Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * "splice": joining two ropes together by interweaving their strands.
4 : *
5 : * This is the "extended pipe" functionality, where a pipe is used as
6 : * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 : * buffer that you can use to transfer data from one end to the other.
8 : *
9 : * The traditional unix read/write is extended with a "splice()" operation
10 : * that transfers data buffers to or from a pipe buffer.
11 : *
12 : * Named by Larry McVoy, original implementation from Linus, extended by
13 : * Jens to support splicing to files, network, direct splicing, etc and
14 : * fixing lots of bugs.
15 : *
16 : * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 : * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 : * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 : *
20 : */
21 : #include <linux/bvec.h>
22 : #include <linux/fs.h>
23 : #include <linux/file.h>
24 : #include <linux/pagemap.h>
25 : #include <linux/splice.h>
26 : #include <linux/memcontrol.h>
27 : #include <linux/mm_inline.h>
28 : #include <linux/swap.h>
29 : #include <linux/writeback.h>
30 : #include <linux/export.h>
31 : #include <linux/syscalls.h>
32 : #include <linux/uio.h>
33 : #include <linux/fsnotify.h>
34 : #include <linux/security.h>
35 : #include <linux/gfp.h>
36 : #include <linux/net.h>
37 : #include <linux/socket.h>
38 : #include <linux/sched/signal.h>
39 :
40 : #include "internal.h"
41 :
42 : /*
43 : * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 : * indicate they support non-blocking reads or writes, we must clear it
45 : * here if set to avoid blocking other users of this pipe if splice is
46 : * being done on it.
47 : */
48 0 : static noinline void noinline pipe_clear_nowait(struct file *file)
49 : {
50 0 : fmode_t fmode = READ_ONCE(file->f_mode);
51 :
52 : do {
53 0 : if (!(fmode & FMODE_NOWAIT))
54 : break;
55 0 : } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 0 : }
57 :
58 : /*
59 : * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 : * a vm helper function, it's already simplified quite a bit by the
61 : * addition of remove_mapping(). If success is returned, the caller may
62 : * attempt to reuse this page for another destination.
63 : */
64 0 : static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 : struct pipe_buffer *buf)
66 : {
67 0 : struct folio *folio = page_folio(buf->page);
68 : struct address_space *mapping;
69 :
70 0 : folio_lock(folio);
71 :
72 0 : mapping = folio_mapping(folio);
73 0 : if (mapping) {
74 0 : WARN_ON(!folio_test_uptodate(folio));
75 :
76 : /*
77 : * At least for ext2 with nobh option, we need to wait on
78 : * writeback completing on this folio, since we'll remove it
79 : * from the pagecache. Otherwise truncate wont wait on the
80 : * folio, allowing the disk blocks to be reused by someone else
81 : * before we actually wrote our data to them. fs corruption
82 : * ensues.
83 : */
84 0 : folio_wait_writeback(folio);
85 :
86 0 : if (folio_has_private(folio) &&
87 0 : !filemap_release_folio(folio, GFP_KERNEL))
88 : goto out_unlock;
89 :
90 : /*
91 : * If we succeeded in removing the mapping, set LRU flag
92 : * and return good.
93 : */
94 0 : if (remove_mapping(mapping, folio)) {
95 0 : buf->flags |= PIPE_BUF_FLAG_LRU;
96 0 : return true;
97 : }
98 : }
99 :
100 : /*
101 : * Raced with truncate or failed to remove folio from current
102 : * address space, unlock and return failure.
103 : */
104 : out_unlock:
105 0 : folio_unlock(folio);
106 0 : return false;
107 : }
108 :
109 0 : static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
110 : struct pipe_buffer *buf)
111 : {
112 0 : put_page(buf->page);
113 0 : buf->flags &= ~PIPE_BUF_FLAG_LRU;
114 0 : }
115 :
116 : /*
117 : * Check whether the contents of buf is OK to access. Since the content
118 : * is a page cache page, IO may be in flight.
119 : */
120 0 : static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
121 : struct pipe_buffer *buf)
122 : {
123 0 : struct page *page = buf->page;
124 : int err;
125 :
126 0 : if (!PageUptodate(page)) {
127 0 : lock_page(page);
128 :
129 : /*
130 : * Page got truncated/unhashed. This will cause a 0-byte
131 : * splice, if this is the first page.
132 : */
133 0 : if (!page->mapping) {
134 : err = -ENODATA;
135 : goto error;
136 : }
137 :
138 : /*
139 : * Uh oh, read-error from disk.
140 : */
141 0 : if (!PageUptodate(page)) {
142 : err = -EIO;
143 : goto error;
144 : }
145 :
146 : /*
147 : * Page is ok afterall, we are done.
148 : */
149 0 : unlock_page(page);
150 : }
151 :
152 : return 0;
153 : error:
154 0 : unlock_page(page);
155 0 : return err;
156 : }
157 :
158 : const struct pipe_buf_operations page_cache_pipe_buf_ops = {
159 : .confirm = page_cache_pipe_buf_confirm,
160 : .release = page_cache_pipe_buf_release,
161 : .try_steal = page_cache_pipe_buf_try_steal,
162 : .get = generic_pipe_buf_get,
163 : };
164 :
165 0 : static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 : struct pipe_buffer *buf)
167 : {
168 0 : if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
169 : return false;
170 :
171 0 : buf->flags |= PIPE_BUF_FLAG_LRU;
172 0 : return generic_pipe_buf_try_steal(pipe, buf);
173 : }
174 :
175 : static const struct pipe_buf_operations user_page_pipe_buf_ops = {
176 : .release = page_cache_pipe_buf_release,
177 : .try_steal = user_page_pipe_buf_try_steal,
178 : .get = generic_pipe_buf_get,
179 : };
180 :
181 0 : static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
182 : {
183 0 : smp_mb();
184 0 : if (waitqueue_active(&pipe->rd_wait))
185 0 : wake_up_interruptible(&pipe->rd_wait);
186 0 : kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
187 0 : }
188 :
189 : /**
190 : * splice_to_pipe - fill passed data into a pipe
191 : * @pipe: pipe to fill
192 : * @spd: data to fill
193 : *
194 : * Description:
195 : * @spd contains a map of pages and len/offset tuples, along with
196 : * the struct pipe_buf_operations associated with these pages. This
197 : * function will link that data to the pipe.
198 : *
199 : */
200 0 : ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
201 : struct splice_pipe_desc *spd)
202 : {
203 0 : unsigned int spd_pages = spd->nr_pages;
204 0 : unsigned int tail = pipe->tail;
205 0 : unsigned int head = pipe->head;
206 0 : unsigned int mask = pipe->ring_size - 1;
207 0 : int ret = 0, page_nr = 0;
208 :
209 0 : if (!spd_pages)
210 : return 0;
211 :
212 0 : if (unlikely(!pipe->readers)) {
213 0 : send_sig(SIGPIPE, current, 0);
214 0 : ret = -EPIPE;
215 0 : goto out;
216 : }
217 :
218 0 : while (!pipe_full(head, tail, pipe->max_usage)) {
219 0 : struct pipe_buffer *buf = &pipe->bufs[head & mask];
220 :
221 0 : buf->page = spd->pages[page_nr];
222 0 : buf->offset = spd->partial[page_nr].offset;
223 0 : buf->len = spd->partial[page_nr].len;
224 0 : buf->private = spd->partial[page_nr].private;
225 0 : buf->ops = spd->ops;
226 0 : buf->flags = 0;
227 :
228 0 : head++;
229 0 : pipe->head = head;
230 0 : page_nr++;
231 0 : ret += buf->len;
232 :
233 0 : if (!--spd->nr_pages)
234 : break;
235 : }
236 :
237 0 : if (!ret)
238 0 : ret = -EAGAIN;
239 :
240 : out:
241 0 : while (page_nr < spd_pages)
242 0 : spd->spd_release(spd, page_nr++);
243 :
244 0 : return ret;
245 : }
246 : EXPORT_SYMBOL_GPL(splice_to_pipe);
247 :
248 0 : ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
249 : {
250 0 : unsigned int head = pipe->head;
251 0 : unsigned int tail = pipe->tail;
252 0 : unsigned int mask = pipe->ring_size - 1;
253 : int ret;
254 :
255 0 : if (unlikely(!pipe->readers)) {
256 0 : send_sig(SIGPIPE, current, 0);
257 0 : ret = -EPIPE;
258 0 : } else if (pipe_full(head, tail, pipe->max_usage)) {
259 : ret = -EAGAIN;
260 : } else {
261 0 : pipe->bufs[head & mask] = *buf;
262 0 : pipe->head = head + 1;
263 0 : return buf->len;
264 : }
265 0 : pipe_buf_release(pipe, buf);
266 0 : return ret;
267 : }
268 : EXPORT_SYMBOL(add_to_pipe);
269 :
270 : /*
271 : * Check if we need to grow the arrays holding pages and partial page
272 : * descriptions.
273 : */
274 0 : int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 : {
276 0 : unsigned int max_usage = READ_ONCE(pipe->max_usage);
277 :
278 0 : spd->nr_pages_max = max_usage;
279 0 : if (max_usage <= PIPE_DEF_BUFFERS)
280 : return 0;
281 :
282 0 : spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
283 0 : spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
284 : GFP_KERNEL);
285 :
286 0 : if (spd->pages && spd->partial)
287 : return 0;
288 :
289 0 : kfree(spd->pages);
290 0 : kfree(spd->partial);
291 0 : return -ENOMEM;
292 : }
293 :
294 0 : void splice_shrink_spd(struct splice_pipe_desc *spd)
295 : {
296 0 : if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 : return;
298 :
299 0 : kfree(spd->pages);
300 0 : kfree(spd->partial);
301 : }
302 :
303 : /**
304 : * copy_splice_read - Copy data from a file and splice the copy into a pipe
305 : * @in: The file to read from
306 : * @ppos: Pointer to the file position to read from
307 : * @pipe: The pipe to splice into
308 : * @len: The amount to splice
309 : * @flags: The SPLICE_F_* flags
310 : *
311 : * This function allocates a bunch of pages sufficient to hold the requested
312 : * amount of data (but limited by the remaining pipe capacity), passes it to
313 : * the file's ->read_iter() to read into and then splices the used pages into
314 : * the pipe.
315 : *
316 : * Return: On success, the number of bytes read will be returned and *@ppos
317 : * will be updated if appropriate; 0 will be returned if there is no more data
318 : * to be read; -EAGAIN will be returned if the pipe had no space, and some
319 : * other negative error code will be returned on error. A short read may occur
320 : * if the pipe has insufficient space, we reach the end of the data or we hit a
321 : * hole.
322 : */
323 0 : ssize_t copy_splice_read(struct file *in, loff_t *ppos,
324 : struct pipe_inode_info *pipe,
325 : size_t len, unsigned int flags)
326 : {
327 : struct iov_iter to;
328 : struct bio_vec *bv;
329 : struct kiocb kiocb;
330 : struct page **pages;
331 : ssize_t ret;
332 0 : size_t used, npages, chunk, remain, keep = 0;
333 : int i;
334 :
335 : /* Work out how much data we can actually add into the pipe */
336 0 : used = pipe_occupancy(pipe->head, pipe->tail);
337 0 : npages = max_t(ssize_t, pipe->max_usage - used, 0);
338 0 : len = min_t(size_t, len, npages * PAGE_SIZE);
339 0 : npages = DIV_ROUND_UP(len, PAGE_SIZE);
340 :
341 0 : bv = kzalloc(array_size(npages, sizeof(bv[0])) +
342 0 : array_size(npages, sizeof(struct page *)), GFP_KERNEL);
343 0 : if (!bv)
344 : return -ENOMEM;
345 :
346 0 : pages = (struct page **)(bv + npages);
347 0 : npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
348 0 : if (!npages) {
349 0 : kfree(bv);
350 0 : return -ENOMEM;
351 : }
352 :
353 0 : remain = len = min_t(size_t, len, npages * PAGE_SIZE);
354 :
355 0 : for (i = 0; i < npages; i++) {
356 0 : chunk = min_t(size_t, PAGE_SIZE, remain);
357 0 : bv[i].bv_page = pages[i];
358 0 : bv[i].bv_offset = 0;
359 0 : bv[i].bv_len = chunk;
360 0 : remain -= chunk;
361 : }
362 :
363 : /* Do the I/O */
364 0 : iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
365 0 : init_sync_kiocb(&kiocb, in);
366 0 : kiocb.ki_pos = *ppos;
367 0 : ret = call_read_iter(in, &kiocb, &to);
368 :
369 0 : if (ret > 0) {
370 0 : keep = DIV_ROUND_UP(ret, PAGE_SIZE);
371 0 : *ppos = kiocb.ki_pos;
372 : }
373 :
374 : /*
375 : * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
376 : * there", rather than -EFAULT.
377 : */
378 0 : if (ret == -EFAULT)
379 0 : ret = -EAGAIN;
380 :
381 : /* Free any pages that didn't get touched at all. */
382 0 : if (keep < npages)
383 0 : release_pages(pages + keep, npages - keep);
384 :
385 : /* Push the remaining pages into the pipe. */
386 0 : remain = ret;
387 0 : for (i = 0; i < keep; i++) {
388 0 : struct pipe_buffer *buf = pipe_head_buf(pipe);
389 :
390 0 : chunk = min_t(size_t, remain, PAGE_SIZE);
391 0 : *buf = (struct pipe_buffer) {
392 : .ops = &default_pipe_buf_ops,
393 0 : .page = bv[i].bv_page,
394 : .offset = 0,
395 : .len = chunk,
396 : };
397 0 : pipe->head++;
398 0 : remain -= chunk;
399 : }
400 :
401 0 : kfree(bv);
402 0 : return ret;
403 : }
404 : EXPORT_SYMBOL(copy_splice_read);
405 :
406 : const struct pipe_buf_operations default_pipe_buf_ops = {
407 : .release = generic_pipe_buf_release,
408 : .try_steal = generic_pipe_buf_try_steal,
409 : .get = generic_pipe_buf_get,
410 : };
411 :
412 : /* Pipe buffer operations for a socket and similar. */
413 : const struct pipe_buf_operations nosteal_pipe_buf_ops = {
414 : .release = generic_pipe_buf_release,
415 : .get = generic_pipe_buf_get,
416 : };
417 : EXPORT_SYMBOL(nosteal_pipe_buf_ops);
418 :
419 0 : static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
420 : {
421 0 : smp_mb();
422 0 : if (waitqueue_active(&pipe->wr_wait))
423 0 : wake_up_interruptible(&pipe->wr_wait);
424 0 : kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
425 0 : }
426 :
427 : /**
428 : * splice_from_pipe_feed - feed available data from a pipe to a file
429 : * @pipe: pipe to splice from
430 : * @sd: information to @actor
431 : * @actor: handler that splices the data
432 : *
433 : * Description:
434 : * This function loops over the pipe and calls @actor to do the
435 : * actual moving of a single struct pipe_buffer to the desired
436 : * destination. It returns when there's no more buffers left in
437 : * the pipe or if the requested number of bytes (@sd->total_len)
438 : * have been copied. It returns a positive number (one) if the
439 : * pipe needs to be filled with more data, zero if the required
440 : * number of bytes have been copied and -errno on error.
441 : *
442 : * This, together with splice_from_pipe_{begin,end,next}, may be
443 : * used to implement the functionality of __splice_from_pipe() when
444 : * locking is required around copying the pipe buffers to the
445 : * destination.
446 : */
447 0 : static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
448 : splice_actor *actor)
449 : {
450 0 : unsigned int head = pipe->head;
451 0 : unsigned int tail = pipe->tail;
452 0 : unsigned int mask = pipe->ring_size - 1;
453 : int ret;
454 :
455 0 : while (!pipe_empty(head, tail)) {
456 0 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
457 :
458 0 : sd->len = buf->len;
459 0 : if (sd->len > sd->total_len)
460 0 : sd->len = sd->total_len;
461 :
462 0 : ret = pipe_buf_confirm(pipe, buf);
463 0 : if (unlikely(ret)) {
464 0 : if (ret == -ENODATA)
465 0 : ret = 0;
466 : return ret;
467 : }
468 :
469 0 : ret = actor(pipe, buf, sd);
470 0 : if (ret <= 0)
471 : return ret;
472 :
473 0 : buf->offset += ret;
474 0 : buf->len -= ret;
475 :
476 0 : sd->num_spliced += ret;
477 0 : sd->len -= ret;
478 0 : sd->pos += ret;
479 0 : sd->total_len -= ret;
480 :
481 0 : if (!buf->len) {
482 0 : pipe_buf_release(pipe, buf);
483 0 : tail++;
484 0 : pipe->tail = tail;
485 0 : if (pipe->files)
486 0 : sd->need_wakeup = true;
487 : }
488 :
489 0 : if (!sd->total_len)
490 : return 0;
491 : }
492 :
493 : return 1;
494 : }
495 :
496 : /* We know we have a pipe buffer, but maybe it's empty? */
497 0 : static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
498 : {
499 0 : unsigned int tail = pipe->tail;
500 0 : unsigned int mask = pipe->ring_size - 1;
501 0 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
502 :
503 0 : if (unlikely(!buf->len)) {
504 0 : pipe_buf_release(pipe, buf);
505 0 : pipe->tail = tail+1;
506 0 : return true;
507 : }
508 :
509 : return false;
510 : }
511 :
512 : /**
513 : * splice_from_pipe_next - wait for some data to splice from
514 : * @pipe: pipe to splice from
515 : * @sd: information about the splice operation
516 : *
517 : * Description:
518 : * This function will wait for some data and return a positive
519 : * value (one) if pipe buffers are available. It will return zero
520 : * or -errno if no more data needs to be spliced.
521 : */
522 0 : static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
523 : {
524 : /*
525 : * Check for signal early to make process killable when there are
526 : * always buffers available
527 : */
528 0 : if (signal_pending(current))
529 : return -ERESTARTSYS;
530 :
531 : repeat:
532 0 : while (pipe_empty(pipe->head, pipe->tail)) {
533 0 : if (!pipe->writers)
534 : return 0;
535 :
536 0 : if (sd->num_spliced)
537 : return 0;
538 :
539 0 : if (sd->flags & SPLICE_F_NONBLOCK)
540 : return -EAGAIN;
541 :
542 0 : if (signal_pending(current))
543 : return -ERESTARTSYS;
544 :
545 0 : if (sd->need_wakeup) {
546 0 : wakeup_pipe_writers(pipe);
547 0 : sd->need_wakeup = false;
548 : }
549 :
550 0 : pipe_wait_readable(pipe);
551 : }
552 :
553 0 : if (eat_empty_buffer(pipe))
554 : goto repeat;
555 :
556 : return 1;
557 : }
558 :
559 : /**
560 : * splice_from_pipe_begin - start splicing from pipe
561 : * @sd: information about the splice operation
562 : *
563 : * Description:
564 : * This function should be called before a loop containing
565 : * splice_from_pipe_next() and splice_from_pipe_feed() to
566 : * initialize the necessary fields of @sd.
567 : */
568 : static void splice_from_pipe_begin(struct splice_desc *sd)
569 : {
570 0 : sd->num_spliced = 0;
571 0 : sd->need_wakeup = false;
572 : }
573 :
574 : /**
575 : * splice_from_pipe_end - finish splicing from pipe
576 : * @pipe: pipe to splice from
577 : * @sd: information about the splice operation
578 : *
579 : * Description:
580 : * This function will wake up pipe writers if necessary. It should
581 : * be called after a loop containing splice_from_pipe_next() and
582 : * splice_from_pipe_feed().
583 : */
584 : static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
585 : {
586 0 : if (sd->need_wakeup)
587 0 : wakeup_pipe_writers(pipe);
588 : }
589 :
590 : /**
591 : * __splice_from_pipe - splice data from a pipe to given actor
592 : * @pipe: pipe to splice from
593 : * @sd: information to @actor
594 : * @actor: handler that splices the data
595 : *
596 : * Description:
597 : * This function does little more than loop over the pipe and call
598 : * @actor to do the actual moving of a single struct pipe_buffer to
599 : * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
600 : * pipe_to_user.
601 : *
602 : */
603 0 : ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
604 : splice_actor *actor)
605 : {
606 : int ret;
607 :
608 0 : splice_from_pipe_begin(sd);
609 : do {
610 0 : cond_resched();
611 0 : ret = splice_from_pipe_next(pipe, sd);
612 0 : if (ret > 0)
613 0 : ret = splice_from_pipe_feed(pipe, sd, actor);
614 0 : } while (ret > 0);
615 0 : splice_from_pipe_end(pipe, sd);
616 :
617 0 : return sd->num_spliced ? sd->num_spliced : ret;
618 : }
619 : EXPORT_SYMBOL(__splice_from_pipe);
620 :
621 : /**
622 : * splice_from_pipe - splice data from a pipe to a file
623 : * @pipe: pipe to splice from
624 : * @out: file to splice to
625 : * @ppos: position in @out
626 : * @len: how many bytes to splice
627 : * @flags: splice modifier flags
628 : * @actor: handler that splices the data
629 : *
630 : * Description:
631 : * See __splice_from_pipe. This function locks the pipe inode,
632 : * otherwise it's identical to __splice_from_pipe().
633 : *
634 : */
635 0 : ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
636 : loff_t *ppos, size_t len, unsigned int flags,
637 : splice_actor *actor)
638 : {
639 : ssize_t ret;
640 0 : struct splice_desc sd = {
641 : .total_len = len,
642 : .flags = flags,
643 0 : .pos = *ppos,
644 : .u.file = out,
645 : };
646 :
647 0 : pipe_lock(pipe);
648 0 : ret = __splice_from_pipe(pipe, &sd, actor);
649 0 : pipe_unlock(pipe);
650 :
651 0 : return ret;
652 : }
653 :
654 : /**
655 : * iter_file_splice_write - splice data from a pipe to a file
656 : * @pipe: pipe info
657 : * @out: file to write to
658 : * @ppos: position in @out
659 : * @len: number of bytes to splice
660 : * @flags: splice modifier flags
661 : *
662 : * Description:
663 : * Will either move or copy pages (determined by @flags options) from
664 : * the given pipe inode to the given file.
665 : * This one is ->write_iter-based.
666 : *
667 : */
668 : ssize_t
669 0 : iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
670 : loff_t *ppos, size_t len, unsigned int flags)
671 : {
672 0 : struct splice_desc sd = {
673 : .total_len = len,
674 : .flags = flags,
675 0 : .pos = *ppos,
676 : .u.file = out,
677 : };
678 0 : int nbufs = pipe->max_usage;
679 0 : struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
680 : GFP_KERNEL);
681 : ssize_t ret;
682 :
683 0 : if (unlikely(!array))
684 : return -ENOMEM;
685 :
686 0 : pipe_lock(pipe);
687 :
688 0 : splice_from_pipe_begin(&sd);
689 0 : while (sd.total_len) {
690 : struct iov_iter from;
691 : unsigned int head, tail, mask;
692 : size_t left;
693 : int n;
694 :
695 0 : ret = splice_from_pipe_next(pipe, &sd);
696 0 : if (ret <= 0)
697 : break;
698 :
699 0 : if (unlikely(nbufs < pipe->max_usage)) {
700 0 : kfree(array);
701 0 : nbufs = pipe->max_usage;
702 0 : array = kcalloc(nbufs, sizeof(struct bio_vec),
703 : GFP_KERNEL);
704 0 : if (!array) {
705 : ret = -ENOMEM;
706 : break;
707 : }
708 : }
709 :
710 0 : head = pipe->head;
711 0 : tail = pipe->tail;
712 0 : mask = pipe->ring_size - 1;
713 :
714 : /* build the vector */
715 0 : left = sd.total_len;
716 0 : for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
717 0 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
718 0 : size_t this_len = buf->len;
719 :
720 : /* zero-length bvecs are not supported, skip them */
721 0 : if (!this_len)
722 0 : continue;
723 0 : this_len = min(this_len, left);
724 :
725 0 : ret = pipe_buf_confirm(pipe, buf);
726 0 : if (unlikely(ret)) {
727 0 : if (ret == -ENODATA)
728 0 : ret = 0;
729 0 : goto done;
730 : }
731 :
732 0 : bvec_set_page(&array[n], buf->page, this_len,
733 : buf->offset);
734 0 : left -= this_len;
735 0 : n++;
736 : }
737 :
738 0 : iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
739 0 : ret = vfs_iter_write(out, &from, &sd.pos, 0);
740 0 : if (ret <= 0)
741 : break;
742 :
743 0 : sd.num_spliced += ret;
744 0 : sd.total_len -= ret;
745 0 : *ppos = sd.pos;
746 :
747 : /* dismiss the fully eaten buffers, adjust the partial one */
748 0 : tail = pipe->tail;
749 0 : while (ret) {
750 0 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 0 : if (ret >= buf->len) {
752 0 : ret -= buf->len;
753 0 : buf->len = 0;
754 0 : pipe_buf_release(pipe, buf);
755 0 : tail++;
756 0 : pipe->tail = tail;
757 0 : if (pipe->files)
758 0 : sd.need_wakeup = true;
759 : } else {
760 0 : buf->offset += ret;
761 0 : buf->len -= ret;
762 0 : ret = 0;
763 : }
764 : }
765 : }
766 : done:
767 0 : kfree(array);
768 0 : splice_from_pipe_end(pipe, &sd);
769 :
770 0 : pipe_unlock(pipe);
771 :
772 0 : if (sd.num_spliced)
773 0 : ret = sd.num_spliced;
774 :
775 : return ret;
776 : }
777 :
778 : EXPORT_SYMBOL(iter_file_splice_write);
779 :
780 : #ifdef CONFIG_NET
781 : /**
782 : * splice_to_socket - splice data from a pipe to a socket
783 : * @pipe: pipe to splice from
784 : * @out: socket to write to
785 : * @ppos: position in @out
786 : * @len: number of bytes to splice
787 : * @flags: splice modifier flags
788 : *
789 : * Description:
790 : * Will send @len bytes from the pipe to a network socket. No data copying
791 : * is involved.
792 : *
793 : */
794 : ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
795 : loff_t *ppos, size_t len, unsigned int flags)
796 : {
797 : struct socket *sock = sock_from_file(out);
798 : struct bio_vec bvec[16];
799 : struct msghdr msg = {};
800 : ssize_t ret = 0;
801 : size_t spliced = 0;
802 : bool need_wakeup = false;
803 :
804 : pipe_lock(pipe);
805 :
806 : while (len > 0) {
807 : unsigned int head, tail, mask, bc = 0;
808 : size_t remain = len;
809 :
810 : /*
811 : * Check for signal early to make process killable when there
812 : * are always buffers available
813 : */
814 : ret = -ERESTARTSYS;
815 : if (signal_pending(current))
816 : break;
817 :
818 : while (pipe_empty(pipe->head, pipe->tail)) {
819 : ret = 0;
820 : if (!pipe->writers)
821 : goto out;
822 :
823 : if (spliced)
824 : goto out;
825 :
826 : ret = -EAGAIN;
827 : if (flags & SPLICE_F_NONBLOCK)
828 : goto out;
829 :
830 : ret = -ERESTARTSYS;
831 : if (signal_pending(current))
832 : goto out;
833 :
834 : if (need_wakeup) {
835 : wakeup_pipe_writers(pipe);
836 : need_wakeup = false;
837 : }
838 :
839 : pipe_wait_readable(pipe);
840 : }
841 :
842 : head = pipe->head;
843 : tail = pipe->tail;
844 : mask = pipe->ring_size - 1;
845 :
846 : while (!pipe_empty(head, tail)) {
847 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
848 : size_t seg;
849 :
850 : if (!buf->len) {
851 : tail++;
852 : continue;
853 : }
854 :
855 : seg = min_t(size_t, remain, buf->len);
856 :
857 : ret = pipe_buf_confirm(pipe, buf);
858 : if (unlikely(ret)) {
859 : if (ret == -ENODATA)
860 : ret = 0;
861 : break;
862 : }
863 :
864 : bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
865 : remain -= seg;
866 : if (remain == 0 || bc >= ARRAY_SIZE(bvec))
867 : break;
868 : tail++;
869 : }
870 :
871 : if (!bc)
872 : break;
873 :
874 : msg.msg_flags = MSG_SPLICE_PAGES;
875 : if (flags & SPLICE_F_MORE)
876 : msg.msg_flags |= MSG_MORE;
877 : if (remain && pipe_occupancy(pipe->head, tail) > 0)
878 : msg.msg_flags |= MSG_MORE;
879 :
880 : iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
881 : len - remain);
882 : ret = sock_sendmsg(sock, &msg);
883 : if (ret <= 0)
884 : break;
885 :
886 : spliced += ret;
887 : len -= ret;
888 : tail = pipe->tail;
889 : while (ret > 0) {
890 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
891 : size_t seg = min_t(size_t, ret, buf->len);
892 :
893 : buf->offset += seg;
894 : buf->len -= seg;
895 : ret -= seg;
896 :
897 : if (!buf->len) {
898 : pipe_buf_release(pipe, buf);
899 : tail++;
900 : }
901 : }
902 :
903 : if (tail != pipe->tail) {
904 : pipe->tail = tail;
905 : if (pipe->files)
906 : need_wakeup = true;
907 : }
908 : }
909 :
910 : out:
911 : pipe_unlock(pipe);
912 : if (need_wakeup)
913 : wakeup_pipe_writers(pipe);
914 : return spliced ?: ret;
915 : }
916 : #endif
917 :
918 : static int warn_unsupported(struct file *file, const char *op)
919 : {
920 : pr_debug_ratelimited(
921 : "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
922 : op, file, current->pid, current->comm);
923 : return -EINVAL;
924 : }
925 :
926 : /*
927 : * Attempt to initiate a splice from pipe to file.
928 : */
929 : static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
930 : loff_t *ppos, size_t len, unsigned int flags)
931 : {
932 0 : if (unlikely(!out->f_op->splice_write))
933 : return warn_unsupported(out, "write");
934 0 : return out->f_op->splice_write(pipe, out, ppos, len, flags);
935 : }
936 :
937 : /*
938 : * Indicate to the caller that there was a premature EOF when reading from the
939 : * source and the caller didn't indicate they would be sending more data after
940 : * this.
941 : */
942 : static void do_splice_eof(struct splice_desc *sd)
943 : {
944 0 : if (sd->splice_eof)
945 0 : sd->splice_eof(sd);
946 : }
947 :
948 : /**
949 : * vfs_splice_read - Read data from a file and splice it into a pipe
950 : * @in: File to splice from
951 : * @ppos: Input file offset
952 : * @pipe: Pipe to splice to
953 : * @len: Number of bytes to splice
954 : * @flags: Splice modifier flags (SPLICE_F_*)
955 : *
956 : * Splice the requested amount of data from the input file to the pipe. This
957 : * is synchronous as the caller must hold the pipe lock across the entire
958 : * operation.
959 : *
960 : * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
961 : * a hole and a negative error code otherwise.
962 : */
963 0 : long vfs_splice_read(struct file *in, loff_t *ppos,
964 : struct pipe_inode_info *pipe, size_t len,
965 : unsigned int flags)
966 : {
967 : unsigned int p_space;
968 : int ret;
969 :
970 0 : if (unlikely(!(in->f_mode & FMODE_READ)))
971 : return -EBADF;
972 0 : if (!len)
973 : return 0;
974 :
975 : /* Don't try to read more the pipe has space for. */
976 0 : p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
977 0 : len = min_t(size_t, len, p_space << PAGE_SHIFT);
978 :
979 0 : ret = rw_verify_area(READ, in, ppos, len);
980 0 : if (unlikely(ret < 0))
981 0 : return ret;
982 :
983 0 : if (unlikely(len > MAX_RW_COUNT))
984 0 : len = MAX_RW_COUNT;
985 :
986 0 : if (unlikely(!in->f_op->splice_read))
987 : return warn_unsupported(in, "read");
988 : /*
989 : * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
990 : * buffer, copy into it and splice that into the pipe.
991 : */
992 0 : if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
993 0 : return copy_splice_read(in, ppos, pipe, len, flags);
994 0 : return in->f_op->splice_read(in, ppos, pipe, len, flags);
995 : }
996 : EXPORT_SYMBOL_GPL(vfs_splice_read);
997 :
998 : /**
999 : * splice_direct_to_actor - splices data directly between two non-pipes
1000 : * @in: file to splice from
1001 : * @sd: actor information on where to splice to
1002 : * @actor: handles the data splicing
1003 : *
1004 : * Description:
1005 : * This is a special case helper to splice directly between two
1006 : * points, without requiring an explicit pipe. Internally an allocated
1007 : * pipe is cached in the process, and reused during the lifetime of
1008 : * that process.
1009 : *
1010 : */
1011 0 : ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1012 : splice_direct_actor *actor)
1013 : {
1014 : struct pipe_inode_info *pipe;
1015 : long ret, bytes;
1016 : size_t len;
1017 : int i, flags, more;
1018 :
1019 : /*
1020 : * We require the input to be seekable, as we don't want to randomly
1021 : * drop data for eg socket -> socket splicing. Use the piped splicing
1022 : * for that!
1023 : */
1024 0 : if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1025 : return -EINVAL;
1026 :
1027 : /*
1028 : * neither in nor out is a pipe, setup an internal pipe attached to
1029 : * 'out' and transfer the wanted data from 'in' to 'out' through that
1030 : */
1031 0 : pipe = current->splice_pipe;
1032 0 : if (unlikely(!pipe)) {
1033 0 : pipe = alloc_pipe_info();
1034 0 : if (!pipe)
1035 : return -ENOMEM;
1036 :
1037 : /*
1038 : * We don't have an immediate reader, but we'll read the stuff
1039 : * out of the pipe right after the splice_to_pipe(). So set
1040 : * PIPE_READERS appropriately.
1041 : */
1042 0 : pipe->readers = 1;
1043 :
1044 0 : current->splice_pipe = pipe;
1045 : }
1046 :
1047 : /*
1048 : * Do the splice.
1049 : */
1050 0 : bytes = 0;
1051 0 : len = sd->total_len;
1052 :
1053 : /* Don't block on output, we have to drain the direct pipe. */
1054 0 : flags = sd->flags;
1055 0 : sd->flags &= ~SPLICE_F_NONBLOCK;
1056 :
1057 : /*
1058 : * We signal MORE until we've read sufficient data to fulfill the
1059 : * request and we keep signalling it if the caller set it.
1060 : */
1061 0 : more = sd->flags & SPLICE_F_MORE;
1062 0 : sd->flags |= SPLICE_F_MORE;
1063 :
1064 0 : WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1065 :
1066 0 : while (len) {
1067 : size_t read_len;
1068 0 : loff_t pos = sd->pos, prev_pos = pos;
1069 :
1070 0 : ret = vfs_splice_read(in, &pos, pipe, len, flags);
1071 0 : if (unlikely(ret <= 0))
1072 : goto read_failure;
1073 :
1074 0 : read_len = ret;
1075 0 : sd->total_len = read_len;
1076 :
1077 : /*
1078 : * If we now have sufficient data to fulfill the request then
1079 : * we clear SPLICE_F_MORE if it was not set initially.
1080 : */
1081 0 : if (read_len >= len && !more)
1082 0 : sd->flags &= ~SPLICE_F_MORE;
1083 :
1084 : /*
1085 : * NOTE: nonblocking mode only applies to the input. We
1086 : * must not do the output in nonblocking mode as then we
1087 : * could get stuck data in the internal pipe:
1088 : */
1089 0 : ret = actor(pipe, sd);
1090 0 : if (unlikely(ret <= 0)) {
1091 0 : sd->pos = prev_pos;
1092 0 : goto out_release;
1093 : }
1094 :
1095 0 : bytes += ret;
1096 0 : len -= ret;
1097 0 : sd->pos = pos;
1098 :
1099 0 : if (ret < read_len) {
1100 0 : sd->pos = prev_pos + ret;
1101 0 : goto out_release;
1102 : }
1103 : }
1104 :
1105 : done:
1106 0 : pipe->tail = pipe->head = 0;
1107 : file_accessed(in);
1108 : return bytes;
1109 :
1110 : read_failure:
1111 : /*
1112 : * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1113 : * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1114 : * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1115 : * least 1 byte *then* we will also do the ->splice_eof() call.
1116 : */
1117 0 : if (ret == 0 && !more && len > 0 && bytes)
1118 : do_splice_eof(sd);
1119 : out_release:
1120 : /*
1121 : * If we did an incomplete transfer we must release
1122 : * the pipe buffers in question:
1123 : */
1124 0 : for (i = 0; i < pipe->ring_size; i++) {
1125 0 : struct pipe_buffer *buf = &pipe->bufs[i];
1126 :
1127 0 : if (buf->ops)
1128 : pipe_buf_release(pipe, buf);
1129 : }
1130 :
1131 0 : if (!bytes)
1132 0 : bytes = ret;
1133 :
1134 : goto done;
1135 : }
1136 : EXPORT_SYMBOL(splice_direct_to_actor);
1137 :
1138 0 : static int direct_splice_actor(struct pipe_inode_info *pipe,
1139 : struct splice_desc *sd)
1140 : {
1141 0 : struct file *file = sd->u.file;
1142 :
1143 0 : return do_splice_from(pipe, file, sd->opos, sd->total_len,
1144 : sd->flags);
1145 : }
1146 :
1147 0 : static void direct_file_splice_eof(struct splice_desc *sd)
1148 : {
1149 0 : struct file *file = sd->u.file;
1150 :
1151 0 : if (file->f_op->splice_eof)
1152 0 : file->f_op->splice_eof(file);
1153 0 : }
1154 :
1155 : /**
1156 : * do_splice_direct - splices data directly between two files
1157 : * @in: file to splice from
1158 : * @ppos: input file offset
1159 : * @out: file to splice to
1160 : * @opos: output file offset
1161 : * @len: number of bytes to splice
1162 : * @flags: splice modifier flags
1163 : *
1164 : * Description:
1165 : * For use by do_sendfile(). splice can easily emulate sendfile, but
1166 : * doing it in the application would incur an extra system call
1167 : * (splice in + splice out, as compared to just sendfile()). So this helper
1168 : * can splice directly through a process-private pipe.
1169 : *
1170 : */
1171 0 : long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1172 : loff_t *opos, size_t len, unsigned int flags)
1173 : {
1174 0 : struct splice_desc sd = {
1175 : .len = len,
1176 : .total_len = len,
1177 : .flags = flags,
1178 0 : .pos = *ppos,
1179 : .u.file = out,
1180 : .splice_eof = direct_file_splice_eof,
1181 : .opos = opos,
1182 : };
1183 : long ret;
1184 :
1185 0 : if (unlikely(!(out->f_mode & FMODE_WRITE)))
1186 : return -EBADF;
1187 :
1188 0 : if (unlikely(out->f_flags & O_APPEND))
1189 : return -EINVAL;
1190 :
1191 0 : ret = rw_verify_area(WRITE, out, opos, len);
1192 0 : if (unlikely(ret < 0))
1193 : return ret;
1194 :
1195 0 : ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1196 0 : if (ret > 0)
1197 0 : *ppos = sd.pos;
1198 :
1199 : return ret;
1200 : }
1201 : EXPORT_SYMBOL(do_splice_direct);
1202 :
1203 0 : static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1204 : {
1205 : for (;;) {
1206 0 : if (unlikely(!pipe->readers)) {
1207 0 : send_sig(SIGPIPE, current, 0);
1208 0 : return -EPIPE;
1209 : }
1210 0 : if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1211 : return 0;
1212 0 : if (flags & SPLICE_F_NONBLOCK)
1213 : return -EAGAIN;
1214 0 : if (signal_pending(current))
1215 : return -ERESTARTSYS;
1216 0 : pipe_wait_writable(pipe);
1217 : }
1218 : }
1219 :
1220 : static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1221 : struct pipe_inode_info *opipe,
1222 : size_t len, unsigned int flags);
1223 :
1224 0 : long splice_file_to_pipe(struct file *in,
1225 : struct pipe_inode_info *opipe,
1226 : loff_t *offset,
1227 : size_t len, unsigned int flags)
1228 : {
1229 : long ret;
1230 :
1231 0 : pipe_lock(opipe);
1232 0 : ret = wait_for_space(opipe, flags);
1233 0 : if (!ret)
1234 0 : ret = vfs_splice_read(in, offset, opipe, len, flags);
1235 0 : pipe_unlock(opipe);
1236 0 : if (ret > 0)
1237 0 : wakeup_pipe_readers(opipe);
1238 0 : return ret;
1239 : }
1240 :
1241 : /*
1242 : * Determine where to splice to/from.
1243 : */
1244 0 : long do_splice(struct file *in, loff_t *off_in, struct file *out,
1245 : loff_t *off_out, size_t len, unsigned int flags)
1246 : {
1247 : struct pipe_inode_info *ipipe;
1248 : struct pipe_inode_info *opipe;
1249 : loff_t offset;
1250 : long ret;
1251 :
1252 0 : if (unlikely(!(in->f_mode & FMODE_READ) ||
1253 : !(out->f_mode & FMODE_WRITE)))
1254 : return -EBADF;
1255 :
1256 0 : ipipe = get_pipe_info(in, true);
1257 0 : opipe = get_pipe_info(out, true);
1258 :
1259 0 : if (ipipe && opipe) {
1260 0 : if (off_in || off_out)
1261 : return -ESPIPE;
1262 :
1263 : /* Splicing to self would be fun, but... */
1264 0 : if (ipipe == opipe)
1265 : return -EINVAL;
1266 :
1267 0 : if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1268 0 : flags |= SPLICE_F_NONBLOCK;
1269 :
1270 0 : return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1271 : }
1272 :
1273 0 : if (ipipe) {
1274 0 : if (off_in)
1275 : return -ESPIPE;
1276 0 : if (off_out) {
1277 0 : if (!(out->f_mode & FMODE_PWRITE))
1278 : return -EINVAL;
1279 0 : offset = *off_out;
1280 : } else {
1281 0 : offset = out->f_pos;
1282 : }
1283 :
1284 0 : if (unlikely(out->f_flags & O_APPEND))
1285 : return -EINVAL;
1286 :
1287 0 : ret = rw_verify_area(WRITE, out, &offset, len);
1288 0 : if (unlikely(ret < 0))
1289 : return ret;
1290 :
1291 0 : if (in->f_flags & O_NONBLOCK)
1292 0 : flags |= SPLICE_F_NONBLOCK;
1293 :
1294 0 : file_start_write(out);
1295 0 : ret = do_splice_from(ipipe, out, &offset, len, flags);
1296 0 : file_end_write(out);
1297 :
1298 0 : if (ret > 0)
1299 : fsnotify_modify(out);
1300 :
1301 0 : if (!off_out)
1302 0 : out->f_pos = offset;
1303 : else
1304 0 : *off_out = offset;
1305 :
1306 : return ret;
1307 : }
1308 :
1309 0 : if (opipe) {
1310 0 : if (off_out)
1311 : return -ESPIPE;
1312 0 : if (off_in) {
1313 0 : if (!(in->f_mode & FMODE_PREAD))
1314 : return -EINVAL;
1315 0 : offset = *off_in;
1316 : } else {
1317 0 : offset = in->f_pos;
1318 : }
1319 :
1320 0 : if (out->f_flags & O_NONBLOCK)
1321 0 : flags |= SPLICE_F_NONBLOCK;
1322 :
1323 0 : ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1324 :
1325 0 : if (ret > 0)
1326 : fsnotify_access(in);
1327 :
1328 0 : if (!off_in)
1329 0 : in->f_pos = offset;
1330 : else
1331 0 : *off_in = offset;
1332 :
1333 : return ret;
1334 : }
1335 :
1336 : return -EINVAL;
1337 : }
1338 :
1339 0 : static long __do_splice(struct file *in, loff_t __user *off_in,
1340 : struct file *out, loff_t __user *off_out,
1341 : size_t len, unsigned int flags)
1342 : {
1343 : struct pipe_inode_info *ipipe;
1344 : struct pipe_inode_info *opipe;
1345 0 : loff_t offset, *__off_in = NULL, *__off_out = NULL;
1346 : long ret;
1347 :
1348 0 : ipipe = get_pipe_info(in, true);
1349 0 : opipe = get_pipe_info(out, true);
1350 :
1351 0 : if (ipipe) {
1352 0 : if (off_in)
1353 : return -ESPIPE;
1354 0 : pipe_clear_nowait(in);
1355 : }
1356 0 : if (opipe) {
1357 0 : if (off_out)
1358 : return -ESPIPE;
1359 0 : pipe_clear_nowait(out);
1360 : }
1361 :
1362 0 : if (off_out) {
1363 0 : if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1364 : return -EFAULT;
1365 : __off_out = &offset;
1366 : }
1367 0 : if (off_in) {
1368 0 : if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1369 : return -EFAULT;
1370 : __off_in = &offset;
1371 : }
1372 :
1373 0 : ret = do_splice(in, __off_in, out, __off_out, len, flags);
1374 0 : if (ret < 0)
1375 : return ret;
1376 :
1377 0 : if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1378 : return -EFAULT;
1379 0 : if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1380 : return -EFAULT;
1381 :
1382 : return ret;
1383 : }
1384 :
1385 0 : static int iter_to_pipe(struct iov_iter *from,
1386 : struct pipe_inode_info *pipe,
1387 : unsigned flags)
1388 : {
1389 0 : struct pipe_buffer buf = {
1390 : .ops = &user_page_pipe_buf_ops,
1391 : .flags = flags
1392 : };
1393 0 : size_t total = 0;
1394 0 : int ret = 0;
1395 :
1396 0 : while (iov_iter_count(from)) {
1397 : struct page *pages[16];
1398 : ssize_t left;
1399 : size_t start;
1400 : int i, n;
1401 :
1402 0 : left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1403 0 : if (left <= 0) {
1404 0 : ret = left;
1405 0 : break;
1406 : }
1407 :
1408 0 : n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1409 0 : for (i = 0; i < n; i++) {
1410 0 : int size = min_t(int, left, PAGE_SIZE - start);
1411 :
1412 0 : buf.page = pages[i];
1413 0 : buf.offset = start;
1414 0 : buf.len = size;
1415 0 : ret = add_to_pipe(pipe, &buf);
1416 0 : if (unlikely(ret < 0)) {
1417 0 : iov_iter_revert(from, left);
1418 : // this one got dropped by add_to_pipe()
1419 0 : while (++i < n)
1420 0 : put_page(pages[i]);
1421 0 : goto out;
1422 : }
1423 0 : total += ret;
1424 0 : left -= size;
1425 0 : start = 0;
1426 : }
1427 : }
1428 : out:
1429 0 : return total ? total : ret;
1430 : }
1431 :
1432 0 : static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1433 : struct splice_desc *sd)
1434 : {
1435 0 : int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1436 0 : return n == sd->len ? n : -EFAULT;
1437 : }
1438 :
1439 : /*
1440 : * For lack of a better implementation, implement vmsplice() to userspace
1441 : * as a simple copy of the pipes pages to the user iov.
1442 : */
1443 0 : static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1444 : unsigned int flags)
1445 : {
1446 0 : struct pipe_inode_info *pipe = get_pipe_info(file, true);
1447 0 : struct splice_desc sd = {
1448 0 : .total_len = iov_iter_count(iter),
1449 : .flags = flags,
1450 : .u.data = iter
1451 : };
1452 0 : long ret = 0;
1453 :
1454 0 : if (!pipe)
1455 : return -EBADF;
1456 :
1457 0 : pipe_clear_nowait(file);
1458 :
1459 0 : if (sd.total_len) {
1460 0 : pipe_lock(pipe);
1461 0 : ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1462 0 : pipe_unlock(pipe);
1463 : }
1464 :
1465 : return ret;
1466 : }
1467 :
1468 : /*
1469 : * vmsplice splices a user address range into a pipe. It can be thought of
1470 : * as splice-from-memory, where the regular splice is splice-from-file (or
1471 : * to file). In both cases the output is a pipe, naturally.
1472 : */
1473 0 : static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1474 : unsigned int flags)
1475 : {
1476 : struct pipe_inode_info *pipe;
1477 0 : long ret = 0;
1478 0 : unsigned buf_flag = 0;
1479 :
1480 0 : if (flags & SPLICE_F_GIFT)
1481 0 : buf_flag = PIPE_BUF_FLAG_GIFT;
1482 :
1483 0 : pipe = get_pipe_info(file, true);
1484 0 : if (!pipe)
1485 : return -EBADF;
1486 :
1487 0 : pipe_clear_nowait(file);
1488 :
1489 0 : pipe_lock(pipe);
1490 0 : ret = wait_for_space(pipe, flags);
1491 0 : if (!ret)
1492 0 : ret = iter_to_pipe(iter, pipe, buf_flag);
1493 0 : pipe_unlock(pipe);
1494 0 : if (ret > 0)
1495 0 : wakeup_pipe_readers(pipe);
1496 : return ret;
1497 : }
1498 :
1499 0 : static int vmsplice_type(struct fd f, int *type)
1500 : {
1501 0 : if (!f.file)
1502 : return -EBADF;
1503 0 : if (f.file->f_mode & FMODE_WRITE) {
1504 0 : *type = ITER_SOURCE;
1505 0 : } else if (f.file->f_mode & FMODE_READ) {
1506 0 : *type = ITER_DEST;
1507 : } else {
1508 0 : fdput(f);
1509 : return -EBADF;
1510 : }
1511 : return 0;
1512 : }
1513 :
1514 : /*
1515 : * Note that vmsplice only really supports true splicing _from_ user memory
1516 : * to a pipe, not the other way around. Splicing from user memory is a simple
1517 : * operation that can be supported without any funky alignment restrictions
1518 : * or nasty vm tricks. We simply map in the user memory and fill them into
1519 : * a pipe. The reverse isn't quite as easy, though. There are two possible
1520 : * solutions for that:
1521 : *
1522 : * - memcpy() the data internally, at which point we might as well just
1523 : * do a regular read() on the buffer anyway.
1524 : * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1525 : * has restriction limitations on both ends of the pipe).
1526 : *
1527 : * Currently we punt and implement it as a normal copy, see pipe_to_user().
1528 : *
1529 : */
1530 0 : SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1531 : unsigned long, nr_segs, unsigned int, flags)
1532 : {
1533 : struct iovec iovstack[UIO_FASTIOV];
1534 0 : struct iovec *iov = iovstack;
1535 : struct iov_iter iter;
1536 : ssize_t error;
1537 : struct fd f;
1538 : int type;
1539 :
1540 0 : if (unlikely(flags & ~SPLICE_F_ALL))
1541 : return -EINVAL;
1542 :
1543 0 : f = fdget(fd);
1544 0 : error = vmsplice_type(f, &type);
1545 0 : if (error)
1546 : return error;
1547 :
1548 0 : error = import_iovec(type, uiov, nr_segs,
1549 : ARRAY_SIZE(iovstack), &iov, &iter);
1550 0 : if (error < 0)
1551 : goto out_fdput;
1552 :
1553 0 : if (!iov_iter_count(&iter))
1554 : error = 0;
1555 0 : else if (type == ITER_SOURCE)
1556 0 : error = vmsplice_to_pipe(f.file, &iter, flags);
1557 : else
1558 0 : error = vmsplice_to_user(f.file, &iter, flags);
1559 :
1560 0 : kfree(iov);
1561 : out_fdput:
1562 0 : fdput(f);
1563 : return error;
1564 : }
1565 :
1566 0 : SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1567 : int, fd_out, loff_t __user *, off_out,
1568 : size_t, len, unsigned int, flags)
1569 : {
1570 : struct fd in, out;
1571 : long error;
1572 :
1573 0 : if (unlikely(!len))
1574 : return 0;
1575 :
1576 0 : if (unlikely(flags & ~SPLICE_F_ALL))
1577 : return -EINVAL;
1578 :
1579 0 : error = -EBADF;
1580 0 : in = fdget(fd_in);
1581 0 : if (in.file) {
1582 0 : out = fdget(fd_out);
1583 0 : if (out.file) {
1584 0 : error = __do_splice(in.file, off_in, out.file, off_out,
1585 : len, flags);
1586 0 : fdput(out);
1587 : }
1588 0 : fdput(in);
1589 : }
1590 : return error;
1591 : }
1592 :
1593 : /*
1594 : * Make sure there's data to read. Wait for input if we can, otherwise
1595 : * return an appropriate error.
1596 : */
1597 0 : static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1598 : {
1599 : int ret;
1600 :
1601 : /*
1602 : * Check the pipe occupancy without the inode lock first. This function
1603 : * is speculative anyways, so missing one is ok.
1604 : */
1605 0 : if (!pipe_empty(pipe->head, pipe->tail))
1606 : return 0;
1607 :
1608 0 : ret = 0;
1609 0 : pipe_lock(pipe);
1610 :
1611 0 : while (pipe_empty(pipe->head, pipe->tail)) {
1612 0 : if (signal_pending(current)) {
1613 : ret = -ERESTARTSYS;
1614 : break;
1615 : }
1616 0 : if (!pipe->writers)
1617 : break;
1618 0 : if (flags & SPLICE_F_NONBLOCK) {
1619 : ret = -EAGAIN;
1620 : break;
1621 : }
1622 0 : pipe_wait_readable(pipe);
1623 : }
1624 :
1625 0 : pipe_unlock(pipe);
1626 0 : return ret;
1627 : }
1628 :
1629 : /*
1630 : * Make sure there's writeable room. Wait for room if we can, otherwise
1631 : * return an appropriate error.
1632 : */
1633 0 : static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1634 : {
1635 : int ret;
1636 :
1637 : /*
1638 : * Check pipe occupancy without the inode lock first. This function
1639 : * is speculative anyways, so missing one is ok.
1640 : */
1641 0 : if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1642 : return 0;
1643 :
1644 0 : ret = 0;
1645 0 : pipe_lock(pipe);
1646 :
1647 0 : while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1648 0 : if (!pipe->readers) {
1649 0 : send_sig(SIGPIPE, current, 0);
1650 0 : ret = -EPIPE;
1651 0 : break;
1652 : }
1653 0 : if (flags & SPLICE_F_NONBLOCK) {
1654 : ret = -EAGAIN;
1655 : break;
1656 : }
1657 0 : if (signal_pending(current)) {
1658 : ret = -ERESTARTSYS;
1659 : break;
1660 : }
1661 0 : pipe_wait_writable(pipe);
1662 : }
1663 :
1664 0 : pipe_unlock(pipe);
1665 0 : return ret;
1666 : }
1667 :
1668 : /*
1669 : * Splice contents of ipipe to opipe.
1670 : */
1671 0 : static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1672 : struct pipe_inode_info *opipe,
1673 : size_t len, unsigned int flags)
1674 : {
1675 : struct pipe_buffer *ibuf, *obuf;
1676 : unsigned int i_head, o_head;
1677 : unsigned int i_tail, o_tail;
1678 : unsigned int i_mask, o_mask;
1679 0 : int ret = 0;
1680 0 : bool input_wakeup = false;
1681 :
1682 :
1683 : retry:
1684 0 : ret = ipipe_prep(ipipe, flags);
1685 0 : if (ret)
1686 : return ret;
1687 :
1688 0 : ret = opipe_prep(opipe, flags);
1689 0 : if (ret)
1690 : return ret;
1691 :
1692 : /*
1693 : * Potential ABBA deadlock, work around it by ordering lock
1694 : * grabbing by pipe info address. Otherwise two different processes
1695 : * could deadlock (one doing tee from A -> B, the other from B -> A).
1696 : */
1697 0 : pipe_double_lock(ipipe, opipe);
1698 :
1699 0 : i_tail = ipipe->tail;
1700 0 : i_mask = ipipe->ring_size - 1;
1701 0 : o_head = opipe->head;
1702 0 : o_mask = opipe->ring_size - 1;
1703 :
1704 : do {
1705 : size_t o_len;
1706 :
1707 0 : if (!opipe->readers) {
1708 0 : send_sig(SIGPIPE, current, 0);
1709 0 : if (!ret)
1710 0 : ret = -EPIPE;
1711 : break;
1712 : }
1713 :
1714 0 : i_head = ipipe->head;
1715 0 : o_tail = opipe->tail;
1716 :
1717 0 : if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1718 : break;
1719 :
1720 : /*
1721 : * Cannot make any progress, because either the input
1722 : * pipe is empty or the output pipe is full.
1723 : */
1724 0 : if (pipe_empty(i_head, i_tail) ||
1725 0 : pipe_full(o_head, o_tail, opipe->max_usage)) {
1726 : /* Already processed some buffers, break */
1727 0 : if (ret)
1728 : break;
1729 :
1730 0 : if (flags & SPLICE_F_NONBLOCK) {
1731 : ret = -EAGAIN;
1732 : break;
1733 : }
1734 :
1735 : /*
1736 : * We raced with another reader/writer and haven't
1737 : * managed to process any buffers. A zero return
1738 : * value means EOF, so retry instead.
1739 : */
1740 0 : pipe_unlock(ipipe);
1741 0 : pipe_unlock(opipe);
1742 0 : goto retry;
1743 : }
1744 :
1745 0 : ibuf = &ipipe->bufs[i_tail & i_mask];
1746 0 : obuf = &opipe->bufs[o_head & o_mask];
1747 :
1748 0 : if (len >= ibuf->len) {
1749 : /*
1750 : * Simply move the whole buffer from ipipe to opipe
1751 : */
1752 0 : *obuf = *ibuf;
1753 0 : ibuf->ops = NULL;
1754 0 : i_tail++;
1755 0 : ipipe->tail = i_tail;
1756 0 : input_wakeup = true;
1757 0 : o_len = obuf->len;
1758 0 : o_head++;
1759 0 : opipe->head = o_head;
1760 : } else {
1761 : /*
1762 : * Get a reference to this pipe buffer,
1763 : * so we can copy the contents over.
1764 : */
1765 0 : if (!pipe_buf_get(ipipe, ibuf)) {
1766 0 : if (ret == 0)
1767 0 : ret = -EFAULT;
1768 : break;
1769 : }
1770 0 : *obuf = *ibuf;
1771 :
1772 : /*
1773 : * Don't inherit the gift and merge flags, we need to
1774 : * prevent multiple steals of this page.
1775 : */
1776 0 : obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1777 0 : obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1778 :
1779 0 : obuf->len = len;
1780 0 : ibuf->offset += len;
1781 0 : ibuf->len -= len;
1782 0 : o_len = len;
1783 0 : o_head++;
1784 0 : opipe->head = o_head;
1785 : }
1786 0 : ret += o_len;
1787 0 : len -= o_len;
1788 0 : } while (len);
1789 :
1790 0 : pipe_unlock(ipipe);
1791 0 : pipe_unlock(opipe);
1792 :
1793 : /*
1794 : * If we put data in the output pipe, wakeup any potential readers.
1795 : */
1796 0 : if (ret > 0)
1797 0 : wakeup_pipe_readers(opipe);
1798 :
1799 0 : if (input_wakeup)
1800 0 : wakeup_pipe_writers(ipipe);
1801 :
1802 : return ret;
1803 : }
1804 :
1805 : /*
1806 : * Link contents of ipipe to opipe.
1807 : */
1808 0 : static int link_pipe(struct pipe_inode_info *ipipe,
1809 : struct pipe_inode_info *opipe,
1810 : size_t len, unsigned int flags)
1811 : {
1812 : struct pipe_buffer *ibuf, *obuf;
1813 : unsigned int i_head, o_head;
1814 : unsigned int i_tail, o_tail;
1815 : unsigned int i_mask, o_mask;
1816 0 : int ret = 0;
1817 :
1818 : /*
1819 : * Potential ABBA deadlock, work around it by ordering lock
1820 : * grabbing by pipe info address. Otherwise two different processes
1821 : * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 : */
1823 0 : pipe_double_lock(ipipe, opipe);
1824 :
1825 0 : i_tail = ipipe->tail;
1826 0 : i_mask = ipipe->ring_size - 1;
1827 0 : o_head = opipe->head;
1828 0 : o_mask = opipe->ring_size - 1;
1829 :
1830 : do {
1831 0 : if (!opipe->readers) {
1832 0 : send_sig(SIGPIPE, current, 0);
1833 0 : if (!ret)
1834 0 : ret = -EPIPE;
1835 : break;
1836 : }
1837 :
1838 0 : i_head = ipipe->head;
1839 0 : o_tail = opipe->tail;
1840 :
1841 : /*
1842 : * If we have iterated all input buffers or run out of
1843 : * output room, break.
1844 : */
1845 0 : if (pipe_empty(i_head, i_tail) ||
1846 0 : pipe_full(o_head, o_tail, opipe->max_usage))
1847 : break;
1848 :
1849 0 : ibuf = &ipipe->bufs[i_tail & i_mask];
1850 0 : obuf = &opipe->bufs[o_head & o_mask];
1851 :
1852 : /*
1853 : * Get a reference to this pipe buffer,
1854 : * so we can copy the contents over.
1855 : */
1856 0 : if (!pipe_buf_get(ipipe, ibuf)) {
1857 0 : if (ret == 0)
1858 0 : ret = -EFAULT;
1859 : break;
1860 : }
1861 :
1862 0 : *obuf = *ibuf;
1863 :
1864 : /*
1865 : * Don't inherit the gift and merge flag, we need to prevent
1866 : * multiple steals of this page.
1867 : */
1868 0 : obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1869 0 : obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1870 :
1871 0 : if (obuf->len > len)
1872 0 : obuf->len = len;
1873 0 : ret += obuf->len;
1874 0 : len -= obuf->len;
1875 :
1876 0 : o_head++;
1877 0 : opipe->head = o_head;
1878 0 : i_tail++;
1879 0 : } while (len);
1880 :
1881 0 : pipe_unlock(ipipe);
1882 0 : pipe_unlock(opipe);
1883 :
1884 : /*
1885 : * If we put data in the output pipe, wakeup any potential readers.
1886 : */
1887 0 : if (ret > 0)
1888 0 : wakeup_pipe_readers(opipe);
1889 :
1890 0 : return ret;
1891 : }
1892 :
1893 : /*
1894 : * This is a tee(1) implementation that works on pipes. It doesn't copy
1895 : * any data, it simply references the 'in' pages on the 'out' pipe.
1896 : * The 'flags' used are the SPLICE_F_* variants, currently the only
1897 : * applicable one is SPLICE_F_NONBLOCK.
1898 : */
1899 0 : long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1900 : {
1901 0 : struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1902 0 : struct pipe_inode_info *opipe = get_pipe_info(out, true);
1903 0 : int ret = -EINVAL;
1904 :
1905 0 : if (unlikely(!(in->f_mode & FMODE_READ) ||
1906 : !(out->f_mode & FMODE_WRITE)))
1907 : return -EBADF;
1908 :
1909 : /*
1910 : * Duplicate the contents of ipipe to opipe without actually
1911 : * copying the data.
1912 : */
1913 0 : if (ipipe && opipe && ipipe != opipe) {
1914 0 : if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1915 0 : flags |= SPLICE_F_NONBLOCK;
1916 :
1917 : /*
1918 : * Keep going, unless we encounter an error. The ipipe/opipe
1919 : * ordering doesn't really matter.
1920 : */
1921 0 : ret = ipipe_prep(ipipe, flags);
1922 0 : if (!ret) {
1923 0 : ret = opipe_prep(opipe, flags);
1924 0 : if (!ret)
1925 0 : ret = link_pipe(ipipe, opipe, len, flags);
1926 : }
1927 : }
1928 :
1929 0 : return ret;
1930 : }
1931 :
1932 0 : SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1933 : {
1934 : struct fd in, out;
1935 : int error;
1936 :
1937 0 : if (unlikely(flags & ~SPLICE_F_ALL))
1938 : return -EINVAL;
1939 :
1940 0 : if (unlikely(!len))
1941 : return 0;
1942 :
1943 0 : error = -EBADF;
1944 0 : in = fdget(fdin);
1945 0 : if (in.file) {
1946 0 : out = fdget(fdout);
1947 0 : if (out.file) {
1948 0 : error = do_tee(in.file, out.file, len, flags);
1949 0 : fdput(out);
1950 : }
1951 0 : fdput(in);
1952 : }
1953 :
1954 0 : return error;
1955 : }
|