Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 2018-2020 Christoph Hellwig.
4 : *
5 : * DMA operations that map physical memory directly without using an IOMMU.
6 : */
7 : #include <linux/memblock.h> /* for max_pfn */
8 : #include <linux/export.h>
9 : #include <linux/mm.h>
10 : #include <linux/dma-map-ops.h>
11 : #include <linux/scatterlist.h>
12 : #include <linux/pfn.h>
13 : #include <linux/vmalloc.h>
14 : #include <linux/set_memory.h>
15 : #include <linux/slab.h>
16 : #include "direct.h"
17 :
18 : /*
19 : * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 : * it for entirely different regions. In that case the arch code needs to
21 : * override the variable below for dma-direct to work properly.
22 : */
23 : unsigned int zone_dma_bits __ro_after_init = 24;
24 :
25 : static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 : phys_addr_t phys)
27 : {
28 0 : if (force_dma_unencrypted(dev))
29 : return phys_to_dma_unencrypted(dev, phys);
30 0 : return phys_to_dma(dev, phys);
31 : }
32 :
33 0 : static inline struct page *dma_direct_to_page(struct device *dev,
34 : dma_addr_t dma_addr)
35 : {
36 0 : return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 : }
38 :
39 0 : u64 dma_direct_get_required_mask(struct device *dev)
40 : {
41 0 : phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 0 : u64 max_dma = phys_to_dma_direct(dev, phys);
43 :
44 0 : return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 : }
46 :
47 0 : static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
48 : {
49 0 : u64 dma_limit = min_not_zero(
50 : dev->coherent_dma_mask,
51 : dev->bus_dma_limit);
52 :
53 : /*
54 : * Optimistically try the zone that the physical address mask falls
55 : * into first. If that returns memory that isn't actually addressable
56 : * we will fallback to the next lower zone and try again.
57 : *
58 : * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 : * zones.
60 : */
61 0 : *phys_limit = dma_to_phys(dev, dma_limit);
62 0 : if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 : return GFP_DMA;
64 0 : if (*phys_limit <= DMA_BIT_MASK(32))
65 : return GFP_DMA32;
66 0 : return 0;
67 : }
68 :
69 0 : static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 : {
71 0 : dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72 :
73 0 : if (dma_addr == DMA_MAPPING_ERROR)
74 : return false;
75 0 : return dma_addr + size - 1 <=
76 0 : min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 : }
78 :
79 : static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80 : {
81 0 : if (!force_dma_unencrypted(dev))
82 : return 0;
83 : return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
84 : }
85 :
86 : static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87 : {
88 : int ret;
89 :
90 0 : if (!force_dma_unencrypted(dev))
91 : return 0;
92 : ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
93 : if (ret)
94 : pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95 : return ret;
96 : }
97 :
98 : static void __dma_direct_free_pages(struct device *dev, struct page *page,
99 : size_t size)
100 : {
101 0 : if (swiotlb_free(dev, page, size))
102 : return;
103 0 : dma_free_contiguous(dev, page, size);
104 : }
105 :
106 : static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 : {
108 : struct page *page = swiotlb_alloc(dev, size);
109 :
110 : if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111 : swiotlb_free(dev, page, size);
112 : return NULL;
113 : }
114 :
115 : return page;
116 : }
117 :
118 0 : static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119 : gfp_t gfp, bool allow_highmem)
120 : {
121 0 : int node = dev_to_node(dev);
122 0 : struct page *page = NULL;
123 : u64 phys_limit;
124 :
125 0 : WARN_ON_ONCE(!PAGE_ALIGNED(size));
126 :
127 0 : if (is_swiotlb_for_alloc(dev))
128 : return dma_direct_alloc_swiotlb(dev, size);
129 :
130 0 : gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131 0 : page = dma_alloc_contiguous(dev, size, gfp);
132 : if (page) {
133 : if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 : (!allow_highmem && PageHighMem(page))) {
135 : dma_free_contiguous(dev, page, size);
136 : page = NULL;
137 : }
138 : }
139 : again:
140 : if (!page)
141 0 : page = alloc_pages_node(node, gfp, get_order(size));
142 0 : if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143 0 : dma_free_contiguous(dev, page, size);
144 0 : page = NULL;
145 :
146 : if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147 : phys_limit < DMA_BIT_MASK(64) &&
148 : !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 : gfp |= GFP_DMA32;
150 : goto again;
151 : }
152 :
153 : if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154 : gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 : goto again;
156 : }
157 : }
158 :
159 : return page;
160 : }
161 :
162 : /*
163 : * Check if a potentially blocking operations needs to dip into the atomic
164 : * pools for the given device/gfp.
165 : */
166 : static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 : {
168 : return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 : }
170 :
171 : static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 : dma_addr_t *dma_handle, gfp_t gfp)
173 : {
174 : struct page *page;
175 : u64 phys_limit;
176 : void *ret;
177 :
178 : if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 : return NULL;
180 :
181 : gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182 : page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183 : if (!page)
184 : return NULL;
185 : *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186 : return ret;
187 : }
188 :
189 0 : static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190 : dma_addr_t *dma_handle, gfp_t gfp)
191 : {
192 : struct page *page;
193 :
194 0 : page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195 0 : if (!page)
196 : return NULL;
197 :
198 : /* remove any dirty cache lines on the kernel alias */
199 0 : if (!PageHighMem(page))
200 : arch_dma_prep_coherent(page, size);
201 :
202 : /* return the page pointer as the opaque cookie */
203 0 : *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204 0 : return page;
205 : }
206 :
207 0 : void *dma_direct_alloc(struct device *dev, size_t size,
208 : dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 : {
210 0 : bool remap = false, set_uncached = false;
211 : struct page *page;
212 : void *ret;
213 :
214 0 : size = PAGE_ALIGN(size);
215 0 : if (attrs & DMA_ATTR_NO_WARN)
216 0 : gfp |= __GFP_NOWARN;
217 :
218 0 : if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219 0 : !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220 0 : return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221 :
222 0 : if (!dev_is_dma_coherent(dev)) {
223 : /*
224 : * Fallback to the arch handler if it exists. This should
225 : * eventually go away.
226 : */
227 : if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
228 : !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
229 : !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
230 : !is_swiotlb_for_alloc(dev))
231 : return arch_dma_alloc(dev, size, dma_handle, gfp,
232 : attrs);
233 :
234 : /*
235 : * If there is a global pool, always allocate from it for
236 : * non-coherent devices.
237 : */
238 : if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
239 : return dma_alloc_from_global_coherent(dev, size,
240 : dma_handle);
241 :
242 : /*
243 : * Otherwise remap if the architecture is asking for it. But
244 : * given that remapping memory is a blocking operation we'll
245 : * instead have to dip into the atomic pools.
246 : */
247 : remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
248 : if (remap) {
249 : if (dma_direct_use_pool(dev, gfp))
250 : return dma_direct_alloc_from_pool(dev, size,
251 : dma_handle, gfp);
252 : } else {
253 : if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
254 : return NULL;
255 : set_uncached = true;
256 : }
257 : }
258 :
259 : /*
260 : * Decrypting memory may block, so allocate the memory from the atomic
261 : * pools if we can't block.
262 : */
263 0 : if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
264 : return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
265 :
266 : /* we always manually zero the memory once we are done */
267 0 : page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
268 0 : if (!page)
269 : return NULL;
270 :
271 : /*
272 : * dma_alloc_contiguous can return highmem pages depending on a
273 : * combination the cma= arguments and per-arch setup. These need to be
274 : * remapped to return a kernel virtual address.
275 : */
276 0 : if (PageHighMem(page)) {
277 : remap = true;
278 : set_uncached = false;
279 : }
280 :
281 : if (remap) {
282 : pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
283 :
284 : if (force_dma_unencrypted(dev))
285 : prot = pgprot_decrypted(prot);
286 :
287 : /* remove any dirty cache lines on the kernel alias */
288 : arch_dma_prep_coherent(page, size);
289 :
290 : /* create a coherent mapping */
291 : ret = dma_common_contiguous_remap(page, size, prot,
292 : __builtin_return_address(0));
293 : if (!ret)
294 : goto out_free_pages;
295 : } else {
296 0 : ret = page_address(page);
297 0 : if (dma_set_decrypted(dev, ret, size))
298 : goto out_free_pages;
299 : }
300 :
301 0 : memset(ret, 0, size);
302 :
303 : if (set_uncached) {
304 : arch_dma_prep_coherent(page, size);
305 : ret = arch_dma_set_uncached(ret, size);
306 : if (IS_ERR(ret))
307 : goto out_encrypt_pages;
308 : }
309 :
310 0 : *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
311 0 : return ret;
312 :
313 : out_encrypt_pages:
314 : if (dma_set_encrypted(dev, page_address(page), size))
315 : return NULL;
316 : out_free_pages:
317 : __dma_direct_free_pages(dev, page, size);
318 : return NULL;
319 : }
320 :
321 0 : void dma_direct_free(struct device *dev, size_t size,
322 : void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
323 : {
324 0 : unsigned int page_order = get_order(size);
325 :
326 0 : if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
327 0 : !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
328 : /* cpu_addr is a struct page cookie, not a kernel address */
329 0 : dma_free_contiguous(dev, cpu_addr, size);
330 0 : return;
331 : }
332 :
333 : if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
334 : !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
335 : !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
336 0 : !dev_is_dma_coherent(dev) &&
337 : !is_swiotlb_for_alloc(dev)) {
338 : arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
339 : return;
340 : }
341 :
342 : if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
343 : !dev_is_dma_coherent(dev)) {
344 : if (!dma_release_from_global_coherent(page_order, cpu_addr))
345 : WARN_ON_ONCE(1);
346 : return;
347 : }
348 :
349 : /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
350 : if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
351 : dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
352 : return;
353 :
354 0 : if (is_vmalloc_addr(cpu_addr)) {
355 0 : vunmap(cpu_addr);
356 : } else {
357 : if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
358 : arch_dma_clear_uncached(cpu_addr, size);
359 : if (dma_set_encrypted(dev, cpu_addr, size))
360 : return;
361 : }
362 :
363 0 : __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
364 : }
365 :
366 0 : struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
367 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
368 : {
369 : struct page *page;
370 : void *ret;
371 :
372 0 : if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
373 : return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
374 :
375 0 : page = __dma_direct_alloc_pages(dev, size, gfp, false);
376 0 : if (!page)
377 : return NULL;
378 :
379 0 : ret = page_address(page);
380 0 : if (dma_set_decrypted(dev, ret, size))
381 : goto out_free_pages;
382 0 : memset(ret, 0, size);
383 0 : *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
384 0 : return page;
385 : out_free_pages:
386 : __dma_direct_free_pages(dev, page, size);
387 : return NULL;
388 : }
389 :
390 0 : void dma_direct_free_pages(struct device *dev, size_t size,
391 : struct page *page, dma_addr_t dma_addr,
392 : enum dma_data_direction dir)
393 : {
394 0 : void *vaddr = page_address(page);
395 :
396 : /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
397 : if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
398 : dma_free_from_pool(dev, vaddr, size))
399 : return;
400 :
401 0 : if (dma_set_encrypted(dev, vaddr, size))
402 : return;
403 0 : __dma_direct_free_pages(dev, page, size);
404 : }
405 :
406 : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
407 : defined(CONFIG_SWIOTLB)
408 : void dma_direct_sync_sg_for_device(struct device *dev,
409 : struct scatterlist *sgl, int nents, enum dma_data_direction dir)
410 : {
411 : struct scatterlist *sg;
412 : int i;
413 :
414 : for_each_sg(sgl, sg, nents, i) {
415 : phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
416 :
417 : if (unlikely(is_swiotlb_buffer(dev, paddr)))
418 : swiotlb_sync_single_for_device(dev, paddr, sg->length,
419 : dir);
420 :
421 : if (!dev_is_dma_coherent(dev))
422 : arch_sync_dma_for_device(paddr, sg->length,
423 : dir);
424 : }
425 : }
426 : #endif
427 :
428 : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
429 : defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
430 : defined(CONFIG_SWIOTLB)
431 : void dma_direct_sync_sg_for_cpu(struct device *dev,
432 : struct scatterlist *sgl, int nents, enum dma_data_direction dir)
433 : {
434 : struct scatterlist *sg;
435 : int i;
436 :
437 : for_each_sg(sgl, sg, nents, i) {
438 : phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
439 :
440 : if (!dev_is_dma_coherent(dev))
441 : arch_sync_dma_for_cpu(paddr, sg->length, dir);
442 :
443 : if (unlikely(is_swiotlb_buffer(dev, paddr)))
444 : swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
445 : dir);
446 :
447 : if (dir == DMA_FROM_DEVICE)
448 : arch_dma_mark_clean(paddr, sg->length);
449 : }
450 :
451 : if (!dev_is_dma_coherent(dev))
452 : arch_sync_dma_for_cpu_all();
453 : }
454 :
455 : /*
456 : * Unmaps segments, except for ones marked as pci_p2pdma which do not
457 : * require any further action as they contain a bus address.
458 : */
459 : void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
460 : int nents, enum dma_data_direction dir, unsigned long attrs)
461 : {
462 : struct scatterlist *sg;
463 : int i;
464 :
465 : for_each_sg(sgl, sg, nents, i) {
466 : if (sg_dma_is_bus_address(sg))
467 : sg_dma_unmark_bus_address(sg);
468 : else
469 : dma_direct_unmap_page(dev, sg->dma_address,
470 : sg_dma_len(sg), dir, attrs);
471 : }
472 : }
473 : #endif
474 :
475 0 : int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
476 : enum dma_data_direction dir, unsigned long attrs)
477 : {
478 : struct pci_p2pdma_map_state p2pdma_state = {};
479 : enum pci_p2pdma_map_type map;
480 : struct scatterlist *sg;
481 : int i, ret;
482 :
483 0 : for_each_sg(sgl, sg, nents, i) {
484 0 : if (is_pci_p2pdma_page(sg_page(sg))) {
485 : map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
486 : switch (map) {
487 : case PCI_P2PDMA_MAP_BUS_ADDR:
488 : continue;
489 : case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
490 : /*
491 : * Any P2P mapping that traverses the PCI
492 : * host bridge must be mapped with CPU physical
493 : * address and not PCI bus addresses. This is
494 : * done with dma_direct_map_page() below.
495 : */
496 : break;
497 : default:
498 : ret = -EREMOTEIO;
499 : goto out_unmap;
500 : }
501 : }
502 :
503 0 : sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
504 0 : sg->offset, sg->length, dir, attrs);
505 0 : if (sg->dma_address == DMA_MAPPING_ERROR) {
506 : ret = -EIO;
507 : goto out_unmap;
508 : }
509 : sg_dma_len(sg) = sg->length;
510 : }
511 :
512 : return nents;
513 :
514 : out_unmap:
515 : dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
516 : return ret;
517 : }
518 :
519 0 : dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
520 : size_t size, enum dma_data_direction dir, unsigned long attrs)
521 : {
522 0 : dma_addr_t dma_addr = paddr;
523 :
524 0 : if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
525 0 : dev_err_once(dev,
526 : "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
527 : &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
528 0 : WARN_ON_ONCE(1);
529 : return DMA_MAPPING_ERROR;
530 : }
531 :
532 : return dma_addr;
533 : }
534 :
535 0 : int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
536 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
537 : unsigned long attrs)
538 : {
539 0 : struct page *page = dma_direct_to_page(dev, dma_addr);
540 : int ret;
541 :
542 0 : ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
543 0 : if (!ret)
544 0 : sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
545 0 : return ret;
546 : }
547 :
548 0 : bool dma_direct_can_mmap(struct device *dev)
549 : {
550 0 : return dev_is_dma_coherent(dev) ||
551 : IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
552 : }
553 :
554 0 : int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
555 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
556 : unsigned long attrs)
557 : {
558 0 : unsigned long user_count = vma_pages(vma);
559 0 : unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
560 0 : unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
561 0 : int ret = -ENXIO;
562 :
563 0 : vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
564 0 : if (force_dma_unencrypted(dev))
565 : vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
566 :
567 : if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
568 : return ret;
569 0 : if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
570 : return ret;
571 :
572 0 : if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
573 : return -ENXIO;
574 0 : return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
575 : user_count << PAGE_SHIFT, vma->vm_page_prot);
576 : }
577 :
578 0 : int dma_direct_supported(struct device *dev, u64 mask)
579 : {
580 0 : u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
581 :
582 : /*
583 : * Because 32-bit DMA masks are so common we expect every architecture
584 : * to be able to satisfy them - either by not supporting more physical
585 : * memory, or by providing a ZONE_DMA32. If neither is the case, the
586 : * architecture needs to use an IOMMU instead of the direct mapping.
587 : */
588 0 : if (mask >= DMA_BIT_MASK(32))
589 : return 1;
590 :
591 : /*
592 : * This check needs to be against the actual bit mask value, so use
593 : * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
594 : * part of the check.
595 : */
596 : if (IS_ENABLED(CONFIG_ZONE_DMA))
597 : min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
598 0 : return mask >= phys_to_dma_unencrypted(dev, min_mask);
599 : }
600 :
601 0 : size_t dma_direct_max_mapping_size(struct device *dev)
602 : {
603 : /* If SWIOTLB is active, use its maximum mapping size */
604 0 : if (is_swiotlb_active(dev) &&
605 : (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
606 : return swiotlb_max_mapping_size(dev);
607 : return SIZE_MAX;
608 : }
609 :
610 0 : bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
611 : {
612 0 : return !dev_is_dma_coherent(dev) ||
613 0 : is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
614 : }
615 :
616 : /**
617 : * dma_direct_set_offset - Assign scalar offset for a single DMA range.
618 : * @dev: device pointer; needed to "own" the alloced memory.
619 : * @cpu_start: beginning of memory region covered by this offset.
620 : * @dma_start: beginning of DMA/PCI region covered by this offset.
621 : * @size: size of the region.
622 : *
623 : * This is for the simple case of a uniform offset which cannot
624 : * be discovered by "dma-ranges".
625 : *
626 : * It returns -ENOMEM if out of memory, -EINVAL if a map
627 : * already exists, 0 otherwise.
628 : *
629 : * Note: any call to this from a driver is a bug. The mapping needs
630 : * to be described by the device tree or other firmware interfaces.
631 : */
632 0 : int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
633 : dma_addr_t dma_start, u64 size)
634 : {
635 : struct bus_dma_region *map;
636 0 : u64 offset = (u64)cpu_start - (u64)dma_start;
637 :
638 0 : if (dev->dma_range_map) {
639 0 : dev_err(dev, "attempt to add DMA range to existing map\n");
640 0 : return -EINVAL;
641 : }
642 :
643 0 : if (!offset)
644 : return 0;
645 :
646 0 : map = kcalloc(2, sizeof(*map), GFP_KERNEL);
647 0 : if (!map)
648 : return -ENOMEM;
649 0 : map[0].cpu_start = cpu_start;
650 0 : map[0].dma_start = dma_start;
651 0 : map[0].offset = offset;
652 0 : map[0].size = size;
653 0 : dev->dma_range_map = map;
654 0 : return 0;
655 : }
|