LCOV - code coverage report
Current view: top level - kernel/sched - core.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 437 1122 38.9 %
Date: 2023-08-24 13:40:31 Functions: 40 124 32.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  kernel/sched/core.c
       4             :  *
       5             :  *  Core kernel scheduler code and related syscalls
       6             :  *
       7             :  *  Copyright (C) 1991-2002  Linus Torvalds
       8             :  */
       9             : #include <linux/highmem.h>
      10             : #include <linux/hrtimer_api.h>
      11             : #include <linux/ktime_api.h>
      12             : #include <linux/sched/signal.h>
      13             : #include <linux/syscalls_api.h>
      14             : #include <linux/debug_locks.h>
      15             : #include <linux/prefetch.h>
      16             : #include <linux/capability.h>
      17             : #include <linux/pgtable_api.h>
      18             : #include <linux/wait_bit.h>
      19             : #include <linux/jiffies.h>
      20             : #include <linux/spinlock_api.h>
      21             : #include <linux/cpumask_api.h>
      22             : #include <linux/lockdep_api.h>
      23             : #include <linux/hardirq.h>
      24             : #include <linux/softirq.h>
      25             : #include <linux/refcount_api.h>
      26             : #include <linux/topology.h>
      27             : #include <linux/sched/clock.h>
      28             : #include <linux/sched/cond_resched.h>
      29             : #include <linux/sched/cputime.h>
      30             : #include <linux/sched/debug.h>
      31             : #include <linux/sched/hotplug.h>
      32             : #include <linux/sched/init.h>
      33             : #include <linux/sched/isolation.h>
      34             : #include <linux/sched/loadavg.h>
      35             : #include <linux/sched/mm.h>
      36             : #include <linux/sched/nohz.h>
      37             : #include <linux/sched/rseq_api.h>
      38             : #include <linux/sched/rt.h>
      39             : 
      40             : #include <linux/blkdev.h>
      41             : #include <linux/context_tracking.h>
      42             : #include <linux/cpuset.h>
      43             : #include <linux/delayacct.h>
      44             : #include <linux/init_task.h>
      45             : #include <linux/interrupt.h>
      46             : #include <linux/ioprio.h>
      47             : #include <linux/kallsyms.h>
      48             : #include <linux/kcov.h>
      49             : #include <linux/kprobes.h>
      50             : #include <linux/llist_api.h>
      51             : #include <linux/mmu_context.h>
      52             : #include <linux/mmzone.h>
      53             : #include <linux/mutex_api.h>
      54             : #include <linux/nmi.h>
      55             : #include <linux/nospec.h>
      56             : #include <linux/perf_event_api.h>
      57             : #include <linux/profile.h>
      58             : #include <linux/psi.h>
      59             : #include <linux/rcuwait_api.h>
      60             : #include <linux/sched/wake_q.h>
      61             : #include <linux/scs.h>
      62             : #include <linux/slab.h>
      63             : #include <linux/syscalls.h>
      64             : #include <linux/vtime.h>
      65             : #include <linux/wait_api.h>
      66             : #include <linux/workqueue_api.h>
      67             : 
      68             : #ifdef CONFIG_PREEMPT_DYNAMIC
      69             : # ifdef CONFIG_GENERIC_ENTRY
      70             : #  include <linux/entry-common.h>
      71             : # endif
      72             : #endif
      73             : 
      74             : #include <uapi/linux/sched/types.h>
      75             : 
      76             : #include <asm/irq_regs.h>
      77             : #include <asm/switch_to.h>
      78             : #include <asm/tlb.h>
      79             : 
      80             : #define CREATE_TRACE_POINTS
      81             : #include <linux/sched/rseq_api.h>
      82             : #include <trace/events/sched.h>
      83             : #include <trace/events/ipi.h>
      84             : #undef CREATE_TRACE_POINTS
      85             : 
      86             : #include "sched.h"
      87             : #include "stats.h"
      88             : #include "autogroup.h"
      89             : 
      90             : #include "autogroup.h"
      91             : #include "pelt.h"
      92             : #include "smp.h"
      93             : #include "stats.h"
      94             : 
      95             : #include "../workqueue_internal.h"
      96             : #include "../../io_uring/io-wq.h"
      97             : #include "../smpboot.h"
      98             : 
      99             : EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
     100             : EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
     101             : 
     102             : /*
     103             :  * Export tracepoints that act as a bare tracehook (ie: have no trace event
     104             :  * associated with them) to allow external modules to probe them.
     105             :  */
     106             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
     107             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
     108             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
     109             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
     110             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
     111             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
     112             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
     113             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
     114             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
     115             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
     116             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
     117             : 
     118             : DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
     119             : 
     120             : #ifdef CONFIG_SCHED_DEBUG
     121             : /*
     122             :  * Debugging: various feature bits
     123             :  *
     124             :  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
     125             :  * sysctl_sched_features, defined in sched.h, to allow constants propagation
     126             :  * at compile time and compiler optimization based on features default.
     127             :  */
     128             : #define SCHED_FEAT(name, enabled)       \
     129             :         (1UL << __SCHED_FEAT_##name) * enabled |
     130             : const_debug unsigned int sysctl_sched_features =
     131             : #include "features.h"
     132             :         0;
     133             : #undef SCHED_FEAT
     134             : 
     135             : /*
     136             :  * Print a warning if need_resched is set for the given duration (if
     137             :  * LATENCY_WARN is enabled).
     138             :  *
     139             :  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
     140             :  * per boot.
     141             :  */
     142             : __read_mostly int sysctl_resched_latency_warn_ms = 100;
     143             : __read_mostly int sysctl_resched_latency_warn_once = 1;
     144             : #endif /* CONFIG_SCHED_DEBUG */
     145             : 
     146             : /*
     147             :  * Number of tasks to iterate in a single balance run.
     148             :  * Limited because this is done with IRQs disabled.
     149             :  */
     150             : const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
     151             : 
     152             : __read_mostly int scheduler_running;
     153             : 
     154             : #ifdef CONFIG_SCHED_CORE
     155             : 
     156             : DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
     157             : 
     158             : /* kernel prio, less is more */
     159             : static inline int __task_prio(const struct task_struct *p)
     160             : {
     161             :         if (p->sched_class == &stop_sched_class) /* trumps deadline */
     162             :                 return -2;
     163             : 
     164             :         if (rt_prio(p->prio)) /* includes deadline */
     165             :                 return p->prio; /* [-1, 99] */
     166             : 
     167             :         if (p->sched_class == &idle_sched_class)
     168             :                 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
     169             : 
     170             :         return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
     171             : }
     172             : 
     173             : /*
     174             :  * l(a,b)
     175             :  * le(a,b) := !l(b,a)
     176             :  * g(a,b)  := l(b,a)
     177             :  * ge(a,b) := !l(a,b)
     178             :  */
     179             : 
     180             : /* real prio, less is less */
     181             : static inline bool prio_less(const struct task_struct *a,
     182             :                              const struct task_struct *b, bool in_fi)
     183             : {
     184             : 
     185             :         int pa = __task_prio(a), pb = __task_prio(b);
     186             : 
     187             :         if (-pa < -pb)
     188             :                 return true;
     189             : 
     190             :         if (-pb < -pa)
     191             :                 return false;
     192             : 
     193             :         if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
     194             :                 return !dl_time_before(a->dl.deadline, b->dl.deadline);
     195             : 
     196             :         if (pa == MAX_RT_PRIO + MAX_NICE)       /* fair */
     197             :                 return cfs_prio_less(a, b, in_fi);
     198             : 
     199             :         return false;
     200             : }
     201             : 
     202             : static inline bool __sched_core_less(const struct task_struct *a,
     203             :                                      const struct task_struct *b)
     204             : {
     205             :         if (a->core_cookie < b->core_cookie)
     206             :                 return true;
     207             : 
     208             :         if (a->core_cookie > b->core_cookie)
     209             :                 return false;
     210             : 
     211             :         /* flip prio, so high prio is leftmost */
     212             :         if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
     213             :                 return true;
     214             : 
     215             :         return false;
     216             : }
     217             : 
     218             : #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
     219             : 
     220             : static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
     221             : {
     222             :         return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
     223             : }
     224             : 
     225             : static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
     226             : {
     227             :         const struct task_struct *p = __node_2_sc(node);
     228             :         unsigned long cookie = (unsigned long)key;
     229             : 
     230             :         if (cookie < p->core_cookie)
     231             :                 return -1;
     232             : 
     233             :         if (cookie > p->core_cookie)
     234             :                 return 1;
     235             : 
     236             :         return 0;
     237             : }
     238             : 
     239             : void sched_core_enqueue(struct rq *rq, struct task_struct *p)
     240             : {
     241             :         rq->core->core_task_seq++;
     242             : 
     243             :         if (!p->core_cookie)
     244             :                 return;
     245             : 
     246             :         rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
     247             : }
     248             : 
     249             : void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
     250             : {
     251             :         rq->core->core_task_seq++;
     252             : 
     253             :         if (sched_core_enqueued(p)) {
     254             :                 rb_erase(&p->core_node, &rq->core_tree);
     255             :                 RB_CLEAR_NODE(&p->core_node);
     256             :         }
     257             : 
     258             :         /*
     259             :          * Migrating the last task off the cpu, with the cpu in forced idle
     260             :          * state. Reschedule to create an accounting edge for forced idle,
     261             :          * and re-examine whether the core is still in forced idle state.
     262             :          */
     263             :         if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
     264             :             rq->core->core_forceidle_count && rq->curr == rq->idle)
     265             :                 resched_curr(rq);
     266             : }
     267             : 
     268             : static int sched_task_is_throttled(struct task_struct *p, int cpu)
     269             : {
     270             :         if (p->sched_class->task_is_throttled)
     271             :                 return p->sched_class->task_is_throttled(p, cpu);
     272             : 
     273             :         return 0;
     274             : }
     275             : 
     276             : static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
     277             : {
     278             :         struct rb_node *node = &p->core_node;
     279             :         int cpu = task_cpu(p);
     280             : 
     281             :         do {
     282             :                 node = rb_next(node);
     283             :                 if (!node)
     284             :                         return NULL;
     285             : 
     286             :                 p = __node_2_sc(node);
     287             :                 if (p->core_cookie != cookie)
     288             :                         return NULL;
     289             : 
     290             :         } while (sched_task_is_throttled(p, cpu));
     291             : 
     292             :         return p;
     293             : }
     294             : 
     295             : /*
     296             :  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
     297             :  * If no suitable task is found, NULL will be returned.
     298             :  */
     299             : static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
     300             : {
     301             :         struct task_struct *p;
     302             :         struct rb_node *node;
     303             : 
     304             :         node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
     305             :         if (!node)
     306             :                 return NULL;
     307             : 
     308             :         p = __node_2_sc(node);
     309             :         if (!sched_task_is_throttled(p, rq->cpu))
     310             :                 return p;
     311             : 
     312             :         return sched_core_next(p, cookie);
     313             : }
     314             : 
     315             : /*
     316             :  * Magic required such that:
     317             :  *
     318             :  *      raw_spin_rq_lock(rq);
     319             :  *      ...
     320             :  *      raw_spin_rq_unlock(rq);
     321             :  *
     322             :  * ends up locking and unlocking the _same_ lock, and all CPUs
     323             :  * always agree on what rq has what lock.
     324             :  *
     325             :  * XXX entirely possible to selectively enable cores, don't bother for now.
     326             :  */
     327             : 
     328             : static DEFINE_MUTEX(sched_core_mutex);
     329             : static atomic_t sched_core_count;
     330             : static struct cpumask sched_core_mask;
     331             : 
     332             : static void sched_core_lock(int cpu, unsigned long *flags)
     333             : {
     334             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     335             :         int t, i = 0;
     336             : 
     337             :         local_irq_save(*flags);
     338             :         for_each_cpu(t, smt_mask)
     339             :                 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
     340             : }
     341             : 
     342             : static void sched_core_unlock(int cpu, unsigned long *flags)
     343             : {
     344             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     345             :         int t;
     346             : 
     347             :         for_each_cpu(t, smt_mask)
     348             :                 raw_spin_unlock(&cpu_rq(t)->__lock);
     349             :         local_irq_restore(*flags);
     350             : }
     351             : 
     352             : static void __sched_core_flip(bool enabled)
     353             : {
     354             :         unsigned long flags;
     355             :         int cpu, t;
     356             : 
     357             :         cpus_read_lock();
     358             : 
     359             :         /*
     360             :          * Toggle the online cores, one by one.
     361             :          */
     362             :         cpumask_copy(&sched_core_mask, cpu_online_mask);
     363             :         for_each_cpu(cpu, &sched_core_mask) {
     364             :                 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     365             : 
     366             :                 sched_core_lock(cpu, &flags);
     367             : 
     368             :                 for_each_cpu(t, smt_mask)
     369             :                         cpu_rq(t)->core_enabled = enabled;
     370             : 
     371             :                 cpu_rq(cpu)->core->core_forceidle_start = 0;
     372             : 
     373             :                 sched_core_unlock(cpu, &flags);
     374             : 
     375             :                 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
     376             :         }
     377             : 
     378             :         /*
     379             :          * Toggle the offline CPUs.
     380             :          */
     381             :         for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
     382             :                 cpu_rq(cpu)->core_enabled = enabled;
     383             : 
     384             :         cpus_read_unlock();
     385             : }
     386             : 
     387             : static void sched_core_assert_empty(void)
     388             : {
     389             :         int cpu;
     390             : 
     391             :         for_each_possible_cpu(cpu)
     392             :                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
     393             : }
     394             : 
     395             : static void __sched_core_enable(void)
     396             : {
     397             :         static_branch_enable(&__sched_core_enabled);
     398             :         /*
     399             :          * Ensure all previous instances of raw_spin_rq_*lock() have finished
     400             :          * and future ones will observe !sched_core_disabled().
     401             :          */
     402             :         synchronize_rcu();
     403             :         __sched_core_flip(true);
     404             :         sched_core_assert_empty();
     405             : }
     406             : 
     407             : static void __sched_core_disable(void)
     408             : {
     409             :         sched_core_assert_empty();
     410             :         __sched_core_flip(false);
     411             :         static_branch_disable(&__sched_core_enabled);
     412             : }
     413             : 
     414             : void sched_core_get(void)
     415             : {
     416             :         if (atomic_inc_not_zero(&sched_core_count))
     417             :                 return;
     418             : 
     419             :         mutex_lock(&sched_core_mutex);
     420             :         if (!atomic_read(&sched_core_count))
     421             :                 __sched_core_enable();
     422             : 
     423             :         smp_mb__before_atomic();
     424             :         atomic_inc(&sched_core_count);
     425             :         mutex_unlock(&sched_core_mutex);
     426             : }
     427             : 
     428             : static void __sched_core_put(struct work_struct *work)
     429             : {
     430             :         if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
     431             :                 __sched_core_disable();
     432             :                 mutex_unlock(&sched_core_mutex);
     433             :         }
     434             : }
     435             : 
     436             : void sched_core_put(void)
     437             : {
     438             :         static DECLARE_WORK(_work, __sched_core_put);
     439             : 
     440             :         /*
     441             :          * "There can be only one"
     442             :          *
     443             :          * Either this is the last one, or we don't actually need to do any
     444             :          * 'work'. If it is the last *again*, we rely on
     445             :          * WORK_STRUCT_PENDING_BIT.
     446             :          */
     447             :         if (!atomic_add_unless(&sched_core_count, -1, 1))
     448             :                 schedule_work(&_work);
     449             : }
     450             : 
     451             : #else /* !CONFIG_SCHED_CORE */
     452             : 
     453             : static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
     454             : static inline void
     455             : sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
     456             : 
     457             : #endif /* CONFIG_SCHED_CORE */
     458             : 
     459             : /*
     460             :  * Serialization rules:
     461             :  *
     462             :  * Lock order:
     463             :  *
     464             :  *   p->pi_lock
     465             :  *     rq->lock
     466             :  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
     467             :  *
     468             :  *  rq1->lock
     469             :  *    rq2->lock  where: rq1 < rq2
     470             :  *
     471             :  * Regular state:
     472             :  *
     473             :  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
     474             :  * local CPU's rq->lock, it optionally removes the task from the runqueue and
     475             :  * always looks at the local rq data structures to find the most eligible task
     476             :  * to run next.
     477             :  *
     478             :  * Task enqueue is also under rq->lock, possibly taken from another CPU.
     479             :  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
     480             :  * the local CPU to avoid bouncing the runqueue state around [ see
     481             :  * ttwu_queue_wakelist() ]
     482             :  *
     483             :  * Task wakeup, specifically wakeups that involve migration, are horribly
     484             :  * complicated to avoid having to take two rq->locks.
     485             :  *
     486             :  * Special state:
     487             :  *
     488             :  * System-calls and anything external will use task_rq_lock() which acquires
     489             :  * both p->pi_lock and rq->lock. As a consequence the state they change is
     490             :  * stable while holding either lock:
     491             :  *
     492             :  *  - sched_setaffinity()/
     493             :  *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
     494             :  *  - set_user_nice():          p->se.load, p->*prio
     495             :  *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
     496             :  *                              p->se.load, p->rt_priority,
     497             :  *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
     498             :  *  - sched_setnuma():          p->numa_preferred_nid
     499             :  *  - sched_move_task():        p->sched_task_group
     500             :  *  - uclamp_update_active()    p->uclamp*
     501             :  *
     502             :  * p->state <- TASK_*:
     503             :  *
     504             :  *   is changed locklessly using set_current_state(), __set_current_state() or
     505             :  *   set_special_state(), see their respective comments, or by
     506             :  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
     507             :  *   concurrent self.
     508             :  *
     509             :  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
     510             :  *
     511             :  *   is set by activate_task() and cleared by deactivate_task(), under
     512             :  *   rq->lock. Non-zero indicates the task is runnable, the special
     513             :  *   ON_RQ_MIGRATING state is used for migration without holding both
     514             :  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
     515             :  *
     516             :  * p->on_cpu <- { 0, 1 }:
     517             :  *
     518             :  *   is set by prepare_task() and cleared by finish_task() such that it will be
     519             :  *   set before p is scheduled-in and cleared after p is scheduled-out, both
     520             :  *   under rq->lock. Non-zero indicates the task is running on its CPU.
     521             :  *
     522             :  *   [ The astute reader will observe that it is possible for two tasks on one
     523             :  *     CPU to have ->on_cpu = 1 at the same time. ]
     524             :  *
     525             :  * task_cpu(p): is changed by set_task_cpu(), the rules are:
     526             :  *
     527             :  *  - Don't call set_task_cpu() on a blocked task:
     528             :  *
     529             :  *    We don't care what CPU we're not running on, this simplifies hotplug,
     530             :  *    the CPU assignment of blocked tasks isn't required to be valid.
     531             :  *
     532             :  *  - for try_to_wake_up(), called under p->pi_lock:
     533             :  *
     534             :  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
     535             :  *
     536             :  *  - for migration called under rq->lock:
     537             :  *    [ see task_on_rq_migrating() in task_rq_lock() ]
     538             :  *
     539             :  *    o move_queued_task()
     540             :  *    o detach_task()
     541             :  *
     542             :  *  - for migration called under double_rq_lock():
     543             :  *
     544             :  *    o __migrate_swap_task()
     545             :  *    o push_rt_task() / pull_rt_task()
     546             :  *    o push_dl_task() / pull_dl_task()
     547             :  *    o dl_task_offline_migration()
     548             :  *
     549             :  */
     550             : 
     551         175 : void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
     552             : {
     553             :         raw_spinlock_t *lock;
     554             : 
     555             :         /* Matches synchronize_rcu() in __sched_core_enable() */
     556        2450 :         preempt_disable();
     557             :         if (sched_core_disabled()) {
     558        2450 :                 raw_spin_lock_nested(&rq->__lock, subclass);
     559             :                 /* preempt_count *MUST* be > 1 */
     560        2450 :                 preempt_enable_no_resched();
     561             :                 return;
     562             :         }
     563             : 
     564             :         for (;;) {
     565             :                 lock = __rq_lockp(rq);
     566             :                 raw_spin_lock_nested(lock, subclass);
     567             :                 if (likely(lock == __rq_lockp(rq))) {
     568             :                         /* preempt_count *MUST* be > 1 */
     569             :                         preempt_enable_no_resched();
     570             :                         return;
     571             :                 }
     572             :                 raw_spin_unlock(lock);
     573             :         }
     574             : }
     575             : 
     576           0 : bool raw_spin_rq_trylock(struct rq *rq)
     577             : {
     578             :         raw_spinlock_t *lock;
     579             :         bool ret;
     580             : 
     581             :         /* Matches synchronize_rcu() in __sched_core_enable() */
     582           0 :         preempt_disable();
     583             :         if (sched_core_disabled()) {
     584           0 :                 ret = raw_spin_trylock(&rq->__lock);
     585           0 :                 preempt_enable();
     586             :                 return ret;
     587             :         }
     588             : 
     589             :         for (;;) {
     590             :                 lock = __rq_lockp(rq);
     591             :                 ret = raw_spin_trylock(lock);
     592             :                 if (!ret || (likely(lock == __rq_lockp(rq)))) {
     593             :                         preempt_enable();
     594             :                         return ret;
     595             :                 }
     596             :                 raw_spin_unlock(lock);
     597             :         }
     598             : }
     599             : 
     600         175 : void raw_spin_rq_unlock(struct rq *rq)
     601             : {
     602        2450 :         raw_spin_unlock(rq_lockp(rq));
     603         175 : }
     604             : 
     605             : #ifdef CONFIG_SMP
     606             : /*
     607             :  * double_rq_lock - safely lock two runqueues
     608             :  */
     609             : void double_rq_lock(struct rq *rq1, struct rq *rq2)
     610             : {
     611             :         lockdep_assert_irqs_disabled();
     612             : 
     613             :         if (rq_order_less(rq2, rq1))
     614             :                 swap(rq1, rq2);
     615             : 
     616             :         raw_spin_rq_lock(rq1);
     617             :         if (__rq_lockp(rq1) != __rq_lockp(rq2))
     618             :                 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
     619             : 
     620             :         double_rq_clock_clear_update(rq1, rq2);
     621             : }
     622             : #endif
     623             : 
     624             : /*
     625             :  * __task_rq_lock - lock the rq @p resides on.
     626             :  */
     627           0 : struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
     628             :         __acquires(rq->lock)
     629             : {
     630             :         struct rq *rq;
     631             : 
     632             :         lockdep_assert_held(&p->pi_lock);
     633             : 
     634             :         for (;;) {
     635         175 :                 rq = task_rq(p);
     636         175 :                 raw_spin_rq_lock(rq);
     637         350 :                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
     638         175 :                         rq_pin_lock(rq, rf);
     639           0 :                         return rq;
     640             :                 }
     641             :                 raw_spin_rq_unlock(rq);
     642             : 
     643           0 :                 while (unlikely(task_on_rq_migrating(p)))
     644             :                         cpu_relax();
     645             :         }
     646             : }
     647             : 
     648             : /*
     649             :  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
     650             :  */
     651         190 : struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
     652             :         __acquires(p->pi_lock)
     653             :         __acquires(rq->lock)
     654             : {
     655             :         struct rq *rq;
     656             : 
     657             :         for (;;) {
     658         190 :                 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
     659         190 :                 rq = task_rq(p);
     660         190 :                 raw_spin_rq_lock(rq);
     661             :                 /*
     662             :                  *      move_queued_task()              task_rq_lock()
     663             :                  *
     664             :                  *      ACQUIRE (rq->lock)
     665             :                  *      [S] ->on_rq = MIGRATING              [L] rq = task_rq()
     666             :                  *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
     667             :                  *      [S] ->cpu = new_cpu          [L] task_rq()
     668             :                  *                                      [L] ->on_rq
     669             :                  *      RELEASE (rq->lock)
     670             :                  *
     671             :                  * If we observe the old CPU in task_rq_lock(), the acquire of
     672             :                  * the old rq->lock will fully serialize against the stores.
     673             :                  *
     674             :                  * If we observe the new CPU in task_rq_lock(), the address
     675             :                  * dependency headed by '[L] rq = task_rq()' and the acquire
     676             :                  * will pair with the WMB to ensure we then also see migrating.
     677             :                  */
     678         380 :                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
     679         190 :                         rq_pin_lock(rq, rf);
     680         190 :                         return rq;
     681             :                 }
     682           0 :                 raw_spin_rq_unlock(rq);
     683           0 :                 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
     684             : 
     685           0 :                 while (unlikely(task_on_rq_migrating(p)))
     686             :                         cpu_relax();
     687             :         }
     688             : }
     689             : 
     690             : /*
     691             :  * RQ-clock updating methods:
     692             :  */
     693             : 
     694             : static void update_rq_clock_task(struct rq *rq, s64 delta)
     695             : {
     696             : /*
     697             :  * In theory, the compile should just see 0 here, and optimize out the call
     698             :  * to sched_rt_avg_update. But I don't trust it...
     699             :  */
     700        2082 :         s64 __maybe_unused steal = 0, irq_delta = 0;
     701             : 
     702             : #ifdef CONFIG_IRQ_TIME_ACCOUNTING
     703             :         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
     704             : 
     705             :         /*
     706             :          * Since irq_time is only updated on {soft,}irq_exit, we might run into
     707             :          * this case when a previous update_rq_clock() happened inside a
     708             :          * {soft,}irq region.
     709             :          *
     710             :          * When this happens, we stop ->clock_task and only update the
     711             :          * prev_irq_time stamp to account for the part that fit, so that a next
     712             :          * update will consume the rest. This ensures ->clock_task is
     713             :          * monotonic.
     714             :          *
     715             :          * It does however cause some slight miss-attribution of {soft,}irq
     716             :          * time, a more accurate solution would be to update the irq_time using
     717             :          * the current rq->clock timestamp, except that would require using
     718             :          * atomic ops.
     719             :          */
     720             :         if (irq_delta > delta)
     721             :                 irq_delta = delta;
     722             : 
     723             :         rq->prev_irq_time += irq_delta;
     724             :         delta -= irq_delta;
     725             :         psi_account_irqtime(rq->curr, irq_delta);
     726             :         delayacct_irq(rq->curr, irq_delta);
     727             : #endif
     728             : #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
     729             :         if (static_key_false((&paravirt_steal_rq_enabled))) {
     730             :                 steal = paravirt_steal_clock(cpu_of(rq));
     731             :                 steal -= rq->prev_steal_time_rq;
     732             : 
     733             :                 if (unlikely(steal > delta))
     734             :                         steal = delta;
     735             : 
     736             :                 rq->prev_steal_time_rq += steal;
     737             :                 delta -= steal;
     738             :         }
     739             : #endif
     740             : 
     741        2082 :         rq->clock_task += delta;
     742             : 
     743             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
     744             :         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
     745             :                 update_irq_load_avg(rq, irq_delta + steal);
     746             : #endif
     747        2082 :         update_rq_clock_pelt(rq, delta);
     748             : }
     749             : 
     750        2421 : void update_rq_clock(struct rq *rq)
     751             : {
     752             :         s64 delta;
     753             : 
     754        2421 :         lockdep_assert_rq_held(rq);
     755             : 
     756        2421 :         if (rq->clock_update_flags & RQCF_ACT_SKIP)
     757             :                 return;
     758             : 
     759             : #ifdef CONFIG_SCHED_DEBUG
     760             :         if (sched_feat(WARN_DOUBLE_CLOCK))
     761             :                 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
     762             :         rq->clock_update_flags |= RQCF_UPDATED;
     763             : #endif
     764             : 
     765        2082 :         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
     766        2082 :         if (delta < 0)
     767             :                 return;
     768        2082 :         rq->clock += delta;
     769        2082 :         update_rq_clock_task(rq, delta);
     770             : }
     771             : 
     772             : #ifdef CONFIG_SCHED_HRTICK
     773             : /*
     774             :  * Use HR-timers to deliver accurate preemption points.
     775             :  */
     776             : 
     777             : static void hrtick_clear(struct rq *rq)
     778             : {
     779             :         if (hrtimer_active(&rq->hrtick_timer))
     780             :                 hrtimer_cancel(&rq->hrtick_timer);
     781             : }
     782             : 
     783             : /*
     784             :  * High-resolution timer tick.
     785             :  * Runs from hardirq context with interrupts disabled.
     786             :  */
     787             : static enum hrtimer_restart hrtick(struct hrtimer *timer)
     788             : {
     789             :         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
     790             :         struct rq_flags rf;
     791             : 
     792             :         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
     793             : 
     794             :         rq_lock(rq, &rf);
     795             :         update_rq_clock(rq);
     796             :         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
     797             :         rq_unlock(rq, &rf);
     798             : 
     799             :         return HRTIMER_NORESTART;
     800             : }
     801             : 
     802             : #ifdef CONFIG_SMP
     803             : 
     804             : static void __hrtick_restart(struct rq *rq)
     805             : {
     806             :         struct hrtimer *timer = &rq->hrtick_timer;
     807             :         ktime_t time = rq->hrtick_time;
     808             : 
     809             :         hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
     810             : }
     811             : 
     812             : /*
     813             :  * called from hardirq (IPI) context
     814             :  */
     815             : static void __hrtick_start(void *arg)
     816             : {
     817             :         struct rq *rq = arg;
     818             :         struct rq_flags rf;
     819             : 
     820             :         rq_lock(rq, &rf);
     821             :         __hrtick_restart(rq);
     822             :         rq_unlock(rq, &rf);
     823             : }
     824             : 
     825             : /*
     826             :  * Called to set the hrtick timer state.
     827             :  *
     828             :  * called with rq->lock held and irqs disabled
     829             :  */
     830             : void hrtick_start(struct rq *rq, u64 delay)
     831             : {
     832             :         struct hrtimer *timer = &rq->hrtick_timer;
     833             :         s64 delta;
     834             : 
     835             :         /*
     836             :          * Don't schedule slices shorter than 10000ns, that just
     837             :          * doesn't make sense and can cause timer DoS.
     838             :          */
     839             :         delta = max_t(s64, delay, 10000LL);
     840             :         rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
     841             : 
     842             :         if (rq == this_rq())
     843             :                 __hrtick_restart(rq);
     844             :         else
     845             :                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
     846             : }
     847             : 
     848             : #else
     849             : /*
     850             :  * Called to set the hrtick timer state.
     851             :  *
     852             :  * called with rq->lock held and irqs disabled
     853             :  */
     854             : void hrtick_start(struct rq *rq, u64 delay)
     855             : {
     856             :         /*
     857             :          * Don't schedule slices shorter than 10000ns, that just
     858             :          * doesn't make sense. Rely on vruntime for fairness.
     859             :          */
     860             :         delay = max_t(u64, delay, 10000LL);
     861             :         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
     862             :                       HRTIMER_MODE_REL_PINNED_HARD);
     863             : }
     864             : 
     865             : #endif /* CONFIG_SMP */
     866             : 
     867             : static void hrtick_rq_init(struct rq *rq)
     868             : {
     869             : #ifdef CONFIG_SMP
     870             :         INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
     871             : #endif
     872             :         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
     873             :         rq->hrtick_timer.function = hrtick;
     874             : }
     875             : #else   /* CONFIG_SCHED_HRTICK */
     876             : static inline void hrtick_clear(struct rq *rq)
     877             : {
     878             : }
     879             : 
     880             : static inline void hrtick_rq_init(struct rq *rq)
     881             : {
     882             : }
     883             : #endif  /* CONFIG_SCHED_HRTICK */
     884             : 
     885             : /*
     886             :  * cmpxchg based fetch_or, macro so it works for different integer types
     887             :  */
     888             : #define fetch_or(ptr, mask)                                             \
     889             :         ({                                                              \
     890             :                 typeof(ptr) _ptr = (ptr);                               \
     891             :                 typeof(mask) _mask = (mask);                            \
     892             :                 typeof(*_ptr) _val = *_ptr;                             \
     893             :                                                                         \
     894             :                 do {                                                    \
     895             :                 } while (!try_cmpxchg(_ptr, &_val, _val | _mask));  \
     896             :         _val;                                                           \
     897             : })
     898             : 
     899             : #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
     900             : /*
     901             :  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
     902             :  * this avoids any races wrt polling state changes and thereby avoids
     903             :  * spurious IPIs.
     904             :  */
     905             : static inline bool set_nr_and_not_polling(struct task_struct *p)
     906             : {
     907             :         struct thread_info *ti = task_thread_info(p);
     908             :         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
     909             : }
     910             : 
     911             : /*
     912             :  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
     913             :  *
     914             :  * If this returns true, then the idle task promises to call
     915             :  * sched_ttwu_pending() and reschedule soon.
     916             :  */
     917             : static bool set_nr_if_polling(struct task_struct *p)
     918             : {
     919             :         struct thread_info *ti = task_thread_info(p);
     920             :         typeof(ti->flags) val = READ_ONCE(ti->flags);
     921             : 
     922             :         for (;;) {
     923             :                 if (!(val & _TIF_POLLING_NRFLAG))
     924             :                         return false;
     925             :                 if (val & _TIF_NEED_RESCHED)
     926             :                         return true;
     927             :                 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
     928             :                         break;
     929             :         }
     930             :         return true;
     931             : }
     932             : 
     933             : #else
     934             : static inline bool set_nr_and_not_polling(struct task_struct *p)
     935             : {
     936             :         set_tsk_need_resched(p);
     937             :         return true;
     938             : }
     939             : 
     940             : #ifdef CONFIG_SMP
     941             : static inline bool set_nr_if_polling(struct task_struct *p)
     942             : {
     943             :         return false;
     944             : }
     945             : #endif
     946             : #endif
     947             : 
     948             : static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
     949             : {
     950           0 :         struct wake_q_node *node = &task->wake_q;
     951             : 
     952             :         /*
     953             :          * Atomically grab the task, if ->wake_q is !nil already it means
     954             :          * it's already queued (either by us or someone else) and will get the
     955             :          * wakeup due to that.
     956             :          *
     957             :          * In order to ensure that a pending wakeup will observe our pending
     958             :          * state, even in the failed case, an explicit smp_mb() must be used.
     959             :          */
     960           0 :         smp_mb__before_atomic();
     961           0 :         if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
     962             :                 return false;
     963             : 
     964             :         /*
     965             :          * The head is context local, there can be no concurrency.
     966             :          */
     967           0 :         *head->lastp = node;
     968           0 :         head->lastp = &node->next;
     969             :         return true;
     970             : }
     971             : 
     972             : /**
     973             :  * wake_q_add() - queue a wakeup for 'later' waking.
     974             :  * @head: the wake_q_head to add @task to
     975             :  * @task: the task to queue for 'later' wakeup
     976             :  *
     977             :  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
     978             :  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
     979             :  * instantly.
     980             :  *
     981             :  * This function must be used as-if it were wake_up_process(); IOW the task
     982             :  * must be ready to be woken at this location.
     983             :  */
     984           0 : void wake_q_add(struct wake_q_head *head, struct task_struct *task)
     985             : {
     986           0 :         if (__wake_q_add(head, task))
     987             :                 get_task_struct(task);
     988           0 : }
     989             : 
     990             : /**
     991             :  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
     992             :  * @head: the wake_q_head to add @task to
     993             :  * @task: the task to queue for 'later' wakeup
     994             :  *
     995             :  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
     996             :  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
     997             :  * instantly.
     998             :  *
     999             :  * This function must be used as-if it were wake_up_process(); IOW the task
    1000             :  * must be ready to be woken at this location.
    1001             :  *
    1002             :  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
    1003             :  * that already hold reference to @task can call the 'safe' version and trust
    1004             :  * wake_q to do the right thing depending whether or not the @task is already
    1005             :  * queued for wakeup.
    1006             :  */
    1007           0 : void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
    1008             : {
    1009           0 :         if (!__wake_q_add(head, task))
    1010           0 :                 put_task_struct(task);
    1011           0 : }
    1012             : 
    1013           0 : void wake_up_q(struct wake_q_head *head)
    1014             : {
    1015           0 :         struct wake_q_node *node = head->first;
    1016             : 
    1017           0 :         while (node != WAKE_Q_TAIL) {
    1018             :                 struct task_struct *task;
    1019             : 
    1020           0 :                 task = container_of(node, struct task_struct, wake_q);
    1021             :                 /* Task can safely be re-inserted now: */
    1022           0 :                 node = node->next;
    1023           0 :                 task->wake_q.next = NULL;
    1024             : 
    1025             :                 /*
    1026             :                  * wake_up_process() executes a full barrier, which pairs with
    1027             :                  * the queueing in wake_q_add() so as not to miss wakeups.
    1028             :                  */
    1029           0 :                 wake_up_process(task);
    1030           0 :                 put_task_struct(task);
    1031             :         }
    1032           0 : }
    1033             : 
    1034             : /*
    1035             :  * resched_curr - mark rq's current task 'to be rescheduled now'.
    1036             :  *
    1037             :  * On UP this means the setting of the need_resched flag, on SMP it
    1038             :  * might also involve a cross-CPU call to trigger the scheduler on
    1039             :  * the target CPU.
    1040             :  */
    1041         356 : void resched_curr(struct rq *rq)
    1042             : {
    1043         356 :         struct task_struct *curr = rq->curr;
    1044             :         int cpu;
    1045             : 
    1046         712 :         lockdep_assert_rq_held(rq);
    1047             : 
    1048         356 :         if (test_tsk_need_resched(curr))
    1049             :                 return;
    1050             : 
    1051         340 :         cpu = cpu_of(rq);
    1052             : 
    1053             :         if (cpu == smp_processor_id()) {
    1054             :                 set_tsk_need_resched(curr);
    1055             :                 set_preempt_need_resched();
    1056             :                 return;
    1057             :         }
    1058             : 
    1059             :         if (set_nr_and_not_polling(curr))
    1060             :                 smp_send_reschedule(cpu);
    1061             :         else
    1062             :                 trace_sched_wake_idle_without_ipi(cpu);
    1063             : }
    1064             : 
    1065          16 : void resched_cpu(int cpu)
    1066             : {
    1067          16 :         struct rq *rq = cpu_rq(cpu);
    1068             :         unsigned long flags;
    1069             : 
    1070          32 :         raw_spin_rq_lock_irqsave(rq, flags);
    1071          16 :         if (cpu_online(cpu) || cpu == smp_processor_id())
    1072          16 :                 resched_curr(rq);
    1073          32 :         raw_spin_rq_unlock_irqrestore(rq, flags);
    1074          16 : }
    1075             : 
    1076             : #ifdef CONFIG_SMP
    1077             : #ifdef CONFIG_NO_HZ_COMMON
    1078             : /*
    1079             :  * In the semi idle case, use the nearest busy CPU for migrating timers
    1080             :  * from an idle CPU.  This is good for power-savings.
    1081             :  *
    1082             :  * We don't do similar optimization for completely idle system, as
    1083             :  * selecting an idle CPU will add more delays to the timers than intended
    1084             :  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
    1085             :  */
    1086             : int get_nohz_timer_target(void)
    1087             : {
    1088             :         int i, cpu = smp_processor_id(), default_cpu = -1;
    1089             :         struct sched_domain *sd;
    1090             :         const struct cpumask *hk_mask;
    1091             : 
    1092             :         if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
    1093             :                 if (!idle_cpu(cpu))
    1094             :                         return cpu;
    1095             :                 default_cpu = cpu;
    1096             :         }
    1097             : 
    1098             :         hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
    1099             : 
    1100             :         rcu_read_lock();
    1101             :         for_each_domain(cpu, sd) {
    1102             :                 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
    1103             :                         if (cpu == i)
    1104             :                                 continue;
    1105             : 
    1106             :                         if (!idle_cpu(i)) {
    1107             :                                 cpu = i;
    1108             :                                 goto unlock;
    1109             :                         }
    1110             :                 }
    1111             :         }
    1112             : 
    1113             :         if (default_cpu == -1)
    1114             :                 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
    1115             :         cpu = default_cpu;
    1116             : unlock:
    1117             :         rcu_read_unlock();
    1118             :         return cpu;
    1119             : }
    1120             : 
    1121             : /*
    1122             :  * When add_timer_on() enqueues a timer into the timer wheel of an
    1123             :  * idle CPU then this timer might expire before the next timer event
    1124             :  * which is scheduled to wake up that CPU. In case of a completely
    1125             :  * idle system the next event might even be infinite time into the
    1126             :  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
    1127             :  * leaves the inner idle loop so the newly added timer is taken into
    1128             :  * account when the CPU goes back to idle and evaluates the timer
    1129             :  * wheel for the next timer event.
    1130             :  */
    1131             : static void wake_up_idle_cpu(int cpu)
    1132             : {
    1133             :         struct rq *rq = cpu_rq(cpu);
    1134             : 
    1135             :         if (cpu == smp_processor_id())
    1136             :                 return;
    1137             : 
    1138             :         if (set_nr_and_not_polling(rq->idle))
    1139             :                 smp_send_reschedule(cpu);
    1140             :         else
    1141             :                 trace_sched_wake_idle_without_ipi(cpu);
    1142             : }
    1143             : 
    1144             : static bool wake_up_full_nohz_cpu(int cpu)
    1145             : {
    1146             :         /*
    1147             :          * We just need the target to call irq_exit() and re-evaluate
    1148             :          * the next tick. The nohz full kick at least implies that.
    1149             :          * If needed we can still optimize that later with an
    1150             :          * empty IRQ.
    1151             :          */
    1152             :         if (cpu_is_offline(cpu))
    1153             :                 return true;  /* Don't try to wake offline CPUs. */
    1154             :         if (tick_nohz_full_cpu(cpu)) {
    1155             :                 if (cpu != smp_processor_id() ||
    1156             :                     tick_nohz_tick_stopped())
    1157             :                         tick_nohz_full_kick_cpu(cpu);
    1158             :                 return true;
    1159             :         }
    1160             : 
    1161             :         return false;
    1162             : }
    1163             : 
    1164             : /*
    1165             :  * Wake up the specified CPU.  If the CPU is going offline, it is the
    1166             :  * caller's responsibility to deal with the lost wakeup, for example,
    1167             :  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
    1168             :  */
    1169             : void wake_up_nohz_cpu(int cpu)
    1170             : {
    1171             :         if (!wake_up_full_nohz_cpu(cpu))
    1172             :                 wake_up_idle_cpu(cpu);
    1173             : }
    1174             : 
    1175             : static void nohz_csd_func(void *info)
    1176             : {
    1177             :         struct rq *rq = info;
    1178             :         int cpu = cpu_of(rq);
    1179             :         unsigned int flags;
    1180             : 
    1181             :         /*
    1182             :          * Release the rq::nohz_csd.
    1183             :          */
    1184             :         flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
    1185             :         WARN_ON(!(flags & NOHZ_KICK_MASK));
    1186             : 
    1187             :         rq->idle_balance = idle_cpu(cpu);
    1188             :         if (rq->idle_balance && !need_resched()) {
    1189             :                 rq->nohz_idle_balance = flags;
    1190             :                 raise_softirq_irqoff(SCHED_SOFTIRQ);
    1191             :         }
    1192             : }
    1193             : 
    1194             : #endif /* CONFIG_NO_HZ_COMMON */
    1195             : 
    1196             : #ifdef CONFIG_NO_HZ_FULL
    1197             : bool sched_can_stop_tick(struct rq *rq)
    1198             : {
    1199             :         int fifo_nr_running;
    1200             : 
    1201             :         /* Deadline tasks, even if single, need the tick */
    1202             :         if (rq->dl.dl_nr_running)
    1203             :                 return false;
    1204             : 
    1205             :         /*
    1206             :          * If there are more than one RR tasks, we need the tick to affect the
    1207             :          * actual RR behaviour.
    1208             :          */
    1209             :         if (rq->rt.rr_nr_running) {
    1210             :                 if (rq->rt.rr_nr_running == 1)
    1211             :                         return true;
    1212             :                 else
    1213             :                         return false;
    1214             :         }
    1215             : 
    1216             :         /*
    1217             :          * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
    1218             :          * forced preemption between FIFO tasks.
    1219             :          */
    1220             :         fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
    1221             :         if (fifo_nr_running)
    1222             :                 return true;
    1223             : 
    1224             :         /*
    1225             :          * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
    1226             :          * if there's more than one we need the tick for involuntary
    1227             :          * preemption.
    1228             :          */
    1229             :         if (rq->nr_running > 1)
    1230             :                 return false;
    1231             : 
    1232             :         return true;
    1233             : }
    1234             : #endif /* CONFIG_NO_HZ_FULL */
    1235             : #endif /* CONFIG_SMP */
    1236             : 
    1237             : #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
    1238             :                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
    1239             : /*
    1240             :  * Iterate task_group tree rooted at *from, calling @down when first entering a
    1241             :  * node and @up when leaving it for the final time.
    1242             :  *
    1243             :  * Caller must hold rcu_lock or sufficient equivalent.
    1244             :  */
    1245             : int walk_tg_tree_from(struct task_group *from,
    1246             :                              tg_visitor down, tg_visitor up, void *data)
    1247             : {
    1248             :         struct task_group *parent, *child;
    1249             :         int ret;
    1250             : 
    1251             :         parent = from;
    1252             : 
    1253             : down:
    1254             :         ret = (*down)(parent, data);
    1255             :         if (ret)
    1256             :                 goto out;
    1257             :         list_for_each_entry_rcu(child, &parent->children, siblings) {
    1258             :                 parent = child;
    1259             :                 goto down;
    1260             : 
    1261             : up:
    1262             :                 continue;
    1263             :         }
    1264             :         ret = (*up)(parent, data);
    1265             :         if (ret || parent == from)
    1266             :                 goto out;
    1267             : 
    1268             :         child = parent;
    1269             :         parent = parent->parent;
    1270             :         if (parent)
    1271             :                 goto up;
    1272             : out:
    1273             :         return ret;
    1274             : }
    1275             : 
    1276             : int tg_nop(struct task_group *tg, void *data)
    1277             : {
    1278             :         return 0;
    1279             : }
    1280             : #endif
    1281             : 
    1282           6 : static void set_load_weight(struct task_struct *p, bool update_load)
    1283             : {
    1284           6 :         int prio = p->static_prio - MAX_RT_PRIO;
    1285           6 :         struct load_weight *load = &p->se.load;
    1286             : 
    1287             :         /*
    1288             :          * SCHED_IDLE tasks get minimal weight:
    1289             :          */
    1290          12 :         if (task_has_idle_policy(p)) {
    1291           0 :                 load->weight = scale_load(WEIGHT_IDLEPRIO);
    1292           0 :                 load->inv_weight = WMULT_IDLEPRIO;
    1293           0 :                 return;
    1294             :         }
    1295             : 
    1296             :         /*
    1297             :          * SCHED_OTHER tasks have to update their load when changing their
    1298             :          * weight
    1299             :          */
    1300           6 :         if (update_load && p->sched_class == &fair_sched_class) {
    1301           5 :                 reweight_task(p, prio);
    1302             :         } else {
    1303           1 :                 load->weight = scale_load(sched_prio_to_weight[prio]);
    1304           1 :                 load->inv_weight = sched_prio_to_wmult[prio];
    1305             :         }
    1306             : }
    1307             : 
    1308             : #ifdef CONFIG_UCLAMP_TASK
    1309             : /*
    1310             :  * Serializes updates of utilization clamp values
    1311             :  *
    1312             :  * The (slow-path) user-space triggers utilization clamp value updates which
    1313             :  * can require updates on (fast-path) scheduler's data structures used to
    1314             :  * support enqueue/dequeue operations.
    1315             :  * While the per-CPU rq lock protects fast-path update operations, user-space
    1316             :  * requests are serialized using a mutex to reduce the risk of conflicting
    1317             :  * updates or API abuses.
    1318             :  */
    1319             : static DEFINE_MUTEX(uclamp_mutex);
    1320             : 
    1321             : /* Max allowed minimum utilization */
    1322             : static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
    1323             : 
    1324             : /* Max allowed maximum utilization */
    1325             : static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
    1326             : 
    1327             : /*
    1328             :  * By default RT tasks run at the maximum performance point/capacity of the
    1329             :  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
    1330             :  * SCHED_CAPACITY_SCALE.
    1331             :  *
    1332             :  * This knob allows admins to change the default behavior when uclamp is being
    1333             :  * used. In battery powered devices, particularly, running at the maximum
    1334             :  * capacity and frequency will increase energy consumption and shorten the
    1335             :  * battery life.
    1336             :  *
    1337             :  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
    1338             :  *
    1339             :  * This knob will not override the system default sched_util_clamp_min defined
    1340             :  * above.
    1341             :  */
    1342             : static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
    1343             : 
    1344             : /* All clamps are required to be less or equal than these values */
    1345             : static struct uclamp_se uclamp_default[UCLAMP_CNT];
    1346             : 
    1347             : /*
    1348             :  * This static key is used to reduce the uclamp overhead in the fast path. It
    1349             :  * primarily disables the call to uclamp_rq_{inc, dec}() in
    1350             :  * enqueue/dequeue_task().
    1351             :  *
    1352             :  * This allows users to continue to enable uclamp in their kernel config with
    1353             :  * minimum uclamp overhead in the fast path.
    1354             :  *
    1355             :  * As soon as userspace modifies any of the uclamp knobs, the static key is
    1356             :  * enabled, since we have an actual users that make use of uclamp
    1357             :  * functionality.
    1358             :  *
    1359             :  * The knobs that would enable this static key are:
    1360             :  *
    1361             :  *   * A task modifying its uclamp value with sched_setattr().
    1362             :  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
    1363             :  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
    1364             :  */
    1365             : DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
    1366             : 
    1367             : /* Integer rounded range for each bucket */
    1368             : #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
    1369             : 
    1370             : #define for_each_clamp_id(clamp_id) \
    1371             :         for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
    1372             : 
    1373             : static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
    1374             : {
    1375             :         return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
    1376             : }
    1377             : 
    1378             : static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
    1379             : {
    1380             :         if (clamp_id == UCLAMP_MIN)
    1381             :                 return 0;
    1382             :         return SCHED_CAPACITY_SCALE;
    1383             : }
    1384             : 
    1385             : static inline void uclamp_se_set(struct uclamp_se *uc_se,
    1386             :                                  unsigned int value, bool user_defined)
    1387             : {
    1388             :         uc_se->value = value;
    1389             :         uc_se->bucket_id = uclamp_bucket_id(value);
    1390             :         uc_se->user_defined = user_defined;
    1391             : }
    1392             : 
    1393             : static inline unsigned int
    1394             : uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
    1395             :                   unsigned int clamp_value)
    1396             : {
    1397             :         /*
    1398             :          * Avoid blocked utilization pushing up the frequency when we go
    1399             :          * idle (which drops the max-clamp) by retaining the last known
    1400             :          * max-clamp.
    1401             :          */
    1402             :         if (clamp_id == UCLAMP_MAX) {
    1403             :                 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
    1404             :                 return clamp_value;
    1405             :         }
    1406             : 
    1407             :         return uclamp_none(UCLAMP_MIN);
    1408             : }
    1409             : 
    1410             : static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
    1411             :                                      unsigned int clamp_value)
    1412             : {
    1413             :         /* Reset max-clamp retention only on idle exit */
    1414             :         if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
    1415             :                 return;
    1416             : 
    1417             :         uclamp_rq_set(rq, clamp_id, clamp_value);
    1418             : }
    1419             : 
    1420             : static inline
    1421             : unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
    1422             :                                    unsigned int clamp_value)
    1423             : {
    1424             :         struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
    1425             :         int bucket_id = UCLAMP_BUCKETS - 1;
    1426             : 
    1427             :         /*
    1428             :          * Since both min and max clamps are max aggregated, find the
    1429             :          * top most bucket with tasks in.
    1430             :          */
    1431             :         for ( ; bucket_id >= 0; bucket_id--) {
    1432             :                 if (!bucket[bucket_id].tasks)
    1433             :                         continue;
    1434             :                 return bucket[bucket_id].value;
    1435             :         }
    1436             : 
    1437             :         /* No tasks -- default clamp values */
    1438             :         return uclamp_idle_value(rq, clamp_id, clamp_value);
    1439             : }
    1440             : 
    1441             : static void __uclamp_update_util_min_rt_default(struct task_struct *p)
    1442             : {
    1443             :         unsigned int default_util_min;
    1444             :         struct uclamp_se *uc_se;
    1445             : 
    1446             :         lockdep_assert_held(&p->pi_lock);
    1447             : 
    1448             :         uc_se = &p->uclamp_req[UCLAMP_MIN];
    1449             : 
    1450             :         /* Only sync if user didn't override the default */
    1451             :         if (uc_se->user_defined)
    1452             :                 return;
    1453             : 
    1454             :         default_util_min = sysctl_sched_uclamp_util_min_rt_default;
    1455             :         uclamp_se_set(uc_se, default_util_min, false);
    1456             : }
    1457             : 
    1458             : static void uclamp_update_util_min_rt_default(struct task_struct *p)
    1459             : {
    1460             :         struct rq_flags rf;
    1461             :         struct rq *rq;
    1462             : 
    1463             :         if (!rt_task(p))
    1464             :                 return;
    1465             : 
    1466             :         /* Protect updates to p->uclamp_* */
    1467             :         rq = task_rq_lock(p, &rf);
    1468             :         __uclamp_update_util_min_rt_default(p);
    1469             :         task_rq_unlock(rq, p, &rf);
    1470             : }
    1471             : 
    1472             : static inline struct uclamp_se
    1473             : uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
    1474             : {
    1475             :         /* Copy by value as we could modify it */
    1476             :         struct uclamp_se uc_req = p->uclamp_req[clamp_id];
    1477             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1478             :         unsigned int tg_min, tg_max, value;
    1479             : 
    1480             :         /*
    1481             :          * Tasks in autogroups or root task group will be
    1482             :          * restricted by system defaults.
    1483             :          */
    1484             :         if (task_group_is_autogroup(task_group(p)))
    1485             :                 return uc_req;
    1486             :         if (task_group(p) == &root_task_group)
    1487             :                 return uc_req;
    1488             : 
    1489             :         tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
    1490             :         tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
    1491             :         value = uc_req.value;
    1492             :         value = clamp(value, tg_min, tg_max);
    1493             :         uclamp_se_set(&uc_req, value, false);
    1494             : #endif
    1495             : 
    1496             :         return uc_req;
    1497             : }
    1498             : 
    1499             : /*
    1500             :  * The effective clamp bucket index of a task depends on, by increasing
    1501             :  * priority:
    1502             :  * - the task specific clamp value, when explicitly requested from userspace
    1503             :  * - the task group effective clamp value, for tasks not either in the root
    1504             :  *   group or in an autogroup
    1505             :  * - the system default clamp value, defined by the sysadmin
    1506             :  */
    1507             : static inline struct uclamp_se
    1508             : uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
    1509             : {
    1510             :         struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
    1511             :         struct uclamp_se uc_max = uclamp_default[clamp_id];
    1512             : 
    1513             :         /* System default restrictions always apply */
    1514             :         if (unlikely(uc_req.value > uc_max.value))
    1515             :                 return uc_max;
    1516             : 
    1517             :         return uc_req;
    1518             : }
    1519             : 
    1520             : unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
    1521             : {
    1522             :         struct uclamp_se uc_eff;
    1523             : 
    1524             :         /* Task currently refcounted: use back-annotated (effective) value */
    1525             :         if (p->uclamp[clamp_id].active)
    1526             :                 return (unsigned long)p->uclamp[clamp_id].value;
    1527             : 
    1528             :         uc_eff = uclamp_eff_get(p, clamp_id);
    1529             : 
    1530             :         return (unsigned long)uc_eff.value;
    1531             : }
    1532             : 
    1533             : /*
    1534             :  * When a task is enqueued on a rq, the clamp bucket currently defined by the
    1535             :  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
    1536             :  * updates the rq's clamp value if required.
    1537             :  *
    1538             :  * Tasks can have a task-specific value requested from user-space, track
    1539             :  * within each bucket the maximum value for tasks refcounted in it.
    1540             :  * This "local max aggregation" allows to track the exact "requested" value
    1541             :  * for each bucket when all its RUNNABLE tasks require the same clamp.
    1542             :  */
    1543             : static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
    1544             :                                     enum uclamp_id clamp_id)
    1545             : {
    1546             :         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
    1547             :         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
    1548             :         struct uclamp_bucket *bucket;
    1549             : 
    1550             :         lockdep_assert_rq_held(rq);
    1551             : 
    1552             :         /* Update task effective clamp */
    1553             :         p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
    1554             : 
    1555             :         bucket = &uc_rq->bucket[uc_se->bucket_id];
    1556             :         bucket->tasks++;
    1557             :         uc_se->active = true;
    1558             : 
    1559             :         uclamp_idle_reset(rq, clamp_id, uc_se->value);
    1560             : 
    1561             :         /*
    1562             :          * Local max aggregation: rq buckets always track the max
    1563             :          * "requested" clamp value of its RUNNABLE tasks.
    1564             :          */
    1565             :         if (bucket->tasks == 1 || uc_se->value > bucket->value)
    1566             :                 bucket->value = uc_se->value;
    1567             : 
    1568             :         if (uc_se->value > uclamp_rq_get(rq, clamp_id))
    1569             :                 uclamp_rq_set(rq, clamp_id, uc_se->value);
    1570             : }
    1571             : 
    1572             : /*
    1573             :  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
    1574             :  * is released. If this is the last task reference counting the rq's max
    1575             :  * active clamp value, then the rq's clamp value is updated.
    1576             :  *
    1577             :  * Both refcounted tasks and rq's cached clamp values are expected to be
    1578             :  * always valid. If it's detected they are not, as defensive programming,
    1579             :  * enforce the expected state and warn.
    1580             :  */
    1581             : static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
    1582             :                                     enum uclamp_id clamp_id)
    1583             : {
    1584             :         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
    1585             :         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
    1586             :         struct uclamp_bucket *bucket;
    1587             :         unsigned int bkt_clamp;
    1588             :         unsigned int rq_clamp;
    1589             : 
    1590             :         lockdep_assert_rq_held(rq);
    1591             : 
    1592             :         /*
    1593             :          * If sched_uclamp_used was enabled after task @p was enqueued,
    1594             :          * we could end up with unbalanced call to uclamp_rq_dec_id().
    1595             :          *
    1596             :          * In this case the uc_se->active flag should be false since no uclamp
    1597             :          * accounting was performed at enqueue time and we can just return
    1598             :          * here.
    1599             :          *
    1600             :          * Need to be careful of the following enqueue/dequeue ordering
    1601             :          * problem too
    1602             :          *
    1603             :          *      enqueue(taskA)
    1604             :          *      // sched_uclamp_used gets enabled
    1605             :          *      enqueue(taskB)
    1606             :          *      dequeue(taskA)
    1607             :          *      // Must not decrement bucket->tasks here
    1608             :          *      dequeue(taskB)
    1609             :          *
    1610             :          * where we could end up with stale data in uc_se and
    1611             :          * bucket[uc_se->bucket_id].
    1612             :          *
    1613             :          * The following check here eliminates the possibility of such race.
    1614             :          */
    1615             :         if (unlikely(!uc_se->active))
    1616             :                 return;
    1617             : 
    1618             :         bucket = &uc_rq->bucket[uc_se->bucket_id];
    1619             : 
    1620             :         SCHED_WARN_ON(!bucket->tasks);
    1621             :         if (likely(bucket->tasks))
    1622             :                 bucket->tasks--;
    1623             : 
    1624             :         uc_se->active = false;
    1625             : 
    1626             :         /*
    1627             :          * Keep "local max aggregation" simple and accept to (possibly)
    1628             :          * overboost some RUNNABLE tasks in the same bucket.
    1629             :          * The rq clamp bucket value is reset to its base value whenever
    1630             :          * there are no more RUNNABLE tasks refcounting it.
    1631             :          */
    1632             :         if (likely(bucket->tasks))
    1633             :                 return;
    1634             : 
    1635             :         rq_clamp = uclamp_rq_get(rq, clamp_id);
    1636             :         /*
    1637             :          * Defensive programming: this should never happen. If it happens,
    1638             :          * e.g. due to future modification, warn and fixup the expected value.
    1639             :          */
    1640             :         SCHED_WARN_ON(bucket->value > rq_clamp);
    1641             :         if (bucket->value >= rq_clamp) {
    1642             :                 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
    1643             :                 uclamp_rq_set(rq, clamp_id, bkt_clamp);
    1644             :         }
    1645             : }
    1646             : 
    1647             : static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
    1648             : {
    1649             :         enum uclamp_id clamp_id;
    1650             : 
    1651             :         /*
    1652             :          * Avoid any overhead until uclamp is actually used by the userspace.
    1653             :          *
    1654             :          * The condition is constructed such that a NOP is generated when
    1655             :          * sched_uclamp_used is disabled.
    1656             :          */
    1657             :         if (!static_branch_unlikely(&sched_uclamp_used))
    1658             :                 return;
    1659             : 
    1660             :         if (unlikely(!p->sched_class->uclamp_enabled))
    1661             :                 return;
    1662             : 
    1663             :         for_each_clamp_id(clamp_id)
    1664             :                 uclamp_rq_inc_id(rq, p, clamp_id);
    1665             : 
    1666             :         /* Reset clamp idle holding when there is one RUNNABLE task */
    1667             :         if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
    1668             :                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
    1669             : }
    1670             : 
    1671             : static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
    1672             : {
    1673             :         enum uclamp_id clamp_id;
    1674             : 
    1675             :         /*
    1676             :          * Avoid any overhead until uclamp is actually used by the userspace.
    1677             :          *
    1678             :          * The condition is constructed such that a NOP is generated when
    1679             :          * sched_uclamp_used is disabled.
    1680             :          */
    1681             :         if (!static_branch_unlikely(&sched_uclamp_used))
    1682             :                 return;
    1683             : 
    1684             :         if (unlikely(!p->sched_class->uclamp_enabled))
    1685             :                 return;
    1686             : 
    1687             :         for_each_clamp_id(clamp_id)
    1688             :                 uclamp_rq_dec_id(rq, p, clamp_id);
    1689             : }
    1690             : 
    1691             : static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
    1692             :                                       enum uclamp_id clamp_id)
    1693             : {
    1694             :         if (!p->uclamp[clamp_id].active)
    1695             :                 return;
    1696             : 
    1697             :         uclamp_rq_dec_id(rq, p, clamp_id);
    1698             :         uclamp_rq_inc_id(rq, p, clamp_id);
    1699             : 
    1700             :         /*
    1701             :          * Make sure to clear the idle flag if we've transiently reached 0
    1702             :          * active tasks on rq.
    1703             :          */
    1704             :         if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
    1705             :                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
    1706             : }
    1707             : 
    1708             : static inline void
    1709             : uclamp_update_active(struct task_struct *p)
    1710             : {
    1711             :         enum uclamp_id clamp_id;
    1712             :         struct rq_flags rf;
    1713             :         struct rq *rq;
    1714             : 
    1715             :         /*
    1716             :          * Lock the task and the rq where the task is (or was) queued.
    1717             :          *
    1718             :          * We might lock the (previous) rq of a !RUNNABLE task, but that's the
    1719             :          * price to pay to safely serialize util_{min,max} updates with
    1720             :          * enqueues, dequeues and migration operations.
    1721             :          * This is the same locking schema used by __set_cpus_allowed_ptr().
    1722             :          */
    1723             :         rq = task_rq_lock(p, &rf);
    1724             : 
    1725             :         /*
    1726             :          * Setting the clamp bucket is serialized by task_rq_lock().
    1727             :          * If the task is not yet RUNNABLE and its task_struct is not
    1728             :          * affecting a valid clamp bucket, the next time it's enqueued,
    1729             :          * it will already see the updated clamp bucket value.
    1730             :          */
    1731             :         for_each_clamp_id(clamp_id)
    1732             :                 uclamp_rq_reinc_id(rq, p, clamp_id);
    1733             : 
    1734             :         task_rq_unlock(rq, p, &rf);
    1735             : }
    1736             : 
    1737             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1738             : static inline void
    1739             : uclamp_update_active_tasks(struct cgroup_subsys_state *css)
    1740             : {
    1741             :         struct css_task_iter it;
    1742             :         struct task_struct *p;
    1743             : 
    1744             :         css_task_iter_start(css, 0, &it);
    1745             :         while ((p = css_task_iter_next(&it)))
    1746             :                 uclamp_update_active(p);
    1747             :         css_task_iter_end(&it);
    1748             : }
    1749             : 
    1750             : static void cpu_util_update_eff(struct cgroup_subsys_state *css);
    1751             : #endif
    1752             : 
    1753             : #ifdef CONFIG_SYSCTL
    1754             : #ifdef CONFIG_UCLAMP_TASK
    1755             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1756             : static void uclamp_update_root_tg(void)
    1757             : {
    1758             :         struct task_group *tg = &root_task_group;
    1759             : 
    1760             :         uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
    1761             :                       sysctl_sched_uclamp_util_min, false);
    1762             :         uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
    1763             :                       sysctl_sched_uclamp_util_max, false);
    1764             : 
    1765             :         rcu_read_lock();
    1766             :         cpu_util_update_eff(&root_task_group.css);
    1767             :         rcu_read_unlock();
    1768             : }
    1769             : #else
    1770             : static void uclamp_update_root_tg(void) { }
    1771             : #endif
    1772             : 
    1773             : static void uclamp_sync_util_min_rt_default(void)
    1774             : {
    1775             :         struct task_struct *g, *p;
    1776             : 
    1777             :         /*
    1778             :          * copy_process()                       sysctl_uclamp
    1779             :          *                                        uclamp_min_rt = X;
    1780             :          *   write_lock(&tasklist_lock)               read_lock(&tasklist_lock)
    1781             :          *   // link thread                       smp_mb__after_spinlock()
    1782             :          *   write_unlock(&tasklist_lock)     read_unlock(&tasklist_lock);
    1783             :          *   sched_post_fork()                    for_each_process_thread()
    1784             :          *     __uclamp_sync_rt()                   __uclamp_sync_rt()
    1785             :          *
    1786             :          * Ensures that either sched_post_fork() will observe the new
    1787             :          * uclamp_min_rt or for_each_process_thread() will observe the new
    1788             :          * task.
    1789             :          */
    1790             :         read_lock(&tasklist_lock);
    1791             :         smp_mb__after_spinlock();
    1792             :         read_unlock(&tasklist_lock);
    1793             : 
    1794             :         rcu_read_lock();
    1795             :         for_each_process_thread(g, p)
    1796             :                 uclamp_update_util_min_rt_default(p);
    1797             :         rcu_read_unlock();
    1798             : }
    1799             : 
    1800             : static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
    1801             :                                 void *buffer, size_t *lenp, loff_t *ppos)
    1802             : {
    1803             :         bool update_root_tg = false;
    1804             :         int old_min, old_max, old_min_rt;
    1805             :         int result;
    1806             : 
    1807             :         mutex_lock(&uclamp_mutex);
    1808             :         old_min = sysctl_sched_uclamp_util_min;
    1809             :         old_max = sysctl_sched_uclamp_util_max;
    1810             :         old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
    1811             : 
    1812             :         result = proc_dointvec(table, write, buffer, lenp, ppos);
    1813             :         if (result)
    1814             :                 goto undo;
    1815             :         if (!write)
    1816             :                 goto done;
    1817             : 
    1818             :         if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
    1819             :             sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE      ||
    1820             :             sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
    1821             : 
    1822             :                 result = -EINVAL;
    1823             :                 goto undo;
    1824             :         }
    1825             : 
    1826             :         if (old_min != sysctl_sched_uclamp_util_min) {
    1827             :                 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
    1828             :                               sysctl_sched_uclamp_util_min, false);
    1829             :                 update_root_tg = true;
    1830             :         }
    1831             :         if (old_max != sysctl_sched_uclamp_util_max) {
    1832             :                 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
    1833             :                               sysctl_sched_uclamp_util_max, false);
    1834             :                 update_root_tg = true;
    1835             :         }
    1836             : 
    1837             :         if (update_root_tg) {
    1838             :                 static_branch_enable(&sched_uclamp_used);
    1839             :                 uclamp_update_root_tg();
    1840             :         }
    1841             : 
    1842             :         if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
    1843             :                 static_branch_enable(&sched_uclamp_used);
    1844             :                 uclamp_sync_util_min_rt_default();
    1845             :         }
    1846             : 
    1847             :         /*
    1848             :          * We update all RUNNABLE tasks only when task groups are in use.
    1849             :          * Otherwise, keep it simple and do just a lazy update at each next
    1850             :          * task enqueue time.
    1851             :          */
    1852             : 
    1853             :         goto done;
    1854             : 
    1855             : undo:
    1856             :         sysctl_sched_uclamp_util_min = old_min;
    1857             :         sysctl_sched_uclamp_util_max = old_max;
    1858             :         sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
    1859             : done:
    1860             :         mutex_unlock(&uclamp_mutex);
    1861             : 
    1862             :         return result;
    1863             : }
    1864             : #endif
    1865             : #endif
    1866             : 
    1867             : static int uclamp_validate(struct task_struct *p,
    1868             :                            const struct sched_attr *attr)
    1869             : {
    1870             :         int util_min = p->uclamp_req[UCLAMP_MIN].value;
    1871             :         int util_max = p->uclamp_req[UCLAMP_MAX].value;
    1872             : 
    1873             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
    1874             :                 util_min = attr->sched_util_min;
    1875             : 
    1876             :                 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
    1877             :                         return -EINVAL;
    1878             :         }
    1879             : 
    1880             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
    1881             :                 util_max = attr->sched_util_max;
    1882             : 
    1883             :                 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
    1884             :                         return -EINVAL;
    1885             :         }
    1886             : 
    1887             :         if (util_min != -1 && util_max != -1 && util_min > util_max)
    1888             :                 return -EINVAL;
    1889             : 
    1890             :         /*
    1891             :          * We have valid uclamp attributes; make sure uclamp is enabled.
    1892             :          *
    1893             :          * We need to do that here, because enabling static branches is a
    1894             :          * blocking operation which obviously cannot be done while holding
    1895             :          * scheduler locks.
    1896             :          */
    1897             :         static_branch_enable(&sched_uclamp_used);
    1898             : 
    1899             :         return 0;
    1900             : }
    1901             : 
    1902             : static bool uclamp_reset(const struct sched_attr *attr,
    1903             :                          enum uclamp_id clamp_id,
    1904             :                          struct uclamp_se *uc_se)
    1905             : {
    1906             :         /* Reset on sched class change for a non user-defined clamp value. */
    1907             :         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
    1908             :             !uc_se->user_defined)
    1909             :                 return true;
    1910             : 
    1911             :         /* Reset on sched_util_{min,max} == -1. */
    1912             :         if (clamp_id == UCLAMP_MIN &&
    1913             :             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
    1914             :             attr->sched_util_min == -1) {
    1915             :                 return true;
    1916             :         }
    1917             : 
    1918             :         if (clamp_id == UCLAMP_MAX &&
    1919             :             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
    1920             :             attr->sched_util_max == -1) {
    1921             :                 return true;
    1922             :         }
    1923             : 
    1924             :         return false;
    1925             : }
    1926             : 
    1927             : static void __setscheduler_uclamp(struct task_struct *p,
    1928             :                                   const struct sched_attr *attr)
    1929             : {
    1930             :         enum uclamp_id clamp_id;
    1931             : 
    1932             :         for_each_clamp_id(clamp_id) {
    1933             :                 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
    1934             :                 unsigned int value;
    1935             : 
    1936             :                 if (!uclamp_reset(attr, clamp_id, uc_se))
    1937             :                         continue;
    1938             : 
    1939             :                 /*
    1940             :                  * RT by default have a 100% boost value that could be modified
    1941             :                  * at runtime.
    1942             :                  */
    1943             :                 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
    1944             :                         value = sysctl_sched_uclamp_util_min_rt_default;
    1945             :                 else
    1946             :                         value = uclamp_none(clamp_id);
    1947             : 
    1948             :                 uclamp_se_set(uc_se, value, false);
    1949             : 
    1950             :         }
    1951             : 
    1952             :         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
    1953             :                 return;
    1954             : 
    1955             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
    1956             :             attr->sched_util_min != -1) {
    1957             :                 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
    1958             :                               attr->sched_util_min, true);
    1959             :         }
    1960             : 
    1961             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
    1962             :             attr->sched_util_max != -1) {
    1963             :                 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
    1964             :                               attr->sched_util_max, true);
    1965             :         }
    1966             : }
    1967             : 
    1968             : static void uclamp_fork(struct task_struct *p)
    1969             : {
    1970             :         enum uclamp_id clamp_id;
    1971             : 
    1972             :         /*
    1973             :          * We don't need to hold task_rq_lock() when updating p->uclamp_* here
    1974             :          * as the task is still at its early fork stages.
    1975             :          */
    1976             :         for_each_clamp_id(clamp_id)
    1977             :                 p->uclamp[clamp_id].active = false;
    1978             : 
    1979             :         if (likely(!p->sched_reset_on_fork))
    1980             :                 return;
    1981             : 
    1982             :         for_each_clamp_id(clamp_id) {
    1983             :                 uclamp_se_set(&p->uclamp_req[clamp_id],
    1984             :                               uclamp_none(clamp_id), false);
    1985             :         }
    1986             : }
    1987             : 
    1988             : static void uclamp_post_fork(struct task_struct *p)
    1989             : {
    1990             :         uclamp_update_util_min_rt_default(p);
    1991             : }
    1992             : 
    1993             : static void __init init_uclamp_rq(struct rq *rq)
    1994             : {
    1995             :         enum uclamp_id clamp_id;
    1996             :         struct uclamp_rq *uc_rq = rq->uclamp;
    1997             : 
    1998             :         for_each_clamp_id(clamp_id) {
    1999             :                 uc_rq[clamp_id] = (struct uclamp_rq) {
    2000             :                         .value = uclamp_none(clamp_id)
    2001             :                 };
    2002             :         }
    2003             : 
    2004             :         rq->uclamp_flags = UCLAMP_FLAG_IDLE;
    2005             : }
    2006             : 
    2007             : static void __init init_uclamp(void)
    2008             : {
    2009             :         struct uclamp_se uc_max = {};
    2010             :         enum uclamp_id clamp_id;
    2011             :         int cpu;
    2012             : 
    2013             :         for_each_possible_cpu(cpu)
    2014             :                 init_uclamp_rq(cpu_rq(cpu));
    2015             : 
    2016             :         for_each_clamp_id(clamp_id) {
    2017             :                 uclamp_se_set(&init_task.uclamp_req[clamp_id],
    2018             :                               uclamp_none(clamp_id), false);
    2019             :         }
    2020             : 
    2021             :         /* System defaults allow max clamp values for both indexes */
    2022             :         uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
    2023             :         for_each_clamp_id(clamp_id) {
    2024             :                 uclamp_default[clamp_id] = uc_max;
    2025             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    2026             :                 root_task_group.uclamp_req[clamp_id] = uc_max;
    2027             :                 root_task_group.uclamp[clamp_id] = uc_max;
    2028             : #endif
    2029             :         }
    2030             : }
    2031             : 
    2032             : #else /* CONFIG_UCLAMP_TASK */
    2033             : static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
    2034             : static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
    2035             : static inline int uclamp_validate(struct task_struct *p,
    2036             :                                   const struct sched_attr *attr)
    2037             : {
    2038             :         return -EOPNOTSUPP;
    2039             : }
    2040             : static void __setscheduler_uclamp(struct task_struct *p,
    2041             :                                   const struct sched_attr *attr) { }
    2042             : static inline void uclamp_fork(struct task_struct *p) { }
    2043             : static inline void uclamp_post_fork(struct task_struct *p) { }
    2044             : static inline void init_uclamp(void) { }
    2045             : #endif /* CONFIG_UCLAMP_TASK */
    2046             : 
    2047           0 : bool sched_task_on_rq(struct task_struct *p)
    2048             : {
    2049           0 :         return task_on_rq_queued(p);
    2050             : }
    2051             : 
    2052           0 : unsigned long get_wchan(struct task_struct *p)
    2053             : {
    2054           0 :         unsigned long ip = 0;
    2055             :         unsigned int state;
    2056             : 
    2057           0 :         if (!p || p == current)
    2058             :                 return 0;
    2059             : 
    2060             :         /* Only get wchan if task is blocked and we can keep it that way. */
    2061           0 :         raw_spin_lock_irq(&p->pi_lock);
    2062           0 :         state = READ_ONCE(p->__state);
    2063           0 :         smp_rmb(); /* see try_to_wake_up() */
    2064           0 :         if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
    2065           0 :                 ip = __get_wchan(p);
    2066           0 :         raw_spin_unlock_irq(&p->pi_lock);
    2067             : 
    2068           0 :         return ip;
    2069             : }
    2070             : 
    2071        1031 : static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
    2072             : {
    2073        1031 :         if (!(flags & ENQUEUE_NOCLOCK))
    2074           0 :                 update_rq_clock(rq);
    2075             : 
    2076             :         if (!(flags & ENQUEUE_RESTORE)) {
    2077             :                 sched_info_enqueue(rq, p);
    2078             :                 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
    2079             :         }
    2080             : 
    2081        1035 :         uclamp_rq_inc(rq, p);
    2082        1035 :         p->sched_class->enqueue_task(rq, p, flags);
    2083             : 
    2084        1035 :         if (sched_core_enabled(rq))
    2085             :                 sched_core_enqueue(rq, p);
    2086        1031 : }
    2087             : 
    2088        1029 : static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
    2089             : {
    2090        1033 :         if (sched_core_enabled(rq))
    2091             :                 sched_core_dequeue(rq, p, flags);
    2092             : 
    2093        1029 :         if (!(flags & DEQUEUE_NOCLOCK))
    2094           0 :                 update_rq_clock(rq);
    2095             : 
    2096             :         if (!(flags & DEQUEUE_SAVE)) {
    2097             :                 sched_info_dequeue(rq, p);
    2098             :                 psi_dequeue(p, flags & DEQUEUE_SLEEP);
    2099             :         }
    2100             : 
    2101        1033 :         uclamp_rq_dec(rq, p);
    2102        1033 :         p->sched_class->dequeue_task(rq, p, flags);
    2103        1029 : }
    2104             : 
    2105           0 : void activate_task(struct rq *rq, struct task_struct *p, int flags)
    2106             : {
    2107        1031 :         if (task_on_rq_migrating(p))
    2108             :                 flags |= ENQUEUE_MIGRATED;
    2109             :         if (flags & ENQUEUE_MIGRATED)
    2110             :                 sched_mm_cid_migrate_to(rq, p);
    2111             : 
    2112        1031 :         enqueue_task(rq, p, flags);
    2113             : 
    2114        1031 :         p->on_rq = TASK_ON_RQ_QUEUED;
    2115           0 : }
    2116             : 
    2117           0 : void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
    2118             : {
    2119        1029 :         p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
    2120             : 
    2121        1029 :         dequeue_task(rq, p, flags);
    2122           0 : }
    2123             : 
    2124             : static inline int __normal_prio(int policy, int rt_prio, int nice)
    2125             : {
    2126             :         int prio;
    2127             : 
    2128           5 :         if (dl_policy(policy))
    2129             :                 prio = MAX_DL_PRIO - 1;
    2130           5 :         else if (rt_policy(policy))
    2131           0 :                 prio = MAX_RT_PRIO - 1 - rt_prio;
    2132             :         else
    2133           0 :                 prio = NICE_TO_PRIO(nice);
    2134             : 
    2135             :         return prio;
    2136             : }
    2137             : 
    2138             : /*
    2139             :  * Calculate the expected normal priority: i.e. priority
    2140             :  * without taking RT-inheritance into account. Might be
    2141             :  * boosted by interactivity modifiers. Changes upon fork,
    2142             :  * setprio syscalls, and whenever the interactivity
    2143             :  * estimator recalculates.
    2144             :  */
    2145             : static inline int normal_prio(struct task_struct *p)
    2146             : {
    2147          10 :         return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
    2148             : }
    2149             : 
    2150             : /*
    2151             :  * Calculate the current priority, i.e. the priority
    2152             :  * taken into account by the scheduler. This value might
    2153             :  * be boosted by RT tasks, or might be boosted by
    2154             :  * interactivity modifiers. Will be RT if the task got
    2155             :  * RT-boosted. If not then it returns p->normal_prio.
    2156             :  */
    2157             : static int effective_prio(struct task_struct *p)
    2158             : {
    2159          10 :         p->normal_prio = normal_prio(p);
    2160             :         /*
    2161             :          * If we are RT tasks or we were boosted to RT priority,
    2162             :          * keep the priority unchanged. Otherwise, update priority
    2163             :          * to the normal priority:
    2164             :          */
    2165          10 :         if (!rt_prio(p->prio))
    2166             :                 return p->normal_prio;
    2167             :         return p->prio;
    2168             : }
    2169             : 
    2170             : /**
    2171             :  * task_curr - is this task currently executing on a CPU?
    2172             :  * @p: the task in question.
    2173             :  *
    2174             :  * Return: 1 if the task is currently executing. 0 otherwise.
    2175             :  */
    2176           0 : inline int task_curr(const struct task_struct *p)
    2177             : {
    2178           0 :         return cpu_curr(task_cpu(p)) == p;
    2179             : }
    2180             : 
    2181             : /*
    2182             :  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
    2183             :  * use the balance_callback list if you want balancing.
    2184             :  *
    2185             :  * this means any call to check_class_changed() must be followed by a call to
    2186             :  * balance_callback().
    2187             :  */
    2188           0 : static inline void check_class_changed(struct rq *rq, struct task_struct *p,
    2189             :                                        const struct sched_class *prev_class,
    2190             :                                        int oldprio)
    2191             : {
    2192           0 :         if (prev_class != p->sched_class) {
    2193           0 :                 if (prev_class->switched_from)
    2194           0 :                         prev_class->switched_from(rq, p);
    2195             : 
    2196           0 :                 p->sched_class->switched_to(rq, p);
    2197           0 :         } else if (oldprio != p->prio || dl_task(p))
    2198           0 :                 p->sched_class->prio_changed(rq, p, oldprio);
    2199           0 : }
    2200             : 
    2201        1031 : void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
    2202             : {
    2203        1031 :         if (p->sched_class == rq->curr->sched_class)
    2204        1028 :                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
    2205           3 :         else if (sched_class_above(p->sched_class, rq->curr->sched_class))
    2206           3 :                 resched_curr(rq);
    2207             : 
    2208             :         /*
    2209             :          * A queue event has occurred, and we're going to schedule.  In
    2210             :          * this case, we can save a useless back to back clock update.
    2211             :          */
    2212        2062 :         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
    2213         505 :                 rq_clock_skip_update(rq);
    2214        1031 : }
    2215             : 
    2216             : static __always_inline
    2217             : int __task_state_match(struct task_struct *p, unsigned int state)
    2218             : {
    2219        1042 :         if (READ_ONCE(p->__state) & state)
    2220             :                 return 1;
    2221             : 
    2222             : #ifdef CONFIG_PREEMPT_RT
    2223             :         if (READ_ONCE(p->saved_state) & state)
    2224             :                 return -1;
    2225             : #endif
    2226             :         return 0;
    2227             : }
    2228             : 
    2229             : static __always_inline
    2230             : int task_state_match(struct task_struct *p, unsigned int state)
    2231             : {
    2232             : #ifdef CONFIG_PREEMPT_RT
    2233             :         int match;
    2234             : 
    2235             :         /*
    2236             :          * Serialize against current_save_and_set_rtlock_wait_state() and
    2237             :          * current_restore_rtlock_saved_state().
    2238             :          */
    2239             :         raw_spin_lock_irq(&p->pi_lock);
    2240             :         match = __task_state_match(p, state);
    2241             :         raw_spin_unlock_irq(&p->pi_lock);
    2242             : 
    2243             :         return match;
    2244             : #else
    2245           0 :         return __task_state_match(p, state);
    2246             : #endif
    2247             : }
    2248             : 
    2249             : /*
    2250             :  * wait_task_inactive - wait for a thread to unschedule.
    2251             :  *
    2252             :  * Wait for the thread to block in any of the states set in @match_state.
    2253             :  * If it changes, i.e. @p might have woken up, then return zero.  When we
    2254             :  * succeed in waiting for @p to be off its CPU, we return a positive number
    2255             :  * (its total switch count).  If a second call a short while later returns the
    2256             :  * same number, the caller can be sure that @p has remained unscheduled the
    2257             :  * whole time.
    2258             :  *
    2259             :  * The caller must ensure that the task *will* unschedule sometime soon,
    2260             :  * else this function might spin for a *long* time. This function can't
    2261             :  * be called with interrupts off, or it may introduce deadlock with
    2262             :  * smp_call_function() if an IPI is sent by the same process we are
    2263             :  * waiting to become inactive.
    2264             :  */
    2265          12 : unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
    2266             : {
    2267             :         int running, queued, match;
    2268             :         struct rq_flags rf;
    2269             :         unsigned long ncsw;
    2270             :         struct rq *rq;
    2271             : 
    2272             :         for (;;) {
    2273             :                 /*
    2274             :                  * We do the initial early heuristics without holding
    2275             :                  * any task-queue locks at all. We'll only try to get
    2276             :                  * the runqueue lock when things look like they will
    2277             :                  * work out!
    2278             :                  */
    2279          12 :                 rq = task_rq(p);
    2280             : 
    2281             :                 /*
    2282             :                  * If the task is actively running on another CPU
    2283             :                  * still, just relax and busy-wait without holding
    2284             :                  * any locks.
    2285             :                  *
    2286             :                  * NOTE! Since we don't hold any locks, it's not
    2287             :                  * even sure that "rq" stays as the right runqueue!
    2288             :                  * But we don't care, since "task_on_cpu()" will
    2289             :                  * return false if the runqueue has changed and p
    2290             :                  * is actually now running somewhere else!
    2291             :                  */
    2292          24 :                 while (task_on_cpu(rq, p)) {
    2293           0 :                         if (!task_state_match(p, match_state))
    2294             :                                 return 0;
    2295             :                         cpu_relax();
    2296             :                 }
    2297             : 
    2298             :                 /*
    2299             :                  * Ok, time to look more closely! We need the rq
    2300             :                  * lock now, to be *sure*. If we're wrong, we'll
    2301             :                  * just go back and repeat.
    2302             :                  */
    2303          12 :                 rq = task_rq_lock(p, &rf);
    2304          12 :                 trace_sched_wait_task(p);
    2305          12 :                 running = task_on_cpu(rq, p);
    2306          24 :                 queued = task_on_rq_queued(p);
    2307          12 :                 ncsw = 0;
    2308          12 :                 if ((match = __task_state_match(p, match_state))) {
    2309             :                         /*
    2310             :                          * When matching on p->saved_state, consider this task
    2311             :                          * still queued so it will wait.
    2312             :                          */
    2313             :                         if (match < 0)
    2314             :                                 queued = 1;
    2315          12 :                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
    2316             :                 }
    2317          24 :                 task_rq_unlock(rq, p, &rf);
    2318             : 
    2319             :                 /*
    2320             :                  * If it changed from the expected state, bail out now.
    2321             :                  */
    2322          12 :                 if (unlikely(!ncsw))
    2323             :                         break;
    2324             : 
    2325             :                 /*
    2326             :                  * Was it really running after all now that we
    2327             :                  * checked with the proper locks actually held?
    2328             :                  *
    2329             :                  * Oops. Go back and try again..
    2330             :                  */
    2331          12 :                 if (unlikely(running)) {
    2332             :                         cpu_relax();
    2333           0 :                         continue;
    2334             :                 }
    2335             : 
    2336             :                 /*
    2337             :                  * It's not enough that it's not actively running,
    2338             :                  * it must be off the runqueue _entirely_, and not
    2339             :                  * preempted!
    2340             :                  *
    2341             :                  * So if it was still runnable (but just not actively
    2342             :                  * running right now), it's preempted, and we should
    2343             :                  * yield - it could be a while.
    2344             :                  */
    2345          12 :                 if (unlikely(queued)) {
    2346           0 :                         ktime_t to = NSEC_PER_SEC / HZ;
    2347             : 
    2348           0 :                         set_current_state(TASK_UNINTERRUPTIBLE);
    2349           0 :                         schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
    2350           0 :                         continue;
    2351             :                 }
    2352             : 
    2353             :                 /*
    2354             :                  * Ahh, all good. It wasn't running, and it wasn't
    2355             :                  * runnable, which means that it will never become
    2356             :                  * running in the future either. We're all done!
    2357             :                  */
    2358             :                 break;
    2359             :         }
    2360             : 
    2361             :         return ncsw;
    2362             : }
    2363             : 
    2364             : #ifdef CONFIG_SMP
    2365             : 
    2366             : static void
    2367             : __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
    2368             : 
    2369             : static int __set_cpus_allowed_ptr(struct task_struct *p,
    2370             :                                   struct affinity_context *ctx);
    2371             : 
    2372             : static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
    2373             : {
    2374             :         struct affinity_context ac = {
    2375             :                 .new_mask  = cpumask_of(rq->cpu),
    2376             :                 .flags     = SCA_MIGRATE_DISABLE,
    2377             :         };
    2378             : 
    2379             :         if (likely(!p->migration_disabled))
    2380             :                 return;
    2381             : 
    2382             :         if (p->cpus_ptr != &p->cpus_mask)
    2383             :                 return;
    2384             : 
    2385             :         /*
    2386             :          * Violates locking rules! see comment in __do_set_cpus_allowed().
    2387             :          */
    2388             :         __do_set_cpus_allowed(p, &ac);
    2389             : }
    2390             : 
    2391             : void migrate_disable(void)
    2392             : {
    2393             :         struct task_struct *p = current;
    2394             : 
    2395             :         if (p->migration_disabled) {
    2396             :                 p->migration_disabled++;
    2397             :                 return;
    2398             :         }
    2399             : 
    2400             :         preempt_disable();
    2401             :         this_rq()->nr_pinned++;
    2402             :         p->migration_disabled = 1;
    2403             :         preempt_enable();
    2404             : }
    2405             : EXPORT_SYMBOL_GPL(migrate_disable);
    2406             : 
    2407             : void migrate_enable(void)
    2408             : {
    2409             :         struct task_struct *p = current;
    2410             :         struct affinity_context ac = {
    2411             :                 .new_mask  = &p->cpus_mask,
    2412             :                 .flags     = SCA_MIGRATE_ENABLE,
    2413             :         };
    2414             : 
    2415             :         if (p->migration_disabled > 1) {
    2416             :                 p->migration_disabled--;
    2417             :                 return;
    2418             :         }
    2419             : 
    2420             :         if (WARN_ON_ONCE(!p->migration_disabled))
    2421             :                 return;
    2422             : 
    2423             :         /*
    2424             :          * Ensure stop_task runs either before or after this, and that
    2425             :          * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
    2426             :          */
    2427             :         preempt_disable();
    2428             :         if (p->cpus_ptr != &p->cpus_mask)
    2429             :                 __set_cpus_allowed_ptr(p, &ac);
    2430             :         /*
    2431             :          * Mustn't clear migration_disabled() until cpus_ptr points back at the
    2432             :          * regular cpus_mask, otherwise things that race (eg.
    2433             :          * select_fallback_rq) get confused.
    2434             :          */
    2435             :         barrier();
    2436             :         p->migration_disabled = 0;
    2437             :         this_rq()->nr_pinned--;
    2438             :         preempt_enable();
    2439             : }
    2440             : EXPORT_SYMBOL_GPL(migrate_enable);
    2441             : 
    2442             : static inline bool rq_has_pinned_tasks(struct rq *rq)
    2443             : {
    2444             :         return rq->nr_pinned;
    2445             : }
    2446             : 
    2447             : /*
    2448             :  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
    2449             :  * __set_cpus_allowed_ptr() and select_fallback_rq().
    2450             :  */
    2451             : static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
    2452             : {
    2453             :         /* When not in the task's cpumask, no point in looking further. */
    2454             :         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    2455             :                 return false;
    2456             : 
    2457             :         /* migrate_disabled() must be allowed to finish. */
    2458             :         if (is_migration_disabled(p))
    2459             :                 return cpu_online(cpu);
    2460             : 
    2461             :         /* Non kernel threads are not allowed during either online or offline. */
    2462             :         if (!(p->flags & PF_KTHREAD))
    2463             :                 return cpu_active(cpu) && task_cpu_possible(cpu, p);
    2464             : 
    2465             :         /* KTHREAD_IS_PER_CPU is always allowed. */
    2466             :         if (kthread_is_per_cpu(p))
    2467             :                 return cpu_online(cpu);
    2468             : 
    2469             :         /* Regular kernel threads don't get to stay during offline. */
    2470             :         if (cpu_dying(cpu))
    2471             :                 return false;
    2472             : 
    2473             :         /* But are allowed during online. */
    2474             :         return cpu_online(cpu);
    2475             : }
    2476             : 
    2477             : /*
    2478             :  * This is how migration works:
    2479             :  *
    2480             :  * 1) we invoke migration_cpu_stop() on the target CPU using
    2481             :  *    stop_one_cpu().
    2482             :  * 2) stopper starts to run (implicitly forcing the migrated thread
    2483             :  *    off the CPU)
    2484             :  * 3) it checks whether the migrated task is still in the wrong runqueue.
    2485             :  * 4) if it's in the wrong runqueue then the migration thread removes
    2486             :  *    it and puts it into the right queue.
    2487             :  * 5) stopper completes and stop_one_cpu() returns and the migration
    2488             :  *    is done.
    2489             :  */
    2490             : 
    2491             : /*
    2492             :  * move_queued_task - move a queued task to new rq.
    2493             :  *
    2494             :  * Returns (locked) new rq. Old rq's lock is released.
    2495             :  */
    2496             : static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
    2497             :                                    struct task_struct *p, int new_cpu)
    2498             : {
    2499             :         lockdep_assert_rq_held(rq);
    2500             : 
    2501             :         deactivate_task(rq, p, DEQUEUE_NOCLOCK);
    2502             :         set_task_cpu(p, new_cpu);
    2503             :         rq_unlock(rq, rf);
    2504             : 
    2505             :         rq = cpu_rq(new_cpu);
    2506             : 
    2507             :         rq_lock(rq, rf);
    2508             :         WARN_ON_ONCE(task_cpu(p) != new_cpu);
    2509             :         activate_task(rq, p, 0);
    2510             :         check_preempt_curr(rq, p, 0);
    2511             : 
    2512             :         return rq;
    2513             : }
    2514             : 
    2515             : struct migration_arg {
    2516             :         struct task_struct              *task;
    2517             :         int                             dest_cpu;
    2518             :         struct set_affinity_pending     *pending;
    2519             : };
    2520             : 
    2521             : /*
    2522             :  * @refs: number of wait_for_completion()
    2523             :  * @stop_pending: is @stop_work in use
    2524             :  */
    2525             : struct set_affinity_pending {
    2526             :         refcount_t              refs;
    2527             :         unsigned int            stop_pending;
    2528             :         struct completion       done;
    2529             :         struct cpu_stop_work    stop_work;
    2530             :         struct migration_arg    arg;
    2531             : };
    2532             : 
    2533             : /*
    2534             :  * Move (not current) task off this CPU, onto the destination CPU. We're doing
    2535             :  * this because either it can't run here any more (set_cpus_allowed()
    2536             :  * away from this CPU, or CPU going down), or because we're
    2537             :  * attempting to rebalance this task on exec (sched_exec).
    2538             :  *
    2539             :  * So we race with normal scheduler movements, but that's OK, as long
    2540             :  * as the task is no longer on this CPU.
    2541             :  */
    2542             : static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
    2543             :                                  struct task_struct *p, int dest_cpu)
    2544             : {
    2545             :         /* Affinity changed (again). */
    2546             :         if (!is_cpu_allowed(p, dest_cpu))
    2547             :                 return rq;
    2548             : 
    2549             :         rq = move_queued_task(rq, rf, p, dest_cpu);
    2550             : 
    2551             :         return rq;
    2552             : }
    2553             : 
    2554             : /*
    2555             :  * migration_cpu_stop - this will be executed by a highprio stopper thread
    2556             :  * and performs thread migration by bumping thread off CPU then
    2557             :  * 'pushing' onto another runqueue.
    2558             :  */
    2559             : static int migration_cpu_stop(void *data)
    2560             : {
    2561             :         struct migration_arg *arg = data;
    2562             :         struct set_affinity_pending *pending = arg->pending;
    2563             :         struct task_struct *p = arg->task;
    2564             :         struct rq *rq = this_rq();
    2565             :         bool complete = false;
    2566             :         struct rq_flags rf;
    2567             : 
    2568             :         /*
    2569             :          * The original target CPU might have gone down and we might
    2570             :          * be on another CPU but it doesn't matter.
    2571             :          */
    2572             :         local_irq_save(rf.flags);
    2573             :         /*
    2574             :          * We need to explicitly wake pending tasks before running
    2575             :          * __migrate_task() such that we will not miss enforcing cpus_ptr
    2576             :          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
    2577             :          */
    2578             :         flush_smp_call_function_queue();
    2579             : 
    2580             :         raw_spin_lock(&p->pi_lock);
    2581             :         rq_lock(rq, &rf);
    2582             : 
    2583             :         /*
    2584             :          * If we were passed a pending, then ->stop_pending was set, thus
    2585             :          * p->migration_pending must have remained stable.
    2586             :          */
    2587             :         WARN_ON_ONCE(pending && pending != p->migration_pending);
    2588             : 
    2589             :         /*
    2590             :          * If task_rq(p) != rq, it cannot be migrated here, because we're
    2591             :          * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
    2592             :          * we're holding p->pi_lock.
    2593             :          */
    2594             :         if (task_rq(p) == rq) {
    2595             :                 if (is_migration_disabled(p))
    2596             :                         goto out;
    2597             : 
    2598             :                 if (pending) {
    2599             :                         p->migration_pending = NULL;
    2600             :                         complete = true;
    2601             : 
    2602             :                         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
    2603             :                                 goto out;
    2604             :                 }
    2605             : 
    2606             :                 if (task_on_rq_queued(p)) {
    2607             :                         update_rq_clock(rq);
    2608             :                         rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
    2609             :                 } else {
    2610             :                         p->wake_cpu = arg->dest_cpu;
    2611             :                 }
    2612             : 
    2613             :                 /*
    2614             :                  * XXX __migrate_task() can fail, at which point we might end
    2615             :                  * up running on a dodgy CPU, AFAICT this can only happen
    2616             :                  * during CPU hotplug, at which point we'll get pushed out
    2617             :                  * anyway, so it's probably not a big deal.
    2618             :                  */
    2619             : 
    2620             :         } else if (pending) {
    2621             :                 /*
    2622             :                  * This happens when we get migrated between migrate_enable()'s
    2623             :                  * preempt_enable() and scheduling the stopper task. At that
    2624             :                  * point we're a regular task again and not current anymore.
    2625             :                  *
    2626             :                  * A !PREEMPT kernel has a giant hole here, which makes it far
    2627             :                  * more likely.
    2628             :                  */
    2629             : 
    2630             :                 /*
    2631             :                  * The task moved before the stopper got to run. We're holding
    2632             :                  * ->pi_lock, so the allowed mask is stable - if it got
    2633             :                  * somewhere allowed, we're done.
    2634             :                  */
    2635             :                 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
    2636             :                         p->migration_pending = NULL;
    2637             :                         complete = true;
    2638             :                         goto out;
    2639             :                 }
    2640             : 
    2641             :                 /*
    2642             :                  * When migrate_enable() hits a rq mis-match we can't reliably
    2643             :                  * determine is_migration_disabled() and so have to chase after
    2644             :                  * it.
    2645             :                  */
    2646             :                 WARN_ON_ONCE(!pending->stop_pending);
    2647             :                 task_rq_unlock(rq, p, &rf);
    2648             :                 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
    2649             :                                     &pending->arg, &pending->stop_work);
    2650             :                 return 0;
    2651             :         }
    2652             : out:
    2653             :         if (pending)
    2654             :                 pending->stop_pending = false;
    2655             :         task_rq_unlock(rq, p, &rf);
    2656             : 
    2657             :         if (complete)
    2658             :                 complete_all(&pending->done);
    2659             : 
    2660             :         return 0;
    2661             : }
    2662             : 
    2663             : int push_cpu_stop(void *arg)
    2664             : {
    2665             :         struct rq *lowest_rq = NULL, *rq = this_rq();
    2666             :         struct task_struct *p = arg;
    2667             : 
    2668             :         raw_spin_lock_irq(&p->pi_lock);
    2669             :         raw_spin_rq_lock(rq);
    2670             : 
    2671             :         if (task_rq(p) != rq)
    2672             :                 goto out_unlock;
    2673             : 
    2674             :         if (is_migration_disabled(p)) {
    2675             :                 p->migration_flags |= MDF_PUSH;
    2676             :                 goto out_unlock;
    2677             :         }
    2678             : 
    2679             :         p->migration_flags &= ~MDF_PUSH;
    2680             : 
    2681             :         if (p->sched_class->find_lock_rq)
    2682             :                 lowest_rq = p->sched_class->find_lock_rq(p, rq);
    2683             : 
    2684             :         if (!lowest_rq)
    2685             :                 goto out_unlock;
    2686             : 
    2687             :         // XXX validate p is still the highest prio task
    2688             :         if (task_rq(p) == rq) {
    2689             :                 deactivate_task(rq, p, 0);
    2690             :                 set_task_cpu(p, lowest_rq->cpu);
    2691             :                 activate_task(lowest_rq, p, 0);
    2692             :                 resched_curr(lowest_rq);
    2693             :         }
    2694             : 
    2695             :         double_unlock_balance(rq, lowest_rq);
    2696             : 
    2697             : out_unlock:
    2698             :         rq->push_busy = false;
    2699             :         raw_spin_rq_unlock(rq);
    2700             :         raw_spin_unlock_irq(&p->pi_lock);
    2701             : 
    2702             :         put_task_struct(p);
    2703             :         return 0;
    2704             : }
    2705             : 
    2706             : /*
    2707             :  * sched_class::set_cpus_allowed must do the below, but is not required to
    2708             :  * actually call this function.
    2709             :  */
    2710             : void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
    2711             : {
    2712             :         if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
    2713             :                 p->cpus_ptr = ctx->new_mask;
    2714             :                 return;
    2715             :         }
    2716             : 
    2717             :         cpumask_copy(&p->cpus_mask, ctx->new_mask);
    2718             :         p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
    2719             : 
    2720             :         /*
    2721             :          * Swap in a new user_cpus_ptr if SCA_USER flag set
    2722             :          */
    2723             :         if (ctx->flags & SCA_USER)
    2724             :                 swap(p->user_cpus_ptr, ctx->user_mask);
    2725             : }
    2726             : 
    2727             : static void
    2728             : __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
    2729             : {
    2730             :         struct rq *rq = task_rq(p);
    2731             :         bool queued, running;
    2732             : 
    2733             :         /*
    2734             :          * This here violates the locking rules for affinity, since we're only
    2735             :          * supposed to change these variables while holding both rq->lock and
    2736             :          * p->pi_lock.
    2737             :          *
    2738             :          * HOWEVER, it magically works, because ttwu() is the only code that
    2739             :          * accesses these variables under p->pi_lock and only does so after
    2740             :          * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
    2741             :          * before finish_task().
    2742             :          *
    2743             :          * XXX do further audits, this smells like something putrid.
    2744             :          */
    2745             :         if (ctx->flags & SCA_MIGRATE_DISABLE)
    2746             :                 SCHED_WARN_ON(!p->on_cpu);
    2747             :         else
    2748             :                 lockdep_assert_held(&p->pi_lock);
    2749             : 
    2750             :         queued = task_on_rq_queued(p);
    2751             :         running = task_current(rq, p);
    2752             : 
    2753             :         if (queued) {
    2754             :                 /*
    2755             :                  * Because __kthread_bind() calls this on blocked tasks without
    2756             :                  * holding rq->lock.
    2757             :                  */
    2758             :                 lockdep_assert_rq_held(rq);
    2759             :                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
    2760             :         }
    2761             :         if (running)
    2762             :                 put_prev_task(rq, p);
    2763             : 
    2764             :         p->sched_class->set_cpus_allowed(p, ctx);
    2765             : 
    2766             :         if (queued)
    2767             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    2768             :         if (running)
    2769             :                 set_next_task(rq, p);
    2770             : }
    2771             : 
    2772             : /*
    2773             :  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
    2774             :  * affinity (if any) should be destroyed too.
    2775             :  */
    2776             : void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
    2777             : {
    2778             :         struct affinity_context ac = {
    2779             :                 .new_mask  = new_mask,
    2780             :                 .user_mask = NULL,
    2781             :                 .flags     = SCA_USER,  /* clear the user requested mask */
    2782             :         };
    2783             :         union cpumask_rcuhead {
    2784             :                 cpumask_t cpumask;
    2785             :                 struct rcu_head rcu;
    2786             :         };
    2787             : 
    2788             :         __do_set_cpus_allowed(p, &ac);
    2789             : 
    2790             :         /*
    2791             :          * Because this is called with p->pi_lock held, it is not possible
    2792             :          * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
    2793             :          * kfree_rcu().
    2794             :          */
    2795             :         kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
    2796             : }
    2797             : 
    2798             : static cpumask_t *alloc_user_cpus_ptr(int node)
    2799             : {
    2800             :         /*
    2801             :          * See do_set_cpus_allowed() above for the rcu_head usage.
    2802             :          */
    2803             :         int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
    2804             : 
    2805             :         return kmalloc_node(size, GFP_KERNEL, node);
    2806             : }
    2807             : 
    2808             : int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
    2809             :                       int node)
    2810             : {
    2811             :         cpumask_t *user_mask;
    2812             :         unsigned long flags;
    2813             : 
    2814             :         /*
    2815             :          * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
    2816             :          * may differ by now due to racing.
    2817             :          */
    2818             :         dst->user_cpus_ptr = NULL;
    2819             : 
    2820             :         /*
    2821             :          * This check is racy and losing the race is a valid situation.
    2822             :          * It is not worth the extra overhead of taking the pi_lock on
    2823             :          * every fork/clone.
    2824             :          */
    2825             :         if (data_race(!src->user_cpus_ptr))
    2826             :                 return 0;
    2827             : 
    2828             :         user_mask = alloc_user_cpus_ptr(node);
    2829             :         if (!user_mask)
    2830             :                 return -ENOMEM;
    2831             : 
    2832             :         /*
    2833             :          * Use pi_lock to protect content of user_cpus_ptr
    2834             :          *
    2835             :          * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
    2836             :          * do_set_cpus_allowed().
    2837             :          */
    2838             :         raw_spin_lock_irqsave(&src->pi_lock, flags);
    2839             :         if (src->user_cpus_ptr) {
    2840             :                 swap(dst->user_cpus_ptr, user_mask);
    2841             :                 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
    2842             :         }
    2843             :         raw_spin_unlock_irqrestore(&src->pi_lock, flags);
    2844             : 
    2845             :         if (unlikely(user_mask))
    2846             :                 kfree(user_mask);
    2847             : 
    2848             :         return 0;
    2849             : }
    2850             : 
    2851             : static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
    2852             : {
    2853             :         struct cpumask *user_mask = NULL;
    2854             : 
    2855             :         swap(p->user_cpus_ptr, user_mask);
    2856             : 
    2857             :         return user_mask;
    2858             : }
    2859             : 
    2860             : void release_user_cpus_ptr(struct task_struct *p)
    2861             : {
    2862             :         kfree(clear_user_cpus_ptr(p));
    2863             : }
    2864             : 
    2865             : /*
    2866             :  * This function is wildly self concurrent; here be dragons.
    2867             :  *
    2868             :  *
    2869             :  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
    2870             :  * designated task is enqueued on an allowed CPU. If that task is currently
    2871             :  * running, we have to kick it out using the CPU stopper.
    2872             :  *
    2873             :  * Migrate-Disable comes along and tramples all over our nice sandcastle.
    2874             :  * Consider:
    2875             :  *
    2876             :  *     Initial conditions: P0->cpus_mask = [0, 1]
    2877             :  *
    2878             :  *     P0@CPU0                  P1
    2879             :  *
    2880             :  *     migrate_disable();
    2881             :  *     <preempted>
    2882             :  *                              set_cpus_allowed_ptr(P0, [1]);
    2883             :  *
    2884             :  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
    2885             :  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
    2886             :  * This means we need the following scheme:
    2887             :  *
    2888             :  *     P0@CPU0                  P1
    2889             :  *
    2890             :  *     migrate_disable();
    2891             :  *     <preempted>
    2892             :  *                              set_cpus_allowed_ptr(P0, [1]);
    2893             :  *                                <blocks>
    2894             :  *     <resumes>
    2895             :  *     migrate_enable();
    2896             :  *       __set_cpus_allowed_ptr();
    2897             :  *       <wakes local stopper>
    2898             :  *                         `--> <woken on migration completion>
    2899             :  *
    2900             :  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
    2901             :  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
    2902             :  * task p are serialized by p->pi_lock, which we can leverage: the one that
    2903             :  * should come into effect at the end of the Migrate-Disable region is the last
    2904             :  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
    2905             :  * but we still need to properly signal those waiting tasks at the appropriate
    2906             :  * moment.
    2907             :  *
    2908             :  * This is implemented using struct set_affinity_pending. The first
    2909             :  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
    2910             :  * setup an instance of that struct and install it on the targeted task_struct.
    2911             :  * Any and all further callers will reuse that instance. Those then wait for
    2912             :  * a completion signaled at the tail of the CPU stopper callback (1), triggered
    2913             :  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
    2914             :  *
    2915             :  *
    2916             :  * (1) In the cases covered above. There is one more where the completion is
    2917             :  * signaled within affine_move_task() itself: when a subsequent affinity request
    2918             :  * occurs after the stopper bailed out due to the targeted task still being
    2919             :  * Migrate-Disable. Consider:
    2920             :  *
    2921             :  *     Initial conditions: P0->cpus_mask = [0, 1]
    2922             :  *
    2923             :  *     CPU0               P1                            P2
    2924             :  *     <P0>
    2925             :  *       migrate_disable();
    2926             :  *       <preempted>
    2927             :  *                        set_cpus_allowed_ptr(P0, [1]);
    2928             :  *                          <blocks>
    2929             :  *     <migration/0>
    2930             :  *       migration_cpu_stop()
    2931             :  *         is_migration_disabled()
    2932             :  *           <bails>
    2933             :  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
    2934             :  *                                                         <signal completion>
    2935             :  *                          <awakes>
    2936             :  *
    2937             :  * Note that the above is safe vs a concurrent migrate_enable(), as any
    2938             :  * pending affinity completion is preceded by an uninstallation of
    2939             :  * p->migration_pending done with p->pi_lock held.
    2940             :  */
    2941             : static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
    2942             :                             int dest_cpu, unsigned int flags)
    2943             :         __releases(rq->lock)
    2944             :         __releases(p->pi_lock)
    2945             : {
    2946             :         struct set_affinity_pending my_pending = { }, *pending = NULL;
    2947             :         bool stop_pending, complete = false;
    2948             : 
    2949             :         /* Can the task run on the task's current CPU? If so, we're done */
    2950             :         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
    2951             :                 struct task_struct *push_task = NULL;
    2952             : 
    2953             :                 if ((flags & SCA_MIGRATE_ENABLE) &&
    2954             :                     (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
    2955             :                         rq->push_busy = true;
    2956             :                         push_task = get_task_struct(p);
    2957             :                 }
    2958             : 
    2959             :                 /*
    2960             :                  * If there are pending waiters, but no pending stop_work,
    2961             :                  * then complete now.
    2962             :                  */
    2963             :                 pending = p->migration_pending;
    2964             :                 if (pending && !pending->stop_pending) {
    2965             :                         p->migration_pending = NULL;
    2966             :                         complete = true;
    2967             :                 }
    2968             : 
    2969             :                 task_rq_unlock(rq, p, rf);
    2970             : 
    2971             :                 if (push_task) {
    2972             :                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
    2973             :                                             p, &rq->push_work);
    2974             :                 }
    2975             : 
    2976             :                 if (complete)
    2977             :                         complete_all(&pending->done);
    2978             : 
    2979             :                 return 0;
    2980             :         }
    2981             : 
    2982             :         if (!(flags & SCA_MIGRATE_ENABLE)) {
    2983             :                 /* serialized by p->pi_lock */
    2984             :                 if (!p->migration_pending) {
    2985             :                         /* Install the request */
    2986             :                         refcount_set(&my_pending.refs, 1);
    2987             :                         init_completion(&my_pending.done);
    2988             :                         my_pending.arg = (struct migration_arg) {
    2989             :                                 .task = p,
    2990             :                                 .dest_cpu = dest_cpu,
    2991             :                                 .pending = &my_pending,
    2992             :                         };
    2993             : 
    2994             :                         p->migration_pending = &my_pending;
    2995             :                 } else {
    2996             :                         pending = p->migration_pending;
    2997             :                         refcount_inc(&pending->refs);
    2998             :                         /*
    2999             :                          * Affinity has changed, but we've already installed a
    3000             :                          * pending. migration_cpu_stop() *must* see this, else
    3001             :                          * we risk a completion of the pending despite having a
    3002             :                          * task on a disallowed CPU.
    3003             :                          *
    3004             :                          * Serialized by p->pi_lock, so this is safe.
    3005             :                          */
    3006             :                         pending->arg.dest_cpu = dest_cpu;
    3007             :                 }
    3008             :         }
    3009             :         pending = p->migration_pending;
    3010             :         /*
    3011             :          * - !MIGRATE_ENABLE:
    3012             :          *   we'll have installed a pending if there wasn't one already.
    3013             :          *
    3014             :          * - MIGRATE_ENABLE:
    3015             :          *   we're here because the current CPU isn't matching anymore,
    3016             :          *   the only way that can happen is because of a concurrent
    3017             :          *   set_cpus_allowed_ptr() call, which should then still be
    3018             :          *   pending completion.
    3019             :          *
    3020             :          * Either way, we really should have a @pending here.
    3021             :          */
    3022             :         if (WARN_ON_ONCE(!pending)) {
    3023             :                 task_rq_unlock(rq, p, rf);
    3024             :                 return -EINVAL;
    3025             :         }
    3026             : 
    3027             :         if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
    3028             :                 /*
    3029             :                  * MIGRATE_ENABLE gets here because 'p == current', but for
    3030             :                  * anything else we cannot do is_migration_disabled(), punt
    3031             :                  * and have the stopper function handle it all race-free.
    3032             :                  */
    3033             :                 stop_pending = pending->stop_pending;
    3034             :                 if (!stop_pending)
    3035             :                         pending->stop_pending = true;
    3036             : 
    3037             :                 if (flags & SCA_MIGRATE_ENABLE)
    3038             :                         p->migration_flags &= ~MDF_PUSH;
    3039             : 
    3040             :                 task_rq_unlock(rq, p, rf);
    3041             : 
    3042             :                 if (!stop_pending) {
    3043             :                         stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
    3044             :                                             &pending->arg, &pending->stop_work);
    3045             :                 }
    3046             : 
    3047             :                 if (flags & SCA_MIGRATE_ENABLE)
    3048             :                         return 0;
    3049             :         } else {
    3050             : 
    3051             :                 if (!is_migration_disabled(p)) {
    3052             :                         if (task_on_rq_queued(p))
    3053             :                                 rq = move_queued_task(rq, rf, p, dest_cpu);
    3054             : 
    3055             :                         if (!pending->stop_pending) {
    3056             :                                 p->migration_pending = NULL;
    3057             :                                 complete = true;
    3058             :                         }
    3059             :                 }
    3060             :                 task_rq_unlock(rq, p, rf);
    3061             : 
    3062             :                 if (complete)
    3063             :                         complete_all(&pending->done);
    3064             :         }
    3065             : 
    3066             :         wait_for_completion(&pending->done);
    3067             : 
    3068             :         if (refcount_dec_and_test(&pending->refs))
    3069             :                 wake_up_var(&pending->refs); /* No UaF, just an address */
    3070             : 
    3071             :         /*
    3072             :          * Block the original owner of &pending until all subsequent callers
    3073             :          * have seen the completion and decremented the refcount
    3074             :          */
    3075             :         wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
    3076             : 
    3077             :         /* ARGH */
    3078             :         WARN_ON_ONCE(my_pending.stop_pending);
    3079             : 
    3080             :         return 0;
    3081             : }
    3082             : 
    3083             : /*
    3084             :  * Called with both p->pi_lock and rq->lock held; drops both before returning.
    3085             :  */
    3086             : static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
    3087             :                                          struct affinity_context *ctx,
    3088             :                                          struct rq *rq,
    3089             :                                          struct rq_flags *rf)
    3090             :         __releases(rq->lock)
    3091             :         __releases(p->pi_lock)
    3092             : {
    3093             :         const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
    3094             :         const struct cpumask *cpu_valid_mask = cpu_active_mask;
    3095             :         bool kthread = p->flags & PF_KTHREAD;
    3096             :         unsigned int dest_cpu;
    3097             :         int ret = 0;
    3098             : 
    3099             :         update_rq_clock(rq);
    3100             : 
    3101             :         if (kthread || is_migration_disabled(p)) {
    3102             :                 /*
    3103             :                  * Kernel threads are allowed on online && !active CPUs,
    3104             :                  * however, during cpu-hot-unplug, even these might get pushed
    3105             :                  * away if not KTHREAD_IS_PER_CPU.
    3106             :                  *
    3107             :                  * Specifically, migration_disabled() tasks must not fail the
    3108             :                  * cpumask_any_and_distribute() pick below, esp. so on
    3109             :                  * SCA_MIGRATE_ENABLE, otherwise we'll not call
    3110             :                  * set_cpus_allowed_common() and actually reset p->cpus_ptr.
    3111             :                  */
    3112             :                 cpu_valid_mask = cpu_online_mask;
    3113             :         }
    3114             : 
    3115             :         if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
    3116             :                 ret = -EINVAL;
    3117             :                 goto out;
    3118             :         }
    3119             : 
    3120             :         /*
    3121             :          * Must re-check here, to close a race against __kthread_bind(),
    3122             :          * sched_setaffinity() is not guaranteed to observe the flag.
    3123             :          */
    3124             :         if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
    3125             :                 ret = -EINVAL;
    3126             :                 goto out;
    3127             :         }
    3128             : 
    3129             :         if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
    3130             :                 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
    3131             :                         if (ctx->flags & SCA_USER)
    3132             :                                 swap(p->user_cpus_ptr, ctx->user_mask);
    3133             :                         goto out;
    3134             :                 }
    3135             : 
    3136             :                 if (WARN_ON_ONCE(p == current &&
    3137             :                                  is_migration_disabled(p) &&
    3138             :                                  !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
    3139             :                         ret = -EBUSY;
    3140             :                         goto out;
    3141             :                 }
    3142             :         }
    3143             : 
    3144             :         /*
    3145             :          * Picking a ~random cpu helps in cases where we are changing affinity
    3146             :          * for groups of tasks (ie. cpuset), so that load balancing is not
    3147             :          * immediately required to distribute the tasks within their new mask.
    3148             :          */
    3149             :         dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
    3150             :         if (dest_cpu >= nr_cpu_ids) {
    3151             :                 ret = -EINVAL;
    3152             :                 goto out;
    3153             :         }
    3154             : 
    3155             :         __do_set_cpus_allowed(p, ctx);
    3156             : 
    3157             :         return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
    3158             : 
    3159             : out:
    3160             :         task_rq_unlock(rq, p, rf);
    3161             : 
    3162             :         return ret;
    3163             : }
    3164             : 
    3165             : /*
    3166             :  * Change a given task's CPU affinity. Migrate the thread to a
    3167             :  * proper CPU and schedule it away if the CPU it's executing on
    3168             :  * is removed from the allowed bitmask.
    3169             :  *
    3170             :  * NOTE: the caller must have a valid reference to the task, the
    3171             :  * task must not exit() & deallocate itself prematurely. The
    3172             :  * call is not atomic; no spinlocks may be held.
    3173             :  */
    3174             : static int __set_cpus_allowed_ptr(struct task_struct *p,
    3175             :                                   struct affinity_context *ctx)
    3176             : {
    3177             :         struct rq_flags rf;
    3178             :         struct rq *rq;
    3179             : 
    3180             :         rq = task_rq_lock(p, &rf);
    3181             :         /*
    3182             :          * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
    3183             :          * flags are set.
    3184             :          */
    3185             :         if (p->user_cpus_ptr &&
    3186             :             !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
    3187             :             cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
    3188             :                 ctx->new_mask = rq->scratch_mask;
    3189             : 
    3190             :         return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
    3191             : }
    3192             : 
    3193             : int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
    3194             : {
    3195             :         struct affinity_context ac = {
    3196             :                 .new_mask  = new_mask,
    3197             :                 .flags     = 0,
    3198             :         };
    3199             : 
    3200             :         return __set_cpus_allowed_ptr(p, &ac);
    3201             : }
    3202             : EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
    3203             : 
    3204             : /*
    3205             :  * Change a given task's CPU affinity to the intersection of its current
    3206             :  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
    3207             :  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
    3208             :  * affinity or use cpu_online_mask instead.
    3209             :  *
    3210             :  * If the resulting mask is empty, leave the affinity unchanged and return
    3211             :  * -EINVAL.
    3212             :  */
    3213             : static int restrict_cpus_allowed_ptr(struct task_struct *p,
    3214             :                                      struct cpumask *new_mask,
    3215             :                                      const struct cpumask *subset_mask)
    3216             : {
    3217             :         struct affinity_context ac = {
    3218             :                 .new_mask  = new_mask,
    3219             :                 .flags     = 0,
    3220             :         };
    3221             :         struct rq_flags rf;
    3222             :         struct rq *rq;
    3223             :         int err;
    3224             : 
    3225             :         rq = task_rq_lock(p, &rf);
    3226             : 
    3227             :         /*
    3228             :          * Forcefully restricting the affinity of a deadline task is
    3229             :          * likely to cause problems, so fail and noisily override the
    3230             :          * mask entirely.
    3231             :          */
    3232             :         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
    3233             :                 err = -EPERM;
    3234             :                 goto err_unlock;
    3235             :         }
    3236             : 
    3237             :         if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
    3238             :                 err = -EINVAL;
    3239             :                 goto err_unlock;
    3240             :         }
    3241             : 
    3242             :         return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
    3243             : 
    3244             : err_unlock:
    3245             :         task_rq_unlock(rq, p, &rf);
    3246             :         return err;
    3247             : }
    3248             : 
    3249             : /*
    3250             :  * Restrict the CPU affinity of task @p so that it is a subset of
    3251             :  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
    3252             :  * old affinity mask. If the resulting mask is empty, we warn and walk
    3253             :  * up the cpuset hierarchy until we find a suitable mask.
    3254             :  */
    3255             : void force_compatible_cpus_allowed_ptr(struct task_struct *p)
    3256             : {
    3257             :         cpumask_var_t new_mask;
    3258             :         const struct cpumask *override_mask = task_cpu_possible_mask(p);
    3259             : 
    3260             :         alloc_cpumask_var(&new_mask, GFP_KERNEL);
    3261             : 
    3262             :         /*
    3263             :          * __migrate_task() can fail silently in the face of concurrent
    3264             :          * offlining of the chosen destination CPU, so take the hotplug
    3265             :          * lock to ensure that the migration succeeds.
    3266             :          */
    3267             :         cpus_read_lock();
    3268             :         if (!cpumask_available(new_mask))
    3269             :                 goto out_set_mask;
    3270             : 
    3271             :         if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
    3272             :                 goto out_free_mask;
    3273             : 
    3274             :         /*
    3275             :          * We failed to find a valid subset of the affinity mask for the
    3276             :          * task, so override it based on its cpuset hierarchy.
    3277             :          */
    3278             :         cpuset_cpus_allowed(p, new_mask);
    3279             :         override_mask = new_mask;
    3280             : 
    3281             : out_set_mask:
    3282             :         if (printk_ratelimit()) {
    3283             :                 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
    3284             :                                 task_pid_nr(p), p->comm,
    3285             :                                 cpumask_pr_args(override_mask));
    3286             :         }
    3287             : 
    3288             :         WARN_ON(set_cpus_allowed_ptr(p, override_mask));
    3289             : out_free_mask:
    3290             :         cpus_read_unlock();
    3291             :         free_cpumask_var(new_mask);
    3292             : }
    3293             : 
    3294             : static int
    3295             : __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
    3296             : 
    3297             : /*
    3298             :  * Restore the affinity of a task @p which was previously restricted by a
    3299             :  * call to force_compatible_cpus_allowed_ptr().
    3300             :  *
    3301             :  * It is the caller's responsibility to serialise this with any calls to
    3302             :  * force_compatible_cpus_allowed_ptr(@p).
    3303             :  */
    3304             : void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
    3305             : {
    3306             :         struct affinity_context ac = {
    3307             :                 .new_mask  = task_user_cpus(p),
    3308             :                 .flags     = 0,
    3309             :         };
    3310             :         int ret;
    3311             : 
    3312             :         /*
    3313             :          * Try to restore the old affinity mask with __sched_setaffinity().
    3314             :          * Cpuset masking will be done there too.
    3315             :          */
    3316             :         ret = __sched_setaffinity(p, &ac);
    3317             :         WARN_ON_ONCE(ret);
    3318             : }
    3319             : 
    3320             : void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
    3321             : {
    3322             : #ifdef CONFIG_SCHED_DEBUG
    3323             :         unsigned int state = READ_ONCE(p->__state);
    3324             : 
    3325             :         /*
    3326             :          * We should never call set_task_cpu() on a blocked task,
    3327             :          * ttwu() will sort out the placement.
    3328             :          */
    3329             :         WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
    3330             : 
    3331             :         /*
    3332             :          * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
    3333             :          * because schedstat_wait_{start,end} rebase migrating task's wait_start
    3334             :          * time relying on p->on_rq.
    3335             :          */
    3336             :         WARN_ON_ONCE(state == TASK_RUNNING &&
    3337             :                      p->sched_class == &fair_sched_class &&
    3338             :                      (p->on_rq && !task_on_rq_migrating(p)));
    3339             : 
    3340             : #ifdef CONFIG_LOCKDEP
    3341             :         /*
    3342             :          * The caller should hold either p->pi_lock or rq->lock, when changing
    3343             :          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
    3344             :          *
    3345             :          * sched_move_task() holds both and thus holding either pins the cgroup,
    3346             :          * see task_group().
    3347             :          *
    3348             :          * Furthermore, all task_rq users should acquire both locks, see
    3349             :          * task_rq_lock().
    3350             :          */
    3351             :         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
    3352             :                                       lockdep_is_held(__rq_lockp(task_rq(p)))));
    3353             : #endif
    3354             :         /*
    3355             :          * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
    3356             :          */
    3357             :         WARN_ON_ONCE(!cpu_online(new_cpu));
    3358             : 
    3359             :         WARN_ON_ONCE(is_migration_disabled(p));
    3360             : #endif
    3361             : 
    3362             :         trace_sched_migrate_task(p, new_cpu);
    3363             : 
    3364             :         if (task_cpu(p) != new_cpu) {
    3365             :                 if (p->sched_class->migrate_task_rq)
    3366             :                         p->sched_class->migrate_task_rq(p, new_cpu);
    3367             :                 p->se.nr_migrations++;
    3368             :                 rseq_migrate(p);
    3369             :                 sched_mm_cid_migrate_from(p);
    3370             :                 perf_event_task_migrate(p);
    3371             :         }
    3372             : 
    3373             :         __set_task_cpu(p, new_cpu);
    3374             : }
    3375             : 
    3376             : #ifdef CONFIG_NUMA_BALANCING
    3377             : static void __migrate_swap_task(struct task_struct *p, int cpu)
    3378             : {
    3379             :         if (task_on_rq_queued(p)) {
    3380             :                 struct rq *src_rq, *dst_rq;
    3381             :                 struct rq_flags srf, drf;
    3382             : 
    3383             :                 src_rq = task_rq(p);
    3384             :                 dst_rq = cpu_rq(cpu);
    3385             : 
    3386             :                 rq_pin_lock(src_rq, &srf);
    3387             :                 rq_pin_lock(dst_rq, &drf);
    3388             : 
    3389             :                 deactivate_task(src_rq, p, 0);
    3390             :                 set_task_cpu(p, cpu);
    3391             :                 activate_task(dst_rq, p, 0);
    3392             :                 check_preempt_curr(dst_rq, p, 0);
    3393             : 
    3394             :                 rq_unpin_lock(dst_rq, &drf);
    3395             :                 rq_unpin_lock(src_rq, &srf);
    3396             : 
    3397             :         } else {
    3398             :                 /*
    3399             :                  * Task isn't running anymore; make it appear like we migrated
    3400             :                  * it before it went to sleep. This means on wakeup we make the
    3401             :                  * previous CPU our target instead of where it really is.
    3402             :                  */
    3403             :                 p->wake_cpu = cpu;
    3404             :         }
    3405             : }
    3406             : 
    3407             : struct migration_swap_arg {
    3408             :         struct task_struct *src_task, *dst_task;
    3409             :         int src_cpu, dst_cpu;
    3410             : };
    3411             : 
    3412             : static int migrate_swap_stop(void *data)
    3413             : {
    3414             :         struct migration_swap_arg *arg = data;
    3415             :         struct rq *src_rq, *dst_rq;
    3416             :         int ret = -EAGAIN;
    3417             : 
    3418             :         if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
    3419             :                 return -EAGAIN;
    3420             : 
    3421             :         src_rq = cpu_rq(arg->src_cpu);
    3422             :         dst_rq = cpu_rq(arg->dst_cpu);
    3423             : 
    3424             :         double_raw_lock(&arg->src_task->pi_lock,
    3425             :                         &arg->dst_task->pi_lock);
    3426             :         double_rq_lock(src_rq, dst_rq);
    3427             : 
    3428             :         if (task_cpu(arg->dst_task) != arg->dst_cpu)
    3429             :                 goto unlock;
    3430             : 
    3431             :         if (task_cpu(arg->src_task) != arg->src_cpu)
    3432             :                 goto unlock;
    3433             : 
    3434             :         if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
    3435             :                 goto unlock;
    3436             : 
    3437             :         if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
    3438             :                 goto unlock;
    3439             : 
    3440             :         __migrate_swap_task(arg->src_task, arg->dst_cpu);
    3441             :         __migrate_swap_task(arg->dst_task, arg->src_cpu);
    3442             : 
    3443             :         ret = 0;
    3444             : 
    3445             : unlock:
    3446             :         double_rq_unlock(src_rq, dst_rq);
    3447             :         raw_spin_unlock(&arg->dst_task->pi_lock);
    3448             :         raw_spin_unlock(&arg->src_task->pi_lock);
    3449             : 
    3450             :         return ret;
    3451             : }
    3452             : 
    3453             : /*
    3454             :  * Cross migrate two tasks
    3455             :  */
    3456             : int migrate_swap(struct task_struct *cur, struct task_struct *p,
    3457             :                 int target_cpu, int curr_cpu)
    3458             : {
    3459             :         struct migration_swap_arg arg;
    3460             :         int ret = -EINVAL;
    3461             : 
    3462             :         arg = (struct migration_swap_arg){
    3463             :                 .src_task = cur,
    3464             :                 .src_cpu = curr_cpu,
    3465             :                 .dst_task = p,
    3466             :                 .dst_cpu = target_cpu,
    3467             :         };
    3468             : 
    3469             :         if (arg.src_cpu == arg.dst_cpu)
    3470             :                 goto out;
    3471             : 
    3472             :         /*
    3473             :          * These three tests are all lockless; this is OK since all of them
    3474             :          * will be re-checked with proper locks held further down the line.
    3475             :          */
    3476             :         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
    3477             :                 goto out;
    3478             : 
    3479             :         if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
    3480             :                 goto out;
    3481             : 
    3482             :         if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
    3483             :                 goto out;
    3484             : 
    3485             :         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
    3486             :         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
    3487             : 
    3488             : out:
    3489             :         return ret;
    3490             : }
    3491             : #endif /* CONFIG_NUMA_BALANCING */
    3492             : 
    3493             : /***
    3494             :  * kick_process - kick a running thread to enter/exit the kernel
    3495             :  * @p: the to-be-kicked thread
    3496             :  *
    3497             :  * Cause a process which is running on another CPU to enter
    3498             :  * kernel-mode, without any delay. (to get signals handled.)
    3499             :  *
    3500             :  * NOTE: this function doesn't have to take the runqueue lock,
    3501             :  * because all it wants to ensure is that the remote task enters
    3502             :  * the kernel. If the IPI races and the task has been migrated
    3503             :  * to another CPU then no harm is done and the purpose has been
    3504             :  * achieved as well.
    3505             :  */
    3506             : void kick_process(struct task_struct *p)
    3507             : {
    3508             :         int cpu;
    3509             : 
    3510             :         preempt_disable();
    3511             :         cpu = task_cpu(p);
    3512             :         if ((cpu != smp_processor_id()) && task_curr(p))
    3513             :                 smp_send_reschedule(cpu);
    3514             :         preempt_enable();
    3515             : }
    3516             : EXPORT_SYMBOL_GPL(kick_process);
    3517             : 
    3518             : /*
    3519             :  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
    3520             :  *
    3521             :  * A few notes on cpu_active vs cpu_online:
    3522             :  *
    3523             :  *  - cpu_active must be a subset of cpu_online
    3524             :  *
    3525             :  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
    3526             :  *    see __set_cpus_allowed_ptr(). At this point the newly online
    3527             :  *    CPU isn't yet part of the sched domains, and balancing will not
    3528             :  *    see it.
    3529             :  *
    3530             :  *  - on CPU-down we clear cpu_active() to mask the sched domains and
    3531             :  *    avoid the load balancer to place new tasks on the to be removed
    3532             :  *    CPU. Existing tasks will remain running there and will be taken
    3533             :  *    off.
    3534             :  *
    3535             :  * This means that fallback selection must not select !active CPUs.
    3536             :  * And can assume that any active CPU must be online. Conversely
    3537             :  * select_task_rq() below may allow selection of !active CPUs in order
    3538             :  * to satisfy the above rules.
    3539             :  */
    3540             : static int select_fallback_rq(int cpu, struct task_struct *p)
    3541             : {
    3542             :         int nid = cpu_to_node(cpu);
    3543             :         const struct cpumask *nodemask = NULL;
    3544             :         enum { cpuset, possible, fail } state = cpuset;
    3545             :         int dest_cpu;
    3546             : 
    3547             :         /*
    3548             :          * If the node that the CPU is on has been offlined, cpu_to_node()
    3549             :          * will return -1. There is no CPU on the node, and we should
    3550             :          * select the CPU on the other node.
    3551             :          */
    3552             :         if (nid != -1) {
    3553             :                 nodemask = cpumask_of_node(nid);
    3554             : 
    3555             :                 /* Look for allowed, online CPU in same node. */
    3556             :                 for_each_cpu(dest_cpu, nodemask) {
    3557             :                         if (is_cpu_allowed(p, dest_cpu))
    3558             :                                 return dest_cpu;
    3559             :                 }
    3560             :         }
    3561             : 
    3562             :         for (;;) {
    3563             :                 /* Any allowed, online CPU? */
    3564             :                 for_each_cpu(dest_cpu, p->cpus_ptr) {
    3565             :                         if (!is_cpu_allowed(p, dest_cpu))
    3566             :                                 continue;
    3567             : 
    3568             :                         goto out;
    3569             :                 }
    3570             : 
    3571             :                 /* No more Mr. Nice Guy. */
    3572             :                 switch (state) {
    3573             :                 case cpuset:
    3574             :                         if (cpuset_cpus_allowed_fallback(p)) {
    3575             :                                 state = possible;
    3576             :                                 break;
    3577             :                         }
    3578             :                         fallthrough;
    3579             :                 case possible:
    3580             :                         /*
    3581             :                          * XXX When called from select_task_rq() we only
    3582             :                          * hold p->pi_lock and again violate locking order.
    3583             :                          *
    3584             :                          * More yuck to audit.
    3585             :                          */
    3586             :                         do_set_cpus_allowed(p, task_cpu_possible_mask(p));
    3587             :                         state = fail;
    3588             :                         break;
    3589             :                 case fail:
    3590             :                         BUG();
    3591             :                         break;
    3592             :                 }
    3593             :         }
    3594             : 
    3595             : out:
    3596             :         if (state != cpuset) {
    3597             :                 /*
    3598             :                  * Don't tell them about moving exiting tasks or
    3599             :                  * kernel threads (both mm NULL), since they never
    3600             :                  * leave kernel.
    3601             :                  */
    3602             :                 if (p->mm && printk_ratelimit()) {
    3603             :                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
    3604             :                                         task_pid_nr(p), p->comm, cpu);
    3605             :                 }
    3606             :         }
    3607             : 
    3608             :         return dest_cpu;
    3609             : }
    3610             : 
    3611             : /*
    3612             :  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
    3613             :  */
    3614             : static inline
    3615             : int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
    3616             : {
    3617             :         lockdep_assert_held(&p->pi_lock);
    3618             : 
    3619             :         if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
    3620             :                 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
    3621             :         else
    3622             :                 cpu = cpumask_any(p->cpus_ptr);
    3623             : 
    3624             :         /*
    3625             :          * In order not to call set_task_cpu() on a blocking task we need
    3626             :          * to rely on ttwu() to place the task on a valid ->cpus_ptr
    3627             :          * CPU.
    3628             :          *
    3629             :          * Since this is common to all placement strategies, this lives here.
    3630             :          *
    3631             :          * [ this allows ->select_task() to simply return task_cpu(p) and
    3632             :          *   not worry about this generic constraint ]
    3633             :          */
    3634             :         if (unlikely(!is_cpu_allowed(p, cpu)))
    3635             :                 cpu = select_fallback_rq(task_cpu(p), p);
    3636             : 
    3637             :         return cpu;
    3638             : }
    3639             : 
    3640             : void sched_set_stop_task(int cpu, struct task_struct *stop)
    3641             : {
    3642             :         static struct lock_class_key stop_pi_lock;
    3643             :         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
    3644             :         struct task_struct *old_stop = cpu_rq(cpu)->stop;
    3645             : 
    3646             :         if (stop) {
    3647             :                 /*
    3648             :                  * Make it appear like a SCHED_FIFO task, its something
    3649             :                  * userspace knows about and won't get confused about.
    3650             :                  *
    3651             :                  * Also, it will make PI more or less work without too
    3652             :                  * much confusion -- but then, stop work should not
    3653             :                  * rely on PI working anyway.
    3654             :                  */
    3655             :                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
    3656             : 
    3657             :                 stop->sched_class = &stop_sched_class;
    3658             : 
    3659             :                 /*
    3660             :                  * The PI code calls rt_mutex_setprio() with ->pi_lock held to
    3661             :                  * adjust the effective priority of a task. As a result,
    3662             :                  * rt_mutex_setprio() can trigger (RT) balancing operations,
    3663             :                  * which can then trigger wakeups of the stop thread to push
    3664             :                  * around the current task.
    3665             :                  *
    3666             :                  * The stop task itself will never be part of the PI-chain, it
    3667             :                  * never blocks, therefore that ->pi_lock recursion is safe.
    3668             :                  * Tell lockdep about this by placing the stop->pi_lock in its
    3669             :                  * own class.
    3670             :                  */
    3671             :                 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
    3672             :         }
    3673             : 
    3674             :         cpu_rq(cpu)->stop = stop;
    3675             : 
    3676             :         if (old_stop) {
    3677             :                 /*
    3678             :                  * Reset it back to a normal scheduling class so that
    3679             :                  * it can die in pieces.
    3680             :                  */
    3681             :                 old_stop->sched_class = &rt_sched_class;
    3682             :         }
    3683             : }
    3684             : 
    3685             : #else /* CONFIG_SMP */
    3686             : 
    3687             : static inline int __set_cpus_allowed_ptr(struct task_struct *p,
    3688             :                                          struct affinity_context *ctx)
    3689             : {
    3690           0 :         return set_cpus_allowed_ptr(p, ctx->new_mask);
    3691             : }
    3692             : 
    3693             : static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
    3694             : 
    3695             : static inline bool rq_has_pinned_tasks(struct rq *rq)
    3696             : {
    3697             :         return false;
    3698             : }
    3699             : 
    3700             : static inline cpumask_t *alloc_user_cpus_ptr(int node)
    3701             : {
    3702             :         return NULL;
    3703             : }
    3704             : 
    3705             : #endif /* !CONFIG_SMP */
    3706             : 
    3707             : static void
    3708             : ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
    3709             : {
    3710             :         struct rq *rq;
    3711             : 
    3712             :         if (!schedstat_enabled())
    3713             :                 return;
    3714             : 
    3715             :         rq = this_rq();
    3716             : 
    3717             : #ifdef CONFIG_SMP
    3718             :         if (cpu == rq->cpu) {
    3719             :                 __schedstat_inc(rq->ttwu_local);
    3720             :                 __schedstat_inc(p->stats.nr_wakeups_local);
    3721             :         } else {
    3722             :                 struct sched_domain *sd;
    3723             : 
    3724             :                 __schedstat_inc(p->stats.nr_wakeups_remote);
    3725             :                 rcu_read_lock();
    3726             :                 for_each_domain(rq->cpu, sd) {
    3727             :                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
    3728             :                                 __schedstat_inc(sd->ttwu_wake_remote);
    3729             :                                 break;
    3730             :                         }
    3731             :                 }
    3732             :                 rcu_read_unlock();
    3733             :         }
    3734             : 
    3735             :         if (wake_flags & WF_MIGRATED)
    3736             :                 __schedstat_inc(p->stats.nr_wakeups_migrate);
    3737             : #endif /* CONFIG_SMP */
    3738             : 
    3739             :         __schedstat_inc(rq->ttwu_count);
    3740             :         __schedstat_inc(p->stats.nr_wakeups);
    3741             : 
    3742             :         if (wake_flags & WF_SYNC)
    3743             :                 __schedstat_inc(p->stats.nr_wakeups_sync);
    3744             : }
    3745             : 
    3746             : /*
    3747             :  * Mark the task runnable.
    3748             :  */
    3749             : static inline void ttwu_do_wakeup(struct task_struct *p)
    3750             : {
    3751         856 :         WRITE_ONCE(p->__state, TASK_RUNNING);
    3752         856 :         trace_sched_wakeup(p);
    3753             : }
    3754             : 
    3755             : static void
    3756         856 : ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
    3757             :                  struct rq_flags *rf)
    3758             : {
    3759         856 :         int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
    3760             : 
    3761         856 :         lockdep_assert_rq_held(rq);
    3762             : 
    3763         856 :         if (p->sched_contributes_to_load)
    3764         510 :                 rq->nr_uninterruptible--;
    3765             : 
    3766             : #ifdef CONFIG_SMP
    3767             :         if (wake_flags & WF_MIGRATED)
    3768             :                 en_flags |= ENQUEUE_MIGRATED;
    3769             :         else
    3770             : #endif
    3771         856 :         if (p->in_iowait) {
    3772           0 :                 delayacct_blkio_end(p);
    3773           0 :                 atomic_dec(&task_rq(p)->nr_iowait);
    3774             :         }
    3775             : 
    3776         856 :         activate_task(rq, p, en_flags);
    3777         856 :         check_preempt_curr(rq, p, wake_flags);
    3778             : 
    3779         856 :         ttwu_do_wakeup(p);
    3780             : 
    3781             : #ifdef CONFIG_SMP
    3782             :         if (p->sched_class->task_woken) {
    3783             :                 /*
    3784             :                  * Our task @p is fully woken up and running; so it's safe to
    3785             :                  * drop the rq->lock, hereafter rq is only used for statistics.
    3786             :                  */
    3787             :                 rq_unpin_lock(rq, rf);
    3788             :                 p->sched_class->task_woken(rq, p);
    3789             :                 rq_repin_lock(rq, rf);
    3790             :         }
    3791             : 
    3792             :         if (rq->idle_stamp) {
    3793             :                 u64 delta = rq_clock(rq) - rq->idle_stamp;
    3794             :                 u64 max = 2*rq->max_idle_balance_cost;
    3795             : 
    3796             :                 update_avg(&rq->avg_idle, delta);
    3797             : 
    3798             :                 if (rq->avg_idle > max)
    3799             :                         rq->avg_idle = max;
    3800             : 
    3801             :                 rq->wake_stamp = jiffies;
    3802             :                 rq->wake_avg_idle = rq->avg_idle / 2;
    3803             : 
    3804             :                 rq->idle_stamp = 0;
    3805             :         }
    3806             : #endif
    3807         856 : }
    3808             : 
    3809             : /*
    3810             :  * Consider @p being inside a wait loop:
    3811             :  *
    3812             :  *   for (;;) {
    3813             :  *      set_current_state(TASK_UNINTERRUPTIBLE);
    3814             :  *
    3815             :  *      if (CONDITION)
    3816             :  *         break;
    3817             :  *
    3818             :  *      schedule();
    3819             :  *   }
    3820             :  *   __set_current_state(TASK_RUNNING);
    3821             :  *
    3822             :  * between set_current_state() and schedule(). In this case @p is still
    3823             :  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
    3824             :  * an atomic manner.
    3825             :  *
    3826             :  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
    3827             :  * then schedule() must still happen and p->state can be changed to
    3828             :  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
    3829             :  * need to do a full wakeup with enqueue.
    3830             :  *
    3831             :  * Returns: %true when the wakeup is done,
    3832             :  *          %false otherwise.
    3833             :  */
    3834           0 : static int ttwu_runnable(struct task_struct *p, int wake_flags)
    3835             : {
    3836             :         struct rq_flags rf;
    3837             :         struct rq *rq;
    3838           0 :         int ret = 0;
    3839             : 
    3840           0 :         rq = __task_rq_lock(p, &rf);
    3841           0 :         if (task_on_rq_queued(p)) {
    3842           0 :                 if (!task_on_cpu(rq, p)) {
    3843             :                         /*
    3844             :                          * When on_rq && !on_cpu the task is preempted, see if
    3845             :                          * it should preempt the task that is current now.
    3846             :                          */
    3847           0 :                         update_rq_clock(rq);
    3848           0 :                         check_preempt_curr(rq, p, wake_flags);
    3849             :                 }
    3850           0 :                 ttwu_do_wakeup(p);
    3851           0 :                 ret = 1;
    3852             :         }
    3853           0 :         __task_rq_unlock(rq, &rf);
    3854             : 
    3855           0 :         return ret;
    3856             : }
    3857             : 
    3858             : #ifdef CONFIG_SMP
    3859             : void sched_ttwu_pending(void *arg)
    3860             : {
    3861             :         struct llist_node *llist = arg;
    3862             :         struct rq *rq = this_rq();
    3863             :         struct task_struct *p, *t;
    3864             :         struct rq_flags rf;
    3865             : 
    3866             :         if (!llist)
    3867             :                 return;
    3868             : 
    3869             :         rq_lock_irqsave(rq, &rf);
    3870             :         update_rq_clock(rq);
    3871             : 
    3872             :         llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
    3873             :                 if (WARN_ON_ONCE(p->on_cpu))
    3874             :                         smp_cond_load_acquire(&p->on_cpu, !VAL);
    3875             : 
    3876             :                 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
    3877             :                         set_task_cpu(p, cpu_of(rq));
    3878             : 
    3879             :                 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
    3880             :         }
    3881             : 
    3882             :         /*
    3883             :          * Must be after enqueueing at least once task such that
    3884             :          * idle_cpu() does not observe a false-negative -- if it does,
    3885             :          * it is possible for select_idle_siblings() to stack a number
    3886             :          * of tasks on this CPU during that window.
    3887             :          *
    3888             :          * It is ok to clear ttwu_pending when another task pending.
    3889             :          * We will receive IPI after local irq enabled and then enqueue it.
    3890             :          * Since now nr_running > 0, idle_cpu() will always get correct result.
    3891             :          */
    3892             :         WRITE_ONCE(rq->ttwu_pending, 0);
    3893             :         rq_unlock_irqrestore(rq, &rf);
    3894             : }
    3895             : 
    3896             : /*
    3897             :  * Prepare the scene for sending an IPI for a remote smp_call
    3898             :  *
    3899             :  * Returns true if the caller can proceed with sending the IPI.
    3900             :  * Returns false otherwise.
    3901             :  */
    3902             : bool call_function_single_prep_ipi(int cpu)
    3903             : {
    3904             :         if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
    3905             :                 trace_sched_wake_idle_without_ipi(cpu);
    3906             :                 return false;
    3907             :         }
    3908             : 
    3909             :         return true;
    3910             : }
    3911             : 
    3912             : /*
    3913             :  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
    3914             :  * necessary. The wakee CPU on receipt of the IPI will queue the task
    3915             :  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
    3916             :  * of the wakeup instead of the waker.
    3917             :  */
    3918             : static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    3919             : {
    3920             :         struct rq *rq = cpu_rq(cpu);
    3921             : 
    3922             :         p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
    3923             : 
    3924             :         WRITE_ONCE(rq->ttwu_pending, 1);
    3925             :         __smp_call_single_queue(cpu, &p->wake_entry.llist);
    3926             : }
    3927             : 
    3928             : void wake_up_if_idle(int cpu)
    3929             : {
    3930             :         struct rq *rq = cpu_rq(cpu);
    3931             :         struct rq_flags rf;
    3932             : 
    3933             :         rcu_read_lock();
    3934             : 
    3935             :         if (!is_idle_task(rcu_dereference(rq->curr)))
    3936             :                 goto out;
    3937             : 
    3938             :         rq_lock_irqsave(rq, &rf);
    3939             :         if (is_idle_task(rq->curr))
    3940             :                 resched_curr(rq);
    3941             :         /* Else CPU is not idle, do nothing here: */
    3942             :         rq_unlock_irqrestore(rq, &rf);
    3943             : 
    3944             : out:
    3945             :         rcu_read_unlock();
    3946             : }
    3947             : 
    3948             : bool cpus_share_cache(int this_cpu, int that_cpu)
    3949             : {
    3950             :         if (this_cpu == that_cpu)
    3951             :                 return true;
    3952             : 
    3953             :         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
    3954             : }
    3955             : 
    3956             : static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
    3957             : {
    3958             :         /*
    3959             :          * Do not complicate things with the async wake_list while the CPU is
    3960             :          * in hotplug state.
    3961             :          */
    3962             :         if (!cpu_active(cpu))
    3963             :                 return false;
    3964             : 
    3965             :         /* Ensure the task will still be allowed to run on the CPU. */
    3966             :         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    3967             :                 return false;
    3968             : 
    3969             :         /*
    3970             :          * If the CPU does not share cache, then queue the task on the
    3971             :          * remote rqs wakelist to avoid accessing remote data.
    3972             :          */
    3973             :         if (!cpus_share_cache(smp_processor_id(), cpu))
    3974             :                 return true;
    3975             : 
    3976             :         if (cpu == smp_processor_id())
    3977             :                 return false;
    3978             : 
    3979             :         /*
    3980             :          * If the wakee cpu is idle, or the task is descheduling and the
    3981             :          * only running task on the CPU, then use the wakelist to offload
    3982             :          * the task activation to the idle (or soon-to-be-idle) CPU as
    3983             :          * the current CPU is likely busy. nr_running is checked to
    3984             :          * avoid unnecessary task stacking.
    3985             :          *
    3986             :          * Note that we can only get here with (wakee) p->on_rq=0,
    3987             :          * p->on_cpu can be whatever, we've done the dequeue, so
    3988             :          * the wakee has been accounted out of ->nr_running.
    3989             :          */
    3990             :         if (!cpu_rq(cpu)->nr_running)
    3991             :                 return true;
    3992             : 
    3993             :         return false;
    3994             : }
    3995             : 
    3996             : static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    3997             : {
    3998             :         if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
    3999             :                 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
    4000             :                 __ttwu_queue_wakelist(p, cpu, wake_flags);
    4001             :                 return true;
    4002             :         }
    4003             : 
    4004             :         return false;
    4005             : }
    4006             : 
    4007             : #else /* !CONFIG_SMP */
    4008             : 
    4009             : static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    4010             : {
    4011             :         return false;
    4012             : }
    4013             : 
    4014             : #endif /* CONFIG_SMP */
    4015             : 
    4016             : static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
    4017             : {
    4018         856 :         struct rq *rq = cpu_rq(cpu);
    4019             :         struct rq_flags rf;
    4020             : 
    4021         856 :         if (ttwu_queue_wakelist(p, cpu, wake_flags))
    4022             :                 return;
    4023             : 
    4024         856 :         rq_lock(rq, &rf);
    4025         856 :         update_rq_clock(rq);
    4026         856 :         ttwu_do_activate(rq, p, wake_flags, &rf);
    4027         856 :         rq_unlock(rq, &rf);
    4028             : }
    4029             : 
    4030             : /*
    4031             :  * Invoked from try_to_wake_up() to check whether the task can be woken up.
    4032             :  *
    4033             :  * The caller holds p::pi_lock if p != current or has preemption
    4034             :  * disabled when p == current.
    4035             :  *
    4036             :  * The rules of PREEMPT_RT saved_state:
    4037             :  *
    4038             :  *   The related locking code always holds p::pi_lock when updating
    4039             :  *   p::saved_state, which means the code is fully serialized in both cases.
    4040             :  *
    4041             :  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
    4042             :  *   bits set. This allows to distinguish all wakeup scenarios.
    4043             :  */
    4044             : static __always_inline
    4045             : bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
    4046             : {
    4047             :         int match;
    4048             : 
    4049             :         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
    4050             :                 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
    4051             :                              state != TASK_RTLOCK_WAIT);
    4052             :         }
    4053             : 
    4054        1030 :         *success = !!(match = __task_state_match(p, state));
    4055             : 
    4056             : #ifdef CONFIG_PREEMPT_RT
    4057             :         /*
    4058             :          * Saved state preserves the task state across blocking on
    4059             :          * an RT lock.  If the state matches, set p::saved_state to
    4060             :          * TASK_RUNNING, but do not wake the task because it waits
    4061             :          * for a lock wakeup. Also indicate success because from
    4062             :          * the regular waker's point of view this has succeeded.
    4063             :          *
    4064             :          * After acquiring the lock the task will restore p::__state
    4065             :          * from p::saved_state which ensures that the regular
    4066             :          * wakeup is not lost. The restore will also set
    4067             :          * p::saved_state to TASK_RUNNING so any further tests will
    4068             :          * not result in false positives vs. @success
    4069             :          */
    4070             :         if (match < 0)
    4071             :                 p->saved_state = TASK_RUNNING;
    4072             : #endif
    4073             :         return match > 0;
    4074             : }
    4075             : 
    4076             : /*
    4077             :  * Notes on Program-Order guarantees on SMP systems.
    4078             :  *
    4079             :  *  MIGRATION
    4080             :  *
    4081             :  * The basic program-order guarantee on SMP systems is that when a task [t]
    4082             :  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
    4083             :  * execution on its new CPU [c1].
    4084             :  *
    4085             :  * For migration (of runnable tasks) this is provided by the following means:
    4086             :  *
    4087             :  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
    4088             :  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
    4089             :  *     rq(c1)->lock (if not at the same time, then in that order).
    4090             :  *  C) LOCK of the rq(c1)->lock scheduling in task
    4091             :  *
    4092             :  * Release/acquire chaining guarantees that B happens after A and C after B.
    4093             :  * Note: the CPU doing B need not be c0 or c1
    4094             :  *
    4095             :  * Example:
    4096             :  *
    4097             :  *   CPU0            CPU1            CPU2
    4098             :  *
    4099             :  *   LOCK rq(0)->lock
    4100             :  *   sched-out X
    4101             :  *   sched-in Y
    4102             :  *   UNLOCK rq(0)->lock
    4103             :  *
    4104             :  *                                   LOCK rq(0)->lock // orders against CPU0
    4105             :  *                                   dequeue X
    4106             :  *                                   UNLOCK rq(0)->lock
    4107             :  *
    4108             :  *                                   LOCK rq(1)->lock
    4109             :  *                                   enqueue X
    4110             :  *                                   UNLOCK rq(1)->lock
    4111             :  *
    4112             :  *                   LOCK rq(1)->lock // orders against CPU2
    4113             :  *                   sched-out Z
    4114             :  *                   sched-in X
    4115             :  *                   UNLOCK rq(1)->lock
    4116             :  *
    4117             :  *
    4118             :  *  BLOCKING -- aka. SLEEP + WAKEUP
    4119             :  *
    4120             :  * For blocking we (obviously) need to provide the same guarantee as for
    4121             :  * migration. However the means are completely different as there is no lock
    4122             :  * chain to provide order. Instead we do:
    4123             :  *
    4124             :  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
    4125             :  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
    4126             :  *
    4127             :  * Example:
    4128             :  *
    4129             :  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
    4130             :  *
    4131             :  *   LOCK rq(0)->lock LOCK X->pi_lock
    4132             :  *   dequeue X
    4133             :  *   sched-out X
    4134             :  *   smp_store_release(X->on_cpu, 0);
    4135             :  *
    4136             :  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
    4137             :  *                    X->state = WAKING
    4138             :  *                    set_task_cpu(X,2)
    4139             :  *
    4140             :  *                    LOCK rq(2)->lock
    4141             :  *                    enqueue X
    4142             :  *                    X->state = RUNNING
    4143             :  *                    UNLOCK rq(2)->lock
    4144             :  *
    4145             :  *                                          LOCK rq(2)->lock // orders against CPU1
    4146             :  *                                          sched-out Z
    4147             :  *                                          sched-in X
    4148             :  *                                          UNLOCK rq(2)->lock
    4149             :  *
    4150             :  *                    UNLOCK X->pi_lock
    4151             :  *   UNLOCK rq(0)->lock
    4152             :  *
    4153             :  *
    4154             :  * However, for wakeups there is a second guarantee we must provide, namely we
    4155             :  * must ensure that CONDITION=1 done by the caller can not be reordered with
    4156             :  * accesses to the task state; see try_to_wake_up() and set_current_state().
    4157             :  */
    4158             : 
    4159             : /**
    4160             :  * try_to_wake_up - wake up a thread
    4161             :  * @p: the thread to be awakened
    4162             :  * @state: the mask of task states that can be woken
    4163             :  * @wake_flags: wake modifier flags (WF_*)
    4164             :  *
    4165             :  * Conceptually does:
    4166             :  *
    4167             :  *   If (@state & @p->state) @p->state = TASK_RUNNING.
    4168             :  *
    4169             :  * If the task was not queued/runnable, also place it back on a runqueue.
    4170             :  *
    4171             :  * This function is atomic against schedule() which would dequeue the task.
    4172             :  *
    4173             :  * It issues a full memory barrier before accessing @p->state, see the comment
    4174             :  * with set_current_state().
    4175             :  *
    4176             :  * Uses p->pi_lock to serialize against concurrent wake-ups.
    4177             :  *
    4178             :  * Relies on p->pi_lock stabilizing:
    4179             :  *  - p->sched_class
    4180             :  *  - p->cpus_ptr
    4181             :  *  - p->sched_task_group
    4182             :  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
    4183             :  *
    4184             :  * Tries really hard to only take one task_rq(p)->lock for performance.
    4185             :  * Takes rq->lock in:
    4186             :  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
    4187             :  *  - ttwu_queue()       -- new rq, for enqueue of the task;
    4188             :  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
    4189             :  *
    4190             :  * As a consequence we race really badly with just about everything. See the
    4191             :  * many memory barriers and their comments for details.
    4192             :  *
    4193             :  * Return: %true if @p->state changes (an actual wakeup was done),
    4194             :  *         %false otherwise.
    4195             :  */
    4196             : static int
    4197        1030 : try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
    4198             : {
    4199             :         unsigned long flags;
    4200        1030 :         int cpu, success = 0;
    4201             : 
    4202        1030 :         preempt_disable();
    4203        1030 :         if (p == current) {
    4204             :                 /*
    4205             :                  * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
    4206             :                  * == smp_processor_id()'. Together this means we can special
    4207             :                  * case the whole 'p->on_rq && ttwu_runnable()' case below
    4208             :                  * without taking any locks.
    4209             :                  *
    4210             :                  * In particular:
    4211             :                  *  - we rely on Program-Order guarantees for all the ordering,
    4212             :                  *  - we're serialized against set_special_state() by virtue of
    4213             :                  *    it disabling IRQs (this allows not taking ->pi_lock).
    4214             :                  */
    4215          11 :                 if (!ttwu_state_match(p, state, &success))
    4216             :                         goto out;
    4217             : 
    4218           0 :                 trace_sched_waking(p);
    4219             :                 ttwu_do_wakeup(p);
    4220             :                 goto out;
    4221             :         }
    4222             : 
    4223             :         /*
    4224             :          * If we are going to wake up a thread waiting for CONDITION we
    4225             :          * need to ensure that CONDITION=1 done by the caller can not be
    4226             :          * reordered with p->state check below. This pairs with smp_store_mb()
    4227             :          * in set_current_state() that the waiting thread does.
    4228             :          */
    4229        1019 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    4230             :         smp_mb__after_spinlock();
    4231        1019 :         if (!ttwu_state_match(p, state, &success))
    4232             :                 goto unlock;
    4233             : 
    4234         856 :         trace_sched_waking(p);
    4235             : 
    4236             :         /*
    4237             :          * Ensure we load p->on_rq _after_ p->state, otherwise it would
    4238             :          * be possible to, falsely, observe p->on_rq == 0 and get stuck
    4239             :          * in smp_cond_load_acquire() below.
    4240             :          *
    4241             :          * sched_ttwu_pending()                 try_to_wake_up()
    4242             :          *   STORE p->on_rq = 1                        LOAD p->state
    4243             :          *   UNLOCK rq->lock
    4244             :          *
    4245             :          * __schedule() (switch to task 'p')
    4246             :          *   LOCK rq->lock                     smp_rmb();
    4247             :          *   smp_mb__after_spinlock();
    4248             :          *   UNLOCK rq->lock
    4249             :          *
    4250             :          * [task p]
    4251             :          *   STORE p->state = UNINTERRUPTIBLE          LOAD p->on_rq
    4252             :          *
    4253             :          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
    4254             :          * __schedule().  See the comment for smp_mb__after_spinlock().
    4255             :          *
    4256             :          * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
    4257             :          */
    4258         856 :         smp_rmb();
    4259         856 :         if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
    4260             :                 goto unlock;
    4261             : 
    4262             : #ifdef CONFIG_SMP
    4263             :         /*
    4264             :          * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
    4265             :          * possible to, falsely, observe p->on_cpu == 0.
    4266             :          *
    4267             :          * One must be running (->on_cpu == 1) in order to remove oneself
    4268             :          * from the runqueue.
    4269             :          *
    4270             :          * __schedule() (switch to task 'p')    try_to_wake_up()
    4271             :          *   STORE p->on_cpu = 1               LOAD p->on_rq
    4272             :          *   UNLOCK rq->lock
    4273             :          *
    4274             :          * __schedule() (put 'p' to sleep)
    4275             :          *   LOCK rq->lock                     smp_rmb();
    4276             :          *   smp_mb__after_spinlock();
    4277             :          *   STORE p->on_rq = 0                        LOAD p->on_cpu
    4278             :          *
    4279             :          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
    4280             :          * __schedule().  See the comment for smp_mb__after_spinlock().
    4281             :          *
    4282             :          * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
    4283             :          * schedule()'s deactivate_task() has 'happened' and p will no longer
    4284             :          * care about it's own p->state. See the comment in __schedule().
    4285             :          */
    4286             :         smp_acquire__after_ctrl_dep();
    4287             : 
    4288             :         /*
    4289             :          * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
    4290             :          * == 0), which means we need to do an enqueue, change p->state to
    4291             :          * TASK_WAKING such that we can unlock p->pi_lock before doing the
    4292             :          * enqueue, such as ttwu_queue_wakelist().
    4293             :          */
    4294             :         WRITE_ONCE(p->__state, TASK_WAKING);
    4295             : 
    4296             :         /*
    4297             :          * If the owning (remote) CPU is still in the middle of schedule() with
    4298             :          * this task as prev, considering queueing p on the remote CPUs wake_list
    4299             :          * which potentially sends an IPI instead of spinning on p->on_cpu to
    4300             :          * let the waker make forward progress. This is safe because IRQs are
    4301             :          * disabled and the IPI will deliver after on_cpu is cleared.
    4302             :          *
    4303             :          * Ensure we load task_cpu(p) after p->on_cpu:
    4304             :          *
    4305             :          * set_task_cpu(p, cpu);
    4306             :          *   STORE p->cpu = @cpu
    4307             :          * __schedule() (switch to task 'p')
    4308             :          *   LOCK rq->lock
    4309             :          *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
    4310             :          *   STORE p->on_cpu = 1             LOAD p->cpu
    4311             :          *
    4312             :          * to ensure we observe the correct CPU on which the task is currently
    4313             :          * scheduling.
    4314             :          */
    4315             :         if (smp_load_acquire(&p->on_cpu) &&
    4316             :             ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
    4317             :                 goto unlock;
    4318             : 
    4319             :         /*
    4320             :          * If the owning (remote) CPU is still in the middle of schedule() with
    4321             :          * this task as prev, wait until it's done referencing the task.
    4322             :          *
    4323             :          * Pairs with the smp_store_release() in finish_task().
    4324             :          *
    4325             :          * This ensures that tasks getting woken will be fully ordered against
    4326             :          * their previous state and preserve Program Order.
    4327             :          */
    4328             :         smp_cond_load_acquire(&p->on_cpu, !VAL);
    4329             : 
    4330             :         cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
    4331             :         if (task_cpu(p) != cpu) {
    4332             :                 if (p->in_iowait) {
    4333             :                         delayacct_blkio_end(p);
    4334             :                         atomic_dec(&task_rq(p)->nr_iowait);
    4335             :                 }
    4336             : 
    4337             :                 wake_flags |= WF_MIGRATED;
    4338             :                 psi_ttwu_dequeue(p);
    4339             :                 set_task_cpu(p, cpu);
    4340             :         }
    4341             : #else
    4342         856 :         cpu = task_cpu(p);
    4343             : #endif /* CONFIG_SMP */
    4344             : 
    4345         856 :         ttwu_queue(p, cpu, wake_flags);
    4346             : unlock:
    4347        2038 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    4348             : out:
    4349             :         if (success)
    4350             :                 ttwu_stat(p, task_cpu(p), wake_flags);
    4351        1030 :         preempt_enable();
    4352             : 
    4353        1030 :         return success;
    4354             : }
    4355             : 
    4356             : static bool __task_needs_rq_lock(struct task_struct *p)
    4357             : {
    4358           0 :         unsigned int state = READ_ONCE(p->__state);
    4359             : 
    4360             :         /*
    4361             :          * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
    4362             :          * the task is blocked. Make sure to check @state since ttwu() can drop
    4363             :          * locks at the end, see ttwu_queue_wakelist().
    4364             :          */
    4365           0 :         if (state == TASK_RUNNING || state == TASK_WAKING)
    4366             :                 return true;
    4367             : 
    4368             :         /*
    4369             :          * Ensure we load p->on_rq after p->__state, otherwise it would be
    4370             :          * possible to, falsely, observe p->on_rq == 0.
    4371             :          *
    4372             :          * See try_to_wake_up() for a longer comment.
    4373             :          */
    4374           0 :         smp_rmb();
    4375           0 :         if (p->on_rq)
    4376             :                 return true;
    4377             : 
    4378             : #ifdef CONFIG_SMP
    4379             :         /*
    4380             :          * Ensure the task has finished __schedule() and will not be referenced
    4381             :          * anymore. Again, see try_to_wake_up() for a longer comment.
    4382             :          */
    4383             :         smp_rmb();
    4384             :         smp_cond_load_acquire(&p->on_cpu, !VAL);
    4385             : #endif
    4386             : 
    4387             :         return false;
    4388             : }
    4389             : 
    4390             : /**
    4391             :  * task_call_func - Invoke a function on task in fixed state
    4392             :  * @p: Process for which the function is to be invoked, can be @current.
    4393             :  * @func: Function to invoke.
    4394             :  * @arg: Argument to function.
    4395             :  *
    4396             :  * Fix the task in it's current state by avoiding wakeups and or rq operations
    4397             :  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
    4398             :  * to work out what the state is, if required.  Given that @func can be invoked
    4399             :  * with a runqueue lock held, it had better be quite lightweight.
    4400             :  *
    4401             :  * Returns:
    4402             :  *   Whatever @func returns
    4403             :  */
    4404           0 : int task_call_func(struct task_struct *p, task_call_f func, void *arg)
    4405             : {
    4406           0 :         struct rq *rq = NULL;
    4407             :         struct rq_flags rf;
    4408             :         int ret;
    4409             : 
    4410           0 :         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
    4411             : 
    4412           0 :         if (__task_needs_rq_lock(p))
    4413             :                 rq = __task_rq_lock(p, &rf);
    4414             : 
    4415             :         /*
    4416             :          * At this point the task is pinned; either:
    4417             :          *  - blocked and we're holding off wakeups      (pi->lock)
    4418             :          *  - woken, and we're holding off enqueue       (rq->lock)
    4419             :          *  - queued, and we're holding off schedule     (rq->lock)
    4420             :          *  - running, and we're holding off de-schedule (rq->lock)
    4421             :          *
    4422             :          * The called function (@func) can use: task_curr(), p->on_rq and
    4423             :          * p->__state to differentiate between these states.
    4424             :          */
    4425           0 :         ret = func(p, arg);
    4426             : 
    4427           0 :         if (rq)
    4428           0 :                 rq_unlock(rq, &rf);
    4429             : 
    4430           0 :         raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
    4431           0 :         return ret;
    4432             : }
    4433             : 
    4434             : /**
    4435             :  * cpu_curr_snapshot - Return a snapshot of the currently running task
    4436             :  * @cpu: The CPU on which to snapshot the task.
    4437             :  *
    4438             :  * Returns the task_struct pointer of the task "currently" running on
    4439             :  * the specified CPU.  If the same task is running on that CPU throughout,
    4440             :  * the return value will be a pointer to that task's task_struct structure.
    4441             :  * If the CPU did any context switches even vaguely concurrently with the
    4442             :  * execution of this function, the return value will be a pointer to the
    4443             :  * task_struct structure of a randomly chosen task that was running on
    4444             :  * that CPU somewhere around the time that this function was executing.
    4445             :  *
    4446             :  * If the specified CPU was offline, the return value is whatever it
    4447             :  * is, perhaps a pointer to the task_struct structure of that CPU's idle
    4448             :  * task, but there is no guarantee.  Callers wishing a useful return
    4449             :  * value must take some action to ensure that the specified CPU remains
    4450             :  * online throughout.
    4451             :  *
    4452             :  * This function executes full memory barriers before and after fetching
    4453             :  * the pointer, which permits the caller to confine this function's fetch
    4454             :  * with respect to the caller's accesses to other shared variables.
    4455             :  */
    4456           0 : struct task_struct *cpu_curr_snapshot(int cpu)
    4457             : {
    4458             :         struct task_struct *t;
    4459             : 
    4460           0 :         smp_mb(); /* Pairing determined by caller's synchronization design. */
    4461           0 :         t = rcu_dereference(cpu_curr(cpu));
    4462           0 :         smp_mb(); /* Pairing determined by caller's synchronization design. */
    4463           0 :         return t;
    4464             : }
    4465             : 
    4466             : /**
    4467             :  * wake_up_process - Wake up a specific process
    4468             :  * @p: The process to be woken up.
    4469             :  *
    4470             :  * Attempt to wake up the nominated process and move it to the set of runnable
    4471             :  * processes.
    4472             :  *
    4473             :  * Return: 1 if the process was woken up, 0 if it was already running.
    4474             :  *
    4475             :  * This function executes a full memory barrier before accessing the task state.
    4476             :  */
    4477        1029 : int wake_up_process(struct task_struct *p)
    4478             : {
    4479        1029 :         return try_to_wake_up(p, TASK_NORMAL, 0);
    4480             : }
    4481             : EXPORT_SYMBOL(wake_up_process);
    4482             : 
    4483           1 : int wake_up_state(struct task_struct *p, unsigned int state)
    4484             : {
    4485           1 :         return try_to_wake_up(p, state, 0);
    4486             : }
    4487             : 
    4488             : /*
    4489             :  * Perform scheduler related setup for a newly forked process p.
    4490             :  * p is forked by current.
    4491             :  *
    4492             :  * __sched_fork() is basic setup used by init_idle() too:
    4493             :  */
    4494         176 : static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
    4495             : {
    4496         176 :         p->on_rq                     = 0;
    4497             : 
    4498         176 :         p->se.on_rq                  = 0;
    4499         176 :         p->se.exec_start             = 0;
    4500         176 :         p->se.sum_exec_runtime               = 0;
    4501         176 :         p->se.prev_sum_exec_runtime  = 0;
    4502         176 :         p->se.nr_migrations          = 0;
    4503         176 :         p->se.vruntime                       = 0;
    4504         352 :         INIT_LIST_HEAD(&p->se.group_node);
    4505             : 
    4506             : #ifdef CONFIG_FAIR_GROUP_SCHED
    4507             :         p->se.cfs_rq                 = NULL;
    4508             : #endif
    4509             : 
    4510             : #ifdef CONFIG_SCHEDSTATS
    4511             :         /* Even if schedstat is disabled, there should not be garbage */
    4512             :         memset(&p->stats, 0, sizeof(p->stats));
    4513             : #endif
    4514             : 
    4515         176 :         RB_CLEAR_NODE(&p->dl.rb_node);
    4516         176 :         init_dl_task_timer(&p->dl);
    4517         176 :         init_dl_inactive_task_timer(&p->dl);
    4518         176 :         __dl_clear_params(p);
    4519             : 
    4520         352 :         INIT_LIST_HEAD(&p->rt.run_list);
    4521         176 :         p->rt.timeout                = 0;
    4522         176 :         p->rt.time_slice     = sched_rr_timeslice;
    4523         176 :         p->rt.on_rq          = 0;
    4524         176 :         p->rt.on_list                = 0;
    4525             : 
    4526             : #ifdef CONFIG_PREEMPT_NOTIFIERS
    4527             :         INIT_HLIST_HEAD(&p->preempt_notifiers);
    4528             : #endif
    4529             : 
    4530             : #ifdef CONFIG_COMPACTION
    4531         176 :         p->capture_control = NULL;
    4532             : #endif
    4533         176 :         init_numa_balancing(clone_flags, p);
    4534             : #ifdef CONFIG_SMP
    4535             :         p->wake_entry.u_flags = CSD_TYPE_TTWU;
    4536             :         p->migration_pending = NULL;
    4537             : #endif
    4538         176 :         init_sched_mm_cid(p);
    4539         176 : }
    4540             : 
    4541             : DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
    4542             : 
    4543             : #ifdef CONFIG_NUMA_BALANCING
    4544             : 
    4545             : int sysctl_numa_balancing_mode;
    4546             : 
    4547             : static void __set_numabalancing_state(bool enabled)
    4548             : {
    4549             :         if (enabled)
    4550             :                 static_branch_enable(&sched_numa_balancing);
    4551             :         else
    4552             :                 static_branch_disable(&sched_numa_balancing);
    4553             : }
    4554             : 
    4555             : void set_numabalancing_state(bool enabled)
    4556             : {
    4557             :         if (enabled)
    4558             :                 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
    4559             :         else
    4560             :                 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
    4561             :         __set_numabalancing_state(enabled);
    4562             : }
    4563             : 
    4564             : #ifdef CONFIG_PROC_SYSCTL
    4565             : static void reset_memory_tiering(void)
    4566             : {
    4567             :         struct pglist_data *pgdat;
    4568             : 
    4569             :         for_each_online_pgdat(pgdat) {
    4570             :                 pgdat->nbp_threshold = 0;
    4571             :                 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    4572             :                 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
    4573             :         }
    4574             : }
    4575             : 
    4576             : static int sysctl_numa_balancing(struct ctl_table *table, int write,
    4577             :                           void *buffer, size_t *lenp, loff_t *ppos)
    4578             : {
    4579             :         struct ctl_table t;
    4580             :         int err;
    4581             :         int state = sysctl_numa_balancing_mode;
    4582             : 
    4583             :         if (write && !capable(CAP_SYS_ADMIN))
    4584             :                 return -EPERM;
    4585             : 
    4586             :         t = *table;
    4587             :         t.data = &state;
    4588             :         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    4589             :         if (err < 0)
    4590             :                 return err;
    4591             :         if (write) {
    4592             :                 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    4593             :                     (state & NUMA_BALANCING_MEMORY_TIERING))
    4594             :                         reset_memory_tiering();
    4595             :                 sysctl_numa_balancing_mode = state;
    4596             :                 __set_numabalancing_state(state);
    4597             :         }
    4598             :         return err;
    4599             : }
    4600             : #endif
    4601             : #endif
    4602             : 
    4603             : #ifdef CONFIG_SCHEDSTATS
    4604             : 
    4605             : DEFINE_STATIC_KEY_FALSE(sched_schedstats);
    4606             : 
    4607             : static void set_schedstats(bool enabled)
    4608             : {
    4609             :         if (enabled)
    4610             :                 static_branch_enable(&sched_schedstats);
    4611             :         else
    4612             :                 static_branch_disable(&sched_schedstats);
    4613             : }
    4614             : 
    4615             : void force_schedstat_enabled(void)
    4616             : {
    4617             :         if (!schedstat_enabled()) {
    4618             :                 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
    4619             :                 static_branch_enable(&sched_schedstats);
    4620             :         }
    4621             : }
    4622             : 
    4623             : static int __init setup_schedstats(char *str)
    4624             : {
    4625             :         int ret = 0;
    4626             :         if (!str)
    4627             :                 goto out;
    4628             : 
    4629             :         if (!strcmp(str, "enable")) {
    4630             :                 set_schedstats(true);
    4631             :                 ret = 1;
    4632             :         } else if (!strcmp(str, "disable")) {
    4633             :                 set_schedstats(false);
    4634             :                 ret = 1;
    4635             :         }
    4636             : out:
    4637             :         if (!ret)
    4638             :                 pr_warn("Unable to parse schedstats=\n");
    4639             : 
    4640             :         return ret;
    4641             : }
    4642             : __setup("schedstats=", setup_schedstats);
    4643             : 
    4644             : #ifdef CONFIG_PROC_SYSCTL
    4645             : static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
    4646             :                 size_t *lenp, loff_t *ppos)
    4647             : {
    4648             :         struct ctl_table t;
    4649             :         int err;
    4650             :         int state = static_branch_likely(&sched_schedstats);
    4651             : 
    4652             :         if (write && !capable(CAP_SYS_ADMIN))
    4653             :                 return -EPERM;
    4654             : 
    4655             :         t = *table;
    4656             :         t.data = &state;
    4657             :         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    4658             :         if (err < 0)
    4659             :                 return err;
    4660             :         if (write)
    4661             :                 set_schedstats(state);
    4662             :         return err;
    4663             : }
    4664             : #endif /* CONFIG_PROC_SYSCTL */
    4665             : #endif /* CONFIG_SCHEDSTATS */
    4666             : 
    4667             : #ifdef CONFIG_SYSCTL
    4668             : static struct ctl_table sched_core_sysctls[] = {
    4669             : #ifdef CONFIG_SCHEDSTATS
    4670             :         {
    4671             :                 .procname       = "sched_schedstats",
    4672             :                 .data           = NULL,
    4673             :                 .maxlen         = sizeof(unsigned int),
    4674             :                 .mode           = 0644,
    4675             :                 .proc_handler   = sysctl_schedstats,
    4676             :                 .extra1         = SYSCTL_ZERO,
    4677             :                 .extra2         = SYSCTL_ONE,
    4678             :         },
    4679             : #endif /* CONFIG_SCHEDSTATS */
    4680             : #ifdef CONFIG_UCLAMP_TASK
    4681             :         {
    4682             :                 .procname       = "sched_util_clamp_min",
    4683             :                 .data           = &sysctl_sched_uclamp_util_min,
    4684             :                 .maxlen         = sizeof(unsigned int),
    4685             :                 .mode           = 0644,
    4686             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4687             :         },
    4688             :         {
    4689             :                 .procname       = "sched_util_clamp_max",
    4690             :                 .data           = &sysctl_sched_uclamp_util_max,
    4691             :                 .maxlen         = sizeof(unsigned int),
    4692             :                 .mode           = 0644,
    4693             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4694             :         },
    4695             :         {
    4696             :                 .procname       = "sched_util_clamp_min_rt_default",
    4697             :                 .data           = &sysctl_sched_uclamp_util_min_rt_default,
    4698             :                 .maxlen         = sizeof(unsigned int),
    4699             :                 .mode           = 0644,
    4700             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4701             :         },
    4702             : #endif /* CONFIG_UCLAMP_TASK */
    4703             : #ifdef CONFIG_NUMA_BALANCING
    4704             :         {
    4705             :                 .procname       = "numa_balancing",
    4706             :                 .data           = NULL, /* filled in by handler */
    4707             :                 .maxlen         = sizeof(unsigned int),
    4708             :                 .mode           = 0644,
    4709             :                 .proc_handler   = sysctl_numa_balancing,
    4710             :                 .extra1         = SYSCTL_ZERO,
    4711             :                 .extra2         = SYSCTL_FOUR,
    4712             :         },
    4713             : #endif /* CONFIG_NUMA_BALANCING */
    4714             :         {}
    4715             : };
    4716           1 : static int __init sched_core_sysctl_init(void)
    4717             : {
    4718           1 :         register_sysctl_init("kernel", sched_core_sysctls);
    4719           1 :         return 0;
    4720             : }
    4721             : late_initcall(sched_core_sysctl_init);
    4722             : #endif /* CONFIG_SYSCTL */
    4723             : 
    4724             : /*
    4725             :  * fork()/clone()-time setup:
    4726             :  */
    4727         175 : int sched_fork(unsigned long clone_flags, struct task_struct *p)
    4728             : {
    4729         175 :         __sched_fork(clone_flags, p);
    4730             :         /*
    4731             :          * We mark the process as NEW here. This guarantees that
    4732             :          * nobody will actually run it, and a signal or other external
    4733             :          * event cannot wake it up and insert it on the runqueue either.
    4734             :          */
    4735         175 :         p->__state = TASK_NEW;
    4736             : 
    4737             :         /*
    4738             :          * Make sure we do not leak PI boosting priority to the child.
    4739             :          */
    4740         175 :         p->prio = current->normal_prio;
    4741             : 
    4742         175 :         uclamp_fork(p);
    4743             : 
    4744             :         /*
    4745             :          * Revert to default priority/policy on fork if requested.
    4746             :          */
    4747         175 :         if (unlikely(p->sched_reset_on_fork)) {
    4748           0 :                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    4749           0 :                         p->policy = SCHED_NORMAL;
    4750           0 :                         p->static_prio = NICE_TO_PRIO(0);
    4751           0 :                         p->rt_priority = 0;
    4752           0 :                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
    4753           0 :                         p->static_prio = NICE_TO_PRIO(0);
    4754             : 
    4755           0 :                 p->prio = p->normal_prio = p->static_prio;
    4756           0 :                 set_load_weight(p, false);
    4757             : 
    4758             :                 /*
    4759             :                  * We don't need the reset flag anymore after the fork. It has
    4760             :                  * fulfilled its duty:
    4761             :                  */
    4762           0 :                 p->sched_reset_on_fork = 0;
    4763             :         }
    4764             : 
    4765         350 :         if (dl_prio(p->prio))
    4766             :                 return -EAGAIN;
    4767         350 :         else if (rt_prio(p->prio))
    4768           0 :                 p->sched_class = &rt_sched_class;
    4769             :         else
    4770         175 :                 p->sched_class = &fair_sched_class;
    4771             : 
    4772         175 :         init_entity_runnable_average(&p->se);
    4773             : 
    4774             : 
    4775             : #ifdef CONFIG_SCHED_INFO
    4776             :         if (likely(sched_info_on()))
    4777             :                 memset(&p->sched_info, 0, sizeof(p->sched_info));
    4778             : #endif
    4779             : #if defined(CONFIG_SMP)
    4780             :         p->on_cpu = 0;
    4781             : #endif
    4782         175 :         init_task_preempt_count(p);
    4783             : #ifdef CONFIG_SMP
    4784             :         plist_node_init(&p->pushable_tasks, MAX_PRIO);
    4785             :         RB_CLEAR_NODE(&p->pushable_dl_tasks);
    4786             : #endif
    4787         175 :         return 0;
    4788             : }
    4789             : 
    4790         175 : void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
    4791             : {
    4792             :         unsigned long flags;
    4793             : 
    4794             :         /*
    4795             :          * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
    4796             :          * required yet, but lockdep gets upset if rules are violated.
    4797             :          */
    4798         175 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    4799             : #ifdef CONFIG_CGROUP_SCHED
    4800             :         if (1) {
    4801             :                 struct task_group *tg;
    4802             :                 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
    4803             :                                   struct task_group, css);
    4804             :                 tg = autogroup_task_group(p, tg);
    4805             :                 p->sched_task_group = tg;
    4806             :         }
    4807             : #endif
    4808         175 :         rseq_migrate(p);
    4809             :         /*
    4810             :          * We're setting the CPU for the first time, we don't migrate,
    4811             :          * so use __set_task_cpu().
    4812             :          */
    4813         175 :         __set_task_cpu(p, smp_processor_id());
    4814         175 :         if (p->sched_class->task_fork)
    4815         175 :                 p->sched_class->task_fork(p);
    4816         350 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    4817         175 : }
    4818             : 
    4819         175 : void sched_post_fork(struct task_struct *p)
    4820             : {
    4821         175 :         uclamp_post_fork(p);
    4822         175 : }
    4823             : 
    4824           3 : unsigned long to_ratio(u64 period, u64 runtime)
    4825             : {
    4826           3 :         if (runtime == RUNTIME_INF)
    4827             :                 return BW_UNIT;
    4828             : 
    4829             :         /*
    4830             :          * Doing this here saves a lot of checks in all
    4831             :          * the calling paths, and returning zero seems
    4832             :          * safe for them anyway.
    4833             :          */
    4834           3 :         if (period == 0)
    4835             :                 return 0;
    4836             : 
    4837           6 :         return div64_u64(runtime << BW_SHIFT, period);
    4838             : }
    4839             : 
    4840             : /*
    4841             :  * wake_up_new_task - wake up a newly created task for the first time.
    4842             :  *
    4843             :  * This function will do some initial scheduler statistics housekeeping
    4844             :  * that must be done for every newly created context, then puts the task
    4845             :  * on the runqueue and wakes it.
    4846             :  */
    4847         175 : void wake_up_new_task(struct task_struct *p)
    4848             : {
    4849             :         struct rq_flags rf;
    4850             :         struct rq *rq;
    4851             : 
    4852         175 :         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
    4853         175 :         WRITE_ONCE(p->__state, TASK_RUNNING);
    4854             : #ifdef CONFIG_SMP
    4855             :         /*
    4856             :          * Fork balancing, do it here and not earlier because:
    4857             :          *  - cpus_ptr can change in the fork path
    4858             :          *  - any previously selected CPU might disappear through hotplug
    4859             :          *
    4860             :          * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
    4861             :          * as we're not fully set-up yet.
    4862             :          */
    4863             :         p->recent_used_cpu = task_cpu(p);
    4864             :         rseq_migrate(p);
    4865             :         __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
    4866             : #endif
    4867         175 :         rq = __task_rq_lock(p, &rf);
    4868         175 :         update_rq_clock(rq);
    4869         175 :         post_init_entity_util_avg(p);
    4870             : 
    4871         175 :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    4872         175 :         trace_sched_wakeup_new(p);
    4873         175 :         check_preempt_curr(rq, p, WF_FORK);
    4874             : #ifdef CONFIG_SMP
    4875             :         if (p->sched_class->task_woken) {
    4876             :                 /*
    4877             :                  * Nothing relies on rq->lock after this, so it's fine to
    4878             :                  * drop it.
    4879             :                  */
    4880             :                 rq_unpin_lock(rq, &rf);
    4881             :                 p->sched_class->task_woken(rq, p);
    4882             :                 rq_repin_lock(rq, &rf);
    4883             :         }
    4884             : #endif
    4885         350 :         task_rq_unlock(rq, p, &rf);
    4886         175 : }
    4887             : 
    4888             : #ifdef CONFIG_PREEMPT_NOTIFIERS
    4889             : 
    4890             : static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
    4891             : 
    4892             : void preempt_notifier_inc(void)
    4893             : {
    4894             :         static_branch_inc(&preempt_notifier_key);
    4895             : }
    4896             : EXPORT_SYMBOL_GPL(preempt_notifier_inc);
    4897             : 
    4898             : void preempt_notifier_dec(void)
    4899             : {
    4900             :         static_branch_dec(&preempt_notifier_key);
    4901             : }
    4902             : EXPORT_SYMBOL_GPL(preempt_notifier_dec);
    4903             : 
    4904             : /**
    4905             :  * preempt_notifier_register - tell me when current is being preempted & rescheduled
    4906             :  * @notifier: notifier struct to register
    4907             :  */
    4908             : void preempt_notifier_register(struct preempt_notifier *notifier)
    4909             : {
    4910             :         if (!static_branch_unlikely(&preempt_notifier_key))
    4911             :                 WARN(1, "registering preempt_notifier while notifiers disabled\n");
    4912             : 
    4913             :         hlist_add_head(&notifier->link, &current->preempt_notifiers);
    4914             : }
    4915             : EXPORT_SYMBOL_GPL(preempt_notifier_register);
    4916             : 
    4917             : /**
    4918             :  * preempt_notifier_unregister - no longer interested in preemption notifications
    4919             :  * @notifier: notifier struct to unregister
    4920             :  *
    4921             :  * This is *not* safe to call from within a preemption notifier.
    4922             :  */
    4923             : void preempt_notifier_unregister(struct preempt_notifier *notifier)
    4924             : {
    4925             :         hlist_del(&notifier->link);
    4926             : }
    4927             : EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
    4928             : 
    4929             : static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4930             : {
    4931             :         struct preempt_notifier *notifier;
    4932             : 
    4933             :         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    4934             :                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
    4935             : }
    4936             : 
    4937             : static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4938             : {
    4939             :         if (static_branch_unlikely(&preempt_notifier_key))
    4940             :                 __fire_sched_in_preempt_notifiers(curr);
    4941             : }
    4942             : 
    4943             : static void
    4944             : __fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4945             :                                    struct task_struct *next)
    4946             : {
    4947             :         struct preempt_notifier *notifier;
    4948             : 
    4949             :         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    4950             :                 notifier->ops->sched_out(notifier, next);
    4951             : }
    4952             : 
    4953             : static __always_inline void
    4954             : fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4955             :                                  struct task_struct *next)
    4956             : {
    4957             :         if (static_branch_unlikely(&preempt_notifier_key))
    4958             :                 __fire_sched_out_preempt_notifiers(curr, next);
    4959             : }
    4960             : 
    4961             : #else /* !CONFIG_PREEMPT_NOTIFIERS */
    4962             : 
    4963             : static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4964             : {
    4965             : }
    4966             : 
    4967             : static inline void
    4968             : fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4969             :                                  struct task_struct *next)
    4970             : {
    4971             : }
    4972             : 
    4973             : #endif /* CONFIG_PREEMPT_NOTIFIERS */
    4974             : 
    4975             : static inline void prepare_task(struct task_struct *next)
    4976             : {
    4977             : #ifdef CONFIG_SMP
    4978             :         /*
    4979             :          * Claim the task as running, we do this before switching to it
    4980             :          * such that any running task will have this set.
    4981             :          *
    4982             :          * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
    4983             :          * its ordering comment.
    4984             :          */
    4985             :         WRITE_ONCE(next->on_cpu, 1);
    4986             : #endif
    4987             : }
    4988             : 
    4989             : static inline void finish_task(struct task_struct *prev)
    4990             : {
    4991             : #ifdef CONFIG_SMP
    4992             :         /*
    4993             :          * This must be the very last reference to @prev from this CPU. After
    4994             :          * p->on_cpu is cleared, the task can be moved to a different CPU. We
    4995             :          * must ensure this doesn't happen until the switch is completely
    4996             :          * finished.
    4997             :          *
    4998             :          * In particular, the load of prev->state in finish_task_switch() must
    4999             :          * happen before this.
    5000             :          *
    5001             :          * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
    5002             :          */
    5003             :         smp_store_release(&prev->on_cpu, 0);
    5004             : #endif
    5005             : }
    5006             : 
    5007             : #ifdef CONFIG_SMP
    5008             : 
    5009             : static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
    5010             : {
    5011             :         void (*func)(struct rq *rq);
    5012             :         struct balance_callback *next;
    5013             : 
    5014             :         lockdep_assert_rq_held(rq);
    5015             : 
    5016             :         while (head) {
    5017             :                 func = (void (*)(struct rq *))head->func;
    5018             :                 next = head->next;
    5019             :                 head->next = NULL;
    5020             :                 head = next;
    5021             : 
    5022             :                 func(rq);
    5023             :         }
    5024             : }
    5025             : 
    5026             : static void balance_push(struct rq *rq);
    5027             : 
    5028             : /*
    5029             :  * balance_push_callback is a right abuse of the callback interface and plays
    5030             :  * by significantly different rules.
    5031             :  *
    5032             :  * Where the normal balance_callback's purpose is to be ran in the same context
    5033             :  * that queued it (only later, when it's safe to drop rq->lock again),
    5034             :  * balance_push_callback is specifically targeted at __schedule().
    5035             :  *
    5036             :  * This abuse is tolerated because it places all the unlikely/odd cases behind
    5037             :  * a single test, namely: rq->balance_callback == NULL.
    5038             :  */
    5039             : struct balance_callback balance_push_callback = {
    5040             :         .next = NULL,
    5041             :         .func = balance_push,
    5042             : };
    5043             : 
    5044             : static inline struct balance_callback *
    5045             : __splice_balance_callbacks(struct rq *rq, bool split)
    5046             : {
    5047             :         struct balance_callback *head = rq->balance_callback;
    5048             : 
    5049             :         if (likely(!head))
    5050             :                 return NULL;
    5051             : 
    5052             :         lockdep_assert_rq_held(rq);
    5053             :         /*
    5054             :          * Must not take balance_push_callback off the list when
    5055             :          * splice_balance_callbacks() and balance_callbacks() are not
    5056             :          * in the same rq->lock section.
    5057             :          *
    5058             :          * In that case it would be possible for __schedule() to interleave
    5059             :          * and observe the list empty.
    5060             :          */
    5061             :         if (split && head == &balance_push_callback)
    5062             :                 head = NULL;
    5063             :         else
    5064             :                 rq->balance_callback = NULL;
    5065             : 
    5066             :         return head;
    5067             : }
    5068             : 
    5069             : static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
    5070             : {
    5071             :         return __splice_balance_callbacks(rq, true);
    5072             : }
    5073             : 
    5074             : static void __balance_callbacks(struct rq *rq)
    5075             : {
    5076             :         do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
    5077             : }
    5078             : 
    5079             : static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
    5080             : {
    5081             :         unsigned long flags;
    5082             : 
    5083             :         if (unlikely(head)) {
    5084             :                 raw_spin_rq_lock_irqsave(rq, flags);
    5085             :                 do_balance_callbacks(rq, head);
    5086             :                 raw_spin_rq_unlock_irqrestore(rq, flags);
    5087             :         }
    5088             : }
    5089             : 
    5090             : #else
    5091             : 
    5092             : static inline void __balance_callbacks(struct rq *rq)
    5093             : {
    5094             : }
    5095             : 
    5096             : static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
    5097             : {
    5098             :         return NULL;
    5099             : }
    5100             : 
    5101             : static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
    5102             : {
    5103             : }
    5104             : 
    5105             : #endif
    5106             : 
    5107             : static inline void
    5108             : prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
    5109             : {
    5110             :         /*
    5111             :          * Since the runqueue lock will be released by the next
    5112             :          * task (which is an invalid locking op but in the case
    5113             :          * of the scheduler it's an obvious special-case), so we
    5114             :          * do an early lockdep release here:
    5115             :          */
    5116             :         rq_unpin_lock(rq, rf);
    5117             :         spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
    5118             : #ifdef CONFIG_DEBUG_SPINLOCK
    5119             :         /* this is a valid case when another task releases the spinlock */
    5120             :         rq_lockp(rq)->owner = next;
    5121             : #endif
    5122             : }
    5123             : 
    5124             : static inline void finish_lock_switch(struct rq *rq)
    5125             : {
    5126             :         /*
    5127             :          * If we are tracking spinlock dependencies then we have to
    5128             :          * fix up the runqueue lock - which gets 'carried over' from
    5129             :          * prev into current:
    5130             :          */
    5131             :         spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
    5132        1031 :         __balance_callbacks(rq);
    5133        1031 :         raw_spin_rq_unlock_irq(rq);
    5134             : }
    5135             : 
    5136             : /*
    5137             :  * NOP if the arch has not defined these:
    5138             :  */
    5139             : 
    5140             : #ifndef prepare_arch_switch
    5141             : # define prepare_arch_switch(next)      do { } while (0)
    5142             : #endif
    5143             : 
    5144             : #ifndef finish_arch_post_lock_switch
    5145             : # define finish_arch_post_lock_switch() do { } while (0)
    5146             : #endif
    5147             : 
    5148             : static inline void kmap_local_sched_out(void)
    5149             : {
    5150             : #ifdef CONFIG_KMAP_LOCAL
    5151             :         if (unlikely(current->kmap_ctrl.idx))
    5152             :                 __kmap_local_sched_out();
    5153             : #endif
    5154             : }
    5155             : 
    5156             : static inline void kmap_local_sched_in(void)
    5157             : {
    5158             : #ifdef CONFIG_KMAP_LOCAL
    5159             :         if (unlikely(current->kmap_ctrl.idx))
    5160             :                 __kmap_local_sched_in();
    5161             : #endif
    5162             : }
    5163             : 
    5164             : /**
    5165             :  * prepare_task_switch - prepare to switch tasks
    5166             :  * @rq: the runqueue preparing to switch
    5167             :  * @prev: the current task that is being switched out
    5168             :  * @next: the task we are going to switch to.
    5169             :  *
    5170             :  * This is called with the rq lock held and interrupts off. It must
    5171             :  * be paired with a subsequent finish_task_switch after the context
    5172             :  * switch.
    5173             :  *
    5174             :  * prepare_task_switch sets up locking and calls architecture specific
    5175             :  * hooks.
    5176             :  */
    5177             : static inline void
    5178             : prepare_task_switch(struct rq *rq, struct task_struct *prev,
    5179             :                     struct task_struct *next)
    5180             : {
    5181             :         kcov_prepare_switch(prev);
    5182             :         sched_info_switch(rq, prev, next);
    5183             :         perf_event_task_sched_out(prev, next);
    5184             :         rseq_preempt(prev);
    5185             :         fire_sched_out_preempt_notifiers(prev, next);
    5186             :         kmap_local_sched_out();
    5187             :         prepare_task(next);
    5188             :         prepare_arch_switch(next);
    5189             : }
    5190             : 
    5191             : /**
    5192             :  * finish_task_switch - clean up after a task-switch
    5193             :  * @prev: the thread we just switched away from.
    5194             :  *
    5195             :  * finish_task_switch must be called after the context switch, paired
    5196             :  * with a prepare_task_switch call before the context switch.
    5197             :  * finish_task_switch will reconcile locking set up by prepare_task_switch,
    5198             :  * and do any other architecture-specific cleanup actions.
    5199             :  *
    5200             :  * Note that we may have delayed dropping an mm in context_switch(). If
    5201             :  * so, we finish that here outside of the runqueue lock. (Doing it
    5202             :  * with the lock held can cause deadlocks; see schedule() for
    5203             :  * details.)
    5204             :  *
    5205             :  * The context switch have flipped the stack from under us and restored the
    5206             :  * local variables which were saved when this task called schedule() in the
    5207             :  * past. prev == current is still correct but we need to recalculate this_rq
    5208             :  * because prev may have moved to another CPU.
    5209             :  */
    5210        1031 : static struct rq *finish_task_switch(struct task_struct *prev)
    5211             :         __releases(rq->lock)
    5212             : {
    5213        1031 :         struct rq *rq = this_rq();
    5214        1031 :         struct mm_struct *mm = rq->prev_mm;
    5215             :         unsigned int prev_state;
    5216             : 
    5217             :         /*
    5218             :          * The previous task will have left us with a preempt_count of 2
    5219             :          * because it left us after:
    5220             :          *
    5221             :          *      schedule()
    5222             :          *        preempt_disable();                    // 1
    5223             :          *        __schedule()
    5224             :          *          raw_spin_lock_irq(&rq->lock) // 2
    5225             :          *
    5226             :          * Also, see FORK_PREEMPT_COUNT.
    5227             :          */
    5228        1031 :         if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
    5229             :                       "corrupted preempt_count: %s/%d/0x%x\n",
    5230             :                       current->comm, current->pid, preempt_count()))
    5231             :                 preempt_count_set(FORK_PREEMPT_COUNT);
    5232             : 
    5233        1031 :         rq->prev_mm = NULL;
    5234             : 
    5235             :         /*
    5236             :          * A task struct has one reference for the use as "current".
    5237             :          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
    5238             :          * schedule one last time. The schedule call will never return, and
    5239             :          * the scheduled task must drop that reference.
    5240             :          *
    5241             :          * We must observe prev->state before clearing prev->on_cpu (in
    5242             :          * finish_task), otherwise a concurrent wakeup can get prev
    5243             :          * running on another CPU and we could rave with its RUNNING -> DEAD
    5244             :          * transition, resulting in a double drop.
    5245             :          */
    5246        1031 :         prev_state = READ_ONCE(prev->__state);
    5247        1031 :         vtime_task_switch(prev);
    5248        1031 :         perf_event_task_sched_in(prev, current);
    5249        1031 :         finish_task(prev);
    5250             :         tick_nohz_task_switch();
    5251        1031 :         finish_lock_switch(rq);
    5252             :         finish_arch_post_lock_switch();
    5253        1031 :         kcov_finish_switch(current);
    5254             :         /*
    5255             :          * kmap_local_sched_out() is invoked with rq::lock held and
    5256             :          * interrupts disabled. There is no requirement for that, but the
    5257             :          * sched out code does not have an interrupt enabled section.
    5258             :          * Restoring the maps on sched in does not require interrupts being
    5259             :          * disabled either.
    5260             :          */
    5261             :         kmap_local_sched_in();
    5262             : 
    5263        1031 :         fire_sched_in_preempt_notifiers(current);
    5264             :         /*
    5265             :          * When switching through a kernel thread, the loop in
    5266             :          * membarrier_{private,global}_expedited() may have observed that
    5267             :          * kernel thread and not issued an IPI. It is therefore possible to
    5268             :          * schedule between user->kernel->user threads without passing though
    5269             :          * switch_mm(). Membarrier requires a barrier after storing to
    5270             :          * rq->curr, before returning to userspace, so provide them here:
    5271             :          *
    5272             :          * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
    5273             :          *   provided by mmdrop_lazy_tlb(),
    5274             :          * - a sync_core for SYNC_CORE.
    5275             :          */
    5276        1031 :         if (mm) {
    5277           0 :                 membarrier_mm_sync_core_before_usermode(mm);
    5278             :                 mmdrop_lazy_tlb_sched(mm);
    5279             :         }
    5280             : 
    5281        1031 :         if (unlikely(prev_state == TASK_DEAD)) {
    5282         160 :                 if (prev->sched_class->task_dead)
    5283           0 :                         prev->sched_class->task_dead(prev);
    5284             : 
    5285             :                 /* Task is done with its stack. */
    5286         160 :                 put_task_stack(prev);
    5287             : 
    5288         160 :                 put_task_struct_rcu_user(prev);
    5289             :         }
    5290             : 
    5291        1031 :         return rq;
    5292             : }
    5293             : 
    5294             : /**
    5295             :  * schedule_tail - first thing a freshly forked thread must call.
    5296             :  * @prev: the thread we just switched away from.
    5297             :  */
    5298         175 : asmlinkage __visible void schedule_tail(struct task_struct *prev)
    5299             :         __releases(rq->lock)
    5300             : {
    5301             :         /*
    5302             :          * New tasks start with FORK_PREEMPT_COUNT, see there and
    5303             :          * finish_task_switch() for details.
    5304             :          *
    5305             :          * finish_task_switch() will drop rq->lock() and lower preempt_count
    5306             :          * and the preempt_enable() will end up enabling preemption (on
    5307             :          * PREEMPT_COUNT kernels).
    5308             :          */
    5309             : 
    5310         175 :         finish_task_switch(prev);
    5311         175 :         preempt_enable();
    5312             : 
    5313         175 :         if (current->set_child_tid)
    5314           0 :                 put_user(task_pid_vnr(current), current->set_child_tid);
    5315             : 
    5316         175 :         calculate_sigpending();
    5317         175 : }
    5318             : 
    5319             : /*
    5320             :  * context_switch - switch to the new MM and the new thread's register state.
    5321             :  */
    5322             : static __always_inline struct rq *
    5323             : context_switch(struct rq *rq, struct task_struct *prev,
    5324             :                struct task_struct *next, struct rq_flags *rf)
    5325             : {
    5326        1031 :         prepare_task_switch(rq, prev, next);
    5327             : 
    5328             :         /*
    5329             :          * For paravirt, this is coupled with an exit in switch_to to
    5330             :          * combine the page table reload and the switch backend into
    5331             :          * one hypercall.
    5332             :          */
    5333             :         arch_start_context_switch(prev);
    5334             : 
    5335             :         /*
    5336             :          * kernel -> kernel   lazy + transfer active
    5337             :          *   user -> kernel   lazy + mmgrab_lazy_tlb() active
    5338             :          *
    5339             :          * kernel ->   user   switch + mmdrop_lazy_tlb() active
    5340             :          *   user ->   user   switch
    5341             :          *
    5342             :          * switch_mm_cid() needs to be updated if the barriers provided
    5343             :          * by context_switch() are modified.
    5344             :          */
    5345        1031 :         if (!next->mm) {                                // to kernel
    5346        1031 :                 enter_lazy_tlb(prev->active_mm, next);
    5347             : 
    5348        1031 :                 next->active_mm = prev->active_mm;
    5349        1031 :                 if (prev->mm)                           // from user
    5350           0 :                         mmgrab_lazy_tlb(prev->active_mm);
    5351             :                 else
    5352        1031 :                         prev->active_mm = NULL;
    5353             :         } else {                                        // to user
    5354           0 :                 membarrier_switch_mm(rq, prev->active_mm, next->mm);
    5355             :                 /*
    5356             :                  * sys_membarrier() requires an smp_mb() between setting
    5357             :                  * rq->curr / membarrier_switch_mm() and returning to userspace.
    5358             :                  *
    5359             :                  * The below provides this either through switch_mm(), or in
    5360             :                  * case 'prev->active_mm == next->mm' through
    5361             :                  * finish_task_switch()'s mmdrop().
    5362             :                  */
    5363           0 :                 switch_mm_irqs_off(prev->active_mm, next->mm, next);
    5364           0 :                 lru_gen_use_mm(next->mm);
    5365             : 
    5366           0 :                 if (!prev->mm) {                        // from kernel
    5367             :                         /* will mmdrop_lazy_tlb() in finish_task_switch(). */
    5368           0 :                         rq->prev_mm = prev->active_mm;
    5369           0 :                         prev->active_mm = NULL;
    5370             :                 }
    5371             :         }
    5372             : 
    5373             :         /* switch_mm_cid() requires the memory barriers above. */
    5374        1031 :         switch_mm_cid(rq, prev, next);
    5375             : 
    5376        1031 :         rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
    5377             : 
    5378        1031 :         prepare_lock_switch(rq, next, rf);
    5379             : 
    5380             :         /* Here we just switch the register state and the stack. */
    5381        1031 :         switch_to(prev, next, prev);
    5382         856 :         barrier();
    5383             : 
    5384         856 :         return finish_task_switch(prev);
    5385             : }
    5386             : 
    5387             : /*
    5388             :  * nr_running and nr_context_switches:
    5389             :  *
    5390             :  * externally visible scheduler statistics: current number of runnable
    5391             :  * threads, total number of context switches performed since bootup.
    5392             :  */
    5393           0 : unsigned int nr_running(void)
    5394             : {
    5395           0 :         unsigned int i, sum = 0;
    5396             : 
    5397           0 :         for_each_online_cpu(i)
    5398           0 :                 sum += cpu_rq(i)->nr_running;
    5399             : 
    5400           0 :         return sum;
    5401             : }
    5402             : 
    5403             : /*
    5404             :  * Check if only the current task is running on the CPU.
    5405             :  *
    5406             :  * Caution: this function does not check that the caller has disabled
    5407             :  * preemption, thus the result might have a time-of-check-to-time-of-use
    5408             :  * race.  The caller is responsible to use it correctly, for example:
    5409             :  *
    5410             :  * - from a non-preemptible section (of course)
    5411             :  *
    5412             :  * - from a thread that is bound to a single CPU
    5413             :  *
    5414             :  * - in a loop with very short iterations (e.g. a polling loop)
    5415             :  */
    5416           0 : bool single_task_running(void)
    5417             : {
    5418           0 :         return raw_rq()->nr_running == 1;
    5419             : }
    5420             : EXPORT_SYMBOL(single_task_running);
    5421             : 
    5422           0 : unsigned long long nr_context_switches_cpu(int cpu)
    5423             : {
    5424           0 :         return cpu_rq(cpu)->nr_switches;
    5425             : }
    5426             : 
    5427           0 : unsigned long long nr_context_switches(void)
    5428             : {
    5429             :         int i;
    5430           0 :         unsigned long long sum = 0;
    5431             : 
    5432           0 :         for_each_possible_cpu(i)
    5433           0 :                 sum += cpu_rq(i)->nr_switches;
    5434             : 
    5435           0 :         return sum;
    5436             : }
    5437             : 
    5438             : /*
    5439             :  * Consumers of these two interfaces, like for example the cpuidle menu
    5440             :  * governor, are using nonsensical data. Preferring shallow idle state selection
    5441             :  * for a CPU that has IO-wait which might not even end up running the task when
    5442             :  * it does become runnable.
    5443             :  */
    5444             : 
    5445           0 : unsigned int nr_iowait_cpu(int cpu)
    5446             : {
    5447           0 :         return atomic_read(&cpu_rq(cpu)->nr_iowait);
    5448             : }
    5449             : 
    5450             : /*
    5451             :  * IO-wait accounting, and how it's mostly bollocks (on SMP).
    5452             :  *
    5453             :  * The idea behind IO-wait account is to account the idle time that we could
    5454             :  * have spend running if it were not for IO. That is, if we were to improve the
    5455             :  * storage performance, we'd have a proportional reduction in IO-wait time.
    5456             :  *
    5457             :  * This all works nicely on UP, where, when a task blocks on IO, we account
    5458             :  * idle time as IO-wait, because if the storage were faster, it could've been
    5459             :  * running and we'd not be idle.
    5460             :  *
    5461             :  * This has been extended to SMP, by doing the same for each CPU. This however
    5462             :  * is broken.
    5463             :  *
    5464             :  * Imagine for instance the case where two tasks block on one CPU, only the one
    5465             :  * CPU will have IO-wait accounted, while the other has regular idle. Even
    5466             :  * though, if the storage were faster, both could've ran at the same time,
    5467             :  * utilising both CPUs.
    5468             :  *
    5469             :  * This means, that when looking globally, the current IO-wait accounting on
    5470             :  * SMP is a lower bound, by reason of under accounting.
    5471             :  *
    5472             :  * Worse, since the numbers are provided per CPU, they are sometimes
    5473             :  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
    5474             :  * associated with any one particular CPU, it can wake to another CPU than it
    5475             :  * blocked on. This means the per CPU IO-wait number is meaningless.
    5476             :  *
    5477             :  * Task CPU affinities can make all that even more 'interesting'.
    5478             :  */
    5479             : 
    5480           0 : unsigned int nr_iowait(void)
    5481             : {
    5482           0 :         unsigned int i, sum = 0;
    5483             : 
    5484           0 :         for_each_possible_cpu(i)
    5485           0 :                 sum += nr_iowait_cpu(i);
    5486             : 
    5487           0 :         return sum;
    5488             : }
    5489             : 
    5490             : #ifdef CONFIG_SMP
    5491             : 
    5492             : /*
    5493             :  * sched_exec - execve() is a valuable balancing opportunity, because at
    5494             :  * this point the task has the smallest effective memory and cache footprint.
    5495             :  */
    5496             : void sched_exec(void)
    5497             : {
    5498             :         struct task_struct *p = current;
    5499             :         unsigned long flags;
    5500             :         int dest_cpu;
    5501             : 
    5502             :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    5503             :         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
    5504             :         if (dest_cpu == smp_processor_id())
    5505             :                 goto unlock;
    5506             : 
    5507             :         if (likely(cpu_active(dest_cpu))) {
    5508             :                 struct migration_arg arg = { p, dest_cpu };
    5509             : 
    5510             :                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    5511             :                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
    5512             :                 return;
    5513             :         }
    5514             : unlock:
    5515             :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    5516             : }
    5517             : 
    5518             : #endif
    5519             : 
    5520             : DEFINE_PER_CPU(struct kernel_stat, kstat);
    5521             : DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
    5522             : 
    5523             : EXPORT_PER_CPU_SYMBOL(kstat);
    5524             : EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
    5525             : 
    5526             : /*
    5527             :  * The function fair_sched_class.update_curr accesses the struct curr
    5528             :  * and its field curr->exec_start; when called from task_sched_runtime(),
    5529             :  * we observe a high rate of cache misses in practice.
    5530             :  * Prefetching this data results in improved performance.
    5531             :  */
    5532             : static inline void prefetch_curr_exec_start(struct task_struct *p)
    5533             : {
    5534             : #ifdef CONFIG_FAIR_GROUP_SCHED
    5535             :         struct sched_entity *curr = (&p->se)->cfs_rq->curr;
    5536             : #else
    5537           0 :         struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
    5538             : #endif
    5539           0 :         prefetch(curr);
    5540           0 :         prefetch(&curr->exec_start);
    5541             : }
    5542             : 
    5543             : /*
    5544             :  * Return accounted runtime for the task.
    5545             :  * In case the task is currently running, return the runtime plus current's
    5546             :  * pending runtime that have not been accounted yet.
    5547             :  */
    5548           0 : unsigned long long task_sched_runtime(struct task_struct *p)
    5549             : {
    5550             :         struct rq_flags rf;
    5551             :         struct rq *rq;
    5552             :         u64 ns;
    5553             : 
    5554             : #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
    5555             :         /*
    5556             :          * 64-bit doesn't need locks to atomically read a 64-bit value.
    5557             :          * So we have a optimization chance when the task's delta_exec is 0.
    5558             :          * Reading ->on_cpu is racy, but this is ok.
    5559             :          *
    5560             :          * If we race with it leaving CPU, we'll take a lock. So we're correct.
    5561             :          * If we race with it entering CPU, unaccounted time is 0. This is
    5562             :          * indistinguishable from the read occurring a few cycles earlier.
    5563             :          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
    5564             :          * been accounted, so we're correct here as well.
    5565             :          */
    5566             :         if (!p->on_cpu || !task_on_rq_queued(p))
    5567             :                 return p->se.sum_exec_runtime;
    5568             : #endif
    5569             : 
    5570           0 :         rq = task_rq_lock(p, &rf);
    5571             :         /*
    5572             :          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
    5573             :          * project cycles that may never be accounted to this
    5574             :          * thread, breaking clock_gettime().
    5575             :          */
    5576           0 :         if (task_current(rq, p) && task_on_rq_queued(p)) {
    5577           0 :                 prefetch_curr_exec_start(p);
    5578           0 :                 update_rq_clock(rq);
    5579           0 :                 p->sched_class->update_curr(rq);
    5580             :         }
    5581           0 :         ns = p->se.sum_exec_runtime;
    5582           0 :         task_rq_unlock(rq, p, &rf);
    5583             : 
    5584           0 :         return ns;
    5585             : }
    5586             : 
    5587             : #ifdef CONFIG_SCHED_DEBUG
    5588             : static u64 cpu_resched_latency(struct rq *rq)
    5589             : {
    5590             :         int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
    5591             :         u64 resched_latency, now = rq_clock(rq);
    5592             :         static bool warned_once;
    5593             : 
    5594             :         if (sysctl_resched_latency_warn_once && warned_once)
    5595             :                 return 0;
    5596             : 
    5597             :         if (!need_resched() || !latency_warn_ms)
    5598             :                 return 0;
    5599             : 
    5600             :         if (system_state == SYSTEM_BOOTING)
    5601             :                 return 0;
    5602             : 
    5603             :         if (!rq->last_seen_need_resched_ns) {
    5604             :                 rq->last_seen_need_resched_ns = now;
    5605             :                 rq->ticks_without_resched = 0;
    5606             :                 return 0;
    5607             :         }
    5608             : 
    5609             :         rq->ticks_without_resched++;
    5610             :         resched_latency = now - rq->last_seen_need_resched_ns;
    5611             :         if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
    5612             :                 return 0;
    5613             : 
    5614             :         warned_once = true;
    5615             : 
    5616             :         return resched_latency;
    5617             : }
    5618             : 
    5619             : static int __init setup_resched_latency_warn_ms(char *str)
    5620             : {
    5621             :         long val;
    5622             : 
    5623             :         if ((kstrtol(str, 0, &val))) {
    5624             :                 pr_warn("Unable to set resched_latency_warn_ms\n");
    5625             :                 return 1;
    5626             :         }
    5627             : 
    5628             :         sysctl_resched_latency_warn_ms = val;
    5629             :         return 1;
    5630             : }
    5631             : __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
    5632             : #else
    5633             : static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
    5634             : #endif /* CONFIG_SCHED_DEBUG */
    5635             : 
    5636             : /*
    5637             :  * This function gets called by the timer code, with HZ frequency.
    5638             :  * We call it with interrupts disabled.
    5639             :  */
    5640           5 : void scheduler_tick(void)
    5641             : {
    5642           5 :         int cpu = smp_processor_id();
    5643           5 :         struct rq *rq = cpu_rq(cpu);
    5644           5 :         struct task_struct *curr = rq->curr;
    5645             :         struct rq_flags rf;
    5646             :         unsigned long thermal_pressure;
    5647             :         u64 resched_latency;
    5648             : 
    5649           5 :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5650             :                 arch_scale_freq_tick();
    5651             : 
    5652             :         sched_clock_tick();
    5653             : 
    5654           5 :         rq_lock(rq, &rf);
    5655             : 
    5656           5 :         update_rq_clock(rq);
    5657           5 :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    5658           5 :         update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
    5659           5 :         curr->sched_class->task_tick(rq, curr, 0);
    5660             :         if (sched_feat(LATENCY_WARN))
    5661             :                 resched_latency = cpu_resched_latency(rq);
    5662           5 :         calc_global_load_tick(rq);
    5663           5 :         sched_core_tick(rq);
    5664           5 :         task_tick_mm_cid(rq, curr);
    5665             : 
    5666           5 :         rq_unlock(rq, &rf);
    5667             : 
    5668             :         if (sched_feat(LATENCY_WARN) && resched_latency)
    5669             :                 resched_latency_warn(cpu, resched_latency);
    5670             : 
    5671             :         perf_event_task_tick();
    5672             : 
    5673           5 :         if (curr->flags & PF_WQ_WORKER)
    5674           0 :                 wq_worker_tick(curr);
    5675             : 
    5676             : #ifdef CONFIG_SMP
    5677             :         rq->idle_balance = idle_cpu(cpu);
    5678             :         trigger_load_balance(rq);
    5679             : #endif
    5680           5 : }
    5681             : 
    5682             : #ifdef CONFIG_NO_HZ_FULL
    5683             : 
    5684             : struct tick_work {
    5685             :         int                     cpu;
    5686             :         atomic_t                state;
    5687             :         struct delayed_work     work;
    5688             : };
    5689             : /* Values for ->state, see diagram below. */
    5690             : #define TICK_SCHED_REMOTE_OFFLINE       0
    5691             : #define TICK_SCHED_REMOTE_OFFLINING     1
    5692             : #define TICK_SCHED_REMOTE_RUNNING       2
    5693             : 
    5694             : /*
    5695             :  * State diagram for ->state:
    5696             :  *
    5697             :  *
    5698             :  *          TICK_SCHED_REMOTE_OFFLINE
    5699             :  *                    |   ^
    5700             :  *                    |   |
    5701             :  *                    |   | sched_tick_remote()
    5702             :  *                    |   |
    5703             :  *                    |   |
    5704             :  *                    +--TICK_SCHED_REMOTE_OFFLINING
    5705             :  *                    |   ^
    5706             :  *                    |   |
    5707             :  * sched_tick_start() |   | sched_tick_stop()
    5708             :  *                    |   |
    5709             :  *                    V   |
    5710             :  *          TICK_SCHED_REMOTE_RUNNING
    5711             :  *
    5712             :  *
    5713             :  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
    5714             :  * and sched_tick_start() are happy to leave the state in RUNNING.
    5715             :  */
    5716             : 
    5717             : static struct tick_work __percpu *tick_work_cpu;
    5718             : 
    5719             : static void sched_tick_remote(struct work_struct *work)
    5720             : {
    5721             :         struct delayed_work *dwork = to_delayed_work(work);
    5722             :         struct tick_work *twork = container_of(dwork, struct tick_work, work);
    5723             :         int cpu = twork->cpu;
    5724             :         struct rq *rq = cpu_rq(cpu);
    5725             :         struct task_struct *curr;
    5726             :         struct rq_flags rf;
    5727             :         u64 delta;
    5728             :         int os;
    5729             : 
    5730             :         /*
    5731             :          * Handle the tick only if it appears the remote CPU is running in full
    5732             :          * dynticks mode. The check is racy by nature, but missing a tick or
    5733             :          * having one too much is no big deal because the scheduler tick updates
    5734             :          * statistics and checks timeslices in a time-independent way, regardless
    5735             :          * of when exactly it is running.
    5736             :          */
    5737             :         if (!tick_nohz_tick_stopped_cpu(cpu))
    5738             :                 goto out_requeue;
    5739             : 
    5740             :         rq_lock_irq(rq, &rf);
    5741             :         curr = rq->curr;
    5742             :         if (cpu_is_offline(cpu))
    5743             :                 goto out_unlock;
    5744             : 
    5745             :         update_rq_clock(rq);
    5746             : 
    5747             :         if (!is_idle_task(curr)) {
    5748             :                 /*
    5749             :                  * Make sure the next tick runs within a reasonable
    5750             :                  * amount of time.
    5751             :                  */
    5752             :                 delta = rq_clock_task(rq) - curr->se.exec_start;
    5753             :                 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
    5754             :         }
    5755             :         curr->sched_class->task_tick(rq, curr, 0);
    5756             : 
    5757             :         calc_load_nohz_remote(rq);
    5758             : out_unlock:
    5759             :         rq_unlock_irq(rq, &rf);
    5760             : out_requeue:
    5761             : 
    5762             :         /*
    5763             :          * Run the remote tick once per second (1Hz). This arbitrary
    5764             :          * frequency is large enough to avoid overload but short enough
    5765             :          * to keep scheduler internal stats reasonably up to date.  But
    5766             :          * first update state to reflect hotplug activity if required.
    5767             :          */
    5768             :         os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
    5769             :         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
    5770             :         if (os == TICK_SCHED_REMOTE_RUNNING)
    5771             :                 queue_delayed_work(system_unbound_wq, dwork, HZ);
    5772             : }
    5773             : 
    5774             : static void sched_tick_start(int cpu)
    5775             : {
    5776             :         int os;
    5777             :         struct tick_work *twork;
    5778             : 
    5779             :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5780             :                 return;
    5781             : 
    5782             :         WARN_ON_ONCE(!tick_work_cpu);
    5783             : 
    5784             :         twork = per_cpu_ptr(tick_work_cpu, cpu);
    5785             :         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
    5786             :         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
    5787             :         if (os == TICK_SCHED_REMOTE_OFFLINE) {
    5788             :                 twork->cpu = cpu;
    5789             :                 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
    5790             :                 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
    5791             :         }
    5792             : }
    5793             : 
    5794             : #ifdef CONFIG_HOTPLUG_CPU
    5795             : static void sched_tick_stop(int cpu)
    5796             : {
    5797             :         struct tick_work *twork;
    5798             :         int os;
    5799             : 
    5800             :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5801             :                 return;
    5802             : 
    5803             :         WARN_ON_ONCE(!tick_work_cpu);
    5804             : 
    5805             :         twork = per_cpu_ptr(tick_work_cpu, cpu);
    5806             :         /* There cannot be competing actions, but don't rely on stop-machine. */
    5807             :         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
    5808             :         WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
    5809             :         /* Don't cancel, as this would mess up the state machine. */
    5810             : }
    5811             : #endif /* CONFIG_HOTPLUG_CPU */
    5812             : 
    5813             : int __init sched_tick_offload_init(void)
    5814             : {
    5815             :         tick_work_cpu = alloc_percpu(struct tick_work);
    5816             :         BUG_ON(!tick_work_cpu);
    5817             :         return 0;
    5818             : }
    5819             : 
    5820             : #else /* !CONFIG_NO_HZ_FULL */
    5821             : static inline void sched_tick_start(int cpu) { }
    5822             : static inline void sched_tick_stop(int cpu) { }
    5823             : #endif
    5824             : 
    5825             : #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
    5826             :                                 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
    5827             : /*
    5828             :  * If the value passed in is equal to the current preempt count
    5829             :  * then we just disabled preemption. Start timing the latency.
    5830             :  */
    5831             : static inline void preempt_latency_start(int val)
    5832             : {
    5833             :         if (preempt_count() == val) {
    5834             :                 unsigned long ip = get_lock_parent_ip();
    5835             : #ifdef CONFIG_DEBUG_PREEMPT
    5836             :                 current->preempt_disable_ip = ip;
    5837             : #endif
    5838             :                 trace_preempt_off(CALLER_ADDR0, ip);
    5839             :         }
    5840             : }
    5841             : 
    5842             : void preempt_count_add(int val)
    5843             : {
    5844             : #ifdef CONFIG_DEBUG_PREEMPT
    5845             :         /*
    5846             :          * Underflow?
    5847             :          */
    5848             :         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
    5849             :                 return;
    5850             : #endif
    5851             :         __preempt_count_add(val);
    5852             : #ifdef CONFIG_DEBUG_PREEMPT
    5853             :         /*
    5854             :          * Spinlock count overflowing soon?
    5855             :          */
    5856             :         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
    5857             :                                 PREEMPT_MASK - 10);
    5858             : #endif
    5859             :         preempt_latency_start(val);
    5860             : }
    5861             : EXPORT_SYMBOL(preempt_count_add);
    5862             : NOKPROBE_SYMBOL(preempt_count_add);
    5863             : 
    5864             : /*
    5865             :  * If the value passed in equals to the current preempt count
    5866             :  * then we just enabled preemption. Stop timing the latency.
    5867             :  */
    5868             : static inline void preempt_latency_stop(int val)
    5869             : {
    5870             :         if (preempt_count() == val)
    5871             :                 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
    5872             : }
    5873             : 
    5874             : void preempt_count_sub(int val)
    5875             : {
    5876             : #ifdef CONFIG_DEBUG_PREEMPT
    5877             :         /*
    5878             :          * Underflow?
    5879             :          */
    5880             :         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
    5881             :                 return;
    5882             :         /*
    5883             :          * Is the spinlock portion underflowing?
    5884             :          */
    5885             :         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
    5886             :                         !(preempt_count() & PREEMPT_MASK)))
    5887             :                 return;
    5888             : #endif
    5889             : 
    5890             :         preempt_latency_stop(val);
    5891             :         __preempt_count_sub(val);
    5892             : }
    5893             : EXPORT_SYMBOL(preempt_count_sub);
    5894             : NOKPROBE_SYMBOL(preempt_count_sub);
    5895             : 
    5896             : #else
    5897             : static inline void preempt_latency_start(int val) { }
    5898             : static inline void preempt_latency_stop(int val) { }
    5899             : #endif
    5900             : 
    5901             : static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
    5902             : {
    5903             : #ifdef CONFIG_DEBUG_PREEMPT
    5904             :         return p->preempt_disable_ip;
    5905             : #else
    5906             :         return 0;
    5907             : #endif
    5908             : }
    5909             : 
    5910             : /*
    5911             :  * Print scheduling while atomic bug:
    5912             :  */
    5913           0 : static noinline void __schedule_bug(struct task_struct *prev)
    5914             : {
    5915             :         /* Save this before calling printk(), since that will clobber it */
    5916           0 :         unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
    5917             : 
    5918           0 :         if (oops_in_progress)
    5919             :                 return;
    5920             : 
    5921           0 :         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
    5922             :                 prev->comm, prev->pid, preempt_count());
    5923             : 
    5924           0 :         debug_show_held_locks(prev);
    5925             :         print_modules();
    5926           0 :         if (irqs_disabled())
    5927             :                 print_irqtrace_events(prev);
    5928             :         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
    5929             :             && in_atomic_preempt_off()) {
    5930             :                 pr_err("Preemption disabled at:");
    5931             :                 print_ip_sym(KERN_ERR, preempt_disable_ip);
    5932             :         }
    5933           0 :         check_panic_on_warn("scheduling while atomic");
    5934             : 
    5935           0 :         dump_stack();
    5936           0 :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
    5937             : }
    5938             : 
    5939             : /*
    5940             :  * Various schedule()-time debugging checks and statistics:
    5941             :  */
    5942             : static inline void schedule_debug(struct task_struct *prev, bool preempt)
    5943             : {
    5944             : #ifdef CONFIG_SCHED_STACK_END_CHECK
    5945             :         if (task_stack_end_corrupted(prev))
    5946             :                 panic("corrupted stack end detected inside scheduler\n");
    5947             : 
    5948             :         if (task_scs_end_corrupted(prev))
    5949             :                 panic("corrupted shadow stack detected inside scheduler\n");
    5950             : #endif
    5951             : 
    5952             : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    5953             :         if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
    5954             :                 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
    5955             :                         prev->comm, prev->pid, prev->non_block_count);
    5956             :                 dump_stack();
    5957             :                 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
    5958             :         }
    5959             : #endif
    5960             : 
    5961        1032 :         if (unlikely(in_atomic_preempt_off())) {
    5962           0 :                 __schedule_bug(prev);
    5963             :                 preempt_count_set(PREEMPT_DISABLED);
    5964             :         }
    5965             :         rcu_sleep_check();
    5966             :         SCHED_WARN_ON(ct_state() == CONTEXT_USER);
    5967             : 
    5968        1032 :         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
    5969             : 
    5970             :         schedstat_inc(this_rq()->sched_count);
    5971             : }
    5972             : 
    5973             : static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
    5974             :                                   struct rq_flags *rf)
    5975             : {
    5976             : #ifdef CONFIG_SMP
    5977             :         const struct sched_class *class;
    5978             :         /*
    5979             :          * We must do the balancing pass before put_prev_task(), such
    5980             :          * that when we release the rq->lock the task is in the same
    5981             :          * state as before we took rq->lock.
    5982             :          *
    5983             :          * We can terminate the balance pass as soon as we know there is
    5984             :          * a runnable task of @class priority or higher.
    5985             :          */
    5986             :         for_class_range(class, prev->sched_class, &idle_sched_class) {
    5987             :                 if (class->balance(rq, prev, rf))
    5988             :                         break;
    5989             :         }
    5990             : #endif
    5991             : 
    5992           0 :         put_prev_task(rq, prev);
    5993             : }
    5994             : 
    5995             : /*
    5996             :  * Pick up the highest-prio task:
    5997             :  */
    5998             : static inline struct task_struct *
    5999        1032 : __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6000             : {
    6001             :         const struct sched_class *class;
    6002             :         struct task_struct *p;
    6003             : 
    6004             :         /*
    6005             :          * Optimization: we know that if all tasks are in the fair class we can
    6006             :          * call that function directly, but only if the @prev task wasn't of a
    6007             :          * higher scheduling class, because otherwise those lose the
    6008             :          * opportunity to pull in more work from other CPUs.
    6009             :          */
    6010        1032 :         if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
    6011             :                    rq->nr_running == rq->cfs.h_nr_running)) {
    6012             : 
    6013        1032 :                 p = pick_next_task_fair(rq, prev, rf);
    6014        1032 :                 if (unlikely(p == RETRY_TASK))
    6015             :                         goto restart;
    6016             : 
    6017             :                 /* Assume the next prioritized class is idle_sched_class */
    6018        1032 :                 if (!p) {
    6019           2 :                         put_prev_task(rq, prev);
    6020           2 :                         p = pick_next_task_idle(rq);
    6021             :                 }
    6022             : 
    6023             :                 return p;
    6024             :         }
    6025             : 
    6026             : restart:
    6027           0 :         put_prev_task_balance(rq, prev, rf);
    6028             : 
    6029           0 :         for_each_class(class) {
    6030           0 :                 p = class->pick_next_task(rq);
    6031           0 :                 if (p)
    6032             :                         return p;
    6033             :         }
    6034             : 
    6035           0 :         BUG(); /* The idle class should always have a runnable task. */
    6036             : }
    6037             : 
    6038             : #ifdef CONFIG_SCHED_CORE
    6039             : static inline bool is_task_rq_idle(struct task_struct *t)
    6040             : {
    6041             :         return (task_rq(t)->idle == t);
    6042             : }
    6043             : 
    6044             : static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
    6045             : {
    6046             :         return is_task_rq_idle(a) || (a->core_cookie == cookie);
    6047             : }
    6048             : 
    6049             : static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
    6050             : {
    6051             :         if (is_task_rq_idle(a) || is_task_rq_idle(b))
    6052             :                 return true;
    6053             : 
    6054             :         return a->core_cookie == b->core_cookie;
    6055             : }
    6056             : 
    6057             : static inline struct task_struct *pick_task(struct rq *rq)
    6058             : {
    6059             :         const struct sched_class *class;
    6060             :         struct task_struct *p;
    6061             : 
    6062             :         for_each_class(class) {
    6063             :                 p = class->pick_task(rq);
    6064             :                 if (p)
    6065             :                         return p;
    6066             :         }
    6067             : 
    6068             :         BUG(); /* The idle class should always have a runnable task. */
    6069             : }
    6070             : 
    6071             : extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
    6072             : 
    6073             : static void queue_core_balance(struct rq *rq);
    6074             : 
    6075             : static struct task_struct *
    6076             : pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6077             : {
    6078             :         struct task_struct *next, *p, *max = NULL;
    6079             :         const struct cpumask *smt_mask;
    6080             :         bool fi_before = false;
    6081             :         bool core_clock_updated = (rq == rq->core);
    6082             :         unsigned long cookie;
    6083             :         int i, cpu, occ = 0;
    6084             :         struct rq *rq_i;
    6085             :         bool need_sync;
    6086             : 
    6087             :         if (!sched_core_enabled(rq))
    6088             :                 return __pick_next_task(rq, prev, rf);
    6089             : 
    6090             :         cpu = cpu_of(rq);
    6091             : 
    6092             :         /* Stopper task is switching into idle, no need core-wide selection. */
    6093             :         if (cpu_is_offline(cpu)) {
    6094             :                 /*
    6095             :                  * Reset core_pick so that we don't enter the fastpath when
    6096             :                  * coming online. core_pick would already be migrated to
    6097             :                  * another cpu during offline.
    6098             :                  */
    6099             :                 rq->core_pick = NULL;
    6100             :                 return __pick_next_task(rq, prev, rf);
    6101             :         }
    6102             : 
    6103             :         /*
    6104             :          * If there were no {en,de}queues since we picked (IOW, the task
    6105             :          * pointers are all still valid), and we haven't scheduled the last
    6106             :          * pick yet, do so now.
    6107             :          *
    6108             :          * rq->core_pick can be NULL if no selection was made for a CPU because
    6109             :          * it was either offline or went offline during a sibling's core-wide
    6110             :          * selection. In this case, do a core-wide selection.
    6111             :          */
    6112             :         if (rq->core->core_pick_seq == rq->core->core_task_seq &&
    6113             :             rq->core->core_pick_seq != rq->core_sched_seq &&
    6114             :             rq->core_pick) {
    6115             :                 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
    6116             : 
    6117             :                 next = rq->core_pick;
    6118             :                 if (next != prev) {
    6119             :                         put_prev_task(rq, prev);
    6120             :                         set_next_task(rq, next);
    6121             :                 }
    6122             : 
    6123             :                 rq->core_pick = NULL;
    6124             :                 goto out;
    6125             :         }
    6126             : 
    6127             :         put_prev_task_balance(rq, prev, rf);
    6128             : 
    6129             :         smt_mask = cpu_smt_mask(cpu);
    6130             :         need_sync = !!rq->core->core_cookie;
    6131             : 
    6132             :         /* reset state */
    6133             :         rq->core->core_cookie = 0UL;
    6134             :         if (rq->core->core_forceidle_count) {
    6135             :                 if (!core_clock_updated) {
    6136             :                         update_rq_clock(rq->core);
    6137             :                         core_clock_updated = true;
    6138             :                 }
    6139             :                 sched_core_account_forceidle(rq);
    6140             :                 /* reset after accounting force idle */
    6141             :                 rq->core->core_forceidle_start = 0;
    6142             :                 rq->core->core_forceidle_count = 0;
    6143             :                 rq->core->core_forceidle_occupation = 0;
    6144             :                 need_sync = true;
    6145             :                 fi_before = true;
    6146             :         }
    6147             : 
    6148             :         /*
    6149             :          * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
    6150             :          *
    6151             :          * @task_seq guards the task state ({en,de}queues)
    6152             :          * @pick_seq is the @task_seq we did a selection on
    6153             :          * @sched_seq is the @pick_seq we scheduled
    6154             :          *
    6155             :          * However, preemptions can cause multiple picks on the same task set.
    6156             :          * 'Fix' this by also increasing @task_seq for every pick.
    6157             :          */
    6158             :         rq->core->core_task_seq++;
    6159             : 
    6160             :         /*
    6161             :          * Optimize for common case where this CPU has no cookies
    6162             :          * and there are no cookied tasks running on siblings.
    6163             :          */
    6164             :         if (!need_sync) {
    6165             :                 next = pick_task(rq);
    6166             :                 if (!next->core_cookie) {
    6167             :                         rq->core_pick = NULL;
    6168             :                         /*
    6169             :                          * For robustness, update the min_vruntime_fi for
    6170             :                          * unconstrained picks as well.
    6171             :                          */
    6172             :                         WARN_ON_ONCE(fi_before);
    6173             :                         task_vruntime_update(rq, next, false);
    6174             :                         goto out_set_next;
    6175             :                 }
    6176             :         }
    6177             : 
    6178             :         /*
    6179             :          * For each thread: do the regular task pick and find the max prio task
    6180             :          * amongst them.
    6181             :          *
    6182             :          * Tie-break prio towards the current CPU
    6183             :          */
    6184             :         for_each_cpu_wrap(i, smt_mask, cpu) {
    6185             :                 rq_i = cpu_rq(i);
    6186             : 
    6187             :                 /*
    6188             :                  * Current cpu always has its clock updated on entrance to
    6189             :                  * pick_next_task(). If the current cpu is not the core,
    6190             :                  * the core may also have been updated above.
    6191             :                  */
    6192             :                 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
    6193             :                         update_rq_clock(rq_i);
    6194             : 
    6195             :                 p = rq_i->core_pick = pick_task(rq_i);
    6196             :                 if (!max || prio_less(max, p, fi_before))
    6197             :                         max = p;
    6198             :         }
    6199             : 
    6200             :         cookie = rq->core->core_cookie = max->core_cookie;
    6201             : 
    6202             :         /*
    6203             :          * For each thread: try and find a runnable task that matches @max or
    6204             :          * force idle.
    6205             :          */
    6206             :         for_each_cpu(i, smt_mask) {
    6207             :                 rq_i = cpu_rq(i);
    6208             :                 p = rq_i->core_pick;
    6209             : 
    6210             :                 if (!cookie_equals(p, cookie)) {
    6211             :                         p = NULL;
    6212             :                         if (cookie)
    6213             :                                 p = sched_core_find(rq_i, cookie);
    6214             :                         if (!p)
    6215             :                                 p = idle_sched_class.pick_task(rq_i);
    6216             :                 }
    6217             : 
    6218             :                 rq_i->core_pick = p;
    6219             : 
    6220             :                 if (p == rq_i->idle) {
    6221             :                         if (rq_i->nr_running) {
    6222             :                                 rq->core->core_forceidle_count++;
    6223             :                                 if (!fi_before)
    6224             :                                         rq->core->core_forceidle_seq++;
    6225             :                         }
    6226             :                 } else {
    6227             :                         occ++;
    6228             :                 }
    6229             :         }
    6230             : 
    6231             :         if (schedstat_enabled() && rq->core->core_forceidle_count) {
    6232             :                 rq->core->core_forceidle_start = rq_clock(rq->core);
    6233             :                 rq->core->core_forceidle_occupation = occ;
    6234             :         }
    6235             : 
    6236             :         rq->core->core_pick_seq = rq->core->core_task_seq;
    6237             :         next = rq->core_pick;
    6238             :         rq->core_sched_seq = rq->core->core_pick_seq;
    6239             : 
    6240             :         /* Something should have been selected for current CPU */
    6241             :         WARN_ON_ONCE(!next);
    6242             : 
    6243             :         /*
    6244             :          * Reschedule siblings
    6245             :          *
    6246             :          * NOTE: L1TF -- at this point we're no longer running the old task and
    6247             :          * sending an IPI (below) ensures the sibling will no longer be running
    6248             :          * their task. This ensures there is no inter-sibling overlap between
    6249             :          * non-matching user state.
    6250             :          */
    6251             :         for_each_cpu(i, smt_mask) {
    6252             :                 rq_i = cpu_rq(i);
    6253             : 
    6254             :                 /*
    6255             :                  * An online sibling might have gone offline before a task
    6256             :                  * could be picked for it, or it might be offline but later
    6257             :                  * happen to come online, but its too late and nothing was
    6258             :                  * picked for it.  That's Ok - it will pick tasks for itself,
    6259             :                  * so ignore it.
    6260             :                  */
    6261             :                 if (!rq_i->core_pick)
    6262             :                         continue;
    6263             : 
    6264             :                 /*
    6265             :                  * Update for new !FI->FI transitions, or if continuing to be in !FI:
    6266             :                  * fi_before     fi      update?
    6267             :                  *  0            0       1
    6268             :                  *  0            1       1
    6269             :                  *  1            0       1
    6270             :                  *  1            1       0
    6271             :                  */
    6272             :                 if (!(fi_before && rq->core->core_forceidle_count))
    6273             :                         task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
    6274             : 
    6275             :                 rq_i->core_pick->core_occupation = occ;
    6276             : 
    6277             :                 if (i == cpu) {
    6278             :                         rq_i->core_pick = NULL;
    6279             :                         continue;
    6280             :                 }
    6281             : 
    6282             :                 /* Did we break L1TF mitigation requirements? */
    6283             :                 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
    6284             : 
    6285             :                 if (rq_i->curr == rq_i->core_pick) {
    6286             :                         rq_i->core_pick = NULL;
    6287             :                         continue;
    6288             :                 }
    6289             : 
    6290             :                 resched_curr(rq_i);
    6291             :         }
    6292             : 
    6293             : out_set_next:
    6294             :         set_next_task(rq, next);
    6295             : out:
    6296             :         if (rq->core->core_forceidle_count && next == rq->idle)
    6297             :                 queue_core_balance(rq);
    6298             : 
    6299             :         return next;
    6300             : }
    6301             : 
    6302             : static bool try_steal_cookie(int this, int that)
    6303             : {
    6304             :         struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
    6305             :         struct task_struct *p;
    6306             :         unsigned long cookie;
    6307             :         bool success = false;
    6308             : 
    6309             :         local_irq_disable();
    6310             :         double_rq_lock(dst, src);
    6311             : 
    6312             :         cookie = dst->core->core_cookie;
    6313             :         if (!cookie)
    6314             :                 goto unlock;
    6315             : 
    6316             :         if (dst->curr != dst->idle)
    6317             :                 goto unlock;
    6318             : 
    6319             :         p = sched_core_find(src, cookie);
    6320             :         if (!p)
    6321             :                 goto unlock;
    6322             : 
    6323             :         do {
    6324             :                 if (p == src->core_pick || p == src->curr)
    6325             :                         goto next;
    6326             : 
    6327             :                 if (!is_cpu_allowed(p, this))
    6328             :                         goto next;
    6329             : 
    6330             :                 if (p->core_occupation > dst->idle->core_occupation)
    6331             :                         goto next;
    6332             :                 /*
    6333             :                  * sched_core_find() and sched_core_next() will ensure that task @p
    6334             :                  * is not throttled now, we also need to check whether the runqueue
    6335             :                  * of the destination CPU is being throttled.
    6336             :                  */
    6337             :                 if (sched_task_is_throttled(p, this))
    6338             :                         goto next;
    6339             : 
    6340             :                 deactivate_task(src, p, 0);
    6341             :                 set_task_cpu(p, this);
    6342             :                 activate_task(dst, p, 0);
    6343             : 
    6344             :                 resched_curr(dst);
    6345             : 
    6346             :                 success = true;
    6347             :                 break;
    6348             : 
    6349             : next:
    6350             :                 p = sched_core_next(p, cookie);
    6351             :         } while (p);
    6352             : 
    6353             : unlock:
    6354             :         double_rq_unlock(dst, src);
    6355             :         local_irq_enable();
    6356             : 
    6357             :         return success;
    6358             : }
    6359             : 
    6360             : static bool steal_cookie_task(int cpu, struct sched_domain *sd)
    6361             : {
    6362             :         int i;
    6363             : 
    6364             :         for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
    6365             :                 if (i == cpu)
    6366             :                         continue;
    6367             : 
    6368             :                 if (need_resched())
    6369             :                         break;
    6370             : 
    6371             :                 if (try_steal_cookie(cpu, i))
    6372             :                         return true;
    6373             :         }
    6374             : 
    6375             :         return false;
    6376             : }
    6377             : 
    6378             : static void sched_core_balance(struct rq *rq)
    6379             : {
    6380             :         struct sched_domain *sd;
    6381             :         int cpu = cpu_of(rq);
    6382             : 
    6383             :         preempt_disable();
    6384             :         rcu_read_lock();
    6385             :         raw_spin_rq_unlock_irq(rq);
    6386             :         for_each_domain(cpu, sd) {
    6387             :                 if (need_resched())
    6388             :                         break;
    6389             : 
    6390             :                 if (steal_cookie_task(cpu, sd))
    6391             :                         break;
    6392             :         }
    6393             :         raw_spin_rq_lock_irq(rq);
    6394             :         rcu_read_unlock();
    6395             :         preempt_enable();
    6396             : }
    6397             : 
    6398             : static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
    6399             : 
    6400             : static void queue_core_balance(struct rq *rq)
    6401             : {
    6402             :         if (!sched_core_enabled(rq))
    6403             :                 return;
    6404             : 
    6405             :         if (!rq->core->core_cookie)
    6406             :                 return;
    6407             : 
    6408             :         if (!rq->nr_running) /* not forced idle */
    6409             :                 return;
    6410             : 
    6411             :         queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
    6412             : }
    6413             : 
    6414             : static void sched_core_cpu_starting(unsigned int cpu)
    6415             : {
    6416             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
    6417             :         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
    6418             :         unsigned long flags;
    6419             :         int t;
    6420             : 
    6421             :         sched_core_lock(cpu, &flags);
    6422             : 
    6423             :         WARN_ON_ONCE(rq->core != rq);
    6424             : 
    6425             :         /* if we're the first, we'll be our own leader */
    6426             :         if (cpumask_weight(smt_mask) == 1)
    6427             :                 goto unlock;
    6428             : 
    6429             :         /* find the leader */
    6430             :         for_each_cpu(t, smt_mask) {
    6431             :                 if (t == cpu)
    6432             :                         continue;
    6433             :                 rq = cpu_rq(t);
    6434             :                 if (rq->core == rq) {
    6435             :                         core_rq = rq;
    6436             :                         break;
    6437             :                 }
    6438             :         }
    6439             : 
    6440             :         if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
    6441             :                 goto unlock;
    6442             : 
    6443             :         /* install and validate core_rq */
    6444             :         for_each_cpu(t, smt_mask) {
    6445             :                 rq = cpu_rq(t);
    6446             : 
    6447             :                 if (t == cpu)
    6448             :                         rq->core = core_rq;
    6449             : 
    6450             :                 WARN_ON_ONCE(rq->core != core_rq);
    6451             :         }
    6452             : 
    6453             : unlock:
    6454             :         sched_core_unlock(cpu, &flags);
    6455             : }
    6456             : 
    6457             : static void sched_core_cpu_deactivate(unsigned int cpu)
    6458             : {
    6459             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
    6460             :         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
    6461             :         unsigned long flags;
    6462             :         int t;
    6463             : 
    6464             :         sched_core_lock(cpu, &flags);
    6465             : 
    6466             :         /* if we're the last man standing, nothing to do */
    6467             :         if (cpumask_weight(smt_mask) == 1) {
    6468             :                 WARN_ON_ONCE(rq->core != rq);
    6469             :                 goto unlock;
    6470             :         }
    6471             : 
    6472             :         /* if we're not the leader, nothing to do */
    6473             :         if (rq->core != rq)
    6474             :                 goto unlock;
    6475             : 
    6476             :         /* find a new leader */
    6477             :         for_each_cpu(t, smt_mask) {
    6478             :                 if (t == cpu)
    6479             :                         continue;
    6480             :                 core_rq = cpu_rq(t);
    6481             :                 break;
    6482             :         }
    6483             : 
    6484             :         if (WARN_ON_ONCE(!core_rq)) /* impossible */
    6485             :                 goto unlock;
    6486             : 
    6487             :         /* copy the shared state to the new leader */
    6488             :         core_rq->core_task_seq             = rq->core_task_seq;
    6489             :         core_rq->core_pick_seq             = rq->core_pick_seq;
    6490             :         core_rq->core_cookie               = rq->core_cookie;
    6491             :         core_rq->core_forceidle_count      = rq->core_forceidle_count;
    6492             :         core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
    6493             :         core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
    6494             : 
    6495             :         /*
    6496             :          * Accounting edge for forced idle is handled in pick_next_task().
    6497             :          * Don't need another one here, since the hotplug thread shouldn't
    6498             :          * have a cookie.
    6499             :          */
    6500             :         core_rq->core_forceidle_start = 0;
    6501             : 
    6502             :         /* install new leader */
    6503             :         for_each_cpu(t, smt_mask) {
    6504             :                 rq = cpu_rq(t);
    6505             :                 rq->core = core_rq;
    6506             :         }
    6507             : 
    6508             : unlock:
    6509             :         sched_core_unlock(cpu, &flags);
    6510             : }
    6511             : 
    6512             : static inline void sched_core_cpu_dying(unsigned int cpu)
    6513             : {
    6514             :         struct rq *rq = cpu_rq(cpu);
    6515             : 
    6516             :         if (rq->core != rq)
    6517             :                 rq->core = rq;
    6518             : }
    6519             : 
    6520             : #else /* !CONFIG_SCHED_CORE */
    6521             : 
    6522             : static inline void sched_core_cpu_starting(unsigned int cpu) {}
    6523             : static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
    6524             : static inline void sched_core_cpu_dying(unsigned int cpu) {}
    6525             : 
    6526             : static struct task_struct *
    6527             : pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6528             : {
    6529        1032 :         return __pick_next_task(rq, prev, rf);
    6530             : }
    6531             : 
    6532             : #endif /* CONFIG_SCHED_CORE */
    6533             : 
    6534             : /*
    6535             :  * Constants for the sched_mode argument of __schedule().
    6536             :  *
    6537             :  * The mode argument allows RT enabled kernels to differentiate a
    6538             :  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
    6539             :  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
    6540             :  * optimize the AND operation out and just check for zero.
    6541             :  */
    6542             : #define SM_NONE                 0x0
    6543             : #define SM_PREEMPT              0x1
    6544             : #define SM_RTLOCK_WAIT          0x2
    6545             : 
    6546             : #ifndef CONFIG_PREEMPT_RT
    6547             : # define SM_MASK_PREEMPT        (~0U)
    6548             : #else
    6549             : # define SM_MASK_PREEMPT        SM_PREEMPT
    6550             : #endif
    6551             : 
    6552             : /*
    6553             :  * __schedule() is the main scheduler function.
    6554             :  *
    6555             :  * The main means of driving the scheduler and thus entering this function are:
    6556             :  *
    6557             :  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
    6558             :  *
    6559             :  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
    6560             :  *      paths. For example, see arch/x86/entry_64.S.
    6561             :  *
    6562             :  *      To drive preemption between tasks, the scheduler sets the flag in timer
    6563             :  *      interrupt handler scheduler_tick().
    6564             :  *
    6565             :  *   3. Wakeups don't really cause entry into schedule(). They add a
    6566             :  *      task to the run-queue and that's it.
    6567             :  *
    6568             :  *      Now, if the new task added to the run-queue preempts the current
    6569             :  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
    6570             :  *      called on the nearest possible occasion:
    6571             :  *
    6572             :  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
    6573             :  *
    6574             :  *         - in syscall or exception context, at the next outmost
    6575             :  *           preempt_enable(). (this might be as soon as the wake_up()'s
    6576             :  *           spin_unlock()!)
    6577             :  *
    6578             :  *         - in IRQ context, return from interrupt-handler to
    6579             :  *           preemptible context
    6580             :  *
    6581             :  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
    6582             :  *         then at the next:
    6583             :  *
    6584             :  *          - cond_resched() call
    6585             :  *          - explicit schedule() call
    6586             :  *          - return from syscall or exception to user-space
    6587             :  *          - return from interrupt-handler to user-space
    6588             :  *
    6589             :  * WARNING: must be called with preemption disabled!
    6590             :  */
    6591        1032 : static void __sched notrace __schedule(unsigned int sched_mode)
    6592             : {
    6593             :         struct task_struct *prev, *next;
    6594             :         unsigned long *switch_count;
    6595             :         unsigned long prev_state;
    6596             :         struct rq_flags rf;
    6597             :         struct rq *rq;
    6598             :         int cpu;
    6599             : 
    6600        1032 :         cpu = smp_processor_id();
    6601        1032 :         rq = cpu_rq(cpu);
    6602        1032 :         prev = rq->curr;
    6603             : 
    6604        2064 :         schedule_debug(prev, !!sched_mode);
    6605             : 
    6606             :         if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
    6607             :                 hrtick_clear(rq);
    6608             : 
    6609             :         local_irq_disable();
    6610        1032 :         rcu_note_context_switch(!!sched_mode);
    6611             : 
    6612             :         /*
    6613             :          * Make sure that signal_pending_state()->signal_pending() below
    6614             :          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
    6615             :          * done by the caller to avoid the race with signal_wake_up():
    6616             :          *
    6617             :          * __set_current_state(@state)          signal_wake_up()
    6618             :          * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
    6619             :          *                                        wake_up_state(p, state)
    6620             :          *   LOCK rq->lock                       LOCK p->pi_state
    6621             :          *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
    6622             :          *     if (signal_pending_state())          if (p->state & @state)
    6623             :          *
    6624             :          * Also, the membarrier system call requires a full memory barrier
    6625             :          * after coming from user-space, before storing to rq->curr.
    6626             :          */
    6627        1032 :         rq_lock(rq, &rf);
    6628             :         smp_mb__after_spinlock();
    6629             : 
    6630             :         /* Promote REQ to ACT */
    6631        1032 :         rq->clock_update_flags <<= 1;
    6632        1032 :         update_rq_clock(rq);
    6633             : 
    6634        1032 :         switch_count = &prev->nivcsw;
    6635             : 
    6636             :         /*
    6637             :          * We must load prev->state once (task_struct::state is volatile), such
    6638             :          * that we form a control dependency vs deactivate_task() below.
    6639             :          */
    6640        1032 :         prev_state = READ_ONCE(prev->__state);
    6641        1032 :         if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
    6642        1029 :                 if (signal_pending_state(prev_state, prev)) {
    6643           0 :                         WRITE_ONCE(prev->__state, TASK_RUNNING);
    6644             :                 } else {
    6645        1029 :                         prev->sched_contributes_to_load =
    6646             :                                 (prev_state & TASK_UNINTERRUPTIBLE) &&
    6647        1029 :                                 !(prev_state & TASK_NOLOAD) &&
    6648             :                                 !(prev_state & TASK_FROZEN);
    6649             : 
    6650        1029 :                         if (prev->sched_contributes_to_load)
    6651         510 :                                 rq->nr_uninterruptible++;
    6652             : 
    6653             :                         /*
    6654             :                          * __schedule()                 ttwu()
    6655             :                          *   prev_state = prev->state;    if (p->on_rq && ...)
    6656             :                          *   if (prev_state)                goto out;
    6657             :                          *     p->on_rq = 0;           smp_acquire__after_ctrl_dep();
    6658             :                          *                                p->state = TASK_WAKING
    6659             :                          *
    6660             :                          * Where __schedule() and ttwu() have matching control dependencies.
    6661             :                          *
    6662             :                          * After this, schedule() must not care about p->state any more.
    6663             :                          */
    6664        1029 :                         deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
    6665             : 
    6666        1029 :                         if (prev->in_iowait) {
    6667           0 :                                 atomic_inc(&rq->nr_iowait);
    6668             :                                 delayacct_blkio_start();
    6669             :                         }
    6670             :                 }
    6671        1029 :                 switch_count = &prev->nvcsw;
    6672             :         }
    6673             : 
    6674        1032 :         next = pick_next_task(rq, prev, &rf);
    6675        1032 :         clear_tsk_need_resched(prev);
    6676             :         clear_preempt_need_resched();
    6677             : #ifdef CONFIG_SCHED_DEBUG
    6678             :         rq->last_seen_need_resched_ns = 0;
    6679             : #endif
    6680             : 
    6681        1032 :         if (likely(prev != next)) {
    6682        1031 :                 rq->nr_switches++;
    6683             :                 /*
    6684             :                  * RCU users of rcu_dereference(rq->curr) may not see
    6685             :                  * changes to task_struct made by pick_next_task().
    6686             :                  */
    6687        1031 :                 RCU_INIT_POINTER(rq->curr, next);
    6688             :                 /*
    6689             :                  * The membarrier system call requires each architecture
    6690             :                  * to have a full memory barrier after updating
    6691             :                  * rq->curr, before returning to user-space.
    6692             :                  *
    6693             :                  * Here are the schemes providing that barrier on the
    6694             :                  * various architectures:
    6695             :                  * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
    6696             :                  *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
    6697             :                  * - finish_lock_switch() for weakly-ordered
    6698             :                  *   architectures where spin_unlock is a full barrier,
    6699             :                  * - switch_to() for arm64 (weakly-ordered, spin_unlock
    6700             :                  *   is a RELEASE barrier),
    6701             :                  */
    6702        1031 :                 ++*switch_count;
    6703             : 
    6704        1031 :                 migrate_disable_switch(rq, prev);
    6705        1031 :                 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
    6706             : 
    6707        1031 :                 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
    6708             : 
    6709             :                 /* Also unlocks the rq: */
    6710         856 :                 rq = context_switch(rq, prev, next, &rf);
    6711             :         } else {
    6712           1 :                 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
    6713             : 
    6714           1 :                 rq_unpin_lock(rq, &rf);
    6715           1 :                 __balance_callbacks(rq);
    6716           1 :                 raw_spin_rq_unlock_irq(rq);
    6717             :         }
    6718         857 : }
    6719             : 
    6720         160 : void __noreturn do_task_dead(void)
    6721             : {
    6722             :         /* Causes final put_task_struct in finish_task_switch(): */
    6723         800 :         set_special_state(TASK_DEAD);
    6724             : 
    6725             :         /* Tell freezer to ignore us: */
    6726         160 :         current->flags |= PF_NOFREEZE;
    6727             : 
    6728         160 :         __schedule(SM_NONE);
    6729           0 :         BUG();
    6730             : 
    6731             :         /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
    6732             :         for (;;)
    6733             :                 cpu_relax();
    6734             : }
    6735             : 
    6736         870 : static inline void sched_submit_work(struct task_struct *tsk)
    6737             : {
    6738             :         unsigned int task_flags;
    6739             : 
    6740         870 :         if (task_is_running(tsk))
    6741             :                 return;
    6742             : 
    6743         869 :         task_flags = tsk->flags;
    6744             :         /*
    6745             :          * If a worker goes to sleep, notify and ask workqueue whether it
    6746             :          * wants to wake up a task to maintain concurrency.
    6747             :          */
    6748         869 :         if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
    6749          24 :                 if (task_flags & PF_WQ_WORKER)
    6750          24 :                         wq_worker_sleeping(tsk);
    6751             :                 else
    6752           0 :                         io_wq_worker_sleeping(tsk);
    6753             :         }
    6754             : 
    6755             :         /*
    6756             :          * spinlock and rwlock must not flush block requests.  This will
    6757             :          * deadlock if the callback attempts to acquire a lock which is
    6758             :          * already acquired.
    6759             :          */
    6760         869 :         SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
    6761             : 
    6762             :         /*
    6763             :          * If we are going to sleep and we have plugged IO queued,
    6764             :          * make sure to submit it to avoid deadlocks.
    6765             :          */
    6766         869 :         blk_flush_plug(tsk->plug, true);
    6767             : }
    6768             : 
    6769         855 : static void sched_update_worker(struct task_struct *tsk)
    6770             : {
    6771         855 :         if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
    6772          15 :                 if (tsk->flags & PF_WQ_WORKER)
    6773          15 :                         wq_worker_running(tsk);
    6774             :                 else
    6775           0 :                         io_wq_worker_running(tsk);
    6776             :         }
    6777         855 : }
    6778             : 
    6779         870 : asmlinkage __visible void __sched schedule(void)
    6780             : {
    6781         870 :         struct task_struct *tsk = current;
    6782             : 
    6783         870 :         sched_submit_work(tsk);
    6784             :         do {
    6785         870 :                 preempt_disable();
    6786         870 :                 __schedule(SM_NONE);
    6787         855 :                 sched_preempt_enable_no_resched();
    6788         855 :         } while (need_resched());
    6789         855 :         sched_update_worker(tsk);
    6790         855 : }
    6791             : EXPORT_SYMBOL(schedule);
    6792             : 
    6793             : /*
    6794             :  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
    6795             :  * state (have scheduled out non-voluntarily) by making sure that all
    6796             :  * tasks have either left the run queue or have gone into user space.
    6797             :  * As idle tasks do not do either, they must not ever be preempted
    6798             :  * (schedule out non-voluntarily).
    6799             :  *
    6800             :  * schedule_idle() is similar to schedule_preempt_disable() except that it
    6801             :  * never enables preemption because it does not call sched_submit_work().
    6802             :  */
    6803           0 : void __sched schedule_idle(void)
    6804             : {
    6805             :         /*
    6806             :          * As this skips calling sched_submit_work(), which the idle task does
    6807             :          * regardless because that function is a nop when the task is in a
    6808             :          * TASK_RUNNING state, make sure this isn't used someplace that the
    6809             :          * current task can be in any other state. Note, idle is always in the
    6810             :          * TASK_RUNNING state.
    6811             :          */
    6812           0 :         WARN_ON_ONCE(current->__state);
    6813             :         do {
    6814           0 :                 __schedule(SM_NONE);
    6815           0 :         } while (need_resched());
    6816           0 : }
    6817             : 
    6818             : #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
    6819             : asmlinkage __visible void __sched schedule_user(void)
    6820             : {
    6821             :         /*
    6822             :          * If we come here after a random call to set_need_resched(),
    6823             :          * or we have been woken up remotely but the IPI has not yet arrived,
    6824             :          * we haven't yet exited the RCU idle mode. Do it here manually until
    6825             :          * we find a better solution.
    6826             :          *
    6827             :          * NB: There are buggy callers of this function.  Ideally we
    6828             :          * should warn if prev_state != CONTEXT_USER, but that will trigger
    6829             :          * too frequently to make sense yet.
    6830             :          */
    6831             :         enum ctx_state prev_state = exception_enter();
    6832             :         schedule();
    6833             :         exception_exit(prev_state);
    6834             : }
    6835             : #endif
    6836             : 
    6837             : /**
    6838             :  * schedule_preempt_disabled - called with preemption disabled
    6839             :  *
    6840             :  * Returns with preemption disabled. Note: preempt_count must be 1
    6841             :  */
    6842         175 : void __sched schedule_preempt_disabled(void)
    6843             : {
    6844         175 :         sched_preempt_enable_no_resched();
    6845         175 :         schedule();
    6846         174 :         preempt_disable();
    6847         174 : }
    6848             : 
    6849             : #ifdef CONFIG_PREEMPT_RT
    6850             : void __sched notrace schedule_rtlock(void)
    6851             : {
    6852             :         do {
    6853             :                 preempt_disable();
    6854             :                 __schedule(SM_RTLOCK_WAIT);
    6855             :                 sched_preempt_enable_no_resched();
    6856             :         } while (need_resched());
    6857             : }
    6858             : NOKPROBE_SYMBOL(schedule_rtlock);
    6859             : #endif
    6860             : 
    6861             : static void __sched notrace preempt_schedule_common(void)
    6862             : {
    6863             :         do {
    6864             :                 /*
    6865             :                  * Because the function tracer can trace preempt_count_sub()
    6866             :                  * and it also uses preempt_enable/disable_notrace(), if
    6867             :                  * NEED_RESCHED is set, the preempt_enable_notrace() called
    6868             :                  * by the function tracer will call this function again and
    6869             :                  * cause infinite recursion.
    6870             :                  *
    6871             :                  * Preemption must be disabled here before the function
    6872             :                  * tracer can trace. Break up preempt_disable() into two
    6873             :                  * calls. One to disable preemption without fear of being
    6874             :                  * traced. The other to still record the preemption latency,
    6875             :                  * which can also be traced by the function tracer.
    6876             :                  */
    6877           2 :                 preempt_disable_notrace();
    6878           2 :                 preempt_latency_start(1);
    6879           2 :                 __schedule(SM_PREEMPT);
    6880           2 :                 preempt_latency_stop(1);
    6881           2 :                 preempt_enable_no_resched_notrace();
    6882             : 
    6883             :                 /*
    6884             :                  * Check again in case we missed a preemption opportunity
    6885             :                  * between schedule and now.
    6886             :                  */
    6887           2 :         } while (need_resched());
    6888             : }
    6889             : 
    6890             : #ifdef CONFIG_PREEMPTION
    6891             : /*
    6892             :  * This is the entry point to schedule() from in-kernel preemption
    6893             :  * off of preempt_enable.
    6894             :  */
    6895             : asmlinkage __visible void __sched notrace preempt_schedule(void)
    6896             : {
    6897             :         /*
    6898             :          * If there is a non-zero preempt_count or interrupts are disabled,
    6899             :          * we do not want to preempt the current task. Just return..
    6900             :          */
    6901             :         if (likely(!preemptible()))
    6902             :                 return;
    6903             :         preempt_schedule_common();
    6904             : }
    6905             : NOKPROBE_SYMBOL(preempt_schedule);
    6906             : EXPORT_SYMBOL(preempt_schedule);
    6907             : 
    6908             : #ifdef CONFIG_PREEMPT_DYNAMIC
    6909             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    6910             : #ifndef preempt_schedule_dynamic_enabled
    6911             : #define preempt_schedule_dynamic_enabled        preempt_schedule
    6912             : #define preempt_schedule_dynamic_disabled       NULL
    6913             : #endif
    6914             : DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
    6915             : EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
    6916             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    6917             : static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
    6918             : void __sched notrace dynamic_preempt_schedule(void)
    6919             : {
    6920             :         if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
    6921             :                 return;
    6922             :         preempt_schedule();
    6923             : }
    6924             : NOKPROBE_SYMBOL(dynamic_preempt_schedule);
    6925             : EXPORT_SYMBOL(dynamic_preempt_schedule);
    6926             : #endif
    6927             : #endif
    6928             : 
    6929             : /**
    6930             :  * preempt_schedule_notrace - preempt_schedule called by tracing
    6931             :  *
    6932             :  * The tracing infrastructure uses preempt_enable_notrace to prevent
    6933             :  * recursion and tracing preempt enabling caused by the tracing
    6934             :  * infrastructure itself. But as tracing can happen in areas coming
    6935             :  * from userspace or just about to enter userspace, a preempt enable
    6936             :  * can occur before user_exit() is called. This will cause the scheduler
    6937             :  * to be called when the system is still in usermode.
    6938             :  *
    6939             :  * To prevent this, the preempt_enable_notrace will use this function
    6940             :  * instead of preempt_schedule() to exit user context if needed before
    6941             :  * calling the scheduler.
    6942             :  */
    6943             : asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
    6944             : {
    6945             :         enum ctx_state prev_ctx;
    6946             : 
    6947             :         if (likely(!preemptible()))
    6948             :                 return;
    6949             : 
    6950             :         do {
    6951             :                 /*
    6952             :                  * Because the function tracer can trace preempt_count_sub()
    6953             :                  * and it also uses preempt_enable/disable_notrace(), if
    6954             :                  * NEED_RESCHED is set, the preempt_enable_notrace() called
    6955             :                  * by the function tracer will call this function again and
    6956             :                  * cause infinite recursion.
    6957             :                  *
    6958             :                  * Preemption must be disabled here before the function
    6959             :                  * tracer can trace. Break up preempt_disable() into two
    6960             :                  * calls. One to disable preemption without fear of being
    6961             :                  * traced. The other to still record the preemption latency,
    6962             :                  * which can also be traced by the function tracer.
    6963             :                  */
    6964             :                 preempt_disable_notrace();
    6965             :                 preempt_latency_start(1);
    6966             :                 /*
    6967             :                  * Needs preempt disabled in case user_exit() is traced
    6968             :                  * and the tracer calls preempt_enable_notrace() causing
    6969             :                  * an infinite recursion.
    6970             :                  */
    6971             :                 prev_ctx = exception_enter();
    6972             :                 __schedule(SM_PREEMPT);
    6973             :                 exception_exit(prev_ctx);
    6974             : 
    6975             :                 preempt_latency_stop(1);
    6976             :                 preempt_enable_no_resched_notrace();
    6977             :         } while (need_resched());
    6978             : }
    6979             : EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
    6980             : 
    6981             : #ifdef CONFIG_PREEMPT_DYNAMIC
    6982             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    6983             : #ifndef preempt_schedule_notrace_dynamic_enabled
    6984             : #define preempt_schedule_notrace_dynamic_enabled        preempt_schedule_notrace
    6985             : #define preempt_schedule_notrace_dynamic_disabled       NULL
    6986             : #endif
    6987             : DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
    6988             : EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
    6989             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    6990             : static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
    6991             : void __sched notrace dynamic_preempt_schedule_notrace(void)
    6992             : {
    6993             :         if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
    6994             :                 return;
    6995             :         preempt_schedule_notrace();
    6996             : }
    6997             : NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
    6998             : EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
    6999             : #endif
    7000             : #endif
    7001             : 
    7002             : #endif /* CONFIG_PREEMPTION */
    7003             : 
    7004             : /*
    7005             :  * This is the entry point to schedule() from kernel preemption
    7006             :  * off of irq context.
    7007             :  * Note, that this is called and return with irqs disabled. This will
    7008             :  * protect us against recursive calling from irq.
    7009             :  */
    7010           0 : asmlinkage __visible void __sched preempt_schedule_irq(void)
    7011             : {
    7012             :         enum ctx_state prev_state;
    7013             : 
    7014             :         /* Catch callers which need to be fixed */
    7015           0 :         BUG_ON(preempt_count() || !irqs_disabled());
    7016             : 
    7017             :         prev_state = exception_enter();
    7018             : 
    7019             :         do {
    7020           0 :                 preempt_disable();
    7021             :                 local_irq_enable();
    7022           0 :                 __schedule(SM_PREEMPT);
    7023             :                 local_irq_disable();
    7024           0 :                 sched_preempt_enable_no_resched();
    7025           0 :         } while (need_resched());
    7026             : 
    7027             :         exception_exit(prev_state);
    7028           0 : }
    7029             : 
    7030           0 : int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
    7031             :                           void *key)
    7032             : {
    7033           0 :         WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
    7034           0 :         return try_to_wake_up(curr->private, mode, wake_flags);
    7035             : }
    7036             : EXPORT_SYMBOL(default_wake_function);
    7037             : 
    7038             : static void __setscheduler_prio(struct task_struct *p, int prio)
    7039             : {
    7040           0 :         if (dl_prio(prio))
    7041           0 :                 p->sched_class = &dl_sched_class;
    7042           0 :         else if (rt_prio(prio))
    7043           0 :                 p->sched_class = &rt_sched_class;
    7044             :         else
    7045           0 :                 p->sched_class = &fair_sched_class;
    7046             : 
    7047           0 :         p->prio = prio;
    7048             : }
    7049             : 
    7050             : #ifdef CONFIG_RT_MUTEXES
    7051             : 
    7052             : static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
    7053             : {
    7054           0 :         if (pi_task)
    7055           0 :                 prio = min(prio, pi_task->prio);
    7056             : 
    7057             :         return prio;
    7058             : }
    7059             : 
    7060             : static inline int rt_effective_prio(struct task_struct *p, int prio)
    7061             : {
    7062           0 :         struct task_struct *pi_task = rt_mutex_get_top_task(p);
    7063             : 
    7064           0 :         return __rt_effective_prio(pi_task, prio);
    7065             : }
    7066             : 
    7067             : /*
    7068             :  * rt_mutex_setprio - set the current priority of a task
    7069             :  * @p: task to boost
    7070             :  * @pi_task: donor task
    7071             :  *
    7072             :  * This function changes the 'effective' priority of a task. It does
    7073             :  * not touch ->normal_prio like __setscheduler().
    7074             :  *
    7075             :  * Used by the rt_mutex code to implement priority inheritance
    7076             :  * logic. Call site only calls if the priority of the task changed.
    7077             :  */
    7078           0 : void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
    7079             : {
    7080           0 :         int prio, oldprio, queued, running, queue_flag =
    7081             :                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
    7082             :         const struct sched_class *prev_class;
    7083             :         struct rq_flags rf;
    7084             :         struct rq *rq;
    7085             : 
    7086             :         /* XXX used to be waiter->prio, not waiter->task->prio */
    7087           0 :         prio = __rt_effective_prio(pi_task, p->normal_prio);
    7088             : 
    7089             :         /*
    7090             :          * If nothing changed; bail early.
    7091             :          */
    7092           0 :         if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
    7093             :                 return;
    7094             : 
    7095           0 :         rq = __task_rq_lock(p, &rf);
    7096           0 :         update_rq_clock(rq);
    7097             :         /*
    7098             :          * Set under pi_lock && rq->lock, such that the value can be used under
    7099             :          * either lock.
    7100             :          *
    7101             :          * Note that there is loads of tricky to make this pointer cache work
    7102             :          * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
    7103             :          * ensure a task is de-boosted (pi_task is set to NULL) before the
    7104             :          * task is allowed to run again (and can exit). This ensures the pointer
    7105             :          * points to a blocked task -- which guarantees the task is present.
    7106             :          */
    7107           0 :         p->pi_top_task = pi_task;
    7108             : 
    7109             :         /*
    7110             :          * For FIFO/RR we only need to set prio, if that matches we're done.
    7111             :          */
    7112           0 :         if (prio == p->prio && !dl_prio(prio))
    7113             :                 goto out_unlock;
    7114             : 
    7115             :         /*
    7116             :          * Idle task boosting is a nono in general. There is one
    7117             :          * exception, when PREEMPT_RT and NOHZ is active:
    7118             :          *
    7119             :          * The idle task calls get_next_timer_interrupt() and holds
    7120             :          * the timer wheel base->lock on the CPU and another CPU wants
    7121             :          * to access the timer (probably to cancel it). We can safely
    7122             :          * ignore the boosting request, as the idle CPU runs this code
    7123             :          * with interrupts disabled and will complete the lock
    7124             :          * protected section without being interrupted. So there is no
    7125             :          * real need to boost.
    7126             :          */
    7127           0 :         if (unlikely(p == rq->idle)) {
    7128           0 :                 WARN_ON(p != rq->curr);
    7129           0 :                 WARN_ON(p->pi_blocked_on);
    7130             :                 goto out_unlock;
    7131             :         }
    7132             : 
    7133           0 :         trace_sched_pi_setprio(p, pi_task);
    7134           0 :         oldprio = p->prio;
    7135             : 
    7136           0 :         if (oldprio == prio)
    7137           0 :                 queue_flag &= ~DEQUEUE_MOVE;
    7138             : 
    7139           0 :         prev_class = p->sched_class;
    7140           0 :         queued = task_on_rq_queued(p);
    7141           0 :         running = task_current(rq, p);
    7142           0 :         if (queued)
    7143           0 :                 dequeue_task(rq, p, queue_flag);
    7144           0 :         if (running)
    7145           0 :                 put_prev_task(rq, p);
    7146             : 
    7147             :         /*
    7148             :          * Boosting condition are:
    7149             :          * 1. -rt task is running and holds mutex A
    7150             :          *      --> -dl task blocks on mutex A
    7151             :          *
    7152             :          * 2. -dl task is running and holds mutex A
    7153             :          *      --> -dl task blocks on mutex A and could preempt the
    7154             :          *          running task
    7155             :          */
    7156           0 :         if (dl_prio(prio)) {
    7157           0 :                 if (!dl_prio(p->normal_prio) ||
    7158           0 :                     (pi_task && dl_prio(pi_task->prio) &&
    7159           0 :                      dl_entity_preempt(&pi_task->dl, &p->dl))) {
    7160           0 :                         p->dl.pi_se = pi_task->dl.pi_se;
    7161           0 :                         queue_flag |= ENQUEUE_REPLENISH;
    7162             :                 } else {
    7163           0 :                         p->dl.pi_se = &p->dl;
    7164             :                 }
    7165           0 :         } else if (rt_prio(prio)) {
    7166           0 :                 if (dl_prio(oldprio))
    7167           0 :                         p->dl.pi_se = &p->dl;
    7168           0 :                 if (oldprio < prio)
    7169           0 :                         queue_flag |= ENQUEUE_HEAD;
    7170             :         } else {
    7171           0 :                 if (dl_prio(oldprio))
    7172           0 :                         p->dl.pi_se = &p->dl;
    7173           0 :                 if (rt_prio(oldprio))
    7174           0 :                         p->rt.timeout = 0;
    7175             :         }
    7176             : 
    7177           0 :         __setscheduler_prio(p, prio);
    7178             : 
    7179           0 :         if (queued)
    7180           0 :                 enqueue_task(rq, p, queue_flag);
    7181           0 :         if (running)
    7182             :                 set_next_task(rq, p);
    7183             : 
    7184           0 :         check_class_changed(rq, p, prev_class, oldprio);
    7185             : out_unlock:
    7186             :         /* Avoid rq from going away on us: */
    7187           0 :         preempt_disable();
    7188             : 
    7189           0 :         rq_unpin_lock(rq, &rf);
    7190           0 :         __balance_callbacks(rq);
    7191           0 :         raw_spin_rq_unlock(rq);
    7192             : 
    7193           0 :         preempt_enable();
    7194             : }
    7195             : #else
    7196             : static inline int rt_effective_prio(struct task_struct *p, int prio)
    7197             : {
    7198             :         return prio;
    7199             : }
    7200             : #endif
    7201             : 
    7202           9 : void set_user_nice(struct task_struct *p, long nice)
    7203             : {
    7204             :         bool queued, running;
    7205             :         int old_prio;
    7206             :         struct rq_flags rf;
    7207             :         struct rq *rq;
    7208             : 
    7209          18 :         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
    7210           4 :                 return;
    7211             :         /*
    7212             :          * We have to be careful, if called from sys_setpriority(),
    7213             :          * the task might be in the middle of scheduling on another CPU.
    7214             :          */
    7215           5 :         rq = task_rq_lock(p, &rf);
    7216           5 :         update_rq_clock(rq);
    7217             : 
    7218             :         /*
    7219             :          * The RT priorities are set via sched_setscheduler(), but we still
    7220             :          * allow the 'normal' nice value to be set - but as expected
    7221             :          * it won't have any effect on scheduling until the task is
    7222             :          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
    7223             :          */
    7224          15 :         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    7225           0 :                 p->static_prio = NICE_TO_PRIO(nice);
    7226           0 :                 goto out_unlock;
    7227             :         }
    7228           5 :         queued = task_on_rq_queued(p);
    7229           5 :         running = task_current(rq, p);
    7230           5 :         if (queued)
    7231             :                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
    7232           5 :         if (running)
    7233           4 :                 put_prev_task(rq, p);
    7234             : 
    7235           5 :         p->static_prio = NICE_TO_PRIO(nice);
    7236           5 :         set_load_weight(p, true);
    7237           5 :         old_prio = p->prio;
    7238           5 :         p->prio = effective_prio(p);
    7239             : 
    7240           5 :         if (queued)
    7241             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    7242           5 :         if (running)
    7243             :                 set_next_task(rq, p);
    7244             : 
    7245             :         /*
    7246             :          * If the task increased its priority or is running and
    7247             :          * lowered its priority, then reschedule its CPU:
    7248             :          */
    7249           5 :         p->sched_class->prio_changed(rq, p, old_prio);
    7250             : 
    7251             : out_unlock:
    7252          10 :         task_rq_unlock(rq, p, &rf);
    7253             : }
    7254             : EXPORT_SYMBOL(set_user_nice);
    7255             : 
    7256             : /*
    7257             :  * is_nice_reduction - check if nice value is an actual reduction
    7258             :  *
    7259             :  * Similar to can_nice() but does not perform a capability check.
    7260             :  *
    7261             :  * @p: task
    7262             :  * @nice: nice value
    7263             :  */
    7264             : static bool is_nice_reduction(const struct task_struct *p, const int nice)
    7265             : {
    7266             :         /* Convert nice value [19,-20] to rlimit style value [1,40]: */
    7267           0 :         int nice_rlim = nice_to_rlimit(nice);
    7268             : 
    7269           0 :         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
    7270             : }
    7271             : 
    7272             : /*
    7273             :  * can_nice - check if a task can reduce its nice value
    7274             :  * @p: task
    7275             :  * @nice: nice value
    7276             :  */
    7277           0 : int can_nice(const struct task_struct *p, const int nice)
    7278             : {
    7279           0 :         return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
    7280             : }
    7281             : 
    7282             : #ifdef __ARCH_WANT_SYS_NICE
    7283             : 
    7284             : /*
    7285             :  * sys_nice - change the priority of the current process.
    7286             :  * @increment: priority increment
    7287             :  *
    7288             :  * sys_setpriority is a more generic, but much slower function that
    7289             :  * does similar things.
    7290             :  */
    7291           0 : SYSCALL_DEFINE1(nice, int, increment)
    7292             : {
    7293             :         long nice, retval;
    7294             : 
    7295             :         /*
    7296             :          * Setpriority might change our priority at the same moment.
    7297             :          * We don't have to worry. Conceptually one call occurs first
    7298             :          * and we have a single winner.
    7299             :          */
    7300           0 :         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
    7301           0 :         nice = task_nice(current) + increment;
    7302             : 
    7303           0 :         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
    7304           0 :         if (increment < 0 && !can_nice(current, nice))
    7305             :                 return -EPERM;
    7306             : 
    7307           0 :         retval = security_task_setnice(current, nice);
    7308           0 :         if (retval)
    7309             :                 return retval;
    7310             : 
    7311           0 :         set_user_nice(current, nice);
    7312           0 :         return 0;
    7313             : }
    7314             : 
    7315             : #endif
    7316             : 
    7317             : /**
    7318             :  * task_prio - return the priority value of a given task.
    7319             :  * @p: the task in question.
    7320             :  *
    7321             :  * Return: The priority value as seen by users in /proc.
    7322             :  *
    7323             :  * sched policy         return value   kernel prio    user prio/nice
    7324             :  *
    7325             :  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
    7326             :  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
    7327             :  * deadline                     -101             -1           0
    7328             :  */
    7329           0 : int task_prio(const struct task_struct *p)
    7330             : {
    7331           0 :         return p->prio - MAX_RT_PRIO;
    7332             : }
    7333             : 
    7334             : /**
    7335             :  * idle_cpu - is a given CPU idle currently?
    7336             :  * @cpu: the processor in question.
    7337             :  *
    7338             :  * Return: 1 if the CPU is currently idle. 0 otherwise.
    7339             :  */
    7340           0 : int idle_cpu(int cpu)
    7341             : {
    7342           0 :         struct rq *rq = cpu_rq(cpu);
    7343             : 
    7344           0 :         if (rq->curr != rq->idle)
    7345             :                 return 0;
    7346             : 
    7347           0 :         if (rq->nr_running)
    7348             :                 return 0;
    7349             : 
    7350             : #ifdef CONFIG_SMP
    7351             :         if (rq->ttwu_pending)
    7352             :                 return 0;
    7353             : #endif
    7354             : 
    7355           0 :         return 1;
    7356             : }
    7357             : 
    7358             : /**
    7359             :  * available_idle_cpu - is a given CPU idle for enqueuing work.
    7360             :  * @cpu: the CPU in question.
    7361             :  *
    7362             :  * Return: 1 if the CPU is currently idle. 0 otherwise.
    7363             :  */
    7364           0 : int available_idle_cpu(int cpu)
    7365             : {
    7366           0 :         if (!idle_cpu(cpu))
    7367             :                 return 0;
    7368             : 
    7369           0 :         if (vcpu_is_preempted(cpu))
    7370             :                 return 0;
    7371             : 
    7372           0 :         return 1;
    7373             : }
    7374             : 
    7375             : /**
    7376             :  * idle_task - return the idle task for a given CPU.
    7377             :  * @cpu: the processor in question.
    7378             :  *
    7379             :  * Return: The idle task for the CPU @cpu.
    7380             :  */
    7381           0 : struct task_struct *idle_task(int cpu)
    7382             : {
    7383           0 :         return cpu_rq(cpu)->idle;
    7384             : }
    7385             : 
    7386             : #ifdef CONFIG_SMP
    7387             : /*
    7388             :  * This function computes an effective utilization for the given CPU, to be
    7389             :  * used for frequency selection given the linear relation: f = u * f_max.
    7390             :  *
    7391             :  * The scheduler tracks the following metrics:
    7392             :  *
    7393             :  *   cpu_util_{cfs,rt,dl,irq}()
    7394             :  *   cpu_bw_dl()
    7395             :  *
    7396             :  * Where the cfs,rt and dl util numbers are tracked with the same metric and
    7397             :  * synchronized windows and are thus directly comparable.
    7398             :  *
    7399             :  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
    7400             :  * which excludes things like IRQ and steal-time. These latter are then accrued
    7401             :  * in the irq utilization.
    7402             :  *
    7403             :  * The DL bandwidth number otoh is not a measured metric but a value computed
    7404             :  * based on the task model parameters and gives the minimal utilization
    7405             :  * required to meet deadlines.
    7406             :  */
    7407             : unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
    7408             :                                  enum cpu_util_type type,
    7409             :                                  struct task_struct *p)
    7410             : {
    7411             :         unsigned long dl_util, util, irq, max;
    7412             :         struct rq *rq = cpu_rq(cpu);
    7413             : 
    7414             :         max = arch_scale_cpu_capacity(cpu);
    7415             : 
    7416             :         if (!uclamp_is_used() &&
    7417             :             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
    7418             :                 return max;
    7419             :         }
    7420             : 
    7421             :         /*
    7422             :          * Early check to see if IRQ/steal time saturates the CPU, can be
    7423             :          * because of inaccuracies in how we track these -- see
    7424             :          * update_irq_load_avg().
    7425             :          */
    7426             :         irq = cpu_util_irq(rq);
    7427             :         if (unlikely(irq >= max))
    7428             :                 return max;
    7429             : 
    7430             :         /*
    7431             :          * Because the time spend on RT/DL tasks is visible as 'lost' time to
    7432             :          * CFS tasks and we use the same metric to track the effective
    7433             :          * utilization (PELT windows are synchronized) we can directly add them
    7434             :          * to obtain the CPU's actual utilization.
    7435             :          *
    7436             :          * CFS and RT utilization can be boosted or capped, depending on
    7437             :          * utilization clamp constraints requested by currently RUNNABLE
    7438             :          * tasks.
    7439             :          * When there are no CFS RUNNABLE tasks, clamps are released and
    7440             :          * frequency will be gracefully reduced with the utilization decay.
    7441             :          */
    7442             :         util = util_cfs + cpu_util_rt(rq);
    7443             :         if (type == FREQUENCY_UTIL)
    7444             :                 util = uclamp_rq_util_with(rq, util, p);
    7445             : 
    7446             :         dl_util = cpu_util_dl(rq);
    7447             : 
    7448             :         /*
    7449             :          * For frequency selection we do not make cpu_util_dl() a permanent part
    7450             :          * of this sum because we want to use cpu_bw_dl() later on, but we need
    7451             :          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
    7452             :          * that we select f_max when there is no idle time.
    7453             :          *
    7454             :          * NOTE: numerical errors or stop class might cause us to not quite hit
    7455             :          * saturation when we should -- something for later.
    7456             :          */
    7457             :         if (util + dl_util >= max)
    7458             :                 return max;
    7459             : 
    7460             :         /*
    7461             :          * OTOH, for energy computation we need the estimated running time, so
    7462             :          * include util_dl and ignore dl_bw.
    7463             :          */
    7464             :         if (type == ENERGY_UTIL)
    7465             :                 util += dl_util;
    7466             : 
    7467             :         /*
    7468             :          * There is still idle time; further improve the number by using the
    7469             :          * irq metric. Because IRQ/steal time is hidden from the task clock we
    7470             :          * need to scale the task numbers:
    7471             :          *
    7472             :          *              max - irq
    7473             :          *   U' = irq + --------- * U
    7474             :          *                 max
    7475             :          */
    7476             :         util = scale_irq_capacity(util, irq, max);
    7477             :         util += irq;
    7478             : 
    7479             :         /*
    7480             :          * Bandwidth required by DEADLINE must always be granted while, for
    7481             :          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
    7482             :          * to gracefully reduce the frequency when no tasks show up for longer
    7483             :          * periods of time.
    7484             :          *
    7485             :          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
    7486             :          * bw_dl as requested freq. However, cpufreq is not yet ready for such
    7487             :          * an interface. So, we only do the latter for now.
    7488             :          */
    7489             :         if (type == FREQUENCY_UTIL)
    7490             :                 util += cpu_bw_dl(rq);
    7491             : 
    7492             :         return min(max, util);
    7493             : }
    7494             : 
    7495             : unsigned long sched_cpu_util(int cpu)
    7496             : {
    7497             :         return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
    7498             : }
    7499             : #endif /* CONFIG_SMP */
    7500             : 
    7501             : /**
    7502             :  * find_process_by_pid - find a process with a matching PID value.
    7503             :  * @pid: the pid in question.
    7504             :  *
    7505             :  * The task of @pid, if found. %NULL otherwise.
    7506             :  */
    7507             : static struct task_struct *find_process_by_pid(pid_t pid)
    7508             : {
    7509           0 :         return pid ? find_task_by_vpid(pid) : current;
    7510             : }
    7511             : 
    7512             : /*
    7513             :  * sched_setparam() passes in -1 for its policy, to let the functions
    7514             :  * it calls know not to change it.
    7515             :  */
    7516             : #define SETPARAM_POLICY -1
    7517             : 
    7518           0 : static void __setscheduler_params(struct task_struct *p,
    7519             :                 const struct sched_attr *attr)
    7520             : {
    7521           0 :         int policy = attr->sched_policy;
    7522             : 
    7523           0 :         if (policy == SETPARAM_POLICY)
    7524           0 :                 policy = p->policy;
    7525             : 
    7526           0 :         p->policy = policy;
    7527             : 
    7528           0 :         if (dl_policy(policy))
    7529           0 :                 __setparam_dl(p, attr);
    7530           0 :         else if (fair_policy(policy))
    7531           0 :                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
    7532             : 
    7533             :         /*
    7534             :          * __sched_setscheduler() ensures attr->sched_priority == 0 when
    7535             :          * !rt_policy. Always setting this ensures that things like
    7536             :          * getparam()/getattr() don't report silly values for !rt tasks.
    7537             :          */
    7538           0 :         p->rt_priority = attr->sched_priority;
    7539           0 :         p->normal_prio = normal_prio(p);
    7540           0 :         set_load_weight(p, true);
    7541           0 : }
    7542             : 
    7543             : /*
    7544             :  * Check the target process has a UID that matches the current process's:
    7545             :  */
    7546             : static bool check_same_owner(struct task_struct *p)
    7547             : {
    7548           0 :         const struct cred *cred = current_cred(), *pcred;
    7549             :         bool match;
    7550             : 
    7551             :         rcu_read_lock();
    7552           0 :         pcred = __task_cred(p);
    7553           0 :         match = (uid_eq(cred->euid, pcred->euid) ||
    7554           0 :                  uid_eq(cred->euid, pcred->uid));
    7555             :         rcu_read_unlock();
    7556             :         return match;
    7557             : }
    7558             : 
    7559             : /*
    7560             :  * Allow unprivileged RT tasks to decrease priority.
    7561             :  * Only issue a capable test if needed and only once to avoid an audit
    7562             :  * event on permitted non-privileged operations:
    7563             :  */
    7564           0 : static int user_check_sched_setscheduler(struct task_struct *p,
    7565             :                                          const struct sched_attr *attr,
    7566             :                                          int policy, int reset_on_fork)
    7567             : {
    7568           0 :         if (fair_policy(policy)) {
    7569           0 :                 if (attr->sched_nice < task_nice(p) &&
    7570           0 :                     !is_nice_reduction(p, attr->sched_nice))
    7571             :                         goto req_priv;
    7572             :         }
    7573             : 
    7574           0 :         if (rt_policy(policy)) {
    7575           0 :                 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
    7576             : 
    7577             :                 /* Can't set/change the rt policy: */
    7578           0 :                 if (policy != p->policy && !rlim_rtprio)
    7579             :                         goto req_priv;
    7580             : 
    7581             :                 /* Can't increase priority: */
    7582           0 :                 if (attr->sched_priority > p->rt_priority &&
    7583           0 :                     attr->sched_priority > rlim_rtprio)
    7584             :                         goto req_priv;
    7585             :         }
    7586             : 
    7587             :         /*
    7588             :          * Can't set/change SCHED_DEADLINE policy at all for now
    7589             :          * (safest behavior); in the future we would like to allow
    7590             :          * unprivileged DL tasks to increase their relative deadline
    7591             :          * or reduce their runtime (both ways reducing utilization)
    7592             :          */
    7593           0 :         if (dl_policy(policy))
    7594             :                 goto req_priv;
    7595             : 
    7596             :         /*
    7597             :          * Treat SCHED_IDLE as nice 20. Only allow a switch to
    7598             :          * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
    7599             :          */
    7600           0 :         if (task_has_idle_policy(p) && !idle_policy(policy)) {
    7601           0 :                 if (!is_nice_reduction(p, task_nice(p)))
    7602             :                         goto req_priv;
    7603             :         }
    7604             : 
    7605             :         /* Can't change other user's priorities: */
    7606           0 :         if (!check_same_owner(p))
    7607             :                 goto req_priv;
    7608             : 
    7609             :         /* Normal users shall not reset the sched_reset_on_fork flag: */
    7610           0 :         if (p->sched_reset_on_fork && !reset_on_fork)
    7611             :                 goto req_priv;
    7612             : 
    7613             :         return 0;
    7614             : 
    7615             : req_priv:
    7616           0 :         if (!capable(CAP_SYS_NICE))
    7617             :                 return -EPERM;
    7618             : 
    7619             :         return 0;
    7620             : }
    7621             : 
    7622         173 : static int __sched_setscheduler(struct task_struct *p,
    7623             :                                 const struct sched_attr *attr,
    7624             :                                 bool user, bool pi)
    7625             : {
    7626         173 :         int oldpolicy = -1, policy = attr->sched_policy;
    7627             :         int retval, oldprio, newprio, queued, running;
    7628             :         const struct sched_class *prev_class;
    7629             :         struct balance_callback *head;
    7630             :         struct rq_flags rf;
    7631             :         int reset_on_fork;
    7632         173 :         int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
    7633             :         struct rq *rq;
    7634         173 :         bool cpuset_locked = false;
    7635             : 
    7636             :         /* The pi code expects interrupts enabled */
    7637         346 :         BUG_ON(pi && in_interrupt());
    7638             : recheck:
    7639             :         /* Double check policy once rq lock held: */
    7640         173 :         if (policy < 0) {
    7641           0 :                 reset_on_fork = p->sched_reset_on_fork;
    7642           0 :                 policy = oldpolicy = p->policy;
    7643             :         } else {
    7644         173 :                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
    7645             : 
    7646         173 :                 if (!valid_policy(policy))
    7647             :                         return -EINVAL;
    7648             :         }
    7649             : 
    7650         173 :         if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
    7651             :                 return -EINVAL;
    7652             : 
    7653             :         /*
    7654             :          * Valid priorities for SCHED_FIFO and SCHED_RR are
    7655             :          * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
    7656             :          * SCHED_BATCH and SCHED_IDLE is 0.
    7657             :          */
    7658         173 :         if (attr->sched_priority > MAX_RT_PRIO-1)
    7659             :                 return -EINVAL;
    7660         346 :         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
    7661         173 :             (rt_policy(policy) != (attr->sched_priority != 0)))
    7662             :                 return -EINVAL;
    7663             : 
    7664         173 :         if (user) {
    7665           0 :                 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
    7666           0 :                 if (retval)
    7667             :                         return retval;
    7668             : 
    7669           0 :                 if (attr->sched_flags & SCHED_FLAG_SUGOV)
    7670             :                         return -EINVAL;
    7671             : 
    7672           0 :                 retval = security_task_setscheduler(p);
    7673           0 :                 if (retval)
    7674             :                         return retval;
    7675             :         }
    7676             : 
    7677             :         /* Update task specific "requested" clamps */
    7678         173 :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
    7679             :                 retval = uclamp_validate(p, attr);
    7680             :                 if (retval)
    7681             :                         return retval;
    7682             :         }
    7683             : 
    7684             :         /*
    7685             :          * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
    7686             :          * information.
    7687             :          */
    7688         173 :         if (dl_policy(policy) || dl_policy(p->policy)) {
    7689             :                 cpuset_locked = true;
    7690             :                 cpuset_lock();
    7691             :         }
    7692             : 
    7693             :         /*
    7694             :          * Make sure no PI-waiters arrive (or leave) while we are
    7695             :          * changing the priority of the task:
    7696             :          *
    7697             :          * To be able to change p->policy safely, the appropriate
    7698             :          * runqueue lock must be held.
    7699             :          */
    7700         173 :         rq = task_rq_lock(p, &rf);
    7701         173 :         update_rq_clock(rq);
    7702             : 
    7703             :         /*
    7704             :          * Changing the policy of the stop threads its a very bad idea:
    7705             :          */
    7706         173 :         if (p == rq->stop) {
    7707             :                 retval = -EINVAL;
    7708             :                 goto unlock;
    7709             :         }
    7710             : 
    7711             :         /*
    7712             :          * If not changing anything there's no need to proceed further,
    7713             :          * but store a possible modification of reset_on_fork.
    7714             :          */
    7715         173 :         if (unlikely(policy == p->policy)) {
    7716         346 :                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
    7717             :                         goto change;
    7718         173 :                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
    7719             :                         goto change;
    7720         173 :                 if (dl_policy(policy) && dl_param_changed(p, attr))
    7721             :                         goto change;
    7722         173 :                 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
    7723             :                         goto change;
    7724             : 
    7725         173 :                 p->sched_reset_on_fork = reset_on_fork;
    7726         173 :                 retval = 0;
    7727         173 :                 goto unlock;
    7728             :         }
    7729             : change:
    7730             : 
    7731             :         if (user) {
    7732             : #ifdef CONFIG_RT_GROUP_SCHED
    7733             :                 /*
    7734             :                  * Do not allow realtime tasks into groups that have no runtime
    7735             :                  * assigned.
    7736             :                  */
    7737             :                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
    7738             :                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
    7739             :                                 !task_group_is_autogroup(task_group(p))) {
    7740             :                         retval = -EPERM;
    7741             :                         goto unlock;
    7742             :                 }
    7743             : #endif
    7744             : #ifdef CONFIG_SMP
    7745             :                 if (dl_bandwidth_enabled() && dl_policy(policy) &&
    7746             :                                 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
    7747             :                         cpumask_t *span = rq->rd->span;
    7748             : 
    7749             :                         /*
    7750             :                          * Don't allow tasks with an affinity mask smaller than
    7751             :                          * the entire root_domain to become SCHED_DEADLINE. We
    7752             :                          * will also fail if there's no bandwidth available.
    7753             :                          */
    7754             :                         if (!cpumask_subset(span, p->cpus_ptr) ||
    7755             :                             rq->rd->dl_bw.bw == 0) {
    7756             :                                 retval = -EPERM;
    7757             :                                 goto unlock;
    7758             :                         }
    7759             :                 }
    7760             : #endif
    7761             :         }
    7762             : 
    7763             :         /* Re-check policy now with rq lock held: */
    7764           0 :         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
    7765           0 :                 policy = oldpolicy = -1;
    7766           0 :                 task_rq_unlock(rq, p, &rf);
    7767             :                 if (cpuset_locked)
    7768             :                         cpuset_unlock();
    7769             :                 goto recheck;
    7770             :         }
    7771             : 
    7772             :         /*
    7773             :          * If setscheduling to SCHED_DEADLINE (or changing the parameters
    7774             :          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
    7775             :          * is available.
    7776             :          */
    7777           0 :         if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
    7778             :                 retval = -EBUSY;
    7779             :                 goto unlock;
    7780             :         }
    7781             : 
    7782           0 :         p->sched_reset_on_fork = reset_on_fork;
    7783           0 :         oldprio = p->prio;
    7784             : 
    7785           0 :         newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
    7786           0 :         if (pi) {
    7787             :                 /*
    7788             :                  * Take priority boosted tasks into account. If the new
    7789             :                  * effective priority is unchanged, we just store the new
    7790             :                  * normal parameters and do not touch the scheduler class and
    7791             :                  * the runqueue. This will be done when the task deboost
    7792             :                  * itself.
    7793             :                  */
    7794           0 :                 newprio = rt_effective_prio(p, newprio);
    7795           0 :                 if (newprio == oldprio)
    7796           0 :                         queue_flags &= ~DEQUEUE_MOVE;
    7797             :         }
    7798             : 
    7799           0 :         queued = task_on_rq_queued(p);
    7800           0 :         running = task_current(rq, p);
    7801           0 :         if (queued)
    7802           0 :                 dequeue_task(rq, p, queue_flags);
    7803           0 :         if (running)
    7804           0 :                 put_prev_task(rq, p);
    7805             : 
    7806           0 :         prev_class = p->sched_class;
    7807             : 
    7808           0 :         if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
    7809           0 :                 __setscheduler_params(p, attr);
    7810           0 :                 __setscheduler_prio(p, newprio);
    7811             :         }
    7812           0 :         __setscheduler_uclamp(p, attr);
    7813             : 
    7814           0 :         if (queued) {
    7815             :                 /*
    7816             :                  * We enqueue to tail when the priority of a task is
    7817             :                  * increased (user space view).
    7818             :                  */
    7819           0 :                 if (oldprio < p->prio)
    7820           0 :                         queue_flags |= ENQUEUE_HEAD;
    7821             : 
    7822           0 :                 enqueue_task(rq, p, queue_flags);
    7823             :         }
    7824           0 :         if (running)
    7825             :                 set_next_task(rq, p);
    7826             : 
    7827           0 :         check_class_changed(rq, p, prev_class, oldprio);
    7828             : 
    7829             :         /* Avoid rq from going away on us: */
    7830           0 :         preempt_disable();
    7831           0 :         head = splice_balance_callbacks(rq);
    7832           0 :         task_rq_unlock(rq, p, &rf);
    7833             : 
    7834           0 :         if (pi) {
    7835             :                 if (cpuset_locked)
    7836             :                         cpuset_unlock();
    7837           0 :                 rt_mutex_adjust_pi(p);
    7838             :         }
    7839             : 
    7840             :         /* Run balance callbacks after we've adjusted the PI chain: */
    7841           0 :         balance_callbacks(rq, head);
    7842           0 :         preempt_enable();
    7843             : 
    7844           0 :         return 0;
    7845             : 
    7846             : unlock:
    7847         346 :         task_rq_unlock(rq, p, &rf);
    7848             :         if (cpuset_locked)
    7849             :                 cpuset_unlock();
    7850         173 :         return retval;
    7851             : }
    7852             : 
    7853         173 : static int _sched_setscheduler(struct task_struct *p, int policy,
    7854             :                                const struct sched_param *param, bool check)
    7855             : {
    7856         519 :         struct sched_attr attr = {
    7857             :                 .sched_policy   = policy,
    7858         173 :                 .sched_priority = param->sched_priority,
    7859         173 :                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
    7860             :         };
    7861             : 
    7862             :         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
    7863         173 :         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
    7864           0 :                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    7865           0 :                 policy &= ~SCHED_RESET_ON_FORK;
    7866           0 :                 attr.sched_policy = policy;
    7867             :         }
    7868             : 
    7869         173 :         return __sched_setscheduler(p, &attr, check, true);
    7870             : }
    7871             : /**
    7872             :  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
    7873             :  * @p: the task in question.
    7874             :  * @policy: new policy.
    7875             :  * @param: structure containing the new RT priority.
    7876             :  *
    7877             :  * Use sched_set_fifo(), read its comment.
    7878             :  *
    7879             :  * Return: 0 on success. An error code otherwise.
    7880             :  *
    7881             :  * NOTE that the task may be already dead.
    7882             :  */
    7883           0 : int sched_setscheduler(struct task_struct *p, int policy,
    7884             :                        const struct sched_param *param)
    7885             : {
    7886           0 :         return _sched_setscheduler(p, policy, param, true);
    7887             : }
    7888             : 
    7889           0 : int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
    7890             : {
    7891           0 :         return __sched_setscheduler(p, attr, true, true);
    7892             : }
    7893             : 
    7894           0 : int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
    7895             : {
    7896           0 :         return __sched_setscheduler(p, attr, false, true);
    7897             : }
    7898             : EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
    7899             : 
    7900             : /**
    7901             :  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
    7902             :  * @p: the task in question.
    7903             :  * @policy: new policy.
    7904             :  * @param: structure containing the new RT priority.
    7905             :  *
    7906             :  * Just like sched_setscheduler, only don't bother checking if the
    7907             :  * current context has permission.  For example, this is needed in
    7908             :  * stop_machine(): we create temporary high priority worker threads,
    7909             :  * but our caller might not have that capability.
    7910             :  *
    7911             :  * Return: 0 on success. An error code otherwise.
    7912             :  */
    7913         173 : int sched_setscheduler_nocheck(struct task_struct *p, int policy,
    7914             :                                const struct sched_param *param)
    7915             : {
    7916         173 :         return _sched_setscheduler(p, policy, param, false);
    7917             : }
    7918             : 
    7919             : /*
    7920             :  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
    7921             :  * incapable of resource management, which is the one thing an OS really should
    7922             :  * be doing.
    7923             :  *
    7924             :  * This is of course the reason it is limited to privileged users only.
    7925             :  *
    7926             :  * Worse still; it is fundamentally impossible to compose static priority
    7927             :  * workloads. You cannot take two correctly working static prio workloads
    7928             :  * and smash them together and still expect them to work.
    7929             :  *
    7930             :  * For this reason 'all' FIFO tasks the kernel creates are basically at:
    7931             :  *
    7932             :  *   MAX_RT_PRIO / 2
    7933             :  *
    7934             :  * The administrator _MUST_ configure the system, the kernel simply doesn't
    7935             :  * know enough information to make a sensible choice.
    7936             :  */
    7937           0 : void sched_set_fifo(struct task_struct *p)
    7938             : {
    7939           0 :         struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
    7940           0 :         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
    7941           0 : }
    7942             : EXPORT_SYMBOL_GPL(sched_set_fifo);
    7943             : 
    7944             : /*
    7945             :  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
    7946             :  */
    7947           0 : void sched_set_fifo_low(struct task_struct *p)
    7948             : {
    7949           0 :         struct sched_param sp = { .sched_priority = 1 };
    7950           0 :         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
    7951           0 : }
    7952             : EXPORT_SYMBOL_GPL(sched_set_fifo_low);
    7953             : 
    7954           0 : void sched_set_normal(struct task_struct *p, int nice)
    7955             : {
    7956           0 :         struct sched_attr attr = {
    7957             :                 .sched_policy = SCHED_NORMAL,
    7958             :                 .sched_nice = nice,
    7959             :         };
    7960           0 :         WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
    7961           0 : }
    7962             : EXPORT_SYMBOL_GPL(sched_set_normal);
    7963             : 
    7964             : static int
    7965           0 : do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
    7966             : {
    7967             :         struct sched_param lparam;
    7968             :         struct task_struct *p;
    7969             :         int retval;
    7970             : 
    7971           0 :         if (!param || pid < 0)
    7972             :                 return -EINVAL;
    7973           0 :         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
    7974             :                 return -EFAULT;
    7975             : 
    7976             :         rcu_read_lock();
    7977           0 :         retval = -ESRCH;
    7978           0 :         p = find_process_by_pid(pid);
    7979           0 :         if (likely(p))
    7980             :                 get_task_struct(p);
    7981             :         rcu_read_unlock();
    7982             : 
    7983           0 :         if (likely(p)) {
    7984           0 :                 retval = sched_setscheduler(p, policy, &lparam);
    7985           0 :                 put_task_struct(p);
    7986             :         }
    7987             : 
    7988             :         return retval;
    7989             : }
    7990             : 
    7991             : /*
    7992             :  * Mimics kernel/events/core.c perf_copy_attr().
    7993             :  */
    7994           0 : static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
    7995             : {
    7996             :         u32 size;
    7997             :         int ret;
    7998             : 
    7999             :         /* Zero the full structure, so that a short copy will be nice: */
    8000           0 :         memset(attr, 0, sizeof(*attr));
    8001             : 
    8002           0 :         ret = get_user(size, &uattr->size);
    8003           0 :         if (ret)
    8004             :                 return ret;
    8005             : 
    8006             :         /* ABI compatibility quirk: */
    8007           0 :         if (!size)
    8008           0 :                 size = SCHED_ATTR_SIZE_VER0;
    8009           0 :         if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
    8010             :                 goto err_size;
    8011             : 
    8012           0 :         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
    8013           0 :         if (ret) {
    8014           0 :                 if (ret == -E2BIG)
    8015             :                         goto err_size;
    8016             :                 return ret;
    8017             :         }
    8018             : 
    8019           0 :         if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
    8020             :             size < SCHED_ATTR_SIZE_VER1)
    8021             :                 return -EINVAL;
    8022             : 
    8023             :         /*
    8024             :          * XXX: Do we want to be lenient like existing syscalls; or do we want
    8025             :          * to be strict and return an error on out-of-bounds values?
    8026             :          */
    8027           0 :         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
    8028             : 
    8029           0 :         return 0;
    8030             : 
    8031             : err_size:
    8032           0 :         put_user(sizeof(*attr), &uattr->size);
    8033             :         return -E2BIG;
    8034             : }
    8035             : 
    8036           0 : static void get_params(struct task_struct *p, struct sched_attr *attr)
    8037             : {
    8038           0 :         if (task_has_dl_policy(p))
    8039           0 :                 __getparam_dl(p, attr);
    8040           0 :         else if (task_has_rt_policy(p))
    8041           0 :                 attr->sched_priority = p->rt_priority;
    8042             :         else
    8043           0 :                 attr->sched_nice = task_nice(p);
    8044           0 : }
    8045             : 
    8046             : /**
    8047             :  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
    8048             :  * @pid: the pid in question.
    8049             :  * @policy: new policy.
    8050             :  * @param: structure containing the new RT priority.
    8051             :  *
    8052             :  * Return: 0 on success. An error code otherwise.
    8053             :  */
    8054           0 : SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
    8055             : {
    8056           0 :         if (policy < 0)
    8057             :                 return -EINVAL;
    8058             : 
    8059           0 :         return do_sched_setscheduler(pid, policy, param);
    8060             : }
    8061             : 
    8062             : /**
    8063             :  * sys_sched_setparam - set/change the RT priority of a thread
    8064             :  * @pid: the pid in question.
    8065             :  * @param: structure containing the new RT priority.
    8066             :  *
    8067             :  * Return: 0 on success. An error code otherwise.
    8068             :  */
    8069           0 : SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
    8070             : {
    8071           0 :         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
    8072             : }
    8073             : 
    8074             : /**
    8075             :  * sys_sched_setattr - same as above, but with extended sched_attr
    8076             :  * @pid: the pid in question.
    8077             :  * @uattr: structure containing the extended parameters.
    8078             :  * @flags: for future extension.
    8079             :  */
    8080           0 : SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
    8081             :                                unsigned int, flags)
    8082             : {
    8083             :         struct sched_attr attr;
    8084             :         struct task_struct *p;
    8085             :         int retval;
    8086             : 
    8087           0 :         if (!uattr || pid < 0 || flags)
    8088             :                 return -EINVAL;
    8089             : 
    8090           0 :         retval = sched_copy_attr(uattr, &attr);
    8091           0 :         if (retval)
    8092           0 :                 return retval;
    8093             : 
    8094           0 :         if ((int)attr.sched_policy < 0)
    8095             :                 return -EINVAL;
    8096           0 :         if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
    8097           0 :                 attr.sched_policy = SETPARAM_POLICY;
    8098             : 
    8099             :         rcu_read_lock();
    8100           0 :         retval = -ESRCH;
    8101           0 :         p = find_process_by_pid(pid);
    8102           0 :         if (likely(p))
    8103             :                 get_task_struct(p);
    8104             :         rcu_read_unlock();
    8105             : 
    8106           0 :         if (likely(p)) {
    8107           0 :                 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
    8108           0 :                         get_params(p, &attr);
    8109           0 :                 retval = sched_setattr(p, &attr);
    8110           0 :                 put_task_struct(p);
    8111             :         }
    8112             : 
    8113           0 :         return retval;
    8114             : }
    8115             : 
    8116             : /**
    8117             :  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
    8118             :  * @pid: the pid in question.
    8119             :  *
    8120             :  * Return: On success, the policy of the thread. Otherwise, a negative error
    8121             :  * code.
    8122             :  */
    8123           0 : SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
    8124             : {
    8125             :         struct task_struct *p;
    8126             :         int retval;
    8127             : 
    8128           0 :         if (pid < 0)
    8129             :                 return -EINVAL;
    8130             : 
    8131           0 :         retval = -ESRCH;
    8132             :         rcu_read_lock();
    8133           0 :         p = find_process_by_pid(pid);
    8134           0 :         if (p) {
    8135           0 :                 retval = security_task_getscheduler(p);
    8136             :                 if (!retval)
    8137           0 :                         retval = p->policy
    8138           0 :                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
    8139             :         }
    8140             :         rcu_read_unlock();
    8141           0 :         return retval;
    8142             : }
    8143             : 
    8144             : /**
    8145             :  * sys_sched_getparam - get the RT priority of a thread
    8146             :  * @pid: the pid in question.
    8147             :  * @param: structure containing the RT priority.
    8148             :  *
    8149             :  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
    8150             :  * code.
    8151             :  */
    8152           0 : SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
    8153             : {
    8154           0 :         struct sched_param lp = { .sched_priority = 0 };
    8155             :         struct task_struct *p;
    8156             :         int retval;
    8157             : 
    8158           0 :         if (!param || pid < 0)
    8159             :                 return -EINVAL;
    8160             : 
    8161             :         rcu_read_lock();
    8162           0 :         p = find_process_by_pid(pid);
    8163           0 :         retval = -ESRCH;
    8164           0 :         if (!p)
    8165             :                 goto out_unlock;
    8166             : 
    8167           0 :         retval = security_task_getscheduler(p);
    8168             :         if (retval)
    8169             :                 goto out_unlock;
    8170             : 
    8171           0 :         if (task_has_rt_policy(p))
    8172           0 :                 lp.sched_priority = p->rt_priority;
    8173           0 :         rcu_read_unlock();
    8174             : 
    8175             :         /*
    8176             :          * This one might sleep, we cannot do it with a spinlock held ...
    8177             :          */
    8178           0 :         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
    8179             : 
    8180           0 :         return retval;
    8181             : 
    8182             : out_unlock:
    8183             :         rcu_read_unlock();
    8184           0 :         return retval;
    8185             : }
    8186             : 
    8187             : /*
    8188             :  * Copy the kernel size attribute structure (which might be larger
    8189             :  * than what user-space knows about) to user-space.
    8190             :  *
    8191             :  * Note that all cases are valid: user-space buffer can be larger or
    8192             :  * smaller than the kernel-space buffer. The usual case is that both
    8193             :  * have the same size.
    8194             :  */
    8195             : static int
    8196           0 : sched_attr_copy_to_user(struct sched_attr __user *uattr,
    8197             :                         struct sched_attr *kattr,
    8198             :                         unsigned int usize)
    8199             : {
    8200           0 :         unsigned int ksize = sizeof(*kattr);
    8201             : 
    8202           0 :         if (!access_ok(uattr, usize))
    8203             :                 return -EFAULT;
    8204             : 
    8205             :         /*
    8206             :          * sched_getattr() ABI forwards and backwards compatibility:
    8207             :          *
    8208             :          * If usize == ksize then we just copy everything to user-space and all is good.
    8209             :          *
    8210             :          * If usize < ksize then we only copy as much as user-space has space for,
    8211             :          * this keeps ABI compatibility as well. We skip the rest.
    8212             :          *
    8213             :          * If usize > ksize then user-space is using a newer version of the ABI,
    8214             :          * which part the kernel doesn't know about. Just ignore it - tooling can
    8215             :          * detect the kernel's knowledge of attributes from the attr->size value
    8216             :          * which is set to ksize in this case.
    8217             :          */
    8218           0 :         kattr->size = min(usize, ksize);
    8219             : 
    8220           0 :         if (copy_to_user(uattr, kattr, kattr->size))
    8221             :                 return -EFAULT;
    8222             : 
    8223           0 :         return 0;
    8224             : }
    8225             : 
    8226             : /**
    8227             :  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
    8228             :  * @pid: the pid in question.
    8229             :  * @uattr: structure containing the extended parameters.
    8230             :  * @usize: sizeof(attr) for fwd/bwd comp.
    8231             :  * @flags: for future extension.
    8232             :  */
    8233           0 : SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
    8234             :                 unsigned int, usize, unsigned int, flags)
    8235             : {
    8236           0 :         struct sched_attr kattr = { };
    8237             :         struct task_struct *p;
    8238             :         int retval;
    8239             : 
    8240           0 :         if (!uattr || pid < 0 || usize > PAGE_SIZE ||
    8241           0 :             usize < SCHED_ATTR_SIZE_VER0 || flags)
    8242             :                 return -EINVAL;
    8243             : 
    8244             :         rcu_read_lock();
    8245           0 :         p = find_process_by_pid(pid);
    8246           0 :         retval = -ESRCH;
    8247           0 :         if (!p)
    8248             :                 goto out_unlock;
    8249             : 
    8250           0 :         retval = security_task_getscheduler(p);
    8251             :         if (retval)
    8252             :                 goto out_unlock;
    8253             : 
    8254           0 :         kattr.sched_policy = p->policy;
    8255           0 :         if (p->sched_reset_on_fork)
    8256           0 :                 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    8257           0 :         get_params(p, &kattr);
    8258           0 :         kattr.sched_flags &= SCHED_FLAG_ALL;
    8259             : 
    8260             : #ifdef CONFIG_UCLAMP_TASK
    8261             :         /*
    8262             :          * This could race with another potential updater, but this is fine
    8263             :          * because it'll correctly read the old or the new value. We don't need
    8264             :          * to guarantee who wins the race as long as it doesn't return garbage.
    8265             :          */
    8266             :         kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
    8267             :         kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
    8268             : #endif
    8269             : 
    8270             :         rcu_read_unlock();
    8271             : 
    8272           0 :         return sched_attr_copy_to_user(uattr, &kattr, usize);
    8273             : 
    8274             : out_unlock:
    8275             :         rcu_read_unlock();
    8276           0 :         return retval;
    8277             : }
    8278             : 
    8279             : #ifdef CONFIG_SMP
    8280             : int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
    8281             : {
    8282             :         int ret = 0;
    8283             : 
    8284             :         /*
    8285             :          * If the task isn't a deadline task or admission control is
    8286             :          * disabled then we don't care about affinity changes.
    8287             :          */
    8288             :         if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
    8289             :                 return 0;
    8290             : 
    8291             :         /*
    8292             :          * Since bandwidth control happens on root_domain basis,
    8293             :          * if admission test is enabled, we only admit -deadline
    8294             :          * tasks allowed to run on all the CPUs in the task's
    8295             :          * root_domain.
    8296             :          */
    8297             :         rcu_read_lock();
    8298             :         if (!cpumask_subset(task_rq(p)->rd->span, mask))
    8299             :                 ret = -EBUSY;
    8300             :         rcu_read_unlock();
    8301             :         return ret;
    8302             : }
    8303             : #endif
    8304             : 
    8305             : static int
    8306           0 : __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
    8307             : {
    8308             :         int retval;
    8309             :         cpumask_var_t cpus_allowed, new_mask;
    8310             : 
    8311           0 :         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
    8312             :                 return -ENOMEM;
    8313             : 
    8314           0 :         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
    8315             :                 retval = -ENOMEM;
    8316             :                 goto out_free_cpus_allowed;
    8317             :         }
    8318             : 
    8319           0 :         cpuset_cpus_allowed(p, cpus_allowed);
    8320           0 :         cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
    8321             : 
    8322           0 :         ctx->new_mask = new_mask;
    8323           0 :         ctx->flags |= SCA_CHECK;
    8324             : 
    8325           0 :         retval = dl_task_check_affinity(p, new_mask);
    8326             :         if (retval)
    8327             :                 goto out_free_new_mask;
    8328             : 
    8329           0 :         retval = __set_cpus_allowed_ptr(p, ctx);
    8330           0 :         if (retval)
    8331             :                 goto out_free_new_mask;
    8332             : 
    8333           0 :         cpuset_cpus_allowed(p, cpus_allowed);
    8334           0 :         if (!cpumask_subset(new_mask, cpus_allowed)) {
    8335             :                 /*
    8336             :                  * We must have raced with a concurrent cpuset update.
    8337             :                  * Just reset the cpumask to the cpuset's cpus_allowed.
    8338             :                  */
    8339           0 :                 cpumask_copy(new_mask, cpus_allowed);
    8340             : 
    8341             :                 /*
    8342             :                  * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
    8343             :                  * will restore the previous user_cpus_ptr value.
    8344             :                  *
    8345             :                  * In the unlikely event a previous user_cpus_ptr exists,
    8346             :                  * we need to further restrict the mask to what is allowed
    8347             :                  * by that old user_cpus_ptr.
    8348             :                  */
    8349           0 :                 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
    8350           0 :                         bool empty = !cpumask_and(new_mask, new_mask,
    8351           0 :                                                   ctx->user_mask);
    8352             : 
    8353           0 :                         if (WARN_ON_ONCE(empty))
    8354             :                                 cpumask_copy(new_mask, cpus_allowed);
    8355             :                 }
    8356           0 :                 __set_cpus_allowed_ptr(p, ctx);
    8357             :                 retval = -EINVAL;
    8358             :         }
    8359             : 
    8360             : out_free_new_mask:
    8361           0 :         free_cpumask_var(new_mask);
    8362             : out_free_cpus_allowed:
    8363           0 :         free_cpumask_var(cpus_allowed);
    8364             :         return retval;
    8365             : }
    8366             : 
    8367           0 : long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
    8368             : {
    8369             :         struct affinity_context ac;
    8370             :         struct cpumask *user_mask;
    8371             :         struct task_struct *p;
    8372             :         int retval;
    8373             : 
    8374             :         rcu_read_lock();
    8375             : 
    8376           0 :         p = find_process_by_pid(pid);
    8377           0 :         if (!p) {
    8378             :                 rcu_read_unlock();
    8379           0 :                 return -ESRCH;
    8380             :         }
    8381             : 
    8382             :         /* Prevent p going away */
    8383           0 :         get_task_struct(p);
    8384             :         rcu_read_unlock();
    8385             : 
    8386           0 :         if (p->flags & PF_NO_SETAFFINITY) {
    8387             :                 retval = -EINVAL;
    8388             :                 goto out_put_task;
    8389             :         }
    8390             : 
    8391           0 :         if (!check_same_owner(p)) {
    8392             :                 rcu_read_lock();
    8393           0 :                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
    8394             :                         rcu_read_unlock();
    8395           0 :                         retval = -EPERM;
    8396           0 :                         goto out_put_task;
    8397             :                 }
    8398             :                 rcu_read_unlock();
    8399             :         }
    8400             : 
    8401           0 :         retval = security_task_setscheduler(p);
    8402           0 :         if (retval)
    8403             :                 goto out_put_task;
    8404             : 
    8405             :         /*
    8406             :          * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
    8407             :          * alloc_user_cpus_ptr() returns NULL.
    8408             :          */
    8409           0 :         user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
    8410             :         if (user_mask) {
    8411             :                 cpumask_copy(user_mask, in_mask);
    8412             :         } else if (IS_ENABLED(CONFIG_SMP)) {
    8413             :                 retval = -ENOMEM;
    8414             :                 goto out_put_task;
    8415             :         }
    8416             : 
    8417           0 :         ac = (struct affinity_context){
    8418             :                 .new_mask  = in_mask,
    8419             :                 .user_mask = user_mask,
    8420             :                 .flags     = SCA_USER,
    8421             :         };
    8422             : 
    8423           0 :         retval = __sched_setaffinity(p, &ac);
    8424           0 :         kfree(ac.user_mask);
    8425             : 
    8426             : out_put_task:
    8427           0 :         put_task_struct(p);
    8428           0 :         return retval;
    8429             : }
    8430             : 
    8431           0 : static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
    8432             :                              struct cpumask *new_mask)
    8433             : {
    8434           0 :         if (len < cpumask_size())
    8435             :                 cpumask_clear(new_mask);
    8436           0 :         else if (len > cpumask_size())
    8437           0 :                 len = cpumask_size();
    8438             : 
    8439           0 :         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
    8440             : }
    8441             : 
    8442             : /**
    8443             :  * sys_sched_setaffinity - set the CPU affinity of a process
    8444             :  * @pid: pid of the process
    8445             :  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
    8446             :  * @user_mask_ptr: user-space pointer to the new CPU mask
    8447             :  *
    8448             :  * Return: 0 on success. An error code otherwise.
    8449             :  */
    8450           0 : SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
    8451             :                 unsigned long __user *, user_mask_ptr)
    8452             : {
    8453             :         cpumask_var_t new_mask;
    8454             :         int retval;
    8455             : 
    8456           0 :         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
    8457             :                 return -ENOMEM;
    8458             : 
    8459           0 :         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
    8460           0 :         if (retval == 0)
    8461           0 :                 retval = sched_setaffinity(pid, new_mask);
    8462           0 :         free_cpumask_var(new_mask);
    8463           0 :         return retval;
    8464             : }
    8465             : 
    8466           0 : long sched_getaffinity(pid_t pid, struct cpumask *mask)
    8467             : {
    8468             :         struct task_struct *p;
    8469             :         unsigned long flags;
    8470             :         int retval;
    8471             : 
    8472             :         rcu_read_lock();
    8473             : 
    8474           0 :         retval = -ESRCH;
    8475           0 :         p = find_process_by_pid(pid);
    8476           0 :         if (!p)
    8477             :                 goto out_unlock;
    8478             : 
    8479           0 :         retval = security_task_getscheduler(p);
    8480             :         if (retval)
    8481             :                 goto out_unlock;
    8482             : 
    8483           0 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    8484           0 :         cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
    8485           0 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    8486             : 
    8487             : out_unlock:
    8488             :         rcu_read_unlock();
    8489             : 
    8490           0 :         return retval;
    8491             : }
    8492             : 
    8493             : /**
    8494             :  * sys_sched_getaffinity - get the CPU affinity of a process
    8495             :  * @pid: pid of the process
    8496             :  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
    8497             :  * @user_mask_ptr: user-space pointer to hold the current CPU mask
    8498             :  *
    8499             :  * Return: size of CPU mask copied to user_mask_ptr on success. An
    8500             :  * error code otherwise.
    8501             :  */
    8502           0 : SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
    8503             :                 unsigned long __user *, user_mask_ptr)
    8504             : {
    8505             :         int ret;
    8506             :         cpumask_var_t mask;
    8507             : 
    8508           0 :         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
    8509             :                 return -EINVAL;
    8510           0 :         if (len & (sizeof(unsigned long)-1))
    8511             :                 return -EINVAL;
    8512             : 
    8513           0 :         if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
    8514             :                 return -ENOMEM;
    8515             : 
    8516           0 :         ret = sched_getaffinity(pid, mask);
    8517           0 :         if (ret == 0) {
    8518           0 :                 unsigned int retlen = min(len, cpumask_size());
    8519             : 
    8520           0 :                 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
    8521             :                         ret = -EFAULT;
    8522             :                 else
    8523           0 :                         ret = retlen;
    8524             :         }
    8525           0 :         free_cpumask_var(mask);
    8526             : 
    8527           0 :         return ret;
    8528             : }
    8529             : 
    8530           0 : static void do_sched_yield(void)
    8531             : {
    8532             :         struct rq_flags rf;
    8533             :         struct rq *rq;
    8534             : 
    8535           0 :         rq = this_rq_lock_irq(&rf);
    8536             : 
    8537             :         schedstat_inc(rq->yld_count);
    8538           0 :         current->sched_class->yield_task(rq);
    8539             : 
    8540           0 :         preempt_disable();
    8541           0 :         rq_unlock_irq(rq, &rf);
    8542           0 :         sched_preempt_enable_no_resched();
    8543             : 
    8544           0 :         schedule();
    8545           0 : }
    8546             : 
    8547             : /**
    8548             :  * sys_sched_yield - yield the current processor to other threads.
    8549             :  *
    8550             :  * This function yields the current CPU to other tasks. If there are no
    8551             :  * other threads running on this CPU then this function will return.
    8552             :  *
    8553             :  * Return: 0.
    8554             :  */
    8555           0 : SYSCALL_DEFINE0(sched_yield)
    8556             : {
    8557           0 :         do_sched_yield();
    8558           0 :         return 0;
    8559             : }
    8560             : 
    8561             : #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
    8562         721 : int __sched __cond_resched(void)
    8563             : {
    8564         721 :         if (should_resched(0)) {
    8565             :                 preempt_schedule_common();
    8566             :                 return 1;
    8567             :         }
    8568             :         /*
    8569             :          * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
    8570             :          * whether the current CPU is in an RCU read-side critical section,
    8571             :          * so the tick can report quiescent states even for CPUs looping
    8572             :          * in kernel context.  In contrast, in non-preemptible kernels,
    8573             :          * RCU readers leave no in-memory hints, which means that CPU-bound
    8574             :          * processes executing in kernel context might never report an
    8575             :          * RCU quiescent state.  Therefore, the following code causes
    8576             :          * cond_resched() to report a quiescent state, but only when RCU
    8577             :          * is in urgent need of one.
    8578             :          */
    8579             : #ifndef CONFIG_PREEMPT_RCU
    8580             :         rcu_all_qs();
    8581             : #endif
    8582         719 :         return 0;
    8583             : }
    8584             : EXPORT_SYMBOL(__cond_resched);
    8585             : #endif
    8586             : 
    8587             : #ifdef CONFIG_PREEMPT_DYNAMIC
    8588             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    8589             : #define cond_resched_dynamic_enabled    __cond_resched
    8590             : #define cond_resched_dynamic_disabled   ((void *)&__static_call_return0)
    8591             : DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
    8592             : EXPORT_STATIC_CALL_TRAMP(cond_resched);
    8593             : 
    8594             : #define might_resched_dynamic_enabled   __cond_resched
    8595             : #define might_resched_dynamic_disabled  ((void *)&__static_call_return0)
    8596             : DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
    8597             : EXPORT_STATIC_CALL_TRAMP(might_resched);
    8598             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    8599             : static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
    8600             : int __sched dynamic_cond_resched(void)
    8601             : {
    8602             :         klp_sched_try_switch();
    8603             :         if (!static_branch_unlikely(&sk_dynamic_cond_resched))
    8604             :                 return 0;
    8605             :         return __cond_resched();
    8606             : }
    8607             : EXPORT_SYMBOL(dynamic_cond_resched);
    8608             : 
    8609             : static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
    8610             : int __sched dynamic_might_resched(void)
    8611             : {
    8612             :         if (!static_branch_unlikely(&sk_dynamic_might_resched))
    8613             :                 return 0;
    8614             :         return __cond_resched();
    8615             : }
    8616             : EXPORT_SYMBOL(dynamic_might_resched);
    8617             : #endif
    8618             : #endif
    8619             : 
    8620             : /*
    8621             :  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
    8622             :  * call schedule, and on return reacquire the lock.
    8623             :  *
    8624             :  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
    8625             :  * operations here to prevent schedule() from being called twice (once via
    8626             :  * spin_unlock(), once by hand).
    8627             :  */
    8628           0 : int __cond_resched_lock(spinlock_t *lock)
    8629             : {
    8630           0 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8631           0 :         int ret = 0;
    8632             : 
    8633             :         lockdep_assert_held(lock);
    8634             : 
    8635           0 :         if (spin_needbreak(lock) || resched) {
    8636           0 :                 spin_unlock(lock);
    8637           0 :                 if (!_cond_resched())
    8638             :                         cpu_relax();
    8639           0 :                 ret = 1;
    8640             :                 spin_lock(lock);
    8641             :         }
    8642           0 :         return ret;
    8643             : }
    8644             : EXPORT_SYMBOL(__cond_resched_lock);
    8645             : 
    8646           0 : int __cond_resched_rwlock_read(rwlock_t *lock)
    8647             : {
    8648           0 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8649           0 :         int ret = 0;
    8650             : 
    8651             :         lockdep_assert_held_read(lock);
    8652             : 
    8653           0 :         if (rwlock_needbreak(lock) || resched) {
    8654           0 :                 read_unlock(lock);
    8655           0 :                 if (!_cond_resched())
    8656             :                         cpu_relax();
    8657           0 :                 ret = 1;
    8658           0 :                 read_lock(lock);
    8659             :         }
    8660           0 :         return ret;
    8661             : }
    8662             : EXPORT_SYMBOL(__cond_resched_rwlock_read);
    8663             : 
    8664           0 : int __cond_resched_rwlock_write(rwlock_t *lock)
    8665             : {
    8666           0 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8667           0 :         int ret = 0;
    8668             : 
    8669             :         lockdep_assert_held_write(lock);
    8670             : 
    8671           0 :         if (rwlock_needbreak(lock) || resched) {
    8672           0 :                 write_unlock(lock);
    8673           0 :                 if (!_cond_resched())
    8674             :                         cpu_relax();
    8675           0 :                 ret = 1;
    8676           0 :                 write_lock(lock);
    8677             :         }
    8678           0 :         return ret;
    8679             : }
    8680             : EXPORT_SYMBOL(__cond_resched_rwlock_write);
    8681             : 
    8682             : #ifdef CONFIG_PREEMPT_DYNAMIC
    8683             : 
    8684             : #ifdef CONFIG_GENERIC_ENTRY
    8685             : #include <linux/entry-common.h>
    8686             : #endif
    8687             : 
    8688             : /*
    8689             :  * SC:cond_resched
    8690             :  * SC:might_resched
    8691             :  * SC:preempt_schedule
    8692             :  * SC:preempt_schedule_notrace
    8693             :  * SC:irqentry_exit_cond_resched
    8694             :  *
    8695             :  *
    8696             :  * NONE:
    8697             :  *   cond_resched               <- __cond_resched
    8698             :  *   might_resched              <- RET0
    8699             :  *   preempt_schedule           <- NOP
    8700             :  *   preempt_schedule_notrace   <- NOP
    8701             :  *   irqentry_exit_cond_resched <- NOP
    8702             :  *
    8703             :  * VOLUNTARY:
    8704             :  *   cond_resched               <- __cond_resched
    8705             :  *   might_resched              <- __cond_resched
    8706             :  *   preempt_schedule           <- NOP
    8707             :  *   preempt_schedule_notrace   <- NOP
    8708             :  *   irqentry_exit_cond_resched <- NOP
    8709             :  *
    8710             :  * FULL:
    8711             :  *   cond_resched               <- RET0
    8712             :  *   might_resched              <- RET0
    8713             :  *   preempt_schedule           <- preempt_schedule
    8714             :  *   preempt_schedule_notrace   <- preempt_schedule_notrace
    8715             :  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
    8716             :  */
    8717             : 
    8718             : enum {
    8719             :         preempt_dynamic_undefined = -1,
    8720             :         preempt_dynamic_none,
    8721             :         preempt_dynamic_voluntary,
    8722             :         preempt_dynamic_full,
    8723             : };
    8724             : 
    8725             : int preempt_dynamic_mode = preempt_dynamic_undefined;
    8726             : 
    8727             : int sched_dynamic_mode(const char *str)
    8728             : {
    8729             :         if (!strcmp(str, "none"))
    8730             :                 return preempt_dynamic_none;
    8731             : 
    8732             :         if (!strcmp(str, "voluntary"))
    8733             :                 return preempt_dynamic_voluntary;
    8734             : 
    8735             :         if (!strcmp(str, "full"))
    8736             :                 return preempt_dynamic_full;
    8737             : 
    8738             :         return -EINVAL;
    8739             : }
    8740             : 
    8741             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    8742             : #define preempt_dynamic_enable(f)       static_call_update(f, f##_dynamic_enabled)
    8743             : #define preempt_dynamic_disable(f)      static_call_update(f, f##_dynamic_disabled)
    8744             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    8745             : #define preempt_dynamic_enable(f)       static_key_enable(&sk_dynamic_##f.key)
    8746             : #define preempt_dynamic_disable(f)      static_key_disable(&sk_dynamic_##f.key)
    8747             : #else
    8748             : #error "Unsupported PREEMPT_DYNAMIC mechanism"
    8749             : #endif
    8750             : 
    8751             : static DEFINE_MUTEX(sched_dynamic_mutex);
    8752             : static bool klp_override;
    8753             : 
    8754             : static void __sched_dynamic_update(int mode)
    8755             : {
    8756             :         /*
    8757             :          * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
    8758             :          * the ZERO state, which is invalid.
    8759             :          */
    8760             :         if (!klp_override)
    8761             :                 preempt_dynamic_enable(cond_resched);
    8762             :         preempt_dynamic_enable(might_resched);
    8763             :         preempt_dynamic_enable(preempt_schedule);
    8764             :         preempt_dynamic_enable(preempt_schedule_notrace);
    8765             :         preempt_dynamic_enable(irqentry_exit_cond_resched);
    8766             : 
    8767             :         switch (mode) {
    8768             :         case preempt_dynamic_none:
    8769             :                 if (!klp_override)
    8770             :                         preempt_dynamic_enable(cond_resched);
    8771             :                 preempt_dynamic_disable(might_resched);
    8772             :                 preempt_dynamic_disable(preempt_schedule);
    8773             :                 preempt_dynamic_disable(preempt_schedule_notrace);
    8774             :                 preempt_dynamic_disable(irqentry_exit_cond_resched);
    8775             :                 if (mode != preempt_dynamic_mode)
    8776             :                         pr_info("Dynamic Preempt: none\n");
    8777             :                 break;
    8778             : 
    8779             :         case preempt_dynamic_voluntary:
    8780             :                 if (!klp_override)
    8781             :                         preempt_dynamic_enable(cond_resched);
    8782             :                 preempt_dynamic_enable(might_resched);
    8783             :                 preempt_dynamic_disable(preempt_schedule);
    8784             :                 preempt_dynamic_disable(preempt_schedule_notrace);
    8785             :                 preempt_dynamic_disable(irqentry_exit_cond_resched);
    8786             :                 if (mode != preempt_dynamic_mode)
    8787             :                         pr_info("Dynamic Preempt: voluntary\n");
    8788             :                 break;
    8789             : 
    8790             :         case preempt_dynamic_full:
    8791             :                 if (!klp_override)
    8792             :                         preempt_dynamic_disable(cond_resched);
    8793             :                 preempt_dynamic_disable(might_resched);
    8794             :                 preempt_dynamic_enable(preempt_schedule);
    8795             :                 preempt_dynamic_enable(preempt_schedule_notrace);
    8796             :                 preempt_dynamic_enable(irqentry_exit_cond_resched);
    8797             :                 if (mode != preempt_dynamic_mode)
    8798             :                         pr_info("Dynamic Preempt: full\n");
    8799             :                 break;
    8800             :         }
    8801             : 
    8802             :         preempt_dynamic_mode = mode;
    8803             : }
    8804             : 
    8805             : void sched_dynamic_update(int mode)
    8806             : {
    8807             :         mutex_lock(&sched_dynamic_mutex);
    8808             :         __sched_dynamic_update(mode);
    8809             :         mutex_unlock(&sched_dynamic_mutex);
    8810             : }
    8811             : 
    8812             : #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
    8813             : 
    8814             : static int klp_cond_resched(void)
    8815             : {
    8816             :         __klp_sched_try_switch();
    8817             :         return __cond_resched();
    8818             : }
    8819             : 
    8820             : void sched_dynamic_klp_enable(void)
    8821             : {
    8822             :         mutex_lock(&sched_dynamic_mutex);
    8823             : 
    8824             :         klp_override = true;
    8825             :         static_call_update(cond_resched, klp_cond_resched);
    8826             : 
    8827             :         mutex_unlock(&sched_dynamic_mutex);
    8828             : }
    8829             : 
    8830             : void sched_dynamic_klp_disable(void)
    8831             : {
    8832             :         mutex_lock(&sched_dynamic_mutex);
    8833             : 
    8834             :         klp_override = false;
    8835             :         __sched_dynamic_update(preempt_dynamic_mode);
    8836             : 
    8837             :         mutex_unlock(&sched_dynamic_mutex);
    8838             : }
    8839             : 
    8840             : #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
    8841             : 
    8842             : static int __init setup_preempt_mode(char *str)
    8843             : {
    8844             :         int mode = sched_dynamic_mode(str);
    8845             :         if (mode < 0) {
    8846             :                 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
    8847             :                 return 0;
    8848             :         }
    8849             : 
    8850             :         sched_dynamic_update(mode);
    8851             :         return 1;
    8852             : }
    8853             : __setup("preempt=", setup_preempt_mode);
    8854             : 
    8855             : static void __init preempt_dynamic_init(void)
    8856             : {
    8857             :         if (preempt_dynamic_mode == preempt_dynamic_undefined) {
    8858             :                 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
    8859             :                         sched_dynamic_update(preempt_dynamic_none);
    8860             :                 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
    8861             :                         sched_dynamic_update(preempt_dynamic_voluntary);
    8862             :                 } else {
    8863             :                         /* Default static call setting, nothing to do */
    8864             :                         WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
    8865             :                         preempt_dynamic_mode = preempt_dynamic_full;
    8866             :                         pr_info("Dynamic Preempt: full\n");
    8867             :                 }
    8868             :         }
    8869             : }
    8870             : 
    8871             : #define PREEMPT_MODEL_ACCESSOR(mode) \
    8872             :         bool preempt_model_##mode(void)                                          \
    8873             :         {                                                                        \
    8874             :                 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
    8875             :                 return preempt_dynamic_mode == preempt_dynamic_##mode;           \
    8876             :         }                                                                        \
    8877             :         EXPORT_SYMBOL_GPL(preempt_model_##mode)
    8878             : 
    8879             : PREEMPT_MODEL_ACCESSOR(none);
    8880             : PREEMPT_MODEL_ACCESSOR(voluntary);
    8881             : PREEMPT_MODEL_ACCESSOR(full);
    8882             : 
    8883             : #else /* !CONFIG_PREEMPT_DYNAMIC */
    8884             : 
    8885             : static inline void preempt_dynamic_init(void) { }
    8886             : 
    8887             : #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
    8888             : 
    8889             : /**
    8890             :  * yield - yield the current processor to other threads.
    8891             :  *
    8892             :  * Do not ever use this function, there's a 99% chance you're doing it wrong.
    8893             :  *
    8894             :  * The scheduler is at all times free to pick the calling task as the most
    8895             :  * eligible task to run, if removing the yield() call from your code breaks
    8896             :  * it, it's already broken.
    8897             :  *
    8898             :  * Typical broken usage is:
    8899             :  *
    8900             :  * while (!event)
    8901             :  *      yield();
    8902             :  *
    8903             :  * where one assumes that yield() will let 'the other' process run that will
    8904             :  * make event true. If the current task is a SCHED_FIFO task that will never
    8905             :  * happen. Never use yield() as a progress guarantee!!
    8906             :  *
    8907             :  * If you want to use yield() to wait for something, use wait_event().
    8908             :  * If you want to use yield() to be 'nice' for others, use cond_resched().
    8909             :  * If you still want to use yield(), do not!
    8910             :  */
    8911           0 : void __sched yield(void)
    8912             : {
    8913           0 :         set_current_state(TASK_RUNNING);
    8914           0 :         do_sched_yield();
    8915           0 : }
    8916             : EXPORT_SYMBOL(yield);
    8917             : 
    8918             : /**
    8919             :  * yield_to - yield the current processor to another thread in
    8920             :  * your thread group, or accelerate that thread toward the
    8921             :  * processor it's on.
    8922             :  * @p: target task
    8923             :  * @preempt: whether task preemption is allowed or not
    8924             :  *
    8925             :  * It's the caller's job to ensure that the target task struct
    8926             :  * can't go away on us before we can do any checks.
    8927             :  *
    8928             :  * Return:
    8929             :  *      true (>0) if we indeed boosted the target task.
    8930             :  *      false (0) if we failed to boost the target.
    8931             :  *      -ESRCH if there's no task to yield to.
    8932             :  */
    8933           0 : int __sched yield_to(struct task_struct *p, bool preempt)
    8934             : {
    8935           0 :         struct task_struct *curr = current;
    8936             :         struct rq *rq, *p_rq;
    8937             :         unsigned long flags;
    8938           0 :         int yielded = 0;
    8939             : 
    8940           0 :         local_irq_save(flags);
    8941           0 :         rq = this_rq();
    8942             : 
    8943             : again:
    8944           0 :         p_rq = task_rq(p);
    8945             :         /*
    8946             :          * If we're the only runnable task on the rq and target rq also
    8947             :          * has only one task, there's absolutely no point in yielding.
    8948             :          */
    8949           0 :         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
    8950             :                 yielded = -ESRCH;
    8951             :                 goto out_irq;
    8952             :         }
    8953             : 
    8954           0 :         double_rq_lock(rq, p_rq);
    8955           0 :         if (task_rq(p) != p_rq) {
    8956             :                 double_rq_unlock(rq, p_rq);
    8957             :                 goto again;
    8958             :         }
    8959             : 
    8960           0 :         if (!curr->sched_class->yield_to_task)
    8961             :                 goto out_unlock;
    8962             : 
    8963           0 :         if (curr->sched_class != p->sched_class)
    8964             :                 goto out_unlock;
    8965             : 
    8966           0 :         if (task_on_cpu(p_rq, p) || !task_is_running(p))
    8967             :                 goto out_unlock;
    8968             : 
    8969           0 :         yielded = curr->sched_class->yield_to_task(rq, p);
    8970             :         if (yielded) {
    8971             :                 schedstat_inc(rq->yld_count);
    8972             :                 /*
    8973             :                  * Make p's CPU reschedule; pick_next_entity takes care of
    8974             :                  * fairness.
    8975             :                  */
    8976             :                 if (preempt && rq != p_rq)
    8977             :                         resched_curr(p_rq);
    8978             :         }
    8979             : 
    8980             : out_unlock:
    8981           0 :         double_rq_unlock(rq, p_rq);
    8982             : out_irq:
    8983           0 :         local_irq_restore(flags);
    8984             : 
    8985           0 :         if (yielded > 0)
    8986           0 :                 schedule();
    8987             : 
    8988           0 :         return yielded;
    8989             : }
    8990             : EXPORT_SYMBOL_GPL(yield_to);
    8991             : 
    8992           0 : int io_schedule_prepare(void)
    8993             : {
    8994           0 :         int old_iowait = current->in_iowait;
    8995             : 
    8996           0 :         current->in_iowait = 1;
    8997           0 :         blk_flush_plug(current->plug, true);
    8998           0 :         return old_iowait;
    8999             : }
    9000             : 
    9001           0 : void io_schedule_finish(int token)
    9002             : {
    9003           0 :         current->in_iowait = token;
    9004           0 : }
    9005             : 
    9006             : /*
    9007             :  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
    9008             :  * that process accounting knows that this is a task in IO wait state.
    9009             :  */
    9010           0 : long __sched io_schedule_timeout(long timeout)
    9011             : {
    9012             :         int token;
    9013             :         long ret;
    9014             : 
    9015           0 :         token = io_schedule_prepare();
    9016           0 :         ret = schedule_timeout(timeout);
    9017           0 :         io_schedule_finish(token);
    9018             : 
    9019           0 :         return ret;
    9020             : }
    9021             : EXPORT_SYMBOL(io_schedule_timeout);
    9022             : 
    9023           0 : void __sched io_schedule(void)
    9024             : {
    9025             :         int token;
    9026             : 
    9027           0 :         token = io_schedule_prepare();
    9028           0 :         schedule();
    9029           0 :         io_schedule_finish(token);
    9030           0 : }
    9031             : EXPORT_SYMBOL(io_schedule);
    9032             : 
    9033             : /**
    9034             :  * sys_sched_get_priority_max - return maximum RT priority.
    9035             :  * @policy: scheduling class.
    9036             :  *
    9037             :  * Return: On success, this syscall returns the maximum
    9038             :  * rt_priority that can be used by a given scheduling class.
    9039             :  * On failure, a negative error code is returned.
    9040             :  */
    9041           0 : SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
    9042             : {
    9043           0 :         int ret = -EINVAL;
    9044             : 
    9045             :         switch (policy) {
    9046             :         case SCHED_FIFO:
    9047             :         case SCHED_RR:
    9048           0 :                 ret = MAX_RT_PRIO-1;
    9049             :                 break;
    9050             :         case SCHED_DEADLINE:
    9051             :         case SCHED_NORMAL:
    9052             :         case SCHED_BATCH:
    9053             :         case SCHED_IDLE:
    9054             :                 ret = 0;
    9055             :                 break;
    9056             :         }
    9057           0 :         return ret;
    9058             : }
    9059             : 
    9060             : /**
    9061             :  * sys_sched_get_priority_min - return minimum RT priority.
    9062             :  * @policy: scheduling class.
    9063             :  *
    9064             :  * Return: On success, this syscall returns the minimum
    9065             :  * rt_priority that can be used by a given scheduling class.
    9066             :  * On failure, a negative error code is returned.
    9067             :  */
    9068           0 : SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
    9069             : {
    9070           0 :         int ret = -EINVAL;
    9071             : 
    9072             :         switch (policy) {
    9073             :         case SCHED_FIFO:
    9074             :         case SCHED_RR:
    9075           0 :                 ret = 1;
    9076             :                 break;
    9077             :         case SCHED_DEADLINE:
    9078             :         case SCHED_NORMAL:
    9079             :         case SCHED_BATCH:
    9080             :         case SCHED_IDLE:
    9081             :                 ret = 0;
    9082             :         }
    9083           0 :         return ret;
    9084             : }
    9085             : 
    9086           0 : static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
    9087             : {
    9088             :         struct task_struct *p;
    9089             :         unsigned int time_slice;
    9090             :         struct rq_flags rf;
    9091             :         struct rq *rq;
    9092             :         int retval;
    9093             : 
    9094           0 :         if (pid < 0)
    9095             :                 return -EINVAL;
    9096             : 
    9097           0 :         retval = -ESRCH;
    9098             :         rcu_read_lock();
    9099           0 :         p = find_process_by_pid(pid);
    9100           0 :         if (!p)
    9101             :                 goto out_unlock;
    9102             : 
    9103           0 :         retval = security_task_getscheduler(p);
    9104             :         if (retval)
    9105             :                 goto out_unlock;
    9106             : 
    9107           0 :         rq = task_rq_lock(p, &rf);
    9108           0 :         time_slice = 0;
    9109           0 :         if (p->sched_class->get_rr_interval)
    9110           0 :                 time_slice = p->sched_class->get_rr_interval(rq, p);
    9111           0 :         task_rq_unlock(rq, p, &rf);
    9112             : 
    9113             :         rcu_read_unlock();
    9114           0 :         jiffies_to_timespec64(time_slice, t);
    9115           0 :         return 0;
    9116             : 
    9117             : out_unlock:
    9118             :         rcu_read_unlock();
    9119           0 :         return retval;
    9120             : }
    9121             : 
    9122             : /**
    9123             :  * sys_sched_rr_get_interval - return the default timeslice of a process.
    9124             :  * @pid: pid of the process.
    9125             :  * @interval: userspace pointer to the timeslice value.
    9126             :  *
    9127             :  * this syscall writes the default timeslice value of a given process
    9128             :  * into the user-space timespec buffer. A value of '0' means infinity.
    9129             :  *
    9130             :  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
    9131             :  * an error code.
    9132             :  */
    9133           0 : SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
    9134             :                 struct __kernel_timespec __user *, interval)
    9135             : {
    9136             :         struct timespec64 t;
    9137           0 :         int retval = sched_rr_get_interval(pid, &t);
    9138             : 
    9139           0 :         if (retval == 0)
    9140           0 :                 retval = put_timespec64(&t, interval);
    9141             : 
    9142           0 :         return retval;
    9143             : }
    9144             : 
    9145             : #ifdef CONFIG_COMPAT_32BIT_TIME
    9146             : SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
    9147             :                 struct old_timespec32 __user *, interval)
    9148             : {
    9149             :         struct timespec64 t;
    9150             :         int retval = sched_rr_get_interval(pid, &t);
    9151             : 
    9152             :         if (retval == 0)
    9153             :                 retval = put_old_timespec32(&t, interval);
    9154             :         return retval;
    9155             : }
    9156             : #endif
    9157             : 
    9158           0 : void sched_show_task(struct task_struct *p)
    9159             : {
    9160           0 :         unsigned long free = 0;
    9161             :         int ppid;
    9162             : 
    9163           0 :         if (!try_get_task_stack(p))
    9164             :                 return;
    9165             : 
    9166           0 :         pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
    9167             : 
    9168           0 :         if (task_is_running(p))
    9169           0 :                 pr_cont("  running task    ");
    9170             : #ifdef CONFIG_DEBUG_STACK_USAGE
    9171             :         free = stack_not_used(p);
    9172             : #endif
    9173           0 :         ppid = 0;
    9174             :         rcu_read_lock();
    9175           0 :         if (pid_alive(p))
    9176           0 :                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
    9177             :         rcu_read_unlock();
    9178           0 :         pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
    9179             :                 free, task_pid_nr(p), ppid,
    9180             :                 read_task_thread_flags(p));
    9181             : 
    9182           0 :         print_worker_info(KERN_INFO, p);
    9183           0 :         print_stop_info(KERN_INFO, p);
    9184           0 :         show_stack(p, NULL, KERN_INFO);
    9185           0 :         put_task_stack(p);
    9186             : }
    9187             : EXPORT_SYMBOL_GPL(sched_show_task);
    9188             : 
    9189             : static inline bool
    9190             : state_filter_match(unsigned long state_filter, struct task_struct *p)
    9191             : {
    9192           0 :         unsigned int state = READ_ONCE(p->__state);
    9193             : 
    9194             :         /* no filter, everything matches */
    9195           0 :         if (!state_filter)
    9196             :                 return true;
    9197             : 
    9198             :         /* filter, but doesn't match */
    9199           0 :         if (!(state & state_filter))
    9200             :                 return false;
    9201             : 
    9202             :         /*
    9203             :          * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
    9204             :          * TASK_KILLABLE).
    9205             :          */
    9206           0 :         if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
    9207             :                 return false;
    9208             : 
    9209             :         return true;
    9210             : }
    9211             : 
    9212             : 
    9213           0 : void show_state_filter(unsigned int state_filter)
    9214             : {
    9215             :         struct task_struct *g, *p;
    9216             : 
    9217             :         rcu_read_lock();
    9218           0 :         for_each_process_thread(g, p) {
    9219             :                 /*
    9220             :                  * reset the NMI-timeout, listing all files on a slow
    9221             :                  * console might take a lot of time:
    9222             :                  * Also, reset softlockup watchdogs on all CPUs, because
    9223             :                  * another CPU might be blocked waiting for us to process
    9224             :                  * an IPI.
    9225             :                  */
    9226             :                 touch_nmi_watchdog();
    9227             :                 touch_all_softlockup_watchdogs();
    9228           0 :                 if (state_filter_match(state_filter, p))
    9229           0 :                         sched_show_task(p);
    9230             :         }
    9231             : 
    9232             : #ifdef CONFIG_SCHED_DEBUG
    9233             :         if (!state_filter)
    9234             :                 sysrq_sched_debug_show();
    9235             : #endif
    9236             :         rcu_read_unlock();
    9237             :         /*
    9238             :          * Only show locks if all tasks are dumped:
    9239             :          */
    9240             :         if (!state_filter)
    9241             :                 debug_show_all_locks();
    9242           0 : }
    9243             : 
    9244             : /**
    9245             :  * init_idle - set up an idle thread for a given CPU
    9246             :  * @idle: task in question
    9247             :  * @cpu: CPU the idle task belongs to
    9248             :  *
    9249             :  * NOTE: this function does not set the idle thread's NEED_RESCHED
    9250             :  * flag, to make booting more robust.
    9251             :  */
    9252           1 : void __init init_idle(struct task_struct *idle, int cpu)
    9253             : {
    9254             : #ifdef CONFIG_SMP
    9255             :         struct affinity_context ac = (struct affinity_context) {
    9256             :                 .new_mask  = cpumask_of(cpu),
    9257             :                 .flags     = 0,
    9258             :         };
    9259             : #endif
    9260           1 :         struct rq *rq = cpu_rq(cpu);
    9261             :         unsigned long flags;
    9262             : 
    9263           1 :         __sched_fork(0, idle);
    9264             : 
    9265           1 :         raw_spin_lock_irqsave(&idle->pi_lock, flags);
    9266           1 :         raw_spin_rq_lock(rq);
    9267             : 
    9268           1 :         idle->__state = TASK_RUNNING;
    9269           1 :         idle->se.exec_start = sched_clock();
    9270             :         /*
    9271             :          * PF_KTHREAD should already be set at this point; regardless, make it
    9272             :          * look like a proper per-CPU kthread.
    9273             :          */
    9274           1 :         idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
    9275           1 :         kthread_set_per_cpu(idle, cpu);
    9276             : 
    9277             : #ifdef CONFIG_SMP
    9278             :         /*
    9279             :          * It's possible that init_idle() gets called multiple times on a task,
    9280             :          * in that case do_set_cpus_allowed() will not do the right thing.
    9281             :          *
    9282             :          * And since this is boot we can forgo the serialization.
    9283             :          */
    9284             :         set_cpus_allowed_common(idle, &ac);
    9285             : #endif
    9286             :         /*
    9287             :          * We're having a chicken and egg problem, even though we are
    9288             :          * holding rq->lock, the CPU isn't yet set to this CPU so the
    9289             :          * lockdep check in task_group() will fail.
    9290             :          *
    9291             :          * Similar case to sched_fork(). / Alternatively we could
    9292             :          * use task_rq_lock() here and obtain the other rq->lock.
    9293             :          *
    9294             :          * Silence PROVE_RCU
    9295             :          */
    9296             :         rcu_read_lock();
    9297           1 :         __set_task_cpu(idle, cpu);
    9298             :         rcu_read_unlock();
    9299             : 
    9300           1 :         rq->idle = idle;
    9301           1 :         rcu_assign_pointer(rq->curr, idle);
    9302           1 :         idle->on_rq = TASK_ON_RQ_QUEUED;
    9303             : #ifdef CONFIG_SMP
    9304             :         idle->on_cpu = 1;
    9305             : #endif
    9306           1 :         raw_spin_rq_unlock(rq);
    9307           2 :         raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
    9308             : 
    9309             :         /* Set the preempt count _outside_ the spinlocks! */
    9310           1 :         init_idle_preempt_count(idle, cpu);
    9311             : 
    9312             :         /*
    9313             :          * The idle tasks have their own, simple scheduling class:
    9314             :          */
    9315           1 :         idle->sched_class = &idle_sched_class;
    9316           1 :         ftrace_graph_init_idle_task(idle, cpu);
    9317           1 :         vtime_init_idle(idle, cpu);
    9318             : #ifdef CONFIG_SMP
    9319             :         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
    9320             : #endif
    9321           1 : }
    9322             : 
    9323             : #ifdef CONFIG_SMP
    9324             : 
    9325             : int cpuset_cpumask_can_shrink(const struct cpumask *cur,
    9326             :                               const struct cpumask *trial)
    9327             : {
    9328             :         int ret = 1;
    9329             : 
    9330             :         if (cpumask_empty(cur))
    9331             :                 return ret;
    9332             : 
    9333             :         ret = dl_cpuset_cpumask_can_shrink(cur, trial);
    9334             : 
    9335             :         return ret;
    9336             : }
    9337             : 
    9338             : int task_can_attach(struct task_struct *p)
    9339             : {
    9340             :         int ret = 0;
    9341             : 
    9342             :         /*
    9343             :          * Kthreads which disallow setaffinity shouldn't be moved
    9344             :          * to a new cpuset; we don't want to change their CPU
    9345             :          * affinity and isolating such threads by their set of
    9346             :          * allowed nodes is unnecessary.  Thus, cpusets are not
    9347             :          * applicable for such threads.  This prevents checking for
    9348             :          * success of set_cpus_allowed_ptr() on all attached tasks
    9349             :          * before cpus_mask may be changed.
    9350             :          */
    9351             :         if (p->flags & PF_NO_SETAFFINITY)
    9352             :                 ret = -EINVAL;
    9353             : 
    9354             :         return ret;
    9355             : }
    9356             : 
    9357             : bool sched_smp_initialized __read_mostly;
    9358             : 
    9359             : #ifdef CONFIG_NUMA_BALANCING
    9360             : /* Migrate current task p to target_cpu */
    9361             : int migrate_task_to(struct task_struct *p, int target_cpu)
    9362             : {
    9363             :         struct migration_arg arg = { p, target_cpu };
    9364             :         int curr_cpu = task_cpu(p);
    9365             : 
    9366             :         if (curr_cpu == target_cpu)
    9367             :                 return 0;
    9368             : 
    9369             :         if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
    9370             :                 return -EINVAL;
    9371             : 
    9372             :         /* TODO: This is not properly updating schedstats */
    9373             : 
    9374             :         trace_sched_move_numa(p, curr_cpu, target_cpu);
    9375             :         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
    9376             : }
    9377             : 
    9378             : /*
    9379             :  * Requeue a task on a given node and accurately track the number of NUMA
    9380             :  * tasks on the runqueues
    9381             :  */
    9382             : void sched_setnuma(struct task_struct *p, int nid)
    9383             : {
    9384             :         bool queued, running;
    9385             :         struct rq_flags rf;
    9386             :         struct rq *rq;
    9387             : 
    9388             :         rq = task_rq_lock(p, &rf);
    9389             :         queued = task_on_rq_queued(p);
    9390             :         running = task_current(rq, p);
    9391             : 
    9392             :         if (queued)
    9393             :                 dequeue_task(rq, p, DEQUEUE_SAVE);
    9394             :         if (running)
    9395             :                 put_prev_task(rq, p);
    9396             : 
    9397             :         p->numa_preferred_nid = nid;
    9398             : 
    9399             :         if (queued)
    9400             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    9401             :         if (running)
    9402             :                 set_next_task(rq, p);
    9403             :         task_rq_unlock(rq, p, &rf);
    9404             : }
    9405             : #endif /* CONFIG_NUMA_BALANCING */
    9406             : 
    9407             : #ifdef CONFIG_HOTPLUG_CPU
    9408             : /*
    9409             :  * Ensure that the idle task is using init_mm right before its CPU goes
    9410             :  * offline.
    9411             :  */
    9412             : void idle_task_exit(void)
    9413             : {
    9414             :         struct mm_struct *mm = current->active_mm;
    9415             : 
    9416             :         BUG_ON(cpu_online(smp_processor_id()));
    9417             :         BUG_ON(current != this_rq()->idle);
    9418             : 
    9419             :         if (mm != &init_mm) {
    9420             :                 switch_mm(mm, &init_mm, current);
    9421             :                 finish_arch_post_lock_switch();
    9422             :         }
    9423             : 
    9424             :         /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
    9425             : }
    9426             : 
    9427             : static int __balance_push_cpu_stop(void *arg)
    9428             : {
    9429             :         struct task_struct *p = arg;
    9430             :         struct rq *rq = this_rq();
    9431             :         struct rq_flags rf;
    9432             :         int cpu;
    9433             : 
    9434             :         raw_spin_lock_irq(&p->pi_lock);
    9435             :         rq_lock(rq, &rf);
    9436             : 
    9437             :         update_rq_clock(rq);
    9438             : 
    9439             :         if (task_rq(p) == rq && task_on_rq_queued(p)) {
    9440             :                 cpu = select_fallback_rq(rq->cpu, p);
    9441             :                 rq = __migrate_task(rq, &rf, p, cpu);
    9442             :         }
    9443             : 
    9444             :         rq_unlock(rq, &rf);
    9445             :         raw_spin_unlock_irq(&p->pi_lock);
    9446             : 
    9447             :         put_task_struct(p);
    9448             : 
    9449             :         return 0;
    9450             : }
    9451             : 
    9452             : static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
    9453             : 
    9454             : /*
    9455             :  * Ensure we only run per-cpu kthreads once the CPU goes !active.
    9456             :  *
    9457             :  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
    9458             :  * effective when the hotplug motion is down.
    9459             :  */
    9460             : static void balance_push(struct rq *rq)
    9461             : {
    9462             :         struct task_struct *push_task = rq->curr;
    9463             : 
    9464             :         lockdep_assert_rq_held(rq);
    9465             : 
    9466             :         /*
    9467             :          * Ensure the thing is persistent until balance_push_set(.on = false);
    9468             :          */
    9469             :         rq->balance_callback = &balance_push_callback;
    9470             : 
    9471             :         /*
    9472             :          * Only active while going offline and when invoked on the outgoing
    9473             :          * CPU.
    9474             :          */
    9475             :         if (!cpu_dying(rq->cpu) || rq != this_rq())
    9476             :                 return;
    9477             : 
    9478             :         /*
    9479             :          * Both the cpu-hotplug and stop task are in this case and are
    9480             :          * required to complete the hotplug process.
    9481             :          */
    9482             :         if (kthread_is_per_cpu(push_task) ||
    9483             :             is_migration_disabled(push_task)) {
    9484             : 
    9485             :                 /*
    9486             :                  * If this is the idle task on the outgoing CPU try to wake
    9487             :                  * up the hotplug control thread which might wait for the
    9488             :                  * last task to vanish. The rcuwait_active() check is
    9489             :                  * accurate here because the waiter is pinned on this CPU
    9490             :                  * and can't obviously be running in parallel.
    9491             :                  *
    9492             :                  * On RT kernels this also has to check whether there are
    9493             :                  * pinned and scheduled out tasks on the runqueue. They
    9494             :                  * need to leave the migrate disabled section first.
    9495             :                  */
    9496             :                 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
    9497             :                     rcuwait_active(&rq->hotplug_wait)) {
    9498             :                         raw_spin_rq_unlock(rq);
    9499             :                         rcuwait_wake_up(&rq->hotplug_wait);
    9500             :                         raw_spin_rq_lock(rq);
    9501             :                 }
    9502             :                 return;
    9503             :         }
    9504             : 
    9505             :         get_task_struct(push_task);
    9506             :         /*
    9507             :          * Temporarily drop rq->lock such that we can wake-up the stop task.
    9508             :          * Both preemption and IRQs are still disabled.
    9509             :          */
    9510             :         raw_spin_rq_unlock(rq);
    9511             :         stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
    9512             :                             this_cpu_ptr(&push_work));
    9513             :         /*
    9514             :          * At this point need_resched() is true and we'll take the loop in
    9515             :          * schedule(). The next pick is obviously going to be the stop task
    9516             :          * which kthread_is_per_cpu() and will push this task away.
    9517             :          */
    9518             :         raw_spin_rq_lock(rq);
    9519             : }
    9520             : 
    9521             : static void balance_push_set(int cpu, bool on)
    9522             : {
    9523             :         struct rq *rq = cpu_rq(cpu);
    9524             :         struct rq_flags rf;
    9525             : 
    9526             :         rq_lock_irqsave(rq, &rf);
    9527             :         if (on) {
    9528             :                 WARN_ON_ONCE(rq->balance_callback);
    9529             :                 rq->balance_callback = &balance_push_callback;
    9530             :         } else if (rq->balance_callback == &balance_push_callback) {
    9531             :                 rq->balance_callback = NULL;
    9532             :         }
    9533             :         rq_unlock_irqrestore(rq, &rf);
    9534             : }
    9535             : 
    9536             : /*
    9537             :  * Invoked from a CPUs hotplug control thread after the CPU has been marked
    9538             :  * inactive. All tasks which are not per CPU kernel threads are either
    9539             :  * pushed off this CPU now via balance_push() or placed on a different CPU
    9540             :  * during wakeup. Wait until the CPU is quiescent.
    9541             :  */
    9542             : static void balance_hotplug_wait(void)
    9543             : {
    9544             :         struct rq *rq = this_rq();
    9545             : 
    9546             :         rcuwait_wait_event(&rq->hotplug_wait,
    9547             :                            rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
    9548             :                            TASK_UNINTERRUPTIBLE);
    9549             : }
    9550             : 
    9551             : #else
    9552             : 
    9553             : static inline void balance_push(struct rq *rq)
    9554             : {
    9555             : }
    9556             : 
    9557             : static inline void balance_push_set(int cpu, bool on)
    9558             : {
    9559             : }
    9560             : 
    9561             : static inline void balance_hotplug_wait(void)
    9562             : {
    9563             : }
    9564             : 
    9565             : #endif /* CONFIG_HOTPLUG_CPU */
    9566             : 
    9567             : void set_rq_online(struct rq *rq)
    9568             : {
    9569             :         if (!rq->online) {
    9570             :                 const struct sched_class *class;
    9571             : 
    9572             :                 cpumask_set_cpu(rq->cpu, rq->rd->online);
    9573             :                 rq->online = 1;
    9574             : 
    9575             :                 for_each_class(class) {
    9576             :                         if (class->rq_online)
    9577             :                                 class->rq_online(rq);
    9578             :                 }
    9579             :         }
    9580             : }
    9581             : 
    9582             : void set_rq_offline(struct rq *rq)
    9583             : {
    9584             :         if (rq->online) {
    9585             :                 const struct sched_class *class;
    9586             : 
    9587             :                 update_rq_clock(rq);
    9588             :                 for_each_class(class) {
    9589             :                         if (class->rq_offline)
    9590             :                                 class->rq_offline(rq);
    9591             :                 }
    9592             : 
    9593             :                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
    9594             :                 rq->online = 0;
    9595             :         }
    9596             : }
    9597             : 
    9598             : /*
    9599             :  * used to mark begin/end of suspend/resume:
    9600             :  */
    9601             : static int num_cpus_frozen;
    9602             : 
    9603             : /*
    9604             :  * Update cpusets according to cpu_active mask.  If cpusets are
    9605             :  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
    9606             :  * around partition_sched_domains().
    9607             :  *
    9608             :  * If we come here as part of a suspend/resume, don't touch cpusets because we
    9609             :  * want to restore it back to its original state upon resume anyway.
    9610             :  */
    9611             : static void cpuset_cpu_active(void)
    9612             : {
    9613             :         if (cpuhp_tasks_frozen) {
    9614             :                 /*
    9615             :                  * num_cpus_frozen tracks how many CPUs are involved in suspend
    9616             :                  * resume sequence. As long as this is not the last online
    9617             :                  * operation in the resume sequence, just build a single sched
    9618             :                  * domain, ignoring cpusets.
    9619             :                  */
    9620             :                 partition_sched_domains(1, NULL, NULL);
    9621             :                 if (--num_cpus_frozen)
    9622             :                         return;
    9623             :                 /*
    9624             :                  * This is the last CPU online operation. So fall through and
    9625             :                  * restore the original sched domains by considering the
    9626             :                  * cpuset configurations.
    9627             :                  */
    9628             :                 cpuset_force_rebuild();
    9629             :         }
    9630             :         cpuset_update_active_cpus();
    9631             : }
    9632             : 
    9633             : static int cpuset_cpu_inactive(unsigned int cpu)
    9634             : {
    9635             :         if (!cpuhp_tasks_frozen) {
    9636             :                 int ret = dl_bw_check_overflow(cpu);
    9637             : 
    9638             :                 if (ret)
    9639             :                         return ret;
    9640             :                 cpuset_update_active_cpus();
    9641             :         } else {
    9642             :                 num_cpus_frozen++;
    9643             :                 partition_sched_domains(1, NULL, NULL);
    9644             :         }
    9645             :         return 0;
    9646             : }
    9647             : 
    9648             : int sched_cpu_activate(unsigned int cpu)
    9649             : {
    9650             :         struct rq *rq = cpu_rq(cpu);
    9651             :         struct rq_flags rf;
    9652             : 
    9653             :         /*
    9654             :          * Clear the balance_push callback and prepare to schedule
    9655             :          * regular tasks.
    9656             :          */
    9657             :         balance_push_set(cpu, false);
    9658             : 
    9659             : #ifdef CONFIG_SCHED_SMT
    9660             :         /*
    9661             :          * When going up, increment the number of cores with SMT present.
    9662             :          */
    9663             :         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
    9664             :                 static_branch_inc_cpuslocked(&sched_smt_present);
    9665             : #endif
    9666             :         set_cpu_active(cpu, true);
    9667             : 
    9668             :         if (sched_smp_initialized) {
    9669             :                 sched_update_numa(cpu, true);
    9670             :                 sched_domains_numa_masks_set(cpu);
    9671             :                 cpuset_cpu_active();
    9672             :         }
    9673             : 
    9674             :         /*
    9675             :          * Put the rq online, if not already. This happens:
    9676             :          *
    9677             :          * 1) In the early boot process, because we build the real domains
    9678             :          *    after all CPUs have been brought up.
    9679             :          *
    9680             :          * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
    9681             :          *    domains.
    9682             :          */
    9683             :         rq_lock_irqsave(rq, &rf);
    9684             :         if (rq->rd) {
    9685             :                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    9686             :                 set_rq_online(rq);
    9687             :         }
    9688             :         rq_unlock_irqrestore(rq, &rf);
    9689             : 
    9690             :         return 0;
    9691             : }
    9692             : 
    9693             : int sched_cpu_deactivate(unsigned int cpu)
    9694             : {
    9695             :         struct rq *rq = cpu_rq(cpu);
    9696             :         struct rq_flags rf;
    9697             :         int ret;
    9698             : 
    9699             :         /*
    9700             :          * Remove CPU from nohz.idle_cpus_mask to prevent participating in
    9701             :          * load balancing when not active
    9702             :          */
    9703             :         nohz_balance_exit_idle(rq);
    9704             : 
    9705             :         set_cpu_active(cpu, false);
    9706             : 
    9707             :         /*
    9708             :          * From this point forward, this CPU will refuse to run any task that
    9709             :          * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
    9710             :          * push those tasks away until this gets cleared, see
    9711             :          * sched_cpu_dying().
    9712             :          */
    9713             :         balance_push_set(cpu, true);
    9714             : 
    9715             :         /*
    9716             :          * We've cleared cpu_active_mask / set balance_push, wait for all
    9717             :          * preempt-disabled and RCU users of this state to go away such that
    9718             :          * all new such users will observe it.
    9719             :          *
    9720             :          * Specifically, we rely on ttwu to no longer target this CPU, see
    9721             :          * ttwu_queue_cond() and is_cpu_allowed().
    9722             :          *
    9723             :          * Do sync before park smpboot threads to take care the rcu boost case.
    9724             :          */
    9725             :         synchronize_rcu();
    9726             : 
    9727             :         rq_lock_irqsave(rq, &rf);
    9728             :         if (rq->rd) {
    9729             :                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    9730             :                 set_rq_offline(rq);
    9731             :         }
    9732             :         rq_unlock_irqrestore(rq, &rf);
    9733             : 
    9734             : #ifdef CONFIG_SCHED_SMT
    9735             :         /*
    9736             :          * When going down, decrement the number of cores with SMT present.
    9737             :          */
    9738             :         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
    9739             :                 static_branch_dec_cpuslocked(&sched_smt_present);
    9740             : 
    9741             :         sched_core_cpu_deactivate(cpu);
    9742             : #endif
    9743             : 
    9744             :         if (!sched_smp_initialized)
    9745             :                 return 0;
    9746             : 
    9747             :         sched_update_numa(cpu, false);
    9748             :         ret = cpuset_cpu_inactive(cpu);
    9749             :         if (ret) {
    9750             :                 balance_push_set(cpu, false);
    9751             :                 set_cpu_active(cpu, true);
    9752             :                 sched_update_numa(cpu, true);
    9753             :                 return ret;
    9754             :         }
    9755             :         sched_domains_numa_masks_clear(cpu);
    9756             :         return 0;
    9757             : }
    9758             : 
    9759             : static void sched_rq_cpu_starting(unsigned int cpu)
    9760             : {
    9761             :         struct rq *rq = cpu_rq(cpu);
    9762             : 
    9763             :         rq->calc_load_update = calc_load_update;
    9764             :         update_max_interval();
    9765             : }
    9766             : 
    9767             : int sched_cpu_starting(unsigned int cpu)
    9768             : {
    9769             :         sched_core_cpu_starting(cpu);
    9770             :         sched_rq_cpu_starting(cpu);
    9771             :         sched_tick_start(cpu);
    9772             :         return 0;
    9773             : }
    9774             : 
    9775             : #ifdef CONFIG_HOTPLUG_CPU
    9776             : 
    9777             : /*
    9778             :  * Invoked immediately before the stopper thread is invoked to bring the
    9779             :  * CPU down completely. At this point all per CPU kthreads except the
    9780             :  * hotplug thread (current) and the stopper thread (inactive) have been
    9781             :  * either parked or have been unbound from the outgoing CPU. Ensure that
    9782             :  * any of those which might be on the way out are gone.
    9783             :  *
    9784             :  * If after this point a bound task is being woken on this CPU then the
    9785             :  * responsible hotplug callback has failed to do it's job.
    9786             :  * sched_cpu_dying() will catch it with the appropriate fireworks.
    9787             :  */
    9788             : int sched_cpu_wait_empty(unsigned int cpu)
    9789             : {
    9790             :         balance_hotplug_wait();
    9791             :         return 0;
    9792             : }
    9793             : 
    9794             : /*
    9795             :  * Since this CPU is going 'away' for a while, fold any nr_active delta we
    9796             :  * might have. Called from the CPU stopper task after ensuring that the
    9797             :  * stopper is the last running task on the CPU, so nr_active count is
    9798             :  * stable. We need to take the teardown thread which is calling this into
    9799             :  * account, so we hand in adjust = 1 to the load calculation.
    9800             :  *
    9801             :  * Also see the comment "Global load-average calculations".
    9802             :  */
    9803             : static void calc_load_migrate(struct rq *rq)
    9804             : {
    9805             :         long delta = calc_load_fold_active(rq, 1);
    9806             : 
    9807             :         if (delta)
    9808             :                 atomic_long_add(delta, &calc_load_tasks);
    9809             : }
    9810             : 
    9811             : static void dump_rq_tasks(struct rq *rq, const char *loglvl)
    9812             : {
    9813             :         struct task_struct *g, *p;
    9814             :         int cpu = cpu_of(rq);
    9815             : 
    9816             :         lockdep_assert_rq_held(rq);
    9817             : 
    9818             :         printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
    9819             :         for_each_process_thread(g, p) {
    9820             :                 if (task_cpu(p) != cpu)
    9821             :                         continue;
    9822             : 
    9823             :                 if (!task_on_rq_queued(p))
    9824             :                         continue;
    9825             : 
    9826             :                 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
    9827             :         }
    9828             : }
    9829             : 
    9830             : int sched_cpu_dying(unsigned int cpu)
    9831             : {
    9832             :         struct rq *rq = cpu_rq(cpu);
    9833             :         struct rq_flags rf;
    9834             : 
    9835             :         /* Handle pending wakeups and then migrate everything off */
    9836             :         sched_tick_stop(cpu);
    9837             : 
    9838             :         rq_lock_irqsave(rq, &rf);
    9839             :         if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
    9840             :                 WARN(true, "Dying CPU not properly vacated!");
    9841             :                 dump_rq_tasks(rq, KERN_WARNING);
    9842             :         }
    9843             :         rq_unlock_irqrestore(rq, &rf);
    9844             : 
    9845             :         calc_load_migrate(rq);
    9846             :         update_max_interval();
    9847             :         hrtick_clear(rq);
    9848             :         sched_core_cpu_dying(cpu);
    9849             :         return 0;
    9850             : }
    9851             : #endif
    9852             : 
    9853             : void __init sched_init_smp(void)
    9854             : {
    9855             :         sched_init_numa(NUMA_NO_NODE);
    9856             : 
    9857             :         /*
    9858             :          * There's no userspace yet to cause hotplug operations; hence all the
    9859             :          * CPU masks are stable and all blatant races in the below code cannot
    9860             :          * happen.
    9861             :          */
    9862             :         mutex_lock(&sched_domains_mutex);
    9863             :         sched_init_domains(cpu_active_mask);
    9864             :         mutex_unlock(&sched_domains_mutex);
    9865             : 
    9866             :         /* Move init over to a non-isolated CPU */
    9867             :         if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
    9868             :                 BUG();
    9869             :         current->flags &= ~PF_NO_SETAFFINITY;
    9870             :         sched_init_granularity();
    9871             : 
    9872             :         init_sched_rt_class();
    9873             :         init_sched_dl_class();
    9874             : 
    9875             :         sched_smp_initialized = true;
    9876             : }
    9877             : 
    9878             : static int __init migration_init(void)
    9879             : {
    9880             :         sched_cpu_starting(smp_processor_id());
    9881             :         return 0;
    9882             : }
    9883             : early_initcall(migration_init);
    9884             : 
    9885             : #else
    9886           1 : void __init sched_init_smp(void)
    9887             : {
    9888           1 :         sched_init_granularity();
    9889           1 : }
    9890             : #endif /* CONFIG_SMP */
    9891             : 
    9892           0 : int in_sched_functions(unsigned long addr)
    9893             : {
    9894           0 :         return in_lock_functions(addr) ||
    9895           0 :                 (addr >= (unsigned long)__sched_text_start
    9896           0 :                 && addr < (unsigned long)__sched_text_end);
    9897             : }
    9898             : 
    9899             : #ifdef CONFIG_CGROUP_SCHED
    9900             : /*
    9901             :  * Default task group.
    9902             :  * Every task in system belongs to this group at bootup.
    9903             :  */
    9904             : struct task_group root_task_group;
    9905             : LIST_HEAD(task_groups);
    9906             : 
    9907             : /* Cacheline aligned slab cache for task_group */
    9908             : static struct kmem_cache *task_group_cache __read_mostly;
    9909             : #endif
    9910             : 
    9911           1 : void __init sched_init(void)
    9912             : {
    9913           1 :         unsigned long ptr = 0;
    9914             :         int i;
    9915             : 
    9916             :         /* Make sure the linker didn't screw up */
    9917           1 :         BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
    9918             :                &fair_sched_class != &rt_sched_class + 1 ||
    9919             :                &rt_sched_class   != &dl_sched_class + 1);
    9920             : #ifdef CONFIG_SMP
    9921             :         BUG_ON(&dl_sched_class != &stop_sched_class + 1);
    9922             : #endif
    9923             : 
    9924           1 :         wait_bit_init();
    9925             : 
    9926             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9927             :         ptr += 2 * nr_cpu_ids * sizeof(void **);
    9928             : #endif
    9929             : #ifdef CONFIG_RT_GROUP_SCHED
    9930             :         ptr += 2 * nr_cpu_ids * sizeof(void **);
    9931             : #endif
    9932             :         if (ptr) {
    9933             :                 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
    9934             : 
    9935             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9936             :                 root_task_group.se = (struct sched_entity **)ptr;
    9937             :                 ptr += nr_cpu_ids * sizeof(void **);
    9938             : 
    9939             :                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
    9940             :                 ptr += nr_cpu_ids * sizeof(void **);
    9941             : 
    9942             :                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
    9943             :                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
    9944             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    9945             : #ifdef CONFIG_RT_GROUP_SCHED
    9946             :                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
    9947             :                 ptr += nr_cpu_ids * sizeof(void **);
    9948             : 
    9949             :                 root_task_group.rt_rq = (struct rt_rq **)ptr;
    9950             :                 ptr += nr_cpu_ids * sizeof(void **);
    9951             : 
    9952             : #endif /* CONFIG_RT_GROUP_SCHED */
    9953             :         }
    9954             : 
    9955           1 :         init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
    9956             : 
    9957             : #ifdef CONFIG_SMP
    9958             :         init_defrootdomain();
    9959             : #endif
    9960             : 
    9961             : #ifdef CONFIG_RT_GROUP_SCHED
    9962             :         init_rt_bandwidth(&root_task_group.rt_bandwidth,
    9963             :                         global_rt_period(), global_rt_runtime());
    9964             : #endif /* CONFIG_RT_GROUP_SCHED */
    9965             : 
    9966             : #ifdef CONFIG_CGROUP_SCHED
    9967             :         task_group_cache = KMEM_CACHE(task_group, 0);
    9968             : 
    9969             :         list_add(&root_task_group.list, &task_groups);
    9970             :         INIT_LIST_HEAD(&root_task_group.children);
    9971             :         INIT_LIST_HEAD(&root_task_group.siblings);
    9972             :         autogroup_init(&init_task);
    9973             : #endif /* CONFIG_CGROUP_SCHED */
    9974             : 
    9975           2 :         for_each_possible_cpu(i) {
    9976             :                 struct rq *rq;
    9977             : 
    9978           1 :                 rq = cpu_rq(i);
    9979             :                 raw_spin_lock_init(&rq->__lock);
    9980           1 :                 rq->nr_running = 0;
    9981           1 :                 rq->calc_load_active = 0;
    9982           1 :                 rq->calc_load_update = jiffies + LOAD_FREQ;
    9983           1 :                 init_cfs_rq(&rq->cfs);
    9984           1 :                 init_rt_rq(&rq->rt);
    9985           1 :                 init_dl_rq(&rq->dl);
    9986             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9987             :                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
    9988             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
    9989             :                 /*
    9990             :                  * How much CPU bandwidth does root_task_group get?
    9991             :                  *
    9992             :                  * In case of task-groups formed thr' the cgroup filesystem, it
    9993             :                  * gets 100% of the CPU resources in the system. This overall
    9994             :                  * system CPU resource is divided among the tasks of
    9995             :                  * root_task_group and its child task-groups in a fair manner,
    9996             :                  * based on each entity's (task or task-group's) weight
    9997             :                  * (se->load.weight).
    9998             :                  *
    9999             :                  * In other words, if root_task_group has 10 tasks of weight
   10000             :                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
   10001             :                  * then A0's share of the CPU resource is:
   10002             :                  *
   10003             :                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
   10004             :                  *
   10005             :                  * We achieve this by letting root_task_group's tasks sit
   10006             :                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
   10007             :                  */
   10008             :                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
   10009             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   10010             : 
   10011           1 :                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
   10012             : #ifdef CONFIG_RT_GROUP_SCHED
   10013             :                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
   10014             : #endif
   10015             : #ifdef CONFIG_SMP
   10016             :                 rq->sd = NULL;
   10017             :                 rq->rd = NULL;
   10018             :                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
   10019             :                 rq->balance_callback = &balance_push_callback;
   10020             :                 rq->active_balance = 0;
   10021             :                 rq->next_balance = jiffies;
   10022             :                 rq->push_cpu = 0;
   10023             :                 rq->cpu = i;
   10024             :                 rq->online = 0;
   10025             :                 rq->idle_stamp = 0;
   10026             :                 rq->avg_idle = 2*sysctl_sched_migration_cost;
   10027             :                 rq->wake_stamp = jiffies;
   10028             :                 rq->wake_avg_idle = rq->avg_idle;
   10029             :                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
   10030             : 
   10031             :                 INIT_LIST_HEAD(&rq->cfs_tasks);
   10032             : 
   10033             :                 rq_attach_root(rq, &def_root_domain);
   10034             : #ifdef CONFIG_NO_HZ_COMMON
   10035             :                 rq->last_blocked_load_update_tick = jiffies;
   10036             :                 atomic_set(&rq->nohz_flags, 0);
   10037             : 
   10038             :                 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
   10039             : #endif
   10040             : #ifdef CONFIG_HOTPLUG_CPU
   10041             :                 rcuwait_init(&rq->hotplug_wait);
   10042             : #endif
   10043             : #endif /* CONFIG_SMP */
   10044           1 :                 hrtick_rq_init(rq);
   10045           2 :                 atomic_set(&rq->nr_iowait, 0);
   10046             : 
   10047             : #ifdef CONFIG_SCHED_CORE
   10048             :                 rq->core = rq;
   10049             :                 rq->core_pick = NULL;
   10050             :                 rq->core_enabled = 0;
   10051             :                 rq->core_tree = RB_ROOT;
   10052             :                 rq->core_forceidle_count = 0;
   10053             :                 rq->core_forceidle_occupation = 0;
   10054             :                 rq->core_forceidle_start = 0;
   10055             : 
   10056             :                 rq->core_cookie = 0UL;
   10057             : #endif
   10058           2 :                 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
   10059             :         }
   10060             : 
   10061           1 :         set_load_weight(&init_task, false);
   10062             : 
   10063             :         /*
   10064             :          * The boot idle thread does lazy MMU switching as well:
   10065             :          */
   10066           1 :         mmgrab_lazy_tlb(&init_mm);
   10067           1 :         enter_lazy_tlb(&init_mm, current);
   10068             : 
   10069             :         /*
   10070             :          * The idle task doesn't need the kthread struct to function, but it
   10071             :          * is dressed up as a per-CPU kthread and thus needs to play the part
   10072             :          * if we want to avoid special-casing it in code that deals with per-CPU
   10073             :          * kthreads.
   10074             :          */
   10075           1 :         WARN_ON(!set_kthread_struct(current));
   10076             : 
   10077             :         /*
   10078             :          * Make us the idle thread. Technically, schedule() should not be
   10079             :          * called from this thread, however somewhere below it might be,
   10080             :          * but because we are the idle thread, we just pick up running again
   10081             :          * when this runqueue becomes "idle".
   10082             :          */
   10083           1 :         init_idle(current, smp_processor_id());
   10084             : 
   10085           1 :         calc_load_update = jiffies + LOAD_FREQ;
   10086             : 
   10087             : #ifdef CONFIG_SMP
   10088             :         idle_thread_set_boot_cpu();
   10089             :         balance_push_set(smp_processor_id(), false);
   10090             : #endif
   10091           1 :         init_sched_fair_class();
   10092             : 
   10093             :         psi_init();
   10094             : 
   10095             :         init_uclamp();
   10096             : 
   10097             :         preempt_dynamic_init();
   10098             : 
   10099           1 :         scheduler_running = 1;
   10100           1 : }
   10101             : 
   10102             : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
   10103             : 
   10104             : void __might_sleep(const char *file, int line)
   10105             : {
   10106             :         unsigned int state = get_current_state();
   10107             :         /*
   10108             :          * Blocking primitives will set (and therefore destroy) current->state,
   10109             :          * since we will exit with TASK_RUNNING make sure we enter with it,
   10110             :          * otherwise we will destroy state.
   10111             :          */
   10112             :         WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
   10113             :                         "do not call blocking ops when !TASK_RUNNING; "
   10114             :                         "state=%x set at [<%p>] %pS\n", state,
   10115             :                         (void *)current->task_state_change,
   10116             :                         (void *)current->task_state_change);
   10117             : 
   10118             :         __might_resched(file, line, 0);
   10119             : }
   10120             : EXPORT_SYMBOL(__might_sleep);
   10121             : 
   10122             : static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
   10123             : {
   10124             :         if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
   10125             :                 return;
   10126             : 
   10127             :         if (preempt_count() == preempt_offset)
   10128             :                 return;
   10129             : 
   10130             :         pr_err("Preemption disabled at:");
   10131             :         print_ip_sym(KERN_ERR, ip);
   10132             : }
   10133             : 
   10134             : static inline bool resched_offsets_ok(unsigned int offsets)
   10135             : {
   10136             :         unsigned int nested = preempt_count();
   10137             : 
   10138             :         nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
   10139             : 
   10140             :         return nested == offsets;
   10141             : }
   10142             : 
   10143             : void __might_resched(const char *file, int line, unsigned int offsets)
   10144             : {
   10145             :         /* Ratelimiting timestamp: */
   10146             :         static unsigned long prev_jiffy;
   10147             : 
   10148             :         unsigned long preempt_disable_ip;
   10149             : 
   10150             :         /* WARN_ON_ONCE() by default, no rate limit required: */
   10151             :         rcu_sleep_check();
   10152             : 
   10153             :         if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
   10154             :              !is_idle_task(current) && !current->non_block_count) ||
   10155             :             system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
   10156             :             oops_in_progress)
   10157             :                 return;
   10158             : 
   10159             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10160             :                 return;
   10161             :         prev_jiffy = jiffies;
   10162             : 
   10163             :         /* Save this before calling printk(), since that will clobber it: */
   10164             :         preempt_disable_ip = get_preempt_disable_ip(current);
   10165             : 
   10166             :         pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
   10167             :                file, line);
   10168             :         pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
   10169             :                in_atomic(), irqs_disabled(), current->non_block_count,
   10170             :                current->pid, current->comm);
   10171             :         pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
   10172             :                offsets & MIGHT_RESCHED_PREEMPT_MASK);
   10173             : 
   10174             :         if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
   10175             :                 pr_err("RCU nest depth: %d, expected: %u\n",
   10176             :                        rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
   10177             :         }
   10178             : 
   10179             :         if (task_stack_end_corrupted(current))
   10180             :                 pr_emerg("Thread overran stack, or stack corrupted\n");
   10181             : 
   10182             :         debug_show_held_locks(current);
   10183             :         if (irqs_disabled())
   10184             :                 print_irqtrace_events(current);
   10185             : 
   10186             :         print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
   10187             :                                  preempt_disable_ip);
   10188             : 
   10189             :         dump_stack();
   10190             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10191             : }
   10192             : EXPORT_SYMBOL(__might_resched);
   10193             : 
   10194             : void __cant_sleep(const char *file, int line, int preempt_offset)
   10195             : {
   10196             :         static unsigned long prev_jiffy;
   10197             : 
   10198             :         if (irqs_disabled())
   10199             :                 return;
   10200             : 
   10201             :         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
   10202             :                 return;
   10203             : 
   10204             :         if (preempt_count() > preempt_offset)
   10205             :                 return;
   10206             : 
   10207             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10208             :                 return;
   10209             :         prev_jiffy = jiffies;
   10210             : 
   10211             :         printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
   10212             :         printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
   10213             :                         in_atomic(), irqs_disabled(),
   10214             :                         current->pid, current->comm);
   10215             : 
   10216             :         debug_show_held_locks(current);
   10217             :         dump_stack();
   10218             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10219             : }
   10220             : EXPORT_SYMBOL_GPL(__cant_sleep);
   10221             : 
   10222             : #ifdef CONFIG_SMP
   10223             : void __cant_migrate(const char *file, int line)
   10224             : {
   10225             :         static unsigned long prev_jiffy;
   10226             : 
   10227             :         if (irqs_disabled())
   10228             :                 return;
   10229             : 
   10230             :         if (is_migration_disabled(current))
   10231             :                 return;
   10232             : 
   10233             :         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
   10234             :                 return;
   10235             : 
   10236             :         if (preempt_count() > 0)
   10237             :                 return;
   10238             : 
   10239             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10240             :                 return;
   10241             :         prev_jiffy = jiffies;
   10242             : 
   10243             :         pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
   10244             :         pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
   10245             :                in_atomic(), irqs_disabled(), is_migration_disabled(current),
   10246             :                current->pid, current->comm);
   10247             : 
   10248             :         debug_show_held_locks(current);
   10249             :         dump_stack();
   10250             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10251             : }
   10252             : EXPORT_SYMBOL_GPL(__cant_migrate);
   10253             : #endif
   10254             : #endif
   10255             : 
   10256             : #ifdef CONFIG_MAGIC_SYSRQ
   10257             : void normalize_rt_tasks(void)
   10258             : {
   10259             :         struct task_struct *g, *p;
   10260             :         struct sched_attr attr = {
   10261             :                 .sched_policy = SCHED_NORMAL,
   10262             :         };
   10263             : 
   10264             :         read_lock(&tasklist_lock);
   10265             :         for_each_process_thread(g, p) {
   10266             :                 /*
   10267             :                  * Only normalize user tasks:
   10268             :                  */
   10269             :                 if (p->flags & PF_KTHREAD)
   10270             :                         continue;
   10271             : 
   10272             :                 p->se.exec_start = 0;
   10273             :                 schedstat_set(p->stats.wait_start,  0);
   10274             :                 schedstat_set(p->stats.sleep_start, 0);
   10275             :                 schedstat_set(p->stats.block_start, 0);
   10276             : 
   10277             :                 if (!dl_task(p) && !rt_task(p)) {
   10278             :                         /*
   10279             :                          * Renice negative nice level userspace
   10280             :                          * tasks back to 0:
   10281             :                          */
   10282             :                         if (task_nice(p) < 0)
   10283             :                                 set_user_nice(p, 0);
   10284             :                         continue;
   10285             :                 }
   10286             : 
   10287             :                 __sched_setscheduler(p, &attr, false, false);
   10288             :         }
   10289             :         read_unlock(&tasklist_lock);
   10290             : }
   10291             : 
   10292             : #endif /* CONFIG_MAGIC_SYSRQ */
   10293             : 
   10294             : #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
   10295             : /*
   10296             :  * These functions are only useful for the IA64 MCA handling, or kdb.
   10297             :  *
   10298             :  * They can only be called when the whole system has been
   10299             :  * stopped - every CPU needs to be quiescent, and no scheduling
   10300             :  * activity can take place. Using them for anything else would
   10301             :  * be a serious bug, and as a result, they aren't even visible
   10302             :  * under any other configuration.
   10303             :  */
   10304             : 
   10305             : /**
   10306             :  * curr_task - return the current task for a given CPU.
   10307             :  * @cpu: the processor in question.
   10308             :  *
   10309             :  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
   10310             :  *
   10311             :  * Return: The current task for @cpu.
   10312             :  */
   10313             : struct task_struct *curr_task(int cpu)
   10314             : {
   10315             :         return cpu_curr(cpu);
   10316             : }
   10317             : 
   10318             : #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
   10319             : 
   10320             : #ifdef CONFIG_IA64
   10321             : /**
   10322             :  * ia64_set_curr_task - set the current task for a given CPU.
   10323             :  * @cpu: the processor in question.
   10324             :  * @p: the task pointer to set.
   10325             :  *
   10326             :  * Description: This function must only be used when non-maskable interrupts
   10327             :  * are serviced on a separate stack. It allows the architecture to switch the
   10328             :  * notion of the current task on a CPU in a non-blocking manner. This function
   10329             :  * must be called with all CPU's synchronized, and interrupts disabled, the
   10330             :  * and caller must save the original value of the current task (see
   10331             :  * curr_task() above) and restore that value before reenabling interrupts and
   10332             :  * re-starting the system.
   10333             :  *
   10334             :  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
   10335             :  */
   10336             : void ia64_set_curr_task(int cpu, struct task_struct *p)
   10337             : {
   10338             :         cpu_curr(cpu) = p;
   10339             : }
   10340             : 
   10341             : #endif
   10342             : 
   10343             : #ifdef CONFIG_CGROUP_SCHED
   10344             : /* task_group_lock serializes the addition/removal of task groups */
   10345             : static DEFINE_SPINLOCK(task_group_lock);
   10346             : 
   10347             : static inline void alloc_uclamp_sched_group(struct task_group *tg,
   10348             :                                             struct task_group *parent)
   10349             : {
   10350             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10351             :         enum uclamp_id clamp_id;
   10352             : 
   10353             :         for_each_clamp_id(clamp_id) {
   10354             :                 uclamp_se_set(&tg->uclamp_req[clamp_id],
   10355             :                               uclamp_none(clamp_id), false);
   10356             :                 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
   10357             :         }
   10358             : #endif
   10359             : }
   10360             : 
   10361             : static void sched_free_group(struct task_group *tg)
   10362             : {
   10363             :         free_fair_sched_group(tg);
   10364             :         free_rt_sched_group(tg);
   10365             :         autogroup_free(tg);
   10366             :         kmem_cache_free(task_group_cache, tg);
   10367             : }
   10368             : 
   10369             : static void sched_free_group_rcu(struct rcu_head *rcu)
   10370             : {
   10371             :         sched_free_group(container_of(rcu, struct task_group, rcu));
   10372             : }
   10373             : 
   10374             : static void sched_unregister_group(struct task_group *tg)
   10375             : {
   10376             :         unregister_fair_sched_group(tg);
   10377             :         unregister_rt_sched_group(tg);
   10378             :         /*
   10379             :          * We have to wait for yet another RCU grace period to expire, as
   10380             :          * print_cfs_stats() might run concurrently.
   10381             :          */
   10382             :         call_rcu(&tg->rcu, sched_free_group_rcu);
   10383             : }
   10384             : 
   10385             : /* allocate runqueue etc for a new task group */
   10386             : struct task_group *sched_create_group(struct task_group *parent)
   10387             : {
   10388             :         struct task_group *tg;
   10389             : 
   10390             :         tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
   10391             :         if (!tg)
   10392             :                 return ERR_PTR(-ENOMEM);
   10393             : 
   10394             :         if (!alloc_fair_sched_group(tg, parent))
   10395             :                 goto err;
   10396             : 
   10397             :         if (!alloc_rt_sched_group(tg, parent))
   10398             :                 goto err;
   10399             : 
   10400             :         alloc_uclamp_sched_group(tg, parent);
   10401             : 
   10402             :         return tg;
   10403             : 
   10404             : err:
   10405             :         sched_free_group(tg);
   10406             :         return ERR_PTR(-ENOMEM);
   10407             : }
   10408             : 
   10409             : void sched_online_group(struct task_group *tg, struct task_group *parent)
   10410             : {
   10411             :         unsigned long flags;
   10412             : 
   10413             :         spin_lock_irqsave(&task_group_lock, flags);
   10414             :         list_add_rcu(&tg->list, &task_groups);
   10415             : 
   10416             :         /* Root should already exist: */
   10417             :         WARN_ON(!parent);
   10418             : 
   10419             :         tg->parent = parent;
   10420             :         INIT_LIST_HEAD(&tg->children);
   10421             :         list_add_rcu(&tg->siblings, &parent->children);
   10422             :         spin_unlock_irqrestore(&task_group_lock, flags);
   10423             : 
   10424             :         online_fair_sched_group(tg);
   10425             : }
   10426             : 
   10427             : /* rcu callback to free various structures associated with a task group */
   10428             : static void sched_unregister_group_rcu(struct rcu_head *rhp)
   10429             : {
   10430             :         /* Now it should be safe to free those cfs_rqs: */
   10431             :         sched_unregister_group(container_of(rhp, struct task_group, rcu));
   10432             : }
   10433             : 
   10434             : void sched_destroy_group(struct task_group *tg)
   10435             : {
   10436             :         /* Wait for possible concurrent references to cfs_rqs complete: */
   10437             :         call_rcu(&tg->rcu, sched_unregister_group_rcu);
   10438             : }
   10439             : 
   10440             : void sched_release_group(struct task_group *tg)
   10441             : {
   10442             :         unsigned long flags;
   10443             : 
   10444             :         /*
   10445             :          * Unlink first, to avoid walk_tg_tree_from() from finding us (via
   10446             :          * sched_cfs_period_timer()).
   10447             :          *
   10448             :          * For this to be effective, we have to wait for all pending users of
   10449             :          * this task group to leave their RCU critical section to ensure no new
   10450             :          * user will see our dying task group any more. Specifically ensure
   10451             :          * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
   10452             :          *
   10453             :          * We therefore defer calling unregister_fair_sched_group() to
   10454             :          * sched_unregister_group() which is guarantied to get called only after the
   10455             :          * current RCU grace period has expired.
   10456             :          */
   10457             :         spin_lock_irqsave(&task_group_lock, flags);
   10458             :         list_del_rcu(&tg->list);
   10459             :         list_del_rcu(&tg->siblings);
   10460             :         spin_unlock_irqrestore(&task_group_lock, flags);
   10461             : }
   10462             : 
   10463             : static struct task_group *sched_get_task_group(struct task_struct *tsk)
   10464             : {
   10465             :         struct task_group *tg;
   10466             : 
   10467             :         /*
   10468             :          * All callers are synchronized by task_rq_lock(); we do not use RCU
   10469             :          * which is pointless here. Thus, we pass "true" to task_css_check()
   10470             :          * to prevent lockdep warnings.
   10471             :          */
   10472             :         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
   10473             :                           struct task_group, css);
   10474             :         tg = autogroup_task_group(tsk, tg);
   10475             : 
   10476             :         return tg;
   10477             : }
   10478             : 
   10479             : static void sched_change_group(struct task_struct *tsk, struct task_group *group)
   10480             : {
   10481             :         tsk->sched_task_group = group;
   10482             : 
   10483             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10484             :         if (tsk->sched_class->task_change_group)
   10485             :                 tsk->sched_class->task_change_group(tsk);
   10486             :         else
   10487             : #endif
   10488             :                 set_task_rq(tsk, task_cpu(tsk));
   10489             : }
   10490             : 
   10491             : /*
   10492             :  * Change task's runqueue when it moves between groups.
   10493             :  *
   10494             :  * The caller of this function should have put the task in its new group by
   10495             :  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
   10496             :  * its new group.
   10497             :  */
   10498             : void sched_move_task(struct task_struct *tsk)
   10499             : {
   10500             :         int queued, running, queue_flags =
   10501             :                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
   10502             :         struct task_group *group;
   10503             :         struct rq_flags rf;
   10504             :         struct rq *rq;
   10505             : 
   10506             :         rq = task_rq_lock(tsk, &rf);
   10507             :         /*
   10508             :          * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
   10509             :          * group changes.
   10510             :          */
   10511             :         group = sched_get_task_group(tsk);
   10512             :         if (group == tsk->sched_task_group)
   10513             :                 goto unlock;
   10514             : 
   10515             :         update_rq_clock(rq);
   10516             : 
   10517             :         running = task_current(rq, tsk);
   10518             :         queued = task_on_rq_queued(tsk);
   10519             : 
   10520             :         if (queued)
   10521             :                 dequeue_task(rq, tsk, queue_flags);
   10522             :         if (running)
   10523             :                 put_prev_task(rq, tsk);
   10524             : 
   10525             :         sched_change_group(tsk, group);
   10526             : 
   10527             :         if (queued)
   10528             :                 enqueue_task(rq, tsk, queue_flags);
   10529             :         if (running) {
   10530             :                 set_next_task(rq, tsk);
   10531             :                 /*
   10532             :                  * After changing group, the running task may have joined a
   10533             :                  * throttled one but it's still the running task. Trigger a
   10534             :                  * resched to make sure that task can still run.
   10535             :                  */
   10536             :                 resched_curr(rq);
   10537             :         }
   10538             : 
   10539             : unlock:
   10540             :         task_rq_unlock(rq, tsk, &rf);
   10541             : }
   10542             : 
   10543             : static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
   10544             : {
   10545             :         return css ? container_of(css, struct task_group, css) : NULL;
   10546             : }
   10547             : 
   10548             : static struct cgroup_subsys_state *
   10549             : cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
   10550             : {
   10551             :         struct task_group *parent = css_tg(parent_css);
   10552             :         struct task_group *tg;
   10553             : 
   10554             :         if (!parent) {
   10555             :                 /* This is early initialization for the top cgroup */
   10556             :                 return &root_task_group.css;
   10557             :         }
   10558             : 
   10559             :         tg = sched_create_group(parent);
   10560             :         if (IS_ERR(tg))
   10561             :                 return ERR_PTR(-ENOMEM);
   10562             : 
   10563             :         return &tg->css;
   10564             : }
   10565             : 
   10566             : /* Expose task group only after completing cgroup initialization */
   10567             : static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
   10568             : {
   10569             :         struct task_group *tg = css_tg(css);
   10570             :         struct task_group *parent = css_tg(css->parent);
   10571             : 
   10572             :         if (parent)
   10573             :                 sched_online_group(tg, parent);
   10574             : 
   10575             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10576             :         /* Propagate the effective uclamp value for the new group */
   10577             :         mutex_lock(&uclamp_mutex);
   10578             :         rcu_read_lock();
   10579             :         cpu_util_update_eff(css);
   10580             :         rcu_read_unlock();
   10581             :         mutex_unlock(&uclamp_mutex);
   10582             : #endif
   10583             : 
   10584             :         return 0;
   10585             : }
   10586             : 
   10587             : static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
   10588             : {
   10589             :         struct task_group *tg = css_tg(css);
   10590             : 
   10591             :         sched_release_group(tg);
   10592             : }
   10593             : 
   10594             : static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
   10595             : {
   10596             :         struct task_group *tg = css_tg(css);
   10597             : 
   10598             :         /*
   10599             :          * Relies on the RCU grace period between css_released() and this.
   10600             :          */
   10601             :         sched_unregister_group(tg);
   10602             : }
   10603             : 
   10604             : #ifdef CONFIG_RT_GROUP_SCHED
   10605             : static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
   10606             : {
   10607             :         struct task_struct *task;
   10608             :         struct cgroup_subsys_state *css;
   10609             : 
   10610             :         cgroup_taskset_for_each(task, css, tset) {
   10611             :                 if (!sched_rt_can_attach(css_tg(css), task))
   10612             :                         return -EINVAL;
   10613             :         }
   10614             :         return 0;
   10615             : }
   10616             : #endif
   10617             : 
   10618             : static void cpu_cgroup_attach(struct cgroup_taskset *tset)
   10619             : {
   10620             :         struct task_struct *task;
   10621             :         struct cgroup_subsys_state *css;
   10622             : 
   10623             :         cgroup_taskset_for_each(task, css, tset)
   10624             :                 sched_move_task(task);
   10625             : }
   10626             : 
   10627             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10628             : static void cpu_util_update_eff(struct cgroup_subsys_state *css)
   10629             : {
   10630             :         struct cgroup_subsys_state *top_css = css;
   10631             :         struct uclamp_se *uc_parent = NULL;
   10632             :         struct uclamp_se *uc_se = NULL;
   10633             :         unsigned int eff[UCLAMP_CNT];
   10634             :         enum uclamp_id clamp_id;
   10635             :         unsigned int clamps;
   10636             : 
   10637             :         lockdep_assert_held(&uclamp_mutex);
   10638             :         SCHED_WARN_ON(!rcu_read_lock_held());
   10639             : 
   10640             :         css_for_each_descendant_pre(css, top_css) {
   10641             :                 uc_parent = css_tg(css)->parent
   10642             :                         ? css_tg(css)->parent->uclamp : NULL;
   10643             : 
   10644             :                 for_each_clamp_id(clamp_id) {
   10645             :                         /* Assume effective clamps matches requested clamps */
   10646             :                         eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
   10647             :                         /* Cap effective clamps with parent's effective clamps */
   10648             :                         if (uc_parent &&
   10649             :                             eff[clamp_id] > uc_parent[clamp_id].value) {
   10650             :                                 eff[clamp_id] = uc_parent[clamp_id].value;
   10651             :                         }
   10652             :                 }
   10653             :                 /* Ensure protection is always capped by limit */
   10654             :                 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
   10655             : 
   10656             :                 /* Propagate most restrictive effective clamps */
   10657             :                 clamps = 0x0;
   10658             :                 uc_se = css_tg(css)->uclamp;
   10659             :                 for_each_clamp_id(clamp_id) {
   10660             :                         if (eff[clamp_id] == uc_se[clamp_id].value)
   10661             :                                 continue;
   10662             :                         uc_se[clamp_id].value = eff[clamp_id];
   10663             :                         uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
   10664             :                         clamps |= (0x1 << clamp_id);
   10665             :                 }
   10666             :                 if (!clamps) {
   10667             :                         css = css_rightmost_descendant(css);
   10668             :                         continue;
   10669             :                 }
   10670             : 
   10671             :                 /* Immediately update descendants RUNNABLE tasks */
   10672             :                 uclamp_update_active_tasks(css);
   10673             :         }
   10674             : }
   10675             : 
   10676             : /*
   10677             :  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
   10678             :  * C expression. Since there is no way to convert a macro argument (N) into a
   10679             :  * character constant, use two levels of macros.
   10680             :  */
   10681             : #define _POW10(exp) ((unsigned int)1e##exp)
   10682             : #define POW10(exp) _POW10(exp)
   10683             : 
   10684             : struct uclamp_request {
   10685             : #define UCLAMP_PERCENT_SHIFT    2
   10686             : #define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
   10687             :         s64 percent;
   10688             :         u64 util;
   10689             :         int ret;
   10690             : };
   10691             : 
   10692             : static inline struct uclamp_request
   10693             : capacity_from_percent(char *buf)
   10694             : {
   10695             :         struct uclamp_request req = {
   10696             :                 .percent = UCLAMP_PERCENT_SCALE,
   10697             :                 .util = SCHED_CAPACITY_SCALE,
   10698             :                 .ret = 0,
   10699             :         };
   10700             : 
   10701             :         buf = strim(buf);
   10702             :         if (strcmp(buf, "max")) {
   10703             :                 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
   10704             :                                              &req.percent);
   10705             :                 if (req.ret)
   10706             :                         return req;
   10707             :                 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
   10708             :                         req.ret = -ERANGE;
   10709             :                         return req;
   10710             :                 }
   10711             : 
   10712             :                 req.util = req.percent << SCHED_CAPACITY_SHIFT;
   10713             :                 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
   10714             :         }
   10715             : 
   10716             :         return req;
   10717             : }
   10718             : 
   10719             : static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
   10720             :                                 size_t nbytes, loff_t off,
   10721             :                                 enum uclamp_id clamp_id)
   10722             : {
   10723             :         struct uclamp_request req;
   10724             :         struct task_group *tg;
   10725             : 
   10726             :         req = capacity_from_percent(buf);
   10727             :         if (req.ret)
   10728             :                 return req.ret;
   10729             : 
   10730             :         static_branch_enable(&sched_uclamp_used);
   10731             : 
   10732             :         mutex_lock(&uclamp_mutex);
   10733             :         rcu_read_lock();
   10734             : 
   10735             :         tg = css_tg(of_css(of));
   10736             :         if (tg->uclamp_req[clamp_id].value != req.util)
   10737             :                 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
   10738             : 
   10739             :         /*
   10740             :          * Because of not recoverable conversion rounding we keep track of the
   10741             :          * exact requested value
   10742             :          */
   10743             :         tg->uclamp_pct[clamp_id] = req.percent;
   10744             : 
   10745             :         /* Update effective clamps to track the most restrictive value */
   10746             :         cpu_util_update_eff(of_css(of));
   10747             : 
   10748             :         rcu_read_unlock();
   10749             :         mutex_unlock(&uclamp_mutex);
   10750             : 
   10751             :         return nbytes;
   10752             : }
   10753             : 
   10754             : static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
   10755             :                                     char *buf, size_t nbytes,
   10756             :                                     loff_t off)
   10757             : {
   10758             :         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
   10759             : }
   10760             : 
   10761             : static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
   10762             :                                     char *buf, size_t nbytes,
   10763             :                                     loff_t off)
   10764             : {
   10765             :         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
   10766             : }
   10767             : 
   10768             : static inline void cpu_uclamp_print(struct seq_file *sf,
   10769             :                                     enum uclamp_id clamp_id)
   10770             : {
   10771             :         struct task_group *tg;
   10772             :         u64 util_clamp;
   10773             :         u64 percent;
   10774             :         u32 rem;
   10775             : 
   10776             :         rcu_read_lock();
   10777             :         tg = css_tg(seq_css(sf));
   10778             :         util_clamp = tg->uclamp_req[clamp_id].value;
   10779             :         rcu_read_unlock();
   10780             : 
   10781             :         if (util_clamp == SCHED_CAPACITY_SCALE) {
   10782             :                 seq_puts(sf, "max\n");
   10783             :                 return;
   10784             :         }
   10785             : 
   10786             :         percent = tg->uclamp_pct[clamp_id];
   10787             :         percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
   10788             :         seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
   10789             : }
   10790             : 
   10791             : static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
   10792             : {
   10793             :         cpu_uclamp_print(sf, UCLAMP_MIN);
   10794             :         return 0;
   10795             : }
   10796             : 
   10797             : static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
   10798             : {
   10799             :         cpu_uclamp_print(sf, UCLAMP_MAX);
   10800             :         return 0;
   10801             : }
   10802             : #endif /* CONFIG_UCLAMP_TASK_GROUP */
   10803             : 
   10804             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10805             : static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
   10806             :                                 struct cftype *cftype, u64 shareval)
   10807             : {
   10808             :         if (shareval > scale_load_down(ULONG_MAX))
   10809             :                 shareval = MAX_SHARES;
   10810             :         return sched_group_set_shares(css_tg(css), scale_load(shareval));
   10811             : }
   10812             : 
   10813             : static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
   10814             :                                struct cftype *cft)
   10815             : {
   10816             :         struct task_group *tg = css_tg(css);
   10817             : 
   10818             :         return (u64) scale_load_down(tg->shares);
   10819             : }
   10820             : 
   10821             : #ifdef CONFIG_CFS_BANDWIDTH
   10822             : static DEFINE_MUTEX(cfs_constraints_mutex);
   10823             : 
   10824             : const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
   10825             : static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
   10826             : /* More than 203 days if BW_SHIFT equals 20. */
   10827             : static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
   10828             : 
   10829             : static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
   10830             : 
   10831             : static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
   10832             :                                 u64 burst)
   10833             : {
   10834             :         int i, ret = 0, runtime_enabled, runtime_was_enabled;
   10835             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   10836             : 
   10837             :         if (tg == &root_task_group)
   10838             :                 return -EINVAL;
   10839             : 
   10840             :         /*
   10841             :          * Ensure we have at some amount of bandwidth every period.  This is
   10842             :          * to prevent reaching a state of large arrears when throttled via
   10843             :          * entity_tick() resulting in prolonged exit starvation.
   10844             :          */
   10845             :         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
   10846             :                 return -EINVAL;
   10847             : 
   10848             :         /*
   10849             :          * Likewise, bound things on the other side by preventing insane quota
   10850             :          * periods.  This also allows us to normalize in computing quota
   10851             :          * feasibility.
   10852             :          */
   10853             :         if (period > max_cfs_quota_period)
   10854             :                 return -EINVAL;
   10855             : 
   10856             :         /*
   10857             :          * Bound quota to defend quota against overflow during bandwidth shift.
   10858             :          */
   10859             :         if (quota != RUNTIME_INF && quota > max_cfs_runtime)
   10860             :                 return -EINVAL;
   10861             : 
   10862             :         if (quota != RUNTIME_INF && (burst > quota ||
   10863             :                                      burst + quota > max_cfs_runtime))
   10864             :                 return -EINVAL;
   10865             : 
   10866             :         /*
   10867             :          * Prevent race between setting of cfs_rq->runtime_enabled and
   10868             :          * unthrottle_offline_cfs_rqs().
   10869             :          */
   10870             :         cpus_read_lock();
   10871             :         mutex_lock(&cfs_constraints_mutex);
   10872             :         ret = __cfs_schedulable(tg, period, quota);
   10873             :         if (ret)
   10874             :                 goto out_unlock;
   10875             : 
   10876             :         runtime_enabled = quota != RUNTIME_INF;
   10877             :         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
   10878             :         /*
   10879             :          * If we need to toggle cfs_bandwidth_used, off->on must occur
   10880             :          * before making related changes, and on->off must occur afterwards
   10881             :          */
   10882             :         if (runtime_enabled && !runtime_was_enabled)
   10883             :                 cfs_bandwidth_usage_inc();
   10884             :         raw_spin_lock_irq(&cfs_b->lock);
   10885             :         cfs_b->period = ns_to_ktime(period);
   10886             :         cfs_b->quota = quota;
   10887             :         cfs_b->burst = burst;
   10888             : 
   10889             :         __refill_cfs_bandwidth_runtime(cfs_b);
   10890             : 
   10891             :         /* Restart the period timer (if active) to handle new period expiry: */
   10892             :         if (runtime_enabled)
   10893             :                 start_cfs_bandwidth(cfs_b);
   10894             : 
   10895             :         raw_spin_unlock_irq(&cfs_b->lock);
   10896             : 
   10897             :         for_each_online_cpu(i) {
   10898             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
   10899             :                 struct rq *rq = cfs_rq->rq;
   10900             :                 struct rq_flags rf;
   10901             : 
   10902             :                 rq_lock_irq(rq, &rf);
   10903             :                 cfs_rq->runtime_enabled = runtime_enabled;
   10904             :                 cfs_rq->runtime_remaining = 0;
   10905             : 
   10906             :                 if (cfs_rq->throttled)
   10907             :                         unthrottle_cfs_rq(cfs_rq);
   10908             :                 rq_unlock_irq(rq, &rf);
   10909             :         }
   10910             :         if (runtime_was_enabled && !runtime_enabled)
   10911             :                 cfs_bandwidth_usage_dec();
   10912             : out_unlock:
   10913             :         mutex_unlock(&cfs_constraints_mutex);
   10914             :         cpus_read_unlock();
   10915             : 
   10916             :         return ret;
   10917             : }
   10918             : 
   10919             : static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
   10920             : {
   10921             :         u64 quota, period, burst;
   10922             : 
   10923             :         period = ktime_to_ns(tg->cfs_bandwidth.period);
   10924             :         burst = tg->cfs_bandwidth.burst;
   10925             :         if (cfs_quota_us < 0)
   10926             :                 quota = RUNTIME_INF;
   10927             :         else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
   10928             :                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
   10929             :         else
   10930             :                 return -EINVAL;
   10931             : 
   10932             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10933             : }
   10934             : 
   10935             : static long tg_get_cfs_quota(struct task_group *tg)
   10936             : {
   10937             :         u64 quota_us;
   10938             : 
   10939             :         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
   10940             :                 return -1;
   10941             : 
   10942             :         quota_us = tg->cfs_bandwidth.quota;
   10943             :         do_div(quota_us, NSEC_PER_USEC);
   10944             : 
   10945             :         return quota_us;
   10946             : }
   10947             : 
   10948             : static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
   10949             : {
   10950             :         u64 quota, period, burst;
   10951             : 
   10952             :         if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
   10953             :                 return -EINVAL;
   10954             : 
   10955             :         period = (u64)cfs_period_us * NSEC_PER_USEC;
   10956             :         quota = tg->cfs_bandwidth.quota;
   10957             :         burst = tg->cfs_bandwidth.burst;
   10958             : 
   10959             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10960             : }
   10961             : 
   10962             : static long tg_get_cfs_period(struct task_group *tg)
   10963             : {
   10964             :         u64 cfs_period_us;
   10965             : 
   10966             :         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
   10967             :         do_div(cfs_period_us, NSEC_PER_USEC);
   10968             : 
   10969             :         return cfs_period_us;
   10970             : }
   10971             : 
   10972             : static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
   10973             : {
   10974             :         u64 quota, period, burst;
   10975             : 
   10976             :         if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
   10977             :                 return -EINVAL;
   10978             : 
   10979             :         burst = (u64)cfs_burst_us * NSEC_PER_USEC;
   10980             :         period = ktime_to_ns(tg->cfs_bandwidth.period);
   10981             :         quota = tg->cfs_bandwidth.quota;
   10982             : 
   10983             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10984             : }
   10985             : 
   10986             : static long tg_get_cfs_burst(struct task_group *tg)
   10987             : {
   10988             :         u64 burst_us;
   10989             : 
   10990             :         burst_us = tg->cfs_bandwidth.burst;
   10991             :         do_div(burst_us, NSEC_PER_USEC);
   10992             : 
   10993             :         return burst_us;
   10994             : }
   10995             : 
   10996             : static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
   10997             :                                   struct cftype *cft)
   10998             : {
   10999             :         return tg_get_cfs_quota(css_tg(css));
   11000             : }
   11001             : 
   11002             : static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
   11003             :                                    struct cftype *cftype, s64 cfs_quota_us)
   11004             : {
   11005             :         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
   11006             : }
   11007             : 
   11008             : static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
   11009             :                                    struct cftype *cft)
   11010             : {
   11011             :         return tg_get_cfs_period(css_tg(css));
   11012             : }
   11013             : 
   11014             : static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
   11015             :                                     struct cftype *cftype, u64 cfs_period_us)
   11016             : {
   11017             :         return tg_set_cfs_period(css_tg(css), cfs_period_us);
   11018             : }
   11019             : 
   11020             : static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
   11021             :                                   struct cftype *cft)
   11022             : {
   11023             :         return tg_get_cfs_burst(css_tg(css));
   11024             : }
   11025             : 
   11026             : static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
   11027             :                                    struct cftype *cftype, u64 cfs_burst_us)
   11028             : {
   11029             :         return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
   11030             : }
   11031             : 
   11032             : struct cfs_schedulable_data {
   11033             :         struct task_group *tg;
   11034             :         u64 period, quota;
   11035             : };
   11036             : 
   11037             : /*
   11038             :  * normalize group quota/period to be quota/max_period
   11039             :  * note: units are usecs
   11040             :  */
   11041             : static u64 normalize_cfs_quota(struct task_group *tg,
   11042             :                                struct cfs_schedulable_data *d)
   11043             : {
   11044             :         u64 quota, period;
   11045             : 
   11046             :         if (tg == d->tg) {
   11047             :                 period = d->period;
   11048             :                 quota = d->quota;
   11049             :         } else {
   11050             :                 period = tg_get_cfs_period(tg);
   11051             :                 quota = tg_get_cfs_quota(tg);
   11052             :         }
   11053             : 
   11054             :         /* note: these should typically be equivalent */
   11055             :         if (quota == RUNTIME_INF || quota == -1)
   11056             :                 return RUNTIME_INF;
   11057             : 
   11058             :         return to_ratio(period, quota);
   11059             : }
   11060             : 
   11061             : static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
   11062             : {
   11063             :         struct cfs_schedulable_data *d = data;
   11064             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11065             :         s64 quota = 0, parent_quota = -1;
   11066             : 
   11067             :         if (!tg->parent) {
   11068             :                 quota = RUNTIME_INF;
   11069             :         } else {
   11070             :                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
   11071             : 
   11072             :                 quota = normalize_cfs_quota(tg, d);
   11073             :                 parent_quota = parent_b->hierarchical_quota;
   11074             : 
   11075             :                 /*
   11076             :                  * Ensure max(child_quota) <= parent_quota.  On cgroup2,
   11077             :                  * always take the min.  On cgroup1, only inherit when no
   11078             :                  * limit is set:
   11079             :                  */
   11080             :                 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
   11081             :                         quota = min(quota, parent_quota);
   11082             :                 } else {
   11083             :                         if (quota == RUNTIME_INF)
   11084             :                                 quota = parent_quota;
   11085             :                         else if (parent_quota != RUNTIME_INF && quota > parent_quota)
   11086             :                                 return -EINVAL;
   11087             :                 }
   11088             :         }
   11089             :         cfs_b->hierarchical_quota = quota;
   11090             : 
   11091             :         return 0;
   11092             : }
   11093             : 
   11094             : static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
   11095             : {
   11096             :         int ret;
   11097             :         struct cfs_schedulable_data data = {
   11098             :                 .tg = tg,
   11099             :                 .period = period,
   11100             :                 .quota = quota,
   11101             :         };
   11102             : 
   11103             :         if (quota != RUNTIME_INF) {
   11104             :                 do_div(data.period, NSEC_PER_USEC);
   11105             :                 do_div(data.quota, NSEC_PER_USEC);
   11106             :         }
   11107             : 
   11108             :         rcu_read_lock();
   11109             :         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
   11110             :         rcu_read_unlock();
   11111             : 
   11112             :         return ret;
   11113             : }
   11114             : 
   11115             : static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
   11116             : {
   11117             :         struct task_group *tg = css_tg(seq_css(sf));
   11118             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11119             : 
   11120             :         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
   11121             :         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
   11122             :         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
   11123             : 
   11124             :         if (schedstat_enabled() && tg != &root_task_group) {
   11125             :                 struct sched_statistics *stats;
   11126             :                 u64 ws = 0;
   11127             :                 int i;
   11128             : 
   11129             :                 for_each_possible_cpu(i) {
   11130             :                         stats = __schedstats_from_se(tg->se[i]);
   11131             :                         ws += schedstat_val(stats->wait_sum);
   11132             :                 }
   11133             : 
   11134             :                 seq_printf(sf, "wait_sum %llu\n", ws);
   11135             :         }
   11136             : 
   11137             :         seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
   11138             :         seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
   11139             : 
   11140             :         return 0;
   11141             : }
   11142             : #endif /* CONFIG_CFS_BANDWIDTH */
   11143             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   11144             : 
   11145             : #ifdef CONFIG_RT_GROUP_SCHED
   11146             : static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
   11147             :                                 struct cftype *cft, s64 val)
   11148             : {
   11149             :         return sched_group_set_rt_runtime(css_tg(css), val);
   11150             : }
   11151             : 
   11152             : static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
   11153             :                                struct cftype *cft)
   11154             : {
   11155             :         return sched_group_rt_runtime(css_tg(css));
   11156             : }
   11157             : 
   11158             : static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
   11159             :                                     struct cftype *cftype, u64 rt_period_us)
   11160             : {
   11161             :         return sched_group_set_rt_period(css_tg(css), rt_period_us);
   11162             : }
   11163             : 
   11164             : static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
   11165             :                                    struct cftype *cft)
   11166             : {
   11167             :         return sched_group_rt_period(css_tg(css));
   11168             : }
   11169             : #endif /* CONFIG_RT_GROUP_SCHED */
   11170             : 
   11171             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11172             : static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
   11173             :                                struct cftype *cft)
   11174             : {
   11175             :         return css_tg(css)->idle;
   11176             : }
   11177             : 
   11178             : static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
   11179             :                                 struct cftype *cft, s64 idle)
   11180             : {
   11181             :         return sched_group_set_idle(css_tg(css), idle);
   11182             : }
   11183             : #endif
   11184             : 
   11185             : static struct cftype cpu_legacy_files[] = {
   11186             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11187             :         {
   11188             :                 .name = "shares",
   11189             :                 .read_u64 = cpu_shares_read_u64,
   11190             :                 .write_u64 = cpu_shares_write_u64,
   11191             :         },
   11192             :         {
   11193             :                 .name = "idle",
   11194             :                 .read_s64 = cpu_idle_read_s64,
   11195             :                 .write_s64 = cpu_idle_write_s64,
   11196             :         },
   11197             : #endif
   11198             : #ifdef CONFIG_CFS_BANDWIDTH
   11199             :         {
   11200             :                 .name = "cfs_quota_us",
   11201             :                 .read_s64 = cpu_cfs_quota_read_s64,
   11202             :                 .write_s64 = cpu_cfs_quota_write_s64,
   11203             :         },
   11204             :         {
   11205             :                 .name = "cfs_period_us",
   11206             :                 .read_u64 = cpu_cfs_period_read_u64,
   11207             :                 .write_u64 = cpu_cfs_period_write_u64,
   11208             :         },
   11209             :         {
   11210             :                 .name = "cfs_burst_us",
   11211             :                 .read_u64 = cpu_cfs_burst_read_u64,
   11212             :                 .write_u64 = cpu_cfs_burst_write_u64,
   11213             :         },
   11214             :         {
   11215             :                 .name = "stat",
   11216             :                 .seq_show = cpu_cfs_stat_show,
   11217             :         },
   11218             : #endif
   11219             : #ifdef CONFIG_RT_GROUP_SCHED
   11220             :         {
   11221             :                 .name = "rt_runtime_us",
   11222             :                 .read_s64 = cpu_rt_runtime_read,
   11223             :                 .write_s64 = cpu_rt_runtime_write,
   11224             :         },
   11225             :         {
   11226             :                 .name = "rt_period_us",
   11227             :                 .read_u64 = cpu_rt_period_read_uint,
   11228             :                 .write_u64 = cpu_rt_period_write_uint,
   11229             :         },
   11230             : #endif
   11231             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   11232             :         {
   11233             :                 .name = "uclamp.min",
   11234             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11235             :                 .seq_show = cpu_uclamp_min_show,
   11236             :                 .write = cpu_uclamp_min_write,
   11237             :         },
   11238             :         {
   11239             :                 .name = "uclamp.max",
   11240             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11241             :                 .seq_show = cpu_uclamp_max_show,
   11242             :                 .write = cpu_uclamp_max_write,
   11243             :         },
   11244             : #endif
   11245             :         { }     /* Terminate */
   11246             : };
   11247             : 
   11248             : static int cpu_extra_stat_show(struct seq_file *sf,
   11249             :                                struct cgroup_subsys_state *css)
   11250             : {
   11251             : #ifdef CONFIG_CFS_BANDWIDTH
   11252             :         {
   11253             :                 struct task_group *tg = css_tg(css);
   11254             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11255             :                 u64 throttled_usec, burst_usec;
   11256             : 
   11257             :                 throttled_usec = cfs_b->throttled_time;
   11258             :                 do_div(throttled_usec, NSEC_PER_USEC);
   11259             :                 burst_usec = cfs_b->burst_time;
   11260             :                 do_div(burst_usec, NSEC_PER_USEC);
   11261             : 
   11262             :                 seq_printf(sf, "nr_periods %d\n"
   11263             :                            "nr_throttled %d\n"
   11264             :                            "throttled_usec %llu\n"
   11265             :                            "nr_bursts %d\n"
   11266             :                            "burst_usec %llu\n",
   11267             :                            cfs_b->nr_periods, cfs_b->nr_throttled,
   11268             :                            throttled_usec, cfs_b->nr_burst, burst_usec);
   11269             :         }
   11270             : #endif
   11271             :         return 0;
   11272             : }
   11273             : 
   11274             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11275             : static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
   11276             :                                struct cftype *cft)
   11277             : {
   11278             :         struct task_group *tg = css_tg(css);
   11279             :         u64 weight = scale_load_down(tg->shares);
   11280             : 
   11281             :         return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
   11282             : }
   11283             : 
   11284             : static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
   11285             :                                 struct cftype *cft, u64 weight)
   11286             : {
   11287             :         /*
   11288             :          * cgroup weight knobs should use the common MIN, DFL and MAX
   11289             :          * values which are 1, 100 and 10000 respectively.  While it loses
   11290             :          * a bit of range on both ends, it maps pretty well onto the shares
   11291             :          * value used by scheduler and the round-trip conversions preserve
   11292             :          * the original value over the entire range.
   11293             :          */
   11294             :         if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
   11295             :                 return -ERANGE;
   11296             : 
   11297             :         weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
   11298             : 
   11299             :         return sched_group_set_shares(css_tg(css), scale_load(weight));
   11300             : }
   11301             : 
   11302             : static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
   11303             :                                     struct cftype *cft)
   11304             : {
   11305             :         unsigned long weight = scale_load_down(css_tg(css)->shares);
   11306             :         int last_delta = INT_MAX;
   11307             :         int prio, delta;
   11308             : 
   11309             :         /* find the closest nice value to the current weight */
   11310             :         for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
   11311             :                 delta = abs(sched_prio_to_weight[prio] - weight);
   11312             :                 if (delta >= last_delta)
   11313             :                         break;
   11314             :                 last_delta = delta;
   11315             :         }
   11316             : 
   11317             :         return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
   11318             : }
   11319             : 
   11320             : static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
   11321             :                                      struct cftype *cft, s64 nice)
   11322             : {
   11323             :         unsigned long weight;
   11324             :         int idx;
   11325             : 
   11326             :         if (nice < MIN_NICE || nice > MAX_NICE)
   11327             :                 return -ERANGE;
   11328             : 
   11329             :         idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
   11330             :         idx = array_index_nospec(idx, 40);
   11331             :         weight = sched_prio_to_weight[idx];
   11332             : 
   11333             :         return sched_group_set_shares(css_tg(css), scale_load(weight));
   11334             : }
   11335             : #endif
   11336             : 
   11337             : static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
   11338             :                                                   long period, long quota)
   11339             : {
   11340             :         if (quota < 0)
   11341             :                 seq_puts(sf, "max");
   11342             :         else
   11343             :                 seq_printf(sf, "%ld", quota);
   11344             : 
   11345             :         seq_printf(sf, " %ld\n", period);
   11346             : }
   11347             : 
   11348             : /* caller should put the current value in *@periodp before calling */
   11349             : static int __maybe_unused cpu_period_quota_parse(char *buf,
   11350             :                                                  u64 *periodp, u64 *quotap)
   11351             : {
   11352             :         char tok[21];   /* U64_MAX */
   11353             : 
   11354             :         if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
   11355             :                 return -EINVAL;
   11356             : 
   11357             :         *periodp *= NSEC_PER_USEC;
   11358             : 
   11359             :         if (sscanf(tok, "%llu", quotap))
   11360             :                 *quotap *= NSEC_PER_USEC;
   11361             :         else if (!strcmp(tok, "max"))
   11362             :                 *quotap = RUNTIME_INF;
   11363             :         else
   11364             :                 return -EINVAL;
   11365             : 
   11366             :         return 0;
   11367             : }
   11368             : 
   11369             : #ifdef CONFIG_CFS_BANDWIDTH
   11370             : static int cpu_max_show(struct seq_file *sf, void *v)
   11371             : {
   11372             :         struct task_group *tg = css_tg(seq_css(sf));
   11373             : 
   11374             :         cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
   11375             :         return 0;
   11376             : }
   11377             : 
   11378             : static ssize_t cpu_max_write(struct kernfs_open_file *of,
   11379             :                              char *buf, size_t nbytes, loff_t off)
   11380             : {
   11381             :         struct task_group *tg = css_tg(of_css(of));
   11382             :         u64 period = tg_get_cfs_period(tg);
   11383             :         u64 burst = tg_get_cfs_burst(tg);
   11384             :         u64 quota;
   11385             :         int ret;
   11386             : 
   11387             :         ret = cpu_period_quota_parse(buf, &period, &quota);
   11388             :         if (!ret)
   11389             :                 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
   11390             :         return ret ?: nbytes;
   11391             : }
   11392             : #endif
   11393             : 
   11394             : static struct cftype cpu_files[] = {
   11395             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11396             :         {
   11397             :                 .name = "weight",
   11398             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11399             :                 .read_u64 = cpu_weight_read_u64,
   11400             :                 .write_u64 = cpu_weight_write_u64,
   11401             :         },
   11402             :         {
   11403             :                 .name = "weight.nice",
   11404             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11405             :                 .read_s64 = cpu_weight_nice_read_s64,
   11406             :                 .write_s64 = cpu_weight_nice_write_s64,
   11407             :         },
   11408             :         {
   11409             :                 .name = "idle",
   11410             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11411             :                 .read_s64 = cpu_idle_read_s64,
   11412             :                 .write_s64 = cpu_idle_write_s64,
   11413             :         },
   11414             : #endif
   11415             : #ifdef CONFIG_CFS_BANDWIDTH
   11416             :         {
   11417             :                 .name = "max",
   11418             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11419             :                 .seq_show = cpu_max_show,
   11420             :                 .write = cpu_max_write,
   11421             :         },
   11422             :         {
   11423             :                 .name = "max.burst",
   11424             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11425             :                 .read_u64 = cpu_cfs_burst_read_u64,
   11426             :                 .write_u64 = cpu_cfs_burst_write_u64,
   11427             :         },
   11428             : #endif
   11429             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   11430             :         {
   11431             :                 .name = "uclamp.min",
   11432             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11433             :                 .seq_show = cpu_uclamp_min_show,
   11434             :                 .write = cpu_uclamp_min_write,
   11435             :         },
   11436             :         {
   11437             :                 .name = "uclamp.max",
   11438             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11439             :                 .seq_show = cpu_uclamp_max_show,
   11440             :                 .write = cpu_uclamp_max_write,
   11441             :         },
   11442             : #endif
   11443             :         { }     /* terminate */
   11444             : };
   11445             : 
   11446             : struct cgroup_subsys cpu_cgrp_subsys = {
   11447             :         .css_alloc      = cpu_cgroup_css_alloc,
   11448             :         .css_online     = cpu_cgroup_css_online,
   11449             :         .css_released   = cpu_cgroup_css_released,
   11450             :         .css_free       = cpu_cgroup_css_free,
   11451             :         .css_extra_stat_show = cpu_extra_stat_show,
   11452             : #ifdef CONFIG_RT_GROUP_SCHED
   11453             :         .can_attach     = cpu_cgroup_can_attach,
   11454             : #endif
   11455             :         .attach         = cpu_cgroup_attach,
   11456             :         .legacy_cftypes = cpu_legacy_files,
   11457             :         .dfl_cftypes    = cpu_files,
   11458             :         .early_init     = true,
   11459             :         .threaded       = true,
   11460             : };
   11461             : 
   11462             : #endif  /* CONFIG_CGROUP_SCHED */
   11463             : 
   11464           0 : void dump_cpu_task(int cpu)
   11465             : {
   11466           0 :         if (cpu == smp_processor_id() && in_hardirq()) {
   11467             :                 struct pt_regs *regs;
   11468             : 
   11469           0 :                 regs = get_irq_regs();
   11470           0 :                 if (regs) {
   11471           0 :                         show_regs(regs);
   11472           0 :                         return;
   11473             :                 }
   11474             :         }
   11475             : 
   11476           0 :         if (trigger_single_cpu_backtrace(cpu))
   11477             :                 return;
   11478             : 
   11479           0 :         pr_info("Task dump for CPU %d:\n", cpu);
   11480           0 :         sched_show_task(cpu_curr(cpu));
   11481             : }
   11482             : 
   11483             : /*
   11484             :  * Nice levels are multiplicative, with a gentle 10% change for every
   11485             :  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
   11486             :  * nice 1, it will get ~10% less CPU time than another CPU-bound task
   11487             :  * that remained on nice 0.
   11488             :  *
   11489             :  * The "10% effect" is relative and cumulative: from _any_ nice level,
   11490             :  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
   11491             :  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
   11492             :  * If a task goes up by ~10% and another task goes down by ~10% then
   11493             :  * the relative distance between them is ~25%.)
   11494             :  */
   11495             : const int sched_prio_to_weight[40] = {
   11496             :  /* -20 */     88761,     71755,     56483,     46273,     36291,
   11497             :  /* -15 */     29154,     23254,     18705,     14949,     11916,
   11498             :  /* -10 */      9548,      7620,      6100,      4904,      3906,
   11499             :  /*  -5 */      3121,      2501,      1991,      1586,      1277,
   11500             :  /*   0 */      1024,       820,       655,       526,       423,
   11501             :  /*   5 */       335,       272,       215,       172,       137,
   11502             :  /*  10 */       110,        87,        70,        56,        45,
   11503             :  /*  15 */        36,        29,        23,        18,        15,
   11504             : };
   11505             : 
   11506             : /*
   11507             :  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
   11508             :  *
   11509             :  * In cases where the weight does not change often, we can use the
   11510             :  * precalculated inverse to speed up arithmetics by turning divisions
   11511             :  * into multiplications:
   11512             :  */
   11513             : const u32 sched_prio_to_wmult[40] = {
   11514             :  /* -20 */     48388,     59856,     76040,     92818,    118348,
   11515             :  /* -15 */    147320,    184698,    229616,    287308,    360437,
   11516             :  /* -10 */    449829,    563644,    704093,    875809,   1099582,
   11517             :  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
   11518             :  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
   11519             :  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
   11520             :  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
   11521             :  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
   11522             : };
   11523             : 
   11524           0 : void call_trace_sched_update_nr_running(struct rq *rq, int count)
   11525             : {
   11526           0 :         trace_sched_update_nr_running_tp(rq, count);
   11527           0 : }
   11528             : 
   11529             : #ifdef CONFIG_SCHED_MM_CID
   11530             : 
   11531             : /*
   11532             :  * @cid_lock: Guarantee forward-progress of cid allocation.
   11533             :  *
   11534             :  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
   11535             :  * is only used when contention is detected by the lock-free allocation so
   11536             :  * forward progress can be guaranteed.
   11537             :  */
   11538             : DEFINE_RAW_SPINLOCK(cid_lock);
   11539             : 
   11540             : /*
   11541             :  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
   11542             :  *
   11543             :  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
   11544             :  * detected, it is set to 1 to ensure that all newly coming allocations are
   11545             :  * serialized by @cid_lock until the allocation which detected contention
   11546             :  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
   11547             :  * of a cid allocation.
   11548             :  */
   11549             : int use_cid_lock;
   11550             : 
   11551             : /*
   11552             :  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
   11553             :  * concurrently with respect to the execution of the source runqueue context
   11554             :  * switch.
   11555             :  *
   11556             :  * There is one basic properties we want to guarantee here:
   11557             :  *
   11558             :  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
   11559             :  * used by a task. That would lead to concurrent allocation of the cid and
   11560             :  * userspace corruption.
   11561             :  *
   11562             :  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
   11563             :  * that a pair of loads observe at least one of a pair of stores, which can be
   11564             :  * shown as:
   11565             :  *
   11566             :  *      X = Y = 0
   11567             :  *
   11568             :  *      w[X]=1          w[Y]=1
   11569             :  *      MB              MB
   11570             :  *      r[Y]=y          r[X]=x
   11571             :  *
   11572             :  * Which guarantees that x==0 && y==0 is impossible. But rather than using
   11573             :  * values 0 and 1, this algorithm cares about specific state transitions of the
   11574             :  * runqueue current task (as updated by the scheduler context switch), and the
   11575             :  * per-mm/cpu cid value.
   11576             :  *
   11577             :  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
   11578             :  * task->mm != mm for the rest of the discussion. There are two scheduler state
   11579             :  * transitions on context switch we care about:
   11580             :  *
   11581             :  * (TSA) Store to rq->curr with transition from (N) to (Y)
   11582             :  *
   11583             :  * (TSB) Store to rq->curr with transition from (Y) to (N)
   11584             :  *
   11585             :  * On the remote-clear side, there is one transition we care about:
   11586             :  *
   11587             :  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
   11588             :  *
   11589             :  * There is also a transition to UNSET state which can be performed from all
   11590             :  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
   11591             :  * guarantees that only a single thread will succeed:
   11592             :  *
   11593             :  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
   11594             :  *
   11595             :  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
   11596             :  * when a thread is actively using the cid (property (1)).
   11597             :  *
   11598             :  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
   11599             :  *
   11600             :  * Scenario A) (TSA)+(TMA) (from next task perspective)
   11601             :  *
   11602             :  * CPU0                                      CPU1
   11603             :  *
   11604             :  * Context switch CS-1                       Remote-clear
   11605             :  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
   11606             :  *                                             (implied barrier after cmpxchg)
   11607             :  *   - switch_mm_cid()
   11608             :  *     - memory barrier (see switch_mm_cid()
   11609             :  *       comment explaining how this barrier
   11610             :  *       is combined with other scheduler
   11611             :  *       barriers)
   11612             :  *     - mm_cid_get (next)
   11613             :  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
   11614             :  *
   11615             :  * This Dekker ensures that either task (Y) is observed by the
   11616             :  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
   11617             :  * observed.
   11618             :  *
   11619             :  * If task (Y) store is observed by rcu_dereference(), it means that there is
   11620             :  * still an active task on the cpu. Remote-clear will therefore not transition
   11621             :  * to UNSET, which fulfills property (1).
   11622             :  *
   11623             :  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
   11624             :  * it will move its state to UNSET, which clears the percpu cid perhaps
   11625             :  * uselessly (which is not an issue for correctness). Because task (Y) is not
   11626             :  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
   11627             :  * state to UNSET is done with a cmpxchg expecting that the old state has the
   11628             :  * LAZY flag set, only one thread will successfully UNSET.
   11629             :  *
   11630             :  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
   11631             :  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
   11632             :  * CPU1 will observe task (Y) and do nothing more, which is fine.
   11633             :  *
   11634             :  * What we are effectively preventing with this Dekker is a scenario where
   11635             :  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
   11636             :  * because this would UNSET a cid which is actively used.
   11637             :  */
   11638             : 
   11639             : void sched_mm_cid_migrate_from(struct task_struct *t)
   11640             : {
   11641             :         t->migrate_from_cpu = task_cpu(t);
   11642             : }
   11643             : 
   11644             : static
   11645             : int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
   11646             :                                           struct task_struct *t,
   11647             :                                           struct mm_cid *src_pcpu_cid)
   11648             : {
   11649             :         struct mm_struct *mm = t->mm;
   11650             :         struct task_struct *src_task;
   11651             :         int src_cid, last_mm_cid;
   11652             : 
   11653             :         if (!mm)
   11654             :                 return -1;
   11655             : 
   11656             :         last_mm_cid = t->last_mm_cid;
   11657             :         /*
   11658             :          * If the migrated task has no last cid, or if the current
   11659             :          * task on src rq uses the cid, it means the source cid does not need
   11660             :          * to be moved to the destination cpu.
   11661             :          */
   11662             :         if (last_mm_cid == -1)
   11663             :                 return -1;
   11664             :         src_cid = READ_ONCE(src_pcpu_cid->cid);
   11665             :         if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
   11666             :                 return -1;
   11667             : 
   11668             :         /*
   11669             :          * If we observe an active task using the mm on this rq, it means we
   11670             :          * are not the last task to be migrated from this cpu for this mm, so
   11671             :          * there is no need to move src_cid to the destination cpu.
   11672             :          */
   11673             :         rcu_read_lock();
   11674             :         src_task = rcu_dereference(src_rq->curr);
   11675             :         if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
   11676             :                 rcu_read_unlock();
   11677             :                 t->last_mm_cid = -1;
   11678             :                 return -1;
   11679             :         }
   11680             :         rcu_read_unlock();
   11681             : 
   11682             :         return src_cid;
   11683             : }
   11684             : 
   11685             : static
   11686             : int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
   11687             :                                               struct task_struct *t,
   11688             :                                               struct mm_cid *src_pcpu_cid,
   11689             :                                               int src_cid)
   11690             : {
   11691             :         struct task_struct *src_task;
   11692             :         struct mm_struct *mm = t->mm;
   11693             :         int lazy_cid;
   11694             : 
   11695             :         if (src_cid == -1)
   11696             :                 return -1;
   11697             : 
   11698             :         /*
   11699             :          * Attempt to clear the source cpu cid to move it to the destination
   11700             :          * cpu.
   11701             :          */
   11702             :         lazy_cid = mm_cid_set_lazy_put(src_cid);
   11703             :         if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
   11704             :                 return -1;
   11705             : 
   11706             :         /*
   11707             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11708             :          * rq->curr->mm matches the scheduler barrier in context_switch()
   11709             :          * between store to rq->curr and load of prev and next task's
   11710             :          * per-mm/cpu cid.
   11711             :          *
   11712             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11713             :          * rq->curr->mm_cid_active matches the barrier in
   11714             :          * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
   11715             :          * sched_mm_cid_after_execve() between store to t->mm_cid_active and
   11716             :          * load of per-mm/cpu cid.
   11717             :          */
   11718             : 
   11719             :         /*
   11720             :          * If we observe an active task using the mm on this rq after setting
   11721             :          * the lazy-put flag, this task will be responsible for transitioning
   11722             :          * from lazy-put flag set to MM_CID_UNSET.
   11723             :          */
   11724             :         rcu_read_lock();
   11725             :         src_task = rcu_dereference(src_rq->curr);
   11726             :         if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
   11727             :                 rcu_read_unlock();
   11728             :                 /*
   11729             :                  * We observed an active task for this mm, there is therefore
   11730             :                  * no point in moving this cid to the destination cpu.
   11731             :                  */
   11732             :                 t->last_mm_cid = -1;
   11733             :                 return -1;
   11734             :         }
   11735             :         rcu_read_unlock();
   11736             : 
   11737             :         /*
   11738             :          * The src_cid is unused, so it can be unset.
   11739             :          */
   11740             :         if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
   11741             :                 return -1;
   11742             :         return src_cid;
   11743             : }
   11744             : 
   11745             : /*
   11746             :  * Migration to dst cpu. Called with dst_rq lock held.
   11747             :  * Interrupts are disabled, which keeps the window of cid ownership without the
   11748             :  * source rq lock held small.
   11749             :  */
   11750             : void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
   11751             : {
   11752             :         struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
   11753             :         struct mm_struct *mm = t->mm;
   11754             :         int src_cid, dst_cid, src_cpu;
   11755             :         struct rq *src_rq;
   11756             : 
   11757             :         lockdep_assert_rq_held(dst_rq);
   11758             : 
   11759             :         if (!mm)
   11760             :                 return;
   11761             :         src_cpu = t->migrate_from_cpu;
   11762             :         if (src_cpu == -1) {
   11763             :                 t->last_mm_cid = -1;
   11764             :                 return;
   11765             :         }
   11766             :         /*
   11767             :          * Move the src cid if the dst cid is unset. This keeps id
   11768             :          * allocation closest to 0 in cases where few threads migrate around
   11769             :          * many cpus.
   11770             :          *
   11771             :          * If destination cid is already set, we may have to just clear
   11772             :          * the src cid to ensure compactness in frequent migrations
   11773             :          * scenarios.
   11774             :          *
   11775             :          * It is not useful to clear the src cid when the number of threads is
   11776             :          * greater or equal to the number of allowed cpus, because user-space
   11777             :          * can expect that the number of allowed cids can reach the number of
   11778             :          * allowed cpus.
   11779             :          */
   11780             :         dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
   11781             :         dst_cid = READ_ONCE(dst_pcpu_cid->cid);
   11782             :         if (!mm_cid_is_unset(dst_cid) &&
   11783             :             atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
   11784             :                 return;
   11785             :         src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
   11786             :         src_rq = cpu_rq(src_cpu);
   11787             :         src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
   11788             :         if (src_cid == -1)
   11789             :                 return;
   11790             :         src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
   11791             :                                                             src_cid);
   11792             :         if (src_cid == -1)
   11793             :                 return;
   11794             :         if (!mm_cid_is_unset(dst_cid)) {
   11795             :                 __mm_cid_put(mm, src_cid);
   11796             :                 return;
   11797             :         }
   11798             :         /* Move src_cid to dst cpu. */
   11799             :         mm_cid_snapshot_time(dst_rq, mm);
   11800             :         WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
   11801             : }
   11802             : 
   11803             : static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
   11804             :                                       int cpu)
   11805             : {
   11806             :         struct rq *rq = cpu_rq(cpu);
   11807             :         struct task_struct *t;
   11808             :         unsigned long flags;
   11809             :         int cid, lazy_cid;
   11810             : 
   11811             :         cid = READ_ONCE(pcpu_cid->cid);
   11812             :         if (!mm_cid_is_valid(cid))
   11813             :                 return;
   11814             : 
   11815             :         /*
   11816             :          * Clear the cpu cid if it is set to keep cid allocation compact.  If
   11817             :          * there happens to be other tasks left on the source cpu using this
   11818             :          * mm, the next task using this mm will reallocate its cid on context
   11819             :          * switch.
   11820             :          */
   11821             :         lazy_cid = mm_cid_set_lazy_put(cid);
   11822             :         if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
   11823             :                 return;
   11824             : 
   11825             :         /*
   11826             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11827             :          * rq->curr->mm matches the scheduler barrier in context_switch()
   11828             :          * between store to rq->curr and load of prev and next task's
   11829             :          * per-mm/cpu cid.
   11830             :          *
   11831             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11832             :          * rq->curr->mm_cid_active matches the barrier in
   11833             :          * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
   11834             :          * sched_mm_cid_after_execve() between store to t->mm_cid_active and
   11835             :          * load of per-mm/cpu cid.
   11836             :          */
   11837             : 
   11838             :         /*
   11839             :          * If we observe an active task using the mm on this rq after setting
   11840             :          * the lazy-put flag, that task will be responsible for transitioning
   11841             :          * from lazy-put flag set to MM_CID_UNSET.
   11842             :          */
   11843             :         rcu_read_lock();
   11844             :         t = rcu_dereference(rq->curr);
   11845             :         if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
   11846             :                 rcu_read_unlock();
   11847             :                 return;
   11848             :         }
   11849             :         rcu_read_unlock();
   11850             : 
   11851             :         /*
   11852             :          * The cid is unused, so it can be unset.
   11853             :          * Disable interrupts to keep the window of cid ownership without rq
   11854             :          * lock small.
   11855             :          */
   11856             :         local_irq_save(flags);
   11857             :         if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
   11858             :                 __mm_cid_put(mm, cid);
   11859             :         local_irq_restore(flags);
   11860             : }
   11861             : 
   11862             : static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
   11863             : {
   11864             :         struct rq *rq = cpu_rq(cpu);
   11865             :         struct mm_cid *pcpu_cid;
   11866             :         struct task_struct *curr;
   11867             :         u64 rq_clock;
   11868             : 
   11869             :         /*
   11870             :          * rq->clock load is racy on 32-bit but one spurious clear once in a
   11871             :          * while is irrelevant.
   11872             :          */
   11873             :         rq_clock = READ_ONCE(rq->clock);
   11874             :         pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
   11875             : 
   11876             :         /*
   11877             :          * In order to take care of infrequently scheduled tasks, bump the time
   11878             :          * snapshot associated with this cid if an active task using the mm is
   11879             :          * observed on this rq.
   11880             :          */
   11881             :         rcu_read_lock();
   11882             :         curr = rcu_dereference(rq->curr);
   11883             :         if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
   11884             :                 WRITE_ONCE(pcpu_cid->time, rq_clock);
   11885             :                 rcu_read_unlock();
   11886             :                 return;
   11887             :         }
   11888             :         rcu_read_unlock();
   11889             : 
   11890             :         if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
   11891             :                 return;
   11892             :         sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
   11893             : }
   11894             : 
   11895             : static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
   11896             :                                              int weight)
   11897             : {
   11898             :         struct mm_cid *pcpu_cid;
   11899             :         int cid;
   11900             : 
   11901             :         pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
   11902             :         cid = READ_ONCE(pcpu_cid->cid);
   11903             :         if (!mm_cid_is_valid(cid) || cid < weight)
   11904             :                 return;
   11905             :         sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
   11906             : }
   11907             : 
   11908             : static void task_mm_cid_work(struct callback_head *work)
   11909             : {
   11910             :         unsigned long now = jiffies, old_scan, next_scan;
   11911             :         struct task_struct *t = current;
   11912             :         struct cpumask *cidmask;
   11913             :         struct mm_struct *mm;
   11914             :         int weight, cpu;
   11915             : 
   11916             :         SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
   11917             : 
   11918             :         work->next = work;   /* Prevent double-add */
   11919             :         if (t->flags & PF_EXITING)
   11920             :                 return;
   11921             :         mm = t->mm;
   11922             :         if (!mm)
   11923             :                 return;
   11924             :         old_scan = READ_ONCE(mm->mm_cid_next_scan);
   11925             :         next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
   11926             :         if (!old_scan) {
   11927             :                 unsigned long res;
   11928             : 
   11929             :                 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
   11930             :                 if (res != old_scan)
   11931             :                         old_scan = res;
   11932             :                 else
   11933             :                         old_scan = next_scan;
   11934             :         }
   11935             :         if (time_before(now, old_scan))
   11936             :                 return;
   11937             :         if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
   11938             :                 return;
   11939             :         cidmask = mm_cidmask(mm);
   11940             :         /* Clear cids that were not recently used. */
   11941             :         for_each_possible_cpu(cpu)
   11942             :                 sched_mm_cid_remote_clear_old(mm, cpu);
   11943             :         weight = cpumask_weight(cidmask);
   11944             :         /*
   11945             :          * Clear cids that are greater or equal to the cidmask weight to
   11946             :          * recompact it.
   11947             :          */
   11948             :         for_each_possible_cpu(cpu)
   11949             :                 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
   11950             : }
   11951             : 
   11952             : void init_sched_mm_cid(struct task_struct *t)
   11953             : {
   11954             :         struct mm_struct *mm = t->mm;
   11955             :         int mm_users = 0;
   11956             : 
   11957             :         if (mm) {
   11958             :                 mm_users = atomic_read(&mm->mm_users);
   11959             :                 if (mm_users == 1)
   11960             :                         mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
   11961             :         }
   11962             :         t->cid_work.next = &t->cid_work;      /* Protect against double add */
   11963             :         init_task_work(&t->cid_work, task_mm_cid_work);
   11964             : }
   11965             : 
   11966             : void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
   11967             : {
   11968             :         struct callback_head *work = &curr->cid_work;
   11969             :         unsigned long now = jiffies;
   11970             : 
   11971             :         if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
   11972             :             work->next != work)
   11973             :                 return;
   11974             :         if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
   11975             :                 return;
   11976             :         task_work_add(curr, work, TWA_RESUME);
   11977             : }
   11978             : 
   11979             : void sched_mm_cid_exit_signals(struct task_struct *t)
   11980             : {
   11981             :         struct mm_struct *mm = t->mm;
   11982             :         struct rq_flags rf;
   11983             :         struct rq *rq;
   11984             : 
   11985             :         if (!mm)
   11986             :                 return;
   11987             : 
   11988             :         preempt_disable();
   11989             :         rq = this_rq();
   11990             :         rq_lock_irqsave(rq, &rf);
   11991             :         preempt_enable_no_resched();    /* holding spinlock */
   11992             :         WRITE_ONCE(t->mm_cid_active, 0);
   11993             :         /*
   11994             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   11995             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   11996             :          */
   11997             :         smp_mb();
   11998             :         mm_cid_put(mm);
   11999             :         t->last_mm_cid = t->mm_cid = -1;
   12000             :         rq_unlock_irqrestore(rq, &rf);
   12001             : }
   12002             : 
   12003             : void sched_mm_cid_before_execve(struct task_struct *t)
   12004             : {
   12005             :         struct mm_struct *mm = t->mm;
   12006             :         struct rq_flags rf;
   12007             :         struct rq *rq;
   12008             : 
   12009             :         if (!mm)
   12010             :                 return;
   12011             : 
   12012             :         preempt_disable();
   12013             :         rq = this_rq();
   12014             :         rq_lock_irqsave(rq, &rf);
   12015             :         preempt_enable_no_resched();    /* holding spinlock */
   12016             :         WRITE_ONCE(t->mm_cid_active, 0);
   12017             :         /*
   12018             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   12019             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   12020             :          */
   12021             :         smp_mb();
   12022             :         mm_cid_put(mm);
   12023             :         t->last_mm_cid = t->mm_cid = -1;
   12024             :         rq_unlock_irqrestore(rq, &rf);
   12025             : }
   12026             : 
   12027             : void sched_mm_cid_after_execve(struct task_struct *t)
   12028             : {
   12029             :         struct mm_struct *mm = t->mm;
   12030             :         struct rq_flags rf;
   12031             :         struct rq *rq;
   12032             : 
   12033             :         if (!mm)
   12034             :                 return;
   12035             : 
   12036             :         preempt_disable();
   12037             :         rq = this_rq();
   12038             :         rq_lock_irqsave(rq, &rf);
   12039             :         preempt_enable_no_resched();    /* holding spinlock */
   12040             :         WRITE_ONCE(t->mm_cid_active, 1);
   12041             :         /*
   12042             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   12043             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   12044             :          */
   12045             :         smp_mb();
   12046             :         t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
   12047             :         rq_unlock_irqrestore(rq, &rf);
   12048             :         rseq_set_notify_resume(t);
   12049             : }
   12050             : 
   12051             : void sched_mm_cid_fork(struct task_struct *t)
   12052             : {
   12053             :         WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
   12054             :         t->mm_cid_active = 1;
   12055             : }
   12056             : #endif

Generated by: LCOV version 1.14