Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/kernel/fork.c
4 : *
5 : * Copyright (C) 1991, 1992 Linus Torvalds
6 : */
7 :
8 : /*
9 : * 'fork.c' contains the help-routines for the 'fork' system call
10 : * (see also entry.S and others).
11 : * Fork is rather simple, once you get the hang of it, but the memory
12 : * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 : */
14 :
15 : #include <linux/anon_inodes.h>
16 : #include <linux/slab.h>
17 : #include <linux/sched/autogroup.h>
18 : #include <linux/sched/mm.h>
19 : #include <linux/sched/coredump.h>
20 : #include <linux/sched/user.h>
21 : #include <linux/sched/numa_balancing.h>
22 : #include <linux/sched/stat.h>
23 : #include <linux/sched/task.h>
24 : #include <linux/sched/task_stack.h>
25 : #include <linux/sched/cputime.h>
26 : #include <linux/seq_file.h>
27 : #include <linux/rtmutex.h>
28 : #include <linux/init.h>
29 : #include <linux/unistd.h>
30 : #include <linux/module.h>
31 : #include <linux/vmalloc.h>
32 : #include <linux/completion.h>
33 : #include <linux/personality.h>
34 : #include <linux/mempolicy.h>
35 : #include <linux/sem.h>
36 : #include <linux/file.h>
37 : #include <linux/fdtable.h>
38 : #include <linux/iocontext.h>
39 : #include <linux/key.h>
40 : #include <linux/kmsan.h>
41 : #include <linux/binfmts.h>
42 : #include <linux/mman.h>
43 : #include <linux/mmu_notifier.h>
44 : #include <linux/fs.h>
45 : #include <linux/mm.h>
46 : #include <linux/mm_inline.h>
47 : #include <linux/nsproxy.h>
48 : #include <linux/capability.h>
49 : #include <linux/cpu.h>
50 : #include <linux/cgroup.h>
51 : #include <linux/security.h>
52 : #include <linux/hugetlb.h>
53 : #include <linux/seccomp.h>
54 : #include <linux/swap.h>
55 : #include <linux/syscalls.h>
56 : #include <linux/jiffies.h>
57 : #include <linux/futex.h>
58 : #include <linux/compat.h>
59 : #include <linux/kthread.h>
60 : #include <linux/task_io_accounting_ops.h>
61 : #include <linux/rcupdate.h>
62 : #include <linux/ptrace.h>
63 : #include <linux/mount.h>
64 : #include <linux/audit.h>
65 : #include <linux/memcontrol.h>
66 : #include <linux/ftrace.h>
67 : #include <linux/proc_fs.h>
68 : #include <linux/profile.h>
69 : #include <linux/rmap.h>
70 : #include <linux/ksm.h>
71 : #include <linux/acct.h>
72 : #include <linux/userfaultfd_k.h>
73 : #include <linux/tsacct_kern.h>
74 : #include <linux/cn_proc.h>
75 : #include <linux/freezer.h>
76 : #include <linux/delayacct.h>
77 : #include <linux/taskstats_kern.h>
78 : #include <linux/tty.h>
79 : #include <linux/fs_struct.h>
80 : #include <linux/magic.h>
81 : #include <linux/perf_event.h>
82 : #include <linux/posix-timers.h>
83 : #include <linux/user-return-notifier.h>
84 : #include <linux/oom.h>
85 : #include <linux/khugepaged.h>
86 : #include <linux/signalfd.h>
87 : #include <linux/uprobes.h>
88 : #include <linux/aio.h>
89 : #include <linux/compiler.h>
90 : #include <linux/sysctl.h>
91 : #include <linux/kcov.h>
92 : #include <linux/livepatch.h>
93 : #include <linux/thread_info.h>
94 : #include <linux/stackleak.h>
95 : #include <linux/kasan.h>
96 : #include <linux/scs.h>
97 : #include <linux/io_uring.h>
98 : #include <linux/bpf.h>
99 : #include <linux/stackprotector.h>
100 : #include <linux/user_events.h>
101 : #include <linux/iommu.h>
102 :
103 : #include <asm/pgalloc.h>
104 : #include <linux/uaccess.h>
105 : #include <asm/mmu_context.h>
106 : #include <asm/cacheflush.h>
107 : #include <asm/tlbflush.h>
108 :
109 : #include <trace/events/sched.h>
110 :
111 : #define CREATE_TRACE_POINTS
112 : #include <trace/events/task.h>
113 :
114 : /*
115 : * Minimum number of threads to boot the kernel
116 : */
117 : #define MIN_THREADS 20
118 :
119 : /*
120 : * Maximum number of threads
121 : */
122 : #define MAX_THREADS FUTEX_TID_MASK
123 :
124 : /*
125 : * Protected counters by write_lock_irq(&tasklist_lock)
126 : */
127 : unsigned long total_forks; /* Handle normal Linux uptimes. */
128 : int nr_threads; /* The idle threads do not count.. */
129 :
130 : static int max_threads; /* tunable limit on nr_threads */
131 :
132 : #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133 :
134 : static const char * const resident_page_types[] = {
135 : NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 : NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 : NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 : NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 : };
140 :
141 : DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 :
143 : __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
144 :
145 : #ifdef CONFIG_PROVE_RCU
146 : int lockdep_tasklist_lock_is_held(void)
147 : {
148 : return lockdep_is_held(&tasklist_lock);
149 : }
150 : EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 : #endif /* #ifdef CONFIG_PROVE_RCU */
152 :
153 0 : int nr_processes(void)
154 : {
155 : int cpu;
156 0 : int total = 0;
157 :
158 0 : for_each_possible_cpu(cpu)
159 0 : total += per_cpu(process_counts, cpu);
160 :
161 0 : return total;
162 : }
163 :
164 159 : void __weak arch_release_task_struct(struct task_struct *tsk)
165 : {
166 159 : }
167 :
168 : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 : static struct kmem_cache *task_struct_cachep;
170 :
171 : static inline struct task_struct *alloc_task_struct_node(int node)
172 : {
173 175 : return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 : }
175 :
176 : static inline void free_task_struct(struct task_struct *tsk)
177 : {
178 159 : kmem_cache_free(task_struct_cachep, tsk);
179 : }
180 : #endif
181 :
182 : #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 :
184 : /*
185 : * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 : * kmemcache based allocator.
187 : */
188 : # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 :
190 : # ifdef CONFIG_VMAP_STACK
191 : /*
192 : * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 : * flush. Try to minimize the number of calls by caching stacks.
194 : */
195 : #define NR_CACHED_STACKS 2
196 : static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 :
198 : struct vm_stack {
199 : struct rcu_head rcu;
200 : struct vm_struct *stack_vm_area;
201 : };
202 :
203 159 : static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 : {
205 : unsigned int i;
206 :
207 159 : for (i = 0; i < NR_CACHED_STACKS; i++) {
208 477 : if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 0 : continue;
210 : return true;
211 : }
212 : return false;
213 : }
214 :
215 0 : static void thread_stack_free_rcu(struct rcu_head *rh)
216 : {
217 0 : struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 :
219 0 : if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 : return;
221 :
222 0 : vfree(vm_stack);
223 : }
224 :
225 : static void thread_stack_delayed_free(struct task_struct *tsk)
226 : {
227 0 : struct vm_stack *vm_stack = tsk->stack;
228 :
229 0 : vm_stack->stack_vm_area = tsk->stack_vm_area;
230 0 : call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 : }
232 :
233 0 : static int free_vm_stack_cache(unsigned int cpu)
234 : {
235 0 : struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 : int i;
237 :
238 0 : for (i = 0; i < NR_CACHED_STACKS; i++) {
239 0 : struct vm_struct *vm_stack = cached_vm_stacks[i];
240 :
241 0 : if (!vm_stack)
242 0 : continue;
243 :
244 0 : vfree(vm_stack->addr);
245 0 : cached_vm_stacks[i] = NULL;
246 : }
247 :
248 0 : return 0;
249 : }
250 :
251 175 : static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 : {
253 : int i;
254 : int ret;
255 175 : int nr_charged = 0;
256 :
257 175 : BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 :
259 : for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 : ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 : if (ret)
262 : goto err;
263 : nr_charged++;
264 : }
265 : return 0;
266 : err:
267 : for (i = 0; i < nr_charged; i++)
268 : memcg_kmem_uncharge_page(vm->pages[i], 0);
269 : return ret;
270 : }
271 :
272 175 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 : {
274 : struct vm_struct *vm;
275 : void *stack;
276 : int i;
277 :
278 239 : for (i = 0; i < NR_CACHED_STACKS; i++) {
279 : struct vm_struct *s;
280 :
281 573 : s = this_cpu_xchg(cached_stacks[i], NULL);
282 :
283 191 : if (!s)
284 32 : continue;
285 :
286 : /* Reset stack metadata. */
287 159 : kasan_unpoison_range(s->addr, THREAD_SIZE);
288 :
289 159 : stack = kasan_reset_tag(s->addr);
290 :
291 : /* Clear stale pointers from reused stack. */
292 318 : memset(stack, 0, THREAD_SIZE);
293 :
294 159 : if (memcg_charge_kernel_stack(s)) {
295 0 : vfree(s->addr);
296 : return -ENOMEM;
297 : }
298 :
299 159 : tsk->stack_vm_area = s;
300 159 : tsk->stack = stack;
301 : return 0;
302 : }
303 :
304 : /*
305 : * Allocated stacks are cached and later reused by new threads,
306 : * so memcg accounting is performed manually on assigning/releasing
307 : * stacks to tasks. Drop __GFP_ACCOUNT.
308 : */
309 32 : stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 16 : VMALLOC_START, VMALLOC_END,
311 : THREADINFO_GFP & ~__GFP_ACCOUNT,
312 16 : PAGE_KERNEL,
313 16 : 0, node, __builtin_return_address(0));
314 16 : if (!stack)
315 : return -ENOMEM;
316 :
317 16 : vm = find_vm_area(stack);
318 16 : if (memcg_charge_kernel_stack(vm)) {
319 0 : vfree(stack);
320 : return -ENOMEM;
321 : }
322 : /*
323 : * We can't call find_vm_area() in interrupt context, and
324 : * free_thread_stack() can be called in interrupt context,
325 : * so cache the vm_struct.
326 : */
327 16 : tsk->stack_vm_area = vm;
328 16 : stack = kasan_reset_tag(stack);
329 16 : tsk->stack = stack;
330 : return 0;
331 : }
332 :
333 159 : static void free_thread_stack(struct task_struct *tsk)
334 : {
335 159 : if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 0 : thread_stack_delayed_free(tsk);
337 :
338 159 : tsk->stack = NULL;
339 159 : tsk->stack_vm_area = NULL;
340 159 : }
341 :
342 : # else /* !CONFIG_VMAP_STACK */
343 :
344 : static void thread_stack_free_rcu(struct rcu_head *rh)
345 : {
346 : __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 : }
348 :
349 : static void thread_stack_delayed_free(struct task_struct *tsk)
350 : {
351 : struct rcu_head *rh = tsk->stack;
352 :
353 : call_rcu(rh, thread_stack_free_rcu);
354 : }
355 :
356 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 : {
358 : struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 : THREAD_SIZE_ORDER);
360 :
361 : if (likely(page)) {
362 : tsk->stack = kasan_reset_tag(page_address(page));
363 : return 0;
364 : }
365 : return -ENOMEM;
366 : }
367 :
368 : static void free_thread_stack(struct task_struct *tsk)
369 : {
370 : thread_stack_delayed_free(tsk);
371 : tsk->stack = NULL;
372 : }
373 :
374 : # endif /* CONFIG_VMAP_STACK */
375 : # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 :
377 : static struct kmem_cache *thread_stack_cache;
378 :
379 : static void thread_stack_free_rcu(struct rcu_head *rh)
380 : {
381 : kmem_cache_free(thread_stack_cache, rh);
382 : }
383 :
384 : static void thread_stack_delayed_free(struct task_struct *tsk)
385 : {
386 : struct rcu_head *rh = tsk->stack;
387 :
388 : call_rcu(rh, thread_stack_free_rcu);
389 : }
390 :
391 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 : {
393 : unsigned long *stack;
394 : stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 : stack = kasan_reset_tag(stack);
396 : tsk->stack = stack;
397 : return stack ? 0 : -ENOMEM;
398 : }
399 :
400 : static void free_thread_stack(struct task_struct *tsk)
401 : {
402 : thread_stack_delayed_free(tsk);
403 : tsk->stack = NULL;
404 : }
405 :
406 : void thread_stack_cache_init(void)
407 : {
408 : thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 : THREAD_SIZE, THREAD_SIZE, 0, 0,
410 : THREAD_SIZE, NULL);
411 : BUG_ON(thread_stack_cache == NULL);
412 : }
413 :
414 : # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 : #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 :
417 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 : {
419 : unsigned long *stack;
420 :
421 : stack = arch_alloc_thread_stack_node(tsk, node);
422 : tsk->stack = stack;
423 : return stack ? 0 : -ENOMEM;
424 : }
425 :
426 : static void free_thread_stack(struct task_struct *tsk)
427 : {
428 : arch_free_thread_stack(tsk);
429 : tsk->stack = NULL;
430 : }
431 :
432 : #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 :
434 : /* SLAB cache for signal_struct structures (tsk->signal) */
435 : static struct kmem_cache *signal_cachep;
436 :
437 : /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 : struct kmem_cache *sighand_cachep;
439 :
440 : /* SLAB cache for files_struct structures (tsk->files) */
441 : struct kmem_cache *files_cachep;
442 :
443 : /* SLAB cache for fs_struct structures (tsk->fs) */
444 : struct kmem_cache *fs_cachep;
445 :
446 : /* SLAB cache for vm_area_struct structures */
447 : static struct kmem_cache *vm_area_cachep;
448 :
449 : /* SLAB cache for mm_struct structures (tsk->mm) */
450 : static struct kmem_cache *mm_cachep;
451 :
452 : #ifdef CONFIG_PER_VMA_LOCK
453 :
454 : /* SLAB cache for vm_area_struct.lock */
455 : static struct kmem_cache *vma_lock_cachep;
456 :
457 : static bool vma_lock_alloc(struct vm_area_struct *vma)
458 : {
459 : vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 : if (!vma->vm_lock)
461 : return false;
462 :
463 : init_rwsem(&vma->vm_lock->lock);
464 : vma->vm_lock_seq = -1;
465 :
466 : return true;
467 : }
468 :
469 : static inline void vma_lock_free(struct vm_area_struct *vma)
470 : {
471 : kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 : }
473 :
474 : #else /* CONFIG_PER_VMA_LOCK */
475 :
476 : static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 : static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 :
479 : #endif /* CONFIG_PER_VMA_LOCK */
480 :
481 0 : struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 : {
483 : struct vm_area_struct *vma;
484 :
485 0 : vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 0 : if (!vma)
487 : return NULL;
488 :
489 0 : vma_init(vma, mm);
490 0 : if (!vma_lock_alloc(vma)) {
491 : kmem_cache_free(vm_area_cachep, vma);
492 : return NULL;
493 : }
494 :
495 0 : return vma;
496 : }
497 :
498 0 : struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 : {
500 0 : struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 :
502 0 : if (!new)
503 : return NULL;
504 :
505 0 : ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 0 : ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 : /*
508 : * orig->shared.rb may be modified concurrently, but the clone
509 : * will be reinitialized.
510 : */
511 0 : data_race(memcpy(new, orig, sizeof(*new)));
512 0 : if (!vma_lock_alloc(new)) {
513 : kmem_cache_free(vm_area_cachep, new);
514 : return NULL;
515 : }
516 0 : INIT_LIST_HEAD(&new->anon_vma_chain);
517 0 : vma_numab_state_init(new);
518 0 : dup_anon_vma_name(orig, new);
519 :
520 0 : return new;
521 : }
522 :
523 0 : void __vm_area_free(struct vm_area_struct *vma)
524 : {
525 0 : vma_numab_state_free(vma);
526 0 : free_anon_vma_name(vma);
527 0 : vma_lock_free(vma);
528 0 : kmem_cache_free(vm_area_cachep, vma);
529 0 : }
530 :
531 : #ifdef CONFIG_PER_VMA_LOCK
532 : static void vm_area_free_rcu_cb(struct rcu_head *head)
533 : {
534 : struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 : vm_rcu);
536 :
537 : /* The vma should not be locked while being destroyed. */
538 : VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 : __vm_area_free(vma);
540 : }
541 : #endif
542 :
543 0 : void vm_area_free(struct vm_area_struct *vma)
544 : {
545 : #ifdef CONFIG_PER_VMA_LOCK
546 : call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 : #else
548 0 : __vm_area_free(vma);
549 : #endif
550 0 : }
551 :
552 : static void account_kernel_stack(struct task_struct *tsk, int account)
553 : {
554 : if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 : struct vm_struct *vm = task_stack_vm_area(tsk);
556 : int i;
557 :
558 1340 : for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 2680 : mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 : account * (PAGE_SIZE / 1024));
561 : } else {
562 : void *stack = task_stack_page(tsk);
563 :
564 : /* All stack pages are in the same node. */
565 : mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 : account * (THREAD_SIZE / 1024));
567 : }
568 : }
569 :
570 160 : void exit_task_stack_account(struct task_struct *tsk)
571 : {
572 320 : account_kernel_stack(tsk, -1);
573 :
574 : if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 : struct vm_struct *vm;
576 : int i;
577 :
578 160 : vm = task_stack_vm_area(tsk);
579 160 : for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 : memcg_kmem_uncharge_page(vm->pages[i], 0);
581 : }
582 160 : }
583 :
584 159 : static void release_task_stack(struct task_struct *tsk)
585 : {
586 159 : if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 : return; /* Better to leak the stack than to free prematurely */
588 :
589 159 : free_thread_stack(tsk);
590 : }
591 :
592 : #ifdef CONFIG_THREAD_INFO_IN_TASK
593 : void put_task_stack(struct task_struct *tsk)
594 : {
595 : if (refcount_dec_and_test(&tsk->stack_refcount))
596 : release_task_stack(tsk);
597 : }
598 : #endif
599 :
600 159 : void free_task(struct task_struct *tsk)
601 : {
602 : #ifdef CONFIG_SECCOMP
603 159 : WARN_ON_ONCE(tsk->seccomp.filter);
604 : #endif
605 159 : release_user_cpus_ptr(tsk);
606 159 : scs_release(tsk);
607 :
608 : #ifndef CONFIG_THREAD_INFO_IN_TASK
609 : /*
610 : * The task is finally done with both the stack and thread_info,
611 : * so free both.
612 : */
613 159 : release_task_stack(tsk);
614 : #else
615 : /*
616 : * If the task had a separate stack allocation, it should be gone
617 : * by now.
618 : */
619 : WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 : #endif
621 159 : rt_mutex_debug_task_free(tsk);
622 159 : ftrace_graph_exit_task(tsk);
623 159 : arch_release_task_struct(tsk);
624 159 : if (tsk->flags & PF_KTHREAD)
625 159 : free_kthread_struct(tsk);
626 159 : bpf_task_storage_free(tsk);
627 159 : free_task_struct(tsk);
628 159 : }
629 : EXPORT_SYMBOL(free_task);
630 :
631 0 : static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 : {
633 : struct file *exe_file;
634 :
635 0 : exe_file = get_mm_exe_file(oldmm);
636 0 : RCU_INIT_POINTER(mm->exe_file, exe_file);
637 : /*
638 : * We depend on the oldmm having properly denied write access to the
639 : * exe_file already.
640 : */
641 0 : if (exe_file && deny_write_access(exe_file))
642 0 : pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 0 : }
644 :
645 : #ifdef CONFIG_MMU
646 0 : static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 : struct mm_struct *oldmm)
648 : {
649 : struct vm_area_struct *mpnt, *tmp;
650 : int retval;
651 0 : unsigned long charge = 0;
652 0 : LIST_HEAD(uf);
653 0 : VMA_ITERATOR(old_vmi, oldmm, 0);
654 0 : VMA_ITERATOR(vmi, mm, 0);
655 :
656 0 : uprobe_start_dup_mmap();
657 0 : if (mmap_write_lock_killable(oldmm)) {
658 : retval = -EINTR;
659 : goto fail_uprobe_end;
660 : }
661 0 : flush_cache_dup_mm(oldmm);
662 0 : uprobe_dup_mmap(oldmm, mm);
663 : /*
664 : * Not linked in yet - no deadlock potential:
665 : */
666 0 : mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 :
668 : /* No ordering required: file already has been exposed. */
669 0 : dup_mm_exe_file(mm, oldmm);
670 :
671 0 : mm->total_vm = oldmm->total_vm;
672 0 : mm->data_vm = oldmm->data_vm;
673 0 : mm->exec_vm = oldmm->exec_vm;
674 0 : mm->stack_vm = oldmm->stack_vm;
675 :
676 0 : retval = ksm_fork(mm, oldmm);
677 : if (retval)
678 : goto out;
679 0 : khugepaged_fork(mm, oldmm);
680 :
681 0 : retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 0 : if (retval)
683 : goto out;
684 :
685 0 : mt_clear_in_rcu(vmi.mas.tree);
686 0 : for_each_vma(old_vmi, mpnt) {
687 : struct file *file;
688 :
689 : vma_start_write(mpnt);
690 0 : if (mpnt->vm_flags & VM_DONTCOPY) {
691 0 : vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 0 : continue;
693 : }
694 0 : charge = 0;
695 : /*
696 : * Don't duplicate many vmas if we've been oom-killed (for
697 : * example)
698 : */
699 0 : if (fatal_signal_pending(current)) {
700 : retval = -EINTR;
701 : goto loop_out;
702 : }
703 0 : if (mpnt->vm_flags & VM_ACCOUNT) {
704 0 : unsigned long len = vma_pages(mpnt);
705 :
706 0 : if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 : goto fail_nomem;
708 : charge = len;
709 : }
710 0 : tmp = vm_area_dup(mpnt);
711 0 : if (!tmp)
712 : goto fail_nomem;
713 0 : retval = vma_dup_policy(mpnt, tmp);
714 : if (retval)
715 : goto fail_nomem_policy;
716 0 : tmp->vm_mm = mm;
717 0 : retval = dup_userfaultfd(tmp, &uf);
718 : if (retval)
719 : goto fail_nomem_anon_vma_fork;
720 0 : if (tmp->vm_flags & VM_WIPEONFORK) {
721 : /*
722 : * VM_WIPEONFORK gets a clean slate in the child.
723 : * Don't prepare anon_vma until fault since we don't
724 : * copy page for current vma.
725 : */
726 0 : tmp->anon_vma = NULL;
727 0 : } else if (anon_vma_fork(tmp, mpnt))
728 : goto fail_nomem_anon_vma_fork;
729 0 : vm_flags_clear(tmp, VM_LOCKED_MASK);
730 0 : file = tmp->vm_file;
731 0 : if (file) {
732 0 : struct address_space *mapping = file->f_mapping;
733 :
734 0 : get_file(file);
735 0 : i_mmap_lock_write(mapping);
736 0 : if (tmp->vm_flags & VM_SHARED)
737 : mapping_allow_writable(mapping);
738 0 : flush_dcache_mmap_lock(mapping);
739 : /* insert tmp into the share list, just after mpnt */
740 0 : vma_interval_tree_insert_after(tmp, mpnt,
741 : &mapping->i_mmap);
742 0 : flush_dcache_mmap_unlock(mapping);
743 : i_mmap_unlock_write(mapping);
744 : }
745 :
746 : /*
747 : * Copy/update hugetlb private vma information.
748 : */
749 0 : if (is_vm_hugetlb_page(tmp))
750 : hugetlb_dup_vma_private(tmp);
751 :
752 : /* Link the vma into the MT */
753 0 : if (vma_iter_bulk_store(&vmi, tmp))
754 : goto fail_nomem_vmi_store;
755 :
756 0 : mm->map_count++;
757 0 : if (!(tmp->vm_flags & VM_WIPEONFORK))
758 0 : retval = copy_page_range(tmp, mpnt);
759 :
760 0 : if (tmp->vm_ops && tmp->vm_ops->open)
761 0 : tmp->vm_ops->open(tmp);
762 :
763 0 : if (retval)
764 : goto loop_out;
765 : }
766 : /* a new mm has just been created */
767 : retval = arch_dup_mmap(oldmm, mm);
768 : loop_out:
769 0 : vma_iter_free(&vmi);
770 0 : if (!retval)
771 0 : mt_set_in_rcu(vmi.mas.tree);
772 : out:
773 0 : mmap_write_unlock(mm);
774 0 : flush_tlb_mm(oldmm);
775 : mmap_write_unlock(oldmm);
776 : dup_userfaultfd_complete(&uf);
777 : fail_uprobe_end:
778 : uprobe_end_dup_mmap();
779 0 : return retval;
780 :
781 : fail_nomem_vmi_store:
782 0 : unlink_anon_vmas(tmp);
783 : fail_nomem_anon_vma_fork:
784 0 : mpol_put(vma_policy(tmp));
785 : fail_nomem_policy:
786 : vm_area_free(tmp);
787 : fail_nomem:
788 0 : retval = -ENOMEM;
789 0 : vm_unacct_memory(charge);
790 : goto loop_out;
791 : }
792 :
793 : static inline int mm_alloc_pgd(struct mm_struct *mm)
794 : {
795 0 : mm->pgd = pgd_alloc(mm);
796 0 : if (unlikely(!mm->pgd))
797 : return -ENOMEM;
798 : return 0;
799 : }
800 :
801 : static inline void mm_free_pgd(struct mm_struct *mm)
802 : {
803 0 : pgd_free(mm, mm->pgd);
804 : }
805 : #else
806 : static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 : {
808 : mmap_write_lock(oldmm);
809 : dup_mm_exe_file(mm, oldmm);
810 : mmap_write_unlock(oldmm);
811 : return 0;
812 : }
813 : #define mm_alloc_pgd(mm) (0)
814 : #define mm_free_pgd(mm)
815 : #endif /* CONFIG_MMU */
816 :
817 0 : static void check_mm(struct mm_struct *mm)
818 : {
819 : int i;
820 :
821 : BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 : "Please make sure 'struct resident_page_types[]' is updated as well");
823 :
824 0 : for (i = 0; i < NR_MM_COUNTERS; i++) {
825 0 : long x = percpu_counter_sum(&mm->rss_stat[i]);
826 :
827 0 : if (unlikely(x))
828 0 : pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 : mm, resident_page_types[i], x);
830 : }
831 :
832 0 : if (mm_pgtables_bytes(mm))
833 0 : pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 : mm_pgtables_bytes(mm));
835 :
836 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 : VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 : #endif
839 0 : }
840 :
841 : #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 : #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
843 :
844 : static void do_check_lazy_tlb(void *arg)
845 : {
846 : struct mm_struct *mm = arg;
847 :
848 : WARN_ON_ONCE(current->active_mm == mm);
849 : }
850 :
851 : static void do_shoot_lazy_tlb(void *arg)
852 : {
853 : struct mm_struct *mm = arg;
854 :
855 : if (current->active_mm == mm) {
856 : WARN_ON_ONCE(current->mm);
857 : current->active_mm = &init_mm;
858 : switch_mm(mm, &init_mm, current);
859 : }
860 : }
861 :
862 : static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 : {
864 : if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 : /*
866 : * In this case, lazy tlb mms are refounted and would not reach
867 : * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 : */
869 : return;
870 : }
871 :
872 : /*
873 : * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 : * requires lazy mm users to switch to another mm when the refcount
875 : * drops to zero, before the mm is freed. This requires IPIs here to
876 : * switch kernel threads to init_mm.
877 : *
878 : * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 : * switch with the final userspace teardown TLB flush which leaves the
880 : * mm lazy on this CPU but no others, reducing the need for additional
881 : * IPIs here. There are cases where a final IPI is still required here,
882 : * such as the final mmdrop being performed on a different CPU than the
883 : * one exiting, or kernel threads using the mm when userspace exits.
884 : *
885 : * IPI overheads have not found to be expensive, but they could be
886 : * reduced in a number of possible ways, for example (roughly
887 : * increasing order of complexity):
888 : * - The last lazy reference created by exit_mm() could instead switch
889 : * to init_mm, however it's probable this will run on the same CPU
890 : * immediately afterwards, so this may not reduce IPIs much.
891 : * - A batch of mms requiring IPIs could be gathered and freed at once.
892 : * - CPUs store active_mm where it can be remotely checked without a
893 : * lock, to filter out false-positives in the cpumask.
894 : * - After mm_users or mm_count reaches zero, switching away from the
895 : * mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 : * with some batching or delaying of the final IPIs.
897 : * - A delayed freeing and RCU-like quiescing sequence based on mm
898 : * switching to avoid IPIs completely.
899 : */
900 : on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 : if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 : on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 : }
904 :
905 : /*
906 : * Called when the last reference to the mm
907 : * is dropped: either by a lazy thread or by
908 : * mmput. Free the page directory and the mm.
909 : */
910 0 : void __mmdrop(struct mm_struct *mm)
911 : {
912 : int i;
913 :
914 0 : BUG_ON(mm == &init_mm);
915 0 : WARN_ON_ONCE(mm == current->mm);
916 :
917 : /* Ensure no CPUs are using this as their lazy tlb mm */
918 0 : cleanup_lazy_tlbs(mm);
919 :
920 0 : WARN_ON_ONCE(mm == current->active_mm);
921 0 : mm_free_pgd(mm);
922 0 : destroy_context(mm);
923 0 : mmu_notifier_subscriptions_destroy(mm);
924 0 : check_mm(mm);
925 0 : put_user_ns(mm->user_ns);
926 0 : mm_pasid_drop(mm);
927 0 : mm_destroy_cid(mm);
928 :
929 0 : for (i = 0; i < NR_MM_COUNTERS; i++)
930 : percpu_counter_destroy(&mm->rss_stat[i]);
931 0 : free_mm(mm);
932 0 : }
933 : EXPORT_SYMBOL_GPL(__mmdrop);
934 :
935 0 : static void mmdrop_async_fn(struct work_struct *work)
936 : {
937 : struct mm_struct *mm;
938 :
939 0 : mm = container_of(work, struct mm_struct, async_put_work);
940 0 : __mmdrop(mm);
941 0 : }
942 :
943 0 : static void mmdrop_async(struct mm_struct *mm)
944 : {
945 0 : if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
946 0 : INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
947 0 : schedule_work(&mm->async_put_work);
948 : }
949 0 : }
950 :
951 159 : static inline void free_signal_struct(struct signal_struct *sig)
952 : {
953 159 : taskstats_tgid_free(sig);
954 159 : sched_autogroup_exit(sig);
955 : /*
956 : * __mmdrop is not safe to call from softirq context on x86 due to
957 : * pgd_dtor so postpone it to the async context
958 : */
959 159 : if (sig->oom_mm)
960 0 : mmdrop_async(sig->oom_mm);
961 159 : kmem_cache_free(signal_cachep, sig);
962 159 : }
963 :
964 159 : static inline void put_signal_struct(struct signal_struct *sig)
965 : {
966 318 : if (refcount_dec_and_test(&sig->sigcnt))
967 159 : free_signal_struct(sig);
968 159 : }
969 :
970 159 : void __put_task_struct(struct task_struct *tsk)
971 : {
972 159 : WARN_ON(!tsk->exit_state);
973 318 : WARN_ON(refcount_read(&tsk->usage));
974 159 : WARN_ON(tsk == current);
975 :
976 159 : io_uring_free(tsk);
977 159 : cgroup_free(tsk);
978 159 : task_numa_free(tsk, true);
979 159 : security_task_free(tsk);
980 159 : exit_creds(tsk);
981 159 : delayacct_tsk_free(tsk);
982 159 : put_signal_struct(tsk->signal);
983 159 : sched_core_free(tsk);
984 159 : free_task(tsk);
985 159 : }
986 : EXPORT_SYMBOL_GPL(__put_task_struct);
987 :
988 1 : void __init __weak arch_task_cache_init(void) { }
989 :
990 : /*
991 : * set_max_threads
992 : */
993 : static void set_max_threads(unsigned int max_threads_suggested)
994 : {
995 : u64 threads;
996 1 : unsigned long nr_pages = totalram_pages();
997 :
998 : /*
999 : * The number of threads shall be limited such that the thread
1000 : * structures may only consume a small part of the available memory.
1001 : */
1002 2 : if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1003 : threads = MAX_THREADS;
1004 : else
1005 2 : threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1006 : (u64) THREAD_SIZE * 8UL);
1007 :
1008 1 : if (threads > max_threads_suggested)
1009 0 : threads = max_threads_suggested;
1010 :
1011 1 : max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1012 : }
1013 :
1014 : #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1015 : /* Initialized by the architecture: */
1016 : int arch_task_struct_size __read_mostly;
1017 : #endif
1018 :
1019 : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1020 : static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1021 : {
1022 : /* Fetch thread_struct whitelist for the architecture. */
1023 1 : arch_thread_struct_whitelist(offset, size);
1024 :
1025 : /*
1026 : * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 : * adjust offset to position of thread_struct in task_struct.
1028 : */
1029 : if (unlikely(*size == 0))
1030 : *offset = 0;
1031 : else
1032 1 : *offset += offsetof(struct task_struct, thread);
1033 : }
1034 : #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1035 :
1036 1 : void __init fork_init(void)
1037 : {
1038 : int i;
1039 : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1040 : #ifndef ARCH_MIN_TASKALIGN
1041 : #define ARCH_MIN_TASKALIGN 0
1042 : #endif
1043 1 : int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044 : unsigned long useroffset, usersize;
1045 :
1046 : /* create a slab on which task_structs can be allocated */
1047 1 : task_struct_whitelist(&useroffset, &usersize);
1048 1 : task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049 : arch_task_struct_size, align,
1050 : SLAB_PANIC|SLAB_ACCOUNT,
1051 : useroffset, usersize, NULL);
1052 : #endif
1053 :
1054 : /* do the arch specific task caches init */
1055 1 : arch_task_cache_init();
1056 :
1057 1 : set_max_threads(MAX_THREADS);
1058 :
1059 1 : init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060 1 : init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061 1 : init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062 : init_task.signal->rlim[RLIMIT_NPROC];
1063 :
1064 11 : for (i = 0; i < UCOUNT_COUNTS; i++)
1065 10 : init_user_ns.ucount_max[i] = max_threads/2;
1066 :
1067 1 : set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1068 1 : set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1069 1 : set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070 1 : set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1071 :
1072 : #ifdef CONFIG_VMAP_STACK
1073 1 : cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074 : NULL, free_vm_stack_cache);
1075 : #endif
1076 :
1077 : scs_init();
1078 :
1079 1 : lockdep_init_task(&init_task);
1080 : uprobes_init();
1081 1 : }
1082 :
1083 175 : int __weak arch_dup_task_struct(struct task_struct *dst,
1084 : struct task_struct *src)
1085 : {
1086 175 : *dst = *src;
1087 175 : return 0;
1088 : }
1089 :
1090 1 : void set_task_stack_end_magic(struct task_struct *tsk)
1091 : {
1092 : unsigned long *stackend;
1093 :
1094 176 : stackend = end_of_stack(tsk);
1095 176 : *stackend = STACK_END_MAGIC; /* for overflow detection */
1096 1 : }
1097 :
1098 175 : static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1099 : {
1100 : struct task_struct *tsk;
1101 : int err;
1102 :
1103 175 : if (node == NUMA_NO_NODE)
1104 175 : node = tsk_fork_get_node(orig);
1105 175 : tsk = alloc_task_struct_node(node);
1106 175 : if (!tsk)
1107 : return NULL;
1108 :
1109 175 : err = arch_dup_task_struct(tsk, orig);
1110 175 : if (err)
1111 : goto free_tsk;
1112 :
1113 175 : err = alloc_thread_stack_node(tsk, node);
1114 175 : if (err)
1115 : goto free_tsk;
1116 :
1117 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1118 : refcount_set(&tsk->stack_refcount, 1);
1119 : #endif
1120 175 : account_kernel_stack(tsk, 1);
1121 :
1122 175 : err = scs_prepare(tsk, node);
1123 : if (err)
1124 : goto free_stack;
1125 :
1126 : #ifdef CONFIG_SECCOMP
1127 : /*
1128 : * We must handle setting up seccomp filters once we're under
1129 : * the sighand lock in case orig has changed between now and
1130 : * then. Until then, filter must be NULL to avoid messing up
1131 : * the usage counts on the error path calling free_task.
1132 : */
1133 175 : tsk->seccomp.filter = NULL;
1134 : #endif
1135 :
1136 350 : setup_thread_stack(tsk, orig);
1137 175 : clear_user_return_notifier(tsk);
1138 175 : clear_tsk_need_resched(tsk);
1139 175 : set_task_stack_end_magic(tsk);
1140 : clear_syscall_work_syscall_user_dispatch(tsk);
1141 :
1142 : #ifdef CONFIG_STACKPROTECTOR
1143 : tsk->stack_canary = get_random_canary();
1144 : #endif
1145 175 : if (orig->cpus_ptr == &orig->cpus_mask)
1146 175 : tsk->cpus_ptr = &tsk->cpus_mask;
1147 175 : dup_user_cpus_ptr(tsk, orig, node);
1148 :
1149 : /*
1150 : * One for the user space visible state that goes away when reaped.
1151 : * One for the scheduler.
1152 : */
1153 350 : refcount_set(&tsk->rcu_users, 2);
1154 : /* One for the rcu users */
1155 350 : refcount_set(&tsk->usage, 1);
1156 : #ifdef CONFIG_BLK_DEV_IO_TRACE
1157 : tsk->btrace_seq = 0;
1158 : #endif
1159 175 : tsk->splice_pipe = NULL;
1160 175 : tsk->task_frag.page = NULL;
1161 175 : tsk->wake_q.next = NULL;
1162 175 : tsk->worker_private = NULL;
1163 :
1164 : kcov_task_init(tsk);
1165 : kmsan_task_create(tsk);
1166 : kmap_local_fork(tsk);
1167 :
1168 : #ifdef CONFIG_FAULT_INJECTION
1169 : tsk->fail_nth = 0;
1170 : #endif
1171 :
1172 : #ifdef CONFIG_BLK_CGROUP
1173 : tsk->throttle_disk = NULL;
1174 : tsk->use_memdelay = 0;
1175 : #endif
1176 :
1177 : #ifdef CONFIG_IOMMU_SVA
1178 : tsk->pasid_activated = 0;
1179 : #endif
1180 :
1181 : #ifdef CONFIG_MEMCG
1182 : tsk->active_memcg = NULL;
1183 : #endif
1184 :
1185 : #ifdef CONFIG_CPU_SUP_INTEL
1186 175 : tsk->reported_split_lock = 0;
1187 : #endif
1188 :
1189 : #ifdef CONFIG_SCHED_MM_CID
1190 : tsk->mm_cid = -1;
1191 : tsk->last_mm_cid = -1;
1192 : tsk->mm_cid_active = 0;
1193 : tsk->migrate_from_cpu = -1;
1194 : #endif
1195 175 : return tsk;
1196 :
1197 : free_stack:
1198 : exit_task_stack_account(tsk);
1199 : free_thread_stack(tsk);
1200 : free_tsk:
1201 0 : free_task_struct(tsk);
1202 0 : return NULL;
1203 : }
1204 :
1205 : __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1206 :
1207 : static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1208 :
1209 0 : static int __init coredump_filter_setup(char *s)
1210 : {
1211 0 : default_dump_filter =
1212 0 : (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1213 : MMF_DUMP_FILTER_MASK;
1214 0 : return 1;
1215 : }
1216 :
1217 : __setup("coredump_filter=", coredump_filter_setup);
1218 :
1219 : #include <linux/init_task.h>
1220 :
1221 : static void mm_init_aio(struct mm_struct *mm)
1222 : {
1223 : #ifdef CONFIG_AIO
1224 0 : spin_lock_init(&mm->ioctx_lock);
1225 0 : mm->ioctx_table = NULL;
1226 : #endif
1227 : }
1228 :
1229 : static __always_inline void mm_clear_owner(struct mm_struct *mm,
1230 : struct task_struct *p)
1231 : {
1232 : #ifdef CONFIG_MEMCG
1233 : if (mm->owner == p)
1234 : WRITE_ONCE(mm->owner, NULL);
1235 : #endif
1236 : }
1237 :
1238 : static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1239 : {
1240 : #ifdef CONFIG_MEMCG
1241 : mm->owner = p;
1242 : #endif
1243 : }
1244 :
1245 : static void mm_init_uprobes_state(struct mm_struct *mm)
1246 : {
1247 : #ifdef CONFIG_UPROBES
1248 : mm->uprobes_state.xol_area = NULL;
1249 : #endif
1250 : }
1251 :
1252 0 : static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1253 : struct user_namespace *user_ns)
1254 : {
1255 : int i;
1256 :
1257 0 : mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258 : mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259 0 : atomic_set(&mm->mm_users, 1);
1260 0 : atomic_set(&mm->mm_count, 1);
1261 0 : seqcount_init(&mm->write_protect_seq);
1262 0 : mmap_init_lock(mm);
1263 0 : INIT_LIST_HEAD(&mm->mmlist);
1264 : #ifdef CONFIG_PER_VMA_LOCK
1265 : mm->mm_lock_seq = 0;
1266 : #endif
1267 0 : mm_pgtables_bytes_init(mm);
1268 0 : mm->map_count = 0;
1269 0 : mm->locked_vm = 0;
1270 0 : atomic64_set(&mm->pinned_vm, 0);
1271 0 : memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272 0 : spin_lock_init(&mm->page_table_lock);
1273 0 : spin_lock_init(&mm->arg_lock);
1274 0 : mm_init_cpumask(mm);
1275 0 : mm_init_aio(mm);
1276 0 : mm_init_owner(mm, p);
1277 0 : mm_pasid_init(mm);
1278 0 : RCU_INIT_POINTER(mm->exe_file, NULL);
1279 0 : mmu_notifier_subscriptions_init(mm);
1280 0 : init_tlb_flush_pending(mm);
1281 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1282 : mm->pmd_huge_pte = NULL;
1283 : #endif
1284 0 : mm_init_uprobes_state(mm);
1285 0 : hugetlb_count_init(mm);
1286 :
1287 0 : if (current->mm) {
1288 0 : mm->flags = current->mm->flags & MMF_INIT_MASK;
1289 0 : mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290 : } else {
1291 0 : mm->flags = default_dump_filter;
1292 0 : mm->def_flags = 0;
1293 : }
1294 :
1295 0 : if (mm_alloc_pgd(mm))
1296 : goto fail_nopgd;
1297 :
1298 0 : if (init_new_context(p, mm))
1299 : goto fail_nocontext;
1300 :
1301 : if (mm_alloc_cid(mm))
1302 : goto fail_cid;
1303 :
1304 0 : for (i = 0; i < NR_MM_COUNTERS; i++)
1305 0 : if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1306 : goto fail_pcpu;
1307 :
1308 0 : mm->user_ns = get_user_ns(user_ns);
1309 0 : lru_gen_init_mm(mm);
1310 : return mm;
1311 :
1312 : fail_pcpu:
1313 : while (i > 0)
1314 : percpu_counter_destroy(&mm->rss_stat[--i]);
1315 : mm_destroy_cid(mm);
1316 : fail_cid:
1317 : destroy_context(mm);
1318 : fail_nocontext:
1319 : mm_free_pgd(mm);
1320 : fail_nopgd:
1321 0 : free_mm(mm);
1322 : return NULL;
1323 : }
1324 :
1325 : /*
1326 : * Allocate and initialize an mm_struct.
1327 : */
1328 0 : struct mm_struct *mm_alloc(void)
1329 : {
1330 : struct mm_struct *mm;
1331 :
1332 0 : mm = allocate_mm();
1333 0 : if (!mm)
1334 : return NULL;
1335 :
1336 0 : memset(mm, 0, sizeof(*mm));
1337 0 : return mm_init(mm, current, current_user_ns());
1338 : }
1339 :
1340 0 : static inline void __mmput(struct mm_struct *mm)
1341 : {
1342 : VM_BUG_ON(atomic_read(&mm->mm_users));
1343 :
1344 0 : uprobe_clear_state(mm);
1345 0 : exit_aio(mm);
1346 0 : ksm_exit(mm);
1347 0 : khugepaged_exit(mm); /* must run before exit_mmap */
1348 0 : exit_mmap(mm);
1349 0 : mm_put_huge_zero_page(mm);
1350 0 : set_mm_exe_file(mm, NULL);
1351 0 : if (!list_empty(&mm->mmlist)) {
1352 0 : spin_lock(&mmlist_lock);
1353 0 : list_del(&mm->mmlist);
1354 : spin_unlock(&mmlist_lock);
1355 : }
1356 0 : if (mm->binfmt)
1357 : module_put(mm->binfmt->module);
1358 0 : lru_gen_del_mm(mm);
1359 0 : mmdrop(mm);
1360 0 : }
1361 :
1362 : /*
1363 : * Decrement the use count and release all resources for an mm.
1364 : */
1365 0 : void mmput(struct mm_struct *mm)
1366 : {
1367 : might_sleep();
1368 :
1369 0 : if (atomic_dec_and_test(&mm->mm_users))
1370 0 : __mmput(mm);
1371 0 : }
1372 : EXPORT_SYMBOL_GPL(mmput);
1373 :
1374 : #ifdef CONFIG_MMU
1375 0 : static void mmput_async_fn(struct work_struct *work)
1376 : {
1377 0 : struct mm_struct *mm = container_of(work, struct mm_struct,
1378 : async_put_work);
1379 :
1380 0 : __mmput(mm);
1381 0 : }
1382 :
1383 0 : void mmput_async(struct mm_struct *mm)
1384 : {
1385 0 : if (atomic_dec_and_test(&mm->mm_users)) {
1386 0 : INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 0 : schedule_work(&mm->async_put_work);
1388 : }
1389 0 : }
1390 : EXPORT_SYMBOL_GPL(mmput_async);
1391 : #endif
1392 :
1393 : /**
1394 : * set_mm_exe_file - change a reference to the mm's executable file
1395 : *
1396 : * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397 : *
1398 : * Main users are mmput() and sys_execve(). Callers prevent concurrent
1399 : * invocations: in mmput() nobody alive left, in execve task is single
1400 : * threaded.
1401 : *
1402 : * Can only fail if new_exe_file != NULL.
1403 : */
1404 0 : int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405 : {
1406 : struct file *old_exe_file;
1407 :
1408 : /*
1409 : * It is safe to dereference the exe_file without RCU as
1410 : * this function is only called if nobody else can access
1411 : * this mm -- see comment above for justification.
1412 : */
1413 0 : old_exe_file = rcu_dereference_raw(mm->exe_file);
1414 :
1415 0 : if (new_exe_file) {
1416 : /*
1417 : * We expect the caller (i.e., sys_execve) to already denied
1418 : * write access, so this is unlikely to fail.
1419 : */
1420 0 : if (unlikely(deny_write_access(new_exe_file)))
1421 : return -EACCES;
1422 : get_file(new_exe_file);
1423 : }
1424 0 : rcu_assign_pointer(mm->exe_file, new_exe_file);
1425 0 : if (old_exe_file) {
1426 0 : allow_write_access(old_exe_file);
1427 0 : fput(old_exe_file);
1428 : }
1429 : return 0;
1430 : }
1431 :
1432 : /**
1433 : * replace_mm_exe_file - replace a reference to the mm's executable file
1434 : *
1435 : * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1436 : * dealing with concurrent invocation and without grabbing the mmap lock in
1437 : * write mode.
1438 : *
1439 : * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440 : */
1441 0 : int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442 : {
1443 : struct vm_area_struct *vma;
1444 : struct file *old_exe_file;
1445 0 : int ret = 0;
1446 :
1447 : /* Forbid mm->exe_file change if old file still mapped. */
1448 0 : old_exe_file = get_mm_exe_file(mm);
1449 0 : if (old_exe_file) {
1450 0 : VMA_ITERATOR(vmi, mm, 0);
1451 : mmap_read_lock(mm);
1452 0 : for_each_vma(vmi, vma) {
1453 0 : if (!vma->vm_file)
1454 0 : continue;
1455 0 : if (path_equal(&vma->vm_file->f_path,
1456 0 : &old_exe_file->f_path)) {
1457 : ret = -EBUSY;
1458 : break;
1459 : }
1460 : }
1461 0 : mmap_read_unlock(mm);
1462 0 : fput(old_exe_file);
1463 0 : if (ret)
1464 0 : return ret;
1465 : }
1466 :
1467 : /* set the new file, lockless */
1468 0 : ret = deny_write_access(new_exe_file);
1469 0 : if (ret)
1470 : return -EACCES;
1471 0 : get_file(new_exe_file);
1472 :
1473 0 : old_exe_file = xchg(&mm->exe_file, new_exe_file);
1474 0 : if (old_exe_file) {
1475 : /*
1476 : * Don't race with dup_mmap() getting the file and disallowing
1477 : * write access while someone might open the file writable.
1478 : */
1479 0 : mmap_read_lock(mm);
1480 0 : allow_write_access(old_exe_file);
1481 0 : fput(old_exe_file);
1482 : mmap_read_unlock(mm);
1483 : }
1484 : return 0;
1485 : }
1486 :
1487 : /**
1488 : * get_mm_exe_file - acquire a reference to the mm's executable file
1489 : *
1490 : * Returns %NULL if mm has no associated executable file.
1491 : * User must release file via fput().
1492 : */
1493 0 : struct file *get_mm_exe_file(struct mm_struct *mm)
1494 : {
1495 : struct file *exe_file;
1496 :
1497 : rcu_read_lock();
1498 0 : exe_file = rcu_dereference(mm->exe_file);
1499 0 : if (exe_file && !get_file_rcu(exe_file))
1500 0 : exe_file = NULL;
1501 : rcu_read_unlock();
1502 0 : return exe_file;
1503 : }
1504 :
1505 : /**
1506 : * get_task_exe_file - acquire a reference to the task's executable file
1507 : *
1508 : * Returns %NULL if task's mm (if any) has no associated executable file or
1509 : * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1510 : * User must release file via fput().
1511 : */
1512 0 : struct file *get_task_exe_file(struct task_struct *task)
1513 : {
1514 0 : struct file *exe_file = NULL;
1515 : struct mm_struct *mm;
1516 :
1517 0 : task_lock(task);
1518 0 : mm = task->mm;
1519 0 : if (mm) {
1520 0 : if (!(task->flags & PF_KTHREAD))
1521 0 : exe_file = get_mm_exe_file(mm);
1522 : }
1523 0 : task_unlock(task);
1524 0 : return exe_file;
1525 : }
1526 :
1527 : /**
1528 : * get_task_mm - acquire a reference to the task's mm
1529 : *
1530 : * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1531 : * this kernel workthread has transiently adopted a user mm with use_mm,
1532 : * to do its AIO) is not set and if so returns a reference to it, after
1533 : * bumping up the use count. User must release the mm via mmput()
1534 : * after use. Typically used by /proc and ptrace.
1535 : */
1536 0 : struct mm_struct *get_task_mm(struct task_struct *task)
1537 : {
1538 : struct mm_struct *mm;
1539 :
1540 0 : task_lock(task);
1541 0 : mm = task->mm;
1542 0 : if (mm) {
1543 0 : if (task->flags & PF_KTHREAD)
1544 : mm = NULL;
1545 : else
1546 : mmget(mm);
1547 : }
1548 0 : task_unlock(task);
1549 0 : return mm;
1550 : }
1551 : EXPORT_SYMBOL_GPL(get_task_mm);
1552 :
1553 0 : struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1554 : {
1555 : struct mm_struct *mm;
1556 : int err;
1557 :
1558 0 : err = down_read_killable(&task->signal->exec_update_lock);
1559 0 : if (err)
1560 0 : return ERR_PTR(err);
1561 :
1562 0 : mm = get_task_mm(task);
1563 0 : if (mm && mm != current->mm &&
1564 0 : !ptrace_may_access(task, mode)) {
1565 : mmput(mm);
1566 : mm = ERR_PTR(-EACCES);
1567 : }
1568 0 : up_read(&task->signal->exec_update_lock);
1569 :
1570 0 : return mm;
1571 : }
1572 :
1573 : static void complete_vfork_done(struct task_struct *tsk)
1574 : {
1575 : struct completion *vfork;
1576 :
1577 160 : task_lock(tsk);
1578 160 : vfork = tsk->vfork_done;
1579 160 : if (likely(vfork)) {
1580 160 : tsk->vfork_done = NULL;
1581 160 : complete(vfork);
1582 : }
1583 160 : task_unlock(tsk);
1584 : }
1585 :
1586 0 : static int wait_for_vfork_done(struct task_struct *child,
1587 : struct completion *vfork)
1588 : {
1589 0 : unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1590 : int killed;
1591 :
1592 : cgroup_enter_frozen();
1593 0 : killed = wait_for_completion_state(vfork, state);
1594 0 : cgroup_leave_frozen(false);
1595 :
1596 0 : if (killed) {
1597 0 : task_lock(child);
1598 0 : child->vfork_done = NULL;
1599 0 : task_unlock(child);
1600 : }
1601 :
1602 0 : put_task_struct(child);
1603 0 : return killed;
1604 : }
1605 :
1606 : /* Please note the differences between mmput and mm_release.
1607 : * mmput is called whenever we stop holding onto a mm_struct,
1608 : * error success whatever.
1609 : *
1610 : * mm_release is called after a mm_struct has been removed
1611 : * from the current process.
1612 : *
1613 : * This difference is important for error handling, when we
1614 : * only half set up a mm_struct for a new process and need to restore
1615 : * the old one. Because we mmput the new mm_struct before
1616 : * restoring the old one. . .
1617 : * Eric Biederman 10 January 1998
1618 : */
1619 160 : static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1620 : {
1621 160 : uprobe_free_utask(tsk);
1622 :
1623 : /* Get rid of any cached register state */
1624 160 : deactivate_mm(tsk, mm);
1625 :
1626 : /*
1627 : * Signal userspace if we're not exiting with a core dump
1628 : * because we want to leave the value intact for debugging
1629 : * purposes.
1630 : */
1631 160 : if (tsk->clear_child_tid) {
1632 0 : if (atomic_read(&mm->mm_users) > 1) {
1633 : /*
1634 : * We don't check the error code - if userspace has
1635 : * not set up a proper pointer then tough luck.
1636 : */
1637 0 : put_user(0, tsk->clear_child_tid);
1638 0 : do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1639 : 1, NULL, NULL, 0, 0);
1640 : }
1641 0 : tsk->clear_child_tid = NULL;
1642 : }
1643 :
1644 : /*
1645 : * All done, finally we can wake up parent and return this mm to him.
1646 : * Also kthread_stop() uses this completion for synchronization.
1647 : */
1648 160 : if (tsk->vfork_done)
1649 160 : complete_vfork_done(tsk);
1650 160 : }
1651 :
1652 160 : void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1653 : {
1654 160 : futex_exit_release(tsk);
1655 160 : mm_release(tsk, mm);
1656 160 : }
1657 :
1658 0 : void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1659 : {
1660 0 : futex_exec_release(tsk);
1661 0 : mm_release(tsk, mm);
1662 0 : }
1663 :
1664 : /**
1665 : * dup_mm() - duplicates an existing mm structure
1666 : * @tsk: the task_struct with which the new mm will be associated.
1667 : * @oldmm: the mm to duplicate.
1668 : *
1669 : * Allocates a new mm structure and duplicates the provided @oldmm structure
1670 : * content into it.
1671 : *
1672 : * Return: the duplicated mm or NULL on failure.
1673 : */
1674 0 : static struct mm_struct *dup_mm(struct task_struct *tsk,
1675 : struct mm_struct *oldmm)
1676 : {
1677 : struct mm_struct *mm;
1678 : int err;
1679 :
1680 0 : mm = allocate_mm();
1681 0 : if (!mm)
1682 : goto fail_nomem;
1683 :
1684 0 : memcpy(mm, oldmm, sizeof(*mm));
1685 :
1686 0 : if (!mm_init(mm, tsk, mm->user_ns))
1687 : goto fail_nomem;
1688 :
1689 0 : err = dup_mmap(mm, oldmm);
1690 0 : if (err)
1691 : goto free_pt;
1692 :
1693 0 : mm->hiwater_rss = get_mm_rss(mm);
1694 0 : mm->hiwater_vm = mm->total_vm;
1695 :
1696 0 : if (mm->binfmt && !try_module_get(mm->binfmt->module))
1697 : goto free_pt;
1698 :
1699 : return mm;
1700 :
1701 : free_pt:
1702 : /* don't put binfmt in mmput, we haven't got module yet */
1703 0 : mm->binfmt = NULL;
1704 0 : mm_init_owner(mm, NULL);
1705 : mmput(mm);
1706 :
1707 : fail_nomem:
1708 : return NULL;
1709 : }
1710 :
1711 175 : static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1712 : {
1713 : struct mm_struct *mm, *oldmm;
1714 :
1715 175 : tsk->min_flt = tsk->maj_flt = 0;
1716 175 : tsk->nvcsw = tsk->nivcsw = 0;
1717 : #ifdef CONFIG_DETECT_HUNG_TASK
1718 : tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1719 : tsk->last_switch_time = 0;
1720 : #endif
1721 :
1722 175 : tsk->mm = NULL;
1723 175 : tsk->active_mm = NULL;
1724 :
1725 : /*
1726 : * Are we cloning a kernel thread?
1727 : *
1728 : * We need to steal a active VM for that..
1729 : */
1730 175 : oldmm = current->mm;
1731 175 : if (!oldmm)
1732 : return 0;
1733 :
1734 0 : if (clone_flags & CLONE_VM) {
1735 0 : mmget(oldmm);
1736 0 : mm = oldmm;
1737 : } else {
1738 0 : mm = dup_mm(tsk, current->mm);
1739 0 : if (!mm)
1740 : return -ENOMEM;
1741 : }
1742 :
1743 0 : tsk->mm = mm;
1744 0 : tsk->active_mm = mm;
1745 0 : sched_mm_cid_fork(tsk);
1746 0 : return 0;
1747 : }
1748 :
1749 175 : static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1750 : {
1751 175 : struct fs_struct *fs = current->fs;
1752 175 : if (clone_flags & CLONE_FS) {
1753 : /* tsk->fs is already what we want */
1754 350 : spin_lock(&fs->lock);
1755 175 : if (fs->in_exec) {
1756 0 : spin_unlock(&fs->lock);
1757 : return -EAGAIN;
1758 : }
1759 175 : fs->users++;
1760 350 : spin_unlock(&fs->lock);
1761 : return 0;
1762 : }
1763 0 : tsk->fs = copy_fs_struct(fs);
1764 0 : if (!tsk->fs)
1765 : return -ENOMEM;
1766 : return 0;
1767 : }
1768 :
1769 175 : static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1770 : int no_files)
1771 : {
1772 : struct files_struct *oldf, *newf;
1773 175 : int error = 0;
1774 :
1775 : /*
1776 : * A background process may not have any files ...
1777 : */
1778 175 : oldf = current->files;
1779 175 : if (!oldf)
1780 : goto out;
1781 :
1782 175 : if (no_files) {
1783 0 : tsk->files = NULL;
1784 : goto out;
1785 : }
1786 :
1787 175 : if (clone_flags & CLONE_FILES) {
1788 174 : atomic_inc(&oldf->count);
1789 : goto out;
1790 : }
1791 :
1792 1 : newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1793 1 : if (!newf)
1794 : goto out;
1795 :
1796 1 : tsk->files = newf;
1797 1 : error = 0;
1798 : out:
1799 175 : return error;
1800 : }
1801 :
1802 175 : static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803 : {
1804 : struct sighand_struct *sig;
1805 :
1806 175 : if (clone_flags & CLONE_SIGHAND) {
1807 0 : refcount_inc(¤t->sighand->count);
1808 0 : return 0;
1809 : }
1810 175 : sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811 175 : RCU_INIT_POINTER(tsk->sighand, sig);
1812 175 : if (!sig)
1813 : return -ENOMEM;
1814 :
1815 350 : refcount_set(&sig->count, 1);
1816 350 : spin_lock_irq(¤t->sighand->siglock);
1817 525 : memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818 350 : spin_unlock_irq(¤t->sighand->siglock);
1819 :
1820 : /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821 175 : if (clone_flags & CLONE_CLEAR_SIGHAND)
1822 0 : flush_signal_handlers(tsk, 0);
1823 :
1824 : return 0;
1825 : }
1826 :
1827 160 : void __cleanup_sighand(struct sighand_struct *sighand)
1828 : {
1829 320 : if (refcount_dec_and_test(&sighand->count)) {
1830 160 : signalfd_cleanup(sighand);
1831 : /*
1832 : * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833 : * without an RCU grace period, see __lock_task_sighand().
1834 : */
1835 160 : kmem_cache_free(sighand_cachep, sighand);
1836 : }
1837 160 : }
1838 :
1839 : /*
1840 : * Initialize POSIX timer handling for a thread group.
1841 : */
1842 : static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843 : {
1844 175 : struct posix_cputimers *pct = &sig->posix_cputimers;
1845 : unsigned long cpu_limit;
1846 :
1847 175 : cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848 175 : posix_cputimers_group_init(pct, cpu_limit);
1849 : }
1850 :
1851 175 : static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852 : {
1853 : struct signal_struct *sig;
1854 :
1855 175 : if (clone_flags & CLONE_THREAD)
1856 : return 0;
1857 :
1858 350 : sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859 175 : tsk->signal = sig;
1860 175 : if (!sig)
1861 : return -ENOMEM;
1862 :
1863 175 : sig->nr_threads = 1;
1864 175 : sig->quick_threads = 1;
1865 350 : atomic_set(&sig->live, 1);
1866 350 : refcount_set(&sig->sigcnt, 1);
1867 :
1868 : /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869 175 : sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870 175 : tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871 :
1872 175 : init_waitqueue_head(&sig->wait_chldexit);
1873 175 : sig->curr_target = tsk;
1874 350 : init_sigpending(&sig->shared_pending);
1875 175 : INIT_HLIST_HEAD(&sig->multiprocess);
1876 350 : seqlock_init(&sig->stats_lock);
1877 350 : prev_cputime_init(&sig->prev_cputime);
1878 :
1879 : #ifdef CONFIG_POSIX_TIMERS
1880 350 : INIT_LIST_HEAD(&sig->posix_timers);
1881 175 : hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882 175 : sig->real_timer.function = it_real_fn;
1883 : #endif
1884 :
1885 175 : task_lock(current->group_leader);
1886 525 : memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887 350 : task_unlock(current->group_leader);
1888 :
1889 175 : posix_cpu_timers_init_group(sig);
1890 :
1891 : tty_audit_fork(sig);
1892 : sched_autogroup_fork(sig);
1893 :
1894 175 : sig->oom_score_adj = current->signal->oom_score_adj;
1895 175 : sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896 :
1897 175 : mutex_init(&sig->cred_guard_mutex);
1898 175 : init_rwsem(&sig->exec_update_lock);
1899 :
1900 175 : return 0;
1901 : }
1902 :
1903 175 : static void copy_seccomp(struct task_struct *p)
1904 : {
1905 : #ifdef CONFIG_SECCOMP
1906 : /*
1907 : * Must be called with sighand->lock held, which is common to
1908 : * all threads in the group. Holding cred_guard_mutex is not
1909 : * needed because this new task is not yet running and cannot
1910 : * be racing exec.
1911 : */
1912 175 : assert_spin_locked(¤t->sighand->siglock);
1913 :
1914 : /* Ref-count the new filter user, and assign it. */
1915 175 : get_seccomp_filter(current);
1916 175 : p->seccomp = current->seccomp;
1917 :
1918 : /*
1919 : * Explicitly enable no_new_privs here in case it got set
1920 : * between the task_struct being duplicated and holding the
1921 : * sighand lock. The seccomp state and nnp must be in sync.
1922 : */
1923 350 : if (task_no_new_privs(current))
1924 : task_set_no_new_privs(p);
1925 :
1926 : /*
1927 : * If the parent gained a seccomp mode after copying thread
1928 : * flags and between before we held the sighand lock, we have
1929 : * to manually enable the seccomp thread flag here.
1930 : */
1931 175 : if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932 0 : set_task_syscall_work(p, SECCOMP);
1933 : #endif
1934 175 : }
1935 :
1936 0 : SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937 : {
1938 0 : current->clear_child_tid = tidptr;
1939 :
1940 0 : return task_pid_vnr(current);
1941 : }
1942 :
1943 : static void rt_mutex_init_task(struct task_struct *p)
1944 : {
1945 : raw_spin_lock_init(&p->pi_lock);
1946 : #ifdef CONFIG_RT_MUTEXES
1947 175 : p->pi_waiters = RB_ROOT_CACHED;
1948 175 : p->pi_top_task = NULL;
1949 175 : p->pi_blocked_on = NULL;
1950 : #endif
1951 : }
1952 :
1953 : static inline void init_task_pid_links(struct task_struct *task)
1954 : {
1955 : enum pid_type type;
1956 :
1957 875 : for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958 1400 : INIT_HLIST_NODE(&task->pid_links[type]);
1959 : }
1960 :
1961 : static inline void
1962 : init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963 : {
1964 0 : if (type == PIDTYPE_PID)
1965 175 : task->thread_pid = pid;
1966 : else
1967 525 : task->signal->pids[type] = pid;
1968 : }
1969 :
1970 : static inline void rcu_copy_process(struct task_struct *p)
1971 : {
1972 : #ifdef CONFIG_PREEMPT_RCU
1973 : p->rcu_read_lock_nesting = 0;
1974 : p->rcu_read_unlock_special.s = 0;
1975 : p->rcu_blocked_node = NULL;
1976 : INIT_LIST_HEAD(&p->rcu_node_entry);
1977 : #endif /* #ifdef CONFIG_PREEMPT_RCU */
1978 : #ifdef CONFIG_TASKS_RCU
1979 : p->rcu_tasks_holdout = false;
1980 : INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981 : p->rcu_tasks_idle_cpu = -1;
1982 : #endif /* #ifdef CONFIG_TASKS_RCU */
1983 : #ifdef CONFIG_TASKS_TRACE_RCU
1984 : p->trc_reader_nesting = 0;
1985 : p->trc_reader_special.s = 0;
1986 : INIT_LIST_HEAD(&p->trc_holdout_list);
1987 : INIT_LIST_HEAD(&p->trc_blkd_node);
1988 : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1989 : }
1990 :
1991 0 : struct pid *pidfd_pid(const struct file *file)
1992 : {
1993 0 : if (file->f_op == &pidfd_fops)
1994 0 : return file->private_data;
1995 :
1996 : return ERR_PTR(-EBADF);
1997 : }
1998 :
1999 0 : static int pidfd_release(struct inode *inode, struct file *file)
2000 : {
2001 0 : struct pid *pid = file->private_data;
2002 :
2003 0 : file->private_data = NULL;
2004 0 : put_pid(pid);
2005 0 : return 0;
2006 : }
2007 :
2008 : #ifdef CONFIG_PROC_FS
2009 : /**
2010 : * pidfd_show_fdinfo - print information about a pidfd
2011 : * @m: proc fdinfo file
2012 : * @f: file referencing a pidfd
2013 : *
2014 : * Pid:
2015 : * This function will print the pid that a given pidfd refers to in the
2016 : * pid namespace of the procfs instance.
2017 : * If the pid namespace of the process is not a descendant of the pid
2018 : * namespace of the procfs instance 0 will be shown as its pid. This is
2019 : * similar to calling getppid() on a process whose parent is outside of
2020 : * its pid namespace.
2021 : *
2022 : * NSpid:
2023 : * If pid namespaces are supported then this function will also print
2024 : * the pid of a given pidfd refers to for all descendant pid namespaces
2025 : * starting from the current pid namespace of the instance, i.e. the
2026 : * Pid field and the first entry in the NSpid field will be identical.
2027 : * If the pid namespace of the process is not a descendant of the pid
2028 : * namespace of the procfs instance 0 will be shown as its first NSpid
2029 : * entry and no others will be shown.
2030 : * Note that this differs from the Pid and NSpid fields in
2031 : * /proc/<pid>/status where Pid and NSpid are always shown relative to
2032 : * the pid namespace of the procfs instance. The difference becomes
2033 : * obvious when sending around a pidfd between pid namespaces from a
2034 : * different branch of the tree, i.e. where no ancestral relation is
2035 : * present between the pid namespaces:
2036 : * - create two new pid namespaces ns1 and ns2 in the initial pid
2037 : * namespace (also take care to create new mount namespaces in the
2038 : * new pid namespace and mount procfs)
2039 : * - create a process with a pidfd in ns1
2040 : * - send pidfd from ns1 to ns2
2041 : * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2042 : * have exactly one entry, which is 0
2043 : */
2044 0 : static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2045 : {
2046 0 : struct pid *pid = f->private_data;
2047 : struct pid_namespace *ns;
2048 0 : pid_t nr = -1;
2049 :
2050 0 : if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2051 0 : ns = proc_pid_ns(file_inode(m->file)->i_sb);
2052 0 : nr = pid_nr_ns(pid, ns);
2053 : }
2054 :
2055 0 : seq_put_decimal_ll(m, "Pid:\t", nr);
2056 :
2057 : #ifdef CONFIG_PID_NS
2058 0 : seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2059 0 : if (nr > 0) {
2060 : int i;
2061 :
2062 : /* If nr is non-zero it means that 'pid' is valid and that
2063 : * ns, i.e. the pid namespace associated with the procfs
2064 : * instance, is in the pid namespace hierarchy of pid.
2065 : * Start at one below the already printed level.
2066 : */
2067 0 : for (i = ns->level + 1; i <= pid->level; i++)
2068 0 : seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2069 : }
2070 : #endif
2071 0 : seq_putc(m, '\n');
2072 0 : }
2073 : #endif
2074 :
2075 : /*
2076 : * Poll support for process exit notification.
2077 : */
2078 0 : static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2079 : {
2080 0 : struct pid *pid = file->private_data;
2081 0 : __poll_t poll_flags = 0;
2082 :
2083 0 : poll_wait(file, &pid->wait_pidfd, pts);
2084 :
2085 : /*
2086 : * Inform pollers only when the whole thread group exits.
2087 : * If the thread group leader exits before all other threads in the
2088 : * group, then poll(2) should block, similar to the wait(2) family.
2089 : */
2090 0 : if (thread_group_exited(pid))
2091 0 : poll_flags = EPOLLIN | EPOLLRDNORM;
2092 :
2093 0 : return poll_flags;
2094 : }
2095 :
2096 : const struct file_operations pidfd_fops = {
2097 : .release = pidfd_release,
2098 : .poll = pidfd_poll,
2099 : #ifdef CONFIG_PROC_FS
2100 : .show_fdinfo = pidfd_show_fdinfo,
2101 : #endif
2102 : };
2103 :
2104 : /**
2105 : * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2106 : * @pid: the struct pid for which to create a pidfd
2107 : * @flags: flags of the new @pidfd
2108 : * @pidfd: the pidfd to return
2109 : *
2110 : * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2111 : * caller's file descriptor table. The pidfd is reserved but not installed yet.
2112 :
2113 : * The helper doesn't perform checks on @pid which makes it useful for pidfds
2114 : * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2115 : * pidfd file are prepared.
2116 : *
2117 : * If this function returns successfully the caller is responsible to either
2118 : * call fd_install() passing the returned pidfd and pidfd file as arguments in
2119 : * order to install the pidfd into its file descriptor table or they must use
2120 : * put_unused_fd() and fput() on the returned pidfd and pidfd file
2121 : * respectively.
2122 : *
2123 : * This function is useful when a pidfd must already be reserved but there
2124 : * might still be points of failure afterwards and the caller wants to ensure
2125 : * that no pidfd is leaked into its file descriptor table.
2126 : *
2127 : * Return: On success, a reserved pidfd is returned from the function and a new
2128 : * pidfd file is returned in the last argument to the function. On
2129 : * error, a negative error code is returned from the function and the
2130 : * last argument remains unchanged.
2131 : */
2132 0 : static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2133 : {
2134 : int pidfd;
2135 : struct file *pidfd_file;
2136 :
2137 0 : if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2138 : return -EINVAL;
2139 :
2140 0 : pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2141 0 : if (pidfd < 0)
2142 : return pidfd;
2143 :
2144 0 : pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2145 0 : flags | O_RDWR | O_CLOEXEC);
2146 0 : if (IS_ERR(pidfd_file)) {
2147 0 : put_unused_fd(pidfd);
2148 0 : return PTR_ERR(pidfd_file);
2149 : }
2150 0 : get_pid(pid); /* held by pidfd_file now */
2151 0 : *ret = pidfd_file;
2152 0 : return pidfd;
2153 : }
2154 :
2155 : /**
2156 : * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2157 : * @pid: the struct pid for which to create a pidfd
2158 : * @flags: flags of the new @pidfd
2159 : * @pidfd: the pidfd to return
2160 : *
2161 : * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2162 : * caller's file descriptor table. The pidfd is reserved but not installed yet.
2163 : *
2164 : * The helper verifies that @pid is used as a thread group leader.
2165 : *
2166 : * If this function returns successfully the caller is responsible to either
2167 : * call fd_install() passing the returned pidfd and pidfd file as arguments in
2168 : * order to install the pidfd into its file descriptor table or they must use
2169 : * put_unused_fd() and fput() on the returned pidfd and pidfd file
2170 : * respectively.
2171 : *
2172 : * This function is useful when a pidfd must already be reserved but there
2173 : * might still be points of failure afterwards and the caller wants to ensure
2174 : * that no pidfd is leaked into its file descriptor table.
2175 : *
2176 : * Return: On success, a reserved pidfd is returned from the function and a new
2177 : * pidfd file is returned in the last argument to the function. On
2178 : * error, a negative error code is returned from the function and the
2179 : * last argument remains unchanged.
2180 : */
2181 0 : int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2182 : {
2183 0 : if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2184 : return -EINVAL;
2185 :
2186 0 : return __pidfd_prepare(pid, flags, ret);
2187 : }
2188 :
2189 : static void __delayed_free_task(struct rcu_head *rhp)
2190 : {
2191 : struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2192 :
2193 : free_task(tsk);
2194 : }
2195 :
2196 : static __always_inline void delayed_free_task(struct task_struct *tsk)
2197 : {
2198 : if (IS_ENABLED(CONFIG_MEMCG))
2199 : call_rcu(&tsk->rcu, __delayed_free_task);
2200 : else
2201 0 : free_task(tsk);
2202 : }
2203 :
2204 175 : static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2205 : {
2206 : /* Skip if kernel thread */
2207 175 : if (!tsk->mm)
2208 : return;
2209 :
2210 : /* Skip if spawning a thread or using vfork */
2211 0 : if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2212 : return;
2213 :
2214 : /* We need to synchronize with __set_oom_adj */
2215 0 : mutex_lock(&oom_adj_mutex);
2216 0 : set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2217 : /* Update the values in case they were changed after copy_signal */
2218 0 : tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2219 0 : tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2220 0 : mutex_unlock(&oom_adj_mutex);
2221 : }
2222 :
2223 : #ifdef CONFIG_RV
2224 : static void rv_task_fork(struct task_struct *p)
2225 : {
2226 : int i;
2227 :
2228 : for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2229 : p->rv[i].da_mon.monitoring = false;
2230 : }
2231 : #else
2232 : #define rv_task_fork(p) do {} while (0)
2233 : #endif
2234 :
2235 : /*
2236 : * This creates a new process as a copy of the old one,
2237 : * but does not actually start it yet.
2238 : *
2239 : * It copies the registers, and all the appropriate
2240 : * parts of the process environment (as per the clone
2241 : * flags). The actual kick-off is left to the caller.
2242 : */
2243 175 : __latent_entropy struct task_struct *copy_process(
2244 : struct pid *pid,
2245 : int trace,
2246 : int node,
2247 : struct kernel_clone_args *args)
2248 : {
2249 175 : int pidfd = -1, retval;
2250 : struct task_struct *p;
2251 : struct multiprocess_signals delayed;
2252 175 : struct file *pidfile = NULL;
2253 175 : const u64 clone_flags = args->flags;
2254 175 : struct nsproxy *nsp = current->nsproxy;
2255 :
2256 : /*
2257 : * Don't allow sharing the root directory with processes in a different
2258 : * namespace
2259 : */
2260 175 : if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2261 : return ERR_PTR(-EINVAL);
2262 :
2263 175 : if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2264 : return ERR_PTR(-EINVAL);
2265 :
2266 : /*
2267 : * Thread groups must share signals as well, and detached threads
2268 : * can only be started up within the thread group.
2269 : */
2270 175 : if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2271 : return ERR_PTR(-EINVAL);
2272 :
2273 : /*
2274 : * Shared signal handlers imply shared VM. By way of the above,
2275 : * thread groups also imply shared VM. Blocking this case allows
2276 : * for various simplifications in other code.
2277 : */
2278 175 : if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2279 : return ERR_PTR(-EINVAL);
2280 :
2281 : /*
2282 : * Siblings of global init remain as zombies on exit since they are
2283 : * not reaped by their parent (swapper). To solve this and to avoid
2284 : * multi-rooted process trees, prevent global and container-inits
2285 : * from creating siblings.
2286 : */
2287 175 : if ((clone_flags & CLONE_PARENT) &&
2288 0 : current->signal->flags & SIGNAL_UNKILLABLE)
2289 : return ERR_PTR(-EINVAL);
2290 :
2291 : /*
2292 : * If the new process will be in a different pid or user namespace
2293 : * do not allow it to share a thread group with the forking task.
2294 : */
2295 175 : if (clone_flags & CLONE_THREAD) {
2296 0 : if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2297 0 : (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2298 : return ERR_PTR(-EINVAL);
2299 : }
2300 :
2301 175 : if (clone_flags & CLONE_PIDFD) {
2302 : /*
2303 : * - CLONE_DETACHED is blocked so that we can potentially
2304 : * reuse it later for CLONE_PIDFD.
2305 : * - CLONE_THREAD is blocked until someone really needs it.
2306 : */
2307 0 : if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2308 : return ERR_PTR(-EINVAL);
2309 : }
2310 :
2311 : /*
2312 : * Force any signals received before this point to be delivered
2313 : * before the fork happens. Collect up signals sent to multiple
2314 : * processes that happen during the fork and delay them so that
2315 : * they appear to happen after the fork.
2316 : */
2317 175 : sigemptyset(&delayed.signal);
2318 175 : INIT_HLIST_NODE(&delayed.node);
2319 :
2320 350 : spin_lock_irq(¤t->sighand->siglock);
2321 175 : if (!(clone_flags & CLONE_THREAD))
2322 175 : hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2323 175 : recalc_sigpending();
2324 350 : spin_unlock_irq(¤t->sighand->siglock);
2325 175 : retval = -ERESTARTNOINTR;
2326 350 : if (task_sigpending(current))
2327 : goto fork_out;
2328 :
2329 175 : retval = -ENOMEM;
2330 175 : p = dup_task_struct(current, node);
2331 175 : if (!p)
2332 : goto fork_out;
2333 175 : p->flags &= ~PF_KTHREAD;
2334 175 : if (args->kthread)
2335 174 : p->flags |= PF_KTHREAD;
2336 175 : if (args->user_worker) {
2337 : /*
2338 : * Mark us a user worker, and block any signal that isn't
2339 : * fatal or STOP
2340 : */
2341 0 : p->flags |= PF_USER_WORKER;
2342 0 : siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2343 : }
2344 175 : if (args->io_thread)
2345 0 : p->flags |= PF_IO_WORKER;
2346 :
2347 175 : if (args->name)
2348 173 : strscpy_pad(p->comm, args->name, sizeof(p->comm));
2349 :
2350 175 : p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2351 : /*
2352 : * Clear TID on mm_release()?
2353 : */
2354 175 : p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2355 :
2356 175 : ftrace_graph_init_task(p);
2357 :
2358 175 : rt_mutex_init_task(p);
2359 :
2360 : lockdep_assert_irqs_enabled();
2361 : #ifdef CONFIG_PROVE_LOCKING
2362 : DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2363 : #endif
2364 175 : retval = copy_creds(p, clone_flags);
2365 175 : if (retval < 0)
2366 : goto bad_fork_free;
2367 :
2368 175 : retval = -EAGAIN;
2369 525 : if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2370 0 : if (p->real_cred->user != INIT_USER &&
2371 0 : !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2372 : goto bad_fork_cleanup_count;
2373 : }
2374 175 : current->flags &= ~PF_NPROC_EXCEEDED;
2375 :
2376 : /*
2377 : * If multiple threads are within copy_process(), then this check
2378 : * triggers too late. This doesn't hurt, the check is only there
2379 : * to stop root fork bombs.
2380 : */
2381 175 : retval = -EAGAIN;
2382 175 : if (data_race(nr_threads >= max_threads))
2383 : goto bad_fork_cleanup_count;
2384 :
2385 175 : delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2386 175 : p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2387 175 : p->flags |= PF_FORKNOEXEC;
2388 350 : INIT_LIST_HEAD(&p->children);
2389 350 : INIT_LIST_HEAD(&p->sibling);
2390 175 : rcu_copy_process(p);
2391 175 : p->vfork_done = NULL;
2392 175 : spin_lock_init(&p->alloc_lock);
2393 :
2394 350 : init_sigpending(&p->pending);
2395 :
2396 175 : p->utime = p->stime = p->gtime = 0;
2397 : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2398 : p->utimescaled = p->stimescaled = 0;
2399 : #endif
2400 350 : prev_cputime_init(&p->prev_cputime);
2401 :
2402 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2403 : seqcount_init(&p->vtime.seqcount);
2404 : p->vtime.starttime = 0;
2405 : p->vtime.state = VTIME_INACTIVE;
2406 : #endif
2407 :
2408 : #ifdef CONFIG_IO_URING
2409 175 : p->io_uring = NULL;
2410 : #endif
2411 :
2412 : #if defined(SPLIT_RSS_COUNTING)
2413 : memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2414 : #endif
2415 :
2416 175 : p->default_timer_slack_ns = current->timer_slack_ns;
2417 :
2418 : #ifdef CONFIG_PSI
2419 : p->psi_flags = 0;
2420 : #endif
2421 :
2422 175 : task_io_accounting_init(&p->ioac);
2423 175 : acct_clear_integrals(p);
2424 :
2425 175 : posix_cputimers_init(&p->posix_cputimers);
2426 :
2427 175 : p->io_context = NULL;
2428 175 : audit_set_context(p, NULL);
2429 175 : cgroup_fork(p);
2430 175 : if (args->kthread) {
2431 174 : if (!set_kthread_struct(p))
2432 : goto bad_fork_cleanup_delayacct;
2433 : }
2434 : #ifdef CONFIG_NUMA
2435 : p->mempolicy = mpol_dup(p->mempolicy);
2436 : if (IS_ERR(p->mempolicy)) {
2437 : retval = PTR_ERR(p->mempolicy);
2438 : p->mempolicy = NULL;
2439 : goto bad_fork_cleanup_delayacct;
2440 : }
2441 : #endif
2442 : #ifdef CONFIG_CPUSETS
2443 : p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2444 : p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2445 : seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2446 : #endif
2447 : #ifdef CONFIG_TRACE_IRQFLAGS
2448 : memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2449 : p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2450 : p->irqtrace.softirq_enable_ip = _THIS_IP_;
2451 : p->softirqs_enabled = 1;
2452 : p->softirq_context = 0;
2453 : #endif
2454 :
2455 175 : p->pagefault_disabled = 0;
2456 :
2457 : #ifdef CONFIG_LOCKDEP
2458 : lockdep_init_task(p);
2459 : #endif
2460 :
2461 : #ifdef CONFIG_DEBUG_MUTEXES
2462 : p->blocked_on = NULL; /* not blocked yet */
2463 : #endif
2464 : #ifdef CONFIG_BCACHE
2465 : p->sequential_io = 0;
2466 : p->sequential_io_avg = 0;
2467 : #endif
2468 : #ifdef CONFIG_BPF_SYSCALL
2469 : RCU_INIT_POINTER(p->bpf_storage, NULL);
2470 : p->bpf_ctx = NULL;
2471 : #endif
2472 :
2473 : /* Perform scheduler related setup. Assign this task to a CPU. */
2474 175 : retval = sched_fork(clone_flags, p);
2475 175 : if (retval)
2476 : goto bad_fork_cleanup_policy;
2477 :
2478 175 : retval = perf_event_init_task(p, clone_flags);
2479 : if (retval)
2480 : goto bad_fork_cleanup_policy;
2481 175 : retval = audit_alloc(p);
2482 : if (retval)
2483 : goto bad_fork_cleanup_perf;
2484 : /* copy all the process information */
2485 175 : shm_init_task(p);
2486 175 : retval = security_task_alloc(p, clone_flags);
2487 : if (retval)
2488 : goto bad_fork_cleanup_audit;
2489 175 : retval = copy_semundo(clone_flags, p);
2490 : if (retval)
2491 : goto bad_fork_cleanup_security;
2492 175 : retval = copy_files(clone_flags, p, args->no_files);
2493 175 : if (retval)
2494 : goto bad_fork_cleanup_semundo;
2495 175 : retval = copy_fs(clone_flags, p);
2496 175 : if (retval)
2497 : goto bad_fork_cleanup_files;
2498 175 : retval = copy_sighand(clone_flags, p);
2499 175 : if (retval)
2500 : goto bad_fork_cleanup_fs;
2501 175 : retval = copy_signal(clone_flags, p);
2502 175 : if (retval)
2503 : goto bad_fork_cleanup_sighand;
2504 175 : retval = copy_mm(clone_flags, p);
2505 175 : if (retval)
2506 : goto bad_fork_cleanup_signal;
2507 175 : retval = copy_namespaces(clone_flags, p);
2508 175 : if (retval)
2509 : goto bad_fork_cleanup_mm;
2510 175 : retval = copy_io(clone_flags, p);
2511 175 : if (retval)
2512 : goto bad_fork_cleanup_namespaces;
2513 175 : retval = copy_thread(p, args);
2514 175 : if (retval)
2515 : goto bad_fork_cleanup_io;
2516 :
2517 175 : stackleak_task_init(p);
2518 :
2519 175 : if (pid != &init_struct_pid) {
2520 175 : pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2521 : args->set_tid_size);
2522 175 : if (IS_ERR(pid)) {
2523 0 : retval = PTR_ERR(pid);
2524 0 : goto bad_fork_cleanup_thread;
2525 : }
2526 : }
2527 :
2528 : /*
2529 : * This has to happen after we've potentially unshared the file
2530 : * descriptor table (so that the pidfd doesn't leak into the child
2531 : * if the fd table isn't shared).
2532 : */
2533 175 : if (clone_flags & CLONE_PIDFD) {
2534 : /* Note that no task has been attached to @pid yet. */
2535 0 : retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2536 0 : if (retval < 0)
2537 : goto bad_fork_free_pid;
2538 0 : pidfd = retval;
2539 :
2540 0 : retval = put_user(pidfd, args->pidfd);
2541 0 : if (retval)
2542 : goto bad_fork_put_pidfd;
2543 : }
2544 :
2545 : #ifdef CONFIG_BLOCK
2546 175 : p->plug = NULL;
2547 : #endif
2548 175 : futex_init_task(p);
2549 :
2550 : /*
2551 : * sigaltstack should be cleared when sharing the same VM
2552 : */
2553 175 : if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2554 : sas_ss_reset(p);
2555 :
2556 : /*
2557 : * Syscall tracing and stepping should be turned off in the
2558 : * child regardless of CLONE_PTRACE.
2559 : */
2560 175 : user_disable_single_step(p);
2561 350 : clear_task_syscall_work(p, SYSCALL_TRACE);
2562 : #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2563 : clear_task_syscall_work(p, SYSCALL_EMU);
2564 : #endif
2565 175 : clear_tsk_latency_tracing(p);
2566 :
2567 : /* ok, now we should be set up.. */
2568 175 : p->pid = pid_nr(pid);
2569 175 : if (clone_flags & CLONE_THREAD) {
2570 0 : p->group_leader = current->group_leader;
2571 0 : p->tgid = current->tgid;
2572 : } else {
2573 175 : p->group_leader = p;
2574 175 : p->tgid = p->pid;
2575 : }
2576 :
2577 175 : p->nr_dirtied = 0;
2578 175 : p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2579 175 : p->dirty_paused_when = 0;
2580 :
2581 175 : p->pdeath_signal = 0;
2582 350 : INIT_LIST_HEAD(&p->thread_group);
2583 175 : p->task_works = NULL;
2584 175 : clear_posix_cputimers_work(p);
2585 :
2586 : #ifdef CONFIG_KRETPROBES
2587 : p->kretprobe_instances.first = NULL;
2588 : #endif
2589 : #ifdef CONFIG_RETHOOK
2590 : p->rethooks.first = NULL;
2591 : #endif
2592 :
2593 : /*
2594 : * Ensure that the cgroup subsystem policies allow the new process to be
2595 : * forked. It should be noted that the new process's css_set can be changed
2596 : * between here and cgroup_post_fork() if an organisation operation is in
2597 : * progress.
2598 : */
2599 175 : retval = cgroup_can_fork(p, args);
2600 : if (retval)
2601 : goto bad_fork_put_pidfd;
2602 :
2603 : /*
2604 : * Now that the cgroups are pinned, re-clone the parent cgroup and put
2605 : * the new task on the correct runqueue. All this *before* the task
2606 : * becomes visible.
2607 : *
2608 : * This isn't part of ->can_fork() because while the re-cloning is
2609 : * cgroup specific, it unconditionally needs to place the task on a
2610 : * runqueue.
2611 : */
2612 175 : sched_cgroup_fork(p, args);
2613 :
2614 : /*
2615 : * From this point on we must avoid any synchronous user-space
2616 : * communication until we take the tasklist-lock. In particular, we do
2617 : * not want user-space to be able to predict the process start-time by
2618 : * stalling fork(2) after we recorded the start_time but before it is
2619 : * visible to the system.
2620 : */
2621 :
2622 175 : p->start_time = ktime_get_ns();
2623 175 : p->start_boottime = ktime_get_boottime_ns();
2624 :
2625 : /*
2626 : * Make it visible to the rest of the system, but dont wake it up yet.
2627 : * Need tasklist lock for parent etc handling!
2628 : */
2629 175 : write_lock_irq(&tasklist_lock);
2630 :
2631 : /* CLONE_PARENT re-uses the old parent */
2632 175 : if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2633 0 : p->real_parent = current->real_parent;
2634 0 : p->parent_exec_id = current->parent_exec_id;
2635 0 : if (clone_flags & CLONE_THREAD)
2636 0 : p->exit_signal = -1;
2637 : else
2638 0 : p->exit_signal = current->group_leader->exit_signal;
2639 : } else {
2640 175 : p->real_parent = current;
2641 175 : p->parent_exec_id = current->self_exec_id;
2642 175 : p->exit_signal = args->exit_signal;
2643 : }
2644 :
2645 175 : klp_copy_process(p);
2646 :
2647 175 : sched_core_fork(p);
2648 :
2649 350 : spin_lock(¤t->sighand->siglock);
2650 :
2651 : rv_task_fork(p);
2652 :
2653 175 : rseq_fork(p, clone_flags);
2654 :
2655 : /* Don't start children in a dying pid namespace */
2656 175 : if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2657 : retval = -ENOMEM;
2658 : goto bad_fork_cancel_cgroup;
2659 : }
2660 :
2661 : /* Let kill terminate clone/fork in the middle */
2662 175 : if (fatal_signal_pending(current)) {
2663 : retval = -EINTR;
2664 : goto bad_fork_cancel_cgroup;
2665 : }
2666 :
2667 : /* No more failure paths after this point. */
2668 :
2669 : /*
2670 : * Copy seccomp details explicitly here, in case they were changed
2671 : * before holding sighand lock.
2672 : */
2673 175 : copy_seccomp(p);
2674 :
2675 175 : init_task_pid_links(p);
2676 175 : if (likely(p->pid)) {
2677 175 : ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2678 :
2679 350 : init_task_pid(p, PIDTYPE_PID, pid);
2680 175 : if (thread_group_leader(p)) {
2681 350 : init_task_pid(p, PIDTYPE_TGID, pid);
2682 525 : init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2683 525 : init_task_pid(p, PIDTYPE_SID, task_session(current));
2684 :
2685 175 : if (is_child_reaper(pid)) {
2686 1 : ns_of_pid(pid)->child_reaper = p;
2687 1 : p->signal->flags |= SIGNAL_UNKILLABLE;
2688 : }
2689 175 : p->signal->shared_pending.signal = delayed.signal;
2690 525 : p->signal->tty = tty_kref_get(current->signal->tty);
2691 : /*
2692 : * Inherit has_child_subreaper flag under the same
2693 : * tasklist_lock with adding child to the process tree
2694 : * for propagate_has_child_subreaper optimization.
2695 : */
2696 175 : p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2697 : p->real_parent->signal->is_child_subreaper;
2698 350 : list_add_tail(&p->sibling, &p->real_parent->children);
2699 350 : list_add_tail_rcu(&p->tasks, &init_task.tasks);
2700 175 : attach_pid(p, PIDTYPE_TGID);
2701 175 : attach_pid(p, PIDTYPE_PGID);
2702 175 : attach_pid(p, PIDTYPE_SID);
2703 175 : __this_cpu_inc(process_counts);
2704 : } else {
2705 0 : current->signal->nr_threads++;
2706 0 : current->signal->quick_threads++;
2707 0 : atomic_inc(¤t->signal->live);
2708 0 : refcount_inc(¤t->signal->sigcnt);
2709 0 : task_join_group_stop(p);
2710 0 : list_add_tail_rcu(&p->thread_group,
2711 0 : &p->group_leader->thread_group);
2712 0 : list_add_tail_rcu(&p->thread_node,
2713 0 : &p->signal->thread_head);
2714 : }
2715 175 : attach_pid(p, PIDTYPE_PID);
2716 175 : nr_threads++;
2717 : }
2718 175 : total_forks++;
2719 175 : hlist_del_init(&delayed.node);
2720 350 : spin_unlock(¤t->sighand->siglock);
2721 175 : syscall_tracepoint_update(p);
2722 175 : write_unlock_irq(&tasklist_lock);
2723 :
2724 175 : if (pidfile)
2725 0 : fd_install(pidfd, pidfile);
2726 :
2727 175 : proc_fork_connector(p);
2728 175 : sched_post_fork(p);
2729 175 : cgroup_post_fork(p, args);
2730 175 : perf_event_fork(p);
2731 :
2732 175 : trace_task_newtask(p, clone_flags);
2733 175 : uprobe_copy_process(p, clone_flags);
2734 175 : user_events_fork(p, clone_flags);
2735 :
2736 175 : copy_oom_score_adj(clone_flags, p);
2737 :
2738 175 : return p;
2739 :
2740 : bad_fork_cancel_cgroup:
2741 0 : sched_core_free(p);
2742 0 : spin_unlock(¤t->sighand->siglock);
2743 0 : write_unlock_irq(&tasklist_lock);
2744 0 : cgroup_cancel_fork(p, args);
2745 : bad_fork_put_pidfd:
2746 0 : if (clone_flags & CLONE_PIDFD) {
2747 0 : fput(pidfile);
2748 0 : put_unused_fd(pidfd);
2749 : }
2750 : bad_fork_free_pid:
2751 0 : if (pid != &init_struct_pid)
2752 0 : free_pid(pid);
2753 : bad_fork_cleanup_thread:
2754 : exit_thread(p);
2755 : bad_fork_cleanup_io:
2756 0 : if (p->io_context)
2757 0 : exit_io_context(p);
2758 : bad_fork_cleanup_namespaces:
2759 0 : exit_task_namespaces(p);
2760 : bad_fork_cleanup_mm:
2761 0 : if (p->mm) {
2762 0 : mm_clear_owner(p->mm, p);
2763 0 : mmput(p->mm);
2764 : }
2765 : bad_fork_cleanup_signal:
2766 0 : if (!(clone_flags & CLONE_THREAD))
2767 0 : free_signal_struct(p->signal);
2768 : bad_fork_cleanup_sighand:
2769 0 : __cleanup_sighand(p->sighand);
2770 : bad_fork_cleanup_fs:
2771 0 : exit_fs(p); /* blocking */
2772 : bad_fork_cleanup_files:
2773 0 : exit_files(p); /* blocking */
2774 : bad_fork_cleanup_semundo:
2775 : exit_sem(p);
2776 : bad_fork_cleanup_security:
2777 : security_task_free(p);
2778 : bad_fork_cleanup_audit:
2779 : audit_free(p);
2780 : bad_fork_cleanup_perf:
2781 : perf_event_free_task(p);
2782 : bad_fork_cleanup_policy:
2783 : lockdep_free_task(p);
2784 : #ifdef CONFIG_NUMA
2785 : mpol_put(p->mempolicy);
2786 : #endif
2787 : bad_fork_cleanup_delayacct:
2788 : delayacct_tsk_free(p);
2789 : bad_fork_cleanup_count:
2790 0 : dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2791 0 : exit_creds(p);
2792 : bad_fork_free:
2793 0 : WRITE_ONCE(p->__state, TASK_DEAD);
2794 0 : exit_task_stack_account(p);
2795 0 : put_task_stack(p);
2796 : delayed_free_task(p);
2797 : fork_out:
2798 0 : spin_lock_irq(¤t->sighand->siglock);
2799 0 : hlist_del_init(&delayed.node);
2800 0 : spin_unlock_irq(¤t->sighand->siglock);
2801 0 : return ERR_PTR(retval);
2802 : }
2803 :
2804 : static inline void init_idle_pids(struct task_struct *idle)
2805 : {
2806 : enum pid_type type;
2807 :
2808 0 : for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2809 0 : INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2810 0 : init_task_pid(idle, type, &init_struct_pid);
2811 : }
2812 : }
2813 :
2814 0 : static int idle_dummy(void *dummy)
2815 : {
2816 : /* This function is never called */
2817 0 : return 0;
2818 : }
2819 :
2820 0 : struct task_struct * __init fork_idle(int cpu)
2821 : {
2822 : struct task_struct *task;
2823 0 : struct kernel_clone_args args = {
2824 : .flags = CLONE_VM,
2825 : .fn = &idle_dummy,
2826 : .fn_arg = NULL,
2827 : .kthread = 1,
2828 : .idle = 1,
2829 : };
2830 :
2831 0 : task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2832 0 : if (!IS_ERR(task)) {
2833 0 : init_idle_pids(task);
2834 0 : init_idle(task, cpu);
2835 : }
2836 :
2837 0 : return task;
2838 : }
2839 :
2840 : /*
2841 : * This is like kernel_clone(), but shaved down and tailored to just
2842 : * creating io_uring workers. It returns a created task, or an error pointer.
2843 : * The returned task is inactive, and the caller must fire it up through
2844 : * wake_up_new_task(p). All signals are blocked in the created task.
2845 : */
2846 0 : struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2847 : {
2848 0 : unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2849 : CLONE_IO;
2850 0 : struct kernel_clone_args args = {
2851 : .flags = ((lower_32_bits(flags) | CLONE_VM |
2852 : CLONE_UNTRACED) & ~CSIGNAL),
2853 : .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2854 : .fn = fn,
2855 : .fn_arg = arg,
2856 : .io_thread = 1,
2857 : .user_worker = 1,
2858 : };
2859 :
2860 0 : return copy_process(NULL, 0, node, &args);
2861 : }
2862 :
2863 : /*
2864 : * Ok, this is the main fork-routine.
2865 : *
2866 : * It copies the process, and if successful kick-starts
2867 : * it and waits for it to finish using the VM if required.
2868 : *
2869 : * args->exit_signal is expected to be checked for sanity by the caller.
2870 : */
2871 175 : pid_t kernel_clone(struct kernel_clone_args *args)
2872 : {
2873 175 : u64 clone_flags = args->flags;
2874 : struct completion vfork;
2875 : struct pid *pid;
2876 : struct task_struct *p;
2877 175 : int trace = 0;
2878 : pid_t nr;
2879 :
2880 : /*
2881 : * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2882 : * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2883 : * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2884 : * field in struct clone_args and it still doesn't make sense to have
2885 : * them both point at the same memory location. Performing this check
2886 : * here has the advantage that we don't need to have a separate helper
2887 : * to check for legacy clone().
2888 : */
2889 175 : if ((args->flags & CLONE_PIDFD) &&
2890 0 : (args->flags & CLONE_PARENT_SETTID) &&
2891 0 : (args->pidfd == args->parent_tid))
2892 : return -EINVAL;
2893 :
2894 : /*
2895 : * Determine whether and which event to report to ptracer. When
2896 : * called from kernel_thread or CLONE_UNTRACED is explicitly
2897 : * requested, no event is reported; otherwise, report if the event
2898 : * for the type of forking is enabled.
2899 : */
2900 175 : if (!(clone_flags & CLONE_UNTRACED)) {
2901 0 : if (clone_flags & CLONE_VFORK)
2902 : trace = PTRACE_EVENT_VFORK;
2903 0 : else if (args->exit_signal != SIGCHLD)
2904 : trace = PTRACE_EVENT_CLONE;
2905 : else
2906 0 : trace = PTRACE_EVENT_FORK;
2907 :
2908 0 : if (likely(!ptrace_event_enabled(current, trace)))
2909 0 : trace = 0;
2910 : }
2911 :
2912 175 : p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2913 175 : add_latent_entropy();
2914 :
2915 175 : if (IS_ERR(p))
2916 0 : return PTR_ERR(p);
2917 :
2918 : /*
2919 : * Do this prior waking up the new thread - the thread pointer
2920 : * might get invalid after that point, if the thread exits quickly.
2921 : */
2922 175 : trace_sched_process_fork(current, p);
2923 :
2924 175 : pid = get_task_pid(p, PIDTYPE_PID);
2925 175 : nr = pid_vnr(pid);
2926 :
2927 175 : if (clone_flags & CLONE_PARENT_SETTID)
2928 0 : put_user(nr, args->parent_tid);
2929 :
2930 175 : if (clone_flags & CLONE_VFORK) {
2931 0 : p->vfork_done = &vfork;
2932 0 : init_completion(&vfork);
2933 : get_task_struct(p);
2934 : }
2935 :
2936 : if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2937 : /* lock the task to synchronize with memcg migration */
2938 : task_lock(p);
2939 : lru_gen_add_mm(p->mm);
2940 : task_unlock(p);
2941 : }
2942 :
2943 175 : wake_up_new_task(p);
2944 :
2945 : /* forking complete and child started to run, tell ptracer */
2946 175 : if (unlikely(trace))
2947 0 : ptrace_event_pid(trace, pid);
2948 :
2949 175 : if (clone_flags & CLONE_VFORK) {
2950 0 : if (!wait_for_vfork_done(p, &vfork))
2951 0 : ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2952 : }
2953 :
2954 175 : put_pid(pid);
2955 175 : return nr;
2956 : }
2957 :
2958 : /*
2959 : * Create a kernel thread.
2960 : */
2961 174 : pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2962 : unsigned long flags)
2963 : {
2964 522 : struct kernel_clone_args args = {
2965 174 : .flags = ((lower_32_bits(flags) | CLONE_VM |
2966 174 : CLONE_UNTRACED) & ~CSIGNAL),
2967 174 : .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2968 : .fn = fn,
2969 : .fn_arg = arg,
2970 : .name = name,
2971 : .kthread = 1,
2972 : };
2973 :
2974 174 : return kernel_clone(&args);
2975 : }
2976 :
2977 : /*
2978 : * Create a user mode thread.
2979 : */
2980 1 : pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2981 : {
2982 3 : struct kernel_clone_args args = {
2983 1 : .flags = ((lower_32_bits(flags) | CLONE_VM |
2984 1 : CLONE_UNTRACED) & ~CSIGNAL),
2985 1 : .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2986 : .fn = fn,
2987 : .fn_arg = arg,
2988 : };
2989 :
2990 1 : return kernel_clone(&args);
2991 : }
2992 :
2993 : #ifdef __ARCH_WANT_SYS_FORK
2994 0 : SYSCALL_DEFINE0(fork)
2995 : {
2996 : #ifdef CONFIG_MMU
2997 0 : struct kernel_clone_args args = {
2998 : .exit_signal = SIGCHLD,
2999 : };
3000 :
3001 0 : return kernel_clone(&args);
3002 : #else
3003 : /* can not support in nommu mode */
3004 : return -EINVAL;
3005 : #endif
3006 : }
3007 : #endif
3008 :
3009 : #ifdef __ARCH_WANT_SYS_VFORK
3010 0 : SYSCALL_DEFINE0(vfork)
3011 : {
3012 0 : struct kernel_clone_args args = {
3013 : .flags = CLONE_VFORK | CLONE_VM,
3014 : .exit_signal = SIGCHLD,
3015 : };
3016 :
3017 0 : return kernel_clone(&args);
3018 : }
3019 : #endif
3020 :
3021 : #ifdef __ARCH_WANT_SYS_CLONE
3022 : #ifdef CONFIG_CLONE_BACKWARDS
3023 : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3024 : int __user *, parent_tidptr,
3025 : unsigned long, tls,
3026 : int __user *, child_tidptr)
3027 : #elif defined(CONFIG_CLONE_BACKWARDS2)
3028 : SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3029 : int __user *, parent_tidptr,
3030 : int __user *, child_tidptr,
3031 : unsigned long, tls)
3032 : #elif defined(CONFIG_CLONE_BACKWARDS3)
3033 : SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3034 : int, stack_size,
3035 : int __user *, parent_tidptr,
3036 : int __user *, child_tidptr,
3037 : unsigned long, tls)
3038 : #else
3039 0 : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3040 : int __user *, parent_tidptr,
3041 : int __user *, child_tidptr,
3042 : unsigned long, tls)
3043 : #endif
3044 : {
3045 0 : struct kernel_clone_args args = {
3046 0 : .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3047 : .pidfd = parent_tidptr,
3048 : .child_tid = child_tidptr,
3049 : .parent_tid = parent_tidptr,
3050 0 : .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3051 : .stack = newsp,
3052 : .tls = tls,
3053 : };
3054 :
3055 0 : return kernel_clone(&args);
3056 : }
3057 : #endif
3058 :
3059 : #ifdef __ARCH_WANT_SYS_CLONE3
3060 :
3061 0 : noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3062 : struct clone_args __user *uargs,
3063 : size_t usize)
3064 : {
3065 : int err;
3066 : struct clone_args args;
3067 0 : pid_t *kset_tid = kargs->set_tid;
3068 :
3069 : BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3070 : CLONE_ARGS_SIZE_VER0);
3071 : BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3072 : CLONE_ARGS_SIZE_VER1);
3073 : BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3074 : CLONE_ARGS_SIZE_VER2);
3075 : BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3076 :
3077 0 : if (unlikely(usize > PAGE_SIZE))
3078 : return -E2BIG;
3079 0 : if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3080 : return -EINVAL;
3081 :
3082 0 : err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3083 0 : if (err)
3084 : return err;
3085 :
3086 0 : if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3087 : return -EINVAL;
3088 :
3089 0 : if (unlikely(!args.set_tid && args.set_tid_size > 0))
3090 : return -EINVAL;
3091 :
3092 0 : if (unlikely(args.set_tid && args.set_tid_size == 0))
3093 : return -EINVAL;
3094 :
3095 : /*
3096 : * Verify that higher 32bits of exit_signal are unset and that
3097 : * it is a valid signal
3098 : */
3099 0 : if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3100 : !valid_signal(args.exit_signal)))
3101 : return -EINVAL;
3102 :
3103 0 : if ((args.flags & CLONE_INTO_CGROUP) &&
3104 0 : (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3105 : return -EINVAL;
3106 :
3107 0 : *kargs = (struct kernel_clone_args){
3108 : .flags = args.flags,
3109 0 : .pidfd = u64_to_user_ptr(args.pidfd),
3110 0 : .child_tid = u64_to_user_ptr(args.child_tid),
3111 0 : .parent_tid = u64_to_user_ptr(args.parent_tid),
3112 : .exit_signal = args.exit_signal,
3113 0 : .stack = args.stack,
3114 0 : .stack_size = args.stack_size,
3115 0 : .tls = args.tls,
3116 : .set_tid_size = args.set_tid_size,
3117 0 : .cgroup = args.cgroup,
3118 : };
3119 :
3120 0 : if (args.set_tid &&
3121 0 : copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3122 : (kargs->set_tid_size * sizeof(pid_t))))
3123 : return -EFAULT;
3124 :
3125 0 : kargs->set_tid = kset_tid;
3126 :
3127 0 : return 0;
3128 : }
3129 :
3130 : /**
3131 : * clone3_stack_valid - check and prepare stack
3132 : * @kargs: kernel clone args
3133 : *
3134 : * Verify that the stack arguments userspace gave us are sane.
3135 : * In addition, set the stack direction for userspace since it's easy for us to
3136 : * determine.
3137 : */
3138 0 : static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3139 : {
3140 0 : if (kargs->stack == 0) {
3141 0 : if (kargs->stack_size > 0)
3142 : return false;
3143 : } else {
3144 0 : if (kargs->stack_size == 0)
3145 : return false;
3146 :
3147 0 : if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3148 : return false;
3149 :
3150 : #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3151 0 : kargs->stack += kargs->stack_size;
3152 : #endif
3153 : }
3154 :
3155 : return true;
3156 : }
3157 :
3158 0 : static bool clone3_args_valid(struct kernel_clone_args *kargs)
3159 : {
3160 : /* Verify that no unknown flags are passed along. */
3161 0 : if (kargs->flags &
3162 : ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3163 : return false;
3164 :
3165 : /*
3166 : * - make the CLONE_DETACHED bit reusable for clone3
3167 : * - make the CSIGNAL bits reusable for clone3
3168 : */
3169 0 : if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3170 : return false;
3171 :
3172 0 : if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3173 : (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3174 : return false;
3175 :
3176 0 : if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3177 0 : kargs->exit_signal)
3178 : return false;
3179 :
3180 0 : if (!clone3_stack_valid(kargs))
3181 : return false;
3182 :
3183 0 : return true;
3184 : }
3185 :
3186 : /**
3187 : * clone3 - create a new process with specific properties
3188 : * @uargs: argument structure
3189 : * @size: size of @uargs
3190 : *
3191 : * clone3() is the extensible successor to clone()/clone2().
3192 : * It takes a struct as argument that is versioned by its size.
3193 : *
3194 : * Return: On success, a positive PID for the child process.
3195 : * On error, a negative errno number.
3196 : */
3197 0 : SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3198 : {
3199 : int err;
3200 :
3201 : struct kernel_clone_args kargs;
3202 : pid_t set_tid[MAX_PID_NS_LEVEL];
3203 :
3204 0 : kargs.set_tid = set_tid;
3205 :
3206 0 : err = copy_clone_args_from_user(&kargs, uargs, size);
3207 0 : if (err)
3208 0 : return err;
3209 :
3210 0 : if (!clone3_args_valid(&kargs))
3211 : return -EINVAL;
3212 :
3213 0 : return kernel_clone(&kargs);
3214 : }
3215 : #endif
3216 :
3217 0 : void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3218 : {
3219 : struct task_struct *leader, *parent, *child;
3220 : int res;
3221 :
3222 0 : read_lock(&tasklist_lock);
3223 0 : leader = top = top->group_leader;
3224 : down:
3225 0 : for_each_thread(leader, parent) {
3226 0 : list_for_each_entry(child, &parent->children, sibling) {
3227 0 : res = visitor(child, data);
3228 0 : if (res) {
3229 0 : if (res < 0)
3230 : goto out;
3231 : leader = child;
3232 : goto down;
3233 : }
3234 : up:
3235 : ;
3236 : }
3237 : }
3238 :
3239 0 : if (leader != top) {
3240 0 : child = leader;
3241 0 : parent = child->real_parent;
3242 0 : leader = parent->group_leader;
3243 0 : goto up;
3244 : }
3245 : out:
3246 0 : read_unlock(&tasklist_lock);
3247 0 : }
3248 :
3249 : #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3250 : #define ARCH_MIN_MMSTRUCT_ALIGN 0
3251 : #endif
3252 :
3253 30 : static void sighand_ctor(void *data)
3254 : {
3255 30 : struct sighand_struct *sighand = data;
3256 :
3257 30 : spin_lock_init(&sighand->siglock);
3258 30 : init_waitqueue_head(&sighand->signalfd_wqh);
3259 30 : }
3260 :
3261 1 : void __init mm_cache_init(void)
3262 : {
3263 : unsigned int mm_size;
3264 :
3265 : /*
3266 : * The mm_cpumask is located at the end of mm_struct, and is
3267 : * dynamically sized based on the maximum CPU number this system
3268 : * can have, taking hotplug into account (nr_cpu_ids).
3269 : */
3270 1 : mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3271 :
3272 1 : mm_cachep = kmem_cache_create_usercopy("mm_struct",
3273 : mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3274 : SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3275 : offsetof(struct mm_struct, saved_auxv),
3276 : sizeof_field(struct mm_struct, saved_auxv),
3277 : NULL);
3278 1 : }
3279 :
3280 1 : void __init proc_caches_init(void)
3281 : {
3282 1 : sighand_cachep = kmem_cache_create("sighand_cache",
3283 : sizeof(struct sighand_struct), 0,
3284 : SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3285 : SLAB_ACCOUNT, sighand_ctor);
3286 1 : signal_cachep = kmem_cache_create("signal_cache",
3287 : sizeof(struct signal_struct), 0,
3288 : SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3289 : NULL);
3290 1 : files_cachep = kmem_cache_create("files_cache",
3291 : sizeof(struct files_struct), 0,
3292 : SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3293 : NULL);
3294 1 : fs_cachep = kmem_cache_create("fs_cache",
3295 : sizeof(struct fs_struct), 0,
3296 : SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3297 : NULL);
3298 :
3299 1 : vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3300 : #ifdef CONFIG_PER_VMA_LOCK
3301 : vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3302 : #endif
3303 1 : mmap_init();
3304 1 : nsproxy_cache_init();
3305 1 : }
3306 :
3307 : /*
3308 : * Check constraints on flags passed to the unshare system call.
3309 : */
3310 0 : static int check_unshare_flags(unsigned long unshare_flags)
3311 : {
3312 0 : if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3313 : CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3314 : CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3315 : CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3316 : CLONE_NEWTIME))
3317 : return -EINVAL;
3318 : /*
3319 : * Not implemented, but pretend it works if there is nothing
3320 : * to unshare. Note that unsharing the address space or the
3321 : * signal handlers also need to unshare the signal queues (aka
3322 : * CLONE_THREAD).
3323 : */
3324 0 : if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3325 0 : if (!thread_group_empty(current))
3326 : return -EINVAL;
3327 : }
3328 0 : if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3329 0 : if (refcount_read(¤t->sighand->count) > 1)
3330 : return -EINVAL;
3331 : }
3332 0 : if (unshare_flags & CLONE_VM) {
3333 0 : if (!current_is_single_threaded())
3334 : return -EINVAL;
3335 : }
3336 :
3337 : return 0;
3338 : }
3339 :
3340 : /*
3341 : * Unshare the filesystem structure if it is being shared
3342 : */
3343 0 : static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3344 : {
3345 0 : struct fs_struct *fs = current->fs;
3346 :
3347 0 : if (!(unshare_flags & CLONE_FS) || !fs)
3348 : return 0;
3349 :
3350 : /* don't need lock here; in the worst case we'll do useless copy */
3351 0 : if (fs->users == 1)
3352 : return 0;
3353 :
3354 0 : *new_fsp = copy_fs_struct(fs);
3355 0 : if (!*new_fsp)
3356 : return -ENOMEM;
3357 :
3358 0 : return 0;
3359 : }
3360 :
3361 : /*
3362 : * Unshare file descriptor table if it is being shared
3363 : */
3364 0 : int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3365 : struct files_struct **new_fdp)
3366 : {
3367 0 : struct files_struct *fd = current->files;
3368 0 : int error = 0;
3369 :
3370 0 : if ((unshare_flags & CLONE_FILES) &&
3371 0 : (fd && atomic_read(&fd->count) > 1)) {
3372 0 : *new_fdp = dup_fd(fd, max_fds, &error);
3373 0 : if (!*new_fdp)
3374 0 : return error;
3375 : }
3376 :
3377 : return 0;
3378 : }
3379 :
3380 : /*
3381 : * unshare allows a process to 'unshare' part of the process
3382 : * context which was originally shared using clone. copy_*
3383 : * functions used by kernel_clone() cannot be used here directly
3384 : * because they modify an inactive task_struct that is being
3385 : * constructed. Here we are modifying the current, active,
3386 : * task_struct.
3387 : */
3388 0 : int ksys_unshare(unsigned long unshare_flags)
3389 : {
3390 0 : struct fs_struct *fs, *new_fs = NULL;
3391 0 : struct files_struct *new_fd = NULL;
3392 0 : struct cred *new_cred = NULL;
3393 0 : struct nsproxy *new_nsproxy = NULL;
3394 0 : int do_sysvsem = 0;
3395 : int err;
3396 :
3397 : /*
3398 : * If unsharing a user namespace must also unshare the thread group
3399 : * and unshare the filesystem root and working directories.
3400 : */
3401 0 : if (unshare_flags & CLONE_NEWUSER)
3402 0 : unshare_flags |= CLONE_THREAD | CLONE_FS;
3403 : /*
3404 : * If unsharing vm, must also unshare signal handlers.
3405 : */
3406 0 : if (unshare_flags & CLONE_VM)
3407 0 : unshare_flags |= CLONE_SIGHAND;
3408 : /*
3409 : * If unsharing a signal handlers, must also unshare the signal queues.
3410 : */
3411 0 : if (unshare_flags & CLONE_SIGHAND)
3412 0 : unshare_flags |= CLONE_THREAD;
3413 : /*
3414 : * If unsharing namespace, must also unshare filesystem information.
3415 : */
3416 0 : if (unshare_flags & CLONE_NEWNS)
3417 0 : unshare_flags |= CLONE_FS;
3418 :
3419 0 : err = check_unshare_flags(unshare_flags);
3420 0 : if (err)
3421 : goto bad_unshare_out;
3422 : /*
3423 : * CLONE_NEWIPC must also detach from the undolist: after switching
3424 : * to a new ipc namespace, the semaphore arrays from the old
3425 : * namespace are unreachable.
3426 : */
3427 0 : if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3428 0 : do_sysvsem = 1;
3429 0 : err = unshare_fs(unshare_flags, &new_fs);
3430 0 : if (err)
3431 : goto bad_unshare_out;
3432 0 : err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3433 0 : if (err)
3434 : goto bad_unshare_cleanup_fs;
3435 0 : err = unshare_userns(unshare_flags, &new_cred);
3436 0 : if (err)
3437 : goto bad_unshare_cleanup_fd;
3438 0 : err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3439 : new_cred, new_fs);
3440 0 : if (err)
3441 : goto bad_unshare_cleanup_cred;
3442 :
3443 : if (new_cred) {
3444 : err = set_cred_ucounts(new_cred);
3445 : if (err)
3446 : goto bad_unshare_cleanup_cred;
3447 : }
3448 :
3449 0 : if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3450 0 : if (do_sysvsem) {
3451 : /*
3452 : * CLONE_SYSVSEM is equivalent to sys_exit().
3453 : */
3454 0 : exit_sem(current);
3455 : }
3456 0 : if (unshare_flags & CLONE_NEWIPC) {
3457 : /* Orphan segments in old ns (see sem above). */
3458 0 : exit_shm(current);
3459 0 : shm_init_task(current);
3460 : }
3461 :
3462 0 : if (new_nsproxy)
3463 0 : switch_task_namespaces(current, new_nsproxy);
3464 :
3465 0 : task_lock(current);
3466 :
3467 0 : if (new_fs) {
3468 0 : fs = current->fs;
3469 0 : spin_lock(&fs->lock);
3470 0 : current->fs = new_fs;
3471 0 : if (--fs->users)
3472 0 : new_fs = NULL;
3473 : else
3474 0 : new_fs = fs;
3475 0 : spin_unlock(&fs->lock);
3476 : }
3477 :
3478 0 : if (new_fd)
3479 0 : swap(current->files, new_fd);
3480 :
3481 0 : task_unlock(current);
3482 :
3483 : if (new_cred) {
3484 : /* Install the new user namespace */
3485 : commit_creds(new_cred);
3486 : new_cred = NULL;
3487 : }
3488 : }
3489 :
3490 0 : perf_event_namespaces(current);
3491 :
3492 : bad_unshare_cleanup_cred:
3493 : if (new_cred)
3494 : put_cred(new_cred);
3495 : bad_unshare_cleanup_fd:
3496 0 : if (new_fd)
3497 0 : put_files_struct(new_fd);
3498 :
3499 : bad_unshare_cleanup_fs:
3500 0 : if (new_fs)
3501 0 : free_fs_struct(new_fs);
3502 :
3503 : bad_unshare_out:
3504 0 : return err;
3505 : }
3506 :
3507 0 : SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3508 : {
3509 0 : return ksys_unshare(unshare_flags);
3510 : }
3511 :
3512 : /*
3513 : * Helper to unshare the files of the current task.
3514 : * We don't want to expose copy_files internals to
3515 : * the exec layer of the kernel.
3516 : */
3517 :
3518 0 : int unshare_files(void)
3519 : {
3520 0 : struct task_struct *task = current;
3521 0 : struct files_struct *old, *copy = NULL;
3522 : int error;
3523 :
3524 0 : error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3525 0 : if (error || !copy)
3526 : return error;
3527 :
3528 0 : old = task->files;
3529 0 : task_lock(task);
3530 0 : task->files = copy;
3531 0 : task_unlock(task);
3532 0 : put_files_struct(old);
3533 0 : return 0;
3534 : }
3535 :
3536 0 : int sysctl_max_threads(struct ctl_table *table, int write,
3537 : void *buffer, size_t *lenp, loff_t *ppos)
3538 : {
3539 : struct ctl_table t;
3540 : int ret;
3541 0 : int threads = max_threads;
3542 0 : int min = 1;
3543 0 : int max = MAX_THREADS;
3544 :
3545 0 : t = *table;
3546 0 : t.data = &threads;
3547 0 : t.extra1 = &min;
3548 0 : t.extra2 = &max;
3549 :
3550 0 : ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3551 0 : if (ret || !write)
3552 : return ret;
3553 :
3554 0 : max_threads = threads;
3555 :
3556 0 : return 0;
3557 : }
|