Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_DMA_MAPPING_H
3 : #define _LINUX_DMA_MAPPING_H
4 :
5 : #include <linux/cache.h>
6 : #include <linux/sizes.h>
7 : #include <linux/string.h>
8 : #include <linux/device.h>
9 : #include <linux/err.h>
10 : #include <linux/dma-direction.h>
11 : #include <linux/scatterlist.h>
12 : #include <linux/bug.h>
13 : #include <linux/mem_encrypt.h>
14 :
15 : /**
16 : * List of possible attributes associated with a DMA mapping. The semantics
17 : * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
18 : */
19 :
20 : /*
21 : * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
22 : * may be weakly ordered, that is that reads and writes may pass each other.
23 : */
24 : #define DMA_ATTR_WEAK_ORDERING (1UL << 1)
25 : /*
26 : * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
27 : * buffered to improve performance.
28 : */
29 : #define DMA_ATTR_WRITE_COMBINE (1UL << 2)
30 : /*
31 : * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
32 : * virtual mapping for the allocated buffer.
33 : */
34 : #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
35 : /*
36 : * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
37 : * the CPU cache for the given buffer assuming that it has been already
38 : * transferred to 'device' domain.
39 : */
40 : #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
41 : /*
42 : * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
43 : * in physical memory.
44 : */
45 : #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
46 : /*
47 : * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
48 : * that it's probably not worth the time to try to allocate memory to in a way
49 : * that gives better TLB efficiency.
50 : */
51 : #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
52 : /*
53 : * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
54 : * allocation failure reports (similarly to __GFP_NOWARN).
55 : */
56 : #define DMA_ATTR_NO_WARN (1UL << 8)
57 :
58 : /*
59 : * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
60 : * accessible at an elevated privilege level (and ideally inaccessible or
61 : * at least read-only at lesser-privileged levels).
62 : */
63 : #define DMA_ATTR_PRIVILEGED (1UL << 9)
64 :
65 : /*
66 : * A dma_addr_t can hold any valid DMA or bus address for the platform. It can
67 : * be given to a device to use as a DMA source or target. It is specific to a
68 : * given device and there may be a translation between the CPU physical address
69 : * space and the bus address space.
70 : *
71 : * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not
72 : * be used directly in drivers, but checked for using dma_mapping_error()
73 : * instead.
74 : */
75 : #define DMA_MAPPING_ERROR (~(dma_addr_t)0)
76 :
77 : #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
78 :
79 : #ifdef CONFIG_DMA_API_DEBUG
80 : void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
81 : void debug_dma_map_single(struct device *dev, const void *addr,
82 : unsigned long len);
83 : #else
84 : static inline void debug_dma_mapping_error(struct device *dev,
85 : dma_addr_t dma_addr)
86 : {
87 : }
88 : static inline void debug_dma_map_single(struct device *dev, const void *addr,
89 : unsigned long len)
90 : {
91 : }
92 : #endif /* CONFIG_DMA_API_DEBUG */
93 :
94 : #ifdef CONFIG_HAS_DMA
95 : static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
96 : {
97 0 : debug_dma_mapping_error(dev, dma_addr);
98 :
99 0 : if (unlikely(dma_addr == DMA_MAPPING_ERROR))
100 : return -ENOMEM;
101 : return 0;
102 : }
103 :
104 : dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
105 : size_t offset, size_t size, enum dma_data_direction dir,
106 : unsigned long attrs);
107 : void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
108 : enum dma_data_direction dir, unsigned long attrs);
109 : unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
110 : int nents, enum dma_data_direction dir, unsigned long attrs);
111 : void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
112 : int nents, enum dma_data_direction dir,
113 : unsigned long attrs);
114 : int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
115 : enum dma_data_direction dir, unsigned long attrs);
116 : dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
117 : size_t size, enum dma_data_direction dir, unsigned long attrs);
118 : void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
119 : enum dma_data_direction dir, unsigned long attrs);
120 : void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
121 : enum dma_data_direction dir);
122 : void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
123 : size_t size, enum dma_data_direction dir);
124 : void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
125 : int nelems, enum dma_data_direction dir);
126 : void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
127 : int nelems, enum dma_data_direction dir);
128 : void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
129 : gfp_t flag, unsigned long attrs);
130 : void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
131 : dma_addr_t dma_handle, unsigned long attrs);
132 : void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
133 : gfp_t gfp, unsigned long attrs);
134 : void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
135 : dma_addr_t dma_handle);
136 : int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
137 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
138 : unsigned long attrs);
139 : int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
140 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
141 : unsigned long attrs);
142 : bool dma_can_mmap(struct device *dev);
143 : bool dma_pci_p2pdma_supported(struct device *dev);
144 : int dma_set_mask(struct device *dev, u64 mask);
145 : int dma_set_coherent_mask(struct device *dev, u64 mask);
146 : u64 dma_get_required_mask(struct device *dev);
147 : size_t dma_max_mapping_size(struct device *dev);
148 : size_t dma_opt_mapping_size(struct device *dev);
149 : bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
150 : unsigned long dma_get_merge_boundary(struct device *dev);
151 : struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
152 : enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
153 : void dma_free_noncontiguous(struct device *dev, size_t size,
154 : struct sg_table *sgt, enum dma_data_direction dir);
155 : void *dma_vmap_noncontiguous(struct device *dev, size_t size,
156 : struct sg_table *sgt);
157 : void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
158 : int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
159 : size_t size, struct sg_table *sgt);
160 : #else /* CONFIG_HAS_DMA */
161 : static inline dma_addr_t dma_map_page_attrs(struct device *dev,
162 : struct page *page, size_t offset, size_t size,
163 : enum dma_data_direction dir, unsigned long attrs)
164 : {
165 : return DMA_MAPPING_ERROR;
166 : }
167 : static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
168 : size_t size, enum dma_data_direction dir, unsigned long attrs)
169 : {
170 : }
171 : static inline unsigned int dma_map_sg_attrs(struct device *dev,
172 : struct scatterlist *sg, int nents, enum dma_data_direction dir,
173 : unsigned long attrs)
174 : {
175 : return 0;
176 : }
177 : static inline void dma_unmap_sg_attrs(struct device *dev,
178 : struct scatterlist *sg, int nents, enum dma_data_direction dir,
179 : unsigned long attrs)
180 : {
181 : }
182 : static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
183 : enum dma_data_direction dir, unsigned long attrs)
184 : {
185 : return -EOPNOTSUPP;
186 : }
187 : static inline dma_addr_t dma_map_resource(struct device *dev,
188 : phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
189 : unsigned long attrs)
190 : {
191 : return DMA_MAPPING_ERROR;
192 : }
193 : static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
194 : size_t size, enum dma_data_direction dir, unsigned long attrs)
195 : {
196 : }
197 : static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
198 : size_t size, enum dma_data_direction dir)
199 : {
200 : }
201 : static inline void dma_sync_single_for_device(struct device *dev,
202 : dma_addr_t addr, size_t size, enum dma_data_direction dir)
203 : {
204 : }
205 : static inline void dma_sync_sg_for_cpu(struct device *dev,
206 : struct scatterlist *sg, int nelems, enum dma_data_direction dir)
207 : {
208 : }
209 : static inline void dma_sync_sg_for_device(struct device *dev,
210 : struct scatterlist *sg, int nelems, enum dma_data_direction dir)
211 : {
212 : }
213 : static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
214 : {
215 : return -ENOMEM;
216 : }
217 : static inline void *dma_alloc_attrs(struct device *dev, size_t size,
218 : dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
219 : {
220 : return NULL;
221 : }
222 : static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
223 : dma_addr_t dma_handle, unsigned long attrs)
224 : {
225 : }
226 : static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
227 : dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
228 : {
229 : return NULL;
230 : }
231 : static inline void dmam_free_coherent(struct device *dev, size_t size,
232 : void *vaddr, dma_addr_t dma_handle)
233 : {
234 : }
235 : static inline int dma_get_sgtable_attrs(struct device *dev,
236 : struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
237 : size_t size, unsigned long attrs)
238 : {
239 : return -ENXIO;
240 : }
241 : static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
242 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
243 : unsigned long attrs)
244 : {
245 : return -ENXIO;
246 : }
247 : static inline bool dma_can_mmap(struct device *dev)
248 : {
249 : return false;
250 : }
251 : static inline bool dma_pci_p2pdma_supported(struct device *dev)
252 : {
253 : return false;
254 : }
255 : static inline int dma_set_mask(struct device *dev, u64 mask)
256 : {
257 : return -EIO;
258 : }
259 : static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
260 : {
261 : return -EIO;
262 : }
263 : static inline u64 dma_get_required_mask(struct device *dev)
264 : {
265 : return 0;
266 : }
267 : static inline size_t dma_max_mapping_size(struct device *dev)
268 : {
269 : return 0;
270 : }
271 : static inline size_t dma_opt_mapping_size(struct device *dev)
272 : {
273 : return 0;
274 : }
275 : static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
276 : {
277 : return false;
278 : }
279 : static inline unsigned long dma_get_merge_boundary(struct device *dev)
280 : {
281 : return 0;
282 : }
283 : static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
284 : size_t size, enum dma_data_direction dir, gfp_t gfp,
285 : unsigned long attrs)
286 : {
287 : return NULL;
288 : }
289 : static inline void dma_free_noncontiguous(struct device *dev, size_t size,
290 : struct sg_table *sgt, enum dma_data_direction dir)
291 : {
292 : }
293 : static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
294 : struct sg_table *sgt)
295 : {
296 : return NULL;
297 : }
298 : static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
299 : {
300 : }
301 : static inline int dma_mmap_noncontiguous(struct device *dev,
302 : struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
303 : {
304 : return -EINVAL;
305 : }
306 : #endif /* CONFIG_HAS_DMA */
307 :
308 : struct page *dma_alloc_pages(struct device *dev, size_t size,
309 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
310 : void dma_free_pages(struct device *dev, size_t size, struct page *page,
311 : dma_addr_t dma_handle, enum dma_data_direction dir);
312 : int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
313 : size_t size, struct page *page);
314 :
315 : static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
316 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
317 : {
318 : struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
319 : return page ? page_address(page) : NULL;
320 : }
321 :
322 : static inline void dma_free_noncoherent(struct device *dev, size_t size,
323 : void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
324 : {
325 : dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
326 : }
327 :
328 0 : static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
329 : size_t size, enum dma_data_direction dir, unsigned long attrs)
330 : {
331 : /* DMA must never operate on areas that might be remapped. */
332 0 : if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
333 : "rejecting DMA map of vmalloc memory\n"))
334 : return DMA_MAPPING_ERROR;
335 0 : debug_dma_map_single(dev, ptr, size);
336 0 : return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
337 : size, dir, attrs);
338 : }
339 :
340 : static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
341 : size_t size, enum dma_data_direction dir, unsigned long attrs)
342 : {
343 0 : return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
344 : }
345 :
346 : static inline void dma_sync_single_range_for_cpu(struct device *dev,
347 : dma_addr_t addr, unsigned long offset, size_t size,
348 : enum dma_data_direction dir)
349 : {
350 : return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
351 : }
352 :
353 : static inline void dma_sync_single_range_for_device(struct device *dev,
354 : dma_addr_t addr, unsigned long offset, size_t size,
355 : enum dma_data_direction dir)
356 : {
357 : return dma_sync_single_for_device(dev, addr + offset, size, dir);
358 : }
359 :
360 : /**
361 : * dma_unmap_sgtable - Unmap the given buffer for DMA
362 : * @dev: The device for which to perform the DMA operation
363 : * @sgt: The sg_table object describing the buffer
364 : * @dir: DMA direction
365 : * @attrs: Optional DMA attributes for the unmap operation
366 : *
367 : * Unmaps a buffer described by a scatterlist stored in the given sg_table
368 : * object for the @dir DMA operation by the @dev device. After this function
369 : * the ownership of the buffer is transferred back to the CPU domain.
370 : */
371 : static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
372 : enum dma_data_direction dir, unsigned long attrs)
373 : {
374 0 : dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
375 : }
376 :
377 : /**
378 : * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
379 : * @dev: The device for which to perform the DMA operation
380 : * @sgt: The sg_table object describing the buffer
381 : * @dir: DMA direction
382 : *
383 : * Performs the needed cache synchronization and moves the ownership of the
384 : * buffer back to the CPU domain, so it is safe to perform any access to it
385 : * by the CPU. Before doing any further DMA operations, one has to transfer
386 : * the ownership of the buffer back to the DMA domain by calling the
387 : * dma_sync_sgtable_for_device().
388 : */
389 : static inline void dma_sync_sgtable_for_cpu(struct device *dev,
390 : struct sg_table *sgt, enum dma_data_direction dir)
391 : {
392 : dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
393 : }
394 :
395 : /**
396 : * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
397 : * @dev: The device for which to perform the DMA operation
398 : * @sgt: The sg_table object describing the buffer
399 : * @dir: DMA direction
400 : *
401 : * Performs the needed cache synchronization and moves the ownership of the
402 : * buffer back to the DMA domain, so it is safe to perform the DMA operation.
403 : * Once finished, one has to call dma_sync_sgtable_for_cpu() or
404 : * dma_unmap_sgtable().
405 : */
406 : static inline void dma_sync_sgtable_for_device(struct device *dev,
407 : struct sg_table *sgt, enum dma_data_direction dir)
408 : {
409 : dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
410 : }
411 :
412 : #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
413 : #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
414 : #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
415 : #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
416 : #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
417 : #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
418 : #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
419 : #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
420 :
421 : static inline void *dma_alloc_coherent(struct device *dev, size_t size,
422 : dma_addr_t *dma_handle, gfp_t gfp)
423 : {
424 0 : return dma_alloc_attrs(dev, size, dma_handle, gfp,
425 0 : (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
426 : }
427 :
428 : static inline void dma_free_coherent(struct device *dev, size_t size,
429 : void *cpu_addr, dma_addr_t dma_handle)
430 : {
431 0 : return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
432 : }
433 :
434 :
435 : static inline u64 dma_get_mask(struct device *dev)
436 : {
437 : if (dev->dma_mask && *dev->dma_mask)
438 : return *dev->dma_mask;
439 : return DMA_BIT_MASK(32);
440 : }
441 :
442 : /*
443 : * Set both the DMA mask and the coherent DMA mask to the same thing.
444 : * Note that we don't check the return value from dma_set_coherent_mask()
445 : * as the DMA API guarantees that the coherent DMA mask can be set to
446 : * the same or smaller than the streaming DMA mask.
447 : */
448 : static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
449 : {
450 : int rc = dma_set_mask(dev, mask);
451 : if (rc == 0)
452 : dma_set_coherent_mask(dev, mask);
453 : return rc;
454 : }
455 :
456 : /*
457 : * Similar to the above, except it deals with the case where the device
458 : * does not have dev->dma_mask appropriately setup.
459 : */
460 : static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
461 : {
462 : dev->dma_mask = &dev->coherent_dma_mask;
463 : return dma_set_mask_and_coherent(dev, mask);
464 : }
465 :
466 : /**
467 : * dma_addressing_limited - return if the device is addressing limited
468 : * @dev: device to check
469 : *
470 : * Return %true if the devices DMA mask is too small to address all memory in
471 : * the system, else %false. Lack of addressing bits is the prime reason for
472 : * bounce buffering, but might not be the only one.
473 : */
474 : static inline bool dma_addressing_limited(struct device *dev)
475 : {
476 : return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
477 : dma_get_required_mask(dev);
478 : }
479 :
480 : static inline unsigned int dma_get_max_seg_size(struct device *dev)
481 : {
482 : if (dev->dma_parms && dev->dma_parms->max_segment_size)
483 : return dev->dma_parms->max_segment_size;
484 : return SZ_64K;
485 : }
486 :
487 : static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
488 : {
489 0 : if (dev->dma_parms) {
490 0 : dev->dma_parms->max_segment_size = size;
491 : return 0;
492 : }
493 : return -EIO;
494 : }
495 :
496 : static inline unsigned long dma_get_seg_boundary(struct device *dev)
497 : {
498 : if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
499 : return dev->dma_parms->segment_boundary_mask;
500 : return ULONG_MAX;
501 : }
502 :
503 : /**
504 : * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
505 : * @dev: device to guery the boundary for
506 : * @page_shift: ilog() of the IOMMU page size
507 : *
508 : * Return the segment boundary in IOMMU page units (which may be different from
509 : * the CPU page size) for the passed in device.
510 : *
511 : * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
512 : * non-DMA API callers.
513 : */
514 : static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
515 : unsigned int page_shift)
516 : {
517 : if (!dev)
518 : return (U32_MAX >> page_shift) + 1;
519 : return (dma_get_seg_boundary(dev) >> page_shift) + 1;
520 : }
521 :
522 : static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
523 : {
524 0 : if (dev->dma_parms) {
525 0 : dev->dma_parms->segment_boundary_mask = mask;
526 : return 0;
527 : }
528 : return -EIO;
529 : }
530 :
531 : static inline unsigned int dma_get_min_align_mask(struct device *dev)
532 : {
533 : if (dev->dma_parms)
534 : return dev->dma_parms->min_align_mask;
535 : return 0;
536 : }
537 :
538 : static inline int dma_set_min_align_mask(struct device *dev,
539 : unsigned int min_align_mask)
540 : {
541 : if (WARN_ON_ONCE(!dev->dma_parms))
542 : return -EIO;
543 : dev->dma_parms->min_align_mask = min_align_mask;
544 : return 0;
545 : }
546 :
547 : #ifndef dma_get_cache_alignment
548 : static inline int dma_get_cache_alignment(void)
549 : {
550 : #ifdef ARCH_HAS_DMA_MINALIGN
551 : return ARCH_DMA_MINALIGN;
552 : #endif
553 : return 1;
554 : }
555 : #endif
556 :
557 : static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
558 : dma_addr_t *dma_handle, gfp_t gfp)
559 : {
560 : return dmam_alloc_attrs(dev, size, dma_handle, gfp,
561 : (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
562 : }
563 :
564 : static inline void *dma_alloc_wc(struct device *dev, size_t size,
565 : dma_addr_t *dma_addr, gfp_t gfp)
566 : {
567 : unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
568 :
569 : if (gfp & __GFP_NOWARN)
570 : attrs |= DMA_ATTR_NO_WARN;
571 :
572 : return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
573 : }
574 :
575 : static inline void dma_free_wc(struct device *dev, size_t size,
576 : void *cpu_addr, dma_addr_t dma_addr)
577 : {
578 : return dma_free_attrs(dev, size, cpu_addr, dma_addr,
579 : DMA_ATTR_WRITE_COMBINE);
580 : }
581 :
582 : static inline int dma_mmap_wc(struct device *dev,
583 : struct vm_area_struct *vma,
584 : void *cpu_addr, dma_addr_t dma_addr,
585 : size_t size)
586 : {
587 : return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
588 : DMA_ATTR_WRITE_COMBINE);
589 : }
590 :
591 : #ifdef CONFIG_NEED_DMA_MAP_STATE
592 : #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
593 : #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
594 : #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
595 : #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
596 : #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
597 : #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
598 : #else
599 : #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
600 : #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
601 : #define dma_unmap_addr(PTR, ADDR_NAME) (0)
602 : #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
603 : #define dma_unmap_len(PTR, LEN_NAME) (0)
604 : #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
605 : #endif
606 :
607 : #endif /* _LINUX_DMA_MAPPING_H */
|