple_remove(&input_ida, minor);
    2656           0 : }
    2657             : EXPORT_SYMBOL(input_free_minor);
    2658             : 
    2659           1 : static int __init input_init(void)
    2660             : {
    2661             :         int err;
    2662             : 
    2663           1 :         err = class_register(&input_class);
    2664           1 :         if (err) {
    2665           0 :                 pr_err("unable to register input_dev class\n");
    2666           0 :                 return err;
    2667             :         }
    2668             : 
    2669           1 :         err = input_proc_init();
    2670           1 :         if (err)
    2671             :                 goto fail1;
    2672             : 
    2673           1 :         err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2674             :                                      INPUT_MAX_CHAR_DEVICES, "input");
    2675           1 :         if (err) {
    2676           0 :                 pr_err("unable to register char major %d", INPUT_MAJOR);
    2677             :                 goto fail2;
    2678             :         }
    2679             : 
    2680             :         return 0;
    2681             : 
    2682           0 :  fail2: input_proc_exit();
    2683           0 :  fail1: class_unregister(&input_class);
    2684           0 :         return err;
    2685             : }
    2686             : 
    2687           0 : static void __exit input_exit(void)
    2688             : {
    2689           0 :         input_proc_exit();
    2690           0 :         unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2691             :                                  INPUT_MAX_CHAR_DEVICES);
    2692           0 :         class_unregister(&input_class);
    2693           0 : }
    2694             : 
    2695             : subsys_initcall(input_init);
    2696             : module_exit(input_exit);

Generated by: LCOV version 1.14