Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * PCI Bus Services, see include/linux/pci.h for further explanation.
4 : *
5 : * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 : * David Mosberger-Tang
7 : *
8 : * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 : */
10 :
11 : #include <linux/acpi.h>
12 : #include <linux/kernel.h>
13 : #include <linux/delay.h>
14 : #include <linux/dmi.h>
15 : #include <linux/init.h>
16 : #include <linux/msi.h>
17 : #include <linux/of.h>
18 : #include <linux/pci.h>
19 : #include <linux/pm.h>
20 : #include <linux/slab.h>
21 : #include <linux/module.h>
22 : #include <linux/spinlock.h>
23 : #include <linux/string.h>
24 : #include <linux/log2.h>
25 : #include <linux/logic_pio.h>
26 : #include <linux/pm_wakeup.h>
27 : #include <linux/interrupt.h>
28 : #include <linux/device.h>
29 : #include <linux/pm_runtime.h>
30 : #include <linux/pci_hotplug.h>
31 : #include <linux/vmalloc.h>
32 : #include <asm/dma.h>
33 : #include <linux/aer.h>
34 : #include <linux/bitfield.h>
35 : #include "pci.h"
36 :
37 : DEFINE_MUTEX(pci_slot_mutex);
38 :
39 : const char *pci_power_names[] = {
40 : "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 : };
42 : EXPORT_SYMBOL_GPL(pci_power_names);
43 :
44 : #ifdef CONFIG_X86_32
45 : int isa_dma_bridge_buggy;
46 : EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 : #endif
48 :
49 : int pci_pci_problems;
50 : EXPORT_SYMBOL(pci_pci_problems);
51 :
52 : unsigned int pci_pm_d3hot_delay;
53 :
54 : static void pci_pme_list_scan(struct work_struct *work);
55 :
56 : static LIST_HEAD(pci_pme_list);
57 : static DEFINE_MUTEX(pci_pme_list_mutex);
58 : static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 :
60 : struct pci_pme_device {
61 : struct list_head list;
62 : struct pci_dev *dev;
63 : };
64 :
65 : #define PME_TIMEOUT 1000 /* How long between PME checks */
66 :
67 : /*
68 : * Following exit from Conventional Reset, devices must be ready within 1 sec
69 : * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 : * Reset (PCIe r6.0 sec 5.8).
71 : */
72 : #define PCI_RESET_WAIT 1000 /* msec */
73 :
74 : /*
75 : * Devices may extend the 1 sec period through Request Retry Status
76 : * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 : * limit, but 60 sec ought to be enough for any device to become
78 : * responsive.
79 : */
80 : #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 :
82 0 : static void pci_dev_d3_sleep(struct pci_dev *dev)
83 : {
84 0 : unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 : unsigned int upper;
86 :
87 0 : if (delay_ms) {
88 : /* Use a 20% upper bound, 1ms minimum */
89 0 : upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 0 : usleep_range(delay_ms * USEC_PER_MSEC,
91 0 : (delay_ms + upper) * USEC_PER_MSEC);
92 : }
93 0 : }
94 :
95 0 : bool pci_reset_supported(struct pci_dev *dev)
96 : {
97 0 : return dev->reset_methods[0] != 0;
98 : }
99 :
100 : #ifdef CONFIG_PCI_DOMAINS
101 : int pci_domains_supported = 1;
102 : #endif
103 :
104 : #define DEFAULT_CARDBUS_IO_SIZE (256)
105 : #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 : /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 : unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 : unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 :
110 : #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 : #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 : #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 : /* hpiosize=nn can override this */
114 : unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115 : /*
116 : * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 : * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 : * pci=hpmemsize=nnM overrides both
119 : */
120 : unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 : unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 :
123 : #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 : unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 :
126 :
127 : /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 : #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 : #elif defined CONFIG_PCIE_BUS_SAFE
131 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 : #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 : #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 : #else
137 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 : #endif
139 :
140 : /*
141 : * The default CLS is used if arch didn't set CLS explicitly and not
142 : * all pci devices agree on the same value. Arch can override either
143 : * the dfl or actual value as it sees fit. Don't forget this is
144 : * measured in 32-bit words, not bytes.
145 : */
146 : u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 : u8 pci_cache_line_size;
148 :
149 : /*
150 : * If we set up a device for bus mastering, we need to check the latency
151 : * timer as certain BIOSes forget to set it properly.
152 : */
153 : unsigned int pcibios_max_latency = 255;
154 :
155 : /* If set, the PCIe ARI capability will not be used. */
156 : static bool pcie_ari_disabled;
157 :
158 : /* If set, the PCIe ATS capability will not be used. */
159 : static bool pcie_ats_disabled;
160 :
161 : /* If set, the PCI config space of each device is printed during boot. */
162 : bool pci_early_dump;
163 :
164 0 : bool pci_ats_disabled(void)
165 : {
166 0 : return pcie_ats_disabled;
167 : }
168 : EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 :
170 : /* Disable bridge_d3 for all PCIe ports */
171 : static bool pci_bridge_d3_disable;
172 : /* Force bridge_d3 for all PCIe ports */
173 : static bool pci_bridge_d3_force;
174 :
175 0 : static int __init pcie_port_pm_setup(char *str)
176 : {
177 0 : if (!strcmp(str, "off"))
178 0 : pci_bridge_d3_disable = true;
179 0 : else if (!strcmp(str, "force"))
180 0 : pci_bridge_d3_force = true;
181 0 : return 1;
182 : }
183 : __setup("pcie_port_pm=", pcie_port_pm_setup);
184 :
185 : /**
186 : * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 : * @bus: pointer to PCI bus structure to search
188 : *
189 : * Given a PCI bus, returns the highest PCI bus number present in the set
190 : * including the given PCI bus and its list of child PCI buses.
191 : */
192 0 : unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 : {
194 : struct pci_bus *tmp;
195 : unsigned char max, n;
196 :
197 0 : max = bus->busn_res.end;
198 0 : list_for_each_entry(tmp, &bus->children, node) {
199 0 : n = pci_bus_max_busnr(tmp);
200 0 : if (n > max)
201 0 : max = n;
202 : }
203 0 : return max;
204 : }
205 : EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 :
207 : /**
208 : * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 : * @pdev: the PCI device
210 : *
211 : * Returns error bits set in PCI_STATUS and clears them.
212 : */
213 0 : int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 : {
215 : u16 status;
216 : int ret;
217 :
218 0 : ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 0 : if (ret != PCIBIOS_SUCCESSFUL)
220 : return -EIO;
221 :
222 0 : status &= PCI_STATUS_ERROR_BITS;
223 0 : if (status)
224 0 : pci_write_config_word(pdev, PCI_STATUS, status);
225 :
226 0 : return status;
227 : }
228 : EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 :
230 : #ifdef CONFIG_HAS_IOMEM
231 0 : static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 : bool write_combine)
233 : {
234 0 : struct resource *res = &pdev->resource[bar];
235 0 : resource_size_t start = res->start;
236 0 : resource_size_t size = resource_size(res);
237 :
238 : /*
239 : * Make sure the BAR is actually a memory resource, not an IO resource
240 : */
241 0 : if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 0 : pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 0 : return NULL;
244 : }
245 :
246 0 : if (write_combine)
247 0 : return ioremap_wc(start, size);
248 :
249 0 : return ioremap(start, size);
250 : }
251 :
252 0 : void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 : {
254 0 : return __pci_ioremap_resource(pdev, bar, false);
255 : }
256 : EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 :
258 0 : void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 : {
260 0 : return __pci_ioremap_resource(pdev, bar, true);
261 : }
262 : EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 : #endif
264 :
265 : /**
266 : * pci_dev_str_match_path - test if a path string matches a device
267 : * @dev: the PCI device to test
268 : * @path: string to match the device against
269 : * @endptr: pointer to the string after the match
270 : *
271 : * Test if a string (typically from a kernel parameter) formatted as a
272 : * path of device/function addresses matches a PCI device. The string must
273 : * be of the form:
274 : *
275 : * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 : *
277 : * A path for a device can be obtained using 'lspci -t'. Using a path
278 : * is more robust against bus renumbering than using only a single bus,
279 : * device and function address.
280 : *
281 : * Returns 1 if the string matches the device, 0 if it does not and
282 : * a negative error code if it fails to parse the string.
283 : */
284 0 : static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 : const char **endptr)
286 : {
287 : int ret;
288 : unsigned int seg, bus, slot, func;
289 : char *wpath, *p;
290 : char end;
291 :
292 0 : *endptr = strchrnul(path, ';');
293 :
294 0 : wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 0 : if (!wpath)
296 : return -ENOMEM;
297 :
298 : while (1) {
299 0 : p = strrchr(wpath, '/');
300 0 : if (!p)
301 : break;
302 0 : ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 0 : if (ret != 2) {
304 : ret = -EINVAL;
305 : goto free_and_exit;
306 : }
307 :
308 0 : if (dev->devfn != PCI_DEVFN(slot, func)) {
309 : ret = 0;
310 : goto free_and_exit;
311 : }
312 :
313 : /*
314 : * Note: we don't need to get a reference to the upstream
315 : * bridge because we hold a reference to the top level
316 : * device which should hold a reference to the bridge,
317 : * and so on.
318 : */
319 0 : dev = pci_upstream_bridge(dev);
320 0 : if (!dev) {
321 : ret = 0;
322 : goto free_and_exit;
323 : }
324 :
325 0 : *p = 0;
326 : }
327 :
328 0 : ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 : &func, &end);
330 0 : if (ret != 4) {
331 0 : seg = 0;
332 0 : ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 0 : if (ret != 3) {
334 : ret = -EINVAL;
335 : goto free_and_exit;
336 : }
337 : }
338 :
339 0 : ret = (seg == pci_domain_nr(dev->bus) &&
340 0 : bus == dev->bus->number &&
341 0 : dev->devfn == PCI_DEVFN(slot, func));
342 :
343 : free_and_exit:
344 0 : kfree(wpath);
345 0 : return ret;
346 : }
347 :
348 : /**
349 : * pci_dev_str_match - test if a string matches a device
350 : * @dev: the PCI device to test
351 : * @p: string to match the device against
352 : * @endptr: pointer to the string after the match
353 : *
354 : * Test if a string (typically from a kernel parameter) matches a specified
355 : * PCI device. The string may be of one of the following formats:
356 : *
357 : * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 : * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 : *
360 : * The first format specifies a PCI bus/device/function address which
361 : * may change if new hardware is inserted, if motherboard firmware changes,
362 : * or due to changes caused in kernel parameters. If the domain is
363 : * left unspecified, it is taken to be 0. In order to be robust against
364 : * bus renumbering issues, a path of PCI device/function numbers may be used
365 : * to address the specific device. The path for a device can be determined
366 : * through the use of 'lspci -t'.
367 : *
368 : * The second format matches devices using IDs in the configuration
369 : * space which may match multiple devices in the system. A value of 0
370 : * for any field will match all devices. (Note: this differs from
371 : * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 : * legacy reasons and convenience so users don't have to specify
373 : * FFFFFFFFs on the command line.)
374 : *
375 : * Returns 1 if the string matches the device, 0 if it does not and
376 : * a negative error code if the string cannot be parsed.
377 : */
378 0 : static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 : const char **endptr)
380 : {
381 : int ret;
382 : int count;
383 : unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 :
385 0 : if (strncmp(p, "pci:", 4) == 0) {
386 : /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 0 : p += 4;
388 0 : ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 : &subsystem_vendor, &subsystem_device, &count);
390 0 : if (ret != 4) {
391 0 : ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 0 : if (ret != 2)
393 : return -EINVAL;
394 :
395 0 : subsystem_vendor = 0;
396 0 : subsystem_device = 0;
397 : }
398 :
399 0 : p += count;
400 :
401 0 : if ((!vendor || vendor == dev->vendor) &&
402 0 : (!device || device == dev->device) &&
403 0 : (!subsystem_vendor ||
404 0 : subsystem_vendor == dev->subsystem_vendor) &&
405 0 : (!subsystem_device ||
406 0 : subsystem_device == dev->subsystem_device))
407 : goto found;
408 : } else {
409 : /*
410 : * PCI Bus, Device, Function IDs are specified
411 : * (optionally, may include a path of devfns following it)
412 : */
413 0 : ret = pci_dev_str_match_path(dev, p, &p);
414 0 : if (ret < 0)
415 : return ret;
416 0 : else if (ret)
417 : goto found;
418 : }
419 :
420 0 : *endptr = p;
421 0 : return 0;
422 :
423 : found:
424 0 : *endptr = p;
425 0 : return 1;
426 : }
427 :
428 0 : static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 : u8 pos, int cap, int *ttl)
430 : {
431 : u8 id;
432 : u16 ent;
433 :
434 0 : pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 :
436 0 : while ((*ttl)--) {
437 0 : if (pos < 0x40)
438 : break;
439 0 : pos &= ~3;
440 0 : pci_bus_read_config_word(bus, devfn, pos, &ent);
441 :
442 0 : id = ent & 0xff;
443 0 : if (id == 0xff)
444 : break;
445 0 : if (id == cap)
446 0 : return pos;
447 0 : pos = (ent >> 8);
448 : }
449 : return 0;
450 : }
451 :
452 : static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 : u8 pos, int cap)
454 : {
455 0 : int ttl = PCI_FIND_CAP_TTL;
456 :
457 0 : return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 : }
459 :
460 0 : u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 : {
462 0 : return __pci_find_next_cap(dev->bus, dev->devfn,
463 0 : pos + PCI_CAP_LIST_NEXT, cap);
464 : }
465 : EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 :
467 0 : static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 : unsigned int devfn, u8 hdr_type)
469 : {
470 : u16 status;
471 :
472 0 : pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 0 : if (!(status & PCI_STATUS_CAP_LIST))
474 : return 0;
475 :
476 0 : switch (hdr_type) {
477 : case PCI_HEADER_TYPE_NORMAL:
478 : case PCI_HEADER_TYPE_BRIDGE:
479 : return PCI_CAPABILITY_LIST;
480 : case PCI_HEADER_TYPE_CARDBUS:
481 0 : return PCI_CB_CAPABILITY_LIST;
482 : }
483 :
484 0 : return 0;
485 : }
486 :
487 : /**
488 : * pci_find_capability - query for devices' capabilities
489 : * @dev: PCI device to query
490 : * @cap: capability code
491 : *
492 : * Tell if a device supports a given PCI capability.
493 : * Returns the address of the requested capability structure within the
494 : * device's PCI configuration space or 0 in case the device does not
495 : * support it. Possible values for @cap include:
496 : *
497 : * %PCI_CAP_ID_PM Power Management
498 : * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 : * %PCI_CAP_ID_VPD Vital Product Data
500 : * %PCI_CAP_ID_SLOTID Slot Identification
501 : * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 : * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 : * %PCI_CAP_ID_PCIX PCI-X
504 : * %PCI_CAP_ID_EXP PCI Express
505 : */
506 0 : u8 pci_find_capability(struct pci_dev *dev, int cap)
507 : {
508 : u8 pos;
509 :
510 0 : pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 0 : if (pos)
512 0 : pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 :
514 0 : return pos;
515 : }
516 : EXPORT_SYMBOL(pci_find_capability);
517 :
518 : /**
519 : * pci_bus_find_capability - query for devices' capabilities
520 : * @bus: the PCI bus to query
521 : * @devfn: PCI device to query
522 : * @cap: capability code
523 : *
524 : * Like pci_find_capability() but works for PCI devices that do not have a
525 : * pci_dev structure set up yet.
526 : *
527 : * Returns the address of the requested capability structure within the
528 : * device's PCI configuration space or 0 in case the device does not
529 : * support it.
530 : */
531 0 : u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 : {
533 : u8 hdr_type, pos;
534 :
535 0 : pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 :
537 0 : pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 0 : if (pos)
539 0 : pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 :
541 0 : return pos;
542 : }
543 : EXPORT_SYMBOL(pci_bus_find_capability);
544 :
545 : /**
546 : * pci_find_next_ext_capability - Find an extended capability
547 : * @dev: PCI device to query
548 : * @start: address at which to start looking (0 to start at beginning of list)
549 : * @cap: capability code
550 : *
551 : * Returns the address of the next matching extended capability structure
552 : * within the device's PCI configuration space or 0 if the device does
553 : * not support it. Some capabilities can occur several times, e.g., the
554 : * vendor-specific capability, and this provides a way to find them all.
555 : */
556 0 : u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 : {
558 : u32 header;
559 : int ttl;
560 0 : u16 pos = PCI_CFG_SPACE_SIZE;
561 :
562 : /* minimum 8 bytes per capability */
563 0 : ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 :
565 0 : if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 : return 0;
567 :
568 0 : if (start)
569 0 : pos = start;
570 :
571 0 : if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 : return 0;
573 :
574 : /*
575 : * If we have no capabilities, this is indicated by cap ID,
576 : * cap version and next pointer all being 0.
577 : */
578 0 : if (header == 0)
579 : return 0;
580 :
581 0 : while (ttl-- > 0) {
582 0 : if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 : return pos;
584 :
585 0 : pos = PCI_EXT_CAP_NEXT(header);
586 0 : if (pos < PCI_CFG_SPACE_SIZE)
587 : break;
588 :
589 0 : if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 : break;
591 : }
592 :
593 : return 0;
594 : }
595 : EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 :
597 : /**
598 : * pci_find_ext_capability - Find an extended capability
599 : * @dev: PCI device to query
600 : * @cap: capability code
601 : *
602 : * Returns the address of the requested extended capability structure
603 : * within the device's PCI configuration space or 0 if the device does
604 : * not support it. Possible values for @cap include:
605 : *
606 : * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 : * %PCI_EXT_CAP_ID_VC Virtual Channel
608 : * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 : * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 : */
611 0 : u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 : {
613 0 : return pci_find_next_ext_capability(dev, 0, cap);
614 : }
615 : EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 :
617 : /**
618 : * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 : * @dev: PCI device to query
620 : *
621 : * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 : * Number.
623 : *
624 : * Returns the DSN, or zero if the capability does not exist.
625 : */
626 0 : u64 pci_get_dsn(struct pci_dev *dev)
627 : {
628 : u32 dword;
629 : u64 dsn;
630 : int pos;
631 :
632 0 : pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 0 : if (!pos)
634 : return 0;
635 :
636 : /*
637 : * The Device Serial Number is two dwords offset 4 bytes from the
638 : * capability position. The specification says that the first dword is
639 : * the lower half, and the second dword is the upper half.
640 : */
641 0 : pos += 4;
642 0 : pci_read_config_dword(dev, pos, &dword);
643 0 : dsn = (u64)dword;
644 0 : pci_read_config_dword(dev, pos + 4, &dword);
645 0 : dsn |= ((u64)dword) << 32;
646 :
647 0 : return dsn;
648 : }
649 : EXPORT_SYMBOL_GPL(pci_get_dsn);
650 :
651 0 : static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 : {
653 0 : int rc, ttl = PCI_FIND_CAP_TTL;
654 : u8 cap, mask;
655 :
656 0 : if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 : mask = HT_3BIT_CAP_MASK;
658 : else
659 0 : mask = HT_5BIT_CAP_MASK;
660 :
661 0 : pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 : PCI_CAP_ID_HT, &ttl);
663 0 : while (pos) {
664 0 : rc = pci_read_config_byte(dev, pos + 3, &cap);
665 0 : if (rc != PCIBIOS_SUCCESSFUL)
666 : return 0;
667 :
668 0 : if ((cap & mask) == ht_cap)
669 : return pos;
670 :
671 0 : pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 0 : pos + PCI_CAP_LIST_NEXT,
673 : PCI_CAP_ID_HT, &ttl);
674 : }
675 :
676 : return 0;
677 : }
678 :
679 : /**
680 : * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 : * @dev: PCI device to query
682 : * @pos: Position from which to continue searching
683 : * @ht_cap: HyperTransport capability code
684 : *
685 : * To be used in conjunction with pci_find_ht_capability() to search for
686 : * all capabilities matching @ht_cap. @pos should always be a value returned
687 : * from pci_find_ht_capability().
688 : *
689 : * NB. To be 100% safe against broken PCI devices, the caller should take
690 : * steps to avoid an infinite loop.
691 : */
692 0 : u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 : {
694 0 : return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 : }
696 : EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 :
698 : /**
699 : * pci_find_ht_capability - query a device's HyperTransport capabilities
700 : * @dev: PCI device to query
701 : * @ht_cap: HyperTransport capability code
702 : *
703 : * Tell if a device supports a given HyperTransport capability.
704 : * Returns an address within the device's PCI configuration space
705 : * or 0 in case the device does not support the request capability.
706 : * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 : * which has a HyperTransport capability matching @ht_cap.
708 : */
709 0 : u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 : {
711 : u8 pos;
712 :
713 0 : pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 0 : if (pos)
715 0 : pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 :
717 0 : return pos;
718 : }
719 : EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 :
721 : /**
722 : * pci_find_vsec_capability - Find a vendor-specific extended capability
723 : * @dev: PCI device to query
724 : * @vendor: Vendor ID for which capability is defined
725 : * @cap: Vendor-specific capability ID
726 : *
727 : * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 : * VSEC ID @cap. If found, return the capability offset in
729 : * config space; otherwise return 0.
730 : */
731 0 : u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 : {
733 0 : u16 vsec = 0;
734 : u32 header;
735 :
736 0 : if (vendor != dev->vendor)
737 : return 0;
738 :
739 0 : while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 : PCI_EXT_CAP_ID_VNDR))) {
741 0 : if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 0 : &header) == PCIBIOS_SUCCESSFUL &&
743 0 : PCI_VNDR_HEADER_ID(header) == cap)
744 : return vsec;
745 : }
746 :
747 : return 0;
748 : }
749 : EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
750 :
751 : /**
752 : * pci_find_dvsec_capability - Find DVSEC for vendor
753 : * @dev: PCI device to query
754 : * @vendor: Vendor ID to match for the DVSEC
755 : * @dvsec: Designated Vendor-specific capability ID
756 : *
757 : * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758 : * offset in config space; otherwise return 0.
759 : */
760 0 : u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
761 : {
762 : int pos;
763 :
764 0 : pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
765 0 : if (!pos)
766 : return 0;
767 :
768 0 : while (pos) {
769 : u16 v, id;
770 :
771 0 : pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 0 : pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 0 : if (vendor == v && dvsec == id)
774 0 : return pos;
775 :
776 0 : pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
777 : }
778 :
779 : return 0;
780 : }
781 : EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
782 :
783 : /**
784 : * pci_find_parent_resource - return resource region of parent bus of given
785 : * region
786 : * @dev: PCI device structure contains resources to be searched
787 : * @res: child resource record for which parent is sought
788 : *
789 : * For given resource region of given device, return the resource region of
790 : * parent bus the given region is contained in.
791 : */
792 0 : struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 : struct resource *res)
794 : {
795 0 : const struct pci_bus *bus = dev->bus;
796 : struct resource *r;
797 :
798 0 : pci_bus_for_each_resource(bus, r) {
799 0 : if (!r)
800 0 : continue;
801 0 : if (resource_contains(r, res)) {
802 :
803 : /*
804 : * If the window is prefetchable but the BAR is
805 : * not, the allocator made a mistake.
806 : */
807 0 : if (r->flags & IORESOURCE_PREFETCH &&
808 0 : !(res->flags & IORESOURCE_PREFETCH))
809 : return NULL;
810 :
811 : /*
812 : * If we're below a transparent bridge, there may
813 : * be both a positively-decoded aperture and a
814 : * subtractively-decoded region that contain the BAR.
815 : * We want the positively-decoded one, so this depends
816 : * on pci_bus_for_each_resource() giving us those
817 : * first.
818 : */
819 0 : return r;
820 : }
821 : }
822 : return NULL;
823 : }
824 : EXPORT_SYMBOL(pci_find_parent_resource);
825 :
826 : /**
827 : * pci_find_resource - Return matching PCI device resource
828 : * @dev: PCI device to query
829 : * @res: Resource to look for
830 : *
831 : * Goes over standard PCI resources (BARs) and checks if the given resource
832 : * is partially or fully contained in any of them. In that case the
833 : * matching resource is returned, %NULL otherwise.
834 : */
835 0 : struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
836 : {
837 : int i;
838 :
839 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 0 : struct resource *r = &dev->resource[i];
841 :
842 0 : if (r->start && resource_contains(r, res))
843 : return r;
844 : }
845 :
846 : return NULL;
847 : }
848 : EXPORT_SYMBOL(pci_find_resource);
849 :
850 : /**
851 : * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852 : * @dev: the PCI device to operate on
853 : * @pos: config space offset of status word
854 : * @mask: mask of bit(s) to care about in status word
855 : *
856 : * Return 1 when mask bit(s) in status word clear, 0 otherwise.
857 : */
858 0 : int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
859 : {
860 : int i;
861 :
862 : /* Wait for Transaction Pending bit clean */
863 0 : for (i = 0; i < 4; i++) {
864 : u16 status;
865 0 : if (i)
866 0 : msleep((1 << (i - 1)) * 100);
867 :
868 0 : pci_read_config_word(dev, pos, &status);
869 0 : if (!(status & mask))
870 0 : return 1;
871 : }
872 :
873 : return 0;
874 : }
875 :
876 : static int pci_acs_enable;
877 :
878 : /**
879 : * pci_request_acs - ask for ACS to be enabled if supported
880 : */
881 0 : void pci_request_acs(void)
882 : {
883 0 : pci_acs_enable = 1;
884 0 : }
885 :
886 : static const char *disable_acs_redir_param;
887 :
888 : /**
889 : * pci_disable_acs_redir - disable ACS redirect capabilities
890 : * @dev: the PCI device
891 : *
892 : * For only devices specified in the disable_acs_redir parameter.
893 : */
894 0 : static void pci_disable_acs_redir(struct pci_dev *dev)
895 : {
896 0 : int ret = 0;
897 : const char *p;
898 : int pos;
899 : u16 ctrl;
900 :
901 0 : if (!disable_acs_redir_param)
902 0 : return;
903 :
904 0 : p = disable_acs_redir_param;
905 0 : while (*p) {
906 0 : ret = pci_dev_str_match(dev, p, &p);
907 0 : if (ret < 0) {
908 0 : pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 : disable_acs_redir_param);
910 :
911 : break;
912 0 : } else if (ret == 1) {
913 : /* Found a match */
914 : break;
915 : }
916 :
917 0 : if (*p != ';' && *p != ',') {
918 : /* End of param or invalid format */
919 : break;
920 : }
921 0 : p++;
922 : }
923 :
924 0 : if (ret != 1)
925 : return;
926 :
927 0 : if (!pci_dev_specific_disable_acs_redir(dev))
928 : return;
929 :
930 0 : pos = dev->acs_cap;
931 0 : if (!pos) {
932 0 : pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
933 0 : return;
934 : }
935 :
936 0 : pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
937 :
938 : /* P2P Request & Completion Redirect */
939 0 : ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
940 :
941 0 : pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
942 :
943 0 : pci_info(dev, "disabled ACS redirect\n");
944 : }
945 :
946 : /**
947 : * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948 : * @dev: the PCI device
949 : */
950 0 : static void pci_std_enable_acs(struct pci_dev *dev)
951 : {
952 : int pos;
953 : u16 cap;
954 : u16 ctrl;
955 :
956 0 : pos = dev->acs_cap;
957 0 : if (!pos)
958 0 : return;
959 :
960 0 : pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 0 : pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
962 :
963 : /* Source Validation */
964 0 : ctrl |= (cap & PCI_ACS_SV);
965 :
966 : /* P2P Request Redirect */
967 0 : ctrl |= (cap & PCI_ACS_RR);
968 :
969 : /* P2P Completion Redirect */
970 0 : ctrl |= (cap & PCI_ACS_CR);
971 :
972 : /* Upstream Forwarding */
973 0 : ctrl |= (cap & PCI_ACS_UF);
974 :
975 : /* Enable Translation Blocking for external devices and noats */
976 0 : if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 0 : ctrl |= (cap & PCI_ACS_TB);
978 :
979 0 : pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
980 : }
981 :
982 : /**
983 : * pci_enable_acs - enable ACS if hardware support it
984 : * @dev: the PCI device
985 : */
986 0 : static void pci_enable_acs(struct pci_dev *dev)
987 : {
988 0 : if (!pci_acs_enable)
989 : goto disable_acs_redir;
990 :
991 0 : if (!pci_dev_specific_enable_acs(dev))
992 : goto disable_acs_redir;
993 :
994 0 : pci_std_enable_acs(dev);
995 :
996 : disable_acs_redir:
997 : /*
998 : * Note: pci_disable_acs_redir() must be called even if ACS was not
999 : * enabled by the kernel because it may have been enabled by
1000 : * platform firmware. So if we are told to disable it, we should
1001 : * always disable it after setting the kernel's default
1002 : * preferences.
1003 : */
1004 0 : pci_disable_acs_redir(dev);
1005 0 : }
1006 :
1007 : /**
1008 : * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009 : * @dev: PCI device to have its BARs restored
1010 : *
1011 : * Restore the BAR values for a given device, so as to make it
1012 : * accessible by its driver.
1013 : */
1014 : static void pci_restore_bars(struct pci_dev *dev)
1015 : {
1016 : int i;
1017 :
1018 0 : for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 0 : pci_update_resource(dev, i);
1020 : }
1021 :
1022 : static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1023 : {
1024 : if (pci_use_mid_pm())
1025 : return true;
1026 :
1027 0 : return acpi_pci_power_manageable(dev);
1028 : }
1029 :
1030 : static inline int platform_pci_set_power_state(struct pci_dev *dev,
1031 : pci_power_t t)
1032 : {
1033 : if (pci_use_mid_pm())
1034 : return mid_pci_set_power_state(dev, t);
1035 :
1036 0 : return acpi_pci_set_power_state(dev, t);
1037 : }
1038 :
1039 : static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1040 : {
1041 : if (pci_use_mid_pm())
1042 : return mid_pci_get_power_state(dev);
1043 :
1044 0 : return acpi_pci_get_power_state(dev);
1045 : }
1046 :
1047 : static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1048 : {
1049 : if (!pci_use_mid_pm())
1050 : acpi_pci_refresh_power_state(dev);
1051 : }
1052 :
1053 : static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1054 : {
1055 : if (pci_use_mid_pm())
1056 : return PCI_POWER_ERROR;
1057 :
1058 : return acpi_pci_choose_state(dev);
1059 : }
1060 :
1061 : static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1062 : {
1063 : if (pci_use_mid_pm())
1064 : return PCI_POWER_ERROR;
1065 :
1066 0 : return acpi_pci_wakeup(dev, enable);
1067 : }
1068 :
1069 : static inline bool platform_pci_need_resume(struct pci_dev *dev)
1070 : {
1071 : if (pci_use_mid_pm())
1072 : return false;
1073 :
1074 0 : return acpi_pci_need_resume(dev);
1075 : }
1076 :
1077 : static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1078 : {
1079 : if (pci_use_mid_pm())
1080 : return false;
1081 :
1082 0 : return acpi_pci_bridge_d3(dev);
1083 : }
1084 :
1085 : /**
1086 : * pci_update_current_state - Read power state of given device and cache it
1087 : * @dev: PCI device to handle.
1088 : * @state: State to cache in case the device doesn't have the PM capability
1089 : *
1090 : * The power state is read from the PMCSR register, which however is
1091 : * inaccessible in D3cold. The platform firmware is therefore queried first
1092 : * to detect accessibility of the register. In case the platform firmware
1093 : * reports an incorrect state or the device isn't power manageable by the
1094 : * platform at all, we try to detect D3cold by testing accessibility of the
1095 : * vendor ID in config space.
1096 : */
1097 0 : void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1098 : {
1099 0 : if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 : dev->current_state = PCI_D3cold;
1101 0 : } else if (dev->pm_cap) {
1102 : u16 pmcsr;
1103 :
1104 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 0 : if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 0 : dev->current_state = PCI_D3cold;
1107 0 : return;
1108 : }
1109 0 : dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1110 : } else {
1111 0 : dev->current_state = state;
1112 : }
1113 : }
1114 :
1115 : /**
1116 : * pci_refresh_power_state - Refresh the given device's power state data
1117 : * @dev: Target PCI device.
1118 : *
1119 : * Ask the platform to refresh the devices power state information and invoke
1120 : * pci_update_current_state() to update its current PCI power state.
1121 : */
1122 0 : void pci_refresh_power_state(struct pci_dev *dev)
1123 : {
1124 0 : platform_pci_refresh_power_state(dev);
1125 0 : pci_update_current_state(dev, dev->current_state);
1126 0 : }
1127 :
1128 : /**
1129 : * pci_platform_power_transition - Use platform to change device power state
1130 : * @dev: PCI device to handle.
1131 : * @state: State to put the device into.
1132 : */
1133 0 : int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1134 : {
1135 : int error;
1136 :
1137 0 : error = platform_pci_set_power_state(dev, state);
1138 : if (!error)
1139 : pci_update_current_state(dev, state);
1140 0 : else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 0 : dev->current_state = PCI_D0;
1142 :
1143 0 : return error;
1144 : }
1145 : EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1146 :
1147 0 : static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1148 : {
1149 0 : pm_request_resume(&pci_dev->dev);
1150 0 : return 0;
1151 : }
1152 :
1153 : /**
1154 : * pci_resume_bus - Walk given bus and runtime resume devices on it
1155 : * @bus: Top bus of the subtree to walk.
1156 : */
1157 0 : void pci_resume_bus(struct pci_bus *bus)
1158 : {
1159 0 : if (bus)
1160 0 : pci_walk_bus(bus, pci_resume_one, NULL);
1161 0 : }
1162 :
1163 0 : static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1164 : {
1165 0 : int delay = 1;
1166 0 : bool retrain = false;
1167 : struct pci_dev *bridge;
1168 :
1169 0 : if (pci_is_pcie(dev)) {
1170 0 : bridge = pci_upstream_bridge(dev);
1171 0 : if (bridge)
1172 0 : retrain = true;
1173 : }
1174 :
1175 : /*
1176 : * After reset, the device should not silently discard config
1177 : * requests, but it may still indicate that it needs more time by
1178 : * responding to them with CRS completions. The Root Port will
1179 : * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 : * the read (except when CRS SV is enabled and the read was for the
1181 : * Vendor ID; in that case it synthesizes 0x0001 data).
1182 : *
1183 : * Wait for the device to return a non-CRS completion. Read the
1184 : * Command register instead of Vendor ID so we don't have to
1185 : * contend with the CRS SV value.
1186 : */
1187 : for (;;) {
1188 : u32 id;
1189 :
1190 0 : pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 0 : if (!PCI_POSSIBLE_ERROR(id))
1192 : break;
1193 :
1194 0 : if (delay > timeout) {
1195 0 : pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 : delay - 1, reset_type);
1197 0 : return -ENOTTY;
1198 : }
1199 :
1200 0 : if (delay > PCI_RESET_WAIT) {
1201 0 : if (retrain) {
1202 0 : retrain = false;
1203 0 : if (pcie_failed_link_retrain(bridge)) {
1204 0 : delay = 1;
1205 0 : continue;
1206 : }
1207 : }
1208 0 : pci_info(dev, "not ready %dms after %s; waiting\n",
1209 : delay - 1, reset_type);
1210 : }
1211 :
1212 0 : msleep(delay);
1213 0 : delay *= 2;
1214 : }
1215 :
1216 0 : if (delay > PCI_RESET_WAIT)
1217 0 : pci_info(dev, "ready %dms after %s\n", delay - 1,
1218 : reset_type);
1219 :
1220 : return 0;
1221 : }
1222 :
1223 : /**
1224 : * pci_power_up - Put the given device into D0
1225 : * @dev: PCI device to power up
1226 : *
1227 : * On success, return 0 or 1, depending on whether or not it is necessary to
1228 : * restore the device's BARs subsequently (1 is returned in that case).
1229 : */
1230 0 : int pci_power_up(struct pci_dev *dev)
1231 : {
1232 : bool need_restore;
1233 : pci_power_t state;
1234 : u16 pmcsr;
1235 :
1236 0 : platform_pci_set_power_state(dev, PCI_D0);
1237 :
1238 0 : if (!dev->pm_cap) {
1239 0 : state = platform_pci_get_power_state(dev);
1240 : if (state == PCI_UNKNOWN)
1241 0 : dev->current_state = PCI_D0;
1242 : else
1243 : dev->current_state = state;
1244 :
1245 : if (state == PCI_D0)
1246 : return 0;
1247 :
1248 : return -EIO;
1249 : }
1250 :
1251 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1252 0 : if (PCI_POSSIBLE_ERROR(pmcsr)) {
1253 0 : pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1254 : pci_power_name(dev->current_state));
1255 0 : dev->current_state = PCI_D3cold;
1256 0 : return -EIO;
1257 : }
1258 :
1259 0 : state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1260 :
1261 0 : need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1262 : !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1263 :
1264 0 : if (state == PCI_D0)
1265 : goto end;
1266 :
1267 : /*
1268 : * Force the entire word to 0. This doesn't affect PME_Status, disables
1269 : * PME_En, and sets PowerState to 0.
1270 : */
1271 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1272 :
1273 : /* Mandatory transition delays; see PCI PM 1.2. */
1274 0 : if (state == PCI_D3hot)
1275 0 : pci_dev_d3_sleep(dev);
1276 0 : else if (state == PCI_D2)
1277 : udelay(PCI_PM_D2_DELAY);
1278 :
1279 : end:
1280 0 : dev->current_state = PCI_D0;
1281 0 : if (need_restore)
1282 : return 1;
1283 :
1284 0 : return 0;
1285 : }
1286 :
1287 : /**
1288 : * pci_set_full_power_state - Put a PCI device into D0 and update its state
1289 : * @dev: PCI device to power up
1290 : *
1291 : * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1292 : * to confirm the state change, restore its BARs if they might be lost and
1293 : * reconfigure ASPM in acordance with the new power state.
1294 : *
1295 : * If pci_restore_state() is going to be called right after a power state change
1296 : * to D0, it is more efficient to use pci_power_up() directly instead of this
1297 : * function.
1298 : */
1299 0 : static int pci_set_full_power_state(struct pci_dev *dev)
1300 : {
1301 : u16 pmcsr;
1302 : int ret;
1303 :
1304 0 : ret = pci_power_up(dev);
1305 0 : if (ret < 0)
1306 : return ret;
1307 :
1308 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1309 0 : dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1310 0 : if (dev->current_state != PCI_D0) {
1311 0 : pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1312 : pci_power_name(dev->current_state));
1313 0 : } else if (ret > 0) {
1314 : /*
1315 : * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1316 : * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1317 : * from D3hot to D0 _may_ perform an internal reset, thereby
1318 : * going to "D0 Uninitialized" rather than "D0 Initialized".
1319 : * For example, at least some versions of the 3c905B and the
1320 : * 3c556B exhibit this behaviour.
1321 : *
1322 : * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1323 : * devices in a D3hot state at boot. Consequently, we need to
1324 : * restore at least the BARs so that the device will be
1325 : * accessible to its driver.
1326 : */
1327 : pci_restore_bars(dev);
1328 : }
1329 :
1330 : return 0;
1331 : }
1332 :
1333 : /**
1334 : * __pci_dev_set_current_state - Set current state of a PCI device
1335 : * @dev: Device to handle
1336 : * @data: pointer to state to be set
1337 : */
1338 0 : static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1339 : {
1340 0 : pci_power_t state = *(pci_power_t *)data;
1341 :
1342 0 : dev->current_state = state;
1343 0 : return 0;
1344 : }
1345 :
1346 : /**
1347 : * pci_bus_set_current_state - Walk given bus and set current state of devices
1348 : * @bus: Top bus of the subtree to walk.
1349 : * @state: state to be set
1350 : */
1351 0 : void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1352 : {
1353 0 : if (bus)
1354 0 : pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1355 0 : }
1356 :
1357 : /**
1358 : * pci_set_low_power_state - Put a PCI device into a low-power state.
1359 : * @dev: PCI device to handle.
1360 : * @state: PCI power state (D1, D2, D3hot) to put the device into.
1361 : *
1362 : * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1363 : *
1364 : * RETURN VALUE:
1365 : * -EINVAL if the requested state is invalid.
1366 : * -EIO if device does not support PCI PM or its PM capabilities register has a
1367 : * wrong version, or device doesn't support the requested state.
1368 : * 0 if device already is in the requested state.
1369 : * 0 if device's power state has been successfully changed.
1370 : */
1371 0 : static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1372 : {
1373 : u16 pmcsr;
1374 :
1375 0 : if (!dev->pm_cap)
1376 : return -EIO;
1377 :
1378 : /*
1379 : * Validate transition: We can enter D0 from any state, but if
1380 : * we're already in a low-power state, we can only go deeper. E.g.,
1381 : * we can go from D1 to D3, but we can't go directly from D3 to D1;
1382 : * we'd have to go from D3 to D0, then to D1.
1383 : */
1384 0 : if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1385 : pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1386 : pci_power_name(dev->current_state),
1387 : pci_power_name(state));
1388 : return -EINVAL;
1389 : }
1390 :
1391 : /* Check if this device supports the desired state */
1392 0 : if ((state == PCI_D1 && !dev->d1_support)
1393 0 : || (state == PCI_D2 && !dev->d2_support))
1394 : return -EIO;
1395 :
1396 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1397 0 : if (PCI_POSSIBLE_ERROR(pmcsr)) {
1398 0 : pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1399 : pci_power_name(dev->current_state),
1400 : pci_power_name(state));
1401 0 : dev->current_state = PCI_D3cold;
1402 0 : return -EIO;
1403 : }
1404 :
1405 0 : pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1406 0 : pmcsr |= state;
1407 :
1408 : /* Enter specified state */
1409 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1410 :
1411 : /* Mandatory power management transition delays; see PCI PM 1.2. */
1412 0 : if (state == PCI_D3hot)
1413 0 : pci_dev_d3_sleep(dev);
1414 0 : else if (state == PCI_D2)
1415 : udelay(PCI_PM_D2_DELAY);
1416 :
1417 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1418 0 : dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1419 0 : if (dev->current_state != state)
1420 0 : pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1421 : pci_power_name(dev->current_state),
1422 : pci_power_name(state));
1423 :
1424 : return 0;
1425 : }
1426 :
1427 : /**
1428 : * pci_set_power_state - Set the power state of a PCI device
1429 : * @dev: PCI device to handle.
1430 : * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1431 : *
1432 : * Transition a device to a new power state, using the platform firmware and/or
1433 : * the device's PCI PM registers.
1434 : *
1435 : * RETURN VALUE:
1436 : * -EINVAL if the requested state is invalid.
1437 : * -EIO if device does not support PCI PM or its PM capabilities register has a
1438 : * wrong version, or device doesn't support the requested state.
1439 : * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1440 : * 0 if device already is in the requested state.
1441 : * 0 if the transition is to D3 but D3 is not supported.
1442 : * 0 if device's power state has been successfully changed.
1443 : */
1444 0 : int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1445 : {
1446 : int error;
1447 :
1448 : /* Bound the state we're entering */
1449 0 : if (state > PCI_D3cold)
1450 : state = PCI_D3cold;
1451 0 : else if (state < PCI_D0)
1452 : state = PCI_D0;
1453 0 : else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1454 :
1455 : /*
1456 : * If the device or the parent bridge do not support PCI
1457 : * PM, ignore the request if we're doing anything other
1458 : * than putting it into D0 (which would only happen on
1459 : * boot).
1460 : */
1461 : return 0;
1462 :
1463 : /* Check if we're already there */
1464 0 : if (dev->current_state == state)
1465 : return 0;
1466 :
1467 0 : if (state == PCI_D0)
1468 0 : return pci_set_full_power_state(dev);
1469 :
1470 : /*
1471 : * This device is quirked not to be put into D3, so don't put it in
1472 : * D3
1473 : */
1474 0 : if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1475 : return 0;
1476 :
1477 0 : if (state == PCI_D3cold) {
1478 : /*
1479 : * To put the device in D3cold, put it into D3hot in the native
1480 : * way, then put it into D3cold using platform ops.
1481 : */
1482 0 : error = pci_set_low_power_state(dev, PCI_D3hot);
1483 :
1484 : if (pci_platform_power_transition(dev, PCI_D3cold))
1485 : return error;
1486 :
1487 : /* Powering off a bridge may power off the whole hierarchy */
1488 : if (dev->current_state == PCI_D3cold)
1489 : pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1490 : } else {
1491 0 : error = pci_set_low_power_state(dev, state);
1492 :
1493 : if (pci_platform_power_transition(dev, state))
1494 : return error;
1495 : }
1496 :
1497 : return 0;
1498 : }
1499 : EXPORT_SYMBOL(pci_set_power_state);
1500 :
1501 : #define PCI_EXP_SAVE_REGS 7
1502 :
1503 : static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1504 : u16 cap, bool extended)
1505 : {
1506 : struct pci_cap_saved_state *tmp;
1507 :
1508 0 : hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1509 0 : if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1510 : return tmp;
1511 : }
1512 : return NULL;
1513 : }
1514 :
1515 0 : struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1516 : {
1517 0 : return _pci_find_saved_cap(dev, cap, false);
1518 : }
1519 :
1520 0 : struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1521 : {
1522 0 : return _pci_find_saved_cap(dev, cap, true);
1523 : }
1524 :
1525 0 : static int pci_save_pcie_state(struct pci_dev *dev)
1526 : {
1527 0 : int i = 0;
1528 : struct pci_cap_saved_state *save_state;
1529 : u16 *cap;
1530 :
1531 0 : if (!pci_is_pcie(dev))
1532 : return 0;
1533 :
1534 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1535 0 : if (!save_state) {
1536 0 : pci_err(dev, "buffer not found in %s\n", __func__);
1537 0 : return -ENOMEM;
1538 : }
1539 :
1540 0 : cap = (u16 *)&save_state->cap.data[0];
1541 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1542 0 : pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1543 0 : pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1544 0 : pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1545 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1546 0 : pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1547 0 : pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1548 :
1549 0 : return 0;
1550 : }
1551 :
1552 0 : void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1553 : {
1554 : #ifdef CONFIG_PCIEASPM
1555 : struct pci_dev *bridge;
1556 : u32 ctl;
1557 :
1558 0 : bridge = pci_upstream_bridge(dev);
1559 0 : if (bridge && bridge->ltr_path) {
1560 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1561 0 : if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1562 : pci_dbg(bridge, "re-enabling LTR\n");
1563 : pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1564 : PCI_EXP_DEVCTL2_LTR_EN);
1565 : }
1566 : }
1567 : #endif
1568 0 : }
1569 :
1570 0 : static void pci_restore_pcie_state(struct pci_dev *dev)
1571 : {
1572 0 : int i = 0;
1573 : struct pci_cap_saved_state *save_state;
1574 : u16 *cap;
1575 :
1576 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1577 0 : if (!save_state)
1578 : return;
1579 :
1580 : /*
1581 : * Downstream ports reset the LTR enable bit when link goes down.
1582 : * Check and re-configure the bit here before restoring device.
1583 : * PCIe r5.0, sec 7.5.3.16.
1584 : */
1585 0 : pci_bridge_reconfigure_ltr(dev);
1586 :
1587 0 : cap = (u16 *)&save_state->cap.data[0];
1588 0 : pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1589 0 : pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1590 0 : pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1591 0 : pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1592 0 : pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1593 0 : pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1594 0 : pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1595 : }
1596 :
1597 0 : static int pci_save_pcix_state(struct pci_dev *dev)
1598 : {
1599 : int pos;
1600 : struct pci_cap_saved_state *save_state;
1601 :
1602 0 : pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1603 0 : if (!pos)
1604 : return 0;
1605 :
1606 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1607 0 : if (!save_state) {
1608 0 : pci_err(dev, "buffer not found in %s\n", __func__);
1609 0 : return -ENOMEM;
1610 : }
1611 :
1612 0 : pci_read_config_word(dev, pos + PCI_X_CMD,
1613 0 : (u16 *)save_state->cap.data);
1614 :
1615 0 : return 0;
1616 : }
1617 :
1618 0 : static void pci_restore_pcix_state(struct pci_dev *dev)
1619 : {
1620 0 : int i = 0, pos;
1621 : struct pci_cap_saved_state *save_state;
1622 : u16 *cap;
1623 :
1624 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1625 0 : pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1626 0 : if (!save_state || !pos)
1627 : return;
1628 0 : cap = (u16 *)&save_state->cap.data[0];
1629 :
1630 0 : pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1631 : }
1632 :
1633 0 : static void pci_save_ltr_state(struct pci_dev *dev)
1634 : {
1635 : int ltr;
1636 : struct pci_cap_saved_state *save_state;
1637 : u32 *cap;
1638 :
1639 0 : if (!pci_is_pcie(dev))
1640 : return;
1641 :
1642 0 : ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1643 0 : if (!ltr)
1644 : return;
1645 :
1646 0 : save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1647 0 : if (!save_state) {
1648 0 : pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1649 0 : return;
1650 : }
1651 :
1652 : /* Some broken devices only support dword access to LTR */
1653 0 : cap = &save_state->cap.data[0];
1654 0 : pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1655 : }
1656 :
1657 0 : static void pci_restore_ltr_state(struct pci_dev *dev)
1658 : {
1659 : struct pci_cap_saved_state *save_state;
1660 : int ltr;
1661 : u32 *cap;
1662 :
1663 0 : save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1664 0 : ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1665 0 : if (!save_state || !ltr)
1666 : return;
1667 :
1668 : /* Some broken devices only support dword access to LTR */
1669 0 : cap = &save_state->cap.data[0];
1670 0 : pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1671 : }
1672 :
1673 : /**
1674 : * pci_save_state - save the PCI configuration space of a device before
1675 : * suspending
1676 : * @dev: PCI device that we're dealing with
1677 : */
1678 0 : int pci_save_state(struct pci_dev *dev)
1679 : {
1680 : int i;
1681 : /* XXX: 100% dword access ok here? */
1682 0 : for (i = 0; i < 16; i++) {
1683 0 : pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1684 : pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1685 : i * 4, dev->saved_config_space[i]);
1686 : }
1687 0 : dev->state_saved = true;
1688 :
1689 0 : i = pci_save_pcie_state(dev);
1690 0 : if (i != 0)
1691 : return i;
1692 :
1693 0 : i = pci_save_pcix_state(dev);
1694 0 : if (i != 0)
1695 : return i;
1696 :
1697 0 : pci_save_ltr_state(dev);
1698 0 : pci_save_dpc_state(dev);
1699 0 : pci_save_aer_state(dev);
1700 0 : pci_save_ptm_state(dev);
1701 0 : return pci_save_vc_state(dev);
1702 : }
1703 : EXPORT_SYMBOL(pci_save_state);
1704 :
1705 0 : static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1706 : u32 saved_val, int retry, bool force)
1707 : {
1708 : u32 val;
1709 :
1710 0 : pci_read_config_dword(pdev, offset, &val);
1711 0 : if (!force && val == saved_val)
1712 : return;
1713 :
1714 : for (;;) {
1715 : pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1716 : offset, val, saved_val);
1717 0 : pci_write_config_dword(pdev, offset, saved_val);
1718 0 : if (retry-- <= 0)
1719 : return;
1720 :
1721 0 : pci_read_config_dword(pdev, offset, &val);
1722 0 : if (val == saved_val)
1723 : return;
1724 :
1725 : mdelay(1);
1726 : }
1727 : }
1728 :
1729 : static void pci_restore_config_space_range(struct pci_dev *pdev,
1730 : int start, int end, int retry,
1731 : bool force)
1732 : {
1733 : int index;
1734 :
1735 0 : for (index = end; index >= start; index--)
1736 0 : pci_restore_config_dword(pdev, 4 * index,
1737 : pdev->saved_config_space[index],
1738 : retry, force);
1739 : }
1740 :
1741 0 : static void pci_restore_config_space(struct pci_dev *pdev)
1742 : {
1743 0 : if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1744 : pci_restore_config_space_range(pdev, 10, 15, 0, false);
1745 : /* Restore BARs before the command register. */
1746 : pci_restore_config_space_range(pdev, 4, 9, 10, false);
1747 : pci_restore_config_space_range(pdev, 0, 3, 0, false);
1748 0 : } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1749 : pci_restore_config_space_range(pdev, 12, 15, 0, false);
1750 :
1751 : /*
1752 : * Force rewriting of prefetch registers to avoid S3 resume
1753 : * issues on Intel PCI bridges that occur when these
1754 : * registers are not explicitly written.
1755 : */
1756 : pci_restore_config_space_range(pdev, 9, 11, 0, true);
1757 : pci_restore_config_space_range(pdev, 0, 8, 0, false);
1758 : } else {
1759 : pci_restore_config_space_range(pdev, 0, 15, 0, false);
1760 : }
1761 0 : }
1762 :
1763 0 : static void pci_restore_rebar_state(struct pci_dev *pdev)
1764 : {
1765 : unsigned int pos, nbars, i;
1766 : u32 ctrl;
1767 :
1768 0 : pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1769 0 : if (!pos)
1770 0 : return;
1771 :
1772 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1773 0 : nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1774 : PCI_REBAR_CTRL_NBAR_SHIFT;
1775 :
1776 0 : for (i = 0; i < nbars; i++, pos += 8) {
1777 : struct resource *res;
1778 : int bar_idx, size;
1779 :
1780 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1781 0 : bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1782 0 : res = pdev->resource + bar_idx;
1783 0 : size = pci_rebar_bytes_to_size(resource_size(res));
1784 0 : ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1785 0 : ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1786 0 : pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1787 : }
1788 : }
1789 :
1790 : /**
1791 : * pci_restore_state - Restore the saved state of a PCI device
1792 : * @dev: PCI device that we're dealing with
1793 : */
1794 0 : void pci_restore_state(struct pci_dev *dev)
1795 : {
1796 0 : if (!dev->state_saved)
1797 : return;
1798 :
1799 : /*
1800 : * Restore max latencies (in the LTR capability) before enabling
1801 : * LTR itself (in the PCIe capability).
1802 : */
1803 0 : pci_restore_ltr_state(dev);
1804 :
1805 0 : pci_restore_pcie_state(dev);
1806 0 : pci_restore_pasid_state(dev);
1807 0 : pci_restore_pri_state(dev);
1808 0 : pci_restore_ats_state(dev);
1809 0 : pci_restore_vc_state(dev);
1810 0 : pci_restore_rebar_state(dev);
1811 0 : pci_restore_dpc_state(dev);
1812 0 : pci_restore_ptm_state(dev);
1813 :
1814 0 : pci_aer_clear_status(dev);
1815 0 : pci_restore_aer_state(dev);
1816 :
1817 0 : pci_restore_config_space(dev);
1818 :
1819 0 : pci_restore_pcix_state(dev);
1820 0 : pci_restore_msi_state(dev);
1821 :
1822 : /* Restore ACS and IOV configuration state */
1823 0 : pci_enable_acs(dev);
1824 0 : pci_restore_iov_state(dev);
1825 :
1826 0 : dev->state_saved = false;
1827 : }
1828 : EXPORT_SYMBOL(pci_restore_state);
1829 :
1830 : struct pci_saved_state {
1831 : u32 config_space[16];
1832 : struct pci_cap_saved_data cap[];
1833 : };
1834 :
1835 : /**
1836 : * pci_store_saved_state - Allocate and return an opaque struct containing
1837 : * the device saved state.
1838 : * @dev: PCI device that we're dealing with
1839 : *
1840 : * Return NULL if no state or error.
1841 : */
1842 0 : struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1843 : {
1844 : struct pci_saved_state *state;
1845 : struct pci_cap_saved_state *tmp;
1846 : struct pci_cap_saved_data *cap;
1847 : size_t size;
1848 :
1849 0 : if (!dev->state_saved)
1850 : return NULL;
1851 :
1852 0 : size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1853 :
1854 0 : hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1855 0 : size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1856 :
1857 0 : state = kzalloc(size, GFP_KERNEL);
1858 0 : if (!state)
1859 : return NULL;
1860 :
1861 0 : memcpy(state->config_space, dev->saved_config_space,
1862 : sizeof(state->config_space));
1863 :
1864 0 : cap = state->cap;
1865 0 : hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1866 0 : size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1867 0 : memcpy(cap, &tmp->cap, len);
1868 0 : cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1869 : }
1870 : /* Empty cap_save terminates list */
1871 :
1872 : return state;
1873 : }
1874 : EXPORT_SYMBOL_GPL(pci_store_saved_state);
1875 :
1876 : /**
1877 : * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1878 : * @dev: PCI device that we're dealing with
1879 : * @state: Saved state returned from pci_store_saved_state()
1880 : */
1881 0 : int pci_load_saved_state(struct pci_dev *dev,
1882 : struct pci_saved_state *state)
1883 : {
1884 : struct pci_cap_saved_data *cap;
1885 :
1886 0 : dev->state_saved = false;
1887 :
1888 0 : if (!state)
1889 : return 0;
1890 :
1891 0 : memcpy(dev->saved_config_space, state->config_space,
1892 : sizeof(state->config_space));
1893 :
1894 0 : cap = state->cap;
1895 0 : while (cap->size) {
1896 : struct pci_cap_saved_state *tmp;
1897 :
1898 0 : tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1899 0 : if (!tmp || tmp->cap.size != cap->size)
1900 : return -EINVAL;
1901 :
1902 0 : memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1903 0 : cap = (struct pci_cap_saved_data *)((u8 *)cap +
1904 0 : sizeof(struct pci_cap_saved_data) + cap->size);
1905 : }
1906 :
1907 0 : dev->state_saved = true;
1908 0 : return 0;
1909 : }
1910 : EXPORT_SYMBOL_GPL(pci_load_saved_state);
1911 :
1912 : /**
1913 : * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1914 : * and free the memory allocated for it.
1915 : * @dev: PCI device that we're dealing with
1916 : * @state: Pointer to saved state returned from pci_store_saved_state()
1917 : */
1918 0 : int pci_load_and_free_saved_state(struct pci_dev *dev,
1919 : struct pci_saved_state **state)
1920 : {
1921 0 : int ret = pci_load_saved_state(dev, *state);
1922 0 : kfree(*state);
1923 0 : *state = NULL;
1924 0 : return ret;
1925 : }
1926 : EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1927 :
1928 0 : int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1929 : {
1930 0 : return pci_enable_resources(dev, bars);
1931 : }
1932 :
1933 0 : static int do_pci_enable_device(struct pci_dev *dev, int bars)
1934 : {
1935 : int err;
1936 : struct pci_dev *bridge;
1937 : u16 cmd;
1938 : u8 pin;
1939 :
1940 0 : err = pci_set_power_state(dev, PCI_D0);
1941 0 : if (err < 0 && err != -EIO)
1942 : return err;
1943 :
1944 0 : bridge = pci_upstream_bridge(dev);
1945 0 : if (bridge)
1946 0 : pcie_aspm_powersave_config_link(bridge);
1947 :
1948 0 : err = pcibios_enable_device(dev, bars);
1949 0 : if (err < 0)
1950 : return err;
1951 0 : pci_fixup_device(pci_fixup_enable, dev);
1952 :
1953 0 : if (dev->msi_enabled || dev->msix_enabled)
1954 : return 0;
1955 :
1956 0 : pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1957 0 : if (pin) {
1958 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
1959 0 : if (cmd & PCI_COMMAND_INTX_DISABLE)
1960 0 : pci_write_config_word(dev, PCI_COMMAND,
1961 : cmd & ~PCI_COMMAND_INTX_DISABLE);
1962 : }
1963 :
1964 : return 0;
1965 : }
1966 :
1967 : /**
1968 : * pci_reenable_device - Resume abandoned device
1969 : * @dev: PCI device to be resumed
1970 : *
1971 : * NOTE: This function is a backend of pci_default_resume() and is not supposed
1972 : * to be called by normal code, write proper resume handler and use it instead.
1973 : */
1974 0 : int pci_reenable_device(struct pci_dev *dev)
1975 : {
1976 0 : if (pci_is_enabled(dev))
1977 0 : return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1978 : return 0;
1979 : }
1980 : EXPORT_SYMBOL(pci_reenable_device);
1981 :
1982 0 : static void pci_enable_bridge(struct pci_dev *dev)
1983 : {
1984 : struct pci_dev *bridge;
1985 : int retval;
1986 :
1987 0 : bridge = pci_upstream_bridge(dev);
1988 0 : if (bridge)
1989 0 : pci_enable_bridge(bridge);
1990 :
1991 0 : if (pci_is_enabled(dev)) {
1992 0 : if (!dev->is_busmaster)
1993 : pci_set_master(dev);
1994 : return;
1995 : }
1996 :
1997 0 : retval = pci_enable_device(dev);
1998 0 : if (retval)
1999 0 : pci_err(dev, "Error enabling bridge (%d), continuing\n",
2000 : retval);
2001 : pci_set_master(dev);
2002 : }
2003 :
2004 0 : static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2005 : {
2006 : struct pci_dev *bridge;
2007 : int err;
2008 0 : int i, bars = 0;
2009 :
2010 : /*
2011 : * Power state could be unknown at this point, either due to a fresh
2012 : * boot or a device removal call. So get the current power state
2013 : * so that things like MSI message writing will behave as expected
2014 : * (e.g. if the device really is in D0 at enable time).
2015 : */
2016 0 : pci_update_current_state(dev, dev->current_state);
2017 :
2018 0 : if (atomic_inc_return(&dev->enable_cnt) > 1)
2019 : return 0; /* already enabled */
2020 :
2021 0 : bridge = pci_upstream_bridge(dev);
2022 0 : if (bridge)
2023 0 : pci_enable_bridge(bridge);
2024 :
2025 : /* only skip sriov related */
2026 0 : for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2027 0 : if (dev->resource[i].flags & flags)
2028 0 : bars |= (1 << i);
2029 0 : for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2030 0 : if (dev->resource[i].flags & flags)
2031 0 : bars |= (1 << i);
2032 :
2033 0 : err = do_pci_enable_device(dev, bars);
2034 0 : if (err < 0)
2035 0 : atomic_dec(&dev->enable_cnt);
2036 : return err;
2037 : }
2038 :
2039 : /**
2040 : * pci_enable_device_io - Initialize a device for use with IO space
2041 : * @dev: PCI device to be initialized
2042 : *
2043 : * Initialize device before it's used by a driver. Ask low-level code
2044 : * to enable I/O resources. Wake up the device if it was suspended.
2045 : * Beware, this function can fail.
2046 : */
2047 0 : int pci_enable_device_io(struct pci_dev *dev)
2048 : {
2049 0 : return pci_enable_device_flags(dev, IORESOURCE_IO);
2050 : }
2051 : EXPORT_SYMBOL(pci_enable_device_io);
2052 :
2053 : /**
2054 : * pci_enable_device_mem - Initialize a device for use with Memory space
2055 : * @dev: PCI device to be initialized
2056 : *
2057 : * Initialize device before it's used by a driver. Ask low-level code
2058 : * to enable Memory resources. Wake up the device if it was suspended.
2059 : * Beware, this function can fail.
2060 : */
2061 0 : int pci_enable_device_mem(struct pci_dev *dev)
2062 : {
2063 0 : return pci_enable_device_flags(dev, IORESOURCE_MEM);
2064 : }
2065 : EXPORT_SYMBOL(pci_enable_device_mem);
2066 :
2067 : /**
2068 : * pci_enable_device - Initialize device before it's used by a driver.
2069 : * @dev: PCI device to be initialized
2070 : *
2071 : * Initialize device before it's used by a driver. Ask low-level code
2072 : * to enable I/O and memory. Wake up the device if it was suspended.
2073 : * Beware, this function can fail.
2074 : *
2075 : * Note we don't actually enable the device many times if we call
2076 : * this function repeatedly (we just increment the count).
2077 : */
2078 0 : int pci_enable_device(struct pci_dev *dev)
2079 : {
2080 0 : return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2081 : }
2082 : EXPORT_SYMBOL(pci_enable_device);
2083 :
2084 : /*
2085 : * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2086 : * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2087 : * there's no need to track it separately. pci_devres is initialized
2088 : * when a device is enabled using managed PCI device enable interface.
2089 : */
2090 : struct pci_devres {
2091 : unsigned int enabled:1;
2092 : unsigned int pinned:1;
2093 : unsigned int orig_intx:1;
2094 : unsigned int restore_intx:1;
2095 : unsigned int mwi:1;
2096 : u32 region_mask;
2097 : };
2098 :
2099 0 : static void pcim_release(struct device *gendev, void *res)
2100 : {
2101 0 : struct pci_dev *dev = to_pci_dev(gendev);
2102 0 : struct pci_devres *this = res;
2103 : int i;
2104 :
2105 0 : for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2106 0 : if (this->region_mask & (1 << i))
2107 0 : pci_release_region(dev, i);
2108 :
2109 0 : if (this->mwi)
2110 0 : pci_clear_mwi(dev);
2111 :
2112 0 : if (this->restore_intx)
2113 0 : pci_intx(dev, this->orig_intx);
2114 :
2115 0 : if (this->enabled && !this->pinned)
2116 0 : pci_disable_device(dev);
2117 0 : }
2118 :
2119 0 : static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2120 : {
2121 : struct pci_devres *dr, *new_dr;
2122 :
2123 0 : dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2124 0 : if (dr)
2125 : return dr;
2126 :
2127 0 : new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2128 0 : if (!new_dr)
2129 : return NULL;
2130 0 : return devres_get(&pdev->dev, new_dr, NULL, NULL);
2131 : }
2132 :
2133 : static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2134 : {
2135 0 : if (pci_is_managed(pdev))
2136 0 : return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2137 : return NULL;
2138 : }
2139 :
2140 : /**
2141 : * pcim_enable_device - Managed pci_enable_device()
2142 : * @pdev: PCI device to be initialized
2143 : *
2144 : * Managed pci_enable_device().
2145 : */
2146 0 : int pcim_enable_device(struct pci_dev *pdev)
2147 : {
2148 : struct pci_devres *dr;
2149 : int rc;
2150 :
2151 0 : dr = get_pci_dr(pdev);
2152 0 : if (unlikely(!dr))
2153 : return -ENOMEM;
2154 0 : if (dr->enabled)
2155 : return 0;
2156 :
2157 0 : rc = pci_enable_device(pdev);
2158 0 : if (!rc) {
2159 0 : pdev->is_managed = 1;
2160 0 : dr->enabled = 1;
2161 : }
2162 : return rc;
2163 : }
2164 : EXPORT_SYMBOL(pcim_enable_device);
2165 :
2166 : /**
2167 : * pcim_pin_device - Pin managed PCI device
2168 : * @pdev: PCI device to pin
2169 : *
2170 : * Pin managed PCI device @pdev. Pinned device won't be disabled on
2171 : * driver detach. @pdev must have been enabled with
2172 : * pcim_enable_device().
2173 : */
2174 0 : void pcim_pin_device(struct pci_dev *pdev)
2175 : {
2176 : struct pci_devres *dr;
2177 :
2178 0 : dr = find_pci_dr(pdev);
2179 0 : WARN_ON(!dr || !dr->enabled);
2180 0 : if (dr)
2181 0 : dr->pinned = 1;
2182 0 : }
2183 : EXPORT_SYMBOL(pcim_pin_device);
2184 :
2185 : /*
2186 : * pcibios_device_add - provide arch specific hooks when adding device dev
2187 : * @dev: the PCI device being added
2188 : *
2189 : * Permits the platform to provide architecture specific functionality when
2190 : * devices are added. This is the default implementation. Architecture
2191 : * implementations can override this.
2192 : */
2193 0 : int __weak pcibios_device_add(struct pci_dev *dev)
2194 : {
2195 0 : return 0;
2196 : }
2197 :
2198 : /**
2199 : * pcibios_release_device - provide arch specific hooks when releasing
2200 : * device dev
2201 : * @dev: the PCI device being released
2202 : *
2203 : * Permits the platform to provide architecture specific functionality when
2204 : * devices are released. This is the default implementation. Architecture
2205 : * implementations can override this.
2206 : */
2207 0 : void __weak pcibios_release_device(struct pci_dev *dev) {}
2208 :
2209 : /**
2210 : * pcibios_disable_device - disable arch specific PCI resources for device dev
2211 : * @dev: the PCI device to disable
2212 : *
2213 : * Disables architecture specific PCI resources for the device. This
2214 : * is the default implementation. Architecture implementations can
2215 : * override this.
2216 : */
2217 0 : void __weak pcibios_disable_device(struct pci_dev *dev) {}
2218 :
2219 : /**
2220 : * pcibios_penalize_isa_irq - penalize an ISA IRQ
2221 : * @irq: ISA IRQ to penalize
2222 : * @active: IRQ active or not
2223 : *
2224 : * Permits the platform to provide architecture-specific functionality when
2225 : * penalizing ISA IRQs. This is the default implementation. Architecture
2226 : * implementations can override this.
2227 : */
2228 0 : void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2229 :
2230 0 : static void do_pci_disable_device(struct pci_dev *dev)
2231 : {
2232 : u16 pci_command;
2233 :
2234 0 : pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2235 0 : if (pci_command & PCI_COMMAND_MASTER) {
2236 0 : pci_command &= ~PCI_COMMAND_MASTER;
2237 0 : pci_write_config_word(dev, PCI_COMMAND, pci_command);
2238 : }
2239 :
2240 0 : pcibios_disable_device(dev);
2241 0 : }
2242 :
2243 : /**
2244 : * pci_disable_enabled_device - Disable device without updating enable_cnt
2245 : * @dev: PCI device to disable
2246 : *
2247 : * NOTE: This function is a backend of PCI power management routines and is
2248 : * not supposed to be called drivers.
2249 : */
2250 0 : void pci_disable_enabled_device(struct pci_dev *dev)
2251 : {
2252 0 : if (pci_is_enabled(dev))
2253 0 : do_pci_disable_device(dev);
2254 0 : }
2255 :
2256 : /**
2257 : * pci_disable_device - Disable PCI device after use
2258 : * @dev: PCI device to be disabled
2259 : *
2260 : * Signal to the system that the PCI device is not in use by the system
2261 : * anymore. This only involves disabling PCI bus-mastering, if active.
2262 : *
2263 : * Note we don't actually disable the device until all callers of
2264 : * pci_enable_device() have called pci_disable_device().
2265 : */
2266 0 : void pci_disable_device(struct pci_dev *dev)
2267 : {
2268 : struct pci_devres *dr;
2269 :
2270 0 : dr = find_pci_dr(dev);
2271 0 : if (dr)
2272 0 : dr->enabled = 0;
2273 :
2274 0 : dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2275 : "disabling already-disabled device");
2276 :
2277 0 : if (atomic_dec_return(&dev->enable_cnt) != 0)
2278 : return;
2279 :
2280 0 : do_pci_disable_device(dev);
2281 :
2282 0 : dev->is_busmaster = 0;
2283 : }
2284 : EXPORT_SYMBOL(pci_disable_device);
2285 :
2286 : /**
2287 : * pcibios_set_pcie_reset_state - set reset state for device dev
2288 : * @dev: the PCIe device reset
2289 : * @state: Reset state to enter into
2290 : *
2291 : * Set the PCIe reset state for the device. This is the default
2292 : * implementation. Architecture implementations can override this.
2293 : */
2294 0 : int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2295 : enum pcie_reset_state state)
2296 : {
2297 0 : return -EINVAL;
2298 : }
2299 :
2300 : /**
2301 : * pci_set_pcie_reset_state - set reset state for device dev
2302 : * @dev: the PCIe device reset
2303 : * @state: Reset state to enter into
2304 : *
2305 : * Sets the PCI reset state for the device.
2306 : */
2307 0 : int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2308 : {
2309 0 : return pcibios_set_pcie_reset_state(dev, state);
2310 : }
2311 : EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2312 :
2313 : #ifdef CONFIG_PCIEAER
2314 : void pcie_clear_device_status(struct pci_dev *dev)
2315 : {
2316 : u16 sta;
2317 :
2318 : pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2319 : pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2320 : }
2321 : #endif
2322 :
2323 : /**
2324 : * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2325 : * @dev: PCIe root port or event collector.
2326 : */
2327 0 : void pcie_clear_root_pme_status(struct pci_dev *dev)
2328 : {
2329 0 : pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2330 0 : }
2331 :
2332 : /**
2333 : * pci_check_pme_status - Check if given device has generated PME.
2334 : * @dev: Device to check.
2335 : *
2336 : * Check the PME status of the device and if set, clear it and clear PME enable
2337 : * (if set). Return 'true' if PME status and PME enable were both set or
2338 : * 'false' otherwise.
2339 : */
2340 0 : bool pci_check_pme_status(struct pci_dev *dev)
2341 : {
2342 : int pmcsr_pos;
2343 : u16 pmcsr;
2344 0 : bool ret = false;
2345 :
2346 0 : if (!dev->pm_cap)
2347 : return false;
2348 :
2349 0 : pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2350 0 : pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2351 0 : if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2352 : return false;
2353 :
2354 : /* Clear PME status. */
2355 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 0 : if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2357 : /* Disable PME to avoid interrupt flood. */
2358 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2359 0 : ret = true;
2360 : }
2361 :
2362 0 : pci_write_config_word(dev, pmcsr_pos, pmcsr);
2363 :
2364 0 : return ret;
2365 : }
2366 :
2367 : /**
2368 : * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2369 : * @dev: Device to handle.
2370 : * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2371 : *
2372 : * Check if @dev has generated PME and queue a resume request for it in that
2373 : * case.
2374 : */
2375 0 : static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2376 : {
2377 0 : if (pme_poll_reset && dev->pme_poll)
2378 0 : dev->pme_poll = false;
2379 :
2380 0 : if (pci_check_pme_status(dev)) {
2381 0 : pci_wakeup_event(dev);
2382 0 : pm_request_resume(&dev->dev);
2383 : }
2384 0 : return 0;
2385 : }
2386 :
2387 : /**
2388 : * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2389 : * @bus: Top bus of the subtree to walk.
2390 : */
2391 0 : void pci_pme_wakeup_bus(struct pci_bus *bus)
2392 : {
2393 0 : if (bus)
2394 0 : pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2395 0 : }
2396 :
2397 :
2398 : /**
2399 : * pci_pme_capable - check the capability of PCI device to generate PME#
2400 : * @dev: PCI device to handle.
2401 : * @state: PCI state from which device will issue PME#.
2402 : */
2403 0 : bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2404 : {
2405 0 : if (!dev->pm_cap)
2406 : return false;
2407 :
2408 0 : return !!(dev->pme_support & (1 << state));
2409 : }
2410 : EXPORT_SYMBOL(pci_pme_capable);
2411 :
2412 0 : static void pci_pme_list_scan(struct work_struct *work)
2413 : {
2414 : struct pci_pme_device *pme_dev, *n;
2415 :
2416 0 : mutex_lock(&pci_pme_list_mutex);
2417 0 : list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2418 0 : if (pme_dev->dev->pme_poll) {
2419 : struct pci_dev *bridge;
2420 :
2421 0 : bridge = pme_dev->dev->bus->self;
2422 : /*
2423 : * If bridge is in low power state, the
2424 : * configuration space of subordinate devices
2425 : * may be not accessible
2426 : */
2427 0 : if (bridge && bridge->current_state != PCI_D0)
2428 0 : continue;
2429 : /*
2430 : * If the device is in D3cold it should not be
2431 : * polled either.
2432 : */
2433 0 : if (pme_dev->dev->current_state == PCI_D3cold)
2434 0 : continue;
2435 :
2436 0 : pci_pme_wakeup(pme_dev->dev, NULL);
2437 : } else {
2438 0 : list_del(&pme_dev->list);
2439 0 : kfree(pme_dev);
2440 : }
2441 : }
2442 0 : if (!list_empty(&pci_pme_list))
2443 0 : queue_delayed_work(system_freezable_wq, &pci_pme_work,
2444 : msecs_to_jiffies(PME_TIMEOUT));
2445 0 : mutex_unlock(&pci_pme_list_mutex);
2446 0 : }
2447 :
2448 0 : static void __pci_pme_active(struct pci_dev *dev, bool enable)
2449 : {
2450 : u16 pmcsr;
2451 :
2452 0 : if (!dev->pme_support)
2453 0 : return;
2454 :
2455 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2456 : /* Clear PME_Status by writing 1 to it and enable PME# */
2457 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2458 0 : if (!enable)
2459 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2460 :
2461 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462 : }
2463 :
2464 : /**
2465 : * pci_pme_restore - Restore PME configuration after config space restore.
2466 : * @dev: PCI device to update.
2467 : */
2468 0 : void pci_pme_restore(struct pci_dev *dev)
2469 : {
2470 : u16 pmcsr;
2471 :
2472 0 : if (!dev->pme_support)
2473 0 : return;
2474 :
2475 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2476 0 : if (dev->wakeup_prepared) {
2477 0 : pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2478 0 : pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2479 : } else {
2480 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2481 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS;
2482 : }
2483 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2484 : }
2485 :
2486 : /**
2487 : * pci_pme_active - enable or disable PCI device's PME# function
2488 : * @dev: PCI device to handle.
2489 : * @enable: 'true' to enable PME# generation; 'false' to disable it.
2490 : *
2491 : * The caller must verify that the device is capable of generating PME# before
2492 : * calling this function with @enable equal to 'true'.
2493 : */
2494 0 : void pci_pme_active(struct pci_dev *dev, bool enable)
2495 : {
2496 0 : __pci_pme_active(dev, enable);
2497 :
2498 : /*
2499 : * PCI (as opposed to PCIe) PME requires that the device have
2500 : * its PME# line hooked up correctly. Not all hardware vendors
2501 : * do this, so the PME never gets delivered and the device
2502 : * remains asleep. The easiest way around this is to
2503 : * periodically walk the list of suspended devices and check
2504 : * whether any have their PME flag set. The assumption is that
2505 : * we'll wake up often enough anyway that this won't be a huge
2506 : * hit, and the power savings from the devices will still be a
2507 : * win.
2508 : *
2509 : * Although PCIe uses in-band PME message instead of PME# line
2510 : * to report PME, PME does not work for some PCIe devices in
2511 : * reality. For example, there are devices that set their PME
2512 : * status bits, but don't really bother to send a PME message;
2513 : * there are PCI Express Root Ports that don't bother to
2514 : * trigger interrupts when they receive PME messages from the
2515 : * devices below. So PME poll is used for PCIe devices too.
2516 : */
2517 :
2518 0 : if (dev->pme_poll) {
2519 : struct pci_pme_device *pme_dev;
2520 0 : if (enable) {
2521 0 : pme_dev = kmalloc(sizeof(struct pci_pme_device),
2522 : GFP_KERNEL);
2523 0 : if (!pme_dev) {
2524 0 : pci_warn(dev, "can't enable PME#\n");
2525 0 : return;
2526 : }
2527 0 : pme_dev->dev = dev;
2528 0 : mutex_lock(&pci_pme_list_mutex);
2529 0 : list_add(&pme_dev->list, &pci_pme_list);
2530 0 : if (list_is_singular(&pci_pme_list))
2531 0 : queue_delayed_work(system_freezable_wq,
2532 : &pci_pme_work,
2533 : msecs_to_jiffies(PME_TIMEOUT));
2534 0 : mutex_unlock(&pci_pme_list_mutex);
2535 : } else {
2536 0 : mutex_lock(&pci_pme_list_mutex);
2537 0 : list_for_each_entry(pme_dev, &pci_pme_list, list) {
2538 0 : if (pme_dev->dev == dev) {
2539 0 : list_del(&pme_dev->list);
2540 0 : kfree(pme_dev);
2541 0 : break;
2542 : }
2543 : }
2544 0 : mutex_unlock(&pci_pme_list_mutex);
2545 : }
2546 : }
2547 :
2548 : pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2549 : }
2550 : EXPORT_SYMBOL(pci_pme_active);
2551 :
2552 : /**
2553 : * __pci_enable_wake - enable PCI device as wakeup event source
2554 : * @dev: PCI device affected
2555 : * @state: PCI state from which device will issue wakeup events
2556 : * @enable: True to enable event generation; false to disable
2557 : *
2558 : * This enables the device as a wakeup event source, or disables it.
2559 : * When such events involves platform-specific hooks, those hooks are
2560 : * called automatically by this routine.
2561 : *
2562 : * Devices with legacy power management (no standard PCI PM capabilities)
2563 : * always require such platform hooks.
2564 : *
2565 : * RETURN VALUE:
2566 : * 0 is returned on success
2567 : * -EINVAL is returned if device is not supposed to wake up the system
2568 : * Error code depending on the platform is returned if both the platform and
2569 : * the native mechanism fail to enable the generation of wake-up events
2570 : */
2571 0 : static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2572 : {
2573 0 : int ret = 0;
2574 :
2575 : /*
2576 : * Bridges that are not power-manageable directly only signal
2577 : * wakeup on behalf of subordinate devices which is set up
2578 : * elsewhere, so skip them. However, bridges that are
2579 : * power-manageable may signal wakeup for themselves (for example,
2580 : * on a hotplug event) and they need to be covered here.
2581 : */
2582 0 : if (!pci_power_manageable(dev))
2583 : return 0;
2584 :
2585 : /* Don't do the same thing twice in a row for one device. */
2586 0 : if (!!enable == !!dev->wakeup_prepared)
2587 : return 0;
2588 :
2589 : /*
2590 : * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2591 : * Anderson we should be doing PME# wake enable followed by ACPI wake
2592 : * enable. To disable wake-up we call the platform first, for symmetry.
2593 : */
2594 :
2595 0 : if (enable) {
2596 : int error;
2597 :
2598 : /*
2599 : * Enable PME signaling if the device can signal PME from
2600 : * D3cold regardless of whether or not it can signal PME from
2601 : * the current target state, because that will allow it to
2602 : * signal PME when the hierarchy above it goes into D3cold and
2603 : * the device itself ends up in D3cold as a result of that.
2604 : */
2605 0 : if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2606 0 : pci_pme_active(dev, true);
2607 : else
2608 : ret = 1;
2609 0 : error = platform_pci_set_wakeup(dev, true);
2610 0 : if (ret)
2611 0 : ret = error;
2612 0 : if (!ret)
2613 0 : dev->wakeup_prepared = true;
2614 : } else {
2615 0 : platform_pci_set_wakeup(dev, false);
2616 0 : pci_pme_active(dev, false);
2617 0 : dev->wakeup_prepared = false;
2618 : }
2619 :
2620 : return ret;
2621 : }
2622 :
2623 : /**
2624 : * pci_enable_wake - change wakeup settings for a PCI device
2625 : * @pci_dev: Target device
2626 : * @state: PCI state from which device will issue wakeup events
2627 : * @enable: Whether or not to enable event generation
2628 : *
2629 : * If @enable is set, check device_may_wakeup() for the device before calling
2630 : * __pci_enable_wake() for it.
2631 : */
2632 0 : int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2633 : {
2634 0 : if (enable && !device_may_wakeup(&pci_dev->dev))
2635 : return -EINVAL;
2636 :
2637 0 : return __pci_enable_wake(pci_dev, state, enable);
2638 : }
2639 : EXPORT_SYMBOL(pci_enable_wake);
2640 :
2641 : /**
2642 : * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2643 : * @dev: PCI device to prepare
2644 : * @enable: True to enable wake-up event generation; false to disable
2645 : *
2646 : * Many drivers want the device to wake up the system from D3_hot or D3_cold
2647 : * and this function allows them to set that up cleanly - pci_enable_wake()
2648 : * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2649 : * ordering constraints.
2650 : *
2651 : * This function only returns error code if the device is not allowed to wake
2652 : * up the system from sleep or it is not capable of generating PME# from both
2653 : * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2654 : */
2655 0 : int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2656 : {
2657 0 : return pci_pme_capable(dev, PCI_D3cold) ?
2658 0 : pci_enable_wake(dev, PCI_D3cold, enable) :
2659 0 : pci_enable_wake(dev, PCI_D3hot, enable);
2660 : }
2661 : EXPORT_SYMBOL(pci_wake_from_d3);
2662 :
2663 : /**
2664 : * pci_target_state - find an appropriate low power state for a given PCI dev
2665 : * @dev: PCI device
2666 : * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2667 : *
2668 : * Use underlying platform code to find a supported low power state for @dev.
2669 : * If the platform can't manage @dev, return the deepest state from which it
2670 : * can generate wake events, based on any available PME info.
2671 : */
2672 0 : static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2673 : {
2674 0 : if (platform_pci_power_manageable(dev)) {
2675 : /*
2676 : * Call the platform to find the target state for the device.
2677 : */
2678 : pci_power_t state = platform_pci_choose_state(dev);
2679 :
2680 : switch (state) {
2681 : case PCI_POWER_ERROR:
2682 : case PCI_UNKNOWN:
2683 : return PCI_D3hot;
2684 :
2685 : case PCI_D1:
2686 : case PCI_D2:
2687 : if (pci_no_d1d2(dev))
2688 : return PCI_D3hot;
2689 : }
2690 :
2691 : return state;
2692 : }
2693 :
2694 : /*
2695 : * If the device is in D3cold even though it's not power-manageable by
2696 : * the platform, it may have been powered down by non-standard means.
2697 : * Best to let it slumber.
2698 : */
2699 0 : if (dev->current_state == PCI_D3cold)
2700 : return PCI_D3cold;
2701 0 : else if (!dev->pm_cap)
2702 : return PCI_D0;
2703 :
2704 0 : if (wakeup && dev->pme_support) {
2705 : pci_power_t state = PCI_D3hot;
2706 :
2707 : /*
2708 : * Find the deepest state from which the device can generate
2709 : * PME#.
2710 : */
2711 0 : while (state && !(dev->pme_support & (1 << state)))
2712 0 : state--;
2713 :
2714 0 : if (state)
2715 : return state;
2716 0 : else if (dev->pme_support & 1)
2717 : return PCI_D0;
2718 : }
2719 :
2720 0 : return PCI_D3hot;
2721 : }
2722 :
2723 : /**
2724 : * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2725 : * into a sleep state
2726 : * @dev: Device to handle.
2727 : *
2728 : * Choose the power state appropriate for the device depending on whether
2729 : * it can wake up the system and/or is power manageable by the platform
2730 : * (PCI_D3hot is the default) and put the device into that state.
2731 : */
2732 0 : int pci_prepare_to_sleep(struct pci_dev *dev)
2733 : {
2734 0 : bool wakeup = device_may_wakeup(&dev->dev);
2735 0 : pci_power_t target_state = pci_target_state(dev, wakeup);
2736 : int error;
2737 :
2738 0 : if (target_state == PCI_POWER_ERROR)
2739 : return -EIO;
2740 :
2741 0 : pci_enable_wake(dev, target_state, wakeup);
2742 :
2743 0 : error = pci_set_power_state(dev, target_state);
2744 :
2745 0 : if (error)
2746 0 : pci_enable_wake(dev, target_state, false);
2747 :
2748 : return error;
2749 : }
2750 : EXPORT_SYMBOL(pci_prepare_to_sleep);
2751 :
2752 : /**
2753 : * pci_back_from_sleep - turn PCI device on during system-wide transition
2754 : * into working state
2755 : * @dev: Device to handle.
2756 : *
2757 : * Disable device's system wake-up capability and put it into D0.
2758 : */
2759 0 : int pci_back_from_sleep(struct pci_dev *dev)
2760 : {
2761 0 : int ret = pci_set_power_state(dev, PCI_D0);
2762 :
2763 0 : if (ret)
2764 : return ret;
2765 :
2766 0 : pci_enable_wake(dev, PCI_D0, false);
2767 0 : return 0;
2768 : }
2769 : EXPORT_SYMBOL(pci_back_from_sleep);
2770 :
2771 : /**
2772 : * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2773 : * @dev: PCI device being suspended.
2774 : *
2775 : * Prepare @dev to generate wake-up events at run time and put it into a low
2776 : * power state.
2777 : */
2778 0 : int pci_finish_runtime_suspend(struct pci_dev *dev)
2779 : {
2780 : pci_power_t target_state;
2781 : int error;
2782 :
2783 0 : target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2784 0 : if (target_state == PCI_POWER_ERROR)
2785 : return -EIO;
2786 :
2787 0 : __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2788 :
2789 0 : error = pci_set_power_state(dev, target_state);
2790 :
2791 0 : if (error)
2792 0 : pci_enable_wake(dev, target_state, false);
2793 :
2794 : return error;
2795 : }
2796 :
2797 : /**
2798 : * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2799 : * @dev: Device to check.
2800 : *
2801 : * Return true if the device itself is capable of generating wake-up events
2802 : * (through the platform or using the native PCIe PME) or if the device supports
2803 : * PME and one of its upstream bridges can generate wake-up events.
2804 : */
2805 0 : bool pci_dev_run_wake(struct pci_dev *dev)
2806 : {
2807 0 : struct pci_bus *bus = dev->bus;
2808 :
2809 0 : if (!dev->pme_support)
2810 : return false;
2811 :
2812 : /* PME-capable in principle, but not from the target power state */
2813 0 : if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2814 : return false;
2815 :
2816 0 : if (device_can_wakeup(&dev->dev))
2817 : return true;
2818 :
2819 0 : while (bus->parent) {
2820 0 : struct pci_dev *bridge = bus->self;
2821 :
2822 0 : if (device_can_wakeup(&bridge->dev))
2823 : return true;
2824 :
2825 : bus = bus->parent;
2826 : }
2827 :
2828 : /* We have reached the root bus. */
2829 0 : if (bus->bridge)
2830 0 : return device_can_wakeup(bus->bridge);
2831 :
2832 : return false;
2833 : }
2834 : EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2835 :
2836 : /**
2837 : * pci_dev_need_resume - Check if it is necessary to resume the device.
2838 : * @pci_dev: Device to check.
2839 : *
2840 : * Return 'true' if the device is not runtime-suspended or it has to be
2841 : * reconfigured due to wakeup settings difference between system and runtime
2842 : * suspend, or the current power state of it is not suitable for the upcoming
2843 : * (system-wide) transition.
2844 : */
2845 0 : bool pci_dev_need_resume(struct pci_dev *pci_dev)
2846 : {
2847 0 : struct device *dev = &pci_dev->dev;
2848 : pci_power_t target_state;
2849 :
2850 0 : if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2851 : return true;
2852 :
2853 0 : target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2854 :
2855 : /*
2856 : * If the earlier platform check has not triggered, D3cold is just power
2857 : * removal on top of D3hot, so no need to resume the device in that
2858 : * case.
2859 : */
2860 0 : return target_state != pci_dev->current_state &&
2861 0 : target_state != PCI_D3cold &&
2862 : pci_dev->current_state != PCI_D3hot;
2863 : }
2864 :
2865 : /**
2866 : * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2867 : * @pci_dev: Device to check.
2868 : *
2869 : * If the device is suspended and it is not configured for system wakeup,
2870 : * disable PME for it to prevent it from waking up the system unnecessarily.
2871 : *
2872 : * Note that if the device's power state is D3cold and the platform check in
2873 : * pci_dev_need_resume() has not triggered, the device's configuration need not
2874 : * be changed.
2875 : */
2876 0 : void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2877 : {
2878 0 : struct device *dev = &pci_dev->dev;
2879 :
2880 0 : spin_lock_irq(&dev->power.lock);
2881 :
2882 0 : if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2883 0 : pci_dev->current_state < PCI_D3cold)
2884 0 : __pci_pme_active(pci_dev, false);
2885 :
2886 0 : spin_unlock_irq(&dev->power.lock);
2887 0 : }
2888 :
2889 : /**
2890 : * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2891 : * @pci_dev: Device to handle.
2892 : *
2893 : * If the device is runtime suspended and wakeup-capable, enable PME for it as
2894 : * it might have been disabled during the prepare phase of system suspend if
2895 : * the device was not configured for system wakeup.
2896 : */
2897 0 : void pci_dev_complete_resume(struct pci_dev *pci_dev)
2898 : {
2899 0 : struct device *dev = &pci_dev->dev;
2900 :
2901 0 : if (!pci_dev_run_wake(pci_dev))
2902 : return;
2903 :
2904 0 : spin_lock_irq(&dev->power.lock);
2905 :
2906 0 : if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2907 0 : __pci_pme_active(pci_dev, true);
2908 :
2909 0 : spin_unlock_irq(&dev->power.lock);
2910 : }
2911 :
2912 : /**
2913 : * pci_choose_state - Choose the power state of a PCI device.
2914 : * @dev: Target PCI device.
2915 : * @state: Target state for the whole system.
2916 : *
2917 : * Returns PCI power state suitable for @dev and @state.
2918 : */
2919 0 : pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2920 : {
2921 0 : if (state.event == PM_EVENT_ON)
2922 : return PCI_D0;
2923 :
2924 0 : return pci_target_state(dev, false);
2925 : }
2926 : EXPORT_SYMBOL(pci_choose_state);
2927 :
2928 0 : void pci_config_pm_runtime_get(struct pci_dev *pdev)
2929 : {
2930 0 : struct device *dev = &pdev->dev;
2931 0 : struct device *parent = dev->parent;
2932 :
2933 0 : if (parent)
2934 : pm_runtime_get_sync(parent);
2935 0 : pm_runtime_get_noresume(dev);
2936 : /*
2937 : * pdev->current_state is set to PCI_D3cold during suspending,
2938 : * so wait until suspending completes
2939 : */
2940 0 : pm_runtime_barrier(dev);
2941 : /*
2942 : * Only need to resume devices in D3cold, because config
2943 : * registers are still accessible for devices suspended but
2944 : * not in D3cold.
2945 : */
2946 0 : if (pdev->current_state == PCI_D3cold)
2947 : pm_runtime_resume(dev);
2948 0 : }
2949 :
2950 0 : void pci_config_pm_runtime_put(struct pci_dev *pdev)
2951 : {
2952 0 : struct device *dev = &pdev->dev;
2953 0 : struct device *parent = dev->parent;
2954 :
2955 0 : pm_runtime_put(dev);
2956 0 : if (parent)
2957 : pm_runtime_put_sync(parent);
2958 0 : }
2959 :
2960 : static const struct dmi_system_id bridge_d3_blacklist[] = {
2961 : #ifdef CONFIG_X86
2962 : {
2963 : /*
2964 : * Gigabyte X299 root port is not marked as hotplug capable
2965 : * which allows Linux to power manage it. However, this
2966 : * confuses the BIOS SMI handler so don't power manage root
2967 : * ports on that system.
2968 : */
2969 : .ident = "X299 DESIGNARE EX-CF",
2970 : .matches = {
2971 : DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2972 : DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2973 : },
2974 : },
2975 : {
2976 : /*
2977 : * Downstream device is not accessible after putting a root port
2978 : * into D3cold and back into D0 on Elo Continental Z2 board
2979 : */
2980 : .ident = "Elo Continental Z2",
2981 : .matches = {
2982 : DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2983 : DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2984 : DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2985 : },
2986 : },
2987 : #endif
2988 : { }
2989 : };
2990 :
2991 : /**
2992 : * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2993 : * @bridge: Bridge to check
2994 : *
2995 : * This function checks if it is possible to move the bridge to D3.
2996 : * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2997 : */
2998 0 : bool pci_bridge_d3_possible(struct pci_dev *bridge)
2999 : {
3000 0 : if (!pci_is_pcie(bridge))
3001 : return false;
3002 :
3003 0 : switch (pci_pcie_type(bridge)) {
3004 : case PCI_EXP_TYPE_ROOT_PORT:
3005 : case PCI_EXP_TYPE_UPSTREAM:
3006 : case PCI_EXP_TYPE_DOWNSTREAM:
3007 0 : if (pci_bridge_d3_disable)
3008 : return false;
3009 :
3010 : /*
3011 : * Hotplug ports handled by firmware in System Management Mode
3012 : * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3013 : */
3014 0 : if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3015 : return false;
3016 :
3017 0 : if (pci_bridge_d3_force)
3018 : return true;
3019 :
3020 : /* Even the oldest 2010 Thunderbolt controller supports D3. */
3021 0 : if (bridge->is_thunderbolt)
3022 : return true;
3023 :
3024 : /* Platform might know better if the bridge supports D3 */
3025 0 : if (platform_pci_bridge_d3(bridge))
3026 : return true;
3027 :
3028 : /*
3029 : * Hotplug ports handled natively by the OS were not validated
3030 : * by vendors for runtime D3 at least until 2018 because there
3031 : * was no OS support.
3032 : */
3033 : if (bridge->is_hotplug_bridge)
3034 : return false;
3035 :
3036 : if (dmi_check_system(bridge_d3_blacklist))
3037 : return false;
3038 :
3039 : /*
3040 : * It should be safe to put PCIe ports from 2015 or newer
3041 : * to D3.
3042 : */
3043 : if (dmi_get_bios_year() >= 2015)
3044 : return true;
3045 : break;
3046 : }
3047 :
3048 : return false;
3049 : }
3050 :
3051 0 : static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3052 : {
3053 0 : bool *d3cold_ok = data;
3054 :
3055 0 : if (/* The device needs to be allowed to go D3cold ... */
3056 0 : dev->no_d3cold || !dev->d3cold_allowed ||
3057 :
3058 : /* ... and if it is wakeup capable to do so from D3cold. */
3059 0 : (device_may_wakeup(&dev->dev) &&
3060 0 : !pci_pme_capable(dev, PCI_D3cold)) ||
3061 :
3062 : /* If it is a bridge it must be allowed to go to D3. */
3063 0 : !pci_power_manageable(dev))
3064 :
3065 0 : *d3cold_ok = false;
3066 :
3067 0 : return !*d3cold_ok;
3068 : }
3069 :
3070 : /*
3071 : * pci_bridge_d3_update - Update bridge D3 capabilities
3072 : * @dev: PCI device which is changed
3073 : *
3074 : * Update upstream bridge PM capabilities accordingly depending on if the
3075 : * device PM configuration was changed or the device is being removed. The
3076 : * change is also propagated upstream.
3077 : */
3078 0 : void pci_bridge_d3_update(struct pci_dev *dev)
3079 : {
3080 0 : bool remove = !device_is_registered(&dev->dev);
3081 : struct pci_dev *bridge;
3082 0 : bool d3cold_ok = true;
3083 :
3084 0 : bridge = pci_upstream_bridge(dev);
3085 0 : if (!bridge || !pci_bridge_d3_possible(bridge))
3086 0 : return;
3087 :
3088 : /*
3089 : * If D3 is currently allowed for the bridge, removing one of its
3090 : * children won't change that.
3091 : */
3092 0 : if (remove && bridge->bridge_d3)
3093 : return;
3094 :
3095 : /*
3096 : * If D3 is currently allowed for the bridge and a child is added or
3097 : * changed, disallowance of D3 can only be caused by that child, so
3098 : * we only need to check that single device, not any of its siblings.
3099 : *
3100 : * If D3 is currently not allowed for the bridge, checking the device
3101 : * first may allow us to skip checking its siblings.
3102 : */
3103 0 : if (!remove)
3104 0 : pci_dev_check_d3cold(dev, &d3cold_ok);
3105 :
3106 : /*
3107 : * If D3 is currently not allowed for the bridge, this may be caused
3108 : * either by the device being changed/removed or any of its siblings,
3109 : * so we need to go through all children to find out if one of them
3110 : * continues to block D3.
3111 : */
3112 0 : if (d3cold_ok && !bridge->bridge_d3)
3113 0 : pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3114 : &d3cold_ok);
3115 :
3116 0 : if (bridge->bridge_d3 != d3cold_ok) {
3117 0 : bridge->bridge_d3 = d3cold_ok;
3118 : /* Propagate change to upstream bridges */
3119 0 : pci_bridge_d3_update(bridge);
3120 : }
3121 : }
3122 :
3123 : /**
3124 : * pci_d3cold_enable - Enable D3cold for device
3125 : * @dev: PCI device to handle
3126 : *
3127 : * This function can be used in drivers to enable D3cold from the device
3128 : * they handle. It also updates upstream PCI bridge PM capabilities
3129 : * accordingly.
3130 : */
3131 0 : void pci_d3cold_enable(struct pci_dev *dev)
3132 : {
3133 0 : if (dev->no_d3cold) {
3134 0 : dev->no_d3cold = false;
3135 0 : pci_bridge_d3_update(dev);
3136 : }
3137 0 : }
3138 : EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3139 :
3140 : /**
3141 : * pci_d3cold_disable - Disable D3cold for device
3142 : * @dev: PCI device to handle
3143 : *
3144 : * This function can be used in drivers to disable D3cold from the device
3145 : * they handle. It also updates upstream PCI bridge PM capabilities
3146 : * accordingly.
3147 : */
3148 0 : void pci_d3cold_disable(struct pci_dev *dev)
3149 : {
3150 0 : if (!dev->no_d3cold) {
3151 0 : dev->no_d3cold = true;
3152 0 : pci_bridge_d3_update(dev);
3153 : }
3154 0 : }
3155 : EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3156 :
3157 : /**
3158 : * pci_pm_init - Initialize PM functions of given PCI device
3159 : * @dev: PCI device to handle.
3160 : */
3161 0 : void pci_pm_init(struct pci_dev *dev)
3162 : {
3163 : int pm;
3164 : u16 status;
3165 : u16 pmc;
3166 :
3167 0 : pm_runtime_forbid(&dev->dev);
3168 0 : pm_runtime_set_active(&dev->dev);
3169 0 : pm_runtime_enable(&dev->dev);
3170 0 : device_enable_async_suspend(&dev->dev);
3171 0 : dev->wakeup_prepared = false;
3172 :
3173 0 : dev->pm_cap = 0;
3174 0 : dev->pme_support = 0;
3175 :
3176 : /* find PCI PM capability in list */
3177 0 : pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3178 0 : if (!pm)
3179 0 : return;
3180 : /* Check device's ability to generate PME# */
3181 0 : pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3182 :
3183 0 : if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3184 0 : pci_err(dev, "unsupported PM cap regs version (%u)\n",
3185 : pmc & PCI_PM_CAP_VER_MASK);
3186 0 : return;
3187 : }
3188 :
3189 0 : dev->pm_cap = pm;
3190 0 : dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3191 0 : dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3192 0 : dev->bridge_d3 = pci_bridge_d3_possible(dev);
3193 0 : dev->d3cold_allowed = true;
3194 :
3195 0 : dev->d1_support = false;
3196 0 : dev->d2_support = false;
3197 0 : if (!pci_no_d1d2(dev)) {
3198 0 : if (pmc & PCI_PM_CAP_D1)
3199 0 : dev->d1_support = true;
3200 0 : if (pmc & PCI_PM_CAP_D2)
3201 0 : dev->d2_support = true;
3202 :
3203 0 : if (dev->d1_support || dev->d2_support)
3204 0 : pci_info(dev, "supports%s%s\n",
3205 : dev->d1_support ? " D1" : "",
3206 : dev->d2_support ? " D2" : "");
3207 : }
3208 :
3209 0 : pmc &= PCI_PM_CAP_PME_MASK;
3210 0 : if (pmc) {
3211 0 : pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3212 : (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3213 : (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3214 : (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3215 : (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3216 : (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3217 0 : dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3218 0 : dev->pme_poll = true;
3219 : /*
3220 : * Make device's PM flags reflect the wake-up capability, but
3221 : * let the user space enable it to wake up the system as needed.
3222 : */
3223 0 : device_set_wakeup_capable(&dev->dev, true);
3224 : /* Disable the PME# generation functionality */
3225 0 : pci_pme_active(dev, false);
3226 : }
3227 :
3228 0 : pci_read_config_word(dev, PCI_STATUS, &status);
3229 0 : if (status & PCI_STATUS_IMM_READY)
3230 0 : dev->imm_ready = 1;
3231 : }
3232 :
3233 : static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3234 : {
3235 0 : unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3236 :
3237 : switch (prop) {
3238 : case PCI_EA_P_MEM:
3239 : case PCI_EA_P_VF_MEM:
3240 : flags |= IORESOURCE_MEM;
3241 : break;
3242 : case PCI_EA_P_MEM_PREFETCH:
3243 : case PCI_EA_P_VF_MEM_PREFETCH:
3244 : flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3245 : break;
3246 : case PCI_EA_P_IO:
3247 : flags |= IORESOURCE_IO;
3248 : break;
3249 : default:
3250 : return 0;
3251 : }
3252 :
3253 : return flags;
3254 : }
3255 :
3256 : static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3257 : u8 prop)
3258 : {
3259 0 : if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3260 0 : return &dev->resource[bei];
3261 : #ifdef CONFIG_PCI_IOV
3262 : else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3263 : (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3264 : return &dev->resource[PCI_IOV_RESOURCES +
3265 : bei - PCI_EA_BEI_VF_BAR0];
3266 : #endif
3267 0 : else if (bei == PCI_EA_BEI_ROM)
3268 0 : return &dev->resource[PCI_ROM_RESOURCE];
3269 : else
3270 : return NULL;
3271 : }
3272 :
3273 : /* Read an Enhanced Allocation (EA) entry */
3274 0 : static int pci_ea_read(struct pci_dev *dev, int offset)
3275 : {
3276 : struct resource *res;
3277 0 : int ent_size, ent_offset = offset;
3278 : resource_size_t start, end;
3279 : unsigned long flags;
3280 : u32 dw0, bei, base, max_offset;
3281 : u8 prop;
3282 0 : bool support_64 = (sizeof(resource_size_t) >= 8);
3283 :
3284 0 : pci_read_config_dword(dev, ent_offset, &dw0);
3285 0 : ent_offset += 4;
3286 :
3287 : /* Entry size field indicates DWORDs after 1st */
3288 0 : ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3289 :
3290 0 : if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3291 : goto out;
3292 :
3293 0 : bei = (dw0 & PCI_EA_BEI) >> 4;
3294 0 : prop = (dw0 & PCI_EA_PP) >> 8;
3295 :
3296 : /*
3297 : * If the Property is in the reserved range, try the Secondary
3298 : * Property instead.
3299 : */
3300 0 : if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3301 0 : prop = (dw0 & PCI_EA_SP) >> 16;
3302 0 : if (prop > PCI_EA_P_BRIDGE_IO)
3303 : goto out;
3304 :
3305 0 : res = pci_ea_get_resource(dev, bei, prop);
3306 0 : if (!res) {
3307 0 : pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3308 0 : goto out;
3309 : }
3310 :
3311 0 : flags = pci_ea_flags(dev, prop);
3312 0 : if (!flags) {
3313 0 : pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3314 0 : goto out;
3315 : }
3316 :
3317 : /* Read Base */
3318 0 : pci_read_config_dword(dev, ent_offset, &base);
3319 0 : start = (base & PCI_EA_FIELD_MASK);
3320 0 : ent_offset += 4;
3321 :
3322 : /* Read MaxOffset */
3323 0 : pci_read_config_dword(dev, ent_offset, &max_offset);
3324 0 : ent_offset += 4;
3325 :
3326 : /* Read Base MSBs (if 64-bit entry) */
3327 0 : if (base & PCI_EA_IS_64) {
3328 : u32 base_upper;
3329 :
3330 0 : pci_read_config_dword(dev, ent_offset, &base_upper);
3331 0 : ent_offset += 4;
3332 :
3333 0 : flags |= IORESOURCE_MEM_64;
3334 :
3335 : /* entry starts above 32-bit boundary, can't use */
3336 : if (!support_64 && base_upper)
3337 : goto out;
3338 :
3339 : if (support_64)
3340 0 : start |= ((u64)base_upper << 32);
3341 : }
3342 :
3343 0 : end = start + (max_offset | 0x03);
3344 :
3345 : /* Read MaxOffset MSBs (if 64-bit entry) */
3346 0 : if (max_offset & PCI_EA_IS_64) {
3347 : u32 max_offset_upper;
3348 :
3349 0 : pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3350 0 : ent_offset += 4;
3351 :
3352 0 : flags |= IORESOURCE_MEM_64;
3353 :
3354 : /* entry too big, can't use */
3355 : if (!support_64 && max_offset_upper)
3356 : goto out;
3357 :
3358 : if (support_64)
3359 0 : end += ((u64)max_offset_upper << 32);
3360 : }
3361 :
3362 0 : if (end < start) {
3363 0 : pci_err(dev, "EA Entry crosses address boundary\n");
3364 0 : goto out;
3365 : }
3366 :
3367 0 : if (ent_size != ent_offset - offset) {
3368 0 : pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3369 : ent_size, ent_offset - offset);
3370 0 : goto out;
3371 : }
3372 :
3373 0 : res->name = pci_name(dev);
3374 0 : res->start = start;
3375 0 : res->end = end;
3376 0 : res->flags = flags;
3377 :
3378 0 : if (bei <= PCI_EA_BEI_BAR5)
3379 0 : pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3380 : bei, res, prop);
3381 0 : else if (bei == PCI_EA_BEI_ROM)
3382 0 : pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3383 : res, prop);
3384 0 : else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3385 0 : pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3386 : bei - PCI_EA_BEI_VF_BAR0, res, prop);
3387 : else
3388 0 : pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3389 : bei, res, prop);
3390 :
3391 : out:
3392 0 : return offset + ent_size;
3393 : }
3394 :
3395 : /* Enhanced Allocation Initialization */
3396 0 : void pci_ea_init(struct pci_dev *dev)
3397 : {
3398 : int ea;
3399 : u8 num_ent;
3400 : int offset;
3401 : int i;
3402 :
3403 : /* find PCI EA capability in list */
3404 0 : ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3405 0 : if (!ea)
3406 0 : return;
3407 :
3408 : /* determine the number of entries */
3409 0 : pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3410 : &num_ent);
3411 0 : num_ent &= PCI_EA_NUM_ENT_MASK;
3412 :
3413 0 : offset = ea + PCI_EA_FIRST_ENT;
3414 :
3415 : /* Skip DWORD 2 for type 1 functions */
3416 0 : if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3417 0 : offset += 4;
3418 :
3419 : /* parse each EA entry */
3420 0 : for (i = 0; i < num_ent; ++i)
3421 0 : offset = pci_ea_read(dev, offset);
3422 : }
3423 :
3424 : static void pci_add_saved_cap(struct pci_dev *pci_dev,
3425 : struct pci_cap_saved_state *new_cap)
3426 : {
3427 0 : hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3428 : }
3429 :
3430 : /**
3431 : * _pci_add_cap_save_buffer - allocate buffer for saving given
3432 : * capability registers
3433 : * @dev: the PCI device
3434 : * @cap: the capability to allocate the buffer for
3435 : * @extended: Standard or Extended capability ID
3436 : * @size: requested size of the buffer
3437 : */
3438 0 : static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3439 : bool extended, unsigned int size)
3440 : {
3441 : int pos;
3442 : struct pci_cap_saved_state *save_state;
3443 :
3444 0 : if (extended)
3445 0 : pos = pci_find_ext_capability(dev, cap);
3446 : else
3447 0 : pos = pci_find_capability(dev, cap);
3448 :
3449 0 : if (!pos)
3450 : return 0;
3451 :
3452 0 : save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3453 0 : if (!save_state)
3454 : return -ENOMEM;
3455 :
3456 0 : save_state->cap.cap_nr = cap;
3457 0 : save_state->cap.cap_extended = extended;
3458 0 : save_state->cap.size = size;
3459 0 : pci_add_saved_cap(dev, save_state);
3460 :
3461 0 : return 0;
3462 : }
3463 :
3464 0 : int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3465 : {
3466 0 : return _pci_add_cap_save_buffer(dev, cap, false, size);
3467 : }
3468 :
3469 0 : int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3470 : {
3471 0 : return _pci_add_cap_save_buffer(dev, cap, true, size);
3472 : }
3473 :
3474 : /**
3475 : * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3476 : * @dev: the PCI device
3477 : */
3478 0 : void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3479 : {
3480 : int error;
3481 :
3482 0 : error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3483 : PCI_EXP_SAVE_REGS * sizeof(u16));
3484 0 : if (error)
3485 0 : pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3486 :
3487 0 : error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3488 0 : if (error)
3489 0 : pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3490 :
3491 0 : error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3492 : 2 * sizeof(u16));
3493 0 : if (error)
3494 0 : pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3495 :
3496 0 : pci_allocate_vc_save_buffers(dev);
3497 0 : }
3498 :
3499 0 : void pci_free_cap_save_buffers(struct pci_dev *dev)
3500 : {
3501 : struct pci_cap_saved_state *tmp;
3502 : struct hlist_node *n;
3503 :
3504 0 : hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3505 0 : kfree(tmp);
3506 0 : }
3507 :
3508 : /**
3509 : * pci_configure_ari - enable or disable ARI forwarding
3510 : * @dev: the PCI device
3511 : *
3512 : * If @dev and its upstream bridge both support ARI, enable ARI in the
3513 : * bridge. Otherwise, disable ARI in the bridge.
3514 : */
3515 0 : void pci_configure_ari(struct pci_dev *dev)
3516 : {
3517 : u32 cap;
3518 : struct pci_dev *bridge;
3519 :
3520 0 : if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3521 0 : return;
3522 :
3523 0 : bridge = dev->bus->self;
3524 0 : if (!bridge)
3525 : return;
3526 :
3527 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3528 0 : if (!(cap & PCI_EXP_DEVCAP2_ARI))
3529 : return;
3530 :
3531 0 : if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3532 0 : pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3533 : PCI_EXP_DEVCTL2_ARI);
3534 0 : bridge->ari_enabled = 1;
3535 : } else {
3536 0 : pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3537 : PCI_EXP_DEVCTL2_ARI);
3538 0 : bridge->ari_enabled = 0;
3539 : }
3540 : }
3541 :
3542 0 : static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3543 : {
3544 : int pos;
3545 : u16 cap, ctrl;
3546 :
3547 0 : pos = pdev->acs_cap;
3548 0 : if (!pos)
3549 : return false;
3550 :
3551 : /*
3552 : * Except for egress control, capabilities are either required
3553 : * or only required if controllable. Features missing from the
3554 : * capability field can therefore be assumed as hard-wired enabled.
3555 : */
3556 0 : pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3557 0 : acs_flags &= (cap | PCI_ACS_EC);
3558 :
3559 0 : pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3560 0 : return (ctrl & acs_flags) == acs_flags;
3561 : }
3562 :
3563 : /**
3564 : * pci_acs_enabled - test ACS against required flags for a given device
3565 : * @pdev: device to test
3566 : * @acs_flags: required PCI ACS flags
3567 : *
3568 : * Return true if the device supports the provided flags. Automatically
3569 : * filters out flags that are not implemented on multifunction devices.
3570 : *
3571 : * Note that this interface checks the effective ACS capabilities of the
3572 : * device rather than the actual capabilities. For instance, most single
3573 : * function endpoints are not required to support ACS because they have no
3574 : * opportunity for peer-to-peer access. We therefore return 'true'
3575 : * regardless of whether the device exposes an ACS capability. This makes
3576 : * it much easier for callers of this function to ignore the actual type
3577 : * or topology of the device when testing ACS support.
3578 : */
3579 0 : bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3580 : {
3581 : int ret;
3582 :
3583 0 : ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3584 0 : if (ret >= 0)
3585 0 : return ret > 0;
3586 :
3587 : /*
3588 : * Conventional PCI and PCI-X devices never support ACS, either
3589 : * effectively or actually. The shared bus topology implies that
3590 : * any device on the bus can receive or snoop DMA.
3591 : */
3592 0 : if (!pci_is_pcie(pdev))
3593 : return false;
3594 :
3595 0 : switch (pci_pcie_type(pdev)) {
3596 : /*
3597 : * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3598 : * but since their primary interface is PCI/X, we conservatively
3599 : * handle them as we would a non-PCIe device.
3600 : */
3601 : case PCI_EXP_TYPE_PCIE_BRIDGE:
3602 : /*
3603 : * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3604 : * applicable... must never implement an ACS Extended Capability...".
3605 : * This seems arbitrary, but we take a conservative interpretation
3606 : * of this statement.
3607 : */
3608 : case PCI_EXP_TYPE_PCI_BRIDGE:
3609 : case PCI_EXP_TYPE_RC_EC:
3610 : return false;
3611 : /*
3612 : * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3613 : * implement ACS in order to indicate their peer-to-peer capabilities,
3614 : * regardless of whether they are single- or multi-function devices.
3615 : */
3616 : case PCI_EXP_TYPE_DOWNSTREAM:
3617 : case PCI_EXP_TYPE_ROOT_PORT:
3618 0 : return pci_acs_flags_enabled(pdev, acs_flags);
3619 : /*
3620 : * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3621 : * implemented by the remaining PCIe types to indicate peer-to-peer
3622 : * capabilities, but only when they are part of a multifunction
3623 : * device. The footnote for section 6.12 indicates the specific
3624 : * PCIe types included here.
3625 : */
3626 : case PCI_EXP_TYPE_ENDPOINT:
3627 : case PCI_EXP_TYPE_UPSTREAM:
3628 : case PCI_EXP_TYPE_LEG_END:
3629 : case PCI_EXP_TYPE_RC_END:
3630 0 : if (!pdev->multifunction)
3631 : break;
3632 :
3633 0 : return pci_acs_flags_enabled(pdev, acs_flags);
3634 : }
3635 :
3636 : /*
3637 : * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3638 : * to single function devices with the exception of downstream ports.
3639 : */
3640 0 : return true;
3641 : }
3642 :
3643 : /**
3644 : * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3645 : * @start: starting downstream device
3646 : * @end: ending upstream device or NULL to search to the root bus
3647 : * @acs_flags: required flags
3648 : *
3649 : * Walk up a device tree from start to end testing PCI ACS support. If
3650 : * any step along the way does not support the required flags, return false.
3651 : */
3652 0 : bool pci_acs_path_enabled(struct pci_dev *start,
3653 : struct pci_dev *end, u16 acs_flags)
3654 : {
3655 0 : struct pci_dev *pdev, *parent = start;
3656 :
3657 : do {
3658 0 : pdev = parent;
3659 :
3660 0 : if (!pci_acs_enabled(pdev, acs_flags))
3661 : return false;
3662 :
3663 0 : if (pci_is_root_bus(pdev->bus))
3664 0 : return (end == NULL);
3665 :
3666 0 : parent = pdev->bus->self;
3667 0 : } while (pdev != end);
3668 :
3669 : return true;
3670 : }
3671 :
3672 : /**
3673 : * pci_acs_init - Initialize ACS if hardware supports it
3674 : * @dev: the PCI device
3675 : */
3676 0 : void pci_acs_init(struct pci_dev *dev)
3677 : {
3678 0 : dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3679 :
3680 : /*
3681 : * Attempt to enable ACS regardless of capability because some Root
3682 : * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3683 : * the standard ACS capability but still support ACS via those
3684 : * quirks.
3685 : */
3686 0 : pci_enable_acs(dev);
3687 0 : }
3688 :
3689 : /**
3690 : * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3691 : * @pdev: PCI device
3692 : * @bar: BAR to find
3693 : *
3694 : * Helper to find the position of the ctrl register for a BAR.
3695 : * Returns -ENOTSUPP if resizable BARs are not supported at all.
3696 : * Returns -ENOENT if no ctrl register for the BAR could be found.
3697 : */
3698 0 : static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3699 : {
3700 : unsigned int pos, nbars, i;
3701 : u32 ctrl;
3702 :
3703 0 : pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3704 0 : if (!pos)
3705 : return -ENOTSUPP;
3706 :
3707 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3708 0 : nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3709 : PCI_REBAR_CTRL_NBAR_SHIFT;
3710 :
3711 0 : for (i = 0; i < nbars; i++, pos += 8) {
3712 : int bar_idx;
3713 :
3714 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3715 0 : bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3716 0 : if (bar_idx == bar)
3717 0 : return pos;
3718 : }
3719 :
3720 : return -ENOENT;
3721 : }
3722 :
3723 : /**
3724 : * pci_rebar_get_possible_sizes - get possible sizes for BAR
3725 : * @pdev: PCI device
3726 : * @bar: BAR to query
3727 : *
3728 : * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3729 : * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3730 : */
3731 0 : u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3732 : {
3733 : int pos;
3734 : u32 cap;
3735 :
3736 0 : pos = pci_rebar_find_pos(pdev, bar);
3737 0 : if (pos < 0)
3738 : return 0;
3739 :
3740 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3741 0 : cap &= PCI_REBAR_CAP_SIZES;
3742 :
3743 : /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3744 0 : if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3745 0 : bar == 0 && cap == 0x7000)
3746 0 : cap = 0x3f000;
3747 :
3748 0 : return cap >> 4;
3749 : }
3750 : EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3751 :
3752 : /**
3753 : * pci_rebar_get_current_size - get the current size of a BAR
3754 : * @pdev: PCI device
3755 : * @bar: BAR to set size to
3756 : *
3757 : * Read the size of a BAR from the resizable BAR config.
3758 : * Returns size if found or negative error code.
3759 : */
3760 0 : int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3761 : {
3762 : int pos;
3763 : u32 ctrl;
3764 :
3765 0 : pos = pci_rebar_find_pos(pdev, bar);
3766 0 : if (pos < 0)
3767 : return pos;
3768 :
3769 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3770 0 : return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3771 : }
3772 :
3773 : /**
3774 : * pci_rebar_set_size - set a new size for a BAR
3775 : * @pdev: PCI device
3776 : * @bar: BAR to set size to
3777 : * @size: new size as defined in the spec (0=1MB, 19=512GB)
3778 : *
3779 : * Set the new size of a BAR as defined in the spec.
3780 : * Returns zero if resizing was successful, error code otherwise.
3781 : */
3782 0 : int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3783 : {
3784 : int pos;
3785 : u32 ctrl;
3786 :
3787 0 : pos = pci_rebar_find_pos(pdev, bar);
3788 0 : if (pos < 0)
3789 : return pos;
3790 :
3791 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3792 0 : ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3793 0 : ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3794 0 : pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3795 0 : return 0;
3796 : }
3797 :
3798 : /**
3799 : * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3800 : * @dev: the PCI device
3801 : * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3802 : * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3803 : * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3804 : * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3805 : *
3806 : * Return 0 if all upstream bridges support AtomicOp routing, egress
3807 : * blocking is disabled on all upstream ports, and the root port supports
3808 : * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3809 : * AtomicOp completion), or negative otherwise.
3810 : */
3811 0 : int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3812 : {
3813 0 : struct pci_bus *bus = dev->bus;
3814 : struct pci_dev *bridge;
3815 : u32 cap, ctl2;
3816 :
3817 : /*
3818 : * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3819 : * in Device Control 2 is reserved in VFs and the PF value applies
3820 : * to all associated VFs.
3821 : */
3822 0 : if (dev->is_virtfn)
3823 : return -EINVAL;
3824 :
3825 0 : if (!pci_is_pcie(dev))
3826 : return -EINVAL;
3827 :
3828 : /*
3829 : * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3830 : * AtomicOp requesters. For now, we only support endpoints as
3831 : * requesters and root ports as completers. No endpoints as
3832 : * completers, and no peer-to-peer.
3833 : */
3834 :
3835 0 : switch (pci_pcie_type(dev)) {
3836 : case PCI_EXP_TYPE_ENDPOINT:
3837 : case PCI_EXP_TYPE_LEG_END:
3838 : case PCI_EXP_TYPE_RC_END:
3839 : break;
3840 : default:
3841 : return -EINVAL;
3842 : }
3843 :
3844 0 : while (bus->parent) {
3845 0 : bridge = bus->self;
3846 :
3847 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3848 :
3849 0 : switch (pci_pcie_type(bridge)) {
3850 : /* Ensure switch ports support AtomicOp routing */
3851 : case PCI_EXP_TYPE_UPSTREAM:
3852 : case PCI_EXP_TYPE_DOWNSTREAM:
3853 0 : if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3854 : return -EINVAL;
3855 : break;
3856 :
3857 : /* Ensure root port supports all the sizes we care about */
3858 : case PCI_EXP_TYPE_ROOT_PORT:
3859 0 : if ((cap & cap_mask) != cap_mask)
3860 : return -EINVAL;
3861 : break;
3862 : }
3863 :
3864 : /* Ensure upstream ports don't block AtomicOps on egress */
3865 0 : if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3866 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3867 : &ctl2);
3868 0 : if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3869 : return -EINVAL;
3870 : }
3871 :
3872 0 : bus = bus->parent;
3873 : }
3874 :
3875 0 : pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3876 : PCI_EXP_DEVCTL2_ATOMIC_REQ);
3877 0 : return 0;
3878 : }
3879 : EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3880 :
3881 : /**
3882 : * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3883 : * @dev: the PCI device
3884 : * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3885 : *
3886 : * Perform INTx swizzling for a device behind one level of bridge. This is
3887 : * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3888 : * behind bridges on add-in cards. For devices with ARI enabled, the slot
3889 : * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3890 : * the PCI Express Base Specification, Revision 2.1)
3891 : */
3892 0 : u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3893 : {
3894 : int slot;
3895 :
3896 0 : if (pci_ari_enabled(dev->bus))
3897 : slot = 0;
3898 : else
3899 0 : slot = PCI_SLOT(dev->devfn);
3900 :
3901 0 : return (((pin - 1) + slot) % 4) + 1;
3902 : }
3903 :
3904 0 : int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3905 : {
3906 : u8 pin;
3907 :
3908 0 : pin = dev->pin;
3909 0 : if (!pin)
3910 : return -1;
3911 :
3912 0 : while (!pci_is_root_bus(dev->bus)) {
3913 0 : pin = pci_swizzle_interrupt_pin(dev, pin);
3914 0 : dev = dev->bus->self;
3915 : }
3916 0 : *bridge = dev;
3917 0 : return pin;
3918 : }
3919 :
3920 : /**
3921 : * pci_common_swizzle - swizzle INTx all the way to root bridge
3922 : * @dev: the PCI device
3923 : * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3924 : *
3925 : * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3926 : * bridges all the way up to a PCI root bus.
3927 : */
3928 0 : u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3929 : {
3930 0 : u8 pin = *pinp;
3931 :
3932 0 : while (!pci_is_root_bus(dev->bus)) {
3933 0 : pin = pci_swizzle_interrupt_pin(dev, pin);
3934 0 : dev = dev->bus->self;
3935 : }
3936 0 : *pinp = pin;
3937 0 : return PCI_SLOT(dev->devfn);
3938 : }
3939 : EXPORT_SYMBOL_GPL(pci_common_swizzle);
3940 :
3941 : /**
3942 : * pci_release_region - Release a PCI bar
3943 : * @pdev: PCI device whose resources were previously reserved by
3944 : * pci_request_region()
3945 : * @bar: BAR to release
3946 : *
3947 : * Releases the PCI I/O and memory resources previously reserved by a
3948 : * successful call to pci_request_region(). Call this function only
3949 : * after all use of the PCI regions has ceased.
3950 : */
3951 0 : void pci_release_region(struct pci_dev *pdev, int bar)
3952 : {
3953 : struct pci_devres *dr;
3954 :
3955 0 : if (pci_resource_len(pdev, bar) == 0)
3956 : return;
3957 0 : if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3958 0 : release_region(pci_resource_start(pdev, bar),
3959 : pci_resource_len(pdev, bar));
3960 0 : else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3961 0 : release_mem_region(pci_resource_start(pdev, bar),
3962 : pci_resource_len(pdev, bar));
3963 :
3964 0 : dr = find_pci_dr(pdev);
3965 0 : if (dr)
3966 0 : dr->region_mask &= ~(1 << bar);
3967 : }
3968 : EXPORT_SYMBOL(pci_release_region);
3969 :
3970 : /**
3971 : * __pci_request_region - Reserved PCI I/O and memory resource
3972 : * @pdev: PCI device whose resources are to be reserved
3973 : * @bar: BAR to be reserved
3974 : * @res_name: Name to be associated with resource.
3975 : * @exclusive: whether the region access is exclusive or not
3976 : *
3977 : * Mark the PCI region associated with PCI device @pdev BAR @bar as
3978 : * being reserved by owner @res_name. Do not access any
3979 : * address inside the PCI regions unless this call returns
3980 : * successfully.
3981 : *
3982 : * If @exclusive is set, then the region is marked so that userspace
3983 : * is explicitly not allowed to map the resource via /dev/mem or
3984 : * sysfs MMIO access.
3985 : *
3986 : * Returns 0 on success, or %EBUSY on error. A warning
3987 : * message is also printed on failure.
3988 : */
3989 0 : static int __pci_request_region(struct pci_dev *pdev, int bar,
3990 : const char *res_name, int exclusive)
3991 : {
3992 : struct pci_devres *dr;
3993 :
3994 0 : if (pci_resource_len(pdev, bar) == 0)
3995 : return 0;
3996 :
3997 0 : if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3998 0 : if (!request_region(pci_resource_start(pdev, bar),
3999 : pci_resource_len(pdev, bar), res_name))
4000 : goto err_out;
4001 0 : } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4002 0 : if (!__request_mem_region(pci_resource_start(pdev, bar),
4003 : pci_resource_len(pdev, bar), res_name,
4004 : exclusive))
4005 : goto err_out;
4006 : }
4007 :
4008 0 : dr = find_pci_dr(pdev);
4009 0 : if (dr)
4010 0 : dr->region_mask |= 1 << bar;
4011 :
4012 : return 0;
4013 :
4014 : err_out:
4015 0 : pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4016 : &pdev->resource[bar]);
4017 0 : return -EBUSY;
4018 : }
4019 :
4020 : /**
4021 : * pci_request_region - Reserve PCI I/O and memory resource
4022 : * @pdev: PCI device whose resources are to be reserved
4023 : * @bar: BAR to be reserved
4024 : * @res_name: Name to be associated with resource
4025 : *
4026 : * Mark the PCI region associated with PCI device @pdev BAR @bar as
4027 : * being reserved by owner @res_name. Do not access any
4028 : * address inside the PCI regions unless this call returns
4029 : * successfully.
4030 : *
4031 : * Returns 0 on success, or %EBUSY on error. A warning
4032 : * message is also printed on failure.
4033 : */
4034 0 : int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4035 : {
4036 0 : return __pci_request_region(pdev, bar, res_name, 0);
4037 : }
4038 : EXPORT_SYMBOL(pci_request_region);
4039 :
4040 : /**
4041 : * pci_release_selected_regions - Release selected PCI I/O and memory resources
4042 : * @pdev: PCI device whose resources were previously reserved
4043 : * @bars: Bitmask of BARs to be released
4044 : *
4045 : * Release selected PCI I/O and memory resources previously reserved.
4046 : * Call this function only after all use of the PCI regions has ceased.
4047 : */
4048 0 : void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4049 : {
4050 : int i;
4051 :
4052 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++)
4053 0 : if (bars & (1 << i))
4054 0 : pci_release_region(pdev, i);
4055 0 : }
4056 : EXPORT_SYMBOL(pci_release_selected_regions);
4057 :
4058 0 : static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4059 : const char *res_name, int excl)
4060 : {
4061 : int i;
4062 :
4063 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++)
4064 0 : if (bars & (1 << i))
4065 0 : if (__pci_request_region(pdev, i, res_name, excl))
4066 : goto err_out;
4067 : return 0;
4068 :
4069 : err_out:
4070 0 : while (--i >= 0)
4071 0 : if (bars & (1 << i))
4072 0 : pci_release_region(pdev, i);
4073 :
4074 : return -EBUSY;
4075 : }
4076 :
4077 :
4078 : /**
4079 : * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4080 : * @pdev: PCI device whose resources are to be reserved
4081 : * @bars: Bitmask of BARs to be requested
4082 : * @res_name: Name to be associated with resource
4083 : */
4084 0 : int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4085 : const char *res_name)
4086 : {
4087 0 : return __pci_request_selected_regions(pdev, bars, res_name, 0);
4088 : }
4089 : EXPORT_SYMBOL(pci_request_selected_regions);
4090 :
4091 0 : int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 : const char *res_name)
4093 : {
4094 0 : return __pci_request_selected_regions(pdev, bars, res_name,
4095 : IORESOURCE_EXCLUSIVE);
4096 : }
4097 : EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098 :
4099 : /**
4100 : * pci_release_regions - Release reserved PCI I/O and memory resources
4101 : * @pdev: PCI device whose resources were previously reserved by
4102 : * pci_request_regions()
4103 : *
4104 : * Releases all PCI I/O and memory resources previously reserved by a
4105 : * successful call to pci_request_regions(). Call this function only
4106 : * after all use of the PCI regions has ceased.
4107 : */
4108 :
4109 0 : void pci_release_regions(struct pci_dev *pdev)
4110 : {
4111 0 : pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4112 0 : }
4113 : EXPORT_SYMBOL(pci_release_regions);
4114 :
4115 : /**
4116 : * pci_request_regions - Reserve PCI I/O and memory resources
4117 : * @pdev: PCI device whose resources are to be reserved
4118 : * @res_name: Name to be associated with resource.
4119 : *
4120 : * Mark all PCI regions associated with PCI device @pdev as
4121 : * being reserved by owner @res_name. Do not access any
4122 : * address inside the PCI regions unless this call returns
4123 : * successfully.
4124 : *
4125 : * Returns 0 on success, or %EBUSY on error. A warning
4126 : * message is also printed on failure.
4127 : */
4128 0 : int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4129 : {
4130 0 : return pci_request_selected_regions(pdev,
4131 : ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4132 : }
4133 : EXPORT_SYMBOL(pci_request_regions);
4134 :
4135 : /**
4136 : * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4137 : * @pdev: PCI device whose resources are to be reserved
4138 : * @res_name: Name to be associated with resource.
4139 : *
4140 : * Mark all PCI regions associated with PCI device @pdev as being reserved
4141 : * by owner @res_name. Do not access any address inside the PCI regions
4142 : * unless this call returns successfully.
4143 : *
4144 : * pci_request_regions_exclusive() will mark the region so that /dev/mem
4145 : * and the sysfs MMIO access will not be allowed.
4146 : *
4147 : * Returns 0 on success, or %EBUSY on error. A warning message is also
4148 : * printed on failure.
4149 : */
4150 0 : int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4151 : {
4152 0 : return pci_request_selected_regions_exclusive(pdev,
4153 : ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4154 : }
4155 : EXPORT_SYMBOL(pci_request_regions_exclusive);
4156 :
4157 : /*
4158 : * Record the PCI IO range (expressed as CPU physical address + size).
4159 : * Return a negative value if an error has occurred, zero otherwise
4160 : */
4161 0 : int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4162 : resource_size_t size)
4163 : {
4164 0 : int ret = 0;
4165 : #ifdef PCI_IOBASE
4166 : struct logic_pio_hwaddr *range;
4167 :
4168 0 : if (!size || addr + size < addr)
4169 : return -EINVAL;
4170 :
4171 0 : range = kzalloc(sizeof(*range), GFP_ATOMIC);
4172 0 : if (!range)
4173 : return -ENOMEM;
4174 :
4175 0 : range->fwnode = fwnode;
4176 0 : range->size = size;
4177 0 : range->hw_start = addr;
4178 0 : range->flags = LOGIC_PIO_CPU_MMIO;
4179 :
4180 0 : ret = logic_pio_register_range(range);
4181 0 : if (ret)
4182 0 : kfree(range);
4183 :
4184 : /* Ignore duplicates due to deferred probing */
4185 0 : if (ret == -EEXIST)
4186 0 : ret = 0;
4187 : #endif
4188 :
4189 : return ret;
4190 : }
4191 :
4192 0 : phys_addr_t pci_pio_to_address(unsigned long pio)
4193 : {
4194 0 : phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4195 :
4196 : #ifdef PCI_IOBASE
4197 0 : if (pio >= MMIO_UPPER_LIMIT)
4198 : return address;
4199 :
4200 0 : address = logic_pio_to_hwaddr(pio);
4201 : #endif
4202 :
4203 0 : return address;
4204 : }
4205 : EXPORT_SYMBOL_GPL(pci_pio_to_address);
4206 :
4207 0 : unsigned long __weak pci_address_to_pio(phys_addr_t address)
4208 : {
4209 : #ifdef PCI_IOBASE
4210 0 : return logic_pio_trans_cpuaddr(address);
4211 : #else
4212 : if (address > IO_SPACE_LIMIT)
4213 : return (unsigned long)-1;
4214 :
4215 : return (unsigned long) address;
4216 : #endif
4217 : }
4218 :
4219 : /**
4220 : * pci_remap_iospace - Remap the memory mapped I/O space
4221 : * @res: Resource describing the I/O space
4222 : * @phys_addr: physical address of range to be mapped
4223 : *
4224 : * Remap the memory mapped I/O space described by the @res and the CPU
4225 : * physical address @phys_addr into virtual address space. Only
4226 : * architectures that have memory mapped IO functions defined (and the
4227 : * PCI_IOBASE value defined) should call this function.
4228 : */
4229 : #ifndef pci_remap_iospace
4230 0 : int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4231 : {
4232 : #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4233 0 : unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4234 :
4235 0 : if (!(res->flags & IORESOURCE_IO))
4236 : return -EINVAL;
4237 :
4238 0 : if (res->end > IO_SPACE_LIMIT)
4239 : return -EINVAL;
4240 :
4241 0 : return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4242 0 : pgprot_device(PAGE_KERNEL));
4243 : #else
4244 : /*
4245 : * This architecture does not have memory mapped I/O space,
4246 : * so this function should never be called
4247 : */
4248 : WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4249 : return -ENODEV;
4250 : #endif
4251 : }
4252 : EXPORT_SYMBOL(pci_remap_iospace);
4253 : #endif
4254 :
4255 : /**
4256 : * pci_unmap_iospace - Unmap the memory mapped I/O space
4257 : * @res: resource to be unmapped
4258 : *
4259 : * Unmap the CPU virtual address @res from virtual address space. Only
4260 : * architectures that have memory mapped IO functions defined (and the
4261 : * PCI_IOBASE value defined) should call this function.
4262 : */
4263 0 : void pci_unmap_iospace(struct resource *res)
4264 : {
4265 : #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4266 0 : unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4267 :
4268 0 : vunmap_range(vaddr, vaddr + resource_size(res));
4269 : #endif
4270 0 : }
4271 : EXPORT_SYMBOL(pci_unmap_iospace);
4272 :
4273 0 : static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4274 : {
4275 0 : struct resource **res = ptr;
4276 :
4277 0 : pci_unmap_iospace(*res);
4278 0 : }
4279 :
4280 : /**
4281 : * devm_pci_remap_iospace - Managed pci_remap_iospace()
4282 : * @dev: Generic device to remap IO address for
4283 : * @res: Resource describing the I/O space
4284 : * @phys_addr: physical address of range to be mapped
4285 : *
4286 : * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4287 : * detach.
4288 : */
4289 0 : int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4290 : phys_addr_t phys_addr)
4291 : {
4292 : const struct resource **ptr;
4293 : int error;
4294 :
4295 0 : ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4296 0 : if (!ptr)
4297 : return -ENOMEM;
4298 :
4299 0 : error = pci_remap_iospace(res, phys_addr);
4300 0 : if (error) {
4301 0 : devres_free(ptr);
4302 : } else {
4303 0 : *ptr = res;
4304 0 : devres_add(dev, ptr);
4305 : }
4306 :
4307 : return error;
4308 : }
4309 : EXPORT_SYMBOL(devm_pci_remap_iospace);
4310 :
4311 : /**
4312 : * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4313 : * @dev: Generic device to remap IO address for
4314 : * @offset: Resource address to map
4315 : * @size: Size of map
4316 : *
4317 : * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4318 : * detach.
4319 : */
4320 0 : void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4321 : resource_size_t offset,
4322 : resource_size_t size)
4323 : {
4324 : void __iomem **ptr, *addr;
4325 :
4326 0 : ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4327 0 : if (!ptr)
4328 : return NULL;
4329 :
4330 0 : addr = pci_remap_cfgspace(offset, size);
4331 0 : if (addr) {
4332 0 : *ptr = addr;
4333 0 : devres_add(dev, ptr);
4334 : } else
4335 0 : devres_free(ptr);
4336 :
4337 : return addr;
4338 : }
4339 : EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4340 :
4341 : /**
4342 : * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4343 : * @dev: generic device to handle the resource for
4344 : * @res: configuration space resource to be handled
4345 : *
4346 : * Checks that a resource is a valid memory region, requests the memory
4347 : * region and ioremaps with pci_remap_cfgspace() API that ensures the
4348 : * proper PCI configuration space memory attributes are guaranteed.
4349 : *
4350 : * All operations are managed and will be undone on driver detach.
4351 : *
4352 : * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4353 : * on failure. Usage example::
4354 : *
4355 : * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4356 : * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4357 : * if (IS_ERR(base))
4358 : * return PTR_ERR(base);
4359 : */
4360 0 : void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4361 : struct resource *res)
4362 : {
4363 : resource_size_t size;
4364 : const char *name;
4365 : void __iomem *dest_ptr;
4366 :
4367 0 : BUG_ON(!dev);
4368 :
4369 0 : if (!res || resource_type(res) != IORESOURCE_MEM) {
4370 0 : dev_err(dev, "invalid resource\n");
4371 0 : return IOMEM_ERR_PTR(-EINVAL);
4372 : }
4373 :
4374 0 : size = resource_size(res);
4375 :
4376 0 : if (res->name)
4377 0 : name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4378 : res->name);
4379 : else
4380 0 : name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4381 0 : if (!name)
4382 : return IOMEM_ERR_PTR(-ENOMEM);
4383 :
4384 0 : if (!devm_request_mem_region(dev, res->start, size, name)) {
4385 0 : dev_err(dev, "can't request region for resource %pR\n", res);
4386 0 : return IOMEM_ERR_PTR(-EBUSY);
4387 : }
4388 :
4389 0 : dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4390 0 : if (!dest_ptr) {
4391 0 : dev_err(dev, "ioremap failed for resource %pR\n", res);
4392 0 : devm_release_mem_region(dev, res->start, size);
4393 0 : dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4394 : }
4395 :
4396 : return dest_ptr;
4397 : }
4398 : EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4399 :
4400 0 : static void __pci_set_master(struct pci_dev *dev, bool enable)
4401 : {
4402 : u16 old_cmd, cmd;
4403 :
4404 0 : pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4405 0 : if (enable)
4406 0 : cmd = old_cmd | PCI_COMMAND_MASTER;
4407 : else
4408 0 : cmd = old_cmd & ~PCI_COMMAND_MASTER;
4409 0 : if (cmd != old_cmd) {
4410 : pci_dbg(dev, "%s bus mastering\n",
4411 : enable ? "enabling" : "disabling");
4412 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4413 : }
4414 0 : dev->is_busmaster = enable;
4415 0 : }
4416 :
4417 : /**
4418 : * pcibios_setup - process "pci=" kernel boot arguments
4419 : * @str: string used to pass in "pci=" kernel boot arguments
4420 : *
4421 : * Process kernel boot arguments. This is the default implementation.
4422 : * Architecture specific implementations can override this as necessary.
4423 : */
4424 0 : char * __weak __init pcibios_setup(char *str)
4425 : {
4426 0 : return str;
4427 : }
4428 :
4429 : /**
4430 : * pcibios_set_master - enable PCI bus-mastering for device dev
4431 : * @dev: the PCI device to enable
4432 : *
4433 : * Enables PCI bus-mastering for the device. This is the default
4434 : * implementation. Architecture specific implementations can override
4435 : * this if necessary.
4436 : */
4437 0 : void __weak pcibios_set_master(struct pci_dev *dev)
4438 : {
4439 : u8 lat;
4440 :
4441 : /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4442 0 : if (pci_is_pcie(dev))
4443 0 : return;
4444 :
4445 0 : pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4446 0 : if (lat < 16)
4447 0 : lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4448 0 : else if (lat > pcibios_max_latency)
4449 0 : lat = pcibios_max_latency;
4450 : else
4451 : return;
4452 :
4453 0 : pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4454 : }
4455 :
4456 : /**
4457 : * pci_set_master - enables bus-mastering for device dev
4458 : * @dev: the PCI device to enable
4459 : *
4460 : * Enables bus-mastering on the device and calls pcibios_set_master()
4461 : * to do the needed arch specific settings.
4462 : */
4463 0 : void pci_set_master(struct pci_dev *dev)
4464 : {
4465 0 : __pci_set_master(dev, true);
4466 0 : pcibios_set_master(dev);
4467 0 : }
4468 : EXPORT_SYMBOL(pci_set_master);
4469 :
4470 : /**
4471 : * pci_clear_master - disables bus-mastering for device dev
4472 : * @dev: the PCI device to disable
4473 : */
4474 0 : void pci_clear_master(struct pci_dev *dev)
4475 : {
4476 0 : __pci_set_master(dev, false);
4477 0 : }
4478 : EXPORT_SYMBOL(pci_clear_master);
4479 :
4480 : /**
4481 : * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4482 : * @dev: the PCI device for which MWI is to be enabled
4483 : *
4484 : * Helper function for pci_set_mwi.
4485 : * Originally copied from drivers/net/acenic.c.
4486 : * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4487 : *
4488 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4489 : */
4490 0 : int pci_set_cacheline_size(struct pci_dev *dev)
4491 : {
4492 : u8 cacheline_size;
4493 :
4494 0 : if (!pci_cache_line_size)
4495 : return -EINVAL;
4496 :
4497 : /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4498 : equal to or multiple of the right value. */
4499 0 : pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4500 0 : if (cacheline_size >= pci_cache_line_size &&
4501 0 : (cacheline_size % pci_cache_line_size) == 0)
4502 : return 0;
4503 :
4504 : /* Write the correct value. */
4505 0 : pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4506 : /* Read it back. */
4507 0 : pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4508 0 : if (cacheline_size == pci_cache_line_size)
4509 : return 0;
4510 :
4511 : pci_dbg(dev, "cache line size of %d is not supported\n",
4512 : pci_cache_line_size << 2);
4513 :
4514 0 : return -EINVAL;
4515 : }
4516 : EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4517 :
4518 : /**
4519 : * pci_set_mwi - enables memory-write-invalidate PCI transaction
4520 : * @dev: the PCI device for which MWI is enabled
4521 : *
4522 : * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4523 : *
4524 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4525 : */
4526 0 : int pci_set_mwi(struct pci_dev *dev)
4527 : {
4528 : #ifdef PCI_DISABLE_MWI
4529 : return 0;
4530 : #else
4531 : int rc;
4532 : u16 cmd;
4533 :
4534 0 : rc = pci_set_cacheline_size(dev);
4535 0 : if (rc)
4536 : return rc;
4537 :
4538 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4539 0 : if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4540 : pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4541 0 : cmd |= PCI_COMMAND_INVALIDATE;
4542 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4543 : }
4544 : return 0;
4545 : #endif
4546 : }
4547 : EXPORT_SYMBOL(pci_set_mwi);
4548 :
4549 : /**
4550 : * pcim_set_mwi - a device-managed pci_set_mwi()
4551 : * @dev: the PCI device for which MWI is enabled
4552 : *
4553 : * Managed pci_set_mwi().
4554 : *
4555 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4556 : */
4557 0 : int pcim_set_mwi(struct pci_dev *dev)
4558 : {
4559 : struct pci_devres *dr;
4560 :
4561 0 : dr = find_pci_dr(dev);
4562 0 : if (!dr)
4563 : return -ENOMEM;
4564 :
4565 0 : dr->mwi = 1;
4566 0 : return pci_set_mwi(dev);
4567 : }
4568 : EXPORT_SYMBOL(pcim_set_mwi);
4569 :
4570 : /**
4571 : * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4572 : * @dev: the PCI device for which MWI is enabled
4573 : *
4574 : * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4575 : * Callers are not required to check the return value.
4576 : *
4577 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4578 : */
4579 0 : int pci_try_set_mwi(struct pci_dev *dev)
4580 : {
4581 : #ifdef PCI_DISABLE_MWI
4582 : return 0;
4583 : #else
4584 0 : return pci_set_mwi(dev);
4585 : #endif
4586 : }
4587 : EXPORT_SYMBOL(pci_try_set_mwi);
4588 :
4589 : /**
4590 : * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4591 : * @dev: the PCI device to disable
4592 : *
4593 : * Disables PCI Memory-Write-Invalidate transaction on the device
4594 : */
4595 0 : void pci_clear_mwi(struct pci_dev *dev)
4596 : {
4597 : #ifndef PCI_DISABLE_MWI
4598 : u16 cmd;
4599 :
4600 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4601 0 : if (cmd & PCI_COMMAND_INVALIDATE) {
4602 0 : cmd &= ~PCI_COMMAND_INVALIDATE;
4603 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4604 : }
4605 : #endif
4606 0 : }
4607 : EXPORT_SYMBOL(pci_clear_mwi);
4608 :
4609 : /**
4610 : * pci_disable_parity - disable parity checking for device
4611 : * @dev: the PCI device to operate on
4612 : *
4613 : * Disable parity checking for device @dev
4614 : */
4615 0 : void pci_disable_parity(struct pci_dev *dev)
4616 : {
4617 : u16 cmd;
4618 :
4619 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4620 0 : if (cmd & PCI_COMMAND_PARITY) {
4621 0 : cmd &= ~PCI_COMMAND_PARITY;
4622 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4623 : }
4624 0 : }
4625 :
4626 : /**
4627 : * pci_intx - enables/disables PCI INTx for device dev
4628 : * @pdev: the PCI device to operate on
4629 : * @enable: boolean: whether to enable or disable PCI INTx
4630 : *
4631 : * Enables/disables PCI INTx for device @pdev
4632 : */
4633 0 : void pci_intx(struct pci_dev *pdev, int enable)
4634 : {
4635 : u16 pci_command, new;
4636 :
4637 0 : pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4638 :
4639 0 : if (enable)
4640 0 : new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4641 : else
4642 0 : new = pci_command | PCI_COMMAND_INTX_DISABLE;
4643 :
4644 0 : if (new != pci_command) {
4645 : struct pci_devres *dr;
4646 :
4647 0 : pci_write_config_word(pdev, PCI_COMMAND, new);
4648 :
4649 0 : dr = find_pci_dr(pdev);
4650 0 : if (dr && !dr->restore_intx) {
4651 0 : dr->restore_intx = 1;
4652 0 : dr->orig_intx = !enable;
4653 : }
4654 : }
4655 0 : }
4656 : EXPORT_SYMBOL_GPL(pci_intx);
4657 :
4658 0 : static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4659 : {
4660 0 : struct pci_bus *bus = dev->bus;
4661 0 : bool mask_updated = true;
4662 : u32 cmd_status_dword;
4663 : u16 origcmd, newcmd;
4664 : unsigned long flags;
4665 : bool irq_pending;
4666 :
4667 : /*
4668 : * We do a single dword read to retrieve both command and status.
4669 : * Document assumptions that make this possible.
4670 : */
4671 : BUILD_BUG_ON(PCI_COMMAND % 4);
4672 : BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4673 :
4674 0 : raw_spin_lock_irqsave(&pci_lock, flags);
4675 :
4676 0 : bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4677 :
4678 0 : irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4679 :
4680 : /*
4681 : * Check interrupt status register to see whether our device
4682 : * triggered the interrupt (when masking) or the next IRQ is
4683 : * already pending (when unmasking).
4684 : */
4685 0 : if (mask != irq_pending) {
4686 : mask_updated = false;
4687 : goto done;
4688 : }
4689 :
4690 0 : origcmd = cmd_status_dword;
4691 0 : newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4692 0 : if (mask)
4693 0 : newcmd |= PCI_COMMAND_INTX_DISABLE;
4694 0 : if (newcmd != origcmd)
4695 0 : bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4696 :
4697 : done:
4698 0 : raw_spin_unlock_irqrestore(&pci_lock, flags);
4699 :
4700 0 : return mask_updated;
4701 : }
4702 :
4703 : /**
4704 : * pci_check_and_mask_intx - mask INTx on pending interrupt
4705 : * @dev: the PCI device to operate on
4706 : *
4707 : * Check if the device dev has its INTx line asserted, mask it and return
4708 : * true in that case. False is returned if no interrupt was pending.
4709 : */
4710 0 : bool pci_check_and_mask_intx(struct pci_dev *dev)
4711 : {
4712 0 : return pci_check_and_set_intx_mask(dev, true);
4713 : }
4714 : EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4715 :
4716 : /**
4717 : * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4718 : * @dev: the PCI device to operate on
4719 : *
4720 : * Check if the device dev has its INTx line asserted, unmask it if not and
4721 : * return true. False is returned and the mask remains active if there was
4722 : * still an interrupt pending.
4723 : */
4724 0 : bool pci_check_and_unmask_intx(struct pci_dev *dev)
4725 : {
4726 0 : return pci_check_and_set_intx_mask(dev, false);
4727 : }
4728 : EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4729 :
4730 : /**
4731 : * pci_wait_for_pending_transaction - wait for pending transaction
4732 : * @dev: the PCI device to operate on
4733 : *
4734 : * Return 0 if transaction is pending 1 otherwise.
4735 : */
4736 0 : int pci_wait_for_pending_transaction(struct pci_dev *dev)
4737 : {
4738 0 : if (!pci_is_pcie(dev))
4739 : return 1;
4740 :
4741 0 : return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4742 : PCI_EXP_DEVSTA_TRPND);
4743 : }
4744 : EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4745 :
4746 : /**
4747 : * pcie_flr - initiate a PCIe function level reset
4748 : * @dev: device to reset
4749 : *
4750 : * Initiate a function level reset unconditionally on @dev without
4751 : * checking any flags and DEVCAP
4752 : */
4753 0 : int pcie_flr(struct pci_dev *dev)
4754 : {
4755 0 : if (!pci_wait_for_pending_transaction(dev))
4756 0 : pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4757 :
4758 0 : pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4759 :
4760 0 : if (dev->imm_ready)
4761 : return 0;
4762 :
4763 : /*
4764 : * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4765 : * 100ms, but may silently discard requests while the FLR is in
4766 : * progress. Wait 100ms before trying to access the device.
4767 : */
4768 0 : msleep(100);
4769 :
4770 0 : return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4771 : }
4772 : EXPORT_SYMBOL_GPL(pcie_flr);
4773 :
4774 : /**
4775 : * pcie_reset_flr - initiate a PCIe function level reset
4776 : * @dev: device to reset
4777 : * @probe: if true, return 0 if device can be reset this way
4778 : *
4779 : * Initiate a function level reset on @dev.
4780 : */
4781 0 : int pcie_reset_flr(struct pci_dev *dev, bool probe)
4782 : {
4783 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4784 : return -ENOTTY;
4785 :
4786 0 : if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4787 : return -ENOTTY;
4788 :
4789 0 : if (probe)
4790 : return 0;
4791 :
4792 0 : return pcie_flr(dev);
4793 : }
4794 : EXPORT_SYMBOL_GPL(pcie_reset_flr);
4795 :
4796 0 : static int pci_af_flr(struct pci_dev *dev, bool probe)
4797 : {
4798 : int pos;
4799 : u8 cap;
4800 :
4801 0 : pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4802 0 : if (!pos)
4803 : return -ENOTTY;
4804 :
4805 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4806 : return -ENOTTY;
4807 :
4808 0 : pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4809 0 : if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4810 : return -ENOTTY;
4811 :
4812 0 : if (probe)
4813 : return 0;
4814 :
4815 : /*
4816 : * Wait for Transaction Pending bit to clear. A word-aligned test
4817 : * is used, so we use the control offset rather than status and shift
4818 : * the test bit to match.
4819 : */
4820 0 : if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4821 : PCI_AF_STATUS_TP << 8))
4822 0 : pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4823 :
4824 0 : pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4825 :
4826 0 : if (dev->imm_ready)
4827 : return 0;
4828 :
4829 : /*
4830 : * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4831 : * updated 27 July 2006; a device must complete an FLR within
4832 : * 100ms, but may silently discard requests while the FLR is in
4833 : * progress. Wait 100ms before trying to access the device.
4834 : */
4835 0 : msleep(100);
4836 :
4837 0 : return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4838 : }
4839 :
4840 : /**
4841 : * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4842 : * @dev: Device to reset.
4843 : * @probe: if true, return 0 if the device can be reset this way.
4844 : *
4845 : * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4846 : * unset, it will be reinitialized internally when going from PCI_D3hot to
4847 : * PCI_D0. If that's the case and the device is not in a low-power state
4848 : * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4849 : *
4850 : * NOTE: This causes the caller to sleep for twice the device power transition
4851 : * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4852 : * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4853 : * Moreover, only devices in D0 can be reset by this function.
4854 : */
4855 0 : static int pci_pm_reset(struct pci_dev *dev, bool probe)
4856 : {
4857 : u16 csr;
4858 :
4859 0 : if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4860 : return -ENOTTY;
4861 :
4862 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4863 0 : if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4864 : return -ENOTTY;
4865 :
4866 0 : if (probe)
4867 : return 0;
4868 :
4869 0 : if (dev->current_state != PCI_D0)
4870 : return -EINVAL;
4871 :
4872 0 : csr &= ~PCI_PM_CTRL_STATE_MASK;
4873 0 : csr |= PCI_D3hot;
4874 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4875 0 : pci_dev_d3_sleep(dev);
4876 :
4877 0 : csr &= ~PCI_PM_CTRL_STATE_MASK;
4878 : csr |= PCI_D0;
4879 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4880 0 : pci_dev_d3_sleep(dev);
4881 :
4882 0 : return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4883 : }
4884 :
4885 : /**
4886 : * pcie_wait_for_link_status - Wait for link status change
4887 : * @pdev: Device whose link to wait for.
4888 : * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4889 : * @active: Waiting for active or inactive?
4890 : *
4891 : * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4892 : * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4893 : */
4894 0 : static int pcie_wait_for_link_status(struct pci_dev *pdev,
4895 : bool use_lt, bool active)
4896 : {
4897 : u16 lnksta_mask, lnksta_match;
4898 : unsigned long end_jiffies;
4899 : u16 lnksta;
4900 :
4901 0 : lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4902 0 : lnksta_match = active ? lnksta_mask : 0;
4903 :
4904 0 : end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4905 : do {
4906 0 : pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4907 0 : if ((lnksta & lnksta_mask) == lnksta_match)
4908 : return 0;
4909 0 : msleep(1);
4910 0 : } while (time_before(jiffies, end_jiffies));
4911 :
4912 : return -ETIMEDOUT;
4913 : }
4914 :
4915 : /**
4916 : * pcie_retrain_link - Request a link retrain and wait for it to complete
4917 : * @pdev: Device whose link to retrain.
4918 : * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4919 : *
4920 : * Retrain completion status is retrieved from the Link Status Register
4921 : * according to @use_lt. It is not verified whether the use of the DLLLA
4922 : * bit is valid.
4923 : *
4924 : * Return 0 if successful, or -ETIMEDOUT if training has not completed
4925 : * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4926 : */
4927 0 : int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4928 : {
4929 : int rc;
4930 : u16 lnkctl;
4931 :
4932 : /*
4933 : * Ensure the updated LNKCTL parameters are used during link
4934 : * training by checking that there is no ongoing link training to
4935 : * avoid LTSSM race as recommended in Implementation Note at the
4936 : * end of PCIe r6.0.1 sec 7.5.3.7.
4937 : */
4938 0 : rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4939 0 : if (rc)
4940 : return rc;
4941 :
4942 0 : pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &lnkctl);
4943 0 : lnkctl |= PCI_EXP_LNKCTL_RL;
4944 0 : pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4945 0 : if (pdev->clear_retrain_link) {
4946 : /*
4947 : * Due to an erratum in some devices the Retrain Link bit
4948 : * needs to be cleared again manually to allow the link
4949 : * training to succeed.
4950 : */
4951 0 : lnkctl &= ~PCI_EXP_LNKCTL_RL;
4952 0 : pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4953 : }
4954 :
4955 0 : return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4956 : }
4957 :
4958 : /**
4959 : * pcie_wait_for_link_delay - Wait until link is active or inactive
4960 : * @pdev: Bridge device
4961 : * @active: waiting for active or inactive?
4962 : * @delay: Delay to wait after link has become active (in ms)
4963 : *
4964 : * Use this to wait till link becomes active or inactive.
4965 : */
4966 0 : static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4967 : int delay)
4968 : {
4969 : int rc;
4970 :
4971 : /*
4972 : * Some controllers might not implement link active reporting. In this
4973 : * case, we wait for 1000 ms + any delay requested by the caller.
4974 : */
4975 0 : if (!pdev->link_active_reporting) {
4976 0 : msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4977 0 : return true;
4978 : }
4979 :
4980 : /*
4981 : * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4982 : * after which we should expect an link active if the reset was
4983 : * successful. If so, software must wait a minimum 100ms before sending
4984 : * configuration requests to devices downstream this port.
4985 : *
4986 : * If the link fails to activate, either the device was physically
4987 : * removed or the link is permanently failed.
4988 : */
4989 0 : if (active)
4990 0 : msleep(20);
4991 0 : rc = pcie_wait_for_link_status(pdev, false, active);
4992 0 : if (active) {
4993 0 : if (rc)
4994 0 : rc = pcie_failed_link_retrain(pdev);
4995 0 : if (rc)
4996 : return false;
4997 :
4998 0 : msleep(delay);
4999 0 : return true;
5000 : }
5001 :
5002 0 : if (rc)
5003 : return false;
5004 :
5005 0 : return true;
5006 : }
5007 :
5008 : /**
5009 : * pcie_wait_for_link - Wait until link is active or inactive
5010 : * @pdev: Bridge device
5011 : * @active: waiting for active or inactive?
5012 : *
5013 : * Use this to wait till link becomes active or inactive.
5014 : */
5015 0 : bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5016 : {
5017 0 : return pcie_wait_for_link_delay(pdev, active, 100);
5018 : }
5019 :
5020 : /*
5021 : * Find maximum D3cold delay required by all the devices on the bus. The
5022 : * spec says 100 ms, but firmware can lower it and we allow drivers to
5023 : * increase it as well.
5024 : *
5025 : * Called with @pci_bus_sem locked for reading.
5026 : */
5027 : static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5028 : {
5029 : const struct pci_dev *pdev;
5030 0 : int min_delay = 100;
5031 0 : int max_delay = 0;
5032 :
5033 0 : list_for_each_entry(pdev, &bus->devices, bus_list) {
5034 0 : if (pdev->d3cold_delay < min_delay)
5035 0 : min_delay = pdev->d3cold_delay;
5036 0 : if (pdev->d3cold_delay > max_delay)
5037 0 : max_delay = pdev->d3cold_delay;
5038 : }
5039 :
5040 0 : return max(min_delay, max_delay);
5041 : }
5042 :
5043 : /**
5044 : * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5045 : * @dev: PCI bridge
5046 : * @reset_type: reset type in human-readable form
5047 : *
5048 : * Handle necessary delays before access to the devices on the secondary
5049 : * side of the bridge are permitted after D3cold to D0 transition
5050 : * or Conventional Reset.
5051 : *
5052 : * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5053 : * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5054 : * 4.3.2.
5055 : *
5056 : * Return 0 on success or -ENOTTY if the first device on the secondary bus
5057 : * failed to become accessible.
5058 : */
5059 0 : int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5060 : {
5061 : struct pci_dev *child;
5062 : int delay;
5063 :
5064 0 : if (pci_dev_is_disconnected(dev))
5065 : return 0;
5066 :
5067 0 : if (!pci_is_bridge(dev))
5068 : return 0;
5069 :
5070 0 : down_read(&pci_bus_sem);
5071 :
5072 : /*
5073 : * We only deal with devices that are present currently on the bus.
5074 : * For any hot-added devices the access delay is handled in pciehp
5075 : * board_added(). In case of ACPI hotplug the firmware is expected
5076 : * to configure the devices before OS is notified.
5077 : */
5078 0 : if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5079 0 : up_read(&pci_bus_sem);
5080 0 : return 0;
5081 : }
5082 :
5083 : /* Take d3cold_delay requirements into account */
5084 0 : delay = pci_bus_max_d3cold_delay(dev->subordinate);
5085 0 : if (!delay) {
5086 0 : up_read(&pci_bus_sem);
5087 0 : return 0;
5088 : }
5089 :
5090 0 : child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5091 : bus_list);
5092 0 : up_read(&pci_bus_sem);
5093 :
5094 : /*
5095 : * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5096 : * accessing the device after reset (that is 1000 ms + 100 ms).
5097 : */
5098 0 : if (!pci_is_pcie(dev)) {
5099 : pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5100 0 : msleep(1000 + delay);
5101 0 : return 0;
5102 : }
5103 :
5104 : /*
5105 : * For PCIe downstream and root ports that do not support speeds
5106 : * greater than 5 GT/s need to wait minimum 100 ms. For higher
5107 : * speeds (gen3) we need to wait first for the data link layer to
5108 : * become active.
5109 : *
5110 : * However, 100 ms is the minimum and the PCIe spec says the
5111 : * software must allow at least 1s before it can determine that the
5112 : * device that did not respond is a broken device. Also device can
5113 : * take longer than that to respond if it indicates so through Request
5114 : * Retry Status completions.
5115 : *
5116 : * Therefore we wait for 100 ms and check for the device presence
5117 : * until the timeout expires.
5118 : */
5119 0 : if (!pcie_downstream_port(dev))
5120 : return 0;
5121 :
5122 0 : if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5123 : u16 status;
5124 :
5125 : pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5126 0 : msleep(delay);
5127 :
5128 0 : if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5129 : return 0;
5130 :
5131 : /*
5132 : * If the port supports active link reporting we now check
5133 : * whether the link is active and if not bail out early with
5134 : * the assumption that the device is not present anymore.
5135 : */
5136 0 : if (!dev->link_active_reporting)
5137 : return -ENOTTY;
5138 :
5139 0 : pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5140 0 : if (!(status & PCI_EXP_LNKSTA_DLLLA))
5141 : return -ENOTTY;
5142 :
5143 0 : return pci_dev_wait(child, reset_type,
5144 : PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5145 : }
5146 :
5147 : pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5148 : delay);
5149 0 : if (!pcie_wait_for_link_delay(dev, true, delay)) {
5150 : /* Did not train, no need to wait any further */
5151 0 : pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5152 0 : return -ENOTTY;
5153 : }
5154 :
5155 0 : return pci_dev_wait(child, reset_type,
5156 : PCIE_RESET_READY_POLL_MS - delay);
5157 : }
5158 :
5159 0 : void pci_reset_secondary_bus(struct pci_dev *dev)
5160 : {
5161 : u16 ctrl;
5162 :
5163 0 : pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5164 0 : ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5165 0 : pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5166 :
5167 : /*
5168 : * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5169 : * this to 2ms to ensure that we meet the minimum requirement.
5170 : */
5171 0 : msleep(2);
5172 :
5173 0 : ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5174 0 : pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5175 0 : }
5176 :
5177 0 : void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5178 : {
5179 0 : pci_reset_secondary_bus(dev);
5180 0 : }
5181 :
5182 : /**
5183 : * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5184 : * @dev: Bridge device
5185 : *
5186 : * Use the bridge control register to assert reset on the secondary bus.
5187 : * Devices on the secondary bus are left in power-on state.
5188 : */
5189 0 : int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5190 : {
5191 0 : pcibios_reset_secondary_bus(dev);
5192 :
5193 0 : return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5194 : }
5195 : EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5196 :
5197 0 : static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5198 : {
5199 : struct pci_dev *pdev;
5200 :
5201 0 : if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5202 0 : !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5203 : return -ENOTTY;
5204 :
5205 0 : list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5206 0 : if (pdev != dev)
5207 : return -ENOTTY;
5208 :
5209 0 : if (probe)
5210 : return 0;
5211 :
5212 0 : return pci_bridge_secondary_bus_reset(dev->bus->self);
5213 : }
5214 :
5215 : static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5216 : {
5217 0 : int rc = -ENOTTY;
5218 :
5219 0 : if (!hotplug || !try_module_get(hotplug->owner))
5220 : return rc;
5221 :
5222 0 : if (hotplug->ops->reset_slot)
5223 0 : rc = hotplug->ops->reset_slot(hotplug, probe);
5224 :
5225 : module_put(hotplug->owner);
5226 :
5227 : return rc;
5228 : }
5229 :
5230 0 : static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5231 : {
5232 0 : if (dev->multifunction || dev->subordinate || !dev->slot ||
5233 0 : dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5234 : return -ENOTTY;
5235 :
5236 0 : return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5237 : }
5238 :
5239 0 : static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5240 : {
5241 : int rc;
5242 :
5243 0 : rc = pci_dev_reset_slot_function(dev, probe);
5244 0 : if (rc != -ENOTTY)
5245 : return rc;
5246 0 : return pci_parent_bus_reset(dev, probe);
5247 : }
5248 :
5249 0 : void pci_dev_lock(struct pci_dev *dev)
5250 : {
5251 : /* block PM suspend, driver probe, etc. */
5252 0 : device_lock(&dev->dev);
5253 0 : pci_cfg_access_lock(dev);
5254 0 : }
5255 : EXPORT_SYMBOL_GPL(pci_dev_lock);
5256 :
5257 : /* Return 1 on successful lock, 0 on contention */
5258 0 : int pci_dev_trylock(struct pci_dev *dev)
5259 : {
5260 0 : if (device_trylock(&dev->dev)) {
5261 0 : if (pci_cfg_access_trylock(dev))
5262 : return 1;
5263 0 : device_unlock(&dev->dev);
5264 : }
5265 :
5266 : return 0;
5267 : }
5268 : EXPORT_SYMBOL_GPL(pci_dev_trylock);
5269 :
5270 0 : void pci_dev_unlock(struct pci_dev *dev)
5271 : {
5272 0 : pci_cfg_access_unlock(dev);
5273 0 : device_unlock(&dev->dev);
5274 0 : }
5275 : EXPORT_SYMBOL_GPL(pci_dev_unlock);
5276 :
5277 0 : static void pci_dev_save_and_disable(struct pci_dev *dev)
5278 : {
5279 0 : const struct pci_error_handlers *err_handler =
5280 0 : dev->driver ? dev->driver->err_handler : NULL;
5281 :
5282 : /*
5283 : * dev->driver->err_handler->reset_prepare() is protected against
5284 : * races with ->remove() by the device lock, which must be held by
5285 : * the caller.
5286 : */
5287 0 : if (err_handler && err_handler->reset_prepare)
5288 0 : err_handler->reset_prepare(dev);
5289 :
5290 : /*
5291 : * Wake-up device prior to save. PM registers default to D0 after
5292 : * reset and a simple register restore doesn't reliably return
5293 : * to a non-D0 state anyway.
5294 : */
5295 0 : pci_set_power_state(dev, PCI_D0);
5296 :
5297 0 : pci_save_state(dev);
5298 : /*
5299 : * Disable the device by clearing the Command register, except for
5300 : * INTx-disable which is set. This not only disables MMIO and I/O port
5301 : * BARs, but also prevents the device from being Bus Master, preventing
5302 : * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5303 : * compliant devices, INTx-disable prevents legacy interrupts.
5304 : */
5305 0 : pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5306 0 : }
5307 :
5308 0 : static void pci_dev_restore(struct pci_dev *dev)
5309 : {
5310 0 : const struct pci_error_handlers *err_handler =
5311 0 : dev->driver ? dev->driver->err_handler : NULL;
5312 :
5313 0 : pci_restore_state(dev);
5314 :
5315 : /*
5316 : * dev->driver->err_handler->reset_done() is protected against
5317 : * races with ->remove() by the device lock, which must be held by
5318 : * the caller.
5319 : */
5320 0 : if (err_handler && err_handler->reset_done)
5321 0 : err_handler->reset_done(dev);
5322 0 : }
5323 :
5324 : /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5325 : static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5326 : { },
5327 : { pci_dev_specific_reset, .name = "device_specific" },
5328 : { pci_dev_acpi_reset, .name = "acpi" },
5329 : { pcie_reset_flr, .name = "flr" },
5330 : { pci_af_flr, .name = "af_flr" },
5331 : { pci_pm_reset, .name = "pm" },
5332 : { pci_reset_bus_function, .name = "bus" },
5333 : };
5334 :
5335 0 : static ssize_t reset_method_show(struct device *dev,
5336 : struct device_attribute *attr, char *buf)
5337 : {
5338 0 : struct pci_dev *pdev = to_pci_dev(dev);
5339 0 : ssize_t len = 0;
5340 : int i, m;
5341 :
5342 0 : for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5343 0 : m = pdev->reset_methods[i];
5344 0 : if (!m)
5345 : break;
5346 :
5347 0 : len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5348 : pci_reset_fn_methods[m].name);
5349 : }
5350 :
5351 0 : if (len)
5352 0 : len += sysfs_emit_at(buf, len, "\n");
5353 :
5354 0 : return len;
5355 : }
5356 :
5357 : static int reset_method_lookup(const char *name)
5358 : {
5359 : int m;
5360 :
5361 0 : for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5362 0 : if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5363 : return m;
5364 : }
5365 :
5366 : return 0; /* not found */
5367 : }
5368 :
5369 0 : static ssize_t reset_method_store(struct device *dev,
5370 : struct device_attribute *attr,
5371 : const char *buf, size_t count)
5372 : {
5373 0 : struct pci_dev *pdev = to_pci_dev(dev);
5374 : char *options, *name;
5375 : int m, n;
5376 0 : u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5377 :
5378 0 : if (sysfs_streq(buf, "")) {
5379 0 : pdev->reset_methods[0] = 0;
5380 0 : pci_warn(pdev, "All device reset methods disabled by user");
5381 0 : return count;
5382 : }
5383 :
5384 0 : if (sysfs_streq(buf, "default")) {
5385 0 : pci_init_reset_methods(pdev);
5386 0 : return count;
5387 : }
5388 :
5389 0 : options = kstrndup(buf, count, GFP_KERNEL);
5390 0 : if (!options)
5391 : return -ENOMEM;
5392 :
5393 : n = 0;
5394 0 : while ((name = strsep(&options, " ")) != NULL) {
5395 0 : if (sysfs_streq(name, ""))
5396 0 : continue;
5397 :
5398 0 : name = strim(name);
5399 :
5400 0 : m = reset_method_lookup(name);
5401 0 : if (!m) {
5402 0 : pci_err(pdev, "Invalid reset method '%s'", name);
5403 0 : goto error;
5404 : }
5405 :
5406 0 : if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5407 0 : pci_err(pdev, "Unsupported reset method '%s'", name);
5408 0 : goto error;
5409 : }
5410 :
5411 0 : if (n == PCI_NUM_RESET_METHODS - 1) {
5412 0 : pci_err(pdev, "Too many reset methods\n");
5413 0 : goto error;
5414 : }
5415 :
5416 0 : reset_methods[n++] = m;
5417 : }
5418 :
5419 0 : reset_methods[n] = 0;
5420 :
5421 : /* Warn if dev-specific supported but not highest priority */
5422 0 : if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5423 0 : reset_methods[0] != 1)
5424 0 : pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5425 0 : memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5426 0 : kfree(options);
5427 0 : return count;
5428 :
5429 : error:
5430 : /* Leave previous methods unchanged */
5431 0 : kfree(options);
5432 0 : return -EINVAL;
5433 : }
5434 : static DEVICE_ATTR_RW(reset_method);
5435 :
5436 : static struct attribute *pci_dev_reset_method_attrs[] = {
5437 : &dev_attr_reset_method.attr,
5438 : NULL,
5439 : };
5440 :
5441 0 : static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5442 : struct attribute *a, int n)
5443 : {
5444 0 : struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5445 :
5446 0 : if (!pci_reset_supported(pdev))
5447 : return 0;
5448 :
5449 0 : return a->mode;
5450 : }
5451 :
5452 : const struct attribute_group pci_dev_reset_method_attr_group = {
5453 : .attrs = pci_dev_reset_method_attrs,
5454 : .is_visible = pci_dev_reset_method_attr_is_visible,
5455 : };
5456 :
5457 : /**
5458 : * __pci_reset_function_locked - reset a PCI device function while holding
5459 : * the @dev mutex lock.
5460 : * @dev: PCI device to reset
5461 : *
5462 : * Some devices allow an individual function to be reset without affecting
5463 : * other functions in the same device. The PCI device must be responsive
5464 : * to PCI config space in order to use this function.
5465 : *
5466 : * The device function is presumed to be unused and the caller is holding
5467 : * the device mutex lock when this function is called.
5468 : *
5469 : * Resetting the device will make the contents of PCI configuration space
5470 : * random, so any caller of this must be prepared to reinitialise the
5471 : * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5472 : * etc.
5473 : *
5474 : * Returns 0 if the device function was successfully reset or negative if the
5475 : * device doesn't support resetting a single function.
5476 : */
5477 0 : int __pci_reset_function_locked(struct pci_dev *dev)
5478 : {
5479 : int i, m, rc;
5480 :
5481 : might_sleep();
5482 :
5483 : /*
5484 : * A reset method returns -ENOTTY if it doesn't support this device and
5485 : * we should try the next method.
5486 : *
5487 : * If it returns 0 (success), we're finished. If it returns any other
5488 : * error, we're also finished: this indicates that further reset
5489 : * mechanisms might be broken on the device.
5490 : */
5491 0 : for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5492 0 : m = dev->reset_methods[i];
5493 0 : if (!m)
5494 : return -ENOTTY;
5495 :
5496 0 : rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5497 0 : if (!rc)
5498 : return 0;
5499 0 : if (rc != -ENOTTY)
5500 : return rc;
5501 : }
5502 :
5503 : return -ENOTTY;
5504 : }
5505 : EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5506 :
5507 : /**
5508 : * pci_init_reset_methods - check whether device can be safely reset
5509 : * and store supported reset mechanisms.
5510 : * @dev: PCI device to check for reset mechanisms
5511 : *
5512 : * Some devices allow an individual function to be reset without affecting
5513 : * other functions in the same device. The PCI device must be in D0-D3hot
5514 : * state.
5515 : *
5516 : * Stores reset mechanisms supported by device in reset_methods byte array
5517 : * which is a member of struct pci_dev.
5518 : */
5519 0 : void pci_init_reset_methods(struct pci_dev *dev)
5520 : {
5521 : int m, i, rc;
5522 :
5523 : BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5524 :
5525 : might_sleep();
5526 :
5527 0 : i = 0;
5528 0 : for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5529 0 : rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5530 0 : if (!rc)
5531 0 : dev->reset_methods[i++] = m;
5532 0 : else if (rc != -ENOTTY)
5533 : break;
5534 : }
5535 :
5536 0 : dev->reset_methods[i] = 0;
5537 0 : }
5538 :
5539 : /**
5540 : * pci_reset_function - quiesce and reset a PCI device function
5541 : * @dev: PCI device to reset
5542 : *
5543 : * Some devices allow an individual function to be reset without affecting
5544 : * other functions in the same device. The PCI device must be responsive
5545 : * to PCI config space in order to use this function.
5546 : *
5547 : * This function does not just reset the PCI portion of a device, but
5548 : * clears all the state associated with the device. This function differs
5549 : * from __pci_reset_function_locked() in that it saves and restores device state
5550 : * over the reset and takes the PCI device lock.
5551 : *
5552 : * Returns 0 if the device function was successfully reset or negative if the
5553 : * device doesn't support resetting a single function.
5554 : */
5555 0 : int pci_reset_function(struct pci_dev *dev)
5556 : {
5557 : int rc;
5558 :
5559 0 : if (!pci_reset_supported(dev))
5560 : return -ENOTTY;
5561 :
5562 0 : pci_dev_lock(dev);
5563 0 : pci_dev_save_and_disable(dev);
5564 :
5565 0 : rc = __pci_reset_function_locked(dev);
5566 :
5567 0 : pci_dev_restore(dev);
5568 0 : pci_dev_unlock(dev);
5569 :
5570 0 : return rc;
5571 : }
5572 : EXPORT_SYMBOL_GPL(pci_reset_function);
5573 :
5574 : /**
5575 : * pci_reset_function_locked - quiesce and reset a PCI device function
5576 : * @dev: PCI device to reset
5577 : *
5578 : * Some devices allow an individual function to be reset without affecting
5579 : * other functions in the same device. The PCI device must be responsive
5580 : * to PCI config space in order to use this function.
5581 : *
5582 : * This function does not just reset the PCI portion of a device, but
5583 : * clears all the state associated with the device. This function differs
5584 : * from __pci_reset_function_locked() in that it saves and restores device state
5585 : * over the reset. It also differs from pci_reset_function() in that it
5586 : * requires the PCI device lock to be held.
5587 : *
5588 : * Returns 0 if the device function was successfully reset or negative if the
5589 : * device doesn't support resetting a single function.
5590 : */
5591 0 : int pci_reset_function_locked(struct pci_dev *dev)
5592 : {
5593 : int rc;
5594 :
5595 0 : if (!pci_reset_supported(dev))
5596 : return -ENOTTY;
5597 :
5598 0 : pci_dev_save_and_disable(dev);
5599 :
5600 0 : rc = __pci_reset_function_locked(dev);
5601 :
5602 0 : pci_dev_restore(dev);
5603 :
5604 0 : return rc;
5605 : }
5606 : EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5607 :
5608 : /**
5609 : * pci_try_reset_function - quiesce and reset a PCI device function
5610 : * @dev: PCI device to reset
5611 : *
5612 : * Same as above, except return -EAGAIN if unable to lock device.
5613 : */
5614 0 : int pci_try_reset_function(struct pci_dev *dev)
5615 : {
5616 : int rc;
5617 :
5618 0 : if (!pci_reset_supported(dev))
5619 : return -ENOTTY;
5620 :
5621 0 : if (!pci_dev_trylock(dev))
5622 : return -EAGAIN;
5623 :
5624 0 : pci_dev_save_and_disable(dev);
5625 0 : rc = __pci_reset_function_locked(dev);
5626 0 : pci_dev_restore(dev);
5627 0 : pci_dev_unlock(dev);
5628 :
5629 0 : return rc;
5630 : }
5631 : EXPORT_SYMBOL_GPL(pci_try_reset_function);
5632 :
5633 : /* Do any devices on or below this bus prevent a bus reset? */
5634 0 : static bool pci_bus_resetable(struct pci_bus *bus)
5635 : {
5636 : struct pci_dev *dev;
5637 :
5638 :
5639 0 : if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5640 : return false;
5641 :
5642 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5643 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5644 0 : (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5645 : return false;
5646 : }
5647 :
5648 : return true;
5649 : }
5650 :
5651 : /* Lock devices from the top of the tree down */
5652 0 : static void pci_bus_lock(struct pci_bus *bus)
5653 : {
5654 : struct pci_dev *dev;
5655 :
5656 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5657 0 : pci_dev_lock(dev);
5658 0 : if (dev->subordinate)
5659 0 : pci_bus_lock(dev->subordinate);
5660 : }
5661 0 : }
5662 :
5663 : /* Unlock devices from the bottom of the tree up */
5664 0 : static void pci_bus_unlock(struct pci_bus *bus)
5665 : {
5666 : struct pci_dev *dev;
5667 :
5668 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5669 0 : if (dev->subordinate)
5670 0 : pci_bus_unlock(dev->subordinate);
5671 0 : pci_dev_unlock(dev);
5672 : }
5673 0 : }
5674 :
5675 : /* Return 1 on successful lock, 0 on contention */
5676 0 : static int pci_bus_trylock(struct pci_bus *bus)
5677 : {
5678 : struct pci_dev *dev;
5679 :
5680 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5681 0 : if (!pci_dev_trylock(dev))
5682 : goto unlock;
5683 0 : if (dev->subordinate) {
5684 0 : if (!pci_bus_trylock(dev->subordinate)) {
5685 : pci_dev_unlock(dev);
5686 : goto unlock;
5687 : }
5688 : }
5689 : }
5690 : return 1;
5691 :
5692 : unlock:
5693 0 : list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5694 0 : if (dev->subordinate)
5695 0 : pci_bus_unlock(dev->subordinate);
5696 0 : pci_dev_unlock(dev);
5697 : }
5698 : return 0;
5699 : }
5700 :
5701 : /* Do any devices on or below this slot prevent a bus reset? */
5702 0 : static bool pci_slot_resetable(struct pci_slot *slot)
5703 : {
5704 : struct pci_dev *dev;
5705 :
5706 0 : if (slot->bus->self &&
5707 0 : (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5708 : return false;
5709 :
5710 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5711 0 : if (!dev->slot || dev->slot != slot)
5712 0 : continue;
5713 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5714 0 : (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5715 : return false;
5716 : }
5717 :
5718 : return true;
5719 : }
5720 :
5721 : /* Lock devices from the top of the tree down */
5722 0 : static void pci_slot_lock(struct pci_slot *slot)
5723 : {
5724 : struct pci_dev *dev;
5725 :
5726 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5727 0 : if (!dev->slot || dev->slot != slot)
5728 0 : continue;
5729 0 : pci_dev_lock(dev);
5730 0 : if (dev->subordinate)
5731 0 : pci_bus_lock(dev->subordinate);
5732 : }
5733 0 : }
5734 :
5735 : /* Unlock devices from the bottom of the tree up */
5736 0 : static void pci_slot_unlock(struct pci_slot *slot)
5737 : {
5738 : struct pci_dev *dev;
5739 :
5740 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5741 0 : if (!dev->slot || dev->slot != slot)
5742 0 : continue;
5743 0 : if (dev->subordinate)
5744 0 : pci_bus_unlock(dev->subordinate);
5745 : pci_dev_unlock(dev);
5746 : }
5747 0 : }
5748 :
5749 : /* Return 1 on successful lock, 0 on contention */
5750 0 : static int pci_slot_trylock(struct pci_slot *slot)
5751 : {
5752 : struct pci_dev *dev;
5753 :
5754 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5755 0 : if (!dev->slot || dev->slot != slot)
5756 0 : continue;
5757 0 : if (!pci_dev_trylock(dev))
5758 : goto unlock;
5759 0 : if (dev->subordinate) {
5760 0 : if (!pci_bus_trylock(dev->subordinate)) {
5761 : pci_dev_unlock(dev);
5762 : goto unlock;
5763 : }
5764 : }
5765 : }
5766 : return 1;
5767 :
5768 : unlock:
5769 0 : list_for_each_entry_continue_reverse(dev,
5770 : &slot->bus->devices, bus_list) {
5771 0 : if (!dev->slot || dev->slot != slot)
5772 0 : continue;
5773 0 : if (dev->subordinate)
5774 0 : pci_bus_unlock(dev->subordinate);
5775 : pci_dev_unlock(dev);
5776 : }
5777 : return 0;
5778 : }
5779 :
5780 : /*
5781 : * Save and disable devices from the top of the tree down while holding
5782 : * the @dev mutex lock for the entire tree.
5783 : */
5784 0 : static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5785 : {
5786 : struct pci_dev *dev;
5787 :
5788 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5789 0 : pci_dev_save_and_disable(dev);
5790 0 : if (dev->subordinate)
5791 0 : pci_bus_save_and_disable_locked(dev->subordinate);
5792 : }
5793 0 : }
5794 :
5795 : /*
5796 : * Restore devices from top of the tree down while holding @dev mutex lock
5797 : * for the entire tree. Parent bridges need to be restored before we can
5798 : * get to subordinate devices.
5799 : */
5800 0 : static void pci_bus_restore_locked(struct pci_bus *bus)
5801 : {
5802 : struct pci_dev *dev;
5803 :
5804 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5805 0 : pci_dev_restore(dev);
5806 0 : if (dev->subordinate)
5807 0 : pci_bus_restore_locked(dev->subordinate);
5808 : }
5809 0 : }
5810 :
5811 : /*
5812 : * Save and disable devices from the top of the tree down while holding
5813 : * the @dev mutex lock for the entire tree.
5814 : */
5815 0 : static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5816 : {
5817 : struct pci_dev *dev;
5818 :
5819 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5820 0 : if (!dev->slot || dev->slot != slot)
5821 0 : continue;
5822 0 : pci_dev_save_and_disable(dev);
5823 0 : if (dev->subordinate)
5824 0 : pci_bus_save_and_disable_locked(dev->subordinate);
5825 : }
5826 0 : }
5827 :
5828 : /*
5829 : * Restore devices from top of the tree down while holding @dev mutex lock
5830 : * for the entire tree. Parent bridges need to be restored before we can
5831 : * get to subordinate devices.
5832 : */
5833 0 : static void pci_slot_restore_locked(struct pci_slot *slot)
5834 : {
5835 : struct pci_dev *dev;
5836 :
5837 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838 0 : if (!dev->slot || dev->slot != slot)
5839 0 : continue;
5840 0 : pci_dev_restore(dev);
5841 0 : if (dev->subordinate)
5842 0 : pci_bus_restore_locked(dev->subordinate);
5843 : }
5844 0 : }
5845 :
5846 0 : static int pci_slot_reset(struct pci_slot *slot, bool probe)
5847 : {
5848 : int rc;
5849 :
5850 0 : if (!slot || !pci_slot_resetable(slot))
5851 : return -ENOTTY;
5852 :
5853 0 : if (!probe)
5854 0 : pci_slot_lock(slot);
5855 :
5856 : might_sleep();
5857 :
5858 0 : rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5859 :
5860 0 : if (!probe)
5861 0 : pci_slot_unlock(slot);
5862 :
5863 : return rc;
5864 : }
5865 :
5866 : /**
5867 : * pci_probe_reset_slot - probe whether a PCI slot can be reset
5868 : * @slot: PCI slot to probe
5869 : *
5870 : * Return 0 if slot can be reset, negative if a slot reset is not supported.
5871 : */
5872 0 : int pci_probe_reset_slot(struct pci_slot *slot)
5873 : {
5874 0 : return pci_slot_reset(slot, PCI_RESET_PROBE);
5875 : }
5876 : EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5877 :
5878 : /**
5879 : * __pci_reset_slot - Try to reset a PCI slot
5880 : * @slot: PCI slot to reset
5881 : *
5882 : * A PCI bus may host multiple slots, each slot may support a reset mechanism
5883 : * independent of other slots. For instance, some slots may support slot power
5884 : * control. In the case of a 1:1 bus to slot architecture, this function may
5885 : * wrap the bus reset to avoid spurious slot related events such as hotplug.
5886 : * Generally a slot reset should be attempted before a bus reset. All of the
5887 : * function of the slot and any subordinate buses behind the slot are reset
5888 : * through this function. PCI config space of all devices in the slot and
5889 : * behind the slot is saved before and restored after reset.
5890 : *
5891 : * Same as above except return -EAGAIN if the slot cannot be locked
5892 : */
5893 0 : static int __pci_reset_slot(struct pci_slot *slot)
5894 : {
5895 : int rc;
5896 :
5897 0 : rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5898 0 : if (rc)
5899 : return rc;
5900 :
5901 0 : if (pci_slot_trylock(slot)) {
5902 0 : pci_slot_save_and_disable_locked(slot);
5903 : might_sleep();
5904 0 : rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5905 0 : pci_slot_restore_locked(slot);
5906 0 : pci_slot_unlock(slot);
5907 : } else
5908 : rc = -EAGAIN;
5909 :
5910 : return rc;
5911 : }
5912 :
5913 0 : static int pci_bus_reset(struct pci_bus *bus, bool probe)
5914 : {
5915 : int ret;
5916 :
5917 0 : if (!bus->self || !pci_bus_resetable(bus))
5918 : return -ENOTTY;
5919 :
5920 0 : if (probe)
5921 : return 0;
5922 :
5923 0 : pci_bus_lock(bus);
5924 :
5925 : might_sleep();
5926 :
5927 0 : ret = pci_bridge_secondary_bus_reset(bus->self);
5928 :
5929 0 : pci_bus_unlock(bus);
5930 :
5931 0 : return ret;
5932 : }
5933 :
5934 : /**
5935 : * pci_bus_error_reset - reset the bridge's subordinate bus
5936 : * @bridge: The parent device that connects to the bus to reset
5937 : *
5938 : * This function will first try to reset the slots on this bus if the method is
5939 : * available. If slot reset fails or is not available, this will fall back to a
5940 : * secondary bus reset.
5941 : */
5942 0 : int pci_bus_error_reset(struct pci_dev *bridge)
5943 : {
5944 0 : struct pci_bus *bus = bridge->subordinate;
5945 : struct pci_slot *slot;
5946 :
5947 0 : if (!bus)
5948 : return -ENOTTY;
5949 :
5950 0 : mutex_lock(&pci_slot_mutex);
5951 0 : if (list_empty(&bus->slots))
5952 : goto bus_reset;
5953 :
5954 0 : list_for_each_entry(slot, &bus->slots, list)
5955 0 : if (pci_probe_reset_slot(slot))
5956 : goto bus_reset;
5957 :
5958 0 : list_for_each_entry(slot, &bus->slots, list)
5959 0 : if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5960 : goto bus_reset;
5961 :
5962 0 : mutex_unlock(&pci_slot_mutex);
5963 0 : return 0;
5964 : bus_reset:
5965 0 : mutex_unlock(&pci_slot_mutex);
5966 0 : return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5967 : }
5968 :
5969 : /**
5970 : * pci_probe_reset_bus - probe whether a PCI bus can be reset
5971 : * @bus: PCI bus to probe
5972 : *
5973 : * Return 0 if bus can be reset, negative if a bus reset is not supported.
5974 : */
5975 0 : int pci_probe_reset_bus(struct pci_bus *bus)
5976 : {
5977 0 : return pci_bus_reset(bus, PCI_RESET_PROBE);
5978 : }
5979 : EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5980 :
5981 : /**
5982 : * __pci_reset_bus - Try to reset a PCI bus
5983 : * @bus: top level PCI bus to reset
5984 : *
5985 : * Same as above except return -EAGAIN if the bus cannot be locked
5986 : */
5987 0 : static int __pci_reset_bus(struct pci_bus *bus)
5988 : {
5989 : int rc;
5990 :
5991 0 : rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5992 0 : if (rc)
5993 : return rc;
5994 :
5995 0 : if (pci_bus_trylock(bus)) {
5996 0 : pci_bus_save_and_disable_locked(bus);
5997 : might_sleep();
5998 0 : rc = pci_bridge_secondary_bus_reset(bus->self);
5999 0 : pci_bus_restore_locked(bus);
6000 0 : pci_bus_unlock(bus);
6001 : } else
6002 : rc = -EAGAIN;
6003 :
6004 : return rc;
6005 : }
6006 :
6007 : /**
6008 : * pci_reset_bus - Try to reset a PCI bus
6009 : * @pdev: top level PCI device to reset via slot/bus
6010 : *
6011 : * Same as above except return -EAGAIN if the bus cannot be locked
6012 : */
6013 0 : int pci_reset_bus(struct pci_dev *pdev)
6014 : {
6015 0 : return (!pci_probe_reset_slot(pdev->slot)) ?
6016 0 : __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6017 : }
6018 : EXPORT_SYMBOL_GPL(pci_reset_bus);
6019 :
6020 : /**
6021 : * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6022 : * @dev: PCI device to query
6023 : *
6024 : * Returns mmrbc: maximum designed memory read count in bytes or
6025 : * appropriate error value.
6026 : */
6027 0 : int pcix_get_max_mmrbc(struct pci_dev *dev)
6028 : {
6029 : int cap;
6030 : u32 stat;
6031 :
6032 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6033 0 : if (!cap)
6034 : return -EINVAL;
6035 :
6036 0 : if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6037 : return -EINVAL;
6038 :
6039 0 : return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6040 : }
6041 : EXPORT_SYMBOL(pcix_get_max_mmrbc);
6042 :
6043 : /**
6044 : * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6045 : * @dev: PCI device to query
6046 : *
6047 : * Returns mmrbc: maximum memory read count in bytes or appropriate error
6048 : * value.
6049 : */
6050 0 : int pcix_get_mmrbc(struct pci_dev *dev)
6051 : {
6052 : int cap;
6053 : u16 cmd;
6054 :
6055 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6056 0 : if (!cap)
6057 : return -EINVAL;
6058 :
6059 0 : if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6060 : return -EINVAL;
6061 :
6062 0 : return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6063 : }
6064 : EXPORT_SYMBOL(pcix_get_mmrbc);
6065 :
6066 : /**
6067 : * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6068 : * @dev: PCI device to query
6069 : * @mmrbc: maximum memory read count in bytes
6070 : * valid values are 512, 1024, 2048, 4096
6071 : *
6072 : * If possible sets maximum memory read byte count, some bridges have errata
6073 : * that prevent this.
6074 : */
6075 0 : int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6076 : {
6077 : int cap;
6078 : u32 stat, v, o;
6079 : u16 cmd;
6080 :
6081 0 : if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6082 : return -EINVAL;
6083 :
6084 0 : v = ffs(mmrbc) - 10;
6085 :
6086 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6087 0 : if (!cap)
6088 : return -EINVAL;
6089 :
6090 0 : if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6091 : return -EINVAL;
6092 :
6093 0 : if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6094 : return -E2BIG;
6095 :
6096 0 : if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6097 : return -EINVAL;
6098 :
6099 0 : o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6100 0 : if (o != v) {
6101 0 : if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6102 : return -EIO;
6103 :
6104 0 : cmd &= ~PCI_X_CMD_MAX_READ;
6105 0 : cmd |= v << 2;
6106 0 : if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6107 : return -EIO;
6108 : }
6109 : return 0;
6110 : }
6111 : EXPORT_SYMBOL(pcix_set_mmrbc);
6112 :
6113 : /**
6114 : * pcie_get_readrq - get PCI Express read request size
6115 : * @dev: PCI device to query
6116 : *
6117 : * Returns maximum memory read request in bytes or appropriate error value.
6118 : */
6119 0 : int pcie_get_readrq(struct pci_dev *dev)
6120 : {
6121 : u16 ctl;
6122 :
6123 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6124 :
6125 0 : return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6126 : }
6127 : EXPORT_SYMBOL(pcie_get_readrq);
6128 :
6129 : /**
6130 : * pcie_set_readrq - set PCI Express maximum memory read request
6131 : * @dev: PCI device to query
6132 : * @rq: maximum memory read count in bytes
6133 : * valid values are 128, 256, 512, 1024, 2048, 4096
6134 : *
6135 : * If possible sets maximum memory read request in bytes
6136 : */
6137 0 : int pcie_set_readrq(struct pci_dev *dev, int rq)
6138 : {
6139 : u16 v;
6140 : int ret;
6141 0 : struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6142 :
6143 0 : if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6144 : return -EINVAL;
6145 :
6146 : /*
6147 : * If using the "performance" PCIe config, we clamp the read rq
6148 : * size to the max packet size to keep the host bridge from
6149 : * generating requests larger than we can cope with.
6150 : */
6151 0 : if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6152 0 : int mps = pcie_get_mps(dev);
6153 :
6154 0 : if (mps < rq)
6155 0 : rq = mps;
6156 : }
6157 :
6158 0 : v = (ffs(rq) - 8) << 12;
6159 :
6160 0 : if (bridge->no_inc_mrrs) {
6161 0 : int max_mrrs = pcie_get_readrq(dev);
6162 :
6163 0 : if (rq > max_mrrs) {
6164 0 : pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6165 0 : return -EINVAL;
6166 : }
6167 : }
6168 :
6169 0 : ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6170 : PCI_EXP_DEVCTL_READRQ, v);
6171 :
6172 : return pcibios_err_to_errno(ret);
6173 : }
6174 : EXPORT_SYMBOL(pcie_set_readrq);
6175 :
6176 : /**
6177 : * pcie_get_mps - get PCI Express maximum payload size
6178 : * @dev: PCI device to query
6179 : *
6180 : * Returns maximum payload size in bytes
6181 : */
6182 0 : int pcie_get_mps(struct pci_dev *dev)
6183 : {
6184 : u16 ctl;
6185 :
6186 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6187 :
6188 0 : return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6189 : }
6190 : EXPORT_SYMBOL(pcie_get_mps);
6191 :
6192 : /**
6193 : * pcie_set_mps - set PCI Express maximum payload size
6194 : * @dev: PCI device to query
6195 : * @mps: maximum payload size in bytes
6196 : * valid values are 128, 256, 512, 1024, 2048, 4096
6197 : *
6198 : * If possible sets maximum payload size
6199 : */
6200 0 : int pcie_set_mps(struct pci_dev *dev, int mps)
6201 : {
6202 : u16 v;
6203 : int ret;
6204 :
6205 0 : if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6206 : return -EINVAL;
6207 :
6208 0 : v = ffs(mps) - 8;
6209 0 : if (v > dev->pcie_mpss)
6210 : return -EINVAL;
6211 0 : v <<= 5;
6212 :
6213 0 : ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6214 : PCI_EXP_DEVCTL_PAYLOAD, v);
6215 :
6216 : return pcibios_err_to_errno(ret);
6217 : }
6218 : EXPORT_SYMBOL(pcie_set_mps);
6219 :
6220 : /**
6221 : * pcie_bandwidth_available - determine minimum link settings of a PCIe
6222 : * device and its bandwidth limitation
6223 : * @dev: PCI device to query
6224 : * @limiting_dev: storage for device causing the bandwidth limitation
6225 : * @speed: storage for speed of limiting device
6226 : * @width: storage for width of limiting device
6227 : *
6228 : * Walk up the PCI device chain and find the point where the minimum
6229 : * bandwidth is available. Return the bandwidth available there and (if
6230 : * limiting_dev, speed, and width pointers are supplied) information about
6231 : * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6232 : * raw bandwidth.
6233 : */
6234 0 : u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6235 : enum pci_bus_speed *speed,
6236 : enum pcie_link_width *width)
6237 : {
6238 : u16 lnksta;
6239 : enum pci_bus_speed next_speed;
6240 : enum pcie_link_width next_width;
6241 : u32 bw, next_bw;
6242 :
6243 0 : if (speed)
6244 0 : *speed = PCI_SPEED_UNKNOWN;
6245 0 : if (width)
6246 0 : *width = PCIE_LNK_WIDTH_UNKNOWN;
6247 :
6248 : bw = 0;
6249 :
6250 0 : while (dev) {
6251 0 : pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6252 :
6253 0 : next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6254 0 : next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6255 : PCI_EXP_LNKSTA_NLW_SHIFT;
6256 :
6257 0 : next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6258 :
6259 : /* Check if current device limits the total bandwidth */
6260 0 : if (!bw || next_bw <= bw) {
6261 0 : bw = next_bw;
6262 :
6263 0 : if (limiting_dev)
6264 0 : *limiting_dev = dev;
6265 0 : if (speed)
6266 0 : *speed = next_speed;
6267 0 : if (width)
6268 0 : *width = next_width;
6269 : }
6270 :
6271 0 : dev = pci_upstream_bridge(dev);
6272 : }
6273 :
6274 0 : return bw;
6275 : }
6276 : EXPORT_SYMBOL(pcie_bandwidth_available);
6277 :
6278 : /**
6279 : * pcie_get_speed_cap - query for the PCI device's link speed capability
6280 : * @dev: PCI device to query
6281 : *
6282 : * Query the PCI device speed capability. Return the maximum link speed
6283 : * supported by the device.
6284 : */
6285 0 : enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6286 : {
6287 : u32 lnkcap2, lnkcap;
6288 :
6289 : /*
6290 : * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6291 : * implementation note there recommends using the Supported Link
6292 : * Speeds Vector in Link Capabilities 2 when supported.
6293 : *
6294 : * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6295 : * should use the Supported Link Speeds field in Link Capabilities,
6296 : * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6297 : */
6298 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6299 :
6300 : /* PCIe r3.0-compliant */
6301 0 : if (lnkcap2)
6302 0 : return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6303 :
6304 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6305 0 : if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6306 : return PCIE_SPEED_5_0GT;
6307 0 : else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6308 : return PCIE_SPEED_2_5GT;
6309 :
6310 0 : return PCI_SPEED_UNKNOWN;
6311 : }
6312 : EXPORT_SYMBOL(pcie_get_speed_cap);
6313 :
6314 : /**
6315 : * pcie_get_width_cap - query for the PCI device's link width capability
6316 : * @dev: PCI device to query
6317 : *
6318 : * Query the PCI device width capability. Return the maximum link width
6319 : * supported by the device.
6320 : */
6321 0 : enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6322 : {
6323 : u32 lnkcap;
6324 :
6325 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6326 0 : if (lnkcap)
6327 0 : return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6328 :
6329 : return PCIE_LNK_WIDTH_UNKNOWN;
6330 : }
6331 : EXPORT_SYMBOL(pcie_get_width_cap);
6332 :
6333 : /**
6334 : * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6335 : * @dev: PCI device
6336 : * @speed: storage for link speed
6337 : * @width: storage for link width
6338 : *
6339 : * Calculate a PCI device's link bandwidth by querying for its link speed
6340 : * and width, multiplying them, and applying encoding overhead. The result
6341 : * is in Mb/s, i.e., megabits/second of raw bandwidth.
6342 : */
6343 0 : u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6344 : enum pcie_link_width *width)
6345 : {
6346 0 : *speed = pcie_get_speed_cap(dev);
6347 0 : *width = pcie_get_width_cap(dev);
6348 :
6349 0 : if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6350 : return 0;
6351 :
6352 0 : return *width * PCIE_SPEED2MBS_ENC(*speed);
6353 : }
6354 :
6355 : /**
6356 : * __pcie_print_link_status - Report the PCI device's link speed and width
6357 : * @dev: PCI device to query
6358 : * @verbose: Print info even when enough bandwidth is available
6359 : *
6360 : * If the available bandwidth at the device is less than the device is
6361 : * capable of, report the device's maximum possible bandwidth and the
6362 : * upstream link that limits its performance. If @verbose, always print
6363 : * the available bandwidth, even if the device isn't constrained.
6364 : */
6365 0 : void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6366 : {
6367 : enum pcie_link_width width, width_cap;
6368 : enum pci_bus_speed speed, speed_cap;
6369 0 : struct pci_dev *limiting_dev = NULL;
6370 : u32 bw_avail, bw_cap;
6371 :
6372 0 : bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6373 0 : bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6374 :
6375 0 : if (bw_avail >= bw_cap && verbose)
6376 0 : pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6377 : bw_cap / 1000, bw_cap % 1000,
6378 : pci_speed_string(speed_cap), width_cap);
6379 0 : else if (bw_avail < bw_cap)
6380 0 : pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6381 : bw_avail / 1000, bw_avail % 1000,
6382 : pci_speed_string(speed), width,
6383 : limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6384 : bw_cap / 1000, bw_cap % 1000,
6385 : pci_speed_string(speed_cap), width_cap);
6386 0 : }
6387 :
6388 : /**
6389 : * pcie_print_link_status - Report the PCI device's link speed and width
6390 : * @dev: PCI device to query
6391 : *
6392 : * Report the available bandwidth at the device.
6393 : */
6394 0 : void pcie_print_link_status(struct pci_dev *dev)
6395 : {
6396 0 : __pcie_print_link_status(dev, true);
6397 0 : }
6398 : EXPORT_SYMBOL(pcie_print_link_status);
6399 :
6400 : /**
6401 : * pci_select_bars - Make BAR mask from the type of resource
6402 : * @dev: the PCI device for which BAR mask is made
6403 : * @flags: resource type mask to be selected
6404 : *
6405 : * This helper routine makes bar mask from the type of resource.
6406 : */
6407 0 : int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6408 : {
6409 0 : int i, bars = 0;
6410 0 : for (i = 0; i < PCI_NUM_RESOURCES; i++)
6411 0 : if (pci_resource_flags(dev, i) & flags)
6412 0 : bars |= (1 << i);
6413 0 : return bars;
6414 : }
6415 : EXPORT_SYMBOL(pci_select_bars);
6416 :
6417 : /* Some architectures require additional programming to enable VGA */
6418 : static arch_set_vga_state_t arch_set_vga_state;
6419 :
6420 0 : void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6421 : {
6422 0 : arch_set_vga_state = func; /* NULL disables */
6423 0 : }
6424 :
6425 : static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6426 : unsigned int command_bits, u32 flags)
6427 : {
6428 0 : if (arch_set_vga_state)
6429 0 : return arch_set_vga_state(dev, decode, command_bits,
6430 : flags);
6431 : return 0;
6432 : }
6433 :
6434 : /**
6435 : * pci_set_vga_state - set VGA decode state on device and parents if requested
6436 : * @dev: the PCI device
6437 : * @decode: true = enable decoding, false = disable decoding
6438 : * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6439 : * @flags: traverse ancestors and change bridges
6440 : * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6441 : */
6442 0 : int pci_set_vga_state(struct pci_dev *dev, bool decode,
6443 : unsigned int command_bits, u32 flags)
6444 : {
6445 : struct pci_bus *bus;
6446 : struct pci_dev *bridge;
6447 : u16 cmd;
6448 : int rc;
6449 :
6450 0 : WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6451 :
6452 : /* ARCH specific VGA enables */
6453 0 : rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6454 0 : if (rc)
6455 : return rc;
6456 :
6457 0 : if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6458 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
6459 0 : if (decode)
6460 0 : cmd |= command_bits;
6461 : else
6462 0 : cmd &= ~command_bits;
6463 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
6464 : }
6465 :
6466 0 : if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6467 : return 0;
6468 :
6469 0 : bus = dev->bus;
6470 0 : while (bus) {
6471 0 : bridge = bus->self;
6472 0 : if (bridge) {
6473 0 : pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6474 : &cmd);
6475 0 : if (decode)
6476 0 : cmd |= PCI_BRIDGE_CTL_VGA;
6477 : else
6478 0 : cmd &= ~PCI_BRIDGE_CTL_VGA;
6479 0 : pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6480 : cmd);
6481 : }
6482 0 : bus = bus->parent;
6483 : }
6484 : return 0;
6485 : }
6486 :
6487 : #ifdef CONFIG_ACPI
6488 : bool pci_pr3_present(struct pci_dev *pdev)
6489 : {
6490 : struct acpi_device *adev;
6491 :
6492 : if (acpi_disabled)
6493 : return false;
6494 :
6495 : adev = ACPI_COMPANION(&pdev->dev);
6496 : if (!adev)
6497 : return false;
6498 :
6499 : return adev->power.flags.power_resources &&
6500 : acpi_has_method(adev->handle, "_PR3");
6501 : }
6502 : EXPORT_SYMBOL_GPL(pci_pr3_present);
6503 : #endif
6504 :
6505 : /**
6506 : * pci_add_dma_alias - Add a DMA devfn alias for a device
6507 : * @dev: the PCI device for which alias is added
6508 : * @devfn_from: alias slot and function
6509 : * @nr_devfns: number of subsequent devfns to alias
6510 : *
6511 : * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6512 : * which is used to program permissible bus-devfn source addresses for DMA
6513 : * requests in an IOMMU. These aliases factor into IOMMU group creation
6514 : * and are useful for devices generating DMA requests beyond or different
6515 : * from their logical bus-devfn. Examples include device quirks where the
6516 : * device simply uses the wrong devfn, as well as non-transparent bridges
6517 : * where the alias may be a proxy for devices in another domain.
6518 : *
6519 : * IOMMU group creation is performed during device discovery or addition,
6520 : * prior to any potential DMA mapping and therefore prior to driver probing
6521 : * (especially for userspace assigned devices where IOMMU group definition
6522 : * cannot be left as a userspace activity). DMA aliases should therefore
6523 : * be configured via quirks, such as the PCI fixup header quirk.
6524 : */
6525 0 : void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6526 : unsigned int nr_devfns)
6527 : {
6528 : int devfn_to;
6529 :
6530 0 : nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6531 0 : devfn_to = devfn_from + nr_devfns - 1;
6532 :
6533 0 : if (!dev->dma_alias_mask)
6534 0 : dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6535 0 : if (!dev->dma_alias_mask) {
6536 0 : pci_warn(dev, "Unable to allocate DMA alias mask\n");
6537 0 : return;
6538 : }
6539 :
6540 0 : bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6541 :
6542 0 : if (nr_devfns == 1)
6543 0 : pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6544 : PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6545 0 : else if (nr_devfns > 1)
6546 0 : pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6547 : PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6548 : PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6549 : }
6550 :
6551 0 : bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6552 : {
6553 0 : return (dev1->dma_alias_mask &&
6554 0 : test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6555 0 : (dev2->dma_alias_mask &&
6556 0 : test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6557 0 : pci_real_dma_dev(dev1) == dev2 ||
6558 0 : pci_real_dma_dev(dev2) == dev1;
6559 : }
6560 :
6561 0 : bool pci_device_is_present(struct pci_dev *pdev)
6562 : {
6563 : u32 v;
6564 :
6565 : /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6566 0 : pdev = pci_physfn(pdev);
6567 0 : if (pci_dev_is_disconnected(pdev))
6568 : return false;
6569 0 : return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6570 : }
6571 : EXPORT_SYMBOL_GPL(pci_device_is_present);
6572 :
6573 0 : void pci_ignore_hotplug(struct pci_dev *dev)
6574 : {
6575 0 : struct pci_dev *bridge = dev->bus->self;
6576 :
6577 0 : dev->ignore_hotplug = 1;
6578 : /* Propagate the "ignore hotplug" setting to the parent bridge. */
6579 0 : if (bridge)
6580 0 : bridge->ignore_hotplug = 1;
6581 0 : }
6582 : EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6583 :
6584 : /**
6585 : * pci_real_dma_dev - Get PCI DMA device for PCI device
6586 : * @dev: the PCI device that may have a PCI DMA alias
6587 : *
6588 : * Permits the platform to provide architecture-specific functionality to
6589 : * devices needing to alias DMA to another PCI device on another PCI bus. If
6590 : * the PCI device is on the same bus, it is recommended to use
6591 : * pci_add_dma_alias(). This is the default implementation. Architecture
6592 : * implementations can override this.
6593 : */
6594 0 : struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6595 : {
6596 0 : return dev;
6597 : }
6598 :
6599 0 : resource_size_t __weak pcibios_default_alignment(void)
6600 : {
6601 0 : return 0;
6602 : }
6603 :
6604 : /*
6605 : * Arches that don't want to expose struct resource to userland as-is in
6606 : * sysfs and /proc can implement their own pci_resource_to_user().
6607 : */
6608 0 : void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6609 : const struct resource *rsrc,
6610 : resource_size_t *start, resource_size_t *end)
6611 : {
6612 0 : *start = rsrc->start;
6613 0 : *end = rsrc->end;
6614 0 : }
6615 :
6616 : static char *resource_alignment_param;
6617 : static DEFINE_SPINLOCK(resource_alignment_lock);
6618 :
6619 : /**
6620 : * pci_specified_resource_alignment - get resource alignment specified by user.
6621 : * @dev: the PCI device to get
6622 : * @resize: whether or not to change resources' size when reassigning alignment
6623 : *
6624 : * RETURNS: Resource alignment if it is specified.
6625 : * Zero if it is not specified.
6626 : */
6627 0 : static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6628 : bool *resize)
6629 : {
6630 : int align_order, count;
6631 0 : resource_size_t align = pcibios_default_alignment();
6632 : const char *p;
6633 : int ret;
6634 :
6635 0 : spin_lock(&resource_alignment_lock);
6636 0 : p = resource_alignment_param;
6637 0 : if (!p || !*p)
6638 : goto out;
6639 0 : if (pci_has_flag(PCI_PROBE_ONLY)) {
6640 0 : align = 0;
6641 0 : pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6642 : goto out;
6643 : }
6644 :
6645 0 : while (*p) {
6646 0 : count = 0;
6647 0 : if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6648 0 : p[count] == '@') {
6649 0 : p += count + 1;
6650 0 : if (align_order > 63) {
6651 0 : pr_err("PCI: Invalid requested alignment (order %d)\n",
6652 : align_order);
6653 0 : align_order = PAGE_SHIFT;
6654 : }
6655 : } else {
6656 0 : align_order = PAGE_SHIFT;
6657 : }
6658 :
6659 0 : ret = pci_dev_str_match(dev, p, &p);
6660 0 : if (ret == 1) {
6661 0 : *resize = true;
6662 0 : align = 1ULL << align_order;
6663 0 : break;
6664 0 : } else if (ret < 0) {
6665 0 : pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6666 : p);
6667 0 : break;
6668 : }
6669 :
6670 0 : if (*p != ';' && *p != ',') {
6671 : /* End of param or invalid format */
6672 : break;
6673 : }
6674 0 : p++;
6675 : }
6676 : out:
6677 0 : spin_unlock(&resource_alignment_lock);
6678 0 : return align;
6679 : }
6680 :
6681 0 : static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6682 : resource_size_t align, bool resize)
6683 : {
6684 0 : struct resource *r = &dev->resource[bar];
6685 : resource_size_t size;
6686 :
6687 0 : if (!(r->flags & IORESOURCE_MEM))
6688 : return;
6689 :
6690 0 : if (r->flags & IORESOURCE_PCI_FIXED) {
6691 0 : pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6692 : bar, r, (unsigned long long)align);
6693 0 : return;
6694 : }
6695 :
6696 0 : size = resource_size(r);
6697 0 : if (size >= align)
6698 : return;
6699 :
6700 : /*
6701 : * Increase the alignment of the resource. There are two ways we
6702 : * can do this:
6703 : *
6704 : * 1) Increase the size of the resource. BARs are aligned on their
6705 : * size, so when we reallocate space for this resource, we'll
6706 : * allocate it with the larger alignment. This also prevents
6707 : * assignment of any other BARs inside the alignment region, so
6708 : * if we're requesting page alignment, this means no other BARs
6709 : * will share the page.
6710 : *
6711 : * The disadvantage is that this makes the resource larger than
6712 : * the hardware BAR, which may break drivers that compute things
6713 : * based on the resource size, e.g., to find registers at a
6714 : * fixed offset before the end of the BAR.
6715 : *
6716 : * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6717 : * set r->start to the desired alignment. By itself this
6718 : * doesn't prevent other BARs being put inside the alignment
6719 : * region, but if we realign *every* resource of every device in
6720 : * the system, none of them will share an alignment region.
6721 : *
6722 : * When the user has requested alignment for only some devices via
6723 : * the "pci=resource_alignment" argument, "resize" is true and we
6724 : * use the first method. Otherwise we assume we're aligning all
6725 : * devices and we use the second.
6726 : */
6727 :
6728 0 : pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6729 : bar, r, (unsigned long long)align);
6730 :
6731 0 : if (resize) {
6732 0 : r->start = 0;
6733 0 : r->end = align - 1;
6734 : } else {
6735 0 : r->flags &= ~IORESOURCE_SIZEALIGN;
6736 0 : r->flags |= IORESOURCE_STARTALIGN;
6737 0 : r->start = align;
6738 0 : r->end = r->start + size - 1;
6739 : }
6740 0 : r->flags |= IORESOURCE_UNSET;
6741 : }
6742 :
6743 : /*
6744 : * This function disables memory decoding and releases memory resources
6745 : * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6746 : * It also rounds up size to specified alignment.
6747 : * Later on, the kernel will assign page-aligned memory resource back
6748 : * to the device.
6749 : */
6750 0 : void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6751 : {
6752 : int i;
6753 : struct resource *r;
6754 : resource_size_t align;
6755 : u16 command;
6756 0 : bool resize = false;
6757 :
6758 : /*
6759 : * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6760 : * 3.4.1.11. Their resources are allocated from the space
6761 : * described by the VF BARx register in the PF's SR-IOV capability.
6762 : * We can't influence their alignment here.
6763 : */
6764 0 : if (dev->is_virtfn)
6765 0 : return;
6766 :
6767 : /* check if specified PCI is target device to reassign */
6768 0 : align = pci_specified_resource_alignment(dev, &resize);
6769 0 : if (!align)
6770 : return;
6771 :
6772 0 : if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6773 0 : (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6774 0 : pci_warn(dev, "Can't reassign resources to host bridge\n");
6775 0 : return;
6776 : }
6777 :
6778 0 : pci_read_config_word(dev, PCI_COMMAND, &command);
6779 0 : command &= ~PCI_COMMAND_MEMORY;
6780 0 : pci_write_config_word(dev, PCI_COMMAND, command);
6781 :
6782 0 : for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6783 0 : pci_request_resource_alignment(dev, i, align, resize);
6784 :
6785 : /*
6786 : * Need to disable bridge's resource window,
6787 : * to enable the kernel to reassign new resource
6788 : * window later on.
6789 : */
6790 0 : if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6791 0 : for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6792 0 : r = &dev->resource[i];
6793 0 : if (!(r->flags & IORESOURCE_MEM))
6794 0 : continue;
6795 0 : r->flags |= IORESOURCE_UNSET;
6796 0 : r->end = resource_size(r) - 1;
6797 0 : r->start = 0;
6798 : }
6799 0 : pci_disable_bridge_window(dev);
6800 : }
6801 : }
6802 :
6803 0 : static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6804 : {
6805 0 : size_t count = 0;
6806 :
6807 0 : spin_lock(&resource_alignment_lock);
6808 0 : if (resource_alignment_param)
6809 0 : count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6810 0 : spin_unlock(&resource_alignment_lock);
6811 :
6812 0 : return count;
6813 : }
6814 :
6815 0 : static ssize_t resource_alignment_store(const struct bus_type *bus,
6816 : const char *buf, size_t count)
6817 : {
6818 : char *param, *old, *end;
6819 :
6820 0 : if (count >= (PAGE_SIZE - 1))
6821 : return -EINVAL;
6822 :
6823 0 : param = kstrndup(buf, count, GFP_KERNEL);
6824 0 : if (!param)
6825 : return -ENOMEM;
6826 :
6827 0 : end = strchr(param, '\n');
6828 0 : if (end)
6829 0 : *end = '\0';
6830 :
6831 0 : spin_lock(&resource_alignment_lock);
6832 0 : old = resource_alignment_param;
6833 0 : if (strlen(param)) {
6834 0 : resource_alignment_param = param;
6835 : } else {
6836 0 : kfree(param);
6837 0 : resource_alignment_param = NULL;
6838 : }
6839 0 : spin_unlock(&resource_alignment_lock);
6840 :
6841 0 : kfree(old);
6842 :
6843 0 : return count;
6844 : }
6845 :
6846 : static BUS_ATTR_RW(resource_alignment);
6847 :
6848 1 : static int __init pci_resource_alignment_sysfs_init(void)
6849 : {
6850 1 : return bus_create_file(&pci_bus_type,
6851 : &bus_attr_resource_alignment);
6852 : }
6853 : late_initcall(pci_resource_alignment_sysfs_init);
6854 :
6855 : static void pci_no_domains(void)
6856 : {
6857 : #ifdef CONFIG_PCI_DOMAINS
6858 : pci_domains_supported = 0;
6859 : #endif
6860 : }
6861 :
6862 : #ifdef CONFIG_PCI_DOMAINS_GENERIC
6863 : static DEFINE_IDA(pci_domain_nr_static_ida);
6864 : static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6865 :
6866 : static void of_pci_reserve_static_domain_nr(void)
6867 : {
6868 : struct device_node *np;
6869 : int domain_nr;
6870 :
6871 : for_each_node_by_type(np, "pci") {
6872 : domain_nr = of_get_pci_domain_nr(np);
6873 : if (domain_nr < 0)
6874 : continue;
6875 : /*
6876 : * Permanently allocate domain_nr in dynamic_ida
6877 : * to prevent it from dynamic allocation.
6878 : */
6879 : ida_alloc_range(&pci_domain_nr_dynamic_ida,
6880 : domain_nr, domain_nr, GFP_KERNEL);
6881 : }
6882 : }
6883 :
6884 : static int of_pci_bus_find_domain_nr(struct device *parent)
6885 : {
6886 : static bool static_domains_reserved = false;
6887 : int domain_nr;
6888 :
6889 : /* On the first call scan device tree for static allocations. */
6890 : if (!static_domains_reserved) {
6891 : of_pci_reserve_static_domain_nr();
6892 : static_domains_reserved = true;
6893 : }
6894 :
6895 : if (parent) {
6896 : /*
6897 : * If domain is in DT, allocate it in static IDA. This
6898 : * prevents duplicate static allocations in case of errors
6899 : * in DT.
6900 : */
6901 : domain_nr = of_get_pci_domain_nr(parent->of_node);
6902 : if (domain_nr >= 0)
6903 : return ida_alloc_range(&pci_domain_nr_static_ida,
6904 : domain_nr, domain_nr,
6905 : GFP_KERNEL);
6906 : }
6907 :
6908 : /*
6909 : * If domain was not specified in DT, choose a free ID from dynamic
6910 : * allocations. All domain numbers from DT are permanently in
6911 : * dynamic allocations to prevent assigning them to other DT nodes
6912 : * without static domain.
6913 : */
6914 : return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6915 : }
6916 :
6917 : static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6918 : {
6919 : if (bus->domain_nr < 0)
6920 : return;
6921 :
6922 : /* Release domain from IDA where it was allocated. */
6923 : if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6924 : ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6925 : else
6926 : ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6927 : }
6928 :
6929 : int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6930 : {
6931 : return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6932 : acpi_pci_bus_find_domain_nr(bus);
6933 : }
6934 :
6935 : void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6936 : {
6937 : if (!acpi_disabled)
6938 : return;
6939 : of_pci_bus_release_domain_nr(bus, parent);
6940 : }
6941 : #endif
6942 :
6943 : /**
6944 : * pci_ext_cfg_avail - can we access extended PCI config space?
6945 : *
6946 : * Returns 1 if we can access PCI extended config space (offsets
6947 : * greater than 0xff). This is the default implementation. Architecture
6948 : * implementations can override this.
6949 : */
6950 0 : int __weak pci_ext_cfg_avail(void)
6951 : {
6952 0 : return 1;
6953 : }
6954 :
6955 0 : void __weak pci_fixup_cardbus(struct pci_bus *bus)
6956 : {
6957 0 : }
6958 : EXPORT_SYMBOL(pci_fixup_cardbus);
6959 :
6960 0 : static int __init pci_setup(char *str)
6961 : {
6962 0 : while (str) {
6963 0 : char *k = strchr(str, ',');
6964 0 : if (k)
6965 0 : *k++ = 0;
6966 0 : if (*str && (str = pcibios_setup(str)) && *str) {
6967 0 : if (!strcmp(str, "nomsi")) {
6968 0 : pci_no_msi();
6969 0 : } else if (!strncmp(str, "noats", 5)) {
6970 0 : pr_info("PCIe: ATS is disabled\n");
6971 0 : pcie_ats_disabled = true;
6972 0 : } else if (!strcmp(str, "noaer")) {
6973 : pci_no_aer();
6974 0 : } else if (!strcmp(str, "earlydump")) {
6975 0 : pci_early_dump = true;
6976 0 : } else if (!strncmp(str, "realloc=", 8)) {
6977 0 : pci_realloc_get_opt(str + 8);
6978 0 : } else if (!strncmp(str, "realloc", 7)) {
6979 0 : pci_realloc_get_opt("on");
6980 0 : } else if (!strcmp(str, "nodomains")) {
6981 : pci_no_domains();
6982 0 : } else if (!strncmp(str, "noari", 5)) {
6983 0 : pcie_ari_disabled = true;
6984 0 : } else if (!strncmp(str, "cbiosize=", 9)) {
6985 0 : pci_cardbus_io_size = memparse(str + 9, &str);
6986 0 : } else if (!strncmp(str, "cbmemsize=", 10)) {
6987 0 : pci_cardbus_mem_size = memparse(str + 10, &str);
6988 0 : } else if (!strncmp(str, "resource_alignment=", 19)) {
6989 0 : resource_alignment_param = str + 19;
6990 0 : } else if (!strncmp(str, "ecrc=", 5)) {
6991 : pcie_ecrc_get_policy(str + 5);
6992 0 : } else if (!strncmp(str, "hpiosize=", 9)) {
6993 0 : pci_hotplug_io_size = memparse(str + 9, &str);
6994 0 : } else if (!strncmp(str, "hpmmiosize=", 11)) {
6995 0 : pci_hotplug_mmio_size = memparse(str + 11, &str);
6996 0 : } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6997 0 : pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6998 0 : } else if (!strncmp(str, "hpmemsize=", 10)) {
6999 0 : pci_hotplug_mmio_size = memparse(str + 10, &str);
7000 0 : pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7001 0 : } else if (!strncmp(str, "hpbussize=", 10)) {
7002 0 : pci_hotplug_bus_size =
7003 0 : simple_strtoul(str + 10, &str, 0);
7004 0 : if (pci_hotplug_bus_size > 0xff)
7005 0 : pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7006 0 : } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7007 0 : pcie_bus_config = PCIE_BUS_TUNE_OFF;
7008 0 : } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7009 0 : pcie_bus_config = PCIE_BUS_SAFE;
7010 0 : } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7011 0 : pcie_bus_config = PCIE_BUS_PERFORMANCE;
7012 0 : } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7013 0 : pcie_bus_config = PCIE_BUS_PEER2PEER;
7014 0 : } else if (!strncmp(str, "pcie_scan_all", 13)) {
7015 : pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7016 0 : } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7017 0 : disable_acs_redir_param = str + 18;
7018 : } else {
7019 0 : pr_err("PCI: Unknown option `%s'\n", str);
7020 : }
7021 : }
7022 0 : str = k;
7023 : }
7024 0 : return 0;
7025 : }
7026 : early_param("pci", pci_setup);
7027 :
7028 : /*
7029 : * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7030 : * in pci_setup(), above, to point to data in the __initdata section which
7031 : * will be freed after the init sequence is complete. We can't allocate memory
7032 : * in pci_setup() because some architectures do not have any memory allocation
7033 : * service available during an early_param() call. So we allocate memory and
7034 : * copy the variable here before the init section is freed.
7035 : *
7036 : */
7037 1 : static int __init pci_realloc_setup_params(void)
7038 : {
7039 1 : resource_alignment_param = kstrdup(resource_alignment_param,
7040 : GFP_KERNEL);
7041 1 : disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7042 :
7043 1 : return 0;
7044 : }
7045 : pure_initcall(pci_realloc_setup_params);
|