LCOV - code coverage report
Current view: top level - kernel - fork.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 459 1118 41.1 %
Date: 2023-08-24 13:40:31 Functions: 33 89 37.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/kernel/fork.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  *  'fork.c' contains the help-routines for the 'fork' system call
      10             :  * (see also entry.S and others).
      11             :  * Fork is rather simple, once you get the hang of it, but the memory
      12             :  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
      13             :  */
      14             : 
      15             : #include <linux/anon_inodes.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/sched/autogroup.h>
      18             : #include <linux/sched/mm.h>
      19             : #include <linux/sched/coredump.h>
      20             : #include <linux/sched/user.h>
      21             : #include <linux/sched/numa_balancing.h>
      22             : #include <linux/sched/stat.h>
      23             : #include <linux/sched/task.h>
      24             : #include <linux/sched/task_stack.h>
      25             : #include <linux/sched/cputime.h>
      26             : #include <linux/seq_file.h>
      27             : #include <linux/rtmutex.h>
      28             : #include <linux/init.h>
      29             : #include <linux/unistd.h>
      30             : #include <linux/module.h>
      31             : #include <linux/vmalloc.h>
      32             : #include <linux/completion.h>
      33             : #include <linux/personality.h>
      34             : #include <linux/mempolicy.h>
      35             : #include <linux/sem.h>
      36             : #include <linux/file.h>
      37             : #include <linux/fdtable.h>
      38             : #include <linux/iocontext.h>
      39             : #include <linux/key.h>
      40             : #include <linux/kmsan.h>
      41             : #include <linux/binfmts.h>
      42             : #include <linux/mman.h>
      43             : #include <linux/mmu_notifier.h>
      44             : #include <linux/fs.h>
      45             : #include <linux/mm.h>
      46             : #include <linux/mm_inline.h>
      47             : #include <linux/nsproxy.h>
      48             : #include <linux/capability.h>
      49             : #include <linux/cpu.h>
      50             : #include <linux/cgroup.h>
      51             : #include <linux/security.h>
      52             : #include <linux/hugetlb.h>
      53             : #include <linux/seccomp.h>
      54             : #include <linux/swap.h>
      55             : #include <linux/syscalls.h>
      56             : #include <linux/jiffies.h>
      57             : #include <linux/futex.h>
      58             : #include <linux/compat.h>
      59             : #include <linux/kthread.h>
      60             : #include <linux/task_io_accounting_ops.h>
      61             : #include <linux/rcupdate.h>
      62             : #include <linux/ptrace.h>
      63             : #include <linux/mount.h>
      64             : #include <linux/audit.h>
      65             : #include <linux/memcontrol.h>
      66             : #include <linux/ftrace.h>
      67             : #include <linux/proc_fs.h>
      68             : #include <linux/profile.h>
      69             : #include <linux/rmap.h>
      70             : #include <linux/ksm.h>
      71             : #include <linux/acct.h>
      72             : #include <linux/userfaultfd_k.h>
      73             : #include <linux/tsacct_kern.h>
      74             : #include <linux/cn_proc.h>
      75             : #include <linux/freezer.h>
      76             : #include <linux/delayacct.h>
      77             : #include <linux/taskstats_kern.h>
      78             : #include <linux/tty.h>
      79             : #include <linux/fs_struct.h>
      80             : #include <linux/magic.h>
      81             : #include <linux/perf_event.h>
      82             : #include <linux/posix-timers.h>
      83             : #include <linux/user-return-notifier.h>
      84             : #include <linux/oom.h>
      85             : #include <linux/khugepaged.h>
      86             : #include <linux/signalfd.h>
      87             : #include <linux/uprobes.h>
      88             : #include <linux/aio.h>
      89             : #include <linux/compiler.h>
      90             : #include <linux/sysctl.h>
      91             : #include <linux/kcov.h>
      92             : #include <linux/livepatch.h>
      93             : #include <linux/thread_info.h>
      94             : #include <linux/stackleak.h>
      95             : #include <linux/kasan.h>
      96             : #include <linux/scs.h>
      97             : #include <linux/io_uring.h>
      98             : #include <linux/bpf.h>
      99             : #include <linux/stackprotector.h>
     100             : #include <linux/user_events.h>
     101             : #include <linux/iommu.h>
     102             : 
     103             : #include <asm/pgalloc.h>
     104             : #include <linux/uaccess.h>
     105             : #include <asm/mmu_context.h>
     106             : #include <asm/cacheflush.h>
     107             : #include <asm/tlbflush.h>
     108             : 
     109             : #include <trace/events/sched.h>
     110             : 
     111             : #define CREATE_TRACE_POINTS
     112             : #include <trace/events/task.h>
     113             : 
     114             : /*
     115             :  * Minimum number of threads to boot the kernel
     116             :  */
     117             : #define MIN_THREADS 20
     118             : 
     119             : /*
     120             :  * Maximum number of threads
     121             :  */
     122             : #define MAX_THREADS FUTEX_TID_MASK
     123             : 
     124             : /*
     125             :  * Protected counters by write_lock_irq(&tasklist_lock)
     126             :  */
     127             : unsigned long total_forks;      /* Handle normal Linux uptimes. */
     128             : int nr_threads;                 /* The idle threads do not count.. */
     129             : 
     130             : static int max_threads;         /* tunable limit on nr_threads */
     131             : 
     132             : #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
     133             : 
     134             : static const char * const resident_page_types[] = {
     135             :         NAMED_ARRAY_INDEX(MM_FILEPAGES),
     136             :         NAMED_ARRAY_INDEX(MM_ANONPAGES),
     137             :         NAMED_ARRAY_INDEX(MM_SWAPENTS),
     138             :         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
     139             : };
     140             : 
     141             : DEFINE_PER_CPU(unsigned long, process_counts) = 0;
     142             : 
     143             : __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
     144             : 
     145             : #ifdef CONFIG_PROVE_RCU
     146             : int lockdep_tasklist_lock_is_held(void)
     147             : {
     148             :         return lockdep_is_held(&tasklist_lock);
     149             : }
     150             : EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
     151             : #endif /* #ifdef CONFIG_PROVE_RCU */
     152             : 
     153           0 : int nr_processes(void)
     154             : {
     155             :         int cpu;
     156           0 :         int total = 0;
     157             : 
     158           0 :         for_each_possible_cpu(cpu)
     159           0 :                 total += per_cpu(process_counts, cpu);
     160             : 
     161           0 :         return total;
     162             : }
     163             : 
     164         159 : void __weak arch_release_task_struct(struct task_struct *tsk)
     165             : {
     166         159 : }
     167             : 
     168             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
     169             : static struct kmem_cache *task_struct_cachep;
     170             : 
     171             : static inline struct task_struct *alloc_task_struct_node(int node)
     172             : {
     173         175 :         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
     174             : }
     175             : 
     176             : static inline void free_task_struct(struct task_struct *tsk)
     177             : {
     178         159 :         kmem_cache_free(task_struct_cachep, tsk);
     179             : }
     180             : #endif
     181             : 
     182             : #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
     183             : 
     184             : /*
     185             :  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
     186             :  * kmemcache based allocator.
     187             :  */
     188             : # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
     189             : 
     190             : #  ifdef CONFIG_VMAP_STACK
     191             : /*
     192             :  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
     193             :  * flush.  Try to minimize the number of calls by caching stacks.
     194             :  */
     195             : #define NR_CACHED_STACKS 2
     196             : static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
     197             : 
     198             : struct vm_stack {
     199             :         struct rcu_head rcu;
     200             :         struct vm_struct *stack_vm_area;
     201             : };
     202             : 
     203         159 : static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
     204             : {
     205             :         unsigned int i;
     206             : 
     207         159 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     208         477 :                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
     209           0 :                         continue;
     210             :                 return true;
     211             :         }
     212             :         return false;
     213             : }
     214             : 
     215           0 : static void thread_stack_free_rcu(struct rcu_head *rh)
     216             : {
     217           0 :         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
     218             : 
     219           0 :         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
     220             :                 return;
     221             : 
     222           0 :         vfree(vm_stack);
     223             : }
     224             : 
     225             : static void thread_stack_delayed_free(struct task_struct *tsk)
     226             : {
     227           0 :         struct vm_stack *vm_stack = tsk->stack;
     228             : 
     229           0 :         vm_stack->stack_vm_area = tsk->stack_vm_area;
     230           0 :         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
     231             : }
     232             : 
     233           0 : static int free_vm_stack_cache(unsigned int cpu)
     234             : {
     235           0 :         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
     236             :         int i;
     237             : 
     238           0 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     239           0 :                 struct vm_struct *vm_stack = cached_vm_stacks[i];
     240             : 
     241           0 :                 if (!vm_stack)
     242           0 :                         continue;
     243             : 
     244           0 :                 vfree(vm_stack->addr);
     245           0 :                 cached_vm_stacks[i] = NULL;
     246             :         }
     247             : 
     248           0 :         return 0;
     249             : }
     250             : 
     251         175 : static int memcg_charge_kernel_stack(struct vm_struct *vm)
     252             : {
     253             :         int i;
     254             :         int ret;
     255         175 :         int nr_charged = 0;
     256             : 
     257         175 :         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
     258             : 
     259             :         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
     260             :                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
     261             :                 if (ret)
     262             :                         goto err;
     263             :                 nr_charged++;
     264             :         }
     265             :         return 0;
     266             : err:
     267             :         for (i = 0; i < nr_charged; i++)
     268             :                 memcg_kmem_uncharge_page(vm->pages[i], 0);
     269             :         return ret;
     270             : }
     271             : 
     272         175 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     273             : {
     274             :         struct vm_struct *vm;
     275             :         void *stack;
     276             :         int i;
     277             : 
     278         239 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     279             :                 struct vm_struct *s;
     280             : 
     281         573 :                 s = this_cpu_xchg(cached_stacks[i], NULL);
     282             : 
     283         191 :                 if (!s)
     284          32 :                         continue;
     285             : 
     286             :                 /* Reset stack metadata. */
     287         159 :                 kasan_unpoison_range(s->addr, THREAD_SIZE);
     288             : 
     289         159 :                 stack = kasan_reset_tag(s->addr);
     290             : 
     291             :                 /* Clear stale pointers from reused stack. */
     292         318 :                 memset(stack, 0, THREAD_SIZE);
     293             : 
     294         159 :                 if (memcg_charge_kernel_stack(s)) {
     295           0 :                         vfree(s->addr);
     296             :                         return -ENOMEM;
     297             :                 }
     298             : 
     299         159 :                 tsk->stack_vm_area = s;
     300         159 :                 tsk->stack = stack;
     301             :                 return 0;
     302             :         }
     303             : 
     304             :         /*
     305             :          * Allocated stacks are cached and later reused by new threads,
     306             :          * so memcg accounting is performed manually on assigning/releasing
     307             :          * stacks to tasks. Drop __GFP_ACCOUNT.
     308             :          */
     309          32 :         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
     310          16 :                                      VMALLOC_START, VMALLOC_END,
     311             :                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
     312          16 :                                      PAGE_KERNEL,
     313          16 :                                      0, node, __builtin_return_address(0));
     314          16 :         if (!stack)
     315             :                 return -ENOMEM;
     316             : 
     317          16 :         vm = find_vm_area(stack);
     318          16 :         if (memcg_charge_kernel_stack(vm)) {
     319           0 :                 vfree(stack);
     320             :                 return -ENOMEM;
     321             :         }
     322             :         /*
     323             :          * We can't call find_vm_area() in interrupt context, and
     324             :          * free_thread_stack() can be called in interrupt context,
     325             :          * so cache the vm_struct.
     326             :          */
     327          16 :         tsk->stack_vm_area = vm;
     328          16 :         stack = kasan_reset_tag(stack);
     329          16 :         tsk->stack = stack;
     330             :         return 0;
     331             : }
     332             : 
     333         159 : static void free_thread_stack(struct task_struct *tsk)
     334             : {
     335         159 :         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
     336           0 :                 thread_stack_delayed_free(tsk);
     337             : 
     338         159 :         tsk->stack = NULL;
     339         159 :         tsk->stack_vm_area = NULL;
     340         159 : }
     341             : 
     342             : #  else /* !CONFIG_VMAP_STACK */
     343             : 
     344             : static void thread_stack_free_rcu(struct rcu_head *rh)
     345             : {
     346             :         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
     347             : }
     348             : 
     349             : static void thread_stack_delayed_free(struct task_struct *tsk)
     350             : {
     351             :         struct rcu_head *rh = tsk->stack;
     352             : 
     353             :         call_rcu(rh, thread_stack_free_rcu);
     354             : }
     355             : 
     356             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     357             : {
     358             :         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
     359             :                                              THREAD_SIZE_ORDER);
     360             : 
     361             :         if (likely(page)) {
     362             :                 tsk->stack = kasan_reset_tag(page_address(page));
     363             :                 return 0;
     364             :         }
     365             :         return -ENOMEM;
     366             : }
     367             : 
     368             : static void free_thread_stack(struct task_struct *tsk)
     369             : {
     370             :         thread_stack_delayed_free(tsk);
     371             :         tsk->stack = NULL;
     372             : }
     373             : 
     374             : #  endif /* CONFIG_VMAP_STACK */
     375             : # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
     376             : 
     377             : static struct kmem_cache *thread_stack_cache;
     378             : 
     379             : static void thread_stack_free_rcu(struct rcu_head *rh)
     380             : {
     381             :         kmem_cache_free(thread_stack_cache, rh);
     382             : }
     383             : 
     384             : static void thread_stack_delayed_free(struct task_struct *tsk)
     385             : {
     386             :         struct rcu_head *rh = tsk->stack;
     387             : 
     388             :         call_rcu(rh, thread_stack_free_rcu);
     389             : }
     390             : 
     391             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     392             : {
     393             :         unsigned long *stack;
     394             :         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
     395             :         stack = kasan_reset_tag(stack);
     396             :         tsk->stack = stack;
     397             :         return stack ? 0 : -ENOMEM;
     398             : }
     399             : 
     400             : static void free_thread_stack(struct task_struct *tsk)
     401             : {
     402             :         thread_stack_delayed_free(tsk);
     403             :         tsk->stack = NULL;
     404             : }
     405             : 
     406             : void thread_stack_cache_init(void)
     407             : {
     408             :         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
     409             :                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
     410             :                                         THREAD_SIZE, NULL);
     411             :         BUG_ON(thread_stack_cache == NULL);
     412             : }
     413             : 
     414             : # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
     415             : #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
     416             : 
     417             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     418             : {
     419             :         unsigned long *stack;
     420             : 
     421             :         stack = arch_alloc_thread_stack_node(tsk, node);
     422             :         tsk->stack = stack;
     423             :         return stack ? 0 : -ENOMEM;
     424             : }
     425             : 
     426             : static void free_thread_stack(struct task_struct *tsk)
     427             : {
     428             :         arch_free_thread_stack(tsk);
     429             :         tsk->stack = NULL;
     430             : }
     431             : 
     432             : #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
     433             : 
     434             : /* SLAB cache for signal_struct structures (tsk->signal) */
     435             : static struct kmem_cache *signal_cachep;
     436             : 
     437             : /* SLAB cache for sighand_struct structures (tsk->sighand) */
     438             : struct kmem_cache *sighand_cachep;
     439             : 
     440             : /* SLAB cache for files_struct structures (tsk->files) */
     441             : struct kmem_cache *files_cachep;
     442             : 
     443             : /* SLAB cache for fs_struct structures (tsk->fs) */
     444             : struct kmem_cache *fs_cachep;
     445             : 
     446             : /* SLAB cache for vm_area_struct structures */
     447             : static struct kmem_cache *vm_area_cachep;
     448             : 
     449             : /* SLAB cache for mm_struct structures (tsk->mm) */
     450             : static struct kmem_cache *mm_cachep;
     451             : 
     452             : #ifdef CONFIG_PER_VMA_LOCK
     453             : 
     454             : /* SLAB cache for vm_area_struct.lock */
     455             : static struct kmem_cache *vma_lock_cachep;
     456             : 
     457             : static bool vma_lock_alloc(struct vm_area_struct *vma)
     458             : {
     459             :         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
     460             :         if (!vma->vm_lock)
     461             :                 return false;
     462             : 
     463             :         init_rwsem(&vma->vm_lock->lock);
     464             :         vma->vm_lock_seq = -1;
     465             : 
     466             :         return true;
     467             : }
     468             : 
     469             : static inline void vma_lock_free(struct vm_area_struct *vma)
     470             : {
     471             :         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
     472             : }
     473             : 
     474             : #else /* CONFIG_PER_VMA_LOCK */
     475             : 
     476             : static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
     477             : static inline void vma_lock_free(struct vm_area_struct *vma) {}
     478             : 
     479             : #endif /* CONFIG_PER_VMA_LOCK */
     480             : 
     481           0 : struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
     482             : {
     483             :         struct vm_area_struct *vma;
     484             : 
     485           0 :         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
     486           0 :         if (!vma)
     487             :                 return NULL;
     488             : 
     489           0 :         vma_init(vma, mm);
     490           0 :         if (!vma_lock_alloc(vma)) {
     491             :                 kmem_cache_free(vm_area_cachep, vma);
     492             :                 return NULL;
     493             :         }
     494             : 
     495           0 :         return vma;
     496             : }
     497             : 
     498           0 : struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
     499             : {
     500           0 :         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
     501             : 
     502           0 :         if (!new)
     503             :                 return NULL;
     504             : 
     505           0 :         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
     506           0 :         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
     507             :         /*
     508             :          * orig->shared.rb may be modified concurrently, but the clone
     509             :          * will be reinitialized.
     510             :          */
     511           0 :         data_race(memcpy(new, orig, sizeof(*new)));
     512           0 :         if (!vma_lock_alloc(new)) {
     513             :                 kmem_cache_free(vm_area_cachep, new);
     514             :                 return NULL;
     515             :         }
     516           0 :         INIT_LIST_HEAD(&new->anon_vma_chain);
     517           0 :         vma_numab_state_init(new);
     518           0 :         dup_anon_vma_name(orig, new);
     519             : 
     520           0 :         return new;
     521             : }
     522             : 
     523           0 : void __vm_area_free(struct vm_area_struct *vma)
     524             : {
     525           0 :         vma_numab_state_free(vma);
     526           0 :         free_anon_vma_name(vma);
     527           0 :         vma_lock_free(vma);
     528           0 :         kmem_cache_free(vm_area_cachep, vma);
     529           0 : }
     530             : 
     531             : #ifdef CONFIG_PER_VMA_LOCK
     532             : static void vm_area_free_rcu_cb(struct rcu_head *head)
     533             : {
     534             :         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
     535             :                                                   vm_rcu);
     536             : 
     537             :         /* The vma should not be locked while being destroyed. */
     538             :         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
     539             :         __vm_area_free(vma);
     540             : }
     541             : #endif
     542             : 
     543           0 : void vm_area_free(struct vm_area_struct *vma)
     544             : {
     545             : #ifdef CONFIG_PER_VMA_LOCK
     546             :         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
     547             : #else
     548           0 :         __vm_area_free(vma);
     549             : #endif
     550           0 : }
     551             : 
     552             : static void account_kernel_stack(struct task_struct *tsk, int account)
     553             : {
     554             :         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
     555             :                 struct vm_struct *vm = task_stack_vm_area(tsk);
     556             :                 int i;
     557             : 
     558        1340 :                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
     559        2680 :                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
     560             :                                               account * (PAGE_SIZE / 1024));
     561             :         } else {
     562             :                 void *stack = task_stack_page(tsk);
     563             : 
     564             :                 /* All stack pages are in the same node. */
     565             :                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
     566             :                                       account * (THREAD_SIZE / 1024));
     567             :         }
     568             : }
     569             : 
     570         160 : void exit_task_stack_account(struct task_struct *tsk)
     571             : {
     572         320 :         account_kernel_stack(tsk, -1);
     573             : 
     574             :         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
     575             :                 struct vm_struct *vm;
     576             :                 int i;
     577             : 
     578         160 :                 vm = task_stack_vm_area(tsk);
     579         160 :                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
     580             :                         memcg_kmem_uncharge_page(vm->pages[i], 0);
     581             :         }
     582         160 : }
     583             : 
     584         159 : static void release_task_stack(struct task_struct *tsk)
     585             : {
     586         159 :         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
     587             :                 return;  /* Better to leak the stack than to free prematurely */
     588             : 
     589         159 :         free_thread_stack(tsk);
     590             : }
     591             : 
     592             : #ifdef CONFIG_THREAD_INFO_IN_TASK
     593             : void put_task_stack(struct task_struct *tsk)
     594             : {
     595             :         if (refcount_dec_and_test(&tsk->stack_refcount))
     596             :                 release_task_stack(tsk);
     597             : }
     598             : #endif
     599             : 
     600         159 : void free_task(struct task_struct *tsk)
     601             : {
     602             : #ifdef CONFIG_SECCOMP
     603         159 :         WARN_ON_ONCE(tsk->seccomp.filter);
     604             : #endif
     605         159 :         release_user_cpus_ptr(tsk);
     606         159 :         scs_release(tsk);
     607             : 
     608             : #ifndef CONFIG_THREAD_INFO_IN_TASK
     609             :         /*
     610             :          * The task is finally done with both the stack and thread_info,
     611             :          * so free both.
     612             :          */
     613         159 :         release_task_stack(tsk);
     614             : #else
     615             :         /*
     616             :          * If the task had a separate stack allocation, it should be gone
     617             :          * by now.
     618             :          */
     619             :         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
     620             : #endif
     621         159 :         rt_mutex_debug_task_free(tsk);
     622         159 :         ftrace_graph_exit_task(tsk);
     623         159 :         arch_release_task_struct(tsk);
     624         159 :         if (tsk->flags & PF_KTHREAD)
     625         159 :                 free_kthread_struct(tsk);
     626         159 :         bpf_task_storage_free(tsk);
     627         159 :         free_task_struct(tsk);
     628         159 : }
     629             : EXPORT_SYMBOL(free_task);
     630             : 
     631           0 : static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
     632             : {
     633             :         struct file *exe_file;
     634             : 
     635           0 :         exe_file = get_mm_exe_file(oldmm);
     636           0 :         RCU_INIT_POINTER(mm->exe_file, exe_file);
     637             :         /*
     638             :          * We depend on the oldmm having properly denied write access to the
     639             :          * exe_file already.
     640             :          */
     641           0 :         if (exe_file && deny_write_access(exe_file))
     642           0 :                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
     643           0 : }
     644             : 
     645             : #ifdef CONFIG_MMU
     646           0 : static __latent_entropy int dup_mmap(struct mm_struct *mm,
     647             :                                         struct mm_struct *oldmm)
     648             : {
     649             :         struct vm_area_struct *mpnt, *tmp;
     650             :         int retval;
     651           0 :         unsigned long charge = 0;
     652           0 :         LIST_HEAD(uf);
     653           0 :         VMA_ITERATOR(old_vmi, oldmm, 0);
     654           0 :         VMA_ITERATOR(vmi, mm, 0);
     655             : 
     656           0 :         uprobe_start_dup_mmap();
     657           0 :         if (mmap_write_lock_killable(oldmm)) {
     658             :                 retval = -EINTR;
     659             :                 goto fail_uprobe_end;
     660             :         }
     661           0 :         flush_cache_dup_mm(oldmm);
     662           0 :         uprobe_dup_mmap(oldmm, mm);
     663             :         /*
     664             :          * Not linked in yet - no deadlock potential:
     665             :          */
     666           0 :         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
     667             : 
     668             :         /* No ordering required: file already has been exposed. */
     669           0 :         dup_mm_exe_file(mm, oldmm);
     670             : 
     671           0 :         mm->total_vm = oldmm->total_vm;
     672           0 :         mm->data_vm = oldmm->data_vm;
     673           0 :         mm->exec_vm = oldmm->exec_vm;
     674           0 :         mm->stack_vm = oldmm->stack_vm;
     675             : 
     676           0 :         retval = ksm_fork(mm, oldmm);
     677             :         if (retval)
     678             :                 goto out;
     679           0 :         khugepaged_fork(mm, oldmm);
     680             : 
     681           0 :         retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
     682           0 :         if (retval)
     683             :                 goto out;
     684             : 
     685           0 :         mt_clear_in_rcu(vmi.mas.tree);
     686           0 :         for_each_vma(old_vmi, mpnt) {
     687             :                 struct file *file;
     688             : 
     689             :                 vma_start_write(mpnt);
     690           0 :                 if (mpnt->vm_flags & VM_DONTCOPY) {
     691           0 :                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
     692           0 :                         continue;
     693             :                 }
     694           0 :                 charge = 0;
     695             :                 /*
     696             :                  * Don't duplicate many vmas if we've been oom-killed (for
     697             :                  * example)
     698             :                  */
     699           0 :                 if (fatal_signal_pending(current)) {
     700             :                         retval = -EINTR;
     701             :                         goto loop_out;
     702             :                 }
     703           0 :                 if (mpnt->vm_flags & VM_ACCOUNT) {
     704           0 :                         unsigned long len = vma_pages(mpnt);
     705             : 
     706           0 :                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
     707             :                                 goto fail_nomem;
     708             :                         charge = len;
     709             :                 }
     710           0 :                 tmp = vm_area_dup(mpnt);
     711           0 :                 if (!tmp)
     712             :                         goto fail_nomem;
     713           0 :                 retval = vma_dup_policy(mpnt, tmp);
     714             :                 if (retval)
     715             :                         goto fail_nomem_policy;
     716           0 :                 tmp->vm_mm = mm;
     717           0 :                 retval = dup_userfaultfd(tmp, &uf);
     718             :                 if (retval)
     719             :                         goto fail_nomem_anon_vma_fork;
     720           0 :                 if (tmp->vm_flags & VM_WIPEONFORK) {
     721             :                         /*
     722             :                          * VM_WIPEONFORK gets a clean slate in the child.
     723             :                          * Don't prepare anon_vma until fault since we don't
     724             :                          * copy page for current vma.
     725             :                          */
     726           0 :                         tmp->anon_vma = NULL;
     727           0 :                 } else if (anon_vma_fork(tmp, mpnt))
     728             :                         goto fail_nomem_anon_vma_fork;
     729           0 :                 vm_flags_clear(tmp, VM_LOCKED_MASK);
     730           0 :                 file = tmp->vm_file;
     731           0 :                 if (file) {
     732           0 :                         struct address_space *mapping = file->f_mapping;
     733             : 
     734           0 :                         get_file(file);
     735           0 :                         i_mmap_lock_write(mapping);
     736           0 :                         if (tmp->vm_flags & VM_SHARED)
     737             :                                 mapping_allow_writable(mapping);
     738           0 :                         flush_dcache_mmap_lock(mapping);
     739             :                         /* insert tmp into the share list, just after mpnt */
     740           0 :                         vma_interval_tree_insert_after(tmp, mpnt,
     741             :                                         &mapping->i_mmap);
     742           0 :                         flush_dcache_mmap_unlock(mapping);
     743             :                         i_mmap_unlock_write(mapping);
     744             :                 }
     745             : 
     746             :                 /*
     747             :                  * Copy/update hugetlb private vma information.
     748             :                  */
     749           0 :                 if (is_vm_hugetlb_page(tmp))
     750             :                         hugetlb_dup_vma_private(tmp);
     751             : 
     752             :                 /* Link the vma into the MT */
     753           0 :                 if (vma_iter_bulk_store(&vmi, tmp))
     754             :                         goto fail_nomem_vmi_store;
     755             : 
     756           0 :                 mm->map_count++;
     757           0 :                 if (!(tmp->vm_flags & VM_WIPEONFORK))
     758           0 :                         retval = copy_page_range(tmp, mpnt);
     759             : 
     760           0 :                 if (tmp->vm_ops && tmp->vm_ops->open)
     761           0 :                         tmp->vm_ops->open(tmp);
     762             : 
     763           0 :                 if (retval)
     764             :                         goto loop_out;
     765             :         }
     766             :         /* a new mm has just been created */
     767             :         retval = arch_dup_mmap(oldmm, mm);
     768             : loop_out:
     769           0 :         vma_iter_free(&vmi);
     770           0 :         if (!retval)
     771           0 :                 mt_set_in_rcu(vmi.mas.tree);
     772             : out:
     773           0 :         mmap_write_unlock(mm);
     774           0 :         flush_tlb_mm(oldmm);
     775             :         mmap_write_unlock(oldmm);
     776             :         dup_userfaultfd_complete(&uf);
     777             : fail_uprobe_end:
     778             :         uprobe_end_dup_mmap();
     779           0 :         return retval;
     780             : 
     781             : fail_nomem_vmi_store:
     782           0 :         unlink_anon_vmas(tmp);
     783             : fail_nomem_anon_vma_fork:
     784           0 :         mpol_put(vma_policy(tmp));
     785             : fail_nomem_policy:
     786             :         vm_area_free(tmp);
     787             : fail_nomem:
     788           0 :         retval = -ENOMEM;
     789           0 :         vm_unacct_memory(charge);
     790             :         goto loop_out;
     791             : }
     792             : 
     793             : static inline int mm_alloc_pgd(struct mm_struct *mm)
     794             : {
     795           0 :         mm->pgd = pgd_alloc(mm);
     796           0 :         if (unlikely(!mm->pgd))
     797             :                 return -ENOMEM;
     798             :         return 0;
     799             : }
     800             : 
     801             : static inline void mm_free_pgd(struct mm_struct *mm)
     802             : {
     803           0 :         pgd_free(mm, mm->pgd);
     804             : }
     805             : #else
     806             : static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
     807             : {
     808             :         mmap_write_lock(oldmm);
     809             :         dup_mm_exe_file(mm, oldmm);
     810             :         mmap_write_unlock(oldmm);
     811             :         return 0;
     812             : }
     813             : #define mm_alloc_pgd(mm)        (0)
     814             : #define mm_free_pgd(mm)
     815             : #endif /* CONFIG_MMU */
     816             : 
     817           0 : static void check_mm(struct mm_struct *mm)
     818             : {
     819             :         int i;
     820             : 
     821             :         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
     822             :                          "Please make sure 'struct resident_page_types[]' is updated as well");
     823             : 
     824           0 :         for (i = 0; i < NR_MM_COUNTERS; i++) {
     825           0 :                 long x = percpu_counter_sum(&mm->rss_stat[i]);
     826             : 
     827           0 :                 if (unlikely(x))
     828           0 :                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
     829             :                                  mm, resident_page_types[i], x);
     830             :         }
     831             : 
     832           0 :         if (mm_pgtables_bytes(mm))
     833           0 :                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
     834             :                                 mm_pgtables_bytes(mm));
     835             : 
     836             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
     837             :         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
     838             : #endif
     839           0 : }
     840             : 
     841             : #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
     842             : #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
     843             : 
     844             : static void do_check_lazy_tlb(void *arg)
     845             : {
     846             :         struct mm_struct *mm = arg;
     847             : 
     848             :         WARN_ON_ONCE(current->active_mm == mm);
     849             : }
     850             : 
     851             : static void do_shoot_lazy_tlb(void *arg)
     852             : {
     853             :         struct mm_struct *mm = arg;
     854             : 
     855             :         if (current->active_mm == mm) {
     856             :                 WARN_ON_ONCE(current->mm);
     857             :                 current->active_mm = &init_mm;
     858             :                 switch_mm(mm, &init_mm, current);
     859             :         }
     860             : }
     861             : 
     862             : static void cleanup_lazy_tlbs(struct mm_struct *mm)
     863             : {
     864             :         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
     865             :                 /*
     866             :                  * In this case, lazy tlb mms are refounted and would not reach
     867             :                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
     868             :                  */
     869             :                 return;
     870             :         }
     871             : 
     872             :         /*
     873             :          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
     874             :          * requires lazy mm users to switch to another mm when the refcount
     875             :          * drops to zero, before the mm is freed. This requires IPIs here to
     876             :          * switch kernel threads to init_mm.
     877             :          *
     878             :          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
     879             :          * switch with the final userspace teardown TLB flush which leaves the
     880             :          * mm lazy on this CPU but no others, reducing the need for additional
     881             :          * IPIs here. There are cases where a final IPI is still required here,
     882             :          * such as the final mmdrop being performed on a different CPU than the
     883             :          * one exiting, or kernel threads using the mm when userspace exits.
     884             :          *
     885             :          * IPI overheads have not found to be expensive, but they could be
     886             :          * reduced in a number of possible ways, for example (roughly
     887             :          * increasing order of complexity):
     888             :          * - The last lazy reference created by exit_mm() could instead switch
     889             :          *   to init_mm, however it's probable this will run on the same CPU
     890             :          *   immediately afterwards, so this may not reduce IPIs much.
     891             :          * - A batch of mms requiring IPIs could be gathered and freed at once.
     892             :          * - CPUs store active_mm where it can be remotely checked without a
     893             :          *   lock, to filter out false-positives in the cpumask.
     894             :          * - After mm_users or mm_count reaches zero, switching away from the
     895             :          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
     896             :          *   with some batching or delaying of the final IPIs.
     897             :          * - A delayed freeing and RCU-like quiescing sequence based on mm
     898             :          *   switching to avoid IPIs completely.
     899             :          */
     900             :         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
     901             :         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
     902             :                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
     903             : }
     904             : 
     905             : /*
     906             :  * Called when the last reference to the mm
     907             :  * is dropped: either by a lazy thread or by
     908             :  * mmput. Free the page directory and the mm.
     909             :  */
     910           0 : void __mmdrop(struct mm_struct *mm)
     911             : {
     912             :         int i;
     913             : 
     914           0 :         BUG_ON(mm == &init_mm);
     915           0 :         WARN_ON_ONCE(mm == current->mm);
     916             : 
     917             :         /* Ensure no CPUs are using this as their lazy tlb mm */
     918           0 :         cleanup_lazy_tlbs(mm);
     919             : 
     920           0 :         WARN_ON_ONCE(mm == current->active_mm);
     921           0 :         mm_free_pgd(mm);
     922           0 :         destroy_context(mm);
     923           0 :         mmu_notifier_subscriptions_destroy(mm);
     924           0 :         check_mm(mm);
     925           0 :         put_user_ns(mm->user_ns);
     926           0 :         mm_pasid_drop(mm);
     927           0 :         mm_destroy_cid(mm);
     928             : 
     929           0 :         for (i = 0; i < NR_MM_COUNTERS; i++)
     930             :                 percpu_counter_destroy(&mm->rss_stat[i]);
     931           0 :         free_mm(mm);
     932           0 : }
     933             : EXPORT_SYMBOL_GPL(__mmdrop);
     934             : 
     935           0 : static void mmdrop_async_fn(struct work_struct *work)
     936             : {
     937             :         struct mm_struct *mm;
     938             : 
     939           0 :         mm = container_of(work, struct mm_struct, async_put_work);
     940           0 :         __mmdrop(mm);
     941           0 : }
     942             : 
     943           0 : static void mmdrop_async(struct mm_struct *mm)
     944             : {
     945           0 :         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
     946           0 :                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
     947           0 :                 schedule_work(&mm->async_put_work);
     948             :         }
     949           0 : }
     950             : 
     951         159 : static inline void free_signal_struct(struct signal_struct *sig)
     952             : {
     953         159 :         taskstats_tgid_free(sig);
     954         159 :         sched_autogroup_exit(sig);
     955             :         /*
     956             :          * __mmdrop is not safe to call from softirq context on x86 due to
     957             :          * pgd_dtor so postpone it to the async context
     958             :          */
     959         159 :         if (sig->oom_mm)
     960           0 :                 mmdrop_async(sig->oom_mm);
     961         159 :         kmem_cache_free(signal_cachep, sig);
     962         159 : }
     963             : 
     964         159 : static inline void put_signal_struct(struct signal_struct *sig)
     965             : {
     966         318 :         if (refcount_dec_and_test(&sig->sigcnt))
     967         159 :                 free_signal_struct(sig);
     968         159 : }
     969             : 
     970         159 : void __put_task_struct(struct task_struct *tsk)
     971             : {
     972         159 :         WARN_ON(!tsk->exit_state);
     973         318 :         WARN_ON(refcount_read(&tsk->usage));
     974         159 :         WARN_ON(tsk == current);
     975             : 
     976         159 :         io_uring_free(tsk);
     977         159 :         cgroup_free(tsk);
     978         159 :         task_numa_free(tsk, true);
     979         159 :         security_task_free(tsk);
     980         159 :         exit_creds(tsk);
     981         159 :         delayacct_tsk_free(tsk);
     982         159 :         put_signal_struct(tsk->signal);
     983         159 :         sched_core_free(tsk);
     984         159 :         free_task(tsk);
     985         159 : }
     986             : EXPORT_SYMBOL_GPL(__put_task_struct);
     987             : 
     988           1 : void __init __weak arch_task_cache_init(void) { }
     989             : 
     990             : /*
     991             :  * set_max_threads
     992             :  */
     993             : static void set_max_threads(unsigned int max_threads_suggested)
     994             : {
     995             :         u64 threads;
     996           1 :         unsigned long nr_pages = totalram_pages();
     997             : 
     998             :         /*
     999             :          * The number of threads shall be limited such that the thread
    1000             :          * structures may only consume a small part of the available memory.
    1001             :          */
    1002           2 :         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
    1003             :                 threads = MAX_THREADS;
    1004             :         else
    1005           2 :                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
    1006             :                                     (u64) THREAD_SIZE * 8UL);
    1007             : 
    1008           1 :         if (threads > max_threads_suggested)
    1009           0 :                 threads = max_threads_suggested;
    1010             : 
    1011           1 :         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
    1012             : }
    1013             : 
    1014             : #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
    1015             : /* Initialized by the architecture: */
    1016             : int arch_task_struct_size __read_mostly;
    1017             : #endif
    1018             : 
    1019             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    1020             : static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
    1021             : {
    1022             :         /* Fetch thread_struct whitelist for the architecture. */
    1023           1 :         arch_thread_struct_whitelist(offset, size);
    1024             : 
    1025             :         /*
    1026             :          * Handle zero-sized whitelist or empty thread_struct, otherwise
    1027             :          * adjust offset to position of thread_struct in task_struct.
    1028             :          */
    1029             :         if (unlikely(*size == 0))
    1030             :                 *offset = 0;
    1031             :         else
    1032           1 :                 *offset += offsetof(struct task_struct, thread);
    1033             : }
    1034             : #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
    1035             : 
    1036           1 : void __init fork_init(void)
    1037             : {
    1038             :         int i;
    1039             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    1040             : #ifndef ARCH_MIN_TASKALIGN
    1041             : #define ARCH_MIN_TASKALIGN      0
    1042             : #endif
    1043           1 :         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
    1044             :         unsigned long useroffset, usersize;
    1045             : 
    1046             :         /* create a slab on which task_structs can be allocated */
    1047           1 :         task_struct_whitelist(&useroffset, &usersize);
    1048           1 :         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
    1049             :                         arch_task_struct_size, align,
    1050             :                         SLAB_PANIC|SLAB_ACCOUNT,
    1051             :                         useroffset, usersize, NULL);
    1052             : #endif
    1053             : 
    1054             :         /* do the arch specific task caches init */
    1055           1 :         arch_task_cache_init();
    1056             : 
    1057           1 :         set_max_threads(MAX_THREADS);
    1058             : 
    1059           1 :         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
    1060           1 :         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
    1061           1 :         init_task.signal->rlim[RLIMIT_SIGPENDING] =
    1062             :                 init_task.signal->rlim[RLIMIT_NPROC];
    1063             : 
    1064          11 :         for (i = 0; i < UCOUNT_COUNTS; i++)
    1065          10 :                 init_user_ns.ucount_max[i] = max_threads/2;
    1066             : 
    1067           1 :         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
    1068           1 :         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
    1069           1 :         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
    1070           1 :         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
    1071             : 
    1072             : #ifdef CONFIG_VMAP_STACK
    1073           1 :         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
    1074             :                           NULL, free_vm_stack_cache);
    1075             : #endif
    1076             : 
    1077             :         scs_init();
    1078             : 
    1079           1 :         lockdep_init_task(&init_task);
    1080             :         uprobes_init();
    1081           1 : }
    1082             : 
    1083         175 : int __weak arch_dup_task_struct(struct task_struct *dst,
    1084             :                                                struct task_struct *src)
    1085             : {
    1086         175 :         *dst = *src;
    1087         175 :         return 0;
    1088             : }
    1089             : 
    1090           1 : void set_task_stack_end_magic(struct task_struct *tsk)
    1091             : {
    1092             :         unsigned long *stackend;
    1093             : 
    1094         176 :         stackend = end_of_stack(tsk);
    1095         176 :         *stackend = STACK_END_MAGIC;    /* for overflow detection */
    1096           1 : }
    1097             : 
    1098         175 : static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
    1099             : {
    1100             :         struct task_struct *tsk;
    1101             :         int err;
    1102             : 
    1103         175 :         if (node == NUMA_NO_NODE)
    1104         175 :                 node = tsk_fork_get_node(orig);
    1105         175 :         tsk = alloc_task_struct_node(node);
    1106         175 :         if (!tsk)
    1107             :                 return NULL;
    1108             : 
    1109         175 :         err = arch_dup_task_struct(tsk, orig);
    1110         175 :         if (err)
    1111             :                 goto free_tsk;
    1112             : 
    1113         175 :         err = alloc_thread_stack_node(tsk, node);
    1114         175 :         if (err)
    1115             :                 goto free_tsk;
    1116             : 
    1117             : #ifdef CONFIG_THREAD_INFO_IN_TASK
    1118             :         refcount_set(&tsk->stack_refcount, 1);
    1119             : #endif
    1120         175 :         account_kernel_stack(tsk, 1);
    1121             : 
    1122         175 :         err = scs_prepare(tsk, node);
    1123             :         if (err)
    1124             :                 goto free_stack;
    1125             : 
    1126             : #ifdef CONFIG_SECCOMP
    1127             :         /*
    1128             :          * We must handle setting up seccomp filters once we're under
    1129             :          * the sighand lock in case orig has changed between now and
    1130             :          * then. Until then, filter must be NULL to avoid messing up
    1131             :          * the usage counts on the error path calling free_task.
    1132             :          */
    1133         175 :         tsk->seccomp.filter = NULL;
    1134             : #endif
    1135             : 
    1136         350 :         setup_thread_stack(tsk, orig);
    1137         175 :         clear_user_return_notifier(tsk);
    1138         175 :         clear_tsk_need_resched(tsk);
    1139         175 :         set_task_stack_end_magic(tsk);
    1140             :         clear_syscall_work_syscall_user_dispatch(tsk);
    1141             : 
    1142             : #ifdef CONFIG_STACKPROTECTOR
    1143             :         tsk->stack_canary = get_random_canary();
    1144             : #endif
    1145         175 :         if (orig->cpus_ptr == &orig->cpus_mask)
    1146         175 :                 tsk->cpus_ptr = &tsk->cpus_mask;
    1147         175 :         dup_user_cpus_ptr(tsk, orig, node);
    1148             : 
    1149             :         /*
    1150             :          * One for the user space visible state that goes away when reaped.
    1151             :          * One for the scheduler.
    1152             :          */
    1153         350 :         refcount_set(&tsk->rcu_users, 2);
    1154             :         /* One for the rcu users */
    1155         350 :         refcount_set(&tsk->usage, 1);
    1156             : #ifdef CONFIG_BLK_DEV_IO_TRACE
    1157             :         tsk->btrace_seq = 0;
    1158             : #endif
    1159         175 :         tsk->splice_pipe = NULL;
    1160         175 :         tsk->task_frag.page = NULL;
    1161         175 :         tsk->wake_q.next = NULL;
    1162         175 :         tsk->worker_private = NULL;
    1163             : 
    1164             :         kcov_task_init(tsk);
    1165             :         kmsan_task_create(tsk);
    1166             :         kmap_local_fork(tsk);
    1167             : 
    1168             : #ifdef CONFIG_FAULT_INJECTION
    1169             :         tsk->fail_nth = 0;
    1170             : #endif
    1171             : 
    1172             : #ifdef CONFIG_BLK_CGROUP
    1173             :         tsk->throttle_disk = NULL;
    1174             :         tsk->use_memdelay = 0;
    1175             : #endif
    1176             : 
    1177             : #ifdef CONFIG_IOMMU_SVA
    1178             :         tsk->pasid_activated = 0;
    1179             : #endif
    1180             : 
    1181             : #ifdef CONFIG_MEMCG
    1182             :         tsk->active_memcg = NULL;
    1183             : #endif
    1184             : 
    1185             : #ifdef CONFIG_CPU_SUP_INTEL
    1186         175 :         tsk->reported_split_lock = 0;
    1187             : #endif
    1188             : 
    1189             : #ifdef CONFIG_SCHED_MM_CID
    1190             :         tsk->mm_cid = -1;
    1191             :         tsk->last_mm_cid = -1;
    1192             :         tsk->mm_cid_active = 0;
    1193             :         tsk->migrate_from_cpu = -1;
    1194             : #endif
    1195         175 :         return tsk;
    1196             : 
    1197             : free_stack:
    1198             :         exit_task_stack_account(tsk);
    1199             :         free_thread_stack(tsk);
    1200             : free_tsk:
    1201           0 :         free_task_struct(tsk);
    1202           0 :         return NULL;
    1203             : }
    1204             : 
    1205             : __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
    1206             : 
    1207             : static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
    1208             : 
    1209           0 : static int __init coredump_filter_setup(char *s)
    1210             : {
    1211           0 :         default_dump_filter =
    1212           0 :                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
    1213             :                 MMF_DUMP_FILTER_MASK;
    1214           0 :         return 1;
    1215             : }
    1216             : 
    1217             : __setup("coredump_filter=", coredump_filter_setup);
    1218             : 
    1219             : #include <linux/init_task.h>
    1220             : 
    1221             : static void mm_init_aio(struct mm_struct *mm)
    1222             : {
    1223             : #ifdef CONFIG_AIO
    1224           0 :         spin_lock_init(&mm->ioctx_lock);
    1225           0 :         mm->ioctx_table = NULL;
    1226             : #endif
    1227             : }
    1228             : 
    1229             : static __always_inline void mm_clear_owner(struct mm_struct *mm,
    1230             :                                            struct task_struct *p)
    1231             : {
    1232             : #ifdef CONFIG_MEMCG
    1233             :         if (mm->owner == p)
    1234             :                 WRITE_ONCE(mm->owner, NULL);
    1235             : #endif
    1236             : }
    1237             : 
    1238             : static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
    1239             : {
    1240             : #ifdef CONFIG_MEMCG
    1241             :         mm->owner = p;
    1242             : #endif
    1243             : }
    1244             : 
    1245             : static void mm_init_uprobes_state(struct mm_struct *mm)
    1246             : {
    1247             : #ifdef CONFIG_UPROBES
    1248             :         mm->uprobes_state.xol_area = NULL;
    1249             : #endif
    1250             : }
    1251             : 
    1252           0 : static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
    1253             :         struct user_namespace *user_ns)
    1254             : {
    1255             :         int i;
    1256             : 
    1257           0 :         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
    1258             :         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
    1259           0 :         atomic_set(&mm->mm_users, 1);
    1260           0 :         atomic_set(&mm->mm_count, 1);
    1261           0 :         seqcount_init(&mm->write_protect_seq);
    1262           0 :         mmap_init_lock(mm);
    1263           0 :         INIT_LIST_HEAD(&mm->mmlist);
    1264             : #ifdef CONFIG_PER_VMA_LOCK
    1265             :         mm->mm_lock_seq = 0;
    1266             : #endif
    1267           0 :         mm_pgtables_bytes_init(mm);
    1268           0 :         mm->map_count = 0;
    1269           0 :         mm->locked_vm = 0;
    1270           0 :         atomic64_set(&mm->pinned_vm, 0);
    1271           0 :         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
    1272           0 :         spin_lock_init(&mm->page_table_lock);
    1273           0 :         spin_lock_init(&mm->arg_lock);
    1274           0 :         mm_init_cpumask(mm);
    1275           0 :         mm_init_aio(mm);
    1276           0 :         mm_init_owner(mm, p);
    1277           0 :         mm_pasid_init(mm);
    1278           0 :         RCU_INIT_POINTER(mm->exe_file, NULL);
    1279           0 :         mmu_notifier_subscriptions_init(mm);
    1280           0 :         init_tlb_flush_pending(mm);
    1281             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
    1282             :         mm->pmd_huge_pte = NULL;
    1283             : #endif
    1284           0 :         mm_init_uprobes_state(mm);
    1285           0 :         hugetlb_count_init(mm);
    1286             : 
    1287           0 :         if (current->mm) {
    1288           0 :                 mm->flags = current->mm->flags & MMF_INIT_MASK;
    1289           0 :                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
    1290             :         } else {
    1291           0 :                 mm->flags = default_dump_filter;
    1292           0 :                 mm->def_flags = 0;
    1293             :         }
    1294             : 
    1295           0 :         if (mm_alloc_pgd(mm))
    1296             :                 goto fail_nopgd;
    1297             : 
    1298           0 :         if (init_new_context(p, mm))
    1299             :                 goto fail_nocontext;
    1300             : 
    1301             :         if (mm_alloc_cid(mm))
    1302             :                 goto fail_cid;
    1303             : 
    1304           0 :         for (i = 0; i < NR_MM_COUNTERS; i++)
    1305           0 :                 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
    1306             :                         goto fail_pcpu;
    1307             : 
    1308           0 :         mm->user_ns = get_user_ns(user_ns);
    1309           0 :         lru_gen_init_mm(mm);
    1310             :         return mm;
    1311             : 
    1312             : fail_pcpu:
    1313             :         while (i > 0)
    1314             :                 percpu_counter_destroy(&mm->rss_stat[--i]);
    1315             :         mm_destroy_cid(mm);
    1316             : fail_cid:
    1317             :         destroy_context(mm);
    1318             : fail_nocontext:
    1319             :         mm_free_pgd(mm);
    1320             : fail_nopgd:
    1321           0 :         free_mm(mm);
    1322             :         return NULL;
    1323             : }
    1324             : 
    1325             : /*
    1326             :  * Allocate and initialize an mm_struct.
    1327             :  */
    1328           0 : struct mm_struct *mm_alloc(void)
    1329             : {
    1330             :         struct mm_struct *mm;
    1331             : 
    1332           0 :         mm = allocate_mm();
    1333           0 :         if (!mm)
    1334             :                 return NULL;
    1335             : 
    1336           0 :         memset(mm, 0, sizeof(*mm));
    1337           0 :         return mm_init(mm, current, current_user_ns());
    1338             : }
    1339             : 
    1340           0 : static inline void __mmput(struct mm_struct *mm)
    1341             : {
    1342             :         VM_BUG_ON(atomic_read(&mm->mm_users));
    1343             : 
    1344           0 :         uprobe_clear_state(mm);
    1345           0 :         exit_aio(mm);
    1346           0 :         ksm_exit(mm);
    1347           0 :         khugepaged_exit(mm); /* must run before exit_mmap */
    1348           0 :         exit_mmap(mm);
    1349           0 :         mm_put_huge_zero_page(mm);
    1350           0 :         set_mm_exe_file(mm, NULL);
    1351           0 :         if (!list_empty(&mm->mmlist)) {
    1352           0 :                 spin_lock(&mmlist_lock);
    1353           0 :                 list_del(&mm->mmlist);
    1354             :                 spin_unlock(&mmlist_lock);
    1355             :         }
    1356           0 :         if (mm->binfmt)
    1357             :                 module_put(mm->binfmt->module);
    1358           0 :         lru_gen_del_mm(mm);
    1359           0 :         mmdrop(mm);
    1360           0 : }
    1361             : 
    1362             : /*
    1363             :  * Decrement the use count and release all resources for an mm.
    1364             :  */
    1365           0 : void mmput(struct mm_struct *mm)
    1366             : {
    1367             :         might_sleep();
    1368             : 
    1369           0 :         if (atomic_dec_and_test(&mm->mm_users))
    1370           0 :                 __mmput(mm);
    1371           0 : }
    1372             : EXPORT_SYMBOL_GPL(mmput);
    1373             : 
    1374             : #ifdef CONFIG_MMU
    1375           0 : static void mmput_async_fn(struct work_struct *work)
    1376             : {
    1377           0 :         struct mm_struct *mm = container_of(work, struct mm_struct,
    1378             :                                             async_put_work);
    1379             : 
    1380           0 :         __mmput(mm);
    1381           0 : }
    1382             : 
    1383           0 : void mmput_async(struct mm_struct *mm)
    1384             : {
    1385           0 :         if (atomic_dec_and_test(&mm->mm_users)) {
    1386           0 :                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
    1387           0 :                 schedule_work(&mm->async_put_work);
    1388             :         }
    1389           0 : }
    1390             : EXPORT_SYMBOL_GPL(mmput_async);
    1391             : #endif
    1392             : 
    1393             : /**
    1394             :  * set_mm_exe_file - change a reference to the mm's executable file
    1395             :  *
    1396             :  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
    1397             :  *
    1398             :  * Main users are mmput() and sys_execve(). Callers prevent concurrent
    1399             :  * invocations: in mmput() nobody alive left, in execve task is single
    1400             :  * threaded.
    1401             :  *
    1402             :  * Can only fail if new_exe_file != NULL.
    1403             :  */
    1404           0 : int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
    1405             : {
    1406             :         struct file *old_exe_file;
    1407             : 
    1408             :         /*
    1409             :          * It is safe to dereference the exe_file without RCU as
    1410             :          * this function is only called if nobody else can access
    1411             :          * this mm -- see comment above for justification.
    1412             :          */
    1413           0 :         old_exe_file = rcu_dereference_raw(mm->exe_file);
    1414             : 
    1415           0 :         if (new_exe_file) {
    1416             :                 /*
    1417             :                  * We expect the caller (i.e., sys_execve) to already denied
    1418             :                  * write access, so this is unlikely to fail.
    1419             :                  */
    1420           0 :                 if (unlikely(deny_write_access(new_exe_file)))
    1421             :                         return -EACCES;
    1422             :                 get_file(new_exe_file);
    1423             :         }
    1424           0 :         rcu_assign_pointer(mm->exe_file, new_exe_file);
    1425           0 :         if (old_exe_file) {
    1426           0 :                 allow_write_access(old_exe_file);
    1427           0 :                 fput(old_exe_file);
    1428             :         }
    1429             :         return 0;
    1430             : }
    1431             : 
    1432             : /**
    1433             :  * replace_mm_exe_file - replace a reference to the mm's executable file
    1434             :  *
    1435             :  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
    1436             :  * dealing with concurrent invocation and without grabbing the mmap lock in
    1437             :  * write mode.
    1438             :  *
    1439             :  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
    1440             :  */
    1441           0 : int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
    1442             : {
    1443             :         struct vm_area_struct *vma;
    1444             :         struct file *old_exe_file;
    1445           0 :         int ret = 0;
    1446             : 
    1447             :         /* Forbid mm->exe_file change if old file still mapped. */
    1448           0 :         old_exe_file = get_mm_exe_file(mm);
    1449           0 :         if (old_exe_file) {
    1450           0 :                 VMA_ITERATOR(vmi, mm, 0);
    1451             :                 mmap_read_lock(mm);
    1452           0 :                 for_each_vma(vmi, vma) {
    1453           0 :                         if (!vma->vm_file)
    1454           0 :                                 continue;
    1455           0 :                         if (path_equal(&vma->vm_file->f_path,
    1456           0 :                                        &old_exe_file->f_path)) {
    1457             :                                 ret = -EBUSY;
    1458             :                                 break;
    1459             :                         }
    1460             :                 }
    1461           0 :                 mmap_read_unlock(mm);
    1462           0 :                 fput(old_exe_file);
    1463           0 :                 if (ret)
    1464           0 :                         return ret;
    1465             :         }
    1466             : 
    1467             :         /* set the new file, lockless */
    1468           0 :         ret = deny_write_access(new_exe_file);
    1469           0 :         if (ret)
    1470             :                 return -EACCES;
    1471           0 :         get_file(new_exe_file);
    1472             : 
    1473           0 :         old_exe_file = xchg(&mm->exe_file, new_exe_file);
    1474           0 :         if (old_exe_file) {
    1475             :                 /*
    1476             :                  * Don't race with dup_mmap() getting the file and disallowing
    1477             :                  * write access while someone might open the file writable.
    1478             :                  */
    1479           0 :                 mmap_read_lock(mm);
    1480           0 :                 allow_write_access(old_exe_file);
    1481           0 :                 fput(old_exe_file);
    1482             :                 mmap_read_unlock(mm);
    1483             :         }
    1484             :         return 0;
    1485             : }
    1486             : 
    1487             : /**
    1488             :  * get_mm_exe_file - acquire a reference to the mm's executable file
    1489             :  *
    1490             :  * Returns %NULL if mm has no associated executable file.
    1491             :  * User must release file via fput().
    1492             :  */
    1493           0 : struct file *get_mm_exe_file(struct mm_struct *mm)
    1494             : {
    1495             :         struct file *exe_file;
    1496             : 
    1497             :         rcu_read_lock();
    1498           0 :         exe_file = rcu_dereference(mm->exe_file);
    1499           0 :         if (exe_file && !get_file_rcu(exe_file))
    1500           0 :                 exe_file = NULL;
    1501             :         rcu_read_unlock();
    1502           0 :         return exe_file;
    1503             : }
    1504             : 
    1505             : /**
    1506             :  * get_task_exe_file - acquire a reference to the task's executable file
    1507             :  *
    1508             :  * Returns %NULL if task's mm (if any) has no associated executable file or
    1509             :  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
    1510             :  * User must release file via fput().
    1511             :  */
    1512           0 : struct file *get_task_exe_file(struct task_struct *task)
    1513             : {
    1514           0 :         struct file *exe_file = NULL;
    1515             :         struct mm_struct *mm;
    1516             : 
    1517           0 :         task_lock(task);
    1518           0 :         mm = task->mm;
    1519           0 :         if (mm) {
    1520           0 :                 if (!(task->flags & PF_KTHREAD))
    1521           0 :                         exe_file = get_mm_exe_file(mm);
    1522             :         }
    1523           0 :         task_unlock(task);
    1524           0 :         return exe_file;
    1525             : }
    1526             : 
    1527             : /**
    1528             :  * get_task_mm - acquire a reference to the task's mm
    1529             :  *
    1530             :  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
    1531             :  * this kernel workthread has transiently adopted a user mm with use_mm,
    1532             :  * to do its AIO) is not set and if so returns a reference to it, after
    1533             :  * bumping up the use count.  User must release the mm via mmput()
    1534             :  * after use.  Typically used by /proc and ptrace.
    1535             :  */
    1536           0 : struct mm_struct *get_task_mm(struct task_struct *task)
    1537             : {
    1538             :         struct mm_struct *mm;
    1539             : 
    1540           0 :         task_lock(task);
    1541           0 :         mm = task->mm;
    1542           0 :         if (mm) {
    1543           0 :                 if (task->flags & PF_KTHREAD)
    1544             :                         mm = NULL;
    1545             :                 else
    1546             :                         mmget(mm);
    1547             :         }
    1548           0 :         task_unlock(task);
    1549           0 :         return mm;
    1550             : }
    1551             : EXPORT_SYMBOL_GPL(get_task_mm);
    1552             : 
    1553           0 : struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
    1554             : {
    1555             :         struct mm_struct *mm;
    1556             :         int err;
    1557             : 
    1558           0 :         err =  down_read_killable(&task->signal->exec_update_lock);
    1559           0 :         if (err)
    1560           0 :                 return ERR_PTR(err);
    1561             : 
    1562           0 :         mm = get_task_mm(task);
    1563           0 :         if (mm && mm != current->mm &&
    1564           0 :                         !ptrace_may_access(task, mode)) {
    1565             :                 mmput(mm);
    1566             :                 mm = ERR_PTR(-EACCES);
    1567             :         }
    1568           0 :         up_read(&task->signal->exec_update_lock);
    1569             : 
    1570           0 :         return mm;
    1571             : }
    1572             : 
    1573             : static void complete_vfork_done(struct task_struct *tsk)
    1574             : {
    1575             :         struct completion *vfork;
    1576             : 
    1577         160 :         task_lock(tsk);
    1578         160 :         vfork = tsk->vfork_done;
    1579         160 :         if (likely(vfork)) {
    1580         160 :                 tsk->vfork_done = NULL;
    1581         160 :                 complete(vfork);
    1582             :         }
    1583         160 :         task_unlock(tsk);
    1584             : }
    1585             : 
    1586           0 : static int wait_for_vfork_done(struct task_struct *child,
    1587             :                                 struct completion *vfork)
    1588             : {
    1589           0 :         unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
    1590             :         int killed;
    1591             : 
    1592             :         cgroup_enter_frozen();
    1593           0 :         killed = wait_for_completion_state(vfork, state);
    1594           0 :         cgroup_leave_frozen(false);
    1595             : 
    1596           0 :         if (killed) {
    1597           0 :                 task_lock(child);
    1598           0 :                 child->vfork_done = NULL;
    1599           0 :                 task_unlock(child);
    1600             :         }
    1601             : 
    1602           0 :         put_task_struct(child);
    1603           0 :         return killed;
    1604             : }
    1605             : 
    1606             : /* Please note the differences between mmput and mm_release.
    1607             :  * mmput is called whenever we stop holding onto a mm_struct,
    1608             :  * error success whatever.
    1609             :  *
    1610             :  * mm_release is called after a mm_struct has been removed
    1611             :  * from the current process.
    1612             :  *
    1613             :  * This difference is important for error handling, when we
    1614             :  * only half set up a mm_struct for a new process and need to restore
    1615             :  * the old one.  Because we mmput the new mm_struct before
    1616             :  * restoring the old one. . .
    1617             :  * Eric Biederman 10 January 1998
    1618             :  */
    1619         160 : static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1620             : {
    1621         160 :         uprobe_free_utask(tsk);
    1622             : 
    1623             :         /* Get rid of any cached register state */
    1624         160 :         deactivate_mm(tsk, mm);
    1625             : 
    1626             :         /*
    1627             :          * Signal userspace if we're not exiting with a core dump
    1628             :          * because we want to leave the value intact for debugging
    1629             :          * purposes.
    1630             :          */
    1631         160 :         if (tsk->clear_child_tid) {
    1632           0 :                 if (atomic_read(&mm->mm_users) > 1) {
    1633             :                         /*
    1634             :                          * We don't check the error code - if userspace has
    1635             :                          * not set up a proper pointer then tough luck.
    1636             :                          */
    1637           0 :                         put_user(0, tsk->clear_child_tid);
    1638           0 :                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
    1639             :                                         1, NULL, NULL, 0, 0);
    1640             :                 }
    1641           0 :                 tsk->clear_child_tid = NULL;
    1642             :         }
    1643             : 
    1644             :         /*
    1645             :          * All done, finally we can wake up parent and return this mm to him.
    1646             :          * Also kthread_stop() uses this completion for synchronization.
    1647             :          */
    1648         160 :         if (tsk->vfork_done)
    1649         160 :                 complete_vfork_done(tsk);
    1650         160 : }
    1651             : 
    1652         160 : void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1653             : {
    1654         160 :         futex_exit_release(tsk);
    1655         160 :         mm_release(tsk, mm);
    1656         160 : }
    1657             : 
    1658           0 : void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1659             : {
    1660           0 :         futex_exec_release(tsk);
    1661           0 :         mm_release(tsk, mm);
    1662           0 : }
    1663             : 
    1664             : /**
    1665             :  * dup_mm() - duplicates an existing mm structure
    1666             :  * @tsk: the task_struct with which the new mm will be associated.
    1667             :  * @oldmm: the mm to duplicate.
    1668             :  *
    1669             :  * Allocates a new mm structure and duplicates the provided @oldmm structure
    1670             :  * content into it.
    1671             :  *
    1672             :  * Return: the duplicated mm or NULL on failure.
    1673             :  */
    1674           0 : static struct mm_struct *dup_mm(struct task_struct *tsk,
    1675             :                                 struct mm_struct *oldmm)
    1676             : {
    1677             :         struct mm_struct *mm;
    1678             :         int err;
    1679             : 
    1680           0 :         mm = allocate_mm();
    1681           0 :         if (!mm)
    1682             :                 goto fail_nomem;
    1683             : 
    1684           0 :         memcpy(mm, oldmm, sizeof(*mm));
    1685             : 
    1686           0 :         if (!mm_init(mm, tsk, mm->user_ns))
    1687             :                 goto fail_nomem;
    1688             : 
    1689           0 :         err = dup_mmap(mm, oldmm);
    1690           0 :         if (err)
    1691             :                 goto free_pt;
    1692             : 
    1693           0 :         mm->hiwater_rss = get_mm_rss(mm);
    1694           0 :         mm->hiwater_vm = mm->total_vm;
    1695             : 
    1696           0 :         if (mm->binfmt && !try_module_get(mm->binfmt->module))
    1697             :                 goto free_pt;
    1698             : 
    1699             :         return mm;
    1700             : 
    1701             : free_pt:
    1702             :         /* don't put binfmt in mmput, we haven't got module yet */
    1703           0 :         mm->binfmt = NULL;
    1704           0 :         mm_init_owner(mm, NULL);
    1705             :         mmput(mm);
    1706             : 
    1707             : fail_nomem:
    1708             :         return NULL;
    1709             : }
    1710             : 
    1711         175 : static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
    1712             : {
    1713             :         struct mm_struct *mm, *oldmm;
    1714             : 
    1715         175 :         tsk->min_flt = tsk->maj_flt = 0;
    1716         175 :         tsk->nvcsw = tsk->nivcsw = 0;
    1717             : #ifdef CONFIG_DETECT_HUNG_TASK
    1718             :         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
    1719             :         tsk->last_switch_time = 0;
    1720             : #endif
    1721             : 
    1722         175 :         tsk->mm = NULL;
    1723         175 :         tsk->active_mm = NULL;
    1724             : 
    1725             :         /*
    1726             :          * Are we cloning a kernel thread?
    1727             :          *
    1728             :          * We need to steal a active VM for that..
    1729             :          */
    1730         175 :         oldmm = current->mm;
    1731         175 :         if (!oldmm)
    1732             :                 return 0;
    1733             : 
    1734           0 :         if (clone_flags & CLONE_VM) {
    1735           0 :                 mmget(oldmm);
    1736           0 :                 mm = oldmm;
    1737             :         } else {
    1738           0 :                 mm = dup_mm(tsk, current->mm);
    1739           0 :                 if (!mm)
    1740             :                         return -ENOMEM;
    1741             :         }
    1742             : 
    1743           0 :         tsk->mm = mm;
    1744           0 :         tsk->active_mm = mm;
    1745           0 :         sched_mm_cid_fork(tsk);
    1746           0 :         return 0;
    1747             : }
    1748             : 
    1749         175 : static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
    1750             : {
    1751         175 :         struct fs_struct *fs = current->fs;
    1752         175 :         if (clone_flags & CLONE_FS) {
    1753             :                 /* tsk->fs is already what we want */
    1754         350 :                 spin_lock(&fs->lock);
    1755         175 :                 if (fs->in_exec) {
    1756           0 :                         spin_unlock(&fs->lock);
    1757             :                         return -EAGAIN;
    1758             :                 }
    1759         175 :                 fs->users++;
    1760         350 :                 spin_unlock(&fs->lock);
    1761             :                 return 0;
    1762             :         }
    1763           0 :         tsk->fs = copy_fs_struct(fs);
    1764           0 :         if (!tsk->fs)
    1765             :                 return -ENOMEM;
    1766             :         return 0;
    1767             : }
    1768             : 
    1769         175 : static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
    1770             :                       int no_files)
    1771             : {
    1772             :         struct files_struct *oldf, *newf;
    1773         175 :         int error = 0;
    1774             : 
    1775             :         /*
    1776             :          * A background process may not have any files ...
    1777             :          */
    1778         175 :         oldf = current->files;
    1779         175 :         if (!oldf)
    1780             :                 goto out;
    1781             : 
    1782         175 :         if (no_files) {
    1783           0 :                 tsk->files = NULL;
    1784             :                 goto out;
    1785             :         }
    1786             : 
    1787         175 :         if (clone_flags & CLONE_FILES) {
    1788         174 :                 atomic_inc(&oldf->count);
    1789             :                 goto out;
    1790             :         }
    1791             : 
    1792           1 :         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
    1793           1 :         if (!newf)
    1794             :                 goto out;
    1795             : 
    1796           1 :         tsk->files = newf;
    1797           1 :         error = 0;
    1798             : out:
    1799         175 :         return error;
    1800             : }
    1801             : 
    1802         175 : static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
    1803             : {
    1804             :         struct sighand_struct *sig;
    1805             : 
    1806         175 :         if (clone_flags & CLONE_SIGHAND) {
    1807           0 :                 refcount_inc(&current->sighand->count);
    1808           0 :                 return 0;
    1809             :         }
    1810         175 :         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
    1811         175 :         RCU_INIT_POINTER(tsk->sighand, sig);
    1812         175 :         if (!sig)
    1813             :                 return -ENOMEM;
    1814             : 
    1815         350 :         refcount_set(&sig->count, 1);
    1816         350 :         spin_lock_irq(&current->sighand->siglock);
    1817         525 :         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
    1818         350 :         spin_unlock_irq(&current->sighand->siglock);
    1819             : 
    1820             :         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
    1821         175 :         if (clone_flags & CLONE_CLEAR_SIGHAND)
    1822           0 :                 flush_signal_handlers(tsk, 0);
    1823             : 
    1824             :         return 0;
    1825             : }
    1826             : 
    1827         160 : void __cleanup_sighand(struct sighand_struct *sighand)
    1828             : {
    1829         320 :         if (refcount_dec_and_test(&sighand->count)) {
    1830         160 :                 signalfd_cleanup(sighand);
    1831             :                 /*
    1832             :                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
    1833             :                  * without an RCU grace period, see __lock_task_sighand().
    1834             :                  */
    1835         160 :                 kmem_cache_free(sighand_cachep, sighand);
    1836             :         }
    1837         160 : }
    1838             : 
    1839             : /*
    1840             :  * Initialize POSIX timer handling for a thread group.
    1841             :  */
    1842             : static void posix_cpu_timers_init_group(struct signal_struct *sig)
    1843             : {
    1844         175 :         struct posix_cputimers *pct = &sig->posix_cputimers;
    1845             :         unsigned long cpu_limit;
    1846             : 
    1847         175 :         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
    1848         175 :         posix_cputimers_group_init(pct, cpu_limit);
    1849             : }
    1850             : 
    1851         175 : static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
    1852             : {
    1853             :         struct signal_struct *sig;
    1854             : 
    1855         175 :         if (clone_flags & CLONE_THREAD)
    1856             :                 return 0;
    1857             : 
    1858         350 :         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
    1859         175 :         tsk->signal = sig;
    1860         175 :         if (!sig)
    1861             :                 return -ENOMEM;
    1862             : 
    1863         175 :         sig->nr_threads = 1;
    1864         175 :         sig->quick_threads = 1;
    1865         350 :         atomic_set(&sig->live, 1);
    1866         350 :         refcount_set(&sig->sigcnt, 1);
    1867             : 
    1868             :         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
    1869         175 :         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
    1870         175 :         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
    1871             : 
    1872         175 :         init_waitqueue_head(&sig->wait_chldexit);
    1873         175 :         sig->curr_target = tsk;
    1874         350 :         init_sigpending(&sig->shared_pending);
    1875         175 :         INIT_HLIST_HEAD(&sig->multiprocess);
    1876         350 :         seqlock_init(&sig->stats_lock);
    1877         350 :         prev_cputime_init(&sig->prev_cputime);
    1878             : 
    1879             : #ifdef CONFIG_POSIX_TIMERS
    1880         350 :         INIT_LIST_HEAD(&sig->posix_timers);
    1881         175 :         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    1882         175 :         sig->real_timer.function = it_real_fn;
    1883             : #endif
    1884             : 
    1885         175 :         task_lock(current->group_leader);
    1886         525 :         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
    1887         350 :         task_unlock(current->group_leader);
    1888             : 
    1889         175 :         posix_cpu_timers_init_group(sig);
    1890             : 
    1891             :         tty_audit_fork(sig);
    1892             :         sched_autogroup_fork(sig);
    1893             : 
    1894         175 :         sig->oom_score_adj = current->signal->oom_score_adj;
    1895         175 :         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
    1896             : 
    1897         175 :         mutex_init(&sig->cred_guard_mutex);
    1898         175 :         init_rwsem(&sig->exec_update_lock);
    1899             : 
    1900         175 :         return 0;
    1901             : }
    1902             : 
    1903         175 : static void copy_seccomp(struct task_struct *p)
    1904             : {
    1905             : #ifdef CONFIG_SECCOMP
    1906             :         /*
    1907             :          * Must be called with sighand->lock held, which is common to
    1908             :          * all threads in the group. Holding cred_guard_mutex is not
    1909             :          * needed because this new task is not yet running and cannot
    1910             :          * be racing exec.
    1911             :          */
    1912         175 :         assert_spin_locked(&current->sighand->siglock);
    1913             : 
    1914             :         /* Ref-count the new filter user, and assign it. */
    1915         175 :         get_seccomp_filter(current);
    1916         175 :         p->seccomp = current->seccomp;
    1917             : 
    1918             :         /*
    1919             :          * Explicitly enable no_new_privs here in case it got set
    1920             :          * between the task_struct being duplicated and holding the
    1921             :          * sighand lock. The seccomp state and nnp must be in sync.
    1922             :          */
    1923         350 :         if (task_no_new_privs(current))
    1924             :                 task_set_no_new_privs(p);
    1925             : 
    1926             :         /*
    1927             :          * If the parent gained a seccomp mode after copying thread
    1928             :          * flags and between before we held the sighand lock, we have
    1929             :          * to manually enable the seccomp thread flag here.
    1930             :          */
    1931         175 :         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
    1932           0 :                 set_task_syscall_work(p, SECCOMP);
    1933             : #endif
    1934         175 : }
    1935             : 
    1936           0 : SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
    1937             : {
    1938           0 :         current->clear_child_tid = tidptr;
    1939             : 
    1940           0 :         return task_pid_vnr(current);
    1941             : }
    1942             : 
    1943             : static void rt_mutex_init_task(struct task_struct *p)
    1944             : {
    1945             :         raw_spin_lock_init(&p->pi_lock);
    1946             : #ifdef CONFIG_RT_MUTEXES
    1947         175 :         p->pi_waiters = RB_ROOT_CACHED;
    1948         175 :         p->pi_top_task = NULL;
    1949         175 :         p->pi_blocked_on = NULL;
    1950             : #endif
    1951             : }
    1952             : 
    1953             : static inline void init_task_pid_links(struct task_struct *task)
    1954             : {
    1955             :         enum pid_type type;
    1956             : 
    1957         875 :         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
    1958        1400 :                 INIT_HLIST_NODE(&task->pid_links[type]);
    1959             : }
    1960             : 
    1961             : static inline void
    1962             : init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
    1963             : {
    1964           0 :         if (type == PIDTYPE_PID)
    1965         175 :                 task->thread_pid = pid;
    1966             :         else
    1967         525 :                 task->signal->pids[type] = pid;
    1968             : }
    1969             : 
    1970             : static inline void rcu_copy_process(struct task_struct *p)
    1971             : {
    1972             : #ifdef CONFIG_PREEMPT_RCU
    1973             :         p->rcu_read_lock_nesting = 0;
    1974             :         p->rcu_read_unlock_special.s = 0;
    1975             :         p->rcu_blocked_node = NULL;
    1976             :         INIT_LIST_HEAD(&p->rcu_node_entry);
    1977             : #endif /* #ifdef CONFIG_PREEMPT_RCU */
    1978             : #ifdef CONFIG_TASKS_RCU
    1979             :         p->rcu_tasks_holdout = false;
    1980             :         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
    1981             :         p->rcu_tasks_idle_cpu = -1;
    1982             : #endif /* #ifdef CONFIG_TASKS_RCU */
    1983             : #ifdef CONFIG_TASKS_TRACE_RCU
    1984             :         p->trc_reader_nesting = 0;
    1985             :         p->trc_reader_special.s = 0;
    1986             :         INIT_LIST_HEAD(&p->trc_holdout_list);
    1987             :         INIT_LIST_HEAD(&p->trc_blkd_node);
    1988             : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
    1989             : }
    1990             : 
    1991           0 : struct pid *pidfd_pid(const struct file *file)
    1992             : {
    1993           0 :         if (file->f_op == &pidfd_fops)
    1994           0 :                 return file->private_data;
    1995             : 
    1996             :         return ERR_PTR(-EBADF);
    1997             : }
    1998             : 
    1999           0 : static int pidfd_release(struct inode *inode, struct file *file)
    2000             : {
    2001           0 :         struct pid *pid = file->private_data;
    2002             : 
    2003           0 :         file->private_data = NULL;
    2004           0 :         put_pid(pid);
    2005           0 :         return 0;
    2006             : }
    2007             : 
    2008             : #ifdef CONFIG_PROC_FS
    2009             : /**
    2010             :  * pidfd_show_fdinfo - print information about a pidfd
    2011             :  * @m: proc fdinfo file
    2012             :  * @f: file referencing a pidfd
    2013             :  *
    2014             :  * Pid:
    2015             :  * This function will print the pid that a given pidfd refers to in the
    2016             :  * pid namespace of the procfs instance.
    2017             :  * If the pid namespace of the process is not a descendant of the pid
    2018             :  * namespace of the procfs instance 0 will be shown as its pid. This is
    2019             :  * similar to calling getppid() on a process whose parent is outside of
    2020             :  * its pid namespace.
    2021             :  *
    2022             :  * NSpid:
    2023             :  * If pid namespaces are supported then this function will also print
    2024             :  * the pid of a given pidfd refers to for all descendant pid namespaces
    2025             :  * starting from the current pid namespace of the instance, i.e. the
    2026             :  * Pid field and the first entry in the NSpid field will be identical.
    2027             :  * If the pid namespace of the process is not a descendant of the pid
    2028             :  * namespace of the procfs instance 0 will be shown as its first NSpid
    2029             :  * entry and no others will be shown.
    2030             :  * Note that this differs from the Pid and NSpid fields in
    2031             :  * /proc/<pid>/status where Pid and NSpid are always shown relative to
    2032             :  * the  pid namespace of the procfs instance. The difference becomes
    2033             :  * obvious when sending around a pidfd between pid namespaces from a
    2034             :  * different branch of the tree, i.e. where no ancestral relation is
    2035             :  * present between the pid namespaces:
    2036             :  * - create two new pid namespaces ns1 and ns2 in the initial pid
    2037             :  *   namespace (also take care to create new mount namespaces in the
    2038             :  *   new pid namespace and mount procfs)
    2039             :  * - create a process with a pidfd in ns1
    2040             :  * - send pidfd from ns1 to ns2
    2041             :  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
    2042             :  *   have exactly one entry, which is 0
    2043             :  */
    2044           0 : static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
    2045             : {
    2046           0 :         struct pid *pid = f->private_data;
    2047             :         struct pid_namespace *ns;
    2048           0 :         pid_t nr = -1;
    2049             : 
    2050           0 :         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
    2051           0 :                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
    2052           0 :                 nr = pid_nr_ns(pid, ns);
    2053             :         }
    2054             : 
    2055           0 :         seq_put_decimal_ll(m, "Pid:\t", nr);
    2056             : 
    2057             : #ifdef CONFIG_PID_NS
    2058           0 :         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
    2059           0 :         if (nr > 0) {
    2060             :                 int i;
    2061             : 
    2062             :                 /* If nr is non-zero it means that 'pid' is valid and that
    2063             :                  * ns, i.e. the pid namespace associated with the procfs
    2064             :                  * instance, is in the pid namespace hierarchy of pid.
    2065             :                  * Start at one below the already printed level.
    2066             :                  */
    2067           0 :                 for (i = ns->level + 1; i <= pid->level; i++)
    2068           0 :                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
    2069             :         }
    2070             : #endif
    2071           0 :         seq_putc(m, '\n');
    2072           0 : }
    2073             : #endif
    2074             : 
    2075             : /*
    2076             :  * Poll support for process exit notification.
    2077             :  */
    2078           0 : static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
    2079             : {
    2080           0 :         struct pid *pid = file->private_data;
    2081           0 :         __poll_t poll_flags = 0;
    2082             : 
    2083           0 :         poll_wait(file, &pid->wait_pidfd, pts);
    2084             : 
    2085             :         /*
    2086             :          * Inform pollers only when the whole thread group exits.
    2087             :          * If the thread group leader exits before all other threads in the
    2088             :          * group, then poll(2) should block, similar to the wait(2) family.
    2089             :          */
    2090           0 :         if (thread_group_exited(pid))
    2091           0 :                 poll_flags = EPOLLIN | EPOLLRDNORM;
    2092             : 
    2093           0 :         return poll_flags;
    2094             : }
    2095             : 
    2096             : const struct file_operations pidfd_fops = {
    2097             :         .release = pidfd_release,
    2098             :         .poll = pidfd_poll,
    2099             : #ifdef CONFIG_PROC_FS
    2100             :         .show_fdinfo = pidfd_show_fdinfo,
    2101             : #endif
    2102             : };
    2103             : 
    2104             : /**
    2105             :  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
    2106             :  * @pid:   the struct pid for which to create a pidfd
    2107             :  * @flags: flags of the new @pidfd
    2108             :  * @pidfd: the pidfd to return
    2109             :  *
    2110             :  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
    2111             :  * caller's file descriptor table. The pidfd is reserved but not installed yet.
    2112             : 
    2113             :  * The helper doesn't perform checks on @pid which makes it useful for pidfds
    2114             :  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
    2115             :  * pidfd file are prepared.
    2116             :  *
    2117             :  * If this function returns successfully the caller is responsible to either
    2118             :  * call fd_install() passing the returned pidfd and pidfd file as arguments in
    2119             :  * order to install the pidfd into its file descriptor table or they must use
    2120             :  * put_unused_fd() and fput() on the returned pidfd and pidfd file
    2121             :  * respectively.
    2122             :  *
    2123             :  * This function is useful when a pidfd must already be reserved but there
    2124             :  * might still be points of failure afterwards and the caller wants to ensure
    2125             :  * that no pidfd is leaked into its file descriptor table.
    2126             :  *
    2127             :  * Return: On success, a reserved pidfd is returned from the function and a new
    2128             :  *         pidfd file is returned in the last argument to the function. On
    2129             :  *         error, a negative error code is returned from the function and the
    2130             :  *         last argument remains unchanged.
    2131             :  */
    2132           0 : static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
    2133             : {
    2134             :         int pidfd;
    2135             :         struct file *pidfd_file;
    2136             : 
    2137           0 :         if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
    2138             :                 return -EINVAL;
    2139             : 
    2140           0 :         pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
    2141           0 :         if (pidfd < 0)
    2142             :                 return pidfd;
    2143             : 
    2144           0 :         pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
    2145           0 :                                         flags | O_RDWR | O_CLOEXEC);
    2146           0 :         if (IS_ERR(pidfd_file)) {
    2147           0 :                 put_unused_fd(pidfd);
    2148           0 :                 return PTR_ERR(pidfd_file);
    2149             :         }
    2150           0 :         get_pid(pid); /* held by pidfd_file now */
    2151           0 :         *ret = pidfd_file;
    2152           0 :         return pidfd;
    2153             : }
    2154             : 
    2155             : /**
    2156             :  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
    2157             :  * @pid:   the struct pid for which to create a pidfd
    2158             :  * @flags: flags of the new @pidfd
    2159             :  * @pidfd: the pidfd to return
    2160             :  *
    2161             :  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
    2162             :  * caller's file descriptor table. The pidfd is reserved but not installed yet.
    2163             :  *
    2164             :  * The helper verifies that @pid is used as a thread group leader.
    2165             :  *
    2166             :  * If this function returns successfully the caller is responsible to either
    2167             :  * call fd_install() passing the returned pidfd and pidfd file as arguments in
    2168             :  * order to install the pidfd into its file descriptor table or they must use
    2169             :  * put_unused_fd() and fput() on the returned pidfd and pidfd file
    2170             :  * respectively.
    2171             :  *
    2172             :  * This function is useful when a pidfd must already be reserved but there
    2173             :  * might still be points of failure afterwards and the caller wants to ensure
    2174             :  * that no pidfd is leaked into its file descriptor table.
    2175             :  *
    2176             :  * Return: On success, a reserved pidfd is returned from the function and a new
    2177             :  *         pidfd file is returned in the last argument to the function. On
    2178             :  *         error, a negative error code is returned from the function and the
    2179             :  *         last argument remains unchanged.
    2180             :  */
    2181           0 : int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
    2182             : {
    2183           0 :         if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
    2184             :                 return -EINVAL;
    2185             : 
    2186           0 :         return __pidfd_prepare(pid, flags, ret);
    2187             : }
    2188             : 
    2189             : static void __delayed_free_task(struct rcu_head *rhp)
    2190             : {
    2191             :         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
    2192             : 
    2193             :         free_task(tsk);
    2194             : }
    2195             : 
    2196             : static __always_inline void delayed_free_task(struct task_struct *tsk)
    2197             : {
    2198             :         if (IS_ENABLED(CONFIG_MEMCG))
    2199             :                 call_rcu(&tsk->rcu, __delayed_free_task);
    2200             :         else
    2201           0 :                 free_task(tsk);
    2202             : }
    2203             : 
    2204         175 : static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
    2205             : {
    2206             :         /* Skip if kernel thread */
    2207         175 :         if (!tsk->mm)
    2208             :                 return;
    2209             : 
    2210             :         /* Skip if spawning a thread or using vfork */
    2211           0 :         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
    2212             :                 return;
    2213             : 
    2214             :         /* We need to synchronize with __set_oom_adj */
    2215           0 :         mutex_lock(&oom_adj_mutex);
    2216           0 :         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
    2217             :         /* Update the values in case they were changed after copy_signal */
    2218           0 :         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
    2219           0 :         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
    2220           0 :         mutex_unlock(&oom_adj_mutex);
    2221             : }
    2222             : 
    2223             : #ifdef CONFIG_RV
    2224             : static void rv_task_fork(struct task_struct *p)
    2225             : {
    2226             :         int i;
    2227             : 
    2228             :         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
    2229             :                 p->rv[i].da_mon.monitoring = false;
    2230             : }
    2231             : #else
    2232             : #define rv_task_fork(p) do {} while (0)
    2233             : #endif
    2234             : 
    2235             : /*
    2236             :  * This creates a new process as a copy of the old one,
    2237             :  * but does not actually start it yet.
    2238             :  *
    2239             :  * It copies the registers, and all the appropriate
    2240             :  * parts of the process environment (as per the clone
    2241             :  * flags). The actual kick-off is left to the caller.
    2242             :  */
    2243         175 : __latent_entropy struct task_struct *copy_process(
    2244             :                                         struct pid *pid,
    2245             :                                         int trace,
    2246             :                                         int node,
    2247             :                                         struct kernel_clone_args *args)
    2248             : {
    2249         175 :         int pidfd = -1, retval;
    2250             :         struct task_struct *p;
    2251             :         struct multiprocess_signals delayed;
    2252         175 :         struct file *pidfile = NULL;
    2253         175 :         const u64 clone_flags = args->flags;
    2254         175 :         struct nsproxy *nsp = current->nsproxy;
    2255             : 
    2256             :         /*
    2257             :          * Don't allow sharing the root directory with processes in a different
    2258             :          * namespace
    2259             :          */
    2260         175 :         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
    2261             :                 return ERR_PTR(-EINVAL);
    2262             : 
    2263         175 :         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
    2264             :                 return ERR_PTR(-EINVAL);
    2265             : 
    2266             :         /*
    2267             :          * Thread groups must share signals as well, and detached threads
    2268             :          * can only be started up within the thread group.
    2269             :          */
    2270         175 :         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
    2271             :                 return ERR_PTR(-EINVAL);
    2272             : 
    2273             :         /*
    2274             :          * Shared signal handlers imply shared VM. By way of the above,
    2275             :          * thread groups also imply shared VM. Blocking this case allows
    2276             :          * for various simplifications in other code.
    2277             :          */
    2278         175 :         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
    2279             :                 return ERR_PTR(-EINVAL);
    2280             : 
    2281             :         /*
    2282             :          * Siblings of global init remain as zombies on exit since they are
    2283             :          * not reaped by their parent (swapper). To solve this and to avoid
    2284             :          * multi-rooted process trees, prevent global and container-inits
    2285             :          * from creating siblings.
    2286             :          */
    2287         175 :         if ((clone_flags & CLONE_PARENT) &&
    2288           0 :                                 current->signal->flags & SIGNAL_UNKILLABLE)
    2289             :                 return ERR_PTR(-EINVAL);
    2290             : 
    2291             :         /*
    2292             :          * If the new process will be in a different pid or user namespace
    2293             :          * do not allow it to share a thread group with the forking task.
    2294             :          */
    2295         175 :         if (clone_flags & CLONE_THREAD) {
    2296           0 :                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
    2297           0 :                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
    2298             :                         return ERR_PTR(-EINVAL);
    2299             :         }
    2300             : 
    2301         175 :         if (clone_flags & CLONE_PIDFD) {
    2302             :                 /*
    2303             :                  * - CLONE_DETACHED is blocked so that we can potentially
    2304             :                  *   reuse it later for CLONE_PIDFD.
    2305             :                  * - CLONE_THREAD is blocked until someone really needs it.
    2306             :                  */
    2307           0 :                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
    2308             :                         return ERR_PTR(-EINVAL);
    2309             :         }
    2310             : 
    2311             :         /*
    2312             :          * Force any signals received before this point to be delivered
    2313             :          * before the fork happens.  Collect up signals sent to multiple
    2314             :          * processes that happen during the fork and delay them so that
    2315             :          * they appear to happen after the fork.
    2316             :          */
    2317         175 :         sigemptyset(&delayed.signal);
    2318         175 :         INIT_HLIST_NODE(&delayed.node);
    2319             : 
    2320         350 :         spin_lock_irq(&current->sighand->siglock);
    2321         175 :         if (!(clone_flags & CLONE_THREAD))
    2322         175 :                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
    2323         175 :         recalc_sigpending();
    2324         350 :         spin_unlock_irq(&current->sighand->siglock);
    2325         175 :         retval = -ERESTARTNOINTR;
    2326         350 :         if (task_sigpending(current))
    2327             :                 goto fork_out;
    2328             : 
    2329         175 :         retval = -ENOMEM;
    2330         175 :         p = dup_task_struct(current, node);
    2331         175 :         if (!p)
    2332             :                 goto fork_out;
    2333         175 :         p->flags &= ~PF_KTHREAD;
    2334         175 :         if (args->kthread)
    2335         174 :                 p->flags |= PF_KTHREAD;
    2336         175 :         if (args->user_worker) {
    2337             :                 /*
    2338             :                  * Mark us a user worker, and block any signal that isn't
    2339             :                  * fatal or STOP
    2340             :                  */
    2341           0 :                 p->flags |= PF_USER_WORKER;
    2342           0 :                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
    2343             :         }
    2344         175 :         if (args->io_thread)
    2345           0 :                 p->flags |= PF_IO_WORKER;
    2346             : 
    2347         175 :         if (args->name)
    2348         173 :                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
    2349             : 
    2350         175 :         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
    2351             :         /*
    2352             :          * Clear TID on mm_release()?
    2353             :          */
    2354         175 :         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
    2355             : 
    2356         175 :         ftrace_graph_init_task(p);
    2357             : 
    2358         175 :         rt_mutex_init_task(p);
    2359             : 
    2360             :         lockdep_assert_irqs_enabled();
    2361             : #ifdef CONFIG_PROVE_LOCKING
    2362             :         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
    2363             : #endif
    2364         175 :         retval = copy_creds(p, clone_flags);
    2365         175 :         if (retval < 0)
    2366             :                 goto bad_fork_free;
    2367             : 
    2368         175 :         retval = -EAGAIN;
    2369         525 :         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
    2370           0 :                 if (p->real_cred->user != INIT_USER &&
    2371           0 :                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
    2372             :                         goto bad_fork_cleanup_count;
    2373             :         }
    2374         175 :         current->flags &= ~PF_NPROC_EXCEEDED;
    2375             : 
    2376             :         /*
    2377             :          * If multiple threads are within copy_process(), then this check
    2378             :          * triggers too late. This doesn't hurt, the check is only there
    2379             :          * to stop root fork bombs.
    2380             :          */
    2381         175 :         retval = -EAGAIN;
    2382         175 :         if (data_race(nr_threads >= max_threads))
    2383             :                 goto bad_fork_cleanup_count;
    2384             : 
    2385         175 :         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
    2386         175 :         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
    2387         175 :         p->flags |= PF_FORKNOEXEC;
    2388         350 :         INIT_LIST_HEAD(&p->children);
    2389         350 :         INIT_LIST_HEAD(&p->sibling);
    2390         175 :         rcu_copy_process(p);
    2391         175 :         p->vfork_done = NULL;
    2392         175 :         spin_lock_init(&p->alloc_lock);
    2393             : 
    2394         350 :         init_sigpending(&p->pending);
    2395             : 
    2396         175 :         p->utime = p->stime = p->gtime = 0;
    2397             : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    2398             :         p->utimescaled = p->stimescaled = 0;
    2399             : #endif
    2400         350 :         prev_cputime_init(&p->prev_cputime);
    2401             : 
    2402             : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    2403             :         seqcount_init(&p->vtime.seqcount);
    2404             :         p->vtime.starttime = 0;
    2405             :         p->vtime.state = VTIME_INACTIVE;
    2406             : #endif
    2407             : 
    2408             : #ifdef CONFIG_IO_URING
    2409         175 :         p->io_uring = NULL;
    2410             : #endif
    2411             : 
    2412             : #if defined(SPLIT_RSS_COUNTING)
    2413             :         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
    2414             : #endif
    2415             : 
    2416         175 :         p->default_timer_slack_ns = current->timer_slack_ns;
    2417             : 
    2418             : #ifdef CONFIG_PSI
    2419             :         p->psi_flags = 0;
    2420             : #endif
    2421             : 
    2422         175 :         task_io_accounting_init(&p->ioac);
    2423         175 :         acct_clear_integrals(p);
    2424             : 
    2425         175 :         posix_cputimers_init(&p->posix_cputimers);
    2426             : 
    2427         175 :         p->io_context = NULL;
    2428         175 :         audit_set_context(p, NULL);
    2429         175 :         cgroup_fork(p);
    2430         175 :         if (args->kthread) {
    2431         174 :                 if (!set_kthread_struct(p))
    2432             :                         goto bad_fork_cleanup_delayacct;
    2433             :         }
    2434             : #ifdef CONFIG_NUMA
    2435             :         p->mempolicy = mpol_dup(p->mempolicy);
    2436             :         if (IS_ERR(p->mempolicy)) {
    2437             :                 retval = PTR_ERR(p->mempolicy);
    2438             :                 p->mempolicy = NULL;
    2439             :                 goto bad_fork_cleanup_delayacct;
    2440             :         }
    2441             : #endif
    2442             : #ifdef CONFIG_CPUSETS
    2443             :         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
    2444             :         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
    2445             :         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
    2446             : #endif
    2447             : #ifdef CONFIG_TRACE_IRQFLAGS
    2448             :         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
    2449             :         p->irqtrace.hardirq_disable_ip       = _THIS_IP_;
    2450             :         p->irqtrace.softirq_enable_ip        = _THIS_IP_;
    2451             :         p->softirqs_enabled          = 1;
    2452             :         p->softirq_context           = 0;
    2453             : #endif
    2454             : 
    2455         175 :         p->pagefault_disabled = 0;
    2456             : 
    2457             : #ifdef CONFIG_LOCKDEP
    2458             :         lockdep_init_task(p);
    2459             : #endif
    2460             : 
    2461             : #ifdef CONFIG_DEBUG_MUTEXES
    2462             :         p->blocked_on = NULL; /* not blocked yet */
    2463             : #endif
    2464             : #ifdef CONFIG_BCACHE
    2465             :         p->sequential_io     = 0;
    2466             :         p->sequential_io_avg = 0;
    2467             : #endif
    2468             : #ifdef CONFIG_BPF_SYSCALL
    2469             :         RCU_INIT_POINTER(p->bpf_storage, NULL);
    2470             :         p->bpf_ctx = NULL;
    2471             : #endif
    2472             : 
    2473             :         /* Perform scheduler related setup. Assign this task to a CPU. */
    2474         175 :         retval = sched_fork(clone_flags, p);
    2475         175 :         if (retval)
    2476             :                 goto bad_fork_cleanup_policy;
    2477             : 
    2478         175 :         retval = perf_event_init_task(p, clone_flags);
    2479             :         if (retval)
    2480             :                 goto bad_fork_cleanup_policy;
    2481         175 :         retval = audit_alloc(p);
    2482             :         if (retval)
    2483             :                 goto bad_fork_cleanup_perf;
    2484             :         /* copy all the process information */
    2485         175 :         shm_init_task(p);
    2486         175 :         retval = security_task_alloc(p, clone_flags);
    2487             :         if (retval)
    2488             :                 goto bad_fork_cleanup_audit;
    2489         175 :         retval = copy_semundo(clone_flags, p);
    2490             :         if (retval)
    2491             :                 goto bad_fork_cleanup_security;
    2492         175 :         retval = copy_files(clone_flags, p, args->no_files);
    2493         175 :         if (retval)
    2494             :                 goto bad_fork_cleanup_semundo;
    2495         175 :         retval = copy_fs(clone_flags, p);
    2496         175 :         if (retval)
    2497             :                 goto bad_fork_cleanup_files;
    2498         175 :         retval = copy_sighand(clone_flags, p);
    2499         175 :         if (retval)
    2500             :                 goto bad_fork_cleanup_fs;
    2501         175 :         retval = copy_signal(clone_flags, p);
    2502         175 :         if (retval)
    2503             :                 goto bad_fork_cleanup_sighand;
    2504         175 :         retval = copy_mm(clone_flags, p);
    2505         175 :         if (retval)
    2506             :                 goto bad_fork_cleanup_signal;
    2507         175 :         retval = copy_namespaces(clone_flags, p);
    2508         175 :         if (retval)
    2509             :                 goto bad_fork_cleanup_mm;
    2510         175 :         retval = copy_io(clone_flags, p);
    2511         175 :         if (retval)
    2512             :                 goto bad_fork_cleanup_namespaces;
    2513         175 :         retval = copy_thread(p, args);
    2514         175 :         if (retval)
    2515             :                 goto bad_fork_cleanup_io;
    2516             : 
    2517         175 :         stackleak_task_init(p);
    2518             : 
    2519         175 :         if (pid != &init_struct_pid) {
    2520         175 :                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
    2521             :                                 args->set_tid_size);
    2522         175 :                 if (IS_ERR(pid)) {
    2523           0 :                         retval = PTR_ERR(pid);
    2524           0 :                         goto bad_fork_cleanup_thread;
    2525             :                 }
    2526             :         }
    2527             : 
    2528             :         /*
    2529             :          * This has to happen after we've potentially unshared the file
    2530             :          * descriptor table (so that the pidfd doesn't leak into the child
    2531             :          * if the fd table isn't shared).
    2532             :          */
    2533         175 :         if (clone_flags & CLONE_PIDFD) {
    2534             :                 /* Note that no task has been attached to @pid yet. */
    2535           0 :                 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
    2536           0 :                 if (retval < 0)
    2537             :                         goto bad_fork_free_pid;
    2538           0 :                 pidfd = retval;
    2539             : 
    2540           0 :                 retval = put_user(pidfd, args->pidfd);
    2541           0 :                 if (retval)
    2542             :                         goto bad_fork_put_pidfd;
    2543             :         }
    2544             : 
    2545             : #ifdef CONFIG_BLOCK
    2546         175 :         p->plug = NULL;
    2547             : #endif
    2548         175 :         futex_init_task(p);
    2549             : 
    2550             :         /*
    2551             :          * sigaltstack should be cleared when sharing the same VM
    2552             :          */
    2553         175 :         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
    2554             :                 sas_ss_reset(p);
    2555             : 
    2556             :         /*
    2557             :          * Syscall tracing and stepping should be turned off in the
    2558             :          * child regardless of CLONE_PTRACE.
    2559             :          */
    2560         175 :         user_disable_single_step(p);
    2561         350 :         clear_task_syscall_work(p, SYSCALL_TRACE);
    2562             : #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
    2563             :         clear_task_syscall_work(p, SYSCALL_EMU);
    2564             : #endif
    2565         175 :         clear_tsk_latency_tracing(p);
    2566             : 
    2567             :         /* ok, now we should be set up.. */
    2568         175 :         p->pid = pid_nr(pid);
    2569         175 :         if (clone_flags & CLONE_THREAD) {
    2570           0 :                 p->group_leader = current->group_leader;
    2571           0 :                 p->tgid = current->tgid;
    2572             :         } else {
    2573         175 :                 p->group_leader = p;
    2574         175 :                 p->tgid = p->pid;
    2575             :         }
    2576             : 
    2577         175 :         p->nr_dirtied = 0;
    2578         175 :         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
    2579         175 :         p->dirty_paused_when = 0;
    2580             : 
    2581         175 :         p->pdeath_signal = 0;
    2582         350 :         INIT_LIST_HEAD(&p->thread_group);
    2583         175 :         p->task_works = NULL;
    2584         175 :         clear_posix_cputimers_work(p);
    2585             : 
    2586             : #ifdef CONFIG_KRETPROBES
    2587             :         p->kretprobe_instances.first = NULL;
    2588             : #endif
    2589             : #ifdef CONFIG_RETHOOK
    2590             :         p->rethooks.first = NULL;
    2591             : #endif
    2592             : 
    2593             :         /*
    2594             :          * Ensure that the cgroup subsystem policies allow the new process to be
    2595             :          * forked. It should be noted that the new process's css_set can be changed
    2596             :          * between here and cgroup_post_fork() if an organisation operation is in
    2597             :          * progress.
    2598             :          */
    2599         175 :         retval = cgroup_can_fork(p, args);
    2600             :         if (retval)
    2601             :                 goto bad_fork_put_pidfd;
    2602             : 
    2603             :         /*
    2604             :          * Now that the cgroups are pinned, re-clone the parent cgroup and put
    2605             :          * the new task on the correct runqueue. All this *before* the task
    2606             :          * becomes visible.
    2607             :          *
    2608             :          * This isn't part of ->can_fork() because while the re-cloning is
    2609             :          * cgroup specific, it unconditionally needs to place the task on a
    2610             :          * runqueue.
    2611             :          */
    2612         175 :         sched_cgroup_fork(p, args);
    2613             : 
    2614             :         /*
    2615             :          * From this point on we must avoid any synchronous user-space
    2616             :          * communication until we take the tasklist-lock. In particular, we do
    2617             :          * not want user-space to be able to predict the process start-time by
    2618             :          * stalling fork(2) after we recorded the start_time but before it is
    2619             :          * visible to the system.
    2620             :          */
    2621             : 
    2622         175 :         p->start_time = ktime_get_ns();
    2623         175 :         p->start_boottime = ktime_get_boottime_ns();
    2624             : 
    2625             :         /*
    2626             :          * Make it visible to the rest of the system, but dont wake it up yet.
    2627             :          * Need tasklist lock for parent etc handling!
    2628             :          */
    2629         175 :         write_lock_irq(&tasklist_lock);
    2630             : 
    2631             :         /* CLONE_PARENT re-uses the old parent */
    2632         175 :         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
    2633           0 :                 p->real_parent = current->real_parent;
    2634           0 :                 p->parent_exec_id = current->parent_exec_id;
    2635           0 :                 if (clone_flags & CLONE_THREAD)
    2636           0 :                         p->exit_signal = -1;
    2637             :                 else
    2638           0 :                         p->exit_signal = current->group_leader->exit_signal;
    2639             :         } else {
    2640         175 :                 p->real_parent = current;
    2641         175 :                 p->parent_exec_id = current->self_exec_id;
    2642         175 :                 p->exit_signal = args->exit_signal;
    2643             :         }
    2644             : 
    2645         175 :         klp_copy_process(p);
    2646             : 
    2647         175 :         sched_core_fork(p);
    2648             : 
    2649         350 :         spin_lock(&current->sighand->siglock);
    2650             : 
    2651             :         rv_task_fork(p);
    2652             : 
    2653         175 :         rseq_fork(p, clone_flags);
    2654             : 
    2655             :         /* Don't start children in a dying pid namespace */
    2656         175 :         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
    2657             :                 retval = -ENOMEM;
    2658             :                 goto bad_fork_cancel_cgroup;
    2659             :         }
    2660             : 
    2661             :         /* Let kill terminate clone/fork in the middle */
    2662         175 :         if (fatal_signal_pending(current)) {
    2663             :                 retval = -EINTR;
    2664             :                 goto bad_fork_cancel_cgroup;
    2665             :         }
    2666             : 
    2667             :         /* No more failure paths after this point. */
    2668             : 
    2669             :         /*
    2670             :          * Copy seccomp details explicitly here, in case they were changed
    2671             :          * before holding sighand lock.
    2672             :          */
    2673         175 :         copy_seccomp(p);
    2674             : 
    2675         175 :         init_task_pid_links(p);
    2676         175 :         if (likely(p->pid)) {
    2677         175 :                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
    2678             : 
    2679         350 :                 init_task_pid(p, PIDTYPE_PID, pid);
    2680         175 :                 if (thread_group_leader(p)) {
    2681         350 :                         init_task_pid(p, PIDTYPE_TGID, pid);
    2682         525 :                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
    2683         525 :                         init_task_pid(p, PIDTYPE_SID, task_session(current));
    2684             : 
    2685         175 :                         if (is_child_reaper(pid)) {
    2686           1 :                                 ns_of_pid(pid)->child_reaper = p;
    2687           1 :                                 p->signal->flags |= SIGNAL_UNKILLABLE;
    2688             :                         }
    2689         175 :                         p->signal->shared_pending.signal = delayed.signal;
    2690         525 :                         p->signal->tty = tty_kref_get(current->signal->tty);
    2691             :                         /*
    2692             :                          * Inherit has_child_subreaper flag under the same
    2693             :                          * tasklist_lock with adding child to the process tree
    2694             :                          * for propagate_has_child_subreaper optimization.
    2695             :                          */
    2696         175 :                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
    2697             :                                                          p->real_parent->signal->is_child_subreaper;
    2698         350 :                         list_add_tail(&p->sibling, &p->real_parent->children);
    2699         350 :                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
    2700         175 :                         attach_pid(p, PIDTYPE_TGID);
    2701         175 :                         attach_pid(p, PIDTYPE_PGID);
    2702         175 :                         attach_pid(p, PIDTYPE_SID);
    2703         175 :                         __this_cpu_inc(process_counts);
    2704             :                 } else {
    2705           0 :                         current->signal->nr_threads++;
    2706           0 :                         current->signal->quick_threads++;
    2707           0 :                         atomic_inc(&current->signal->live);
    2708           0 :                         refcount_inc(&current->signal->sigcnt);
    2709           0 :                         task_join_group_stop(p);
    2710           0 :                         list_add_tail_rcu(&p->thread_group,
    2711           0 :                                           &p->group_leader->thread_group);
    2712           0 :                         list_add_tail_rcu(&p->thread_node,
    2713           0 :                                           &p->signal->thread_head);
    2714             :                 }
    2715         175 :                 attach_pid(p, PIDTYPE_PID);
    2716         175 :                 nr_threads++;
    2717             :         }
    2718         175 :         total_forks++;
    2719         175 :         hlist_del_init(&delayed.node);
    2720         350 :         spin_unlock(&current->sighand->siglock);
    2721         175 :         syscall_tracepoint_update(p);
    2722         175 :         write_unlock_irq(&tasklist_lock);
    2723             : 
    2724         175 :         if (pidfile)
    2725           0 :                 fd_install(pidfd, pidfile);
    2726             : 
    2727         175 :         proc_fork_connector(p);
    2728         175 :         sched_post_fork(p);
    2729         175 :         cgroup_post_fork(p, args);
    2730         175 :         perf_event_fork(p);
    2731             : 
    2732         175 :         trace_task_newtask(p, clone_flags);
    2733         175 :         uprobe_copy_process(p, clone_flags);
    2734         175 :         user_events_fork(p, clone_flags);
    2735             : 
    2736         175 :         copy_oom_score_adj(clone_flags, p);
    2737             : 
    2738         175 :         return p;
    2739             : 
    2740             : bad_fork_cancel_cgroup:
    2741           0 :         sched_core_free(p);
    2742           0 :         spin_unlock(&current->sighand->siglock);
    2743           0 :         write_unlock_irq(&tasklist_lock);
    2744           0 :         cgroup_cancel_fork(p, args);
    2745             : bad_fork_put_pidfd:
    2746           0 :         if (clone_flags & CLONE_PIDFD) {
    2747           0 :                 fput(pidfile);
    2748           0 :                 put_unused_fd(pidfd);
    2749             :         }
    2750             : bad_fork_free_pid:
    2751           0 :         if (pid != &init_struct_pid)
    2752           0 :                 free_pid(pid);
    2753             : bad_fork_cleanup_thread:
    2754             :         exit_thread(p);
    2755             : bad_fork_cleanup_io:
    2756           0 :         if (p->io_context)
    2757           0 :                 exit_io_context(p);
    2758             : bad_fork_cleanup_namespaces:
    2759           0 :         exit_task_namespaces(p);
    2760             : bad_fork_cleanup_mm:
    2761           0 :         if (p->mm) {
    2762           0 :                 mm_clear_owner(p->mm, p);
    2763           0 :                 mmput(p->mm);
    2764             :         }
    2765             : bad_fork_cleanup_signal:
    2766           0 :         if (!(clone_flags & CLONE_THREAD))
    2767           0 :                 free_signal_struct(p->signal);
    2768             : bad_fork_cleanup_sighand:
    2769           0 :         __cleanup_sighand(p->sighand);
    2770             : bad_fork_cleanup_fs:
    2771           0 :         exit_fs(p); /* blocking */
    2772             : bad_fork_cleanup_files:
    2773           0 :         exit_files(p); /* blocking */
    2774             : bad_fork_cleanup_semundo:
    2775             :         exit_sem(p);
    2776             : bad_fork_cleanup_security:
    2777             :         security_task_free(p);
    2778             : bad_fork_cleanup_audit:
    2779             :         audit_free(p);
    2780             : bad_fork_cleanup_perf:
    2781             :         perf_event_free_task(p);
    2782             : bad_fork_cleanup_policy:
    2783             :         lockdep_free_task(p);
    2784             : #ifdef CONFIG_NUMA
    2785             :         mpol_put(p->mempolicy);
    2786             : #endif
    2787             : bad_fork_cleanup_delayacct:
    2788             :         delayacct_tsk_free(p);
    2789             : bad_fork_cleanup_count:
    2790           0 :         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
    2791           0 :         exit_creds(p);
    2792             : bad_fork_free:
    2793           0 :         WRITE_ONCE(p->__state, TASK_DEAD);
    2794           0 :         exit_task_stack_account(p);
    2795           0 :         put_task_stack(p);
    2796             :         delayed_free_task(p);
    2797             : fork_out:
    2798           0 :         spin_lock_irq(&current->sighand->siglock);
    2799           0 :         hlist_del_init(&delayed.node);
    2800           0 :         spin_unlock_irq(&current->sighand->siglock);
    2801           0 :         return ERR_PTR(retval);
    2802             : }
    2803             : 
    2804             : static inline void init_idle_pids(struct task_struct *idle)
    2805             : {
    2806             :         enum pid_type type;
    2807             : 
    2808           0 :         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
    2809           0 :                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
    2810           0 :                 init_task_pid(idle, type, &init_struct_pid);
    2811             :         }
    2812             : }
    2813             : 
    2814           0 : static int idle_dummy(void *dummy)
    2815             : {
    2816             :         /* This function is never called */
    2817           0 :         return 0;
    2818             : }
    2819             : 
    2820           0 : struct task_struct * __init fork_idle(int cpu)
    2821             : {
    2822             :         struct task_struct *task;
    2823           0 :         struct kernel_clone_args args = {
    2824             :                 .flags          = CLONE_VM,
    2825             :                 .fn             = &idle_dummy,
    2826             :                 .fn_arg         = NULL,
    2827             :                 .kthread        = 1,
    2828             :                 .idle           = 1,
    2829             :         };
    2830             : 
    2831           0 :         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
    2832           0 :         if (!IS_ERR(task)) {
    2833           0 :                 init_idle_pids(task);
    2834           0 :                 init_idle(task, cpu);
    2835             :         }
    2836             : 
    2837           0 :         return task;
    2838             : }
    2839             : 
    2840             : /*
    2841             :  * This is like kernel_clone(), but shaved down and tailored to just
    2842             :  * creating io_uring workers. It returns a created task, or an error pointer.
    2843             :  * The returned task is inactive, and the caller must fire it up through
    2844             :  * wake_up_new_task(p). All signals are blocked in the created task.
    2845             :  */
    2846           0 : struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
    2847             : {
    2848           0 :         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
    2849             :                                 CLONE_IO;
    2850           0 :         struct kernel_clone_args args = {
    2851             :                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
    2852             :                                     CLONE_UNTRACED) & ~CSIGNAL),
    2853             :                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
    2854             :                 .fn             = fn,
    2855             :                 .fn_arg         = arg,
    2856             :                 .io_thread      = 1,
    2857             :                 .user_worker    = 1,
    2858             :         };
    2859             : 
    2860           0 :         return copy_process(NULL, 0, node, &args);
    2861             : }
    2862             : 
    2863             : /*
    2864             :  *  Ok, this is the main fork-routine.
    2865             :  *
    2866             :  * It copies the process, and if successful kick-starts
    2867             :  * it and waits for it to finish using the VM if required.
    2868             :  *
    2869             :  * args->exit_signal is expected to be checked for sanity by the caller.
    2870             :  */
    2871         175 : pid_t kernel_clone(struct kernel_clone_args *args)
    2872             : {
    2873         175 :         u64 clone_flags = args->flags;
    2874             :         struct completion vfork;
    2875             :         struct pid *pid;
    2876             :         struct task_struct *p;
    2877         175 :         int trace = 0;
    2878             :         pid_t nr;
    2879             : 
    2880             :         /*
    2881             :          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
    2882             :          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
    2883             :          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
    2884             :          * field in struct clone_args and it still doesn't make sense to have
    2885             :          * them both point at the same memory location. Performing this check
    2886             :          * here has the advantage that we don't need to have a separate helper
    2887             :          * to check for legacy clone().
    2888             :          */
    2889         175 :         if ((args->flags & CLONE_PIDFD) &&
    2890           0 :             (args->flags & CLONE_PARENT_SETTID) &&
    2891           0 :             (args->pidfd == args->parent_tid))
    2892             :                 return -EINVAL;
    2893             : 
    2894             :         /*
    2895             :          * Determine whether and which event to report to ptracer.  When
    2896             :          * called from kernel_thread or CLONE_UNTRACED is explicitly
    2897             :          * requested, no event is reported; otherwise, report if the event
    2898             :          * for the type of forking is enabled.
    2899             :          */
    2900         175 :         if (!(clone_flags & CLONE_UNTRACED)) {
    2901           0 :                 if (clone_flags & CLONE_VFORK)
    2902             :                         trace = PTRACE_EVENT_VFORK;
    2903           0 :                 else if (args->exit_signal != SIGCHLD)
    2904             :                         trace = PTRACE_EVENT_CLONE;
    2905             :                 else
    2906           0 :                         trace = PTRACE_EVENT_FORK;
    2907             : 
    2908           0 :                 if (likely(!ptrace_event_enabled(current, trace)))
    2909           0 :                         trace = 0;
    2910             :         }
    2911             : 
    2912         175 :         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
    2913         175 :         add_latent_entropy();
    2914             : 
    2915         175 :         if (IS_ERR(p))
    2916           0 :                 return PTR_ERR(p);
    2917             : 
    2918             :         /*
    2919             :          * Do this prior waking up the new thread - the thread pointer
    2920             :          * might get invalid after that point, if the thread exits quickly.
    2921             :          */
    2922         175 :         trace_sched_process_fork(current, p);
    2923             : 
    2924         175 :         pid = get_task_pid(p, PIDTYPE_PID);
    2925         175 :         nr = pid_vnr(pid);
    2926             : 
    2927         175 :         if (clone_flags & CLONE_PARENT_SETTID)
    2928           0 :                 put_user(nr, args->parent_tid);
    2929             : 
    2930         175 :         if (clone_flags & CLONE_VFORK) {
    2931           0 :                 p->vfork_done = &vfork;
    2932           0 :                 init_completion(&vfork);
    2933             :                 get_task_struct(p);
    2934             :         }
    2935             : 
    2936             :         if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
    2937             :                 /* lock the task to synchronize with memcg migration */
    2938             :                 task_lock(p);
    2939             :                 lru_gen_add_mm(p->mm);
    2940             :                 task_unlock(p);
    2941             :         }
    2942             : 
    2943         175 :         wake_up_new_task(p);
    2944             : 
    2945             :         /* forking complete and child started to run, tell ptracer */
    2946         175 :         if (unlikely(trace))
    2947           0 :                 ptrace_event_pid(trace, pid);
    2948             : 
    2949         175 :         if (clone_flags & CLONE_VFORK) {
    2950           0 :                 if (!wait_for_vfork_done(p, &vfork))
    2951           0 :                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
    2952             :         }
    2953             : 
    2954         175 :         put_pid(pid);
    2955         175 :         return nr;
    2956             : }
    2957             : 
    2958             : /*
    2959             :  * Create a kernel thread.
    2960             :  */
    2961         174 : pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
    2962             :                     unsigned long flags)
    2963             : {
    2964         522 :         struct kernel_clone_args args = {
    2965         174 :                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
    2966         174 :                                     CLONE_UNTRACED) & ~CSIGNAL),
    2967         174 :                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
    2968             :                 .fn             = fn,
    2969             :                 .fn_arg         = arg,
    2970             :                 .name           = name,
    2971             :                 .kthread        = 1,
    2972             :         };
    2973             : 
    2974         174 :         return kernel_clone(&args);
    2975             : }
    2976             : 
    2977             : /*
    2978             :  * Create a user mode thread.
    2979             :  */
    2980           1 : pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
    2981             : {
    2982           3 :         struct kernel_clone_args args = {
    2983           1 :                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
    2984           1 :                                     CLONE_UNTRACED) & ~CSIGNAL),
    2985           1 :                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
    2986             :                 .fn             = fn,
    2987             :                 .fn_arg         = arg,
    2988             :         };
    2989             : 
    2990           1 :         return kernel_clone(&args);
    2991             : }
    2992             : 
    2993             : #ifdef __ARCH_WANT_SYS_FORK
    2994           0 : SYSCALL_DEFINE0(fork)
    2995             : {
    2996             : #ifdef CONFIG_MMU
    2997           0 :         struct kernel_clone_args args = {
    2998             :                 .exit_signal = SIGCHLD,
    2999             :         };
    3000             : 
    3001           0 :         return kernel_clone(&args);
    3002             : #else
    3003             :         /* can not support in nommu mode */
    3004             :         return -EINVAL;
    3005             : #endif
    3006             : }
    3007             : #endif
    3008             : 
    3009             : #ifdef __ARCH_WANT_SYS_VFORK
    3010           0 : SYSCALL_DEFINE0(vfork)
    3011             : {
    3012           0 :         struct kernel_clone_args args = {
    3013             :                 .flags          = CLONE_VFORK | CLONE_VM,
    3014             :                 .exit_signal    = SIGCHLD,
    3015             :         };
    3016             : 
    3017           0 :         return kernel_clone(&args);
    3018             : }
    3019             : #endif
    3020             : 
    3021             : #ifdef __ARCH_WANT_SYS_CLONE
    3022             : #ifdef CONFIG_CLONE_BACKWARDS
    3023             : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    3024             :                  int __user *, parent_tidptr,
    3025             :                  unsigned long, tls,
    3026             :                  int __user *, child_tidptr)
    3027             : #elif defined(CONFIG_CLONE_BACKWARDS2)
    3028             : SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
    3029             :                  int __user *, parent_tidptr,
    3030             :                  int __user *, child_tidptr,
    3031             :                  unsigned long, tls)
    3032             : #elif defined(CONFIG_CLONE_BACKWARDS3)
    3033             : SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
    3034             :                 int, stack_size,
    3035             :                 int __user *, parent_tidptr,
    3036             :                 int __user *, child_tidptr,
    3037             :                 unsigned long, tls)
    3038             : #else
    3039           0 : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    3040             :                  int __user *, parent_tidptr,
    3041             :                  int __user *, child_tidptr,
    3042             :                  unsigned long, tls)
    3043             : #endif
    3044             : {
    3045           0 :         struct kernel_clone_args args = {
    3046           0 :                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
    3047             :                 .pidfd          = parent_tidptr,
    3048             :                 .child_tid      = child_tidptr,
    3049             :                 .parent_tid     = parent_tidptr,
    3050           0 :                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
    3051             :                 .stack          = newsp,
    3052             :                 .tls            = tls,
    3053             :         };
    3054             : 
    3055           0 :         return kernel_clone(&args);
    3056             : }
    3057             : #endif
    3058             : 
    3059             : #ifdef __ARCH_WANT_SYS_CLONE3
    3060             : 
    3061           0 : noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
    3062             :                                               struct clone_args __user *uargs,
    3063             :                                               size_t usize)
    3064             : {
    3065             :         int err;
    3066             :         struct clone_args args;
    3067           0 :         pid_t *kset_tid = kargs->set_tid;
    3068             : 
    3069             :         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
    3070             :                      CLONE_ARGS_SIZE_VER0);
    3071             :         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
    3072             :                      CLONE_ARGS_SIZE_VER1);
    3073             :         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
    3074             :                      CLONE_ARGS_SIZE_VER2);
    3075             :         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
    3076             : 
    3077           0 :         if (unlikely(usize > PAGE_SIZE))
    3078             :                 return -E2BIG;
    3079           0 :         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
    3080             :                 return -EINVAL;
    3081             : 
    3082           0 :         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
    3083           0 :         if (err)
    3084             :                 return err;
    3085             : 
    3086           0 :         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
    3087             :                 return -EINVAL;
    3088             : 
    3089           0 :         if (unlikely(!args.set_tid && args.set_tid_size > 0))
    3090             :                 return -EINVAL;
    3091             : 
    3092           0 :         if (unlikely(args.set_tid && args.set_tid_size == 0))
    3093             :                 return -EINVAL;
    3094             : 
    3095             :         /*
    3096             :          * Verify that higher 32bits of exit_signal are unset and that
    3097             :          * it is a valid signal
    3098             :          */
    3099           0 :         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
    3100             :                      !valid_signal(args.exit_signal)))
    3101             :                 return -EINVAL;
    3102             : 
    3103           0 :         if ((args.flags & CLONE_INTO_CGROUP) &&
    3104           0 :             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
    3105             :                 return -EINVAL;
    3106             : 
    3107           0 :         *kargs = (struct kernel_clone_args){
    3108             :                 .flags          = args.flags,
    3109           0 :                 .pidfd          = u64_to_user_ptr(args.pidfd),
    3110           0 :                 .child_tid      = u64_to_user_ptr(args.child_tid),
    3111           0 :                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
    3112             :                 .exit_signal    = args.exit_signal,
    3113           0 :                 .stack          = args.stack,
    3114           0 :                 .stack_size     = args.stack_size,
    3115           0 :                 .tls            = args.tls,
    3116             :                 .set_tid_size   = args.set_tid_size,
    3117           0 :                 .cgroup         = args.cgroup,
    3118             :         };
    3119             : 
    3120           0 :         if (args.set_tid &&
    3121           0 :                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
    3122             :                         (kargs->set_tid_size * sizeof(pid_t))))
    3123             :                 return -EFAULT;
    3124             : 
    3125           0 :         kargs->set_tid = kset_tid;
    3126             : 
    3127           0 :         return 0;
    3128             : }
    3129             : 
    3130             : /**
    3131             :  * clone3_stack_valid - check and prepare stack
    3132             :  * @kargs: kernel clone args
    3133             :  *
    3134             :  * Verify that the stack arguments userspace gave us are sane.
    3135             :  * In addition, set the stack direction for userspace since it's easy for us to
    3136             :  * determine.
    3137             :  */
    3138           0 : static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
    3139             : {
    3140           0 :         if (kargs->stack == 0) {
    3141           0 :                 if (kargs->stack_size > 0)
    3142             :                         return false;
    3143             :         } else {
    3144           0 :                 if (kargs->stack_size == 0)
    3145             :                         return false;
    3146             : 
    3147           0 :                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
    3148             :                         return false;
    3149             : 
    3150             : #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
    3151           0 :                 kargs->stack += kargs->stack_size;
    3152             : #endif
    3153             :         }
    3154             : 
    3155             :         return true;
    3156             : }
    3157             : 
    3158           0 : static bool clone3_args_valid(struct kernel_clone_args *kargs)
    3159             : {
    3160             :         /* Verify that no unknown flags are passed along. */
    3161           0 :         if (kargs->flags &
    3162             :             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
    3163             :                 return false;
    3164             : 
    3165             :         /*
    3166             :          * - make the CLONE_DETACHED bit reusable for clone3
    3167             :          * - make the CSIGNAL bits reusable for clone3
    3168             :          */
    3169           0 :         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
    3170             :                 return false;
    3171             : 
    3172           0 :         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
    3173             :             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
    3174             :                 return false;
    3175             : 
    3176           0 :         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
    3177           0 :             kargs->exit_signal)
    3178             :                 return false;
    3179             : 
    3180           0 :         if (!clone3_stack_valid(kargs))
    3181             :                 return false;
    3182             : 
    3183           0 :         return true;
    3184             : }
    3185             : 
    3186             : /**
    3187             :  * clone3 - create a new process with specific properties
    3188             :  * @uargs: argument structure
    3189             :  * @size:  size of @uargs
    3190             :  *
    3191             :  * clone3() is the extensible successor to clone()/clone2().
    3192             :  * It takes a struct as argument that is versioned by its size.
    3193             :  *
    3194             :  * Return: On success, a positive PID for the child process.
    3195             :  *         On error, a negative errno number.
    3196             :  */
    3197           0 : SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
    3198             : {
    3199             :         int err;
    3200             : 
    3201             :         struct kernel_clone_args kargs;
    3202             :         pid_t set_tid[MAX_PID_NS_LEVEL];
    3203             : 
    3204           0 :         kargs.set_tid = set_tid;
    3205             : 
    3206           0 :         err = copy_clone_args_from_user(&kargs, uargs, size);
    3207           0 :         if (err)
    3208           0 :                 return err;
    3209             : 
    3210           0 :         if (!clone3_args_valid(&kargs))
    3211             :                 return -EINVAL;
    3212             : 
    3213           0 :         return kernel_clone(&kargs);
    3214             : }
    3215             : #endif
    3216             : 
    3217           0 : void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
    3218             : {
    3219             :         struct task_struct *leader, *parent, *child;
    3220             :         int res;
    3221             : 
    3222           0 :         read_lock(&tasklist_lock);
    3223           0 :         leader = top = top->group_leader;
    3224             : down:
    3225           0 :         for_each_thread(leader, parent) {
    3226           0 :                 list_for_each_entry(child, &parent->children, sibling) {
    3227           0 :                         res = visitor(child, data);
    3228           0 :                         if (res) {
    3229           0 :                                 if (res < 0)
    3230             :                                         goto out;
    3231             :                                 leader = child;
    3232             :                                 goto down;
    3233             :                         }
    3234             : up:
    3235             :                         ;
    3236             :                 }
    3237             :         }
    3238             : 
    3239           0 :         if (leader != top) {
    3240           0 :                 child = leader;
    3241           0 :                 parent = child->real_parent;
    3242           0 :                 leader = parent->group_leader;
    3243           0 :                 goto up;
    3244             :         }
    3245             : out:
    3246           0 :         read_unlock(&tasklist_lock);
    3247           0 : }
    3248             : 
    3249             : #ifndef ARCH_MIN_MMSTRUCT_ALIGN
    3250             : #define ARCH_MIN_MMSTRUCT_ALIGN 0
    3251             : #endif
    3252             : 
    3253          30 : static void sighand_ctor(void *data)
    3254             : {
    3255          30 :         struct sighand_struct *sighand = data;
    3256             : 
    3257          30 :         spin_lock_init(&sighand->siglock);
    3258          30 :         init_waitqueue_head(&sighand->signalfd_wqh);
    3259          30 : }
    3260             : 
    3261           1 : void __init mm_cache_init(void)
    3262             : {
    3263             :         unsigned int mm_size;
    3264             : 
    3265             :         /*
    3266             :          * The mm_cpumask is located at the end of mm_struct, and is
    3267             :          * dynamically sized based on the maximum CPU number this system
    3268             :          * can have, taking hotplug into account (nr_cpu_ids).
    3269             :          */
    3270           1 :         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
    3271             : 
    3272           1 :         mm_cachep = kmem_cache_create_usercopy("mm_struct",
    3273             :                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
    3274             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    3275             :                         offsetof(struct mm_struct, saved_auxv),
    3276             :                         sizeof_field(struct mm_struct, saved_auxv),
    3277             :                         NULL);
    3278           1 : }
    3279             : 
    3280           1 : void __init proc_caches_init(void)
    3281             : {
    3282           1 :         sighand_cachep = kmem_cache_create("sighand_cache",
    3283             :                         sizeof(struct sighand_struct), 0,
    3284             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
    3285             :                         SLAB_ACCOUNT, sighand_ctor);
    3286           1 :         signal_cachep = kmem_cache_create("signal_cache",
    3287             :                         sizeof(struct signal_struct), 0,
    3288             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    3289             :                         NULL);
    3290           1 :         files_cachep = kmem_cache_create("files_cache",
    3291             :                         sizeof(struct files_struct), 0,
    3292             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    3293             :                         NULL);
    3294           1 :         fs_cachep = kmem_cache_create("fs_cache",
    3295             :                         sizeof(struct fs_struct), 0,
    3296             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    3297             :                         NULL);
    3298             : 
    3299           1 :         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
    3300             : #ifdef CONFIG_PER_VMA_LOCK
    3301             :         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
    3302             : #endif
    3303           1 :         mmap_init();
    3304           1 :         nsproxy_cache_init();
    3305           1 : }
    3306             : 
    3307             : /*
    3308             :  * Check constraints on flags passed to the unshare system call.
    3309             :  */
    3310           0 : static int check_unshare_flags(unsigned long unshare_flags)
    3311             : {
    3312           0 :         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
    3313             :                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
    3314             :                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
    3315             :                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
    3316             :                                 CLONE_NEWTIME))
    3317             :                 return -EINVAL;
    3318             :         /*
    3319             :          * Not implemented, but pretend it works if there is nothing
    3320             :          * to unshare.  Note that unsharing the address space or the
    3321             :          * signal handlers also need to unshare the signal queues (aka
    3322             :          * CLONE_THREAD).
    3323             :          */
    3324           0 :         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
    3325           0 :                 if (!thread_group_empty(current))
    3326             :                         return -EINVAL;
    3327             :         }
    3328           0 :         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
    3329           0 :                 if (refcount_read(&current->sighand->count) > 1)
    3330             :                         return -EINVAL;
    3331             :         }
    3332           0 :         if (unshare_flags & CLONE_VM) {
    3333           0 :                 if (!current_is_single_threaded())
    3334             :                         return -EINVAL;
    3335             :         }
    3336             : 
    3337             :         return 0;
    3338             : }
    3339             : 
    3340             : /*
    3341             :  * Unshare the filesystem structure if it is being shared
    3342             :  */
    3343           0 : static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
    3344             : {
    3345           0 :         struct fs_struct *fs = current->fs;
    3346             : 
    3347           0 :         if (!(unshare_flags & CLONE_FS) || !fs)
    3348             :                 return 0;
    3349             : 
    3350             :         /* don't need lock here; in the worst case we'll do useless copy */
    3351           0 :         if (fs->users == 1)
    3352             :                 return 0;
    3353             : 
    3354           0 :         *new_fsp = copy_fs_struct(fs);
    3355           0 :         if (!*new_fsp)
    3356             :                 return -ENOMEM;
    3357             : 
    3358           0 :         return 0;
    3359             : }
    3360             : 
    3361             : /*
    3362             :  * Unshare file descriptor table if it is being shared
    3363             :  */
    3364           0 : int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
    3365             :                struct files_struct **new_fdp)
    3366             : {
    3367           0 :         struct files_struct *fd = current->files;
    3368           0 :         int error = 0;
    3369             : 
    3370           0 :         if ((unshare_flags & CLONE_FILES) &&
    3371           0 :             (fd && atomic_read(&fd->count) > 1)) {
    3372           0 :                 *new_fdp = dup_fd(fd, max_fds, &error);
    3373           0 :                 if (!*new_fdp)
    3374           0 :                         return error;
    3375             :         }
    3376             : 
    3377             :         return 0;
    3378             : }
    3379             : 
    3380             : /*
    3381             :  * unshare allows a process to 'unshare' part of the process
    3382             :  * context which was originally shared using clone.  copy_*
    3383             :  * functions used by kernel_clone() cannot be used here directly
    3384             :  * because they modify an inactive task_struct that is being
    3385             :  * constructed. Here we are modifying the current, active,
    3386             :  * task_struct.
    3387             :  */
    3388           0 : int ksys_unshare(unsigned long unshare_flags)
    3389             : {
    3390           0 :         struct fs_struct *fs, *new_fs = NULL;
    3391           0 :         struct files_struct *new_fd = NULL;
    3392           0 :         struct cred *new_cred = NULL;
    3393           0 :         struct nsproxy *new_nsproxy = NULL;
    3394           0 :         int do_sysvsem = 0;
    3395             :         int err;
    3396             : 
    3397             :         /*
    3398             :          * If unsharing a user namespace must also unshare the thread group
    3399             :          * and unshare the filesystem root and working directories.
    3400             :          */
    3401           0 :         if (unshare_flags & CLONE_NEWUSER)
    3402           0 :                 unshare_flags |= CLONE_THREAD | CLONE_FS;
    3403             :         /*
    3404             :          * If unsharing vm, must also unshare signal handlers.
    3405             :          */
    3406           0 :         if (unshare_flags & CLONE_VM)
    3407           0 :                 unshare_flags |= CLONE_SIGHAND;
    3408             :         /*
    3409             :          * If unsharing a signal handlers, must also unshare the signal queues.
    3410             :          */
    3411           0 :         if (unshare_flags & CLONE_SIGHAND)
    3412           0 :                 unshare_flags |= CLONE_THREAD;
    3413             :         /*
    3414             :          * If unsharing namespace, must also unshare filesystem information.
    3415             :          */
    3416           0 :         if (unshare_flags & CLONE_NEWNS)
    3417           0 :                 unshare_flags |= CLONE_FS;
    3418             : 
    3419           0 :         err = check_unshare_flags(unshare_flags);
    3420           0 :         if (err)
    3421             :                 goto bad_unshare_out;
    3422             :         /*
    3423             :          * CLONE_NEWIPC must also detach from the undolist: after switching
    3424             :          * to a new ipc namespace, the semaphore arrays from the old
    3425             :          * namespace are unreachable.
    3426             :          */
    3427           0 :         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
    3428           0 :                 do_sysvsem = 1;
    3429           0 :         err = unshare_fs(unshare_flags, &new_fs);
    3430           0 :         if (err)
    3431             :                 goto bad_unshare_out;
    3432           0 :         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
    3433           0 :         if (err)
    3434             :                 goto bad_unshare_cleanup_fs;
    3435           0 :         err = unshare_userns(unshare_flags, &new_cred);
    3436           0 :         if (err)
    3437             :                 goto bad_unshare_cleanup_fd;
    3438           0 :         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
    3439             :                                          new_cred, new_fs);
    3440           0 :         if (err)
    3441             :                 goto bad_unshare_cleanup_cred;
    3442             : 
    3443             :         if (new_cred) {
    3444             :                 err = set_cred_ucounts(new_cred);
    3445             :                 if (err)
    3446             :                         goto bad_unshare_cleanup_cred;
    3447             :         }
    3448             : 
    3449           0 :         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
    3450           0 :                 if (do_sysvsem) {
    3451             :                         /*
    3452             :                          * CLONE_SYSVSEM is equivalent to sys_exit().
    3453             :                          */
    3454           0 :                         exit_sem(current);
    3455             :                 }
    3456           0 :                 if (unshare_flags & CLONE_NEWIPC) {
    3457             :                         /* Orphan segments in old ns (see sem above). */
    3458           0 :                         exit_shm(current);
    3459           0 :                         shm_init_task(current);
    3460             :                 }
    3461             : 
    3462           0 :                 if (new_nsproxy)
    3463           0 :                         switch_task_namespaces(current, new_nsproxy);
    3464             : 
    3465           0 :                 task_lock(current);
    3466             : 
    3467           0 :                 if (new_fs) {
    3468           0 :                         fs = current->fs;
    3469           0 :                         spin_lock(&fs->lock);
    3470           0 :                         current->fs = new_fs;
    3471           0 :                         if (--fs->users)
    3472           0 :                                 new_fs = NULL;
    3473             :                         else
    3474           0 :                                 new_fs = fs;
    3475           0 :                         spin_unlock(&fs->lock);
    3476             :                 }
    3477             : 
    3478           0 :                 if (new_fd)
    3479           0 :                         swap(current->files, new_fd);
    3480             : 
    3481           0 :                 task_unlock(current);
    3482             : 
    3483             :                 if (new_cred) {
    3484             :                         /* Install the new user namespace */
    3485             :                         commit_creds(new_cred);
    3486             :                         new_cred = NULL;
    3487             :                 }
    3488             :         }
    3489             : 
    3490           0 :         perf_event_namespaces(current);
    3491             : 
    3492             : bad_unshare_cleanup_cred:
    3493             :         if (new_cred)
    3494             :                 put_cred(new_cred);
    3495             : bad_unshare_cleanup_fd:
    3496           0 :         if (new_fd)
    3497           0 :                 put_files_struct(new_fd);
    3498             : 
    3499             : bad_unshare_cleanup_fs:
    3500           0 :         if (new_fs)
    3501           0 :                 free_fs_struct(new_fs);
    3502             : 
    3503             : bad_unshare_out:
    3504           0 :         return err;
    3505             : }
    3506             : 
    3507           0 : SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
    3508             : {
    3509           0 :         return ksys_unshare(unshare_flags);
    3510             : }
    3511             : 
    3512             : /*
    3513             :  *      Helper to unshare the files of the current task.
    3514             :  *      We don't want to expose copy_files internals to
    3515             :  *      the exec layer of the kernel.
    3516             :  */
    3517             : 
    3518           0 : int unshare_files(void)
    3519             : {
    3520           0 :         struct task_struct *task = current;
    3521           0 :         struct files_struct *old, *copy = NULL;
    3522             :         int error;
    3523             : 
    3524           0 :         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
    3525           0 :         if (error || !copy)
    3526             :                 return error;
    3527             : 
    3528           0 :         old = task->files;
    3529           0 :         task_lock(task);
    3530           0 :         task->files = copy;
    3531           0 :         task_unlock(task);
    3532           0 :         put_files_struct(old);
    3533           0 :         return 0;
    3534             : }
    3535             : 
    3536           0 : int sysctl_max_threads(struct ctl_table *table, int write,
    3537             :                        void *buffer, size_t *lenp, loff_t *ppos)
    3538             : {
    3539             :         struct ctl_table t;
    3540             :         int ret;
    3541           0 :         int threads = max_threads;
    3542           0 :         int min = 1;
    3543           0 :         int max = MAX_THREADS;
    3544             : 
    3545           0 :         t = *table;
    3546           0 :         t.data = &threads;
    3547           0 :         t.extra1 = &min;
    3548           0 :         t.extra2 = &max;
    3549             : 
    3550           0 :         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    3551           0 :         if (ret || !write)
    3552             :                 return ret;
    3553             : 
    3554           0 :         max_threads = threads;
    3555             : 
    3556           0 :         return 0;
    3557             : }

Generated by: LCOV version 1.14