Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_SWAPOPS_H
3 : #define _LINUX_SWAPOPS_H
4 :
5 : #include <linux/radix-tree.h>
6 : #include <linux/bug.h>
7 : #include <linux/mm_types.h>
8 :
9 : #ifdef CONFIG_MMU
10 :
11 : #ifdef CONFIG_SWAP
12 : #include <linux/swapfile.h>
13 : #endif /* CONFIG_SWAP */
14 :
15 : /*
16 : * swapcache pages are stored in the swapper_space radix tree. We want to
17 : * get good packing density in that tree, so the index should be dense in
18 : * the low-order bits.
19 : *
20 : * We arrange the `type' and `offset' fields so that `type' is at the six
21 : * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22 : * remaining bits. Although `type' itself needs only five bits, we allow for
23 : * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24 : *
25 : * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26 : */
27 : #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28 : #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1)
29 :
30 : /*
31 : * Definitions only for PFN swap entries (see is_pfn_swap_entry()). To
32 : * store PFN, we only need SWP_PFN_BITS bits. Each of the pfn swap entries
33 : * can use the extra bits to store other information besides PFN.
34 : */
35 : #ifdef MAX_PHYSMEM_BITS
36 : #define SWP_PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
37 : #else /* MAX_PHYSMEM_BITS */
38 : #define SWP_PFN_BITS min_t(int, \
39 : sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
40 : SWP_TYPE_SHIFT)
41 : #endif /* MAX_PHYSMEM_BITS */
42 : #define SWP_PFN_MASK (BIT(SWP_PFN_BITS) - 1)
43 :
44 : /**
45 : * Migration swap entry specific bitfield definitions. Layout:
46 : *
47 : * |----------+--------------------|
48 : * | swp_type | swp_offset |
49 : * |----------+--------+-+-+-------|
50 : * | | resv |D|A| PFN |
51 : * |----------+--------+-+-+-------|
52 : *
53 : * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
54 : * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
55 : *
56 : * Note: A/D bits will be stored in migration entries iff there're enough
57 : * free bits in arch specific swp offset. By default we'll ignore A/D bits
58 : * when migrating a page. Please refer to migration_entry_supports_ad()
59 : * for more information. If there're more bits besides PFN and A/D bits,
60 : * they should be reserved and always be zeros.
61 : */
62 : #define SWP_MIG_YOUNG_BIT (SWP_PFN_BITS)
63 : #define SWP_MIG_DIRTY_BIT (SWP_PFN_BITS + 1)
64 : #define SWP_MIG_TOTAL_BITS (SWP_PFN_BITS + 2)
65 :
66 : #define SWP_MIG_YOUNG BIT(SWP_MIG_YOUNG_BIT)
67 : #define SWP_MIG_DIRTY BIT(SWP_MIG_DIRTY_BIT)
68 :
69 : static inline bool is_pfn_swap_entry(swp_entry_t entry);
70 :
71 : /* Clear all flags but only keep swp_entry_t related information */
72 : static inline pte_t pte_swp_clear_flags(pte_t pte)
73 : {
74 0 : if (pte_swp_exclusive(pte))
75 : pte = pte_swp_clear_exclusive(pte);
76 0 : if (pte_swp_soft_dirty(pte))
77 : pte = pte_swp_clear_soft_dirty(pte);
78 : if (pte_swp_uffd_wp(pte))
79 : pte = pte_swp_clear_uffd_wp(pte);
80 : return pte;
81 : }
82 :
83 : /*
84 : * Store a type+offset into a swp_entry_t in an arch-independent format
85 : */
86 : static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
87 : {
88 : swp_entry_t ret;
89 :
90 2 : ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
91 : return ret;
92 : }
93 :
94 : /*
95 : * Extract the `type' field from a swp_entry_t. The swp_entry_t is in
96 : * arch-independent format
97 : */
98 : static inline unsigned swp_type(swp_entry_t entry)
99 : {
100 0 : return (entry.val >> SWP_TYPE_SHIFT);
101 : }
102 :
103 : /*
104 : * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in
105 : * arch-independent format
106 : */
107 : static inline pgoff_t swp_offset(swp_entry_t entry)
108 : {
109 0 : return entry.val & SWP_OFFSET_MASK;
110 : }
111 :
112 : /*
113 : * This should only be called upon a pfn swap entry to get the PFN stored
114 : * in the swap entry. Please refers to is_pfn_swap_entry() for definition
115 : * of pfn swap entry.
116 : */
117 : static inline unsigned long swp_offset_pfn(swp_entry_t entry)
118 : {
119 : VM_BUG_ON(!is_pfn_swap_entry(entry));
120 0 : return swp_offset(entry) & SWP_PFN_MASK;
121 : }
122 :
123 : /* check whether a pte points to a swap entry */
124 : static inline int is_swap_pte(pte_t pte)
125 : {
126 0 : return !pte_none(pte) && !pte_present(pte);
127 : }
128 :
129 : /*
130 : * Convert the arch-dependent pte representation of a swp_entry_t into an
131 : * arch-independent swp_entry_t.
132 : */
133 : static inline swp_entry_t pte_to_swp_entry(pte_t pte)
134 : {
135 : swp_entry_t arch_entry;
136 :
137 1 : pte = pte_swp_clear_flags(pte);
138 1 : arch_entry = __pte_to_swp_entry(pte);
139 2 : return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
140 : }
141 :
142 : /*
143 : * Convert the arch-independent representation of a swp_entry_t into the
144 : * arch-dependent pte representation.
145 : */
146 : static inline pte_t swp_entry_to_pte(swp_entry_t entry)
147 : {
148 : swp_entry_t arch_entry;
149 :
150 1 : arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
151 : return __swp_entry_to_pte(arch_entry);
152 : }
153 :
154 : static inline swp_entry_t radix_to_swp_entry(void *arg)
155 : {
156 : swp_entry_t entry;
157 :
158 0 : entry.val = xa_to_value(arg);
159 : return entry;
160 : }
161 :
162 : static inline void *swp_to_radix_entry(swp_entry_t entry)
163 : {
164 0 : return xa_mk_value(entry.val);
165 : }
166 :
167 : #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
168 : static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
169 : {
170 : return swp_entry(SWP_DEVICE_READ, offset);
171 : }
172 :
173 : static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
174 : {
175 : return swp_entry(SWP_DEVICE_WRITE, offset);
176 : }
177 :
178 : static inline bool is_device_private_entry(swp_entry_t entry)
179 : {
180 : int type = swp_type(entry);
181 : return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
182 : }
183 :
184 : static inline bool is_writable_device_private_entry(swp_entry_t entry)
185 : {
186 : return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
187 : }
188 :
189 : static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
190 : {
191 : return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
192 : }
193 :
194 : static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
195 : {
196 : return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
197 : }
198 :
199 : static inline bool is_device_exclusive_entry(swp_entry_t entry)
200 : {
201 : return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
202 : swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
203 : }
204 :
205 : static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
206 : {
207 : return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
208 : }
209 : #else /* CONFIG_DEVICE_PRIVATE */
210 : static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
211 : {
212 : return swp_entry(0, 0);
213 : }
214 :
215 : static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
216 : {
217 : return swp_entry(0, 0);
218 : }
219 :
220 : static inline bool is_device_private_entry(swp_entry_t entry)
221 : {
222 : return false;
223 : }
224 :
225 : static inline bool is_writable_device_private_entry(swp_entry_t entry)
226 : {
227 : return false;
228 : }
229 :
230 : static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
231 : {
232 : return swp_entry(0, 0);
233 : }
234 :
235 : static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
236 : {
237 : return swp_entry(0, 0);
238 : }
239 :
240 : static inline bool is_device_exclusive_entry(swp_entry_t entry)
241 : {
242 : return false;
243 : }
244 :
245 : static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
246 : {
247 : return false;
248 : }
249 : #endif /* CONFIG_DEVICE_PRIVATE */
250 :
251 : #ifdef CONFIG_MIGRATION
252 : static inline int is_migration_entry(swp_entry_t entry)
253 : {
254 0 : return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
255 : swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
256 : swp_type(entry) == SWP_MIGRATION_WRITE);
257 : }
258 :
259 : static inline int is_writable_migration_entry(swp_entry_t entry)
260 : {
261 0 : return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
262 : }
263 :
264 : static inline int is_readable_migration_entry(swp_entry_t entry)
265 : {
266 0 : return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
267 : }
268 :
269 : static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
270 : {
271 : return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
272 : }
273 :
274 : static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
275 : {
276 0 : return swp_entry(SWP_MIGRATION_READ, offset);
277 : }
278 :
279 : static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
280 : {
281 0 : return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
282 : }
283 :
284 : static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
285 : {
286 0 : return swp_entry(SWP_MIGRATION_WRITE, offset);
287 : }
288 :
289 : /*
290 : * Returns whether the host has large enough swap offset field to support
291 : * carrying over pgtable A/D bits for page migrations. The result is
292 : * pretty much arch specific.
293 : */
294 : static inline bool migration_entry_supports_ad(void)
295 : {
296 : #ifdef CONFIG_SWAP
297 0 : return swap_migration_ad_supported;
298 : #else /* CONFIG_SWAP */
299 : return false;
300 : #endif /* CONFIG_SWAP */
301 : }
302 :
303 : static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
304 : {
305 0 : if (migration_entry_supports_ad())
306 0 : return swp_entry(swp_type(entry),
307 : swp_offset(entry) | SWP_MIG_YOUNG);
308 : return entry;
309 : }
310 :
311 : static inline bool is_migration_entry_young(swp_entry_t entry)
312 : {
313 0 : if (migration_entry_supports_ad())
314 0 : return swp_offset(entry) & SWP_MIG_YOUNG;
315 : /* Keep the old behavior of aging page after migration */
316 : return false;
317 : }
318 :
319 : static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
320 : {
321 0 : if (migration_entry_supports_ad())
322 0 : return swp_entry(swp_type(entry),
323 : swp_offset(entry) | SWP_MIG_DIRTY);
324 : return entry;
325 : }
326 :
327 : static inline bool is_migration_entry_dirty(swp_entry_t entry)
328 : {
329 0 : if (migration_entry_supports_ad())
330 0 : return swp_offset(entry) & SWP_MIG_DIRTY;
331 : /* Keep the old behavior of clean page after migration */
332 : return false;
333 : }
334 :
335 : extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
336 : unsigned long address);
337 : extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
338 : #else /* CONFIG_MIGRATION */
339 : static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
340 : {
341 : return swp_entry(0, 0);
342 : }
343 :
344 : static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
345 : {
346 : return swp_entry(0, 0);
347 : }
348 :
349 : static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
350 : {
351 : return swp_entry(0, 0);
352 : }
353 :
354 : static inline int is_migration_entry(swp_entry_t swp)
355 : {
356 : return 0;
357 : }
358 :
359 : static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
360 : unsigned long address) { }
361 : static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
362 : pte_t *pte) { }
363 : static inline int is_writable_migration_entry(swp_entry_t entry)
364 : {
365 : return 0;
366 : }
367 : static inline int is_readable_migration_entry(swp_entry_t entry)
368 : {
369 : return 0;
370 : }
371 :
372 : static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
373 : {
374 : return entry;
375 : }
376 :
377 : static inline bool is_migration_entry_young(swp_entry_t entry)
378 : {
379 : return false;
380 : }
381 :
382 : static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
383 : {
384 : return entry;
385 : }
386 :
387 : static inline bool is_migration_entry_dirty(swp_entry_t entry)
388 : {
389 : return false;
390 : }
391 : #endif /* CONFIG_MIGRATION */
392 :
393 : typedef unsigned long pte_marker;
394 :
395 : #define PTE_MARKER_UFFD_WP BIT(0)
396 : #define PTE_MARKER_SWAPIN_ERROR BIT(1)
397 : #define PTE_MARKER_MASK (BIT(2) - 1)
398 :
399 : static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
400 : {
401 0 : return swp_entry(SWP_PTE_MARKER, marker);
402 : }
403 :
404 : static inline bool is_pte_marker_entry(swp_entry_t entry)
405 : {
406 : return swp_type(entry) == SWP_PTE_MARKER;
407 : }
408 :
409 : static inline pte_marker pte_marker_get(swp_entry_t entry)
410 : {
411 0 : return swp_offset(entry) & PTE_MARKER_MASK;
412 : }
413 :
414 0 : static inline bool is_pte_marker(pte_t pte)
415 : {
416 0 : return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
417 : }
418 :
419 : static inline pte_t make_pte_marker(pte_marker marker)
420 : {
421 : return swp_entry_to_pte(make_pte_marker_entry(marker));
422 : }
423 :
424 : static inline swp_entry_t make_swapin_error_entry(void)
425 : {
426 0 : return make_pte_marker_entry(PTE_MARKER_SWAPIN_ERROR);
427 : }
428 :
429 : static inline int is_swapin_error_entry(swp_entry_t entry)
430 : {
431 0 : return is_pte_marker_entry(entry) &&
432 0 : (pte_marker_get(entry) & PTE_MARKER_SWAPIN_ERROR);
433 : }
434 :
435 : /*
436 : * This is a special version to check pte_none() just to cover the case when
437 : * the pte is a pte marker. It existed because in many cases the pte marker
438 : * should be seen as a none pte; it's just that we have stored some information
439 : * onto the none pte so it becomes not-none any more.
440 : *
441 : * It should be used when the pte is file-backed, ram-based and backing
442 : * userspace pages, like shmem. It is not needed upon pgtables that do not
443 : * support pte markers at all. For example, it's not needed on anonymous
444 : * memory, kernel-only memory (including when the system is during-boot),
445 : * non-ram based generic file-system. It's fine to be used even there, but the
446 : * extra pte marker check will be pure overhead.
447 : */
448 : static inline int pte_none_mostly(pte_t pte)
449 : {
450 0 : return pte_none(pte) || is_pte_marker(pte);
451 : }
452 :
453 0 : static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
454 : {
455 0 : struct page *p = pfn_to_page(swp_offset_pfn(entry));
456 :
457 : /*
458 : * Any use of migration entries may only occur while the
459 : * corresponding page is locked
460 : */
461 0 : BUG_ON(is_migration_entry(entry) && !PageLocked(p));
462 :
463 0 : return p;
464 : }
465 :
466 : /*
467 : * A pfn swap entry is a special type of swap entry that always has a pfn stored
468 : * in the swap offset. They are used to represent unaddressable device memory
469 : * and to restrict access to a page undergoing migration.
470 : */
471 : static inline bool is_pfn_swap_entry(swp_entry_t entry)
472 : {
473 : /* Make sure the swp offset can always store the needed fields */
474 : BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
475 :
476 0 : return is_migration_entry(entry) || is_device_private_entry(entry) ||
477 : is_device_exclusive_entry(entry);
478 : }
479 :
480 : struct page_vma_mapped_walk;
481 :
482 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
483 : extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
484 : struct page *page);
485 :
486 : extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
487 : struct page *new);
488 :
489 : extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
490 :
491 : static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
492 : {
493 : swp_entry_t arch_entry;
494 :
495 : if (pmd_swp_soft_dirty(pmd))
496 : pmd = pmd_swp_clear_soft_dirty(pmd);
497 : if (pmd_swp_uffd_wp(pmd))
498 : pmd = pmd_swp_clear_uffd_wp(pmd);
499 : arch_entry = __pmd_to_swp_entry(pmd);
500 : return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
501 : }
502 :
503 : static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
504 : {
505 : swp_entry_t arch_entry;
506 :
507 : arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
508 : return __swp_entry_to_pmd(arch_entry);
509 : }
510 :
511 : static inline int is_pmd_migration_entry(pmd_t pmd)
512 : {
513 : return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
514 : }
515 : #else /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
516 : static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
517 : struct page *page)
518 : {
519 : BUILD_BUG();
520 : }
521 :
522 : static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
523 : struct page *new)
524 : {
525 : BUILD_BUG();
526 : }
527 :
528 : static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
529 :
530 : static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
531 : {
532 : return swp_entry(0, 0);
533 : }
534 :
535 : static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
536 : {
537 : return __pmd(0);
538 : }
539 :
540 : static inline int is_pmd_migration_entry(pmd_t pmd)
541 : {
542 : return 0;
543 : }
544 : #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
545 :
546 : #ifdef CONFIG_MEMORY_FAILURE
547 :
548 : /*
549 : * Support for hardware poisoned pages
550 : */
551 : static inline swp_entry_t make_hwpoison_entry(struct page *page)
552 : {
553 : BUG_ON(!PageLocked(page));
554 : return swp_entry(SWP_HWPOISON, page_to_pfn(page));
555 : }
556 :
557 : static inline int is_hwpoison_entry(swp_entry_t entry)
558 : {
559 : return swp_type(entry) == SWP_HWPOISON;
560 : }
561 :
562 : #else
563 :
564 : static inline swp_entry_t make_hwpoison_entry(struct page *page)
565 : {
566 : return swp_entry(0, 0);
567 : }
568 :
569 : static inline int is_hwpoison_entry(swp_entry_t swp)
570 : {
571 : return 0;
572 : }
573 : #endif
574 :
575 : static inline int non_swap_entry(swp_entry_t entry)
576 : {
577 0 : return swp_type(entry) >= MAX_SWAPFILES;
578 : }
579 :
580 : #endif /* CONFIG_MMU */
581 : #endif /* _LINUX_SWAPOPS_H */
|