LCOV - code coverage report
Current view: top level - kernel/sched - fair.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 353 495 71.3 %
Date: 2023-08-24 13:40:31 Functions: 33 48 68.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
       4             :  *
       5             :  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
       6             :  *
       7             :  *  Interactivity improvements by Mike Galbraith
       8             :  *  (C) 2007 Mike Galbraith <efault@gmx.de>
       9             :  *
      10             :  *  Various enhancements by Dmitry Adamushko.
      11             :  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
      12             :  *
      13             :  *  Group scheduling enhancements by Srivatsa Vaddagiri
      14             :  *  Copyright IBM Corporation, 2007
      15             :  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      16             :  *
      17             :  *  Scaled math optimizations by Thomas Gleixner
      18             :  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
      19             :  *
      20             :  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
      21             :  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
      22             :  */
      23             : #include <linux/energy_model.h>
      24             : #include <linux/mmap_lock.h>
      25             : #include <linux/hugetlb_inline.h>
      26             : #include <linux/jiffies.h>
      27             : #include <linux/mm_api.h>
      28             : #include <linux/highmem.h>
      29             : #include <linux/spinlock_api.h>
      30             : #include <linux/cpumask_api.h>
      31             : #include <linux/lockdep_api.h>
      32             : #include <linux/softirq.h>
      33             : #include <linux/refcount_api.h>
      34             : #include <linux/topology.h>
      35             : #include <linux/sched/clock.h>
      36             : #include <linux/sched/cond_resched.h>
      37             : #include <linux/sched/cputime.h>
      38             : #include <linux/sched/isolation.h>
      39             : #include <linux/sched/nohz.h>
      40             : 
      41             : #include <linux/cpuidle.h>
      42             : #include <linux/interrupt.h>
      43             : #include <linux/memory-tiers.h>
      44             : #include <linux/mempolicy.h>
      45             : #include <linux/mutex_api.h>
      46             : #include <linux/profile.h>
      47             : #include <linux/psi.h>
      48             : #include <linux/ratelimit.h>
      49             : #include <linux/task_work.h>
      50             : 
      51             : #include <asm/switch_to.h>
      52             : 
      53             : #include <linux/sched/cond_resched.h>
      54             : 
      55             : #include "sched.h"
      56             : #include "stats.h"
      57             : #include "autogroup.h"
      58             : 
      59             : /*
      60             :  * Targeted preemption latency for CPU-bound tasks:
      61             :  *
      62             :  * NOTE: this latency value is not the same as the concept of
      63             :  * 'timeslice length' - timeslices in CFS are of variable length
      64             :  * and have no persistent notion like in traditional, time-slice
      65             :  * based scheduling concepts.
      66             :  *
      67             :  * (to see the precise effective timeslice length of your workload,
      68             :  *  run vmstat and monitor the context-switches (cs) field)
      69             :  *
      70             :  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
      71             :  */
      72             : unsigned int sysctl_sched_latency                       = 6000000ULL;
      73             : static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
      74             : 
      75             : /*
      76             :  * The initial- and re-scaling of tunables is configurable
      77             :  *
      78             :  * Options are:
      79             :  *
      80             :  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
      81             :  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
      82             :  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
      83             :  *
      84             :  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
      85             :  */
      86             : unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
      87             : 
      88             : /*
      89             :  * Minimal preemption granularity for CPU-bound tasks:
      90             :  *
      91             :  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
      92             :  */
      93             : unsigned int sysctl_sched_min_granularity                       = 750000ULL;
      94             : static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
      95             : 
      96             : /*
      97             :  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
      98             :  * Applies only when SCHED_IDLE tasks compete with normal tasks.
      99             :  *
     100             :  * (default: 0.75 msec)
     101             :  */
     102             : unsigned int sysctl_sched_idle_min_granularity                  = 750000ULL;
     103             : 
     104             : /*
     105             :  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
     106             :  */
     107             : static unsigned int sched_nr_latency = 8;
     108             : 
     109             : /*
     110             :  * After fork, child runs first. If set to 0 (default) then
     111             :  * parent will (try to) run first.
     112             :  */
     113             : unsigned int sysctl_sched_child_runs_first __read_mostly;
     114             : 
     115             : /*
     116             :  * SCHED_OTHER wake-up granularity.
     117             :  *
     118             :  * This option delays the preemption effects of decoupled workloads
     119             :  * and reduces their over-scheduling. Synchronous workloads will still
     120             :  * have immediate wakeup/sleep latencies.
     121             :  *
     122             :  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
     123             :  */
     124             : unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
     125             : static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
     126             : 
     127             : const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
     128             : 
     129             : int sched_thermal_decay_shift;
     130           0 : static int __init setup_sched_thermal_decay_shift(char *str)
     131             : {
     132           0 :         int _shift = 0;
     133             : 
     134           0 :         if (kstrtoint(str, 0, &_shift))
     135           0 :                 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
     136             : 
     137           0 :         sched_thermal_decay_shift = clamp(_shift, 0, 10);
     138           0 :         return 1;
     139             : }
     140             : __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
     141             : 
     142             : #ifdef CONFIG_SMP
     143             : /*
     144             :  * For asym packing, by default the lower numbered CPU has higher priority.
     145             :  */
     146             : int __weak arch_asym_cpu_priority(int cpu)
     147             : {
     148             :         return -cpu;
     149             : }
     150             : 
     151             : /*
     152             :  * The margin used when comparing utilization with CPU capacity.
     153             :  *
     154             :  * (default: ~20%)
     155             :  */
     156             : #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
     157             : 
     158             : /*
     159             :  * The margin used when comparing CPU capacities.
     160             :  * is 'cap1' noticeably greater than 'cap2'
     161             :  *
     162             :  * (default: ~5%)
     163             :  */
     164             : #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
     165             : #endif
     166             : 
     167             : #ifdef CONFIG_CFS_BANDWIDTH
     168             : /*
     169             :  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
     170             :  * each time a cfs_rq requests quota.
     171             :  *
     172             :  * Note: in the case that the slice exceeds the runtime remaining (either due
     173             :  * to consumption or the quota being specified to be smaller than the slice)
     174             :  * we will always only issue the remaining available time.
     175             :  *
     176             :  * (default: 5 msec, units: microseconds)
     177             :  */
     178             : static unsigned int sysctl_sched_cfs_bandwidth_slice            = 5000UL;
     179             : #endif
     180             : 
     181             : #ifdef CONFIG_NUMA_BALANCING
     182             : /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
     183             : static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
     184             : #endif
     185             : 
     186             : #ifdef CONFIG_SYSCTL
     187             : static struct ctl_table sched_fair_sysctls[] = {
     188             :         {
     189             :                 .procname       = "sched_child_runs_first",
     190             :                 .data           = &sysctl_sched_child_runs_first,
     191             :                 .maxlen         = sizeof(unsigned int),
     192             :                 .mode           = 0644,
     193             :                 .proc_handler   = proc_dointvec,
     194             :         },
     195             : #ifdef CONFIG_CFS_BANDWIDTH
     196             :         {
     197             :                 .procname       = "sched_cfs_bandwidth_slice_us",
     198             :                 .data           = &sysctl_sched_cfs_bandwidth_slice,
     199             :                 .maxlen         = sizeof(unsigned int),
     200             :                 .mode           = 0644,
     201             :                 .proc_handler   = proc_dointvec_minmax,
     202             :                 .extra1         = SYSCTL_ONE,
     203             :         },
     204             : #endif
     205             : #ifdef CONFIG_NUMA_BALANCING
     206             :         {
     207             :                 .procname       = "numa_balancing_promote_rate_limit_MBps",
     208             :                 .data           = &sysctl_numa_balancing_promote_rate_limit,
     209             :                 .maxlen         = sizeof(unsigned int),
     210             :                 .mode           = 0644,
     211             :                 .proc_handler   = proc_dointvec_minmax,
     212             :                 .extra1         = SYSCTL_ZERO,
     213             :         },
     214             : #endif /* CONFIG_NUMA_BALANCING */
     215             :         {}
     216             : };
     217             : 
     218           1 : static int __init sched_fair_sysctl_init(void)
     219             : {
     220           1 :         register_sysctl_init("kernel", sched_fair_sysctls);
     221           1 :         return 0;
     222             : }
     223             : late_initcall(sched_fair_sysctl_init);
     224             : #endif
     225             : 
     226             : static inline void update_load_add(struct load_weight *lw, unsigned long inc)
     227             : {
     228        1210 :         lw->weight += inc;
     229        1210 :         lw->inv_weight = 0;
     230             : }
     231             : 
     232             : static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
     233             : {
     234        1033 :         lw->weight -= dec;
     235        1033 :         lw->inv_weight = 0;
     236             : }
     237             : 
     238             : static inline void update_load_set(struct load_weight *lw, unsigned long w)
     239             : {
     240           5 :         lw->weight = w;
     241           5 :         lw->inv_weight = 0;
     242             : }
     243             : 
     244             : /*
     245             :  * Increase the granularity value when there are more CPUs,
     246             :  * because with more CPUs the 'effective latency' as visible
     247             :  * to users decreases. But the relationship is not linear,
     248             :  * so pick a second-best guess by going with the log2 of the
     249             :  * number of CPUs.
     250             :  *
     251             :  * This idea comes from the SD scheduler of Con Kolivas:
     252             :  */
     253             : static unsigned int get_update_sysctl_factor(void)
     254             : {
     255           1 :         unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
     256             :         unsigned int factor;
     257             : 
     258             :         switch (sysctl_sched_tunable_scaling) {
     259             :         case SCHED_TUNABLESCALING_NONE:
     260             :                 factor = 1;
     261             :                 break;
     262             :         case SCHED_TUNABLESCALING_LINEAR:
     263             :                 factor = cpus;
     264             :                 break;
     265             :         case SCHED_TUNABLESCALING_LOG:
     266             :         default:
     267             :                 factor = 1 + ilog2(cpus);
     268             :                 break;
     269             :         }
     270             : 
     271             :         return factor;
     272             : }
     273             : 
     274             : static void update_sysctl(void)
     275             : {
     276           1 :         unsigned int factor = get_update_sysctl_factor();
     277             : 
     278             : #define SET_SYSCTL(name) \
     279             :         (sysctl_##name = (factor) * normalized_sysctl_##name)
     280           1 :         SET_SYSCTL(sched_min_granularity);
     281           1 :         SET_SYSCTL(sched_latency);
     282           1 :         SET_SYSCTL(sched_wakeup_granularity);
     283             : #undef SET_SYSCTL
     284             : }
     285             : 
     286           1 : void __init sched_init_granularity(void)
     287             : {
     288             :         update_sysctl();
     289           1 : }
     290             : 
     291             : #define WMULT_CONST     (~0U)
     292             : #define WMULT_SHIFT     32
     293             : 
     294             : static void __update_inv_weight(struct load_weight *lw)
     295             : {
     296             :         unsigned long w;
     297             : 
     298         176 :         if (likely(lw->inv_weight))
     299             :                 return;
     300             : 
     301         176 :         w = scale_load_down(lw->weight);
     302             : 
     303         176 :         if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
     304           0 :                 lw->inv_weight = 1;
     305         176 :         else if (unlikely(!w))
     306           0 :                 lw->inv_weight = WMULT_CONST;
     307             :         else
     308         176 :                 lw->inv_weight = WMULT_CONST / w;
     309             : }
     310             : 
     311             : /*
     312             :  * delta_exec * weight / lw.weight
     313             :  *   OR
     314             :  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
     315             :  *
     316             :  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
     317             :  * we're guaranteed shift stays positive because inv_weight is guaranteed to
     318             :  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
     319             :  *
     320             :  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
     321             :  * weight/lw.weight <= 1, and therefore our shift will also be positive.
     322             :  */
     323         176 : static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
     324             : {
     325         176 :         u64 fact = scale_load_down(weight);
     326         176 :         u32 fact_hi = (u32)(fact >> 32);
     327         176 :         int shift = WMULT_SHIFT;
     328             :         int fs;
     329             : 
     330         176 :         __update_inv_weight(lw);
     331             : 
     332         176 :         if (unlikely(fact_hi)) {
     333           0 :                 fs = fls(fact_hi);
     334           0 :                 shift -= fs;
     335           0 :                 fact >>= fs;
     336             :         }
     337             : 
     338         352 :         fact = mul_u32_u32(fact, lw->inv_weight);
     339             : 
     340         176 :         fact_hi = (u32)(fact >> 32);
     341         176 :         if (fact_hi) {
     342           0 :                 fs = fls(fact_hi);
     343           0 :                 shift -= fs;
     344           0 :                 fact >>= fs;
     345             :         }
     346             : 
     347         352 :         return mul_u64_u32_shr(delta_exec, fact, shift);
     348             : }
     349             : 
     350             : 
     351             : const struct sched_class fair_sched_class;
     352             : 
     353             : /**************************************************************
     354             :  * CFS operations on generic schedulable entities:
     355             :  */
     356             : 
     357             : #ifdef CONFIG_FAIR_GROUP_SCHED
     358             : 
     359             : /* Walk up scheduling entities hierarchy */
     360             : #define for_each_sched_entity(se) \
     361             :                 for (; se; se = se->parent)
     362             : 
     363             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     364             : {
     365             :         struct rq *rq = rq_of(cfs_rq);
     366             :         int cpu = cpu_of(rq);
     367             : 
     368             :         if (cfs_rq->on_list)
     369             :                 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
     370             : 
     371             :         cfs_rq->on_list = 1;
     372             : 
     373             :         /*
     374             :          * Ensure we either appear before our parent (if already
     375             :          * enqueued) or force our parent to appear after us when it is
     376             :          * enqueued. The fact that we always enqueue bottom-up
     377             :          * reduces this to two cases and a special case for the root
     378             :          * cfs_rq. Furthermore, it also means that we will always reset
     379             :          * tmp_alone_branch either when the branch is connected
     380             :          * to a tree or when we reach the top of the tree
     381             :          */
     382             :         if (cfs_rq->tg->parent &&
     383             :             cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
     384             :                 /*
     385             :                  * If parent is already on the list, we add the child
     386             :                  * just before. Thanks to circular linked property of
     387             :                  * the list, this means to put the child at the tail
     388             :                  * of the list that starts by parent.
     389             :                  */
     390             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     391             :                         &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
     392             :                 /*
     393             :                  * The branch is now connected to its tree so we can
     394             :                  * reset tmp_alone_branch to the beginning of the
     395             :                  * list.
     396             :                  */
     397             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     398             :                 return true;
     399             :         }
     400             : 
     401             :         if (!cfs_rq->tg->parent) {
     402             :                 /*
     403             :                  * cfs rq without parent should be put
     404             :                  * at the tail of the list.
     405             :                  */
     406             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     407             :                         &rq->leaf_cfs_rq_list);
     408             :                 /*
     409             :                  * We have reach the top of a tree so we can reset
     410             :                  * tmp_alone_branch to the beginning of the list.
     411             :                  */
     412             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     413             :                 return true;
     414             :         }
     415             : 
     416             :         /*
     417             :          * The parent has not already been added so we want to
     418             :          * make sure that it will be put after us.
     419             :          * tmp_alone_branch points to the begin of the branch
     420             :          * where we will add parent.
     421             :          */
     422             :         list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
     423             :         /*
     424             :          * update tmp_alone_branch to points to the new begin
     425             :          * of the branch
     426             :          */
     427             :         rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
     428             :         return false;
     429             : }
     430             : 
     431             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     432             : {
     433             :         if (cfs_rq->on_list) {
     434             :                 struct rq *rq = rq_of(cfs_rq);
     435             : 
     436             :                 /*
     437             :                  * With cfs_rq being unthrottled/throttled during an enqueue,
     438             :                  * it can happen the tmp_alone_branch points the a leaf that
     439             :                  * we finally want to del. In this case, tmp_alone_branch moves
     440             :                  * to the prev element but it will point to rq->leaf_cfs_rq_list
     441             :                  * at the end of the enqueue.
     442             :                  */
     443             :                 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
     444             :                         rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
     445             : 
     446             :                 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
     447             :                 cfs_rq->on_list = 0;
     448             :         }
     449             : }
     450             : 
     451             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     452             : {
     453             :         SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
     454             : }
     455             : 
     456             : /* Iterate thr' all leaf cfs_rq's on a runqueue */
     457             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
     458             :         list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,     \
     459             :                                  leaf_cfs_rq_list)
     460             : 
     461             : /* Do the two (enqueued) entities belong to the same group ? */
     462             : static inline struct cfs_rq *
     463             : is_same_group(struct sched_entity *se, struct sched_entity *pse)
     464             : {
     465             :         if (se->cfs_rq == pse->cfs_rq)
     466             :                 return se->cfs_rq;
     467             : 
     468             :         return NULL;
     469             : }
     470             : 
     471             : static inline struct sched_entity *parent_entity(const struct sched_entity *se)
     472             : {
     473             :         return se->parent;
     474             : }
     475             : 
     476             : static void
     477             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     478             : {
     479             :         int se_depth, pse_depth;
     480             : 
     481             :         /*
     482             :          * preemption test can be made between sibling entities who are in the
     483             :          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
     484             :          * both tasks until we find their ancestors who are siblings of common
     485             :          * parent.
     486             :          */
     487             : 
     488             :         /* First walk up until both entities are at same depth */
     489             :         se_depth = (*se)->depth;
     490             :         pse_depth = (*pse)->depth;
     491             : 
     492             :         while (se_depth > pse_depth) {
     493             :                 se_depth--;
     494             :                 *se = parent_entity(*se);
     495             :         }
     496             : 
     497             :         while (pse_depth > se_depth) {
     498             :                 pse_depth--;
     499             :                 *pse = parent_entity(*pse);
     500             :         }
     501             : 
     502             :         while (!is_same_group(*se, *pse)) {
     503             :                 *se = parent_entity(*se);
     504             :                 *pse = parent_entity(*pse);
     505             :         }
     506             : }
     507             : 
     508             : static int tg_is_idle(struct task_group *tg)
     509             : {
     510             :         return tg->idle > 0;
     511             : }
     512             : 
     513             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     514             : {
     515             :         return cfs_rq->idle > 0;
     516             : }
     517             : 
     518             : static int se_is_idle(struct sched_entity *se)
     519             : {
     520             :         if (entity_is_task(se))
     521             :                 return task_has_idle_policy(task_of(se));
     522             :         return cfs_rq_is_idle(group_cfs_rq(se));
     523             : }
     524             : 
     525             : #else   /* !CONFIG_FAIR_GROUP_SCHED */
     526             : 
     527             : #define for_each_sched_entity(se) \
     528             :                 for (; se; se = NULL)
     529             : 
     530             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     531             : {
     532             :         return true;
     533             : }
     534             : 
     535             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     536             : {
     537             : }
     538             : 
     539             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     540             : {
     541             : }
     542             : 
     543             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
     544             :                 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
     545             : 
     546             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     547             : {
     548             :         return NULL;
     549             : }
     550             : 
     551             : static inline void
     552             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     553             : {
     554             : }
     555             : 
     556             : static inline int tg_is_idle(struct task_group *tg)
     557             : {
     558             :         return 0;
     559             : }
     560             : 
     561             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     562             : {
     563             :         return 0;
     564             : }
     565             : 
     566             : static int se_is_idle(struct sched_entity *se)
     567             : {
     568             :         return 0;
     569             : }
     570             : 
     571             : #endif  /* CONFIG_FAIR_GROUP_SCHED */
     572             : 
     573             : static __always_inline
     574             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
     575             : 
     576             : /**************************************************************
     577             :  * Scheduling class tree data structure manipulation methods:
     578             :  */
     579             : 
     580             : static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
     581             : {
     582        2061 :         s64 delta = (s64)(vruntime - max_vruntime);
     583        2061 :         if (delta > 0)
     584         864 :                 max_vruntime = vruntime;
     585             : 
     586             :         return max_vruntime;
     587             : }
     588             : 
     589             : static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
     590             : {
     591           1 :         s64 delta = (s64)(vruntime - min_vruntime);
     592           1 :         if (delta < 0)
     593           1 :                 min_vruntime = vruntime;
     594             : 
     595             :         return min_vruntime;
     596             : }
     597             : 
     598             : static inline bool entity_before(const struct sched_entity *a,
     599             :                                  const struct sched_entity *b)
     600             : {
     601         377 :         return (s64)(a->vruntime - b->vruntime) < 0;
     602             : }
     603             : 
     604             : #define __node_2_se(node) \
     605             :         rb_entry((node), struct sched_entity, run_node)
     606             : 
     607        1030 : static void update_min_vruntime(struct cfs_rq *cfs_rq)
     608             : {
     609        1030 :         struct sched_entity *curr = cfs_rq->curr;
     610        1030 :         struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
     611             : 
     612        1030 :         u64 vruntime = cfs_rq->min_vruntime;
     613             : 
     614        1030 :         if (curr) {
     615        1030 :                 if (curr->on_rq)
     616           1 :                         vruntime = curr->vruntime;
     617             :                 else
     618             :                         curr = NULL;
     619             :         }
     620             : 
     621        1030 :         if (leftmost) { /* non-empty tree */
     622        1029 :                 struct sched_entity *se = __node_2_se(leftmost);
     623             : 
     624        1029 :                 if (!curr)
     625        1028 :                         vruntime = se->vruntime;
     626             :                 else
     627           1 :                         vruntime = min_vruntime(vruntime, se->vruntime);
     628             :         }
     629             : 
     630             :         /* ensure we never gain time by being placed backwards. */
     631        2060 :         u64_u32_store(cfs_rq->min_vruntime,
     632             :                       max_vruntime(cfs_rq->min_vruntime, vruntime));
     633        1030 : }
     634             : 
     635             : static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
     636             : {
     637         377 :         return entity_before(__node_2_se(a), __node_2_se(b));
     638             : }
     639             : 
     640             : /*
     641             :  * Enqueue an entity into the rb-tree:
     642             :  */
     643        1035 : static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     644             : {
     645        2070 :         rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
     646        1035 : }
     647             : 
     648             : static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     649             : {
     650        1034 :         rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
     651             : }
     652             : 
     653           0 : struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
     654             : {
     655        1030 :         struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
     656             : 
     657        1030 :         if (!left)
     658             :                 return NULL;
     659             : 
     660        1030 :         return __node_2_se(left);
     661             : }
     662             : 
     663             : static struct sched_entity *__pick_next_entity(struct sched_entity *se)
     664             : {
     665           0 :         struct rb_node *next = rb_next(&se->run_node);
     666             : 
     667           0 :         if (!next)
     668             :                 return NULL;
     669             : 
     670           0 :         return __node_2_se(next);
     671             : }
     672             : 
     673             : #ifdef CONFIG_SCHED_DEBUG
     674             : struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
     675             : {
     676             :         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
     677             : 
     678             :         if (!last)
     679             :                 return NULL;
     680             : 
     681             :         return __node_2_se(last);
     682             : }
     683             : 
     684             : /**************************************************************
     685             :  * Scheduling class statistics methods:
     686             :  */
     687             : 
     688             : int sched_update_scaling(void)
     689             : {
     690             :         unsigned int factor = get_update_sysctl_factor();
     691             : 
     692             :         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
     693             :                                         sysctl_sched_min_granularity);
     694             : 
     695             : #define WRT_SYSCTL(name) \
     696             :         (normalized_sysctl_##name = sysctl_##name / (factor))
     697             :         WRT_SYSCTL(sched_min_granularity);
     698             :         WRT_SYSCTL(sched_latency);
     699             :         WRT_SYSCTL(sched_wakeup_granularity);
     700             : #undef WRT_SYSCTL
     701             : 
     702             :         return 0;
     703             : }
     704             : #endif
     705             : 
     706             : /*
     707             :  * delta /= w
     708             :  */
     709             : static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
     710             : {
     711         514 :         if (unlikely(se->load.weight != NICE_0_LOAD))
     712           0 :                 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
     713             : 
     714             :         return delta;
     715             : }
     716             : 
     717             : /*
     718             :  * The idea is to set a period in which each task runs once.
     719             :  *
     720             :  * When there are too many tasks (sched_nr_latency) we have to stretch
     721             :  * this period because otherwise the slices get too small.
     722             :  *
     723             :  * p = (nr <= nl) ? l : l*nr/nl
     724             :  */
     725             : static u64 __sched_period(unsigned long nr_running)
     726             : {
     727         176 :         if (unlikely(nr_running > sched_nr_latency))
     728           0 :                 return nr_running * sysctl_sched_min_granularity;
     729             :         else
     730         176 :                 return sysctl_sched_latency;
     731             : }
     732             : 
     733             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
     734             : 
     735             : /*
     736             :  * We calculate the wall-time slice from the period by taking a part
     737             :  * proportional to the weight.
     738             :  *
     739             :  * s = p*P[w/rw]
     740             :  */
     741         176 : static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     742             : {
     743         176 :         unsigned int nr_running = cfs_rq->nr_running;
     744         176 :         struct sched_entity *init_se = se;
     745             :         unsigned int min_gran;
     746             :         u64 slice;
     747             : 
     748             :         if (sched_feat(ALT_PERIOD))
     749         176 :                 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
     750             : 
     751         176 :         slice = __sched_period(nr_running + !se->on_rq);
     752             : 
     753         176 :         for_each_sched_entity(se) {
     754             :                 struct load_weight *load;
     755             :                 struct load_weight lw;
     756             :                 struct cfs_rq *qcfs_rq;
     757             : 
     758         352 :                 qcfs_rq = cfs_rq_of(se);
     759         176 :                 load = &qcfs_rq->load;
     760             : 
     761         176 :                 if (unlikely(!se->on_rq)) {
     762         175 :                         lw = qcfs_rq->load;
     763             : 
     764         350 :                         update_load_add(&lw, se->load.weight);
     765         175 :                         load = &lw;
     766             :                 }
     767         176 :                 slice = __calc_delta(slice, se->load.weight, load);
     768             :         }
     769             : 
     770             :         if (sched_feat(BASE_SLICE)) {
     771         176 :                 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
     772             :                         min_gran = sysctl_sched_idle_min_granularity;
     773             :                 else
     774         176 :                         min_gran = sysctl_sched_min_granularity;
     775             : 
     776         176 :                 slice = max_t(u64, slice, min_gran);
     777             :         }
     778             : 
     779         176 :         return slice;
     780             : }
     781             : 
     782             : /*
     783             :  * We calculate the vruntime slice of a to-be-inserted task.
     784             :  *
     785             :  * vs = s/w
     786             :  */
     787         175 : static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     788             : {
     789         350 :         return calc_delta_fair(sched_slice(cfs_rq, se), se);
     790             : }
     791             : 
     792             : #include "pelt.h"
     793             : #ifdef CONFIG_SMP
     794             : 
     795             : static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
     796             : static unsigned long task_h_load(struct task_struct *p);
     797             : static unsigned long capacity_of(int cpu);
     798             : 
     799             : /* Give new sched_entity start runnable values to heavy its load in infant time */
     800             : void init_entity_runnable_average(struct sched_entity *se)
     801             : {
     802             :         struct sched_avg *sa = &se->avg;
     803             : 
     804             :         memset(sa, 0, sizeof(*sa));
     805             : 
     806             :         /*
     807             :          * Tasks are initialized with full load to be seen as heavy tasks until
     808             :          * they get a chance to stabilize to their real load level.
     809             :          * Group entities are initialized with zero load to reflect the fact that
     810             :          * nothing has been attached to the task group yet.
     811             :          */
     812             :         if (entity_is_task(se))
     813             :                 sa->load_avg = scale_load_down(se->load.weight);
     814             : 
     815             :         /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
     816             : }
     817             : 
     818             : /*
     819             :  * With new tasks being created, their initial util_avgs are extrapolated
     820             :  * based on the cfs_rq's current util_avg:
     821             :  *
     822             :  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
     823             :  *
     824             :  * However, in many cases, the above util_avg does not give a desired
     825             :  * value. Moreover, the sum of the util_avgs may be divergent, such
     826             :  * as when the series is a harmonic series.
     827             :  *
     828             :  * To solve this problem, we also cap the util_avg of successive tasks to
     829             :  * only 1/2 of the left utilization budget:
     830             :  *
     831             :  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
     832             :  *
     833             :  * where n denotes the nth task and cpu_scale the CPU capacity.
     834             :  *
     835             :  * For example, for a CPU with 1024 of capacity, a simplest series from
     836             :  * the beginning would be like:
     837             :  *
     838             :  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
     839             :  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
     840             :  *
     841             :  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
     842             :  * if util_avg > util_avg_cap.
     843             :  */
     844             : void post_init_entity_util_avg(struct task_struct *p)
     845             : {
     846             :         struct sched_entity *se = &p->se;
     847             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
     848             :         struct sched_avg *sa = &se->avg;
     849             :         long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
     850             :         long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
     851             : 
     852             :         if (p->sched_class != &fair_sched_class) {
     853             :                 /*
     854             :                  * For !fair tasks do:
     855             :                  *
     856             :                 update_cfs_rq_load_avg(now, cfs_rq);
     857             :                 attach_entity_load_avg(cfs_rq, se);
     858             :                 switched_from_fair(rq, p);
     859             :                  *
     860             :                  * such that the next switched_to_fair() has the
     861             :                  * expected state.
     862             :                  */
     863             :                 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
     864             :                 return;
     865             :         }
     866             : 
     867             :         if (cap > 0) {
     868             :                 if (cfs_rq->avg.util_avg != 0) {
     869             :                         sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
     870             :                         sa->util_avg /= (cfs_rq->avg.load_avg + 1);
     871             : 
     872             :                         if (sa->util_avg > cap)
     873             :                                 sa->util_avg = cap;
     874             :                 } else {
     875             :                         sa->util_avg = cap;
     876             :                 }
     877             :         }
     878             : 
     879             :         sa->runnable_avg = sa->util_avg;
     880             : }
     881             : 
     882             : #else /* !CONFIG_SMP */
     883         175 : void init_entity_runnable_average(struct sched_entity *se)
     884             : {
     885         175 : }
     886         175 : void post_init_entity_util_avg(struct task_struct *p)
     887             : {
     888         175 : }
     889             : static void update_tg_load_avg(struct cfs_rq *cfs_rq)
     890             : {
     891             : }
     892             : #endif /* CONFIG_SMP */
     893             : 
     894             : /*
     895             :  * Update the current task's runtime statistics.
     896             :  */
     897        3104 : static void update_curr(struct cfs_rq *cfs_rq)
     898             : {
     899        3104 :         struct sched_entity *curr = cfs_rq->curr;
     900        6208 :         u64 now = rq_clock_task(rq_of(cfs_rq));
     901             :         u64 delta_exec;
     902             : 
     903        3104 :         if (unlikely(!curr))
     904             :                 return;
     905             : 
     906        3097 :         delta_exec = now - curr->exec_start;
     907        3097 :         if (unlikely((s64)delta_exec <= 0))
     908             :                 return;
     909             : 
     910           1 :         curr->exec_start = now;
     911             : 
     912             :         if (schedstat_enabled()) {
     913             :                 struct sched_statistics *stats;
     914             : 
     915             :                 stats = __schedstats_from_se(curr);
     916             :                 __schedstat_set(stats->exec_max,
     917             :                                 max(delta_exec, stats->exec_max));
     918             :         }
     919             : 
     920           1 :         curr->sum_exec_runtime += delta_exec;
     921             :         schedstat_add(cfs_rq->exec_clock, delta_exec);
     922             : 
     923           1 :         curr->vruntime += calc_delta_fair(delta_exec, curr);
     924           1 :         update_min_vruntime(cfs_rq);
     925             : 
     926             :         if (entity_is_task(curr)) {
     927           1 :                 struct task_struct *curtask = task_of(curr);
     928             : 
     929           1 :                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
     930           1 :                 cgroup_account_cputime(curtask, delta_exec);
     931             :                 account_group_exec_runtime(curtask, delta_exec);
     932             :         }
     933             : 
     934             :         account_cfs_rq_runtime(cfs_rq, delta_exec);
     935             : }
     936             : 
     937           0 : static void update_curr_fair(struct rq *rq)
     938             : {
     939           0 :         update_curr(cfs_rq_of(&rq->curr->se));
     940           0 : }
     941             : 
     942             : static inline void
     943             : update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     944             : {
     945             :         struct sched_statistics *stats;
     946           0 :         struct task_struct *p = NULL;
     947             : 
     948             :         if (!schedstat_enabled())
     949             :                 return;
     950             : 
     951             :         stats = __schedstats_from_se(se);
     952             : 
     953             :         if (entity_is_task(se))
     954             :                 p = task_of(se);
     955             : 
     956             :         __update_stats_wait_start(rq_of(cfs_rq), p, stats);
     957             : }
     958             : 
     959             : static inline void
     960             : update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     961             : {
     962             :         struct sched_statistics *stats;
     963        1034 :         struct task_struct *p = NULL;
     964             : 
     965             :         if (!schedstat_enabled())
     966             :                 return;
     967             : 
     968             :         stats = __schedstats_from_se(se);
     969             : 
     970             :         /*
     971             :          * When the sched_schedstat changes from 0 to 1, some sched se
     972             :          * maybe already in the runqueue, the se->statistics.wait_start
     973             :          * will be 0.So it will let the delta wrong. We need to avoid this
     974             :          * scenario.
     975             :          */
     976             :         if (unlikely(!schedstat_val(stats->wait_start)))
     977             :                 return;
     978             : 
     979             :         if (entity_is_task(se))
     980             :                 p = task_of(se);
     981             : 
     982             :         __update_stats_wait_end(rq_of(cfs_rq), p, stats);
     983             : }
     984             : 
     985             : static inline void
     986             : update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     987             : {
     988             :         struct sched_statistics *stats;
     989             :         struct task_struct *tsk = NULL;
     990             : 
     991             :         if (!schedstat_enabled())
     992             :                 return;
     993             : 
     994             :         stats = __schedstats_from_se(se);
     995             : 
     996             :         if (entity_is_task(se))
     997             :                 tsk = task_of(se);
     998             : 
     999             :         __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
    1000             : }
    1001             : 
    1002             : /*
    1003             :  * Task is being enqueued - update stats:
    1004             :  */
    1005             : static inline void
    1006             : update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1007             : {
    1008             :         if (!schedstat_enabled())
    1009             :                 return;
    1010             : 
    1011             :         /*
    1012             :          * Are we enqueueing a waiting task? (for current tasks
    1013             :          * a dequeue/enqueue event is a NOP)
    1014             :          */
    1015             :         if (se != cfs_rq->curr)
    1016             :                 update_stats_wait_start_fair(cfs_rq, se);
    1017             : 
    1018             :         if (flags & ENQUEUE_WAKEUP)
    1019             :                 update_stats_enqueue_sleeper_fair(cfs_rq, se);
    1020             : }
    1021             : 
    1022             : static inline void
    1023             : update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1024             : {
    1025             : 
    1026             :         if (!schedstat_enabled())
    1027             :                 return;
    1028             : 
    1029             :         /*
    1030             :          * Mark the end of the wait period if dequeueing a
    1031             :          * waiting task:
    1032             :          */
    1033             :         if (se != cfs_rq->curr)
    1034             :                 update_stats_wait_end_fair(cfs_rq, se);
    1035             : 
    1036             :         if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
    1037             :                 struct task_struct *tsk = task_of(se);
    1038             :                 unsigned int state;
    1039             : 
    1040             :                 /* XXX racy against TTWU */
    1041             :                 state = READ_ONCE(tsk->__state);
    1042             :                 if (state & TASK_INTERRUPTIBLE)
    1043             :                         __schedstat_set(tsk->stats.sleep_start,
    1044             :                                       rq_clock(rq_of(cfs_rq)));
    1045             :                 if (state & TASK_UNINTERRUPTIBLE)
    1046             :                         __schedstat_set(tsk->stats.block_start,
    1047             :                                       rq_clock(rq_of(cfs_rq)));
    1048             :         }
    1049             : }
    1050             : 
    1051             : /*
    1052             :  * We are picking a new current task - update its stats:
    1053             :  */
    1054             : static inline void
    1055             : update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    1056             : {
    1057             :         /*
    1058             :          * We are starting a new run period:
    1059             :          */
    1060        2068 :         se->exec_start = rq_clock_task(rq_of(cfs_rq));
    1061             : }
    1062             : 
    1063             : /**************************************************
    1064             :  * Scheduling class queueing methods:
    1065             :  */
    1066             : 
    1067             : static inline bool is_core_idle(int cpu)
    1068             : {
    1069             : #ifdef CONFIG_SCHED_SMT
    1070             :         int sibling;
    1071             : 
    1072             :         for_each_cpu(sibling, cpu_smt_mask(cpu)) {
    1073             :                 if (cpu == sibling)
    1074             :                         continue;
    1075             : 
    1076             :                 if (!idle_cpu(sibling))
    1077             :                         return false;
    1078             :         }
    1079             : #endif
    1080             : 
    1081             :         return true;
    1082             : }
    1083             : 
    1084             : #ifdef CONFIG_NUMA
    1085             : #define NUMA_IMBALANCE_MIN 2
    1086             : 
    1087             : static inline long
    1088             : adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
    1089             : {
    1090             :         /*
    1091             :          * Allow a NUMA imbalance if busy CPUs is less than the maximum
    1092             :          * threshold. Above this threshold, individual tasks may be contending
    1093             :          * for both memory bandwidth and any shared HT resources.  This is an
    1094             :          * approximation as the number of running tasks may not be related to
    1095             :          * the number of busy CPUs due to sched_setaffinity.
    1096             :          */
    1097             :         if (dst_running > imb_numa_nr)
    1098             :                 return imbalance;
    1099             : 
    1100             :         /*
    1101             :          * Allow a small imbalance based on a simple pair of communicating
    1102             :          * tasks that remain local when the destination is lightly loaded.
    1103             :          */
    1104             :         if (imbalance <= NUMA_IMBALANCE_MIN)
    1105             :                 return 0;
    1106             : 
    1107             :         return imbalance;
    1108             : }
    1109             : #endif /* CONFIG_NUMA */
    1110             : 
    1111             : #ifdef CONFIG_NUMA_BALANCING
    1112             : /*
    1113             :  * Approximate time to scan a full NUMA task in ms. The task scan period is
    1114             :  * calculated based on the tasks virtual memory size and
    1115             :  * numa_balancing_scan_size.
    1116             :  */
    1117             : unsigned int sysctl_numa_balancing_scan_period_min = 1000;
    1118             : unsigned int sysctl_numa_balancing_scan_period_max = 60000;
    1119             : 
    1120             : /* Portion of address space to scan in MB */
    1121             : unsigned int sysctl_numa_balancing_scan_size = 256;
    1122             : 
    1123             : /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
    1124             : unsigned int sysctl_numa_balancing_scan_delay = 1000;
    1125             : 
    1126             : /* The page with hint page fault latency < threshold in ms is considered hot */
    1127             : unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
    1128             : 
    1129             : struct numa_group {
    1130             :         refcount_t refcount;
    1131             : 
    1132             :         spinlock_t lock; /* nr_tasks, tasks */
    1133             :         int nr_tasks;
    1134             :         pid_t gid;
    1135             :         int active_nodes;
    1136             : 
    1137             :         struct rcu_head rcu;
    1138             :         unsigned long total_faults;
    1139             :         unsigned long max_faults_cpu;
    1140             :         /*
    1141             :          * faults[] array is split into two regions: faults_mem and faults_cpu.
    1142             :          *
    1143             :          * Faults_cpu is used to decide whether memory should move
    1144             :          * towards the CPU. As a consequence, these stats are weighted
    1145             :          * more by CPU use than by memory faults.
    1146             :          */
    1147             :         unsigned long faults[];
    1148             : };
    1149             : 
    1150             : /*
    1151             :  * For functions that can be called in multiple contexts that permit reading
    1152             :  * ->numa_group (see struct task_struct for locking rules).
    1153             :  */
    1154             : static struct numa_group *deref_task_numa_group(struct task_struct *p)
    1155             : {
    1156             :         return rcu_dereference_check(p->numa_group, p == current ||
    1157             :                 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
    1158             : }
    1159             : 
    1160             : static struct numa_group *deref_curr_numa_group(struct task_struct *p)
    1161             : {
    1162             :         return rcu_dereference_protected(p->numa_group, p == current);
    1163             : }
    1164             : 
    1165             : static inline unsigned long group_faults_priv(struct numa_group *ng);
    1166             : static inline unsigned long group_faults_shared(struct numa_group *ng);
    1167             : 
    1168             : static unsigned int task_nr_scan_windows(struct task_struct *p)
    1169             : {
    1170             :         unsigned long rss = 0;
    1171             :         unsigned long nr_scan_pages;
    1172             : 
    1173             :         /*
    1174             :          * Calculations based on RSS as non-present and empty pages are skipped
    1175             :          * by the PTE scanner and NUMA hinting faults should be trapped based
    1176             :          * on resident pages
    1177             :          */
    1178             :         nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
    1179             :         rss = get_mm_rss(p->mm);
    1180             :         if (!rss)
    1181             :                 rss = nr_scan_pages;
    1182             : 
    1183             :         rss = round_up(rss, nr_scan_pages);
    1184             :         return rss / nr_scan_pages;
    1185             : }
    1186             : 
    1187             : /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
    1188             : #define MAX_SCAN_WINDOW 2560
    1189             : 
    1190             : static unsigned int task_scan_min(struct task_struct *p)
    1191             : {
    1192             :         unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
    1193             :         unsigned int scan, floor;
    1194             :         unsigned int windows = 1;
    1195             : 
    1196             :         if (scan_size < MAX_SCAN_WINDOW)
    1197             :                 windows = MAX_SCAN_WINDOW / scan_size;
    1198             :         floor = 1000 / windows;
    1199             : 
    1200             :         scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
    1201             :         return max_t(unsigned int, floor, scan);
    1202             : }
    1203             : 
    1204             : static unsigned int task_scan_start(struct task_struct *p)
    1205             : {
    1206             :         unsigned long smin = task_scan_min(p);
    1207             :         unsigned long period = smin;
    1208             :         struct numa_group *ng;
    1209             : 
    1210             :         /* Scale the maximum scan period with the amount of shared memory. */
    1211             :         rcu_read_lock();
    1212             :         ng = rcu_dereference(p->numa_group);
    1213             :         if (ng) {
    1214             :                 unsigned long shared = group_faults_shared(ng);
    1215             :                 unsigned long private = group_faults_priv(ng);
    1216             : 
    1217             :                 period *= refcount_read(&ng->refcount);
    1218             :                 period *= shared + 1;
    1219             :                 period /= private + shared + 1;
    1220             :         }
    1221             :         rcu_read_unlock();
    1222             : 
    1223             :         return max(smin, period);
    1224             : }
    1225             : 
    1226             : static unsigned int task_scan_max(struct task_struct *p)
    1227             : {
    1228             :         unsigned long smin = task_scan_min(p);
    1229             :         unsigned long smax;
    1230             :         struct numa_group *ng;
    1231             : 
    1232             :         /* Watch for min being lower than max due to floor calculations */
    1233             :         smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
    1234             : 
    1235             :         /* Scale the maximum scan period with the amount of shared memory. */
    1236             :         ng = deref_curr_numa_group(p);
    1237             :         if (ng) {
    1238             :                 unsigned long shared = group_faults_shared(ng);
    1239             :                 unsigned long private = group_faults_priv(ng);
    1240             :                 unsigned long period = smax;
    1241             : 
    1242             :                 period *= refcount_read(&ng->refcount);
    1243             :                 period *= shared + 1;
    1244             :                 period /= private + shared + 1;
    1245             : 
    1246             :                 smax = max(smax, period);
    1247             :         }
    1248             : 
    1249             :         return max(smin, smax);
    1250             : }
    1251             : 
    1252             : static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    1253             : {
    1254             :         rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
    1255             :         rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
    1256             : }
    1257             : 
    1258             : static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    1259             : {
    1260             :         rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
    1261             :         rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
    1262             : }
    1263             : 
    1264             : /* Shared or private faults. */
    1265             : #define NR_NUMA_HINT_FAULT_TYPES 2
    1266             : 
    1267             : /* Memory and CPU locality */
    1268             : #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
    1269             : 
    1270             : /* Averaged statistics, and temporary buffers. */
    1271             : #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
    1272             : 
    1273             : pid_t task_numa_group_id(struct task_struct *p)
    1274             : {
    1275             :         struct numa_group *ng;
    1276             :         pid_t gid = 0;
    1277             : 
    1278             :         rcu_read_lock();
    1279             :         ng = rcu_dereference(p->numa_group);
    1280             :         if (ng)
    1281             :                 gid = ng->gid;
    1282             :         rcu_read_unlock();
    1283             : 
    1284             :         return gid;
    1285             : }
    1286             : 
    1287             : /*
    1288             :  * The averaged statistics, shared & private, memory & CPU,
    1289             :  * occupy the first half of the array. The second half of the
    1290             :  * array is for current counters, which are averaged into the
    1291             :  * first set by task_numa_placement.
    1292             :  */
    1293             : static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
    1294             : {
    1295             :         return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
    1296             : }
    1297             : 
    1298             : static inline unsigned long task_faults(struct task_struct *p, int nid)
    1299             : {
    1300             :         if (!p->numa_faults)
    1301             :                 return 0;
    1302             : 
    1303             :         return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1304             :                 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1305             : }
    1306             : 
    1307             : static inline unsigned long group_faults(struct task_struct *p, int nid)
    1308             : {
    1309             :         struct numa_group *ng = deref_task_numa_group(p);
    1310             : 
    1311             :         if (!ng)
    1312             :                 return 0;
    1313             : 
    1314             :         return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1315             :                 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1316             : }
    1317             : 
    1318             : static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
    1319             : {
    1320             :         return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
    1321             :                 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
    1322             : }
    1323             : 
    1324             : static inline unsigned long group_faults_priv(struct numa_group *ng)
    1325             : {
    1326             :         unsigned long faults = 0;
    1327             :         int node;
    1328             : 
    1329             :         for_each_online_node(node) {
    1330             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
    1331             :         }
    1332             : 
    1333             :         return faults;
    1334             : }
    1335             : 
    1336             : static inline unsigned long group_faults_shared(struct numa_group *ng)
    1337             : {
    1338             :         unsigned long faults = 0;
    1339             :         int node;
    1340             : 
    1341             :         for_each_online_node(node) {
    1342             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
    1343             :         }
    1344             : 
    1345             :         return faults;
    1346             : }
    1347             : 
    1348             : /*
    1349             :  * A node triggering more than 1/3 as many NUMA faults as the maximum is
    1350             :  * considered part of a numa group's pseudo-interleaving set. Migrations
    1351             :  * between these nodes are slowed down, to allow things to settle down.
    1352             :  */
    1353             : #define ACTIVE_NODE_FRACTION 3
    1354             : 
    1355             : static bool numa_is_active_node(int nid, struct numa_group *ng)
    1356             : {
    1357             :         return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
    1358             : }
    1359             : 
    1360             : /* Handle placement on systems where not all nodes are directly connected. */
    1361             : static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
    1362             :                                         int lim_dist, bool task)
    1363             : {
    1364             :         unsigned long score = 0;
    1365             :         int node, max_dist;
    1366             : 
    1367             :         /*
    1368             :          * All nodes are directly connected, and the same distance
    1369             :          * from each other. No need for fancy placement algorithms.
    1370             :          */
    1371             :         if (sched_numa_topology_type == NUMA_DIRECT)
    1372             :                 return 0;
    1373             : 
    1374             :         /* sched_max_numa_distance may be changed in parallel. */
    1375             :         max_dist = READ_ONCE(sched_max_numa_distance);
    1376             :         /*
    1377             :          * This code is called for each node, introducing N^2 complexity,
    1378             :          * which should be ok given the number of nodes rarely exceeds 8.
    1379             :          */
    1380             :         for_each_online_node(node) {
    1381             :                 unsigned long faults;
    1382             :                 int dist = node_distance(nid, node);
    1383             : 
    1384             :                 /*
    1385             :                  * The furthest away nodes in the system are not interesting
    1386             :                  * for placement; nid was already counted.
    1387             :                  */
    1388             :                 if (dist >= max_dist || node == nid)
    1389             :                         continue;
    1390             : 
    1391             :                 /*
    1392             :                  * On systems with a backplane NUMA topology, compare groups
    1393             :                  * of nodes, and move tasks towards the group with the most
    1394             :                  * memory accesses. When comparing two nodes at distance
    1395             :                  * "hoplimit", only nodes closer by than "hoplimit" are part
    1396             :                  * of each group. Skip other nodes.
    1397             :                  */
    1398             :                 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
    1399             :                         continue;
    1400             : 
    1401             :                 /* Add up the faults from nearby nodes. */
    1402             :                 if (task)
    1403             :                         faults = task_faults(p, node);
    1404             :                 else
    1405             :                         faults = group_faults(p, node);
    1406             : 
    1407             :                 /*
    1408             :                  * On systems with a glueless mesh NUMA topology, there are
    1409             :                  * no fixed "groups of nodes". Instead, nodes that are not
    1410             :                  * directly connected bounce traffic through intermediate
    1411             :                  * nodes; a numa_group can occupy any set of nodes.
    1412             :                  * The further away a node is, the less the faults count.
    1413             :                  * This seems to result in good task placement.
    1414             :                  */
    1415             :                 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    1416             :                         faults *= (max_dist - dist);
    1417             :                         faults /= (max_dist - LOCAL_DISTANCE);
    1418             :                 }
    1419             : 
    1420             :                 score += faults;
    1421             :         }
    1422             : 
    1423             :         return score;
    1424             : }
    1425             : 
    1426             : /*
    1427             :  * These return the fraction of accesses done by a particular task, or
    1428             :  * task group, on a particular numa node.  The group weight is given a
    1429             :  * larger multiplier, in order to group tasks together that are almost
    1430             :  * evenly spread out between numa nodes.
    1431             :  */
    1432             : static inline unsigned long task_weight(struct task_struct *p, int nid,
    1433             :                                         int dist)
    1434             : {
    1435             :         unsigned long faults, total_faults;
    1436             : 
    1437             :         if (!p->numa_faults)
    1438             :                 return 0;
    1439             : 
    1440             :         total_faults = p->total_numa_faults;
    1441             : 
    1442             :         if (!total_faults)
    1443             :                 return 0;
    1444             : 
    1445             :         faults = task_faults(p, nid);
    1446             :         faults += score_nearby_nodes(p, nid, dist, true);
    1447             : 
    1448             :         return 1000 * faults / total_faults;
    1449             : }
    1450             : 
    1451             : static inline unsigned long group_weight(struct task_struct *p, int nid,
    1452             :                                          int dist)
    1453             : {
    1454             :         struct numa_group *ng = deref_task_numa_group(p);
    1455             :         unsigned long faults, total_faults;
    1456             : 
    1457             :         if (!ng)
    1458             :                 return 0;
    1459             : 
    1460             :         total_faults = ng->total_faults;
    1461             : 
    1462             :         if (!total_faults)
    1463             :                 return 0;
    1464             : 
    1465             :         faults = group_faults(p, nid);
    1466             :         faults += score_nearby_nodes(p, nid, dist, false);
    1467             : 
    1468             :         return 1000 * faults / total_faults;
    1469             : }
    1470             : 
    1471             : /*
    1472             :  * If memory tiering mode is enabled, cpupid of slow memory page is
    1473             :  * used to record scan time instead of CPU and PID.  When tiering mode
    1474             :  * is disabled at run time, the scan time (in cpupid) will be
    1475             :  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
    1476             :  * access out of array bound.
    1477             :  */
    1478             : static inline bool cpupid_valid(int cpupid)
    1479             : {
    1480             :         return cpupid_to_cpu(cpupid) < nr_cpu_ids;
    1481             : }
    1482             : 
    1483             : /*
    1484             :  * For memory tiering mode, if there are enough free pages (more than
    1485             :  * enough watermark defined here) in fast memory node, to take full
    1486             :  * advantage of fast memory capacity, all recently accessed slow
    1487             :  * memory pages will be migrated to fast memory node without
    1488             :  * considering hot threshold.
    1489             :  */
    1490             : static bool pgdat_free_space_enough(struct pglist_data *pgdat)
    1491             : {
    1492             :         int z;
    1493             :         unsigned long enough_wmark;
    1494             : 
    1495             :         enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
    1496             :                            pgdat->node_present_pages >> 4);
    1497             :         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
    1498             :                 struct zone *zone = pgdat->node_zones + z;
    1499             : 
    1500             :                 if (!populated_zone(zone))
    1501             :                         continue;
    1502             : 
    1503             :                 if (zone_watermark_ok(zone, 0,
    1504             :                                       wmark_pages(zone, WMARK_PROMO) + enough_wmark,
    1505             :                                       ZONE_MOVABLE, 0))
    1506             :                         return true;
    1507             :         }
    1508             :         return false;
    1509             : }
    1510             : 
    1511             : /*
    1512             :  * For memory tiering mode, when page tables are scanned, the scan
    1513             :  * time will be recorded in struct page in addition to make page
    1514             :  * PROT_NONE for slow memory page.  So when the page is accessed, in
    1515             :  * hint page fault handler, the hint page fault latency is calculated
    1516             :  * via,
    1517             :  *
    1518             :  *      hint page fault latency = hint page fault time - scan time
    1519             :  *
    1520             :  * The smaller the hint page fault latency, the higher the possibility
    1521             :  * for the page to be hot.
    1522             :  */
    1523             : static int numa_hint_fault_latency(struct page *page)
    1524             : {
    1525             :         int last_time, time;
    1526             : 
    1527             :         time = jiffies_to_msecs(jiffies);
    1528             :         last_time = xchg_page_access_time(page, time);
    1529             : 
    1530             :         return (time - last_time) & PAGE_ACCESS_TIME_MASK;
    1531             : }
    1532             : 
    1533             : /*
    1534             :  * For memory tiering mode, too high promotion/demotion throughput may
    1535             :  * hurt application latency.  So we provide a mechanism to rate limit
    1536             :  * the number of pages that are tried to be promoted.
    1537             :  */
    1538             : static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
    1539             :                                       unsigned long rate_limit, int nr)
    1540             : {
    1541             :         unsigned long nr_cand;
    1542             :         unsigned int now, start;
    1543             : 
    1544             :         now = jiffies_to_msecs(jiffies);
    1545             :         mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
    1546             :         nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    1547             :         start = pgdat->nbp_rl_start;
    1548             :         if (now - start > MSEC_PER_SEC &&
    1549             :             cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
    1550             :                 pgdat->nbp_rl_nr_cand = nr_cand;
    1551             :         if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
    1552             :                 return true;
    1553             :         return false;
    1554             : }
    1555             : 
    1556             : #define NUMA_MIGRATION_ADJUST_STEPS     16
    1557             : 
    1558             : static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
    1559             :                                             unsigned long rate_limit,
    1560             :                                             unsigned int ref_th)
    1561             : {
    1562             :         unsigned int now, start, th_period, unit_th, th;
    1563             :         unsigned long nr_cand, ref_cand, diff_cand;
    1564             : 
    1565             :         now = jiffies_to_msecs(jiffies);
    1566             :         th_period = sysctl_numa_balancing_scan_period_max;
    1567             :         start = pgdat->nbp_th_start;
    1568             :         if (now - start > th_period &&
    1569             :             cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
    1570             :                 ref_cand = rate_limit *
    1571             :                         sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
    1572             :                 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    1573             :                 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
    1574             :                 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
    1575             :                 th = pgdat->nbp_threshold ? : ref_th;
    1576             :                 if (diff_cand > ref_cand * 11 / 10)
    1577             :                         th = max(th - unit_th, unit_th);
    1578             :                 else if (diff_cand < ref_cand * 9 / 10)
    1579             :                         th = min(th + unit_th, ref_th * 2);
    1580             :                 pgdat->nbp_th_nr_cand = nr_cand;
    1581             :                 pgdat->nbp_threshold = th;
    1582             :         }
    1583             : }
    1584             : 
    1585             : bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
    1586             :                                 int src_nid, int dst_cpu)
    1587             : {
    1588             :         struct numa_group *ng = deref_curr_numa_group(p);
    1589             :         int dst_nid = cpu_to_node(dst_cpu);
    1590             :         int last_cpupid, this_cpupid;
    1591             : 
    1592             :         /*
    1593             :          * The pages in slow memory node should be migrated according
    1594             :          * to hot/cold instead of private/shared.
    1595             :          */
    1596             :         if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
    1597             :             !node_is_toptier(src_nid)) {
    1598             :                 struct pglist_data *pgdat;
    1599             :                 unsigned long rate_limit;
    1600             :                 unsigned int latency, th, def_th;
    1601             : 
    1602             :                 pgdat = NODE_DATA(dst_nid);
    1603             :                 if (pgdat_free_space_enough(pgdat)) {
    1604             :                         /* workload changed, reset hot threshold */
    1605             :                         pgdat->nbp_threshold = 0;
    1606             :                         return true;
    1607             :                 }
    1608             : 
    1609             :                 def_th = sysctl_numa_balancing_hot_threshold;
    1610             :                 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
    1611             :                         (20 - PAGE_SHIFT);
    1612             :                 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
    1613             : 
    1614             :                 th = pgdat->nbp_threshold ? : def_th;
    1615             :                 latency = numa_hint_fault_latency(page);
    1616             :                 if (latency >= th)
    1617             :                         return false;
    1618             : 
    1619             :                 return !numa_promotion_rate_limit(pgdat, rate_limit,
    1620             :                                                   thp_nr_pages(page));
    1621             :         }
    1622             : 
    1623             :         this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
    1624             :         last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
    1625             : 
    1626             :         if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    1627             :             !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
    1628             :                 return false;
    1629             : 
    1630             :         /*
    1631             :          * Allow first faults or private faults to migrate immediately early in
    1632             :          * the lifetime of a task. The magic number 4 is based on waiting for
    1633             :          * two full passes of the "multi-stage node selection" test that is
    1634             :          * executed below.
    1635             :          */
    1636             :         if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
    1637             :             (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
    1638             :                 return true;
    1639             : 
    1640             :         /*
    1641             :          * Multi-stage node selection is used in conjunction with a periodic
    1642             :          * migration fault to build a temporal task<->page relation. By using
    1643             :          * a two-stage filter we remove short/unlikely relations.
    1644             :          *
    1645             :          * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
    1646             :          * a task's usage of a particular page (n_p) per total usage of this
    1647             :          * page (n_t) (in a given time-span) to a probability.
    1648             :          *
    1649             :          * Our periodic faults will sample this probability and getting the
    1650             :          * same result twice in a row, given these samples are fully
    1651             :          * independent, is then given by P(n)^2, provided our sample period
    1652             :          * is sufficiently short compared to the usage pattern.
    1653             :          *
    1654             :          * This quadric squishes small probabilities, making it less likely we
    1655             :          * act on an unlikely task<->page relation.
    1656             :          */
    1657             :         if (!cpupid_pid_unset(last_cpupid) &&
    1658             :                                 cpupid_to_nid(last_cpupid) != dst_nid)
    1659             :                 return false;
    1660             : 
    1661             :         /* Always allow migrate on private faults */
    1662             :         if (cpupid_match_pid(p, last_cpupid))
    1663             :                 return true;
    1664             : 
    1665             :         /* A shared fault, but p->numa_group has not been set up yet. */
    1666             :         if (!ng)
    1667             :                 return true;
    1668             : 
    1669             :         /*
    1670             :          * Destination node is much more heavily used than the source
    1671             :          * node? Allow migration.
    1672             :          */
    1673             :         if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
    1674             :                                         ACTIVE_NODE_FRACTION)
    1675             :                 return true;
    1676             : 
    1677             :         /*
    1678             :          * Distribute memory according to CPU & memory use on each node,
    1679             :          * with 3/4 hysteresis to avoid unnecessary memory migrations:
    1680             :          *
    1681             :          * faults_cpu(dst)   3   faults_cpu(src)
    1682             :          * --------------- * - > ---------------
    1683             :          * faults_mem(dst)   4   faults_mem(src)
    1684             :          */
    1685             :         return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
    1686             :                group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
    1687             : }
    1688             : 
    1689             : /*
    1690             :  * 'numa_type' describes the node at the moment of load balancing.
    1691             :  */
    1692             : enum numa_type {
    1693             :         /* The node has spare capacity that can be used to run more tasks.  */
    1694             :         node_has_spare = 0,
    1695             :         /*
    1696             :          * The node is fully used and the tasks don't compete for more CPU
    1697             :          * cycles. Nevertheless, some tasks might wait before running.
    1698             :          */
    1699             :         node_fully_busy,
    1700             :         /*
    1701             :          * The node is overloaded and can't provide expected CPU cycles to all
    1702             :          * tasks.
    1703             :          */
    1704             :         node_overloaded
    1705             : };
    1706             : 
    1707             : /* Cached statistics for all CPUs within a node */
    1708             : struct numa_stats {
    1709             :         unsigned long load;
    1710             :         unsigned long runnable;
    1711             :         unsigned long util;
    1712             :         /* Total compute capacity of CPUs on a node */
    1713             :         unsigned long compute_capacity;
    1714             :         unsigned int nr_running;
    1715             :         unsigned int weight;
    1716             :         enum numa_type node_type;
    1717             :         int idle_cpu;
    1718             : };
    1719             : 
    1720             : struct task_numa_env {
    1721             :         struct task_struct *p;
    1722             : 
    1723             :         int src_cpu, src_nid;
    1724             :         int dst_cpu, dst_nid;
    1725             :         int imb_numa_nr;
    1726             : 
    1727             :         struct numa_stats src_stats, dst_stats;
    1728             : 
    1729             :         int imbalance_pct;
    1730             :         int dist;
    1731             : 
    1732             :         struct task_struct *best_task;
    1733             :         long best_imp;
    1734             :         int best_cpu;
    1735             : };
    1736             : 
    1737             : static unsigned long cpu_load(struct rq *rq);
    1738             : static unsigned long cpu_runnable(struct rq *rq);
    1739             : 
    1740             : static inline enum
    1741             : numa_type numa_classify(unsigned int imbalance_pct,
    1742             :                          struct numa_stats *ns)
    1743             : {
    1744             :         if ((ns->nr_running > ns->weight) &&
    1745             :             (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
    1746             :              ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
    1747             :                 return node_overloaded;
    1748             : 
    1749             :         if ((ns->nr_running < ns->weight) ||
    1750             :             (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
    1751             :              ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
    1752             :                 return node_has_spare;
    1753             : 
    1754             :         return node_fully_busy;
    1755             : }
    1756             : 
    1757             : #ifdef CONFIG_SCHED_SMT
    1758             : /* Forward declarations of select_idle_sibling helpers */
    1759             : static inline bool test_idle_cores(int cpu);
    1760             : static inline int numa_idle_core(int idle_core, int cpu)
    1761             : {
    1762             :         if (!static_branch_likely(&sched_smt_present) ||
    1763             :             idle_core >= 0 || !test_idle_cores(cpu))
    1764             :                 return idle_core;
    1765             : 
    1766             :         /*
    1767             :          * Prefer cores instead of packing HT siblings
    1768             :          * and triggering future load balancing.
    1769             :          */
    1770             :         if (is_core_idle(cpu))
    1771             :                 idle_core = cpu;
    1772             : 
    1773             :         return idle_core;
    1774             : }
    1775             : #else
    1776             : static inline int numa_idle_core(int idle_core, int cpu)
    1777             : {
    1778             :         return idle_core;
    1779             : }
    1780             : #endif
    1781             : 
    1782             : /*
    1783             :  * Gather all necessary information to make NUMA balancing placement
    1784             :  * decisions that are compatible with standard load balancer. This
    1785             :  * borrows code and logic from update_sg_lb_stats but sharing a
    1786             :  * common implementation is impractical.
    1787             :  */
    1788             : static void update_numa_stats(struct task_numa_env *env,
    1789             :                               struct numa_stats *ns, int nid,
    1790             :                               bool find_idle)
    1791             : {
    1792             :         int cpu, idle_core = -1;
    1793             : 
    1794             :         memset(ns, 0, sizeof(*ns));
    1795             :         ns->idle_cpu = -1;
    1796             : 
    1797             :         rcu_read_lock();
    1798             :         for_each_cpu(cpu, cpumask_of_node(nid)) {
    1799             :                 struct rq *rq = cpu_rq(cpu);
    1800             : 
    1801             :                 ns->load += cpu_load(rq);
    1802             :                 ns->runnable += cpu_runnable(rq);
    1803             :                 ns->util += cpu_util_cfs(cpu);
    1804             :                 ns->nr_running += rq->cfs.h_nr_running;
    1805             :                 ns->compute_capacity += capacity_of(cpu);
    1806             : 
    1807             :                 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
    1808             :                         if (READ_ONCE(rq->numa_migrate_on) ||
    1809             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1810             :                                 continue;
    1811             : 
    1812             :                         if (ns->idle_cpu == -1)
    1813             :                                 ns->idle_cpu = cpu;
    1814             : 
    1815             :                         idle_core = numa_idle_core(idle_core, cpu);
    1816             :                 }
    1817             :         }
    1818             :         rcu_read_unlock();
    1819             : 
    1820             :         ns->weight = cpumask_weight(cpumask_of_node(nid));
    1821             : 
    1822             :         ns->node_type = numa_classify(env->imbalance_pct, ns);
    1823             : 
    1824             :         if (idle_core >= 0)
    1825             :                 ns->idle_cpu = idle_core;
    1826             : }
    1827             : 
    1828             : static void task_numa_assign(struct task_numa_env *env,
    1829             :                              struct task_struct *p, long imp)
    1830             : {
    1831             :         struct rq *rq = cpu_rq(env->dst_cpu);
    1832             : 
    1833             :         /* Check if run-queue part of active NUMA balance. */
    1834             :         if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
    1835             :                 int cpu;
    1836             :                 int start = env->dst_cpu;
    1837             : 
    1838             :                 /* Find alternative idle CPU. */
    1839             :                 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
    1840             :                         if (cpu == env->best_cpu || !idle_cpu(cpu) ||
    1841             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
    1842             :                                 continue;
    1843             :                         }
    1844             : 
    1845             :                         env->dst_cpu = cpu;
    1846             :                         rq = cpu_rq(env->dst_cpu);
    1847             :                         if (!xchg(&rq->numa_migrate_on, 1))
    1848             :                                 goto assign;
    1849             :                 }
    1850             : 
    1851             :                 /* Failed to find an alternative idle CPU */
    1852             :                 return;
    1853             :         }
    1854             : 
    1855             : assign:
    1856             :         /*
    1857             :          * Clear previous best_cpu/rq numa-migrate flag, since task now
    1858             :          * found a better CPU to move/swap.
    1859             :          */
    1860             :         if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
    1861             :                 rq = cpu_rq(env->best_cpu);
    1862             :                 WRITE_ONCE(rq->numa_migrate_on, 0);
    1863             :         }
    1864             : 
    1865             :         if (env->best_task)
    1866             :                 put_task_struct(env->best_task);
    1867             :         if (p)
    1868             :                 get_task_struct(p);
    1869             : 
    1870             :         env->best_task = p;
    1871             :         env->best_imp = imp;
    1872             :         env->best_cpu = env->dst_cpu;
    1873             : }
    1874             : 
    1875             : static bool load_too_imbalanced(long src_load, long dst_load,
    1876             :                                 struct task_numa_env *env)
    1877             : {
    1878             :         long imb, old_imb;
    1879             :         long orig_src_load, orig_dst_load;
    1880             :         long src_capacity, dst_capacity;
    1881             : 
    1882             :         /*
    1883             :          * The load is corrected for the CPU capacity available on each node.
    1884             :          *
    1885             :          * src_load        dst_load
    1886             :          * ------------ vs ---------
    1887             :          * src_capacity    dst_capacity
    1888             :          */
    1889             :         src_capacity = env->src_stats.compute_capacity;
    1890             :         dst_capacity = env->dst_stats.compute_capacity;
    1891             : 
    1892             :         imb = abs(dst_load * src_capacity - src_load * dst_capacity);
    1893             : 
    1894             :         orig_src_load = env->src_stats.load;
    1895             :         orig_dst_load = env->dst_stats.load;
    1896             : 
    1897             :         old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
    1898             : 
    1899             :         /* Would this change make things worse? */
    1900             :         return (imb > old_imb);
    1901             : }
    1902             : 
    1903             : /*
    1904             :  * Maximum NUMA importance can be 1998 (2*999);
    1905             :  * SMALLIMP @ 30 would be close to 1998/64.
    1906             :  * Used to deter task migration.
    1907             :  */
    1908             : #define SMALLIMP        30
    1909             : 
    1910             : /*
    1911             :  * This checks if the overall compute and NUMA accesses of the system would
    1912             :  * be improved if the source tasks was migrated to the target dst_cpu taking
    1913             :  * into account that it might be best if task running on the dst_cpu should
    1914             :  * be exchanged with the source task
    1915             :  */
    1916             : static bool task_numa_compare(struct task_numa_env *env,
    1917             :                               long taskimp, long groupimp, bool maymove)
    1918             : {
    1919             :         struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
    1920             :         struct rq *dst_rq = cpu_rq(env->dst_cpu);
    1921             :         long imp = p_ng ? groupimp : taskimp;
    1922             :         struct task_struct *cur;
    1923             :         long src_load, dst_load;
    1924             :         int dist = env->dist;
    1925             :         long moveimp = imp;
    1926             :         long load;
    1927             :         bool stopsearch = false;
    1928             : 
    1929             :         if (READ_ONCE(dst_rq->numa_migrate_on))
    1930             :                 return false;
    1931             : 
    1932             :         rcu_read_lock();
    1933             :         cur = rcu_dereference(dst_rq->curr);
    1934             :         if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
    1935             :                 cur = NULL;
    1936             : 
    1937             :         /*
    1938             :          * Because we have preemption enabled we can get migrated around and
    1939             :          * end try selecting ourselves (current == env->p) as a swap candidate.
    1940             :          */
    1941             :         if (cur == env->p) {
    1942             :                 stopsearch = true;
    1943             :                 goto unlock;
    1944             :         }
    1945             : 
    1946             :         if (!cur) {
    1947             :                 if (maymove && moveimp >= env->best_imp)
    1948             :                         goto assign;
    1949             :                 else
    1950             :                         goto unlock;
    1951             :         }
    1952             : 
    1953             :         /* Skip this swap candidate if cannot move to the source cpu. */
    1954             :         if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
    1955             :                 goto unlock;
    1956             : 
    1957             :         /*
    1958             :          * Skip this swap candidate if it is not moving to its preferred
    1959             :          * node and the best task is.
    1960             :          */
    1961             :         if (env->best_task &&
    1962             :             env->best_task->numa_preferred_nid == env->src_nid &&
    1963             :             cur->numa_preferred_nid != env->src_nid) {
    1964             :                 goto unlock;
    1965             :         }
    1966             : 
    1967             :         /*
    1968             :          * "imp" is the fault differential for the source task between the
    1969             :          * source and destination node. Calculate the total differential for
    1970             :          * the source task and potential destination task. The more negative
    1971             :          * the value is, the more remote accesses that would be expected to
    1972             :          * be incurred if the tasks were swapped.
    1973             :          *
    1974             :          * If dst and source tasks are in the same NUMA group, or not
    1975             :          * in any group then look only at task weights.
    1976             :          */
    1977             :         cur_ng = rcu_dereference(cur->numa_group);
    1978             :         if (cur_ng == p_ng) {
    1979             :                 /*
    1980             :                  * Do not swap within a group or between tasks that have
    1981             :                  * no group if there is spare capacity. Swapping does
    1982             :                  * not address the load imbalance and helps one task at
    1983             :                  * the cost of punishing another.
    1984             :                  */
    1985             :                 if (env->dst_stats.node_type == node_has_spare)
    1986             :                         goto unlock;
    1987             : 
    1988             :                 imp = taskimp + task_weight(cur, env->src_nid, dist) -
    1989             :                       task_weight(cur, env->dst_nid, dist);
    1990             :                 /*
    1991             :                  * Add some hysteresis to prevent swapping the
    1992             :                  * tasks within a group over tiny differences.
    1993             :                  */
    1994             :                 if (cur_ng)
    1995             :                         imp -= imp / 16;
    1996             :         } else {
    1997             :                 /*
    1998             :                  * Compare the group weights. If a task is all by itself
    1999             :                  * (not part of a group), use the task weight instead.
    2000             :                  */
    2001             :                 if (cur_ng && p_ng)
    2002             :                         imp += group_weight(cur, env->src_nid, dist) -
    2003             :                                group_weight(cur, env->dst_nid, dist);
    2004             :                 else
    2005             :                         imp += task_weight(cur, env->src_nid, dist) -
    2006             :                                task_weight(cur, env->dst_nid, dist);
    2007             :         }
    2008             : 
    2009             :         /* Discourage picking a task already on its preferred node */
    2010             :         if (cur->numa_preferred_nid == env->dst_nid)
    2011             :                 imp -= imp / 16;
    2012             : 
    2013             :         /*
    2014             :          * Encourage picking a task that moves to its preferred node.
    2015             :          * This potentially makes imp larger than it's maximum of
    2016             :          * 1998 (see SMALLIMP and task_weight for why) but in this
    2017             :          * case, it does not matter.
    2018             :          */
    2019             :         if (cur->numa_preferred_nid == env->src_nid)
    2020             :                 imp += imp / 8;
    2021             : 
    2022             :         if (maymove && moveimp > imp && moveimp > env->best_imp) {
    2023             :                 imp = moveimp;
    2024             :                 cur = NULL;
    2025             :                 goto assign;
    2026             :         }
    2027             : 
    2028             :         /*
    2029             :          * Prefer swapping with a task moving to its preferred node over a
    2030             :          * task that is not.
    2031             :          */
    2032             :         if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
    2033             :             env->best_task->numa_preferred_nid != env->src_nid) {
    2034             :                 goto assign;
    2035             :         }
    2036             : 
    2037             :         /*
    2038             :          * If the NUMA importance is less than SMALLIMP,
    2039             :          * task migration might only result in ping pong
    2040             :          * of tasks and also hurt performance due to cache
    2041             :          * misses.
    2042             :          */
    2043             :         if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
    2044             :                 goto unlock;
    2045             : 
    2046             :         /*
    2047             :          * In the overloaded case, try and keep the load balanced.
    2048             :          */
    2049             :         load = task_h_load(env->p) - task_h_load(cur);
    2050             :         if (!load)
    2051             :                 goto assign;
    2052             : 
    2053             :         dst_load = env->dst_stats.load + load;
    2054             :         src_load = env->src_stats.load - load;
    2055             : 
    2056             :         if (load_too_imbalanced(src_load, dst_load, env))
    2057             :                 goto unlock;
    2058             : 
    2059             : assign:
    2060             :         /* Evaluate an idle CPU for a task numa move. */
    2061             :         if (!cur) {
    2062             :                 int cpu = env->dst_stats.idle_cpu;
    2063             : 
    2064             :                 /* Nothing cached so current CPU went idle since the search. */
    2065             :                 if (cpu < 0)
    2066             :                         cpu = env->dst_cpu;
    2067             : 
    2068             :                 /*
    2069             :                  * If the CPU is no longer truly idle and the previous best CPU
    2070             :                  * is, keep using it.
    2071             :                  */
    2072             :                 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
    2073             :                     idle_cpu(env->best_cpu)) {
    2074             :                         cpu = env->best_cpu;
    2075             :                 }
    2076             : 
    2077             :                 env->dst_cpu = cpu;
    2078             :         }
    2079             : 
    2080             :         task_numa_assign(env, cur, imp);
    2081             : 
    2082             :         /*
    2083             :          * If a move to idle is allowed because there is capacity or load
    2084             :          * balance improves then stop the search. While a better swap
    2085             :          * candidate may exist, a search is not free.
    2086             :          */
    2087             :         if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
    2088             :                 stopsearch = true;
    2089             : 
    2090             :         /*
    2091             :          * If a swap candidate must be identified and the current best task
    2092             :          * moves its preferred node then stop the search.
    2093             :          */
    2094             :         if (!maymove && env->best_task &&
    2095             :             env->best_task->numa_preferred_nid == env->src_nid) {
    2096             :                 stopsearch = true;
    2097             :         }
    2098             : unlock:
    2099             :         rcu_read_unlock();
    2100             : 
    2101             :         return stopsearch;
    2102             : }
    2103             : 
    2104             : static void task_numa_find_cpu(struct task_numa_env *env,
    2105             :                                 long taskimp, long groupimp)
    2106             : {
    2107             :         bool maymove = false;
    2108             :         int cpu;
    2109             : 
    2110             :         /*
    2111             :          * If dst node has spare capacity, then check if there is an
    2112             :          * imbalance that would be overruled by the load balancer.
    2113             :          */
    2114             :         if (env->dst_stats.node_type == node_has_spare) {
    2115             :                 unsigned int imbalance;
    2116             :                 int src_running, dst_running;
    2117             : 
    2118             :                 /*
    2119             :                  * Would movement cause an imbalance? Note that if src has
    2120             :                  * more running tasks that the imbalance is ignored as the
    2121             :                  * move improves the imbalance from the perspective of the
    2122             :                  * CPU load balancer.
    2123             :                  * */
    2124             :                 src_running = env->src_stats.nr_running - 1;
    2125             :                 dst_running = env->dst_stats.nr_running + 1;
    2126             :                 imbalance = max(0, dst_running - src_running);
    2127             :                 imbalance = adjust_numa_imbalance(imbalance, dst_running,
    2128             :                                                   env->imb_numa_nr);
    2129             : 
    2130             :                 /* Use idle CPU if there is no imbalance */
    2131             :                 if (!imbalance) {
    2132             :                         maymove = true;
    2133             :                         if (env->dst_stats.idle_cpu >= 0) {
    2134             :                                 env->dst_cpu = env->dst_stats.idle_cpu;
    2135             :                                 task_numa_assign(env, NULL, 0);
    2136             :                                 return;
    2137             :                         }
    2138             :                 }
    2139             :         } else {
    2140             :                 long src_load, dst_load, load;
    2141             :                 /*
    2142             :                  * If the improvement from just moving env->p direction is better
    2143             :                  * than swapping tasks around, check if a move is possible.
    2144             :                  */
    2145             :                 load = task_h_load(env->p);
    2146             :                 dst_load = env->dst_stats.load + load;
    2147             :                 src_load = env->src_stats.load - load;
    2148             :                 maymove = !load_too_imbalanced(src_load, dst_load, env);
    2149             :         }
    2150             : 
    2151             :         for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
    2152             :                 /* Skip this CPU if the source task cannot migrate */
    2153             :                 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
    2154             :                         continue;
    2155             : 
    2156             :                 env->dst_cpu = cpu;
    2157             :                 if (task_numa_compare(env, taskimp, groupimp, maymove))
    2158             :                         break;
    2159             :         }
    2160             : }
    2161             : 
    2162             : static int task_numa_migrate(struct task_struct *p)
    2163             : {
    2164             :         struct task_numa_env env = {
    2165             :                 .p = p,
    2166             : 
    2167             :                 .src_cpu = task_cpu(p),
    2168             :                 .src_nid = task_node(p),
    2169             : 
    2170             :                 .imbalance_pct = 112,
    2171             : 
    2172             :                 .best_task = NULL,
    2173             :                 .best_imp = 0,
    2174             :                 .best_cpu = -1,
    2175             :         };
    2176             :         unsigned long taskweight, groupweight;
    2177             :         struct sched_domain *sd;
    2178             :         long taskimp, groupimp;
    2179             :         struct numa_group *ng;
    2180             :         struct rq *best_rq;
    2181             :         int nid, ret, dist;
    2182             : 
    2183             :         /*
    2184             :          * Pick the lowest SD_NUMA domain, as that would have the smallest
    2185             :          * imbalance and would be the first to start moving tasks about.
    2186             :          *
    2187             :          * And we want to avoid any moving of tasks about, as that would create
    2188             :          * random movement of tasks -- counter the numa conditions we're trying
    2189             :          * to satisfy here.
    2190             :          */
    2191             :         rcu_read_lock();
    2192             :         sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
    2193             :         if (sd) {
    2194             :                 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
    2195             :                 env.imb_numa_nr = sd->imb_numa_nr;
    2196             :         }
    2197             :         rcu_read_unlock();
    2198             : 
    2199             :         /*
    2200             :          * Cpusets can break the scheduler domain tree into smaller
    2201             :          * balance domains, some of which do not cross NUMA boundaries.
    2202             :          * Tasks that are "trapped" in such domains cannot be migrated
    2203             :          * elsewhere, so there is no point in (re)trying.
    2204             :          */
    2205             :         if (unlikely(!sd)) {
    2206             :                 sched_setnuma(p, task_node(p));
    2207             :                 return -EINVAL;
    2208             :         }
    2209             : 
    2210             :         env.dst_nid = p->numa_preferred_nid;
    2211             :         dist = env.dist = node_distance(env.src_nid, env.dst_nid);
    2212             :         taskweight = task_weight(p, env.src_nid, dist);
    2213             :         groupweight = group_weight(p, env.src_nid, dist);
    2214             :         update_numa_stats(&env, &env.src_stats, env.src_nid, false);
    2215             :         taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
    2216             :         groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
    2217             :         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2218             : 
    2219             :         /* Try to find a spot on the preferred nid. */
    2220             :         task_numa_find_cpu(&env, taskimp, groupimp);
    2221             : 
    2222             :         /*
    2223             :          * Look at other nodes in these cases:
    2224             :          * - there is no space available on the preferred_nid
    2225             :          * - the task is part of a numa_group that is interleaved across
    2226             :          *   multiple NUMA nodes; in order to better consolidate the group,
    2227             :          *   we need to check other locations.
    2228             :          */
    2229             :         ng = deref_curr_numa_group(p);
    2230             :         if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
    2231             :                 for_each_node_state(nid, N_CPU) {
    2232             :                         if (nid == env.src_nid || nid == p->numa_preferred_nid)
    2233             :                                 continue;
    2234             : 
    2235             :                         dist = node_distance(env.src_nid, env.dst_nid);
    2236             :                         if (sched_numa_topology_type == NUMA_BACKPLANE &&
    2237             :                                                 dist != env.dist) {
    2238             :                                 taskweight = task_weight(p, env.src_nid, dist);
    2239             :                                 groupweight = group_weight(p, env.src_nid, dist);
    2240             :                         }
    2241             : 
    2242             :                         /* Only consider nodes where both task and groups benefit */
    2243             :                         taskimp = task_weight(p, nid, dist) - taskweight;
    2244             :                         groupimp = group_weight(p, nid, dist) - groupweight;
    2245             :                         if (taskimp < 0 && groupimp < 0)
    2246             :                                 continue;
    2247             : 
    2248             :                         env.dist = dist;
    2249             :                         env.dst_nid = nid;
    2250             :                         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2251             :                         task_numa_find_cpu(&env, taskimp, groupimp);
    2252             :                 }
    2253             :         }
    2254             : 
    2255             :         /*
    2256             :          * If the task is part of a workload that spans multiple NUMA nodes,
    2257             :          * and is migrating into one of the workload's active nodes, remember
    2258             :          * this node as the task's preferred numa node, so the workload can
    2259             :          * settle down.
    2260             :          * A task that migrated to a second choice node will be better off
    2261             :          * trying for a better one later. Do not set the preferred node here.
    2262             :          */
    2263             :         if (ng) {
    2264             :                 if (env.best_cpu == -1)
    2265             :                         nid = env.src_nid;
    2266             :                 else
    2267             :                         nid = cpu_to_node(env.best_cpu);
    2268             : 
    2269             :                 if (nid != p->numa_preferred_nid)
    2270             :                         sched_setnuma(p, nid);
    2271             :         }
    2272             : 
    2273             :         /* No better CPU than the current one was found. */
    2274             :         if (env.best_cpu == -1) {
    2275             :                 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
    2276             :                 return -EAGAIN;
    2277             :         }
    2278             : 
    2279             :         best_rq = cpu_rq(env.best_cpu);
    2280             :         if (env.best_task == NULL) {
    2281             :                 ret = migrate_task_to(p, env.best_cpu);
    2282             :                 WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2283             :                 if (ret != 0)
    2284             :                         trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
    2285             :                 return ret;
    2286             :         }
    2287             : 
    2288             :         ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
    2289             :         WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2290             : 
    2291             :         if (ret != 0)
    2292             :                 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
    2293             :         put_task_struct(env.best_task);
    2294             :         return ret;
    2295             : }
    2296             : 
    2297             : /* Attempt to migrate a task to a CPU on the preferred node. */
    2298             : static void numa_migrate_preferred(struct task_struct *p)
    2299             : {
    2300             :         unsigned long interval = HZ;
    2301             : 
    2302             :         /* This task has no NUMA fault statistics yet */
    2303             :         if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
    2304             :                 return;
    2305             : 
    2306             :         /* Periodically retry migrating the task to the preferred node */
    2307             :         interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
    2308             :         p->numa_migrate_retry = jiffies + interval;
    2309             : 
    2310             :         /* Success if task is already running on preferred CPU */
    2311             :         if (task_node(p) == p->numa_preferred_nid)
    2312             :                 return;
    2313             : 
    2314             :         /* Otherwise, try migrate to a CPU on the preferred node */
    2315             :         task_numa_migrate(p);
    2316             : }
    2317             : 
    2318             : /*
    2319             :  * Find out how many nodes the workload is actively running on. Do this by
    2320             :  * tracking the nodes from which NUMA hinting faults are triggered. This can
    2321             :  * be different from the set of nodes where the workload's memory is currently
    2322             :  * located.
    2323             :  */
    2324             : static void numa_group_count_active_nodes(struct numa_group *numa_group)
    2325             : {
    2326             :         unsigned long faults, max_faults = 0;
    2327             :         int nid, active_nodes = 0;
    2328             : 
    2329             :         for_each_node_state(nid, N_CPU) {
    2330             :                 faults = group_faults_cpu(numa_group, nid);
    2331             :                 if (faults > max_faults)
    2332             :                         max_faults = faults;
    2333             :         }
    2334             : 
    2335             :         for_each_node_state(nid, N_CPU) {
    2336             :                 faults = group_faults_cpu(numa_group, nid);
    2337             :                 if (faults * ACTIVE_NODE_FRACTION > max_faults)
    2338             :                         active_nodes++;
    2339             :         }
    2340             : 
    2341             :         numa_group->max_faults_cpu = max_faults;
    2342             :         numa_group->active_nodes = active_nodes;
    2343             : }
    2344             : 
    2345             : /*
    2346             :  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
    2347             :  * increments. The more local the fault statistics are, the higher the scan
    2348             :  * period will be for the next scan window. If local/(local+remote) ratio is
    2349             :  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
    2350             :  * the scan period will decrease. Aim for 70% local accesses.
    2351             :  */
    2352             : #define NUMA_PERIOD_SLOTS 10
    2353             : #define NUMA_PERIOD_THRESHOLD 7
    2354             : 
    2355             : /*
    2356             :  * Increase the scan period (slow down scanning) if the majority of
    2357             :  * our memory is already on our local node, or if the majority of
    2358             :  * the page accesses are shared with other processes.
    2359             :  * Otherwise, decrease the scan period.
    2360             :  */
    2361             : static void update_task_scan_period(struct task_struct *p,
    2362             :                         unsigned long shared, unsigned long private)
    2363             : {
    2364             :         unsigned int period_slot;
    2365             :         int lr_ratio, ps_ratio;
    2366             :         int diff;
    2367             : 
    2368             :         unsigned long remote = p->numa_faults_locality[0];
    2369             :         unsigned long local = p->numa_faults_locality[1];
    2370             : 
    2371             :         /*
    2372             :          * If there were no record hinting faults then either the task is
    2373             :          * completely idle or all activity is in areas that are not of interest
    2374             :          * to automatic numa balancing. Related to that, if there were failed
    2375             :          * migration then it implies we are migrating too quickly or the local
    2376             :          * node is overloaded. In either case, scan slower
    2377             :          */
    2378             :         if (local + shared == 0 || p->numa_faults_locality[2]) {
    2379             :                 p->numa_scan_period = min(p->numa_scan_period_max,
    2380             :                         p->numa_scan_period << 1);
    2381             : 
    2382             :                 p->mm->numa_next_scan = jiffies +
    2383             :                         msecs_to_jiffies(p->numa_scan_period);
    2384             : 
    2385             :                 return;
    2386             :         }
    2387             : 
    2388             :         /*
    2389             :          * Prepare to scale scan period relative to the current period.
    2390             :          *       == NUMA_PERIOD_THRESHOLD scan period stays the same
    2391             :          *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
    2392             :          *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
    2393             :          */
    2394             :         period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
    2395             :         lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
    2396             :         ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
    2397             : 
    2398             :         if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
    2399             :                 /*
    2400             :                  * Most memory accesses are local. There is no need to
    2401             :                  * do fast NUMA scanning, since memory is already local.
    2402             :                  */
    2403             :                 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
    2404             :                 if (!slot)
    2405             :                         slot = 1;
    2406             :                 diff = slot * period_slot;
    2407             :         } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
    2408             :                 /*
    2409             :                  * Most memory accesses are shared with other tasks.
    2410             :                  * There is no point in continuing fast NUMA scanning,
    2411             :                  * since other tasks may just move the memory elsewhere.
    2412             :                  */
    2413             :                 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
    2414             :                 if (!slot)
    2415             :                         slot = 1;
    2416             :                 diff = slot * period_slot;
    2417             :         } else {
    2418             :                 /*
    2419             :                  * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
    2420             :                  * yet they are not on the local NUMA node. Speed up
    2421             :                  * NUMA scanning to get the memory moved over.
    2422             :                  */
    2423             :                 int ratio = max(lr_ratio, ps_ratio);
    2424             :                 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
    2425             :         }
    2426             : 
    2427             :         p->numa_scan_period = clamp(p->numa_scan_period + diff,
    2428             :                         task_scan_min(p), task_scan_max(p));
    2429             :         memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2430             : }
    2431             : 
    2432             : /*
    2433             :  * Get the fraction of time the task has been running since the last
    2434             :  * NUMA placement cycle. The scheduler keeps similar statistics, but
    2435             :  * decays those on a 32ms period, which is orders of magnitude off
    2436             :  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
    2437             :  * stats only if the task is so new there are no NUMA statistics yet.
    2438             :  */
    2439             : static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
    2440             : {
    2441             :         u64 runtime, delta, now;
    2442             :         /* Use the start of this time slice to avoid calculations. */
    2443             :         now = p->se.exec_start;
    2444             :         runtime = p->se.sum_exec_runtime;
    2445             : 
    2446             :         if (p->last_task_numa_placement) {
    2447             :                 delta = runtime - p->last_sum_exec_runtime;
    2448             :                 *period = now - p->last_task_numa_placement;
    2449             : 
    2450             :                 /* Avoid time going backwards, prevent potential divide error: */
    2451             :                 if (unlikely((s64)*period < 0))
    2452             :                         *period = 0;
    2453             :         } else {
    2454             :                 delta = p->se.avg.load_sum;
    2455             :                 *period = LOAD_AVG_MAX;
    2456             :         }
    2457             : 
    2458             :         p->last_sum_exec_runtime = runtime;
    2459             :         p->last_task_numa_placement = now;
    2460             : 
    2461             :         return delta;
    2462             : }
    2463             : 
    2464             : /*
    2465             :  * Determine the preferred nid for a task in a numa_group. This needs to
    2466             :  * be done in a way that produces consistent results with group_weight,
    2467             :  * otherwise workloads might not converge.
    2468             :  */
    2469             : static int preferred_group_nid(struct task_struct *p, int nid)
    2470             : {
    2471             :         nodemask_t nodes;
    2472             :         int dist;
    2473             : 
    2474             :         /* Direct connections between all NUMA nodes. */
    2475             :         if (sched_numa_topology_type == NUMA_DIRECT)
    2476             :                 return nid;
    2477             : 
    2478             :         /*
    2479             :          * On a system with glueless mesh NUMA topology, group_weight
    2480             :          * scores nodes according to the number of NUMA hinting faults on
    2481             :          * both the node itself, and on nearby nodes.
    2482             :          */
    2483             :         if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    2484             :                 unsigned long score, max_score = 0;
    2485             :                 int node, max_node = nid;
    2486             : 
    2487             :                 dist = sched_max_numa_distance;
    2488             : 
    2489             :                 for_each_node_state(node, N_CPU) {
    2490             :                         score = group_weight(p, node, dist);
    2491             :                         if (score > max_score) {
    2492             :                                 max_score = score;
    2493             :                                 max_node = node;
    2494             :                         }
    2495             :                 }
    2496             :                 return max_node;
    2497             :         }
    2498             : 
    2499             :         /*
    2500             :          * Finding the preferred nid in a system with NUMA backplane
    2501             :          * interconnect topology is more involved. The goal is to locate
    2502             :          * tasks from numa_groups near each other in the system, and
    2503             :          * untangle workloads from different sides of the system. This requires
    2504             :          * searching down the hierarchy of node groups, recursively searching
    2505             :          * inside the highest scoring group of nodes. The nodemask tricks
    2506             :          * keep the complexity of the search down.
    2507             :          */
    2508             :         nodes = node_states[N_CPU];
    2509             :         for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
    2510             :                 unsigned long max_faults = 0;
    2511             :                 nodemask_t max_group = NODE_MASK_NONE;
    2512             :                 int a, b;
    2513             : 
    2514             :                 /* Are there nodes at this distance from each other? */
    2515             :                 if (!find_numa_distance(dist))
    2516             :                         continue;
    2517             : 
    2518             :                 for_each_node_mask(a, nodes) {
    2519             :                         unsigned long faults = 0;
    2520             :                         nodemask_t this_group;
    2521             :                         nodes_clear(this_group);
    2522             : 
    2523             :                         /* Sum group's NUMA faults; includes a==b case. */
    2524             :                         for_each_node_mask(b, nodes) {
    2525             :                                 if (node_distance(a, b) < dist) {
    2526             :                                         faults += group_faults(p, b);
    2527             :                                         node_set(b, this_group);
    2528             :                                         node_clear(b, nodes);
    2529             :                                 }
    2530             :                         }
    2531             : 
    2532             :                         /* Remember the top group. */
    2533             :                         if (faults > max_faults) {
    2534             :                                 max_faults = faults;
    2535             :                                 max_group = this_group;
    2536             :                                 /*
    2537             :                                  * subtle: at the smallest distance there is
    2538             :                                  * just one node left in each "group", the
    2539             :                                  * winner is the preferred nid.
    2540             :                                  */
    2541             :                                 nid = a;
    2542             :                         }
    2543             :                 }
    2544             :                 /* Next round, evaluate the nodes within max_group. */
    2545             :                 if (!max_faults)
    2546             :                         break;
    2547             :                 nodes = max_group;
    2548             :         }
    2549             :         return nid;
    2550             : }
    2551             : 
    2552             : static void task_numa_placement(struct task_struct *p)
    2553             : {
    2554             :         int seq, nid, max_nid = NUMA_NO_NODE;
    2555             :         unsigned long max_faults = 0;
    2556             :         unsigned long fault_types[2] = { 0, 0 };
    2557             :         unsigned long total_faults;
    2558             :         u64 runtime, period;
    2559             :         spinlock_t *group_lock = NULL;
    2560             :         struct numa_group *ng;
    2561             : 
    2562             :         /*
    2563             :          * The p->mm->numa_scan_seq field gets updated without
    2564             :          * exclusive access. Use READ_ONCE() here to ensure
    2565             :          * that the field is read in a single access:
    2566             :          */
    2567             :         seq = READ_ONCE(p->mm->numa_scan_seq);
    2568             :         if (p->numa_scan_seq == seq)
    2569             :                 return;
    2570             :         p->numa_scan_seq = seq;
    2571             :         p->numa_scan_period_max = task_scan_max(p);
    2572             : 
    2573             :         total_faults = p->numa_faults_locality[0] +
    2574             :                        p->numa_faults_locality[1];
    2575             :         runtime = numa_get_avg_runtime(p, &period);
    2576             : 
    2577             :         /* If the task is part of a group prevent parallel updates to group stats */
    2578             :         ng = deref_curr_numa_group(p);
    2579             :         if (ng) {
    2580             :                 group_lock = &ng->lock;
    2581             :                 spin_lock_irq(group_lock);
    2582             :         }
    2583             : 
    2584             :         /* Find the node with the highest number of faults */
    2585             :         for_each_online_node(nid) {
    2586             :                 /* Keep track of the offsets in numa_faults array */
    2587             :                 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
    2588             :                 unsigned long faults = 0, group_faults = 0;
    2589             :                 int priv;
    2590             : 
    2591             :                 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
    2592             :                         long diff, f_diff, f_weight;
    2593             : 
    2594             :                         mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
    2595             :                         membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
    2596             :                         cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
    2597             :                         cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
    2598             : 
    2599             :                         /* Decay existing window, copy faults since last scan */
    2600             :                         diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
    2601             :                         fault_types[priv] += p->numa_faults[membuf_idx];
    2602             :                         p->numa_faults[membuf_idx] = 0;
    2603             : 
    2604             :                         /*
    2605             :                          * Normalize the faults_from, so all tasks in a group
    2606             :                          * count according to CPU use, instead of by the raw
    2607             :                          * number of faults. Tasks with little runtime have
    2608             :                          * little over-all impact on throughput, and thus their
    2609             :                          * faults are less important.
    2610             :                          */
    2611             :                         f_weight = div64_u64(runtime << 16, period + 1);
    2612             :                         f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
    2613             :                                    (total_faults + 1);
    2614             :                         f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
    2615             :                         p->numa_faults[cpubuf_idx] = 0;
    2616             : 
    2617             :                         p->numa_faults[mem_idx] += diff;
    2618             :                         p->numa_faults[cpu_idx] += f_diff;
    2619             :                         faults += p->numa_faults[mem_idx];
    2620             :                         p->total_numa_faults += diff;
    2621             :                         if (ng) {
    2622             :                                 /*
    2623             :                                  * safe because we can only change our own group
    2624             :                                  *
    2625             :                                  * mem_idx represents the offset for a given
    2626             :                                  * nid and priv in a specific region because it
    2627             :                                  * is at the beginning of the numa_faults array.
    2628             :                                  */
    2629             :                                 ng->faults[mem_idx] += diff;
    2630             :                                 ng->faults[cpu_idx] += f_diff;
    2631             :                                 ng->total_faults += diff;
    2632             :                                 group_faults += ng->faults[mem_idx];
    2633             :                         }
    2634             :                 }
    2635             : 
    2636             :                 if (!ng) {
    2637             :                         if (faults > max_faults) {
    2638             :                                 max_faults = faults;
    2639             :                                 max_nid = nid;
    2640             :                         }
    2641             :                 } else if (group_faults > max_faults) {
    2642             :                         max_faults = group_faults;
    2643             :                         max_nid = nid;
    2644             :                 }
    2645             :         }
    2646             : 
    2647             :         /* Cannot migrate task to CPU-less node */
    2648             :         if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
    2649             :                 int near_nid = max_nid;
    2650             :                 int distance, near_distance = INT_MAX;
    2651             : 
    2652             :                 for_each_node_state(nid, N_CPU) {
    2653             :                         distance = node_distance(max_nid, nid);
    2654             :                         if (distance < near_distance) {
    2655             :                                 near_nid = nid;
    2656             :                                 near_distance = distance;
    2657             :                         }
    2658             :                 }
    2659             :                 max_nid = near_nid;
    2660             :         }
    2661             : 
    2662             :         if (ng) {
    2663             :                 numa_group_count_active_nodes(ng);
    2664             :                 spin_unlock_irq(group_lock);
    2665             :                 max_nid = preferred_group_nid(p, max_nid);
    2666             :         }
    2667             : 
    2668             :         if (max_faults) {
    2669             :                 /* Set the new preferred node */
    2670             :                 if (max_nid != p->numa_preferred_nid)
    2671             :                         sched_setnuma(p, max_nid);
    2672             :         }
    2673             : 
    2674             :         update_task_scan_period(p, fault_types[0], fault_types[1]);
    2675             : }
    2676             : 
    2677             : static inline int get_numa_group(struct numa_group *grp)
    2678             : {
    2679             :         return refcount_inc_not_zero(&grp->refcount);
    2680             : }
    2681             : 
    2682             : static inline void put_numa_group(struct numa_group *grp)
    2683             : {
    2684             :         if (refcount_dec_and_test(&grp->refcount))
    2685             :                 kfree_rcu(grp, rcu);
    2686             : }
    2687             : 
    2688             : static void task_numa_group(struct task_struct *p, int cpupid, int flags,
    2689             :                         int *priv)
    2690             : {
    2691             :         struct numa_group *grp, *my_grp;
    2692             :         struct task_struct *tsk;
    2693             :         bool join = false;
    2694             :         int cpu = cpupid_to_cpu(cpupid);
    2695             :         int i;
    2696             : 
    2697             :         if (unlikely(!deref_curr_numa_group(p))) {
    2698             :                 unsigned int size = sizeof(struct numa_group) +
    2699             :                                     NR_NUMA_HINT_FAULT_STATS *
    2700             :                                     nr_node_ids * sizeof(unsigned long);
    2701             : 
    2702             :                 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
    2703             :                 if (!grp)
    2704             :                         return;
    2705             : 
    2706             :                 refcount_set(&grp->refcount, 1);
    2707             :                 grp->active_nodes = 1;
    2708             :                 grp->max_faults_cpu = 0;
    2709             :                 spin_lock_init(&grp->lock);
    2710             :                 grp->gid = p->pid;
    2711             : 
    2712             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2713             :                         grp->faults[i] = p->numa_faults[i];
    2714             : 
    2715             :                 grp->total_faults = p->total_numa_faults;
    2716             : 
    2717             :                 grp->nr_tasks++;
    2718             :                 rcu_assign_pointer(p->numa_group, grp);
    2719             :         }
    2720             : 
    2721             :         rcu_read_lock();
    2722             :         tsk = READ_ONCE(cpu_rq(cpu)->curr);
    2723             : 
    2724             :         if (!cpupid_match_pid(tsk, cpupid))
    2725             :                 goto no_join;
    2726             : 
    2727             :         grp = rcu_dereference(tsk->numa_group);
    2728             :         if (!grp)
    2729             :                 goto no_join;
    2730             : 
    2731             :         my_grp = deref_curr_numa_group(p);
    2732             :         if (grp == my_grp)
    2733             :                 goto no_join;
    2734             : 
    2735             :         /*
    2736             :          * Only join the other group if its bigger; if we're the bigger group,
    2737             :          * the other task will join us.
    2738             :          */
    2739             :         if (my_grp->nr_tasks > grp->nr_tasks)
    2740             :                 goto no_join;
    2741             : 
    2742             :         /*
    2743             :          * Tie-break on the grp address.
    2744             :          */
    2745             :         if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
    2746             :                 goto no_join;
    2747             : 
    2748             :         /* Always join threads in the same process. */
    2749             :         if (tsk->mm == current->mm)
    2750             :                 join = true;
    2751             : 
    2752             :         /* Simple filter to avoid false positives due to PID collisions */
    2753             :         if (flags & TNF_SHARED)
    2754             :                 join = true;
    2755             : 
    2756             :         /* Update priv based on whether false sharing was detected */
    2757             :         *priv = !join;
    2758             : 
    2759             :         if (join && !get_numa_group(grp))
    2760             :                 goto no_join;
    2761             : 
    2762             :         rcu_read_unlock();
    2763             : 
    2764             :         if (!join)
    2765             :                 return;
    2766             : 
    2767             :         WARN_ON_ONCE(irqs_disabled());
    2768             :         double_lock_irq(&my_grp->lock, &grp->lock);
    2769             : 
    2770             :         for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
    2771             :                 my_grp->faults[i] -= p->numa_faults[i];
    2772             :                 grp->faults[i] += p->numa_faults[i];
    2773             :         }
    2774             :         my_grp->total_faults -= p->total_numa_faults;
    2775             :         grp->total_faults += p->total_numa_faults;
    2776             : 
    2777             :         my_grp->nr_tasks--;
    2778             :         grp->nr_tasks++;
    2779             : 
    2780             :         spin_unlock(&my_grp->lock);
    2781             :         spin_unlock_irq(&grp->lock);
    2782             : 
    2783             :         rcu_assign_pointer(p->numa_group, grp);
    2784             : 
    2785             :         put_numa_group(my_grp);
    2786             :         return;
    2787             : 
    2788             : no_join:
    2789             :         rcu_read_unlock();
    2790             :         return;
    2791             : }
    2792             : 
    2793             : /*
    2794             :  * Get rid of NUMA statistics associated with a task (either current or dead).
    2795             :  * If @final is set, the task is dead and has reached refcount zero, so we can
    2796             :  * safely free all relevant data structures. Otherwise, there might be
    2797             :  * concurrent reads from places like load balancing and procfs, and we should
    2798             :  * reset the data back to default state without freeing ->numa_faults.
    2799             :  */
    2800             : void task_numa_free(struct task_struct *p, bool final)
    2801             : {
    2802             :         /* safe: p either is current or is being freed by current */
    2803             :         struct numa_group *grp = rcu_dereference_raw(p->numa_group);
    2804             :         unsigned long *numa_faults = p->numa_faults;
    2805             :         unsigned long flags;
    2806             :         int i;
    2807             : 
    2808             :         if (!numa_faults)
    2809             :                 return;
    2810             : 
    2811             :         if (grp) {
    2812             :                 spin_lock_irqsave(&grp->lock, flags);
    2813             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2814             :                         grp->faults[i] -= p->numa_faults[i];
    2815             :                 grp->total_faults -= p->total_numa_faults;
    2816             : 
    2817             :                 grp->nr_tasks--;
    2818             :                 spin_unlock_irqrestore(&grp->lock, flags);
    2819             :                 RCU_INIT_POINTER(p->numa_group, NULL);
    2820             :                 put_numa_group(grp);
    2821             :         }
    2822             : 
    2823             :         if (final) {
    2824             :                 p->numa_faults = NULL;
    2825             :                 kfree(numa_faults);
    2826             :         } else {
    2827             :                 p->total_numa_faults = 0;
    2828             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2829             :                         numa_faults[i] = 0;
    2830             :         }
    2831             : }
    2832             : 
    2833             : /*
    2834             :  * Got a PROT_NONE fault for a page on @node.
    2835             :  */
    2836             : void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
    2837             : {
    2838             :         struct task_struct *p = current;
    2839             :         bool migrated = flags & TNF_MIGRATED;
    2840             :         int cpu_node = task_node(current);
    2841             :         int local = !!(flags & TNF_FAULT_LOCAL);
    2842             :         struct numa_group *ng;
    2843             :         int priv;
    2844             : 
    2845             :         if (!static_branch_likely(&sched_numa_balancing))
    2846             :                 return;
    2847             : 
    2848             :         /* for example, ksmd faulting in a user's mm */
    2849             :         if (!p->mm)
    2850             :                 return;
    2851             : 
    2852             :         /*
    2853             :          * NUMA faults statistics are unnecessary for the slow memory
    2854             :          * node for memory tiering mode.
    2855             :          */
    2856             :         if (!node_is_toptier(mem_node) &&
    2857             :             (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
    2858             :              !cpupid_valid(last_cpupid)))
    2859             :                 return;
    2860             : 
    2861             :         /* Allocate buffer to track faults on a per-node basis */
    2862             :         if (unlikely(!p->numa_faults)) {
    2863             :                 int size = sizeof(*p->numa_faults) *
    2864             :                            NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
    2865             : 
    2866             :                 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
    2867             :                 if (!p->numa_faults)
    2868             :                         return;
    2869             : 
    2870             :                 p->total_numa_faults = 0;
    2871             :                 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2872             :         }
    2873             : 
    2874             :         /*
    2875             :          * First accesses are treated as private, otherwise consider accesses
    2876             :          * to be private if the accessing pid has not changed
    2877             :          */
    2878             :         if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
    2879             :                 priv = 1;
    2880             :         } else {
    2881             :                 priv = cpupid_match_pid(p, last_cpupid);
    2882             :                 if (!priv && !(flags & TNF_NO_GROUP))
    2883             :                         task_numa_group(p, last_cpupid, flags, &priv);
    2884             :         }
    2885             : 
    2886             :         /*
    2887             :          * If a workload spans multiple NUMA nodes, a shared fault that
    2888             :          * occurs wholly within the set of nodes that the workload is
    2889             :          * actively using should be counted as local. This allows the
    2890             :          * scan rate to slow down when a workload has settled down.
    2891             :          */
    2892             :         ng = deref_curr_numa_group(p);
    2893             :         if (!priv && !local && ng && ng->active_nodes > 1 &&
    2894             :                                 numa_is_active_node(cpu_node, ng) &&
    2895             :                                 numa_is_active_node(mem_node, ng))
    2896             :                 local = 1;
    2897             : 
    2898             :         /*
    2899             :          * Retry to migrate task to preferred node periodically, in case it
    2900             :          * previously failed, or the scheduler moved us.
    2901             :          */
    2902             :         if (time_after(jiffies, p->numa_migrate_retry)) {
    2903             :                 task_numa_placement(p);
    2904             :                 numa_migrate_preferred(p);
    2905             :         }
    2906             : 
    2907             :         if (migrated)
    2908             :                 p->numa_pages_migrated += pages;
    2909             :         if (flags & TNF_MIGRATE_FAIL)
    2910             :                 p->numa_faults_locality[2] += pages;
    2911             : 
    2912             :         p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
    2913             :         p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
    2914             :         p->numa_faults_locality[local] += pages;
    2915             : }
    2916             : 
    2917             : static void reset_ptenuma_scan(struct task_struct *p)
    2918             : {
    2919             :         /*
    2920             :          * We only did a read acquisition of the mmap sem, so
    2921             :          * p->mm->numa_scan_seq is written to without exclusive access
    2922             :          * and the update is not guaranteed to be atomic. That's not
    2923             :          * much of an issue though, since this is just used for
    2924             :          * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
    2925             :          * expensive, to avoid any form of compiler optimizations:
    2926             :          */
    2927             :         WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
    2928             :         p->mm->numa_scan_offset = 0;
    2929             : }
    2930             : 
    2931             : static bool vma_is_accessed(struct vm_area_struct *vma)
    2932             : {
    2933             :         unsigned long pids;
    2934             :         /*
    2935             :          * Allow unconditional access first two times, so that all the (pages)
    2936             :          * of VMAs get prot_none fault introduced irrespective of accesses.
    2937             :          * This is also done to avoid any side effect of task scanning
    2938             :          * amplifying the unfairness of disjoint set of VMAs' access.
    2939             :          */
    2940             :         if (READ_ONCE(current->mm->numa_scan_seq) < 2)
    2941             :                 return true;
    2942             : 
    2943             :         pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
    2944             :         return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
    2945             : }
    2946             : 
    2947             : #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
    2948             : 
    2949             : /*
    2950             :  * The expensive part of numa migration is done from task_work context.
    2951             :  * Triggered from task_tick_numa().
    2952             :  */
    2953             : static void task_numa_work(struct callback_head *work)
    2954             : {
    2955             :         unsigned long migrate, next_scan, now = jiffies;
    2956             :         struct task_struct *p = current;
    2957             :         struct mm_struct *mm = p->mm;
    2958             :         u64 runtime = p->se.sum_exec_runtime;
    2959             :         struct vm_area_struct *vma;
    2960             :         unsigned long start, end;
    2961             :         unsigned long nr_pte_updates = 0;
    2962             :         long pages, virtpages;
    2963             :         struct vma_iterator vmi;
    2964             : 
    2965             :         SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
    2966             : 
    2967             :         work->next = work;
    2968             :         /*
    2969             :          * Who cares about NUMA placement when they're dying.
    2970             :          *
    2971             :          * NOTE: make sure not to dereference p->mm before this check,
    2972             :          * exit_task_work() happens _after_ exit_mm() so we could be called
    2973             :          * without p->mm even though we still had it when we enqueued this
    2974             :          * work.
    2975             :          */
    2976             :         if (p->flags & PF_EXITING)
    2977             :                 return;
    2978             : 
    2979             :         if (!mm->numa_next_scan) {
    2980             :                 mm->numa_next_scan = now +
    2981             :                         msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2982             :         }
    2983             : 
    2984             :         /*
    2985             :          * Enforce maximal scan/migration frequency..
    2986             :          */
    2987             :         migrate = mm->numa_next_scan;
    2988             :         if (time_before(now, migrate))
    2989             :                 return;
    2990             : 
    2991             :         if (p->numa_scan_period == 0) {
    2992             :                 p->numa_scan_period_max = task_scan_max(p);
    2993             :                 p->numa_scan_period = task_scan_start(p);
    2994             :         }
    2995             : 
    2996             :         next_scan = now + msecs_to_jiffies(p->numa_scan_period);
    2997             :         if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
    2998             :                 return;
    2999             : 
    3000             :         /*
    3001             :          * Delay this task enough that another task of this mm will likely win
    3002             :          * the next time around.
    3003             :          */
    3004             :         p->node_stamp += 2 * TICK_NSEC;
    3005             : 
    3006             :         start = mm->numa_scan_offset;
    3007             :         pages = sysctl_numa_balancing_scan_size;
    3008             :         pages <<= 20 - PAGE_SHIFT; /* MB in pages */
    3009             :         virtpages = pages * 8;     /* Scan up to this much virtual space */
    3010             :         if (!pages)
    3011             :                 return;
    3012             : 
    3013             : 
    3014             :         if (!mmap_read_trylock(mm))
    3015             :                 return;
    3016             :         vma_iter_init(&vmi, mm, start);
    3017             :         vma = vma_next(&vmi);
    3018             :         if (!vma) {
    3019             :                 reset_ptenuma_scan(p);
    3020             :                 start = 0;
    3021             :                 vma_iter_set(&vmi, start);
    3022             :                 vma = vma_next(&vmi);
    3023             :         }
    3024             : 
    3025             :         do {
    3026             :                 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
    3027             :                         is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
    3028             :                         continue;
    3029             :                 }
    3030             : 
    3031             :                 /*
    3032             :                  * Shared library pages mapped by multiple processes are not
    3033             :                  * migrated as it is expected they are cache replicated. Avoid
    3034             :                  * hinting faults in read-only file-backed mappings or the vdso
    3035             :                  * as migrating the pages will be of marginal benefit.
    3036             :                  */
    3037             :                 if (!vma->vm_mm ||
    3038             :                     (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
    3039             :                         continue;
    3040             : 
    3041             :                 /*
    3042             :                  * Skip inaccessible VMAs to avoid any confusion between
    3043             :                  * PROT_NONE and NUMA hinting ptes
    3044             :                  */
    3045             :                 if (!vma_is_accessible(vma))
    3046             :                         continue;
    3047             : 
    3048             :                 /* Initialise new per-VMA NUMAB state. */
    3049             :                 if (!vma->numab_state) {
    3050             :                         vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
    3051             :                                 GFP_KERNEL);
    3052             :                         if (!vma->numab_state)
    3053             :                                 continue;
    3054             : 
    3055             :                         vma->numab_state->next_scan = now +
    3056             :                                 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    3057             : 
    3058             :                         /* Reset happens after 4 times scan delay of scan start */
    3059             :                         vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
    3060             :                                 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
    3061             :                 }
    3062             : 
    3063             :                 /*
    3064             :                  * Scanning the VMA's of short lived tasks add more overhead. So
    3065             :                  * delay the scan for new VMAs.
    3066             :                  */
    3067             :                 if (mm->numa_scan_seq && time_before(jiffies,
    3068             :                                                 vma->numab_state->next_scan))
    3069             :                         continue;
    3070             : 
    3071             :                 /* Do not scan the VMA if task has not accessed */
    3072             :                 if (!vma_is_accessed(vma))
    3073             :                         continue;
    3074             : 
    3075             :                 /*
    3076             :                  * RESET access PIDs regularly for old VMAs. Resetting after checking
    3077             :                  * vma for recent access to avoid clearing PID info before access..
    3078             :                  */
    3079             :                 if (mm->numa_scan_seq &&
    3080             :                                 time_after(jiffies, vma->numab_state->next_pid_reset)) {
    3081             :                         vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
    3082             :                                 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
    3083             :                         vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
    3084             :                         vma->numab_state->access_pids[1] = 0;
    3085             :                 }
    3086             : 
    3087             :                 do {
    3088             :                         start = max(start, vma->vm_start);
    3089             :                         end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
    3090             :                         end = min(end, vma->vm_end);
    3091             :                         nr_pte_updates = change_prot_numa(vma, start, end);
    3092             : 
    3093             :                         /*
    3094             :                          * Try to scan sysctl_numa_balancing_size worth of
    3095             :                          * hpages that have at least one present PTE that
    3096             :                          * is not already pte-numa. If the VMA contains
    3097             :                          * areas that are unused or already full of prot_numa
    3098             :                          * PTEs, scan up to virtpages, to skip through those
    3099             :                          * areas faster.
    3100             :                          */
    3101             :                         if (nr_pte_updates)
    3102             :                                 pages -= (end - start) >> PAGE_SHIFT;
    3103             :                         virtpages -= (end - start) >> PAGE_SHIFT;
    3104             : 
    3105             :                         start = end;
    3106             :                         if (pages <= 0 || virtpages <= 0)
    3107             :                                 goto out;
    3108             : 
    3109             :                         cond_resched();
    3110             :                 } while (end != vma->vm_end);
    3111             :         } for_each_vma(vmi, vma);
    3112             : 
    3113             : out:
    3114             :         /*
    3115             :          * It is possible to reach the end of the VMA list but the last few
    3116             :          * VMAs are not guaranteed to the vma_migratable. If they are not, we
    3117             :          * would find the !migratable VMA on the next scan but not reset the
    3118             :          * scanner to the start so check it now.
    3119             :          */
    3120             :         if (vma)
    3121             :                 mm->numa_scan_offset = start;
    3122             :         else
    3123             :                 reset_ptenuma_scan(p);
    3124             :         mmap_read_unlock(mm);
    3125             : 
    3126             :         /*
    3127             :          * Make sure tasks use at least 32x as much time to run other code
    3128             :          * than they used here, to limit NUMA PTE scanning overhead to 3% max.
    3129             :          * Usually update_task_scan_period slows down scanning enough; on an
    3130             :          * overloaded system we need to limit overhead on a per task basis.
    3131             :          */
    3132             :         if (unlikely(p->se.sum_exec_runtime != runtime)) {
    3133             :                 u64 diff = p->se.sum_exec_runtime - runtime;
    3134             :                 p->node_stamp += 32 * diff;
    3135             :         }
    3136             : }
    3137             : 
    3138             : void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
    3139             : {
    3140             :         int mm_users = 0;
    3141             :         struct mm_struct *mm = p->mm;
    3142             : 
    3143             :         if (mm) {
    3144             :                 mm_users = atomic_read(&mm->mm_users);
    3145             :                 if (mm_users == 1) {
    3146             :                         mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    3147             :                         mm->numa_scan_seq = 0;
    3148             :                 }
    3149             :         }
    3150             :         p->node_stamp                        = 0;
    3151             :         p->numa_scan_seq             = mm ? mm->numa_scan_seq : 0;
    3152             :         p->numa_scan_period          = sysctl_numa_balancing_scan_delay;
    3153             :         p->numa_migrate_retry                = 0;
    3154             :         /* Protect against double add, see task_tick_numa and task_numa_work */
    3155             :         p->numa_work.next            = &p->numa_work;
    3156             :         p->numa_faults                       = NULL;
    3157             :         p->numa_pages_migrated               = 0;
    3158             :         p->total_numa_faults         = 0;
    3159             :         RCU_INIT_POINTER(p->numa_group, NULL);
    3160             :         p->last_task_numa_placement  = 0;
    3161             :         p->last_sum_exec_runtime     = 0;
    3162             : 
    3163             :         init_task_work(&p->numa_work, task_numa_work);
    3164             : 
    3165             :         /* New address space, reset the preferred nid */
    3166             :         if (!(clone_flags & CLONE_VM)) {
    3167             :                 p->numa_preferred_nid = NUMA_NO_NODE;
    3168             :                 return;
    3169             :         }
    3170             : 
    3171             :         /*
    3172             :          * New thread, keep existing numa_preferred_nid which should be copied
    3173             :          * already by arch_dup_task_struct but stagger when scans start.
    3174             :          */
    3175             :         if (mm) {
    3176             :                 unsigned int delay;
    3177             : 
    3178             :                 delay = min_t(unsigned int, task_scan_max(current),
    3179             :                         current->numa_scan_period * mm_users * NSEC_PER_MSEC);
    3180             :                 delay += 2 * TICK_NSEC;
    3181             :                 p->node_stamp = delay;
    3182             :         }
    3183             : }
    3184             : 
    3185             : /*
    3186             :  * Drive the periodic memory faults..
    3187             :  */
    3188             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    3189             : {
    3190             :         struct callback_head *work = &curr->numa_work;
    3191             :         u64 period, now;
    3192             : 
    3193             :         /*
    3194             :          * We don't care about NUMA placement if we don't have memory.
    3195             :          */
    3196             :         if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
    3197             :                 return;
    3198             : 
    3199             :         /*
    3200             :          * Using runtime rather than walltime has the dual advantage that
    3201             :          * we (mostly) drive the selection from busy threads and that the
    3202             :          * task needs to have done some actual work before we bother with
    3203             :          * NUMA placement.
    3204             :          */
    3205             :         now = curr->se.sum_exec_runtime;
    3206             :         period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
    3207             : 
    3208             :         if (now > curr->node_stamp + period) {
    3209             :                 if (!curr->node_stamp)
    3210             :                         curr->numa_scan_period = task_scan_start(curr);
    3211             :                 curr->node_stamp += period;
    3212             : 
    3213             :                 if (!time_before(jiffies, curr->mm->numa_next_scan))
    3214             :                         task_work_add(curr, work, TWA_RESUME);
    3215             :         }
    3216             : }
    3217             : 
    3218             : static void update_scan_period(struct task_struct *p, int new_cpu)
    3219             : {
    3220             :         int src_nid = cpu_to_node(task_cpu(p));
    3221             :         int dst_nid = cpu_to_node(new_cpu);
    3222             : 
    3223             :         if (!static_branch_likely(&sched_numa_balancing))
    3224             :                 return;
    3225             : 
    3226             :         if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
    3227             :                 return;
    3228             : 
    3229             :         if (src_nid == dst_nid)
    3230             :                 return;
    3231             : 
    3232             :         /*
    3233             :          * Allow resets if faults have been trapped before one scan
    3234             :          * has completed. This is most likely due to a new task that
    3235             :          * is pulled cross-node due to wakeups or load balancing.
    3236             :          */
    3237             :         if (p->numa_scan_seq) {
    3238             :                 /*
    3239             :                  * Avoid scan adjustments if moving to the preferred
    3240             :                  * node or if the task was not previously running on
    3241             :                  * the preferred node.
    3242             :                  */
    3243             :                 if (dst_nid == p->numa_preferred_nid ||
    3244             :                     (p->numa_preferred_nid != NUMA_NO_NODE &&
    3245             :                         src_nid != p->numa_preferred_nid))
    3246             :                         return;
    3247             :         }
    3248             : 
    3249             :         p->numa_scan_period = task_scan_start(p);
    3250             : }
    3251             : 
    3252             : #else
    3253             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    3254             : {
    3255             : }
    3256             : 
    3257             : static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    3258             : {
    3259             : }
    3260             : 
    3261             : static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    3262             : {
    3263             : }
    3264             : 
    3265             : static inline void update_scan_period(struct task_struct *p, int new_cpu)
    3266             : {
    3267             : }
    3268             : 
    3269             : #endif /* CONFIG_NUMA_BALANCING */
    3270             : 
    3271             : static void
    3272             : account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3273             : {
    3274        2070 :         update_load_add(&cfs_rq->load, se->load.weight);
    3275             : #ifdef CONFIG_SMP
    3276             :         if (entity_is_task(se)) {
    3277             :                 struct rq *rq = rq_of(cfs_rq);
    3278             : 
    3279             :                 account_numa_enqueue(rq, task_of(se));
    3280             :                 list_add(&se->group_node, &rq->cfs_tasks);
    3281             :         }
    3282             : #endif
    3283        1035 :         cfs_rq->nr_running++;
    3284        1035 :         if (se_is_idle(se))
    3285             :                 cfs_rq->idle_nr_running++;
    3286             : }
    3287             : 
    3288             : static void
    3289             : account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3290             : {
    3291        2066 :         update_load_sub(&cfs_rq->load, se->load.weight);
    3292             : #ifdef CONFIG_SMP
    3293             :         if (entity_is_task(se)) {
    3294             :                 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
    3295             :                 list_del_init(&se->group_node);
    3296             :         }
    3297             : #endif
    3298        1033 :         cfs_rq->nr_running--;
    3299        1033 :         if (se_is_idle(se))
    3300             :                 cfs_rq->idle_nr_running--;
    3301             : }
    3302             : 
    3303             : /*
    3304             :  * Signed add and clamp on underflow.
    3305             :  *
    3306             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3307             :  * memory. This allows lockless observations without ever seeing the negative
    3308             :  * values.
    3309             :  */
    3310             : #define add_positive(_ptr, _val) do {                           \
    3311             :         typeof(_ptr) ptr = (_ptr);                              \
    3312             :         typeof(_val) val = (_val);                              \
    3313             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3314             :                                                                 \
    3315             :         res = var + val;                                        \
    3316             :                                                                 \
    3317             :         if (val < 0 && res > var)                               \
    3318             :                 res = 0;                                        \
    3319             :                                                                 \
    3320             :         WRITE_ONCE(*ptr, res);                                  \
    3321             : } while (0)
    3322             : 
    3323             : /*
    3324             :  * Unsigned subtract and clamp on underflow.
    3325             :  *
    3326             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3327             :  * memory. This allows lockless observations without ever seeing the negative
    3328             :  * values.
    3329             :  */
    3330             : #define sub_positive(_ptr, _val) do {                           \
    3331             :         typeof(_ptr) ptr = (_ptr);                              \
    3332             :         typeof(*ptr) val = (_val);                              \
    3333             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3334             :         res = var - val;                                        \
    3335             :         if (res > var)                                               \
    3336             :                 res = 0;                                        \
    3337             :         WRITE_ONCE(*ptr, res);                                  \
    3338             : } while (0)
    3339             : 
    3340             : /*
    3341             :  * Remove and clamp on negative, from a local variable.
    3342             :  *
    3343             :  * A variant of sub_positive(), which does not use explicit load-store
    3344             :  * and is thus optimized for local variable updates.
    3345             :  */
    3346             : #define lsub_positive(_ptr, _val) do {                          \
    3347             :         typeof(_ptr) ptr = (_ptr);                              \
    3348             :         *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
    3349             : } while (0)
    3350             : 
    3351             : #ifdef CONFIG_SMP
    3352             : static inline void
    3353             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3354             : {
    3355             :         cfs_rq->avg.load_avg += se->avg.load_avg;
    3356             :         cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
    3357             : }
    3358             : 
    3359             : static inline void
    3360             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3361             : {
    3362             :         sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
    3363             :         sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
    3364             :         /* See update_cfs_rq_load_avg() */
    3365             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3366             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3367             : }
    3368             : #else
    3369             : static inline void
    3370             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3371             : static inline void
    3372             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3373             : #endif
    3374             : 
    3375           5 : static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
    3376             :                             unsigned long weight)
    3377             : {
    3378           5 :         if (se->on_rq) {
    3379             :                 /* commit outstanding execution time */
    3380           0 :                 if (cfs_rq->curr == se)
    3381           0 :                         update_curr(cfs_rq);
    3382           0 :                 update_load_sub(&cfs_rq->load, se->load.weight);
    3383             :         }
    3384           5 :         dequeue_load_avg(cfs_rq, se);
    3385             : 
    3386          10 :         update_load_set(&se->load, weight);
    3387             : 
    3388             : #ifdef CONFIG_SMP
    3389             :         do {
    3390             :                 u32 divider = get_pelt_divider(&se->avg);
    3391             : 
    3392             :                 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
    3393             :         } while (0);
    3394             : #endif
    3395             : 
    3396           5 :         enqueue_load_avg(cfs_rq, se);
    3397           5 :         if (se->on_rq)
    3398           0 :                 update_load_add(&cfs_rq->load, se->load.weight);
    3399             : 
    3400           5 : }
    3401             : 
    3402           5 : void reweight_task(struct task_struct *p, int prio)
    3403             : {
    3404           5 :         struct sched_entity *se = &p->se;
    3405          10 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3406           5 :         struct load_weight *load = &se->load;
    3407           5 :         unsigned long weight = scale_load(sched_prio_to_weight[prio]);
    3408             : 
    3409           5 :         reweight_entity(cfs_rq, se, weight);
    3410           5 :         load->inv_weight = sched_prio_to_wmult[prio];
    3411           5 : }
    3412             : 
    3413             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
    3414             : 
    3415             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3416             : #ifdef CONFIG_SMP
    3417             : /*
    3418             :  * All this does is approximate the hierarchical proportion which includes that
    3419             :  * global sum we all love to hate.
    3420             :  *
    3421             :  * That is, the weight of a group entity, is the proportional share of the
    3422             :  * group weight based on the group runqueue weights. That is:
    3423             :  *
    3424             :  *                     tg->weight * grq->load.weight
    3425             :  *   ge->load.weight = -----------------------------               (1)
    3426             :  *                       \Sum grq->load.weight
    3427             :  *
    3428             :  * Now, because computing that sum is prohibitively expensive to compute (been
    3429             :  * there, done that) we approximate it with this average stuff. The average
    3430             :  * moves slower and therefore the approximation is cheaper and more stable.
    3431             :  *
    3432             :  * So instead of the above, we substitute:
    3433             :  *
    3434             :  *   grq->load.weight -> grq->avg.load_avg                         (2)
    3435             :  *
    3436             :  * which yields the following:
    3437             :  *
    3438             :  *                     tg->weight * grq->avg.load_avg
    3439             :  *   ge->load.weight = ------------------------------              (3)
    3440             :  *                             tg->load_avg
    3441             :  *
    3442             :  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
    3443             :  *
    3444             :  * That is shares_avg, and it is right (given the approximation (2)).
    3445             :  *
    3446             :  * The problem with it is that because the average is slow -- it was designed
    3447             :  * to be exactly that of course -- this leads to transients in boundary
    3448             :  * conditions. In specific, the case where the group was idle and we start the
    3449             :  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
    3450             :  * yielding bad latency etc..
    3451             :  *
    3452             :  * Now, in that special case (1) reduces to:
    3453             :  *
    3454             :  *                     tg->weight * grq->load.weight
    3455             :  *   ge->load.weight = ----------------------------- = tg->weight   (4)
    3456             :  *                         grp->load.weight
    3457             :  *
    3458             :  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
    3459             :  *
    3460             :  * So what we do is modify our approximation (3) to approach (4) in the (near)
    3461             :  * UP case, like:
    3462             :  *
    3463             :  *   ge->load.weight =
    3464             :  *
    3465             :  *              tg->weight * grq->load.weight
    3466             :  *     ---------------------------------------------------         (5)
    3467             :  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
    3468             :  *
    3469             :  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
    3470             :  * we need to use grq->avg.load_avg as its lower bound, which then gives:
    3471             :  *
    3472             :  *
    3473             :  *                     tg->weight * grq->load.weight
    3474             :  *   ge->load.weight = -----------------------------            (6)
    3475             :  *                             tg_load_avg'
    3476             :  *
    3477             :  * Where:
    3478             :  *
    3479             :  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
    3480             :  *                  max(grq->load.weight, grq->avg.load_avg)
    3481             :  *
    3482             :  * And that is shares_weight and is icky. In the (near) UP case it approaches
    3483             :  * (4) while in the normal case it approaches (3). It consistently
    3484             :  * overestimates the ge->load.weight and therefore:
    3485             :  *
    3486             :  *   \Sum ge->load.weight >= tg->weight
    3487             :  *
    3488             :  * hence icky!
    3489             :  */
    3490             : static long calc_group_shares(struct cfs_rq *cfs_rq)
    3491             : {
    3492             :         long tg_weight, tg_shares, load, shares;
    3493             :         struct task_group *tg = cfs_rq->tg;
    3494             : 
    3495             :         tg_shares = READ_ONCE(tg->shares);
    3496             : 
    3497             :         load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
    3498             : 
    3499             :         tg_weight = atomic_long_read(&tg->load_avg);
    3500             : 
    3501             :         /* Ensure tg_weight >= load */
    3502             :         tg_weight -= cfs_rq->tg_load_avg_contrib;
    3503             :         tg_weight += load;
    3504             : 
    3505             :         shares = (tg_shares * load);
    3506             :         if (tg_weight)
    3507             :                 shares /= tg_weight;
    3508             : 
    3509             :         /*
    3510             :          * MIN_SHARES has to be unscaled here to support per-CPU partitioning
    3511             :          * of a group with small tg->shares value. It is a floor value which is
    3512             :          * assigned as a minimum load.weight to the sched_entity representing
    3513             :          * the group on a CPU.
    3514             :          *
    3515             :          * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
    3516             :          * on an 8-core system with 8 tasks each runnable on one CPU shares has
    3517             :          * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
    3518             :          * case no task is runnable on a CPU MIN_SHARES=2 should be returned
    3519             :          * instead of 0.
    3520             :          */
    3521             :         return clamp_t(long, shares, MIN_SHARES, tg_shares);
    3522             : }
    3523             : #endif /* CONFIG_SMP */
    3524             : 
    3525             : /*
    3526             :  * Recomputes the group entity based on the current state of its group
    3527             :  * runqueue.
    3528             :  */
    3529             : static void update_cfs_group(struct sched_entity *se)
    3530             : {
    3531             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3532             :         long shares;
    3533             : 
    3534             :         if (!gcfs_rq)
    3535             :                 return;
    3536             : 
    3537             :         if (throttled_hierarchy(gcfs_rq))
    3538             :                 return;
    3539             : 
    3540             : #ifndef CONFIG_SMP
    3541             :         shares = READ_ONCE(gcfs_rq->tg->shares);
    3542             : 
    3543             :         if (likely(se->load.weight == shares))
    3544             :                 return;
    3545             : #else
    3546             :         shares   = calc_group_shares(gcfs_rq);
    3547             : #endif
    3548             : 
    3549             :         reweight_entity(cfs_rq_of(se), se, shares);
    3550             : }
    3551             : 
    3552             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3553             : static inline void update_cfs_group(struct sched_entity *se)
    3554             : {
    3555             : }
    3556             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3557             : 
    3558             : static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
    3559             : {
    3560        2069 :         struct rq *rq = rq_of(cfs_rq);
    3561             : 
    3562             :         if (&rq->cfs == cfs_rq) {
    3563             :                 /*
    3564             :                  * There are a few boundary cases this might miss but it should
    3565             :                  * get called often enough that that should (hopefully) not be
    3566             :                  * a real problem.
    3567             :                  *
    3568             :                  * It will not get called when we go idle, because the idle
    3569             :                  * thread is a different class (!fair), nor will the utilization
    3570             :                  * number include things like RT tasks.
    3571             :                  *
    3572             :                  * As is, the util number is not freq-invariant (we'd have to
    3573             :                  * implement arch_scale_freq_capacity() for that).
    3574             :                  *
    3575             :                  * See cpu_util_cfs().
    3576             :                  */
    3577             :                 cpufreq_update_util(rq, flags);
    3578             :         }
    3579             : }
    3580             : 
    3581             : #ifdef CONFIG_SMP
    3582             : static inline bool load_avg_is_decayed(struct sched_avg *sa)
    3583             : {
    3584             :         if (sa->load_sum)
    3585             :                 return false;
    3586             : 
    3587             :         if (sa->util_sum)
    3588             :                 return false;
    3589             : 
    3590             :         if (sa->runnable_sum)
    3591             :                 return false;
    3592             : 
    3593             :         /*
    3594             :          * _avg must be null when _sum are null because _avg = _sum / divider
    3595             :          * Make sure that rounding and/or propagation of PELT values never
    3596             :          * break this.
    3597             :          */
    3598             :         SCHED_WARN_ON(sa->load_avg ||
    3599             :                       sa->util_avg ||
    3600             :                       sa->runnable_avg);
    3601             : 
    3602             :         return true;
    3603             : }
    3604             : 
    3605             : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3606             : {
    3607             :         return u64_u32_load_copy(cfs_rq->avg.last_update_time,
    3608             :                                  cfs_rq->last_update_time_copy);
    3609             : }
    3610             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3611             : /*
    3612             :  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
    3613             :  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
    3614             :  * bottom-up, we only have to test whether the cfs_rq before us on the list
    3615             :  * is our child.
    3616             :  * If cfs_rq is not on the list, test whether a child needs its to be added to
    3617             :  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
    3618             :  */
    3619             : static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
    3620             : {
    3621             :         struct cfs_rq *prev_cfs_rq;
    3622             :         struct list_head *prev;
    3623             : 
    3624             :         if (cfs_rq->on_list) {
    3625             :                 prev = cfs_rq->leaf_cfs_rq_list.prev;
    3626             :         } else {
    3627             :                 struct rq *rq = rq_of(cfs_rq);
    3628             : 
    3629             :                 prev = rq->tmp_alone_branch;
    3630             :         }
    3631             : 
    3632             :         prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
    3633             : 
    3634             :         return (prev_cfs_rq->tg->parent == cfs_rq->tg);
    3635             : }
    3636             : 
    3637             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    3638             : {
    3639             :         if (cfs_rq->load.weight)
    3640             :                 return false;
    3641             : 
    3642             :         if (!load_avg_is_decayed(&cfs_rq->avg))
    3643             :                 return false;
    3644             : 
    3645             :         if (child_cfs_rq_on_list(cfs_rq))
    3646             :                 return false;
    3647             : 
    3648             :         return true;
    3649             : }
    3650             : 
    3651             : /**
    3652             :  * update_tg_load_avg - update the tg's load avg
    3653             :  * @cfs_rq: the cfs_rq whose avg changed
    3654             :  *
    3655             :  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
    3656             :  * However, because tg->load_avg is a global value there are performance
    3657             :  * considerations.
    3658             :  *
    3659             :  * In order to avoid having to look at the other cfs_rq's, we use a
    3660             :  * differential update where we store the last value we propagated. This in
    3661             :  * turn allows skipping updates if the differential is 'small'.
    3662             :  *
    3663             :  * Updating tg's load_avg is necessary before update_cfs_share().
    3664             :  */
    3665             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
    3666             : {
    3667             :         long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
    3668             : 
    3669             :         /*
    3670             :          * No need to update load_avg for root_task_group as it is not used.
    3671             :          */
    3672             :         if (cfs_rq->tg == &root_task_group)
    3673             :                 return;
    3674             : 
    3675             :         if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
    3676             :                 atomic_long_add(delta, &cfs_rq->tg->load_avg);
    3677             :                 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
    3678             :         }
    3679             : }
    3680             : 
    3681             : /*
    3682             :  * Called within set_task_rq() right before setting a task's CPU. The
    3683             :  * caller only guarantees p->pi_lock is held; no other assumptions,
    3684             :  * including the state of rq->lock, should be made.
    3685             :  */
    3686             : void set_task_rq_fair(struct sched_entity *se,
    3687             :                       struct cfs_rq *prev, struct cfs_rq *next)
    3688             : {
    3689             :         u64 p_last_update_time;
    3690             :         u64 n_last_update_time;
    3691             : 
    3692             :         if (!sched_feat(ATTACH_AGE_LOAD))
    3693             :                 return;
    3694             : 
    3695             :         /*
    3696             :          * We are supposed to update the task to "current" time, then its up to
    3697             :          * date and ready to go to new CPU/cfs_rq. But we have difficulty in
    3698             :          * getting what current time is, so simply throw away the out-of-date
    3699             :          * time. This will result in the wakee task is less decayed, but giving
    3700             :          * the wakee more load sounds not bad.
    3701             :          */
    3702             :         if (!(se->avg.last_update_time && prev))
    3703             :                 return;
    3704             : 
    3705             :         p_last_update_time = cfs_rq_last_update_time(prev);
    3706             :         n_last_update_time = cfs_rq_last_update_time(next);
    3707             : 
    3708             :         __update_load_avg_blocked_se(p_last_update_time, se);
    3709             :         se->avg.last_update_time = n_last_update_time;
    3710             : }
    3711             : 
    3712             : /*
    3713             :  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
    3714             :  * propagate its contribution. The key to this propagation is the invariant
    3715             :  * that for each group:
    3716             :  *
    3717             :  *   ge->avg == grq->avg                                          (1)
    3718             :  *
    3719             :  * _IFF_ we look at the pure running and runnable sums. Because they
    3720             :  * represent the very same entity, just at different points in the hierarchy.
    3721             :  *
    3722             :  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
    3723             :  * and simply copies the running/runnable sum over (but still wrong, because
    3724             :  * the group entity and group rq do not have their PELT windows aligned).
    3725             :  *
    3726             :  * However, update_tg_cfs_load() is more complex. So we have:
    3727             :  *
    3728             :  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg         (2)
    3729             :  *
    3730             :  * And since, like util, the runnable part should be directly transferable,
    3731             :  * the following would _appear_ to be the straight forward approach:
    3732             :  *
    3733             :  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg      (3)
    3734             :  *
    3735             :  * And per (1) we have:
    3736             :  *
    3737             :  *   ge->avg.runnable_avg == grq->avg.runnable_avg
    3738             :  *
    3739             :  * Which gives:
    3740             :  *
    3741             :  *                      ge->load.weight * grq->avg.load_avg
    3742             :  *   ge->avg.load_avg = -----------------------------------          (4)
    3743             :  *                               grq->load.weight
    3744             :  *
    3745             :  * Except that is wrong!
    3746             :  *
    3747             :  * Because while for entities historical weight is not important and we
    3748             :  * really only care about our future and therefore can consider a pure
    3749             :  * runnable sum, runqueues can NOT do this.
    3750             :  *
    3751             :  * We specifically want runqueues to have a load_avg that includes
    3752             :  * historical weights. Those represent the blocked load, the load we expect
    3753             :  * to (shortly) return to us. This only works by keeping the weights as
    3754             :  * integral part of the sum. We therefore cannot decompose as per (3).
    3755             :  *
    3756             :  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
    3757             :  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
    3758             :  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
    3759             :  * runnable section of these tasks overlap (or not). If they were to perfectly
    3760             :  * align the rq as a whole would be runnable 2/3 of the time. If however we
    3761             :  * always have at least 1 runnable task, the rq as a whole is always runnable.
    3762             :  *
    3763             :  * So we'll have to approximate.. :/
    3764             :  *
    3765             :  * Given the constraint:
    3766             :  *
    3767             :  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
    3768             :  *
    3769             :  * We can construct a rule that adds runnable to a rq by assuming minimal
    3770             :  * overlap.
    3771             :  *
    3772             :  * On removal, we'll assume each task is equally runnable; which yields:
    3773             :  *
    3774             :  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
    3775             :  *
    3776             :  * XXX: only do this for the part of runnable > running ?
    3777             :  *
    3778             :  */
    3779             : static inline void
    3780             : update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3781             : {
    3782             :         long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
    3783             :         u32 new_sum, divider;
    3784             : 
    3785             :         /* Nothing to update */
    3786             :         if (!delta_avg)
    3787             :                 return;
    3788             : 
    3789             :         /*
    3790             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3791             :          * See ___update_load_avg() for details.
    3792             :          */
    3793             :         divider = get_pelt_divider(&cfs_rq->avg);
    3794             : 
    3795             : 
    3796             :         /* Set new sched_entity's utilization */
    3797             :         se->avg.util_avg = gcfs_rq->avg.util_avg;
    3798             :         new_sum = se->avg.util_avg * divider;
    3799             :         delta_sum = (long)new_sum - (long)se->avg.util_sum;
    3800             :         se->avg.util_sum = new_sum;
    3801             : 
    3802             :         /* Update parent cfs_rq utilization */
    3803             :         add_positive(&cfs_rq->avg.util_avg, delta_avg);
    3804             :         add_positive(&cfs_rq->avg.util_sum, delta_sum);
    3805             : 
    3806             :         /* See update_cfs_rq_load_avg() */
    3807             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    3808             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    3809             : }
    3810             : 
    3811             : static inline void
    3812             : update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3813             : {
    3814             :         long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
    3815             :         u32 new_sum, divider;
    3816             : 
    3817             :         /* Nothing to update */
    3818             :         if (!delta_avg)
    3819             :                 return;
    3820             : 
    3821             :         /*
    3822             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3823             :          * See ___update_load_avg() for details.
    3824             :          */
    3825             :         divider = get_pelt_divider(&cfs_rq->avg);
    3826             : 
    3827             :         /* Set new sched_entity's runnable */
    3828             :         se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
    3829             :         new_sum = se->avg.runnable_avg * divider;
    3830             :         delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
    3831             :         se->avg.runnable_sum = new_sum;
    3832             : 
    3833             :         /* Update parent cfs_rq runnable */
    3834             :         add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
    3835             :         add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
    3836             :         /* See update_cfs_rq_load_avg() */
    3837             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    3838             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    3839             : }
    3840             : 
    3841             : static inline void
    3842             : update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3843             : {
    3844             :         long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
    3845             :         unsigned long load_avg;
    3846             :         u64 load_sum = 0;
    3847             :         s64 delta_sum;
    3848             :         u32 divider;
    3849             : 
    3850             :         if (!runnable_sum)
    3851             :                 return;
    3852             : 
    3853             :         gcfs_rq->prop_runnable_sum = 0;
    3854             : 
    3855             :         /*
    3856             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3857             :          * See ___update_load_avg() for details.
    3858             :          */
    3859             :         divider = get_pelt_divider(&cfs_rq->avg);
    3860             : 
    3861             :         if (runnable_sum >= 0) {
    3862             :                 /*
    3863             :                  * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
    3864             :                  * the CPU is saturated running == runnable.
    3865             :                  */
    3866             :                 runnable_sum += se->avg.load_sum;
    3867             :                 runnable_sum = min_t(long, runnable_sum, divider);
    3868             :         } else {
    3869             :                 /*
    3870             :                  * Estimate the new unweighted runnable_sum of the gcfs_rq by
    3871             :                  * assuming all tasks are equally runnable.
    3872             :                  */
    3873             :                 if (scale_load_down(gcfs_rq->load.weight)) {
    3874             :                         load_sum = div_u64(gcfs_rq->avg.load_sum,
    3875             :                                 scale_load_down(gcfs_rq->load.weight));
    3876             :                 }
    3877             : 
    3878             :                 /* But make sure to not inflate se's runnable */
    3879             :                 runnable_sum = min(se->avg.load_sum, load_sum);
    3880             :         }
    3881             : 
    3882             :         /*
    3883             :          * runnable_sum can't be lower than running_sum
    3884             :          * Rescale running sum to be in the same range as runnable sum
    3885             :          * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
    3886             :          * runnable_sum is in [0 : LOAD_AVG_MAX]
    3887             :          */
    3888             :         running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
    3889             :         runnable_sum = max(runnable_sum, running_sum);
    3890             : 
    3891             :         load_sum = se_weight(se) * runnable_sum;
    3892             :         load_avg = div_u64(load_sum, divider);
    3893             : 
    3894             :         delta_avg = load_avg - se->avg.load_avg;
    3895             :         if (!delta_avg)
    3896             :                 return;
    3897             : 
    3898             :         delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
    3899             : 
    3900             :         se->avg.load_sum = runnable_sum;
    3901             :         se->avg.load_avg = load_avg;
    3902             :         add_positive(&cfs_rq->avg.load_avg, delta_avg);
    3903             :         add_positive(&cfs_rq->avg.load_sum, delta_sum);
    3904             :         /* See update_cfs_rq_load_avg() */
    3905             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3906             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3907             : }
    3908             : 
    3909             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
    3910             : {
    3911             :         cfs_rq->propagate = 1;
    3912             :         cfs_rq->prop_runnable_sum += runnable_sum;
    3913             : }
    3914             : 
    3915             : /* Update task and its cfs_rq load average */
    3916             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3917             : {
    3918             :         struct cfs_rq *cfs_rq, *gcfs_rq;
    3919             : 
    3920             :         if (entity_is_task(se))
    3921             :                 return 0;
    3922             : 
    3923             :         gcfs_rq = group_cfs_rq(se);
    3924             :         if (!gcfs_rq->propagate)
    3925             :                 return 0;
    3926             : 
    3927             :         gcfs_rq->propagate = 0;
    3928             : 
    3929             :         cfs_rq = cfs_rq_of(se);
    3930             : 
    3931             :         add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
    3932             : 
    3933             :         update_tg_cfs_util(cfs_rq, se, gcfs_rq);
    3934             :         update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
    3935             :         update_tg_cfs_load(cfs_rq, se, gcfs_rq);
    3936             : 
    3937             :         trace_pelt_cfs_tp(cfs_rq);
    3938             :         trace_pelt_se_tp(se);
    3939             : 
    3940             :         return 1;
    3941             : }
    3942             : 
    3943             : /*
    3944             :  * Check if we need to update the load and the utilization of a blocked
    3945             :  * group_entity:
    3946             :  */
    3947             : static inline bool skip_blocked_update(struct sched_entity *se)
    3948             : {
    3949             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3950             : 
    3951             :         /*
    3952             :          * If sched_entity still have not zero load or utilization, we have to
    3953             :          * decay it:
    3954             :          */
    3955             :         if (se->avg.load_avg || se->avg.util_avg)
    3956             :                 return false;
    3957             : 
    3958             :         /*
    3959             :          * If there is a pending propagation, we have to update the load and
    3960             :          * the utilization of the sched_entity:
    3961             :          */
    3962             :         if (gcfs_rq->propagate)
    3963             :                 return false;
    3964             : 
    3965             :         /*
    3966             :          * Otherwise, the load and the utilization of the sched_entity is
    3967             :          * already zero and there is no pending propagation, so it will be a
    3968             :          * waste of time to try to decay it:
    3969             :          */
    3970             :         return true;
    3971             : }
    3972             : 
    3973             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3974             : 
    3975             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
    3976             : 
    3977             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3978             : {
    3979             :         return 0;
    3980             : }
    3981             : 
    3982             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
    3983             : 
    3984             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3985             : 
    3986             : #ifdef CONFIG_NO_HZ_COMMON
    3987             : static inline void migrate_se_pelt_lag(struct sched_entity *se)
    3988             : {
    3989             :         u64 throttled = 0, now, lut;
    3990             :         struct cfs_rq *cfs_rq;
    3991             :         struct rq *rq;
    3992             :         bool is_idle;
    3993             : 
    3994             :         if (load_avg_is_decayed(&se->avg))
    3995             :                 return;
    3996             : 
    3997             :         cfs_rq = cfs_rq_of(se);
    3998             :         rq = rq_of(cfs_rq);
    3999             : 
    4000             :         rcu_read_lock();
    4001             :         is_idle = is_idle_task(rcu_dereference(rq->curr));
    4002             :         rcu_read_unlock();
    4003             : 
    4004             :         /*
    4005             :          * The lag estimation comes with a cost we don't want to pay all the
    4006             :          * time. Hence, limiting to the case where the source CPU is idle and
    4007             :          * we know we are at the greatest risk to have an outdated clock.
    4008             :          */
    4009             :         if (!is_idle)
    4010             :                 return;
    4011             : 
    4012             :         /*
    4013             :          * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
    4014             :          *
    4015             :          *   last_update_time (the cfs_rq's last_update_time)
    4016             :          *      = cfs_rq_clock_pelt()@cfs_rq_idle
    4017             :          *      = rq_clock_pelt()@cfs_rq_idle
    4018             :          *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
    4019             :          *
    4020             :          *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
    4021             :          *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
    4022             :          *
    4023             :          *   rq_idle_lag (delta between now and rq's update)
    4024             :          *      = sched_clock_cpu() - rq_clock()@rq_idle
    4025             :          *
    4026             :          * We can then write:
    4027             :          *
    4028             :          *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
    4029             :          *          sched_clock_cpu() - rq_clock()@rq_idle
    4030             :          * Where:
    4031             :          *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
    4032             :          *      rq_clock()@rq_idle      is rq->clock_idle
    4033             :          *      cfs->throttled_clock_pelt_time@cfs_rq_idle
    4034             :          *                              is cfs_rq->throttled_pelt_idle
    4035             :          */
    4036             : 
    4037             : #ifdef CONFIG_CFS_BANDWIDTH
    4038             :         throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
    4039             :         /* The clock has been stopped for throttling */
    4040             :         if (throttled == U64_MAX)
    4041             :                 return;
    4042             : #endif
    4043             :         now = u64_u32_load(rq->clock_pelt_idle);
    4044             :         /*
    4045             :          * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
    4046             :          * is observed the old clock_pelt_idle value and the new clock_idle,
    4047             :          * which lead to an underestimation. The opposite would lead to an
    4048             :          * overestimation.
    4049             :          */
    4050             :         smp_rmb();
    4051             :         lut = cfs_rq_last_update_time(cfs_rq);
    4052             : 
    4053             :         now -= throttled;
    4054             :         if (now < lut)
    4055             :                 /*
    4056             :                  * cfs_rq->avg.last_update_time is more recent than our
    4057             :                  * estimation, let's use it.
    4058             :                  */
    4059             :                 now = lut;
    4060             :         else
    4061             :                 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
    4062             : 
    4063             :         __update_load_avg_blocked_se(now, se);
    4064             : }
    4065             : #else
    4066             : static void migrate_se_pelt_lag(struct sched_entity *se) {}
    4067             : #endif
    4068             : 
    4069             : /**
    4070             :  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
    4071             :  * @now: current time, as per cfs_rq_clock_pelt()
    4072             :  * @cfs_rq: cfs_rq to update
    4073             :  *
    4074             :  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
    4075             :  * avg. The immediate corollary is that all (fair) tasks must be attached.
    4076             :  *
    4077             :  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
    4078             :  *
    4079             :  * Return: true if the load decayed or we removed load.
    4080             :  *
    4081             :  * Since both these conditions indicate a changed cfs_rq->avg.load we should
    4082             :  * call update_tg_load_avg() when this function returns true.
    4083             :  */
    4084             : static inline int
    4085             : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
    4086             : {
    4087             :         unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
    4088             :         struct sched_avg *sa = &cfs_rq->avg;
    4089             :         int decayed = 0;
    4090             : 
    4091             :         if (cfs_rq->removed.nr) {
    4092             :                 unsigned long r;
    4093             :                 u32 divider = get_pelt_divider(&cfs_rq->avg);
    4094             : 
    4095             :                 raw_spin_lock(&cfs_rq->removed.lock);
    4096             :                 swap(cfs_rq->removed.util_avg, removed_util);
    4097             :                 swap(cfs_rq->removed.load_avg, removed_load);
    4098             :                 swap(cfs_rq->removed.runnable_avg, removed_runnable);
    4099             :                 cfs_rq->removed.nr = 0;
    4100             :                 raw_spin_unlock(&cfs_rq->removed.lock);
    4101             : 
    4102             :                 r = removed_load;
    4103             :                 sub_positive(&sa->load_avg, r);
    4104             :                 sub_positive(&sa->load_sum, r * divider);
    4105             :                 /* See sa->util_sum below */
    4106             :                 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
    4107             : 
    4108             :                 r = removed_util;
    4109             :                 sub_positive(&sa->util_avg, r);
    4110             :                 sub_positive(&sa->util_sum, r * divider);
    4111             :                 /*
    4112             :                  * Because of rounding, se->util_sum might ends up being +1 more than
    4113             :                  * cfs->util_sum. Although this is not a problem by itself, detaching
    4114             :                  * a lot of tasks with the rounding problem between 2 updates of
    4115             :                  * util_avg (~1ms) can make cfs->util_sum becoming null whereas
    4116             :                  * cfs_util_avg is not.
    4117             :                  * Check that util_sum is still above its lower bound for the new
    4118             :                  * util_avg. Given that period_contrib might have moved since the last
    4119             :                  * sync, we are only sure that util_sum must be above or equal to
    4120             :                  *    util_avg * minimum possible divider
    4121             :                  */
    4122             :                 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
    4123             : 
    4124             :                 r = removed_runnable;
    4125             :                 sub_positive(&sa->runnable_avg, r);
    4126             :                 sub_positive(&sa->runnable_sum, r * divider);
    4127             :                 /* See sa->util_sum above */
    4128             :                 sa->runnable_sum = max_t(u32, sa->runnable_sum,
    4129             :                                               sa->runnable_avg * PELT_MIN_DIVIDER);
    4130             : 
    4131             :                 /*
    4132             :                  * removed_runnable is the unweighted version of removed_load so we
    4133             :                  * can use it to estimate removed_load_sum.
    4134             :                  */
    4135             :                 add_tg_cfs_propagate(cfs_rq,
    4136             :                         -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
    4137             : 
    4138             :                 decayed = 1;
    4139             :         }
    4140             : 
    4141             :         decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
    4142             :         u64_u32_store_copy(sa->last_update_time,
    4143             :                            cfs_rq->last_update_time_copy,
    4144             :                            sa->last_update_time);
    4145             :         return decayed;
    4146             : }
    4147             : 
    4148             : /**
    4149             :  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
    4150             :  * @cfs_rq: cfs_rq to attach to
    4151             :  * @se: sched_entity to attach
    4152             :  *
    4153             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    4154             :  * cfs_rq->avg.last_update_time being current.
    4155             :  */
    4156             : static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4157             : {
    4158             :         /*
    4159             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    4160             :          * See ___update_load_avg() for details.
    4161             :          */
    4162             :         u32 divider = get_pelt_divider(&cfs_rq->avg);
    4163             : 
    4164             :         /*
    4165             :          * When we attach the @se to the @cfs_rq, we must align the decay
    4166             :          * window because without that, really weird and wonderful things can
    4167             :          * happen.
    4168             :          *
    4169             :          * XXX illustrate
    4170             :          */
    4171             :         se->avg.last_update_time = cfs_rq->avg.last_update_time;
    4172             :         se->avg.period_contrib = cfs_rq->avg.period_contrib;
    4173             : 
    4174             :         /*
    4175             :          * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
    4176             :          * period_contrib. This isn't strictly correct, but since we're
    4177             :          * entirely outside of the PELT hierarchy, nobody cares if we truncate
    4178             :          * _sum a little.
    4179             :          */
    4180             :         se->avg.util_sum = se->avg.util_avg * divider;
    4181             : 
    4182             :         se->avg.runnable_sum = se->avg.runnable_avg * divider;
    4183             : 
    4184             :         se->avg.load_sum = se->avg.load_avg * divider;
    4185             :         if (se_weight(se) < se->avg.load_sum)
    4186             :                 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
    4187             :         else
    4188             :                 se->avg.load_sum = 1;
    4189             : 
    4190             :         enqueue_load_avg(cfs_rq, se);
    4191             :         cfs_rq->avg.util_avg += se->avg.util_avg;
    4192             :         cfs_rq->avg.util_sum += se->avg.util_sum;
    4193             :         cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
    4194             :         cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
    4195             : 
    4196             :         add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
    4197             : 
    4198             :         cfs_rq_util_change(cfs_rq, 0);
    4199             : 
    4200             :         trace_pelt_cfs_tp(cfs_rq);
    4201             : }
    4202             : 
    4203             : /**
    4204             :  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
    4205             :  * @cfs_rq: cfs_rq to detach from
    4206             :  * @se: sched_entity to detach
    4207             :  *
    4208             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    4209             :  * cfs_rq->avg.last_update_time being current.
    4210             :  */
    4211             : static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4212             : {
    4213             :         dequeue_load_avg(cfs_rq, se);
    4214             :         sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
    4215             :         sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
    4216             :         /* See update_cfs_rq_load_avg() */
    4217             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    4218             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    4219             : 
    4220             :         sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
    4221             :         sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
    4222             :         /* See update_cfs_rq_load_avg() */
    4223             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    4224             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    4225             : 
    4226             :         add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
    4227             : 
    4228             :         cfs_rq_util_change(cfs_rq, 0);
    4229             : 
    4230             :         trace_pelt_cfs_tp(cfs_rq);
    4231             : }
    4232             : 
    4233             : /*
    4234             :  * Optional action to be done while updating the load average
    4235             :  */
    4236             : #define UPDATE_TG       0x1
    4237             : #define SKIP_AGE_LOAD   0x2
    4238             : #define DO_ATTACH       0x4
    4239             : #define DO_DETACH       0x8
    4240             : 
    4241             : /* Update task and its cfs_rq load average */
    4242             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4243             : {
    4244             :         u64 now = cfs_rq_clock_pelt(cfs_rq);
    4245             :         int decayed;
    4246             : 
    4247             :         /*
    4248             :          * Track task load average for carrying it to new CPU after migrated, and
    4249             :          * track group sched_entity load average for task_h_load calc in migration
    4250             :          */
    4251             :         if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
    4252             :                 __update_load_avg_se(now, cfs_rq, se);
    4253             : 
    4254             :         decayed  = update_cfs_rq_load_avg(now, cfs_rq);
    4255             :         decayed |= propagate_entity_load_avg(se);
    4256             : 
    4257             :         if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
    4258             : 
    4259             :                 /*
    4260             :                  * DO_ATTACH means we're here from enqueue_entity().
    4261             :                  * !last_update_time means we've passed through
    4262             :                  * migrate_task_rq_fair() indicating we migrated.
    4263             :                  *
    4264             :                  * IOW we're enqueueing a task on a new CPU.
    4265             :                  */
    4266             :                 attach_entity_load_avg(cfs_rq, se);
    4267             :                 update_tg_load_avg(cfs_rq);
    4268             : 
    4269             :         } else if (flags & DO_DETACH) {
    4270             :                 /*
    4271             :                  * DO_DETACH means we're here from dequeue_entity()
    4272             :                  * and we are migrating task out of the CPU.
    4273             :                  */
    4274             :                 detach_entity_load_avg(cfs_rq, se);
    4275             :                 update_tg_load_avg(cfs_rq);
    4276             :         } else if (decayed) {
    4277             :                 cfs_rq_util_change(cfs_rq, 0);
    4278             : 
    4279             :                 if (flags & UPDATE_TG)
    4280             :                         update_tg_load_avg(cfs_rq);
    4281             :         }
    4282             : }
    4283             : 
    4284             : /*
    4285             :  * Synchronize entity load avg of dequeued entity without locking
    4286             :  * the previous rq.
    4287             :  */
    4288             : static void sync_entity_load_avg(struct sched_entity *se)
    4289             : {
    4290             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4291             :         u64 last_update_time;
    4292             : 
    4293             :         last_update_time = cfs_rq_last_update_time(cfs_rq);
    4294             :         __update_load_avg_blocked_se(last_update_time, se);
    4295             : }
    4296             : 
    4297             : /*
    4298             :  * Task first catches up with cfs_rq, and then subtract
    4299             :  * itself from the cfs_rq (task must be off the queue now).
    4300             :  */
    4301             : static void remove_entity_load_avg(struct sched_entity *se)
    4302             : {
    4303             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4304             :         unsigned long flags;
    4305             : 
    4306             :         /*
    4307             :          * tasks cannot exit without having gone through wake_up_new_task() ->
    4308             :          * enqueue_task_fair() which will have added things to the cfs_rq,
    4309             :          * so we can remove unconditionally.
    4310             :          */
    4311             : 
    4312             :         sync_entity_load_avg(se);
    4313             : 
    4314             :         raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
    4315             :         ++cfs_rq->removed.nr;
    4316             :         cfs_rq->removed.util_avg     += se->avg.util_avg;
    4317             :         cfs_rq->removed.load_avg     += se->avg.load_avg;
    4318             :         cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
    4319             :         raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
    4320             : }
    4321             : 
    4322             : static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
    4323             : {
    4324             :         return cfs_rq->avg.runnable_avg;
    4325             : }
    4326             : 
    4327             : static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
    4328             : {
    4329             :         return cfs_rq->avg.load_avg;
    4330             : }
    4331             : 
    4332             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
    4333             : 
    4334             : static inline unsigned long task_util(struct task_struct *p)
    4335             : {
    4336             :         return READ_ONCE(p->se.avg.util_avg);
    4337             : }
    4338             : 
    4339             : static inline unsigned long _task_util_est(struct task_struct *p)
    4340             : {
    4341             :         struct util_est ue = READ_ONCE(p->se.avg.util_est);
    4342             : 
    4343             :         return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
    4344             : }
    4345             : 
    4346             : static inline unsigned long task_util_est(struct task_struct *p)
    4347             : {
    4348             :         return max(task_util(p), _task_util_est(p));
    4349             : }
    4350             : 
    4351             : #ifdef CONFIG_UCLAMP_TASK
    4352             : static inline unsigned long uclamp_task_util(struct task_struct *p,
    4353             :                                              unsigned long uclamp_min,
    4354             :                                              unsigned long uclamp_max)
    4355             : {
    4356             :         return clamp(task_util_est(p), uclamp_min, uclamp_max);
    4357             : }
    4358             : #else
    4359             : static inline unsigned long uclamp_task_util(struct task_struct *p,
    4360             :                                              unsigned long uclamp_min,
    4361             :                                              unsigned long uclamp_max)
    4362             : {
    4363             :         return task_util_est(p);
    4364             : }
    4365             : #endif
    4366             : 
    4367             : static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
    4368             :                                     struct task_struct *p)
    4369             : {
    4370             :         unsigned int enqueued;
    4371             : 
    4372             :         if (!sched_feat(UTIL_EST))
    4373             :                 return;
    4374             : 
    4375             :         /* Update root cfs_rq's estimated utilization */
    4376             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4377             :         enqueued += _task_util_est(p);
    4378             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4379             : 
    4380             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4381             : }
    4382             : 
    4383             : static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
    4384             :                                     struct task_struct *p)
    4385             : {
    4386             :         unsigned int enqueued;
    4387             : 
    4388             :         if (!sched_feat(UTIL_EST))
    4389             :                 return;
    4390             : 
    4391             :         /* Update root cfs_rq's estimated utilization */
    4392             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4393             :         enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
    4394             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4395             : 
    4396             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4397             : }
    4398             : 
    4399             : #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
    4400             : 
    4401             : /*
    4402             :  * Check if a (signed) value is within a specified (unsigned) margin,
    4403             :  * based on the observation that:
    4404             :  *
    4405             :  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
    4406             :  *
    4407             :  * NOTE: this only works when value + margin < INT_MAX.
    4408             :  */
    4409             : static inline bool within_margin(int value, int margin)
    4410             : {
    4411             :         return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
    4412             : }
    4413             : 
    4414             : static inline void util_est_update(struct cfs_rq *cfs_rq,
    4415             :                                    struct task_struct *p,
    4416             :                                    bool task_sleep)
    4417             : {
    4418             :         long last_ewma_diff, last_enqueued_diff;
    4419             :         struct util_est ue;
    4420             : 
    4421             :         if (!sched_feat(UTIL_EST))
    4422             :                 return;
    4423             : 
    4424             :         /*
    4425             :          * Skip update of task's estimated utilization when the task has not
    4426             :          * yet completed an activation, e.g. being migrated.
    4427             :          */
    4428             :         if (!task_sleep)
    4429             :                 return;
    4430             : 
    4431             :         /*
    4432             :          * If the PELT values haven't changed since enqueue time,
    4433             :          * skip the util_est update.
    4434             :          */
    4435             :         ue = p->se.avg.util_est;
    4436             :         if (ue.enqueued & UTIL_AVG_UNCHANGED)
    4437             :                 return;
    4438             : 
    4439             :         last_enqueued_diff = ue.enqueued;
    4440             : 
    4441             :         /*
    4442             :          * Reset EWMA on utilization increases, the moving average is used only
    4443             :          * to smooth utilization decreases.
    4444             :          */
    4445             :         ue.enqueued = task_util(p);
    4446             :         if (sched_feat(UTIL_EST_FASTUP)) {
    4447             :                 if (ue.ewma < ue.enqueued) {
    4448             :                         ue.ewma = ue.enqueued;
    4449             :                         goto done;
    4450             :                 }
    4451             :         }
    4452             : 
    4453             :         /*
    4454             :          * Skip update of task's estimated utilization when its members are
    4455             :          * already ~1% close to its last activation value.
    4456             :          */
    4457             :         last_ewma_diff = ue.enqueued - ue.ewma;
    4458             :         last_enqueued_diff -= ue.enqueued;
    4459             :         if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
    4460             :                 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
    4461             :                         goto done;
    4462             : 
    4463             :                 return;
    4464             :         }
    4465             : 
    4466             :         /*
    4467             :          * To avoid overestimation of actual task utilization, skip updates if
    4468             :          * we cannot grant there is idle time in this CPU.
    4469             :          */
    4470             :         if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
    4471             :                 return;
    4472             : 
    4473             :         /*
    4474             :          * Update Task's estimated utilization
    4475             :          *
    4476             :          * When *p completes an activation we can consolidate another sample
    4477             :          * of the task size. This is done by storing the current PELT value
    4478             :          * as ue.enqueued and by using this value to update the Exponential
    4479             :          * Weighted Moving Average (EWMA):
    4480             :          *
    4481             :          *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
    4482             :          *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
    4483             :          *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
    4484             :          *          = w * (      last_ewma_diff            ) +     ewma(t-1)
    4485             :          *          = w * (last_ewma_diff  +  ewma(t-1) / w)
    4486             :          *
    4487             :          * Where 'w' is the weight of new samples, which is configured to be
    4488             :          * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
    4489             :          */
    4490             :         ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
    4491             :         ue.ewma  += last_ewma_diff;
    4492             :         ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
    4493             : done:
    4494             :         ue.enqueued |= UTIL_AVG_UNCHANGED;
    4495             :         WRITE_ONCE(p->se.avg.util_est, ue);
    4496             : 
    4497             :         trace_sched_util_est_se_tp(&p->se);
    4498             : }
    4499             : 
    4500             : static inline int util_fits_cpu(unsigned long util,
    4501             :                                 unsigned long uclamp_min,
    4502             :                                 unsigned long uclamp_max,
    4503             :                                 int cpu)
    4504             : {
    4505             :         unsigned long capacity_orig, capacity_orig_thermal;
    4506             :         unsigned long capacity = capacity_of(cpu);
    4507             :         bool fits, uclamp_max_fits;
    4508             : 
    4509             :         /*
    4510             :          * Check if the real util fits without any uclamp boost/cap applied.
    4511             :          */
    4512             :         fits = fits_capacity(util, capacity);
    4513             : 
    4514             :         if (!uclamp_is_used())
    4515             :                 return fits;
    4516             : 
    4517             :         /*
    4518             :          * We must use capacity_orig_of() for comparing against uclamp_min and
    4519             :          * uclamp_max. We only care about capacity pressure (by using
    4520             :          * capacity_of()) for comparing against the real util.
    4521             :          *
    4522             :          * If a task is boosted to 1024 for example, we don't want a tiny
    4523             :          * pressure to skew the check whether it fits a CPU or not.
    4524             :          *
    4525             :          * Similarly if a task is capped to capacity_orig_of(little_cpu), it
    4526             :          * should fit a little cpu even if there's some pressure.
    4527             :          *
    4528             :          * Only exception is for thermal pressure since it has a direct impact
    4529             :          * on available OPP of the system.
    4530             :          *
    4531             :          * We honour it for uclamp_min only as a drop in performance level
    4532             :          * could result in not getting the requested minimum performance level.
    4533             :          *
    4534             :          * For uclamp_max, we can tolerate a drop in performance level as the
    4535             :          * goal is to cap the task. So it's okay if it's getting less.
    4536             :          */
    4537             :         capacity_orig = capacity_orig_of(cpu);
    4538             :         capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
    4539             : 
    4540             :         /*
    4541             :          * We want to force a task to fit a cpu as implied by uclamp_max.
    4542             :          * But we do have some corner cases to cater for..
    4543             :          *
    4544             :          *
    4545             :          *                                 C=z
    4546             :          *   |                             ___
    4547             :          *   |                  C=y       |   |
    4548             :          *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
    4549             :          *   |      C=x        |   |      |   |
    4550             :          *   |      ___        |   |      |   |
    4551             :          *   |     |   |       |   |      |   |    (util somewhere in this region)
    4552             :          *   |     |   |       |   |      |   |
    4553             :          *   |     |   |       |   |      |   |
    4554             :          *   +----------------------------------------
    4555             :          *         cpu0        cpu1       cpu2
    4556             :          *
    4557             :          *   In the above example if a task is capped to a specific performance
    4558             :          *   point, y, then when:
    4559             :          *
    4560             :          *   * util = 80% of x then it does not fit on cpu0 and should migrate
    4561             :          *     to cpu1
    4562             :          *   * util = 80% of y then it is forced to fit on cpu1 to honour
    4563             :          *     uclamp_max request.
    4564             :          *
    4565             :          *   which is what we're enforcing here. A task always fits if
    4566             :          *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
    4567             :          *   the normal upmigration rules should withhold still.
    4568             :          *
    4569             :          *   Only exception is when we are on max capacity, then we need to be
    4570             :          *   careful not to block overutilized state. This is so because:
    4571             :          *
    4572             :          *     1. There's no concept of capping at max_capacity! We can't go
    4573             :          *        beyond this performance level anyway.
    4574             :          *     2. The system is being saturated when we're operating near
    4575             :          *        max capacity, it doesn't make sense to block overutilized.
    4576             :          */
    4577             :         uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
    4578             :         uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
    4579             :         fits = fits || uclamp_max_fits;
    4580             : 
    4581             :         /*
    4582             :          *
    4583             :          *                                 C=z
    4584             :          *   |                             ___       (region a, capped, util >= uclamp_max)
    4585             :          *   |                  C=y       |   |
    4586             :          *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
    4587             :          *   |      C=x        |   |      |   |
    4588             :          *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
    4589             :          *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
    4590             :          *   |     |   |       |   |      |   |
    4591             :          *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
    4592             :          *   +----------------------------------------
    4593             :          *         cpu0        cpu1       cpu2
    4594             :          *
    4595             :          * a) If util > uclamp_max, then we're capped, we don't care about
    4596             :          *    actual fitness value here. We only care if uclamp_max fits
    4597             :          *    capacity without taking margin/pressure into account.
    4598             :          *    See comment above.
    4599             :          *
    4600             :          * b) If uclamp_min <= util <= uclamp_max, then the normal
    4601             :          *    fits_capacity() rules apply. Except we need to ensure that we
    4602             :          *    enforce we remain within uclamp_max, see comment above.
    4603             :          *
    4604             :          * c) If util < uclamp_min, then we are boosted. Same as (b) but we
    4605             :          *    need to take into account the boosted value fits the CPU without
    4606             :          *    taking margin/pressure into account.
    4607             :          *
    4608             :          * Cases (a) and (b) are handled in the 'fits' variable already. We
    4609             :          * just need to consider an extra check for case (c) after ensuring we
    4610             :          * handle the case uclamp_min > uclamp_max.
    4611             :          */
    4612             :         uclamp_min = min(uclamp_min, uclamp_max);
    4613             :         if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
    4614             :                 return -1;
    4615             : 
    4616             :         return fits;
    4617             : }
    4618             : 
    4619             : static inline int task_fits_cpu(struct task_struct *p, int cpu)
    4620             : {
    4621             :         unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
    4622             :         unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
    4623             :         unsigned long util = task_util_est(p);
    4624             :         /*
    4625             :          * Return true only if the cpu fully fits the task requirements, which
    4626             :          * include the utilization but also the performance hints.
    4627             :          */
    4628             :         return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
    4629             : }
    4630             : 
    4631             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
    4632             : {
    4633             :         if (!sched_asym_cpucap_active())
    4634             :                 return;
    4635             : 
    4636             :         if (!p || p->nr_cpus_allowed == 1) {
    4637             :                 rq->misfit_task_load = 0;
    4638             :                 return;
    4639             :         }
    4640             : 
    4641             :         if (task_fits_cpu(p, cpu_of(rq))) {
    4642             :                 rq->misfit_task_load = 0;
    4643             :                 return;
    4644             :         }
    4645             : 
    4646             :         /*
    4647             :          * Make sure that misfit_task_load will not be null even if
    4648             :          * task_h_load() returns 0.
    4649             :          */
    4650             :         rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
    4651             : }
    4652             : 
    4653             : #else /* CONFIG_SMP */
    4654             : 
    4655             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    4656             : {
    4657             :         return true;
    4658             : }
    4659             : 
    4660             : #define UPDATE_TG       0x0
    4661             : #define SKIP_AGE_LOAD   0x0
    4662             : #define DO_ATTACH       0x0
    4663             : #define DO_DETACH       0x0
    4664             : 
    4665             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
    4666             : {
    4667        2069 :         cfs_rq_util_change(cfs_rq, 0);
    4668             : }
    4669             : 
    4670             : static inline void remove_entity_load_avg(struct sched_entity *se) {}
    4671             : 
    4672             : static inline void
    4673             : attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4674             : static inline void
    4675             : detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4676             : 
    4677             : static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
    4678             : {
    4679             :         return 0;
    4680             : }
    4681             : 
    4682             : static inline void
    4683             : util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4684             : 
    4685             : static inline void
    4686             : util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4687             : 
    4688             : static inline void
    4689             : util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
    4690             :                 bool task_sleep) {}
    4691             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
    4692             : 
    4693             : #endif /* CONFIG_SMP */
    4694             : 
    4695             : static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4696             : {
    4697             : #ifdef CONFIG_SCHED_DEBUG
    4698             :         s64 d = se->vruntime - cfs_rq->min_vruntime;
    4699             : 
    4700             :         if (d < 0)
    4701             :                 d = -d;
    4702             : 
    4703             :         if (d > 3*sysctl_sched_latency)
    4704             :                 schedstat_inc(cfs_rq->nr_spread_over);
    4705             : #endif
    4706             : }
    4707             : 
    4708             : static inline bool entity_is_long_sleeper(struct sched_entity *se)
    4709             : {
    4710             :         struct cfs_rq *cfs_rq;
    4711             :         u64 sleep_time;
    4712             : 
    4713        1031 :         if (se->exec_start == 0)
    4714             :                 return false;
    4715             : 
    4716        1712 :         cfs_rq = cfs_rq_of(se);
    4717             : 
    4718        1712 :         sleep_time = rq_clock_task(rq_of(cfs_rq));
    4719             : 
    4720             :         /* Happen while migrating because of clock task divergence */
    4721         856 :         if (sleep_time <= se->exec_start)
    4722             :                 return false;
    4723             : 
    4724           3 :         sleep_time -= se->exec_start;
    4725           3 :         if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
    4726             :                 return true;
    4727             : 
    4728             :         return false;
    4729             : }
    4730             : 
    4731             : static void
    4732        1031 : place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
    4733             : {
    4734        1031 :         u64 vruntime = cfs_rq->min_vruntime;
    4735             : 
    4736             :         /*
    4737             :          * The 'current' period is already promised to the current tasks,
    4738             :          * however the extra weight of the new task will slow them down a
    4739             :          * little, place the new task so that it fits in the slot that
    4740             :          * stays open at the end.
    4741             :          */
    4742        1031 :         if (initial && sched_feat(START_DEBIT))
    4743         175 :                 vruntime += sched_vslice(cfs_rq, se);
    4744             : 
    4745             :         /* sleeps up to a single latency don't count. */
    4746        1031 :         if (!initial) {
    4747             :                 unsigned long thresh;
    4748             : 
    4749         856 :                 if (se_is_idle(se))
    4750             :                         thresh = sysctl_sched_min_granularity;
    4751             :                 else
    4752         856 :                         thresh = sysctl_sched_latency;
    4753             : 
    4754             :                 /*
    4755             :                  * Halve their sleep time's effect, to allow
    4756             :                  * for a gentler effect of sleepers:
    4757             :                  */
    4758             :                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
    4759         856 :                         thresh >>= 1;
    4760             : 
    4761         856 :                 vruntime -= thresh;
    4762             :         }
    4763             : 
    4764             :         /*
    4765             :          * Pull vruntime of the entity being placed to the base level of
    4766             :          * cfs_rq, to prevent boosting it if placed backwards.
    4767             :          * However, min_vruntime can advance much faster than real time, with
    4768             :          * the extreme being when an entity with the minimal weight always runs
    4769             :          * on the cfs_rq. If the waking entity slept for a long time, its
    4770             :          * vruntime difference from min_vruntime may overflow s64 and their
    4771             :          * comparison may get inversed, so ignore the entity's original
    4772             :          * vruntime in that case.
    4773             :          * The maximal vruntime speedup is given by the ratio of normal to
    4774             :          * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
    4775             :          * When placing a migrated waking entity, its exec_start has been set
    4776             :          * from a different rq. In order to take into account a possible
    4777             :          * divergence between new and prev rq's clocks task because of irq and
    4778             :          * stolen time, we take an additional margin.
    4779             :          * So, cutting off on the sleep time of
    4780             :          *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
    4781             :          * should be safe.
    4782             :          */
    4783        2062 :         if (entity_is_long_sleeper(se))
    4784           0 :                 se->vruntime = vruntime;
    4785             :         else
    4786        2062 :                 se->vruntime = max_vruntime(se->vruntime, vruntime);
    4787        1031 : }
    4788             : 
    4789             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
    4790             : 
    4791             : static inline bool cfs_bandwidth_used(void);
    4792             : 
    4793             : /*
    4794             :  * MIGRATION
    4795             :  *
    4796             :  *      dequeue
    4797             :  *        update_curr()
    4798             :  *          update_min_vruntime()
    4799             :  *        vruntime -= min_vruntime
    4800             :  *
    4801             :  *      enqueue
    4802             :  *        update_curr()
    4803             :  *          update_min_vruntime()
    4804             :  *        vruntime += min_vruntime
    4805             :  *
    4806             :  * this way the vruntime transition between RQs is done when both
    4807             :  * min_vruntime are up-to-date.
    4808             :  *
    4809             :  * WAKEUP (remote)
    4810             :  *
    4811             :  *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
    4812             :  *        vruntime -= min_vruntime
    4813             :  *
    4814             :  *      enqueue
    4815             :  *        update_curr()
    4816             :  *          update_min_vruntime()
    4817             :  *        vruntime += min_vruntime
    4818             :  *
    4819             :  * this way we don't have the most up-to-date min_vruntime on the originating
    4820             :  * CPU and an up-to-date min_vruntime on the destination CPU.
    4821             :  */
    4822             : 
    4823             : static void
    4824        1035 : enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4825             : {
    4826        1035 :         bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
    4827        1035 :         bool curr = cfs_rq->curr == se;
    4828             : 
    4829             :         /*
    4830             :          * If we're the current task, we must renormalise before calling
    4831             :          * update_curr().
    4832             :          */
    4833        1035 :         if (renorm && curr)
    4834           0 :                 se->vruntime += cfs_rq->min_vruntime;
    4835             : 
    4836        1035 :         update_curr(cfs_rq);
    4837             : 
    4838             :         /*
    4839             :          * Otherwise, renormalise after, such that we're placed at the current
    4840             :          * moment in time, instead of some random moment in the past. Being
    4841             :          * placed in the past could significantly boost this task to the
    4842             :          * fairness detriment of existing tasks.
    4843             :          */
    4844        1035 :         if (renorm && !curr)
    4845         179 :                 se->vruntime += cfs_rq->min_vruntime;
    4846             : 
    4847             :         /*
    4848             :          * When enqueuing a sched_entity, we must:
    4849             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4850             :          *   - For group_entity, update its runnable_weight to reflect the new
    4851             :          *     h_nr_running of its group cfs_rq.
    4852             :          *   - For group_entity, update its weight to reflect the new share of
    4853             :          *     its group cfs_rq
    4854             :          *   - Add its new weight to cfs_rq->load.weight
    4855             :          */
    4856        1035 :         update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
    4857        1035 :         se_update_runnable(se);
    4858        1035 :         update_cfs_group(se);
    4859        2070 :         account_entity_enqueue(cfs_rq, se);
    4860             : 
    4861        1035 :         if (flags & ENQUEUE_WAKEUP)
    4862         856 :                 place_entity(cfs_rq, se, 0);
    4863             :         /* Entity has migrated, no longer consider this task hot */
    4864             :         if (flags & ENQUEUE_MIGRATED)
    4865             :                 se->exec_start = 0;
    4866             : 
    4867             :         check_schedstat_required();
    4868        1035 :         update_stats_enqueue_fair(cfs_rq, se, flags);
    4869        1035 :         check_spread(cfs_rq, se);
    4870        1035 :         if (!curr)
    4871        1035 :                 __enqueue_entity(cfs_rq, se);
    4872        1035 :         se->on_rq = 1;
    4873             : 
    4874             :         if (cfs_rq->nr_running == 1) {
    4875             :                 check_enqueue_throttle(cfs_rq);
    4876             :                 if (!throttled_hierarchy(cfs_rq))
    4877             :                         list_add_leaf_cfs_rq(cfs_rq);
    4878             :         }
    4879        1035 : }
    4880             : 
    4881             : static void __clear_buddies_last(struct sched_entity *se)
    4882             : {
    4883           0 :         for_each_sched_entity(se) {
    4884           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4885           0 :                 if (cfs_rq->last != se)
    4886             :                         break;
    4887             : 
    4888           0 :                 cfs_rq->last = NULL;
    4889             :         }
    4890             : }
    4891             : 
    4892             : static void __clear_buddies_next(struct sched_entity *se)
    4893             : {
    4894         336 :         for_each_sched_entity(se) {
    4895         672 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4896         336 :                 if (cfs_rq->next != se)
    4897             :                         break;
    4898             : 
    4899         336 :                 cfs_rq->next = NULL;
    4900             :         }
    4901             : }
    4902             : 
    4903             : static void __clear_buddies_skip(struct sched_entity *se)
    4904             : {
    4905           0 :         for_each_sched_entity(se) {
    4906           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4907           0 :                 if (cfs_rq->skip != se)
    4908             :                         break;
    4909             : 
    4910           0 :                 cfs_rq->skip = NULL;
    4911             :         }
    4912             : }
    4913             : 
    4914        2068 : static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4915             : {
    4916        2068 :         if (cfs_rq->last == se)
    4917             :                 __clear_buddies_last(se);
    4918             : 
    4919        2068 :         if (cfs_rq->next == se)
    4920             :                 __clear_buddies_next(se);
    4921             : 
    4922        2068 :         if (cfs_rq->skip == se)
    4923             :                 __clear_buddies_skip(se);
    4924        2068 : }
    4925             : 
    4926             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4927             : 
    4928             : static void
    4929        1033 : dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4930             : {
    4931        1033 :         int action = UPDATE_TG;
    4932             : 
    4933        2066 :         if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
    4934             :                 action |= DO_DETACH;
    4935             : 
    4936             :         /*
    4937             :          * Update run-time statistics of the 'current'.
    4938             :          */
    4939        1033 :         update_curr(cfs_rq);
    4940             : 
    4941             :         /*
    4942             :          * When dequeuing a sched_entity, we must:
    4943             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4944             :          *   - For group_entity, update its runnable_weight to reflect the new
    4945             :          *     h_nr_running of its group cfs_rq.
    4946             :          *   - Subtract its previous weight from cfs_rq->load.weight.
    4947             :          *   - For group entity, update its weight to reflect the new share
    4948             :          *     of its group cfs_rq.
    4949             :          */
    4950        1033 :         update_load_avg(cfs_rq, se, action);
    4951        1033 :         se_update_runnable(se);
    4952             : 
    4953        1033 :         update_stats_dequeue_fair(cfs_rq, se, flags);
    4954             : 
    4955        1033 :         clear_buddies(cfs_rq, se);
    4956             : 
    4957        1033 :         if (se != cfs_rq->curr)
    4958             :                 __dequeue_entity(cfs_rq, se);
    4959        1033 :         se->on_rq = 0;
    4960        2066 :         account_entity_dequeue(cfs_rq, se);
    4961             : 
    4962             :         /*
    4963             :          * Normalize after update_curr(); which will also have moved
    4964             :          * min_vruntime if @se is the one holding it back. But before doing
    4965             :          * update_min_vruntime() again, which will discount @se's position and
    4966             :          * can move min_vruntime forward still more.
    4967             :          */
    4968        1033 :         if (!(flags & DEQUEUE_SLEEP))
    4969           4 :                 se->vruntime -= cfs_rq->min_vruntime;
    4970             : 
    4971             :         /* return excess runtime on last dequeue */
    4972        1033 :         return_cfs_rq_runtime(cfs_rq);
    4973             : 
    4974        1033 :         update_cfs_group(se);
    4975             : 
    4976             :         /*
    4977             :          * Now advance min_vruntime if @se was the entity holding it back,
    4978             :          * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
    4979             :          * put back on, and if we advance min_vruntime, we'll be placed back
    4980             :          * further than we started -- ie. we'll be penalized.
    4981             :          */
    4982        1033 :         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
    4983        1029 :                 update_min_vruntime(cfs_rq);
    4984             : 
    4985             :         if (cfs_rq->nr_running == 0)
    4986             :                 update_idle_cfs_rq_clock_pelt(cfs_rq);
    4987        1033 : }
    4988             : 
    4989             : /*
    4990             :  * Preempt the current task with a newly woken task if needed:
    4991             :  */
    4992             : static void
    4993           1 : check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4994             : {
    4995             :         unsigned long ideal_runtime, delta_exec;
    4996             :         struct sched_entity *se;
    4997             :         s64 delta;
    4998             : 
    4999             :         /*
    5000             :          * When many tasks blow up the sched_period; it is possible that
    5001             :          * sched_slice() reports unusually large results (when many tasks are
    5002             :          * very light for example). Therefore impose a maximum.
    5003             :          */
    5004           1 :         ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
    5005             : 
    5006           1 :         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
    5007           1 :         if (delta_exec > ideal_runtime) {
    5008           1 :                 resched_curr(rq_of(cfs_rq));
    5009             :                 /*
    5010             :                  * The current task ran long enough, ensure it doesn't get
    5011             :                  * re-elected due to buddy favours.
    5012             :                  */
    5013           1 :                 clear_buddies(cfs_rq, curr);
    5014           1 :                 return;
    5015             :         }
    5016             : 
    5017             :         /*
    5018             :          * Ensure that a task that missed wakeup preemption by a
    5019             :          * narrow margin doesn't have to wait for a full slice.
    5020             :          * This also mitigates buddy induced latencies under load.
    5021             :          */
    5022           0 :         if (delta_exec < sysctl_sched_min_granularity)
    5023             :                 return;
    5024             : 
    5025           0 :         se = __pick_first_entity(cfs_rq);
    5026           0 :         delta = curr->vruntime - se->vruntime;
    5027             : 
    5028           0 :         if (delta < 0)
    5029             :                 return;
    5030             : 
    5031           0 :         if (delta > ideal_runtime)
    5032           0 :                 resched_curr(rq_of(cfs_rq));
    5033             : }
    5034             : 
    5035             : static void
    5036        1034 : set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    5037             : {
    5038        1034 :         clear_buddies(cfs_rq, se);
    5039             : 
    5040             :         /* 'current' is not kept within the tree. */
    5041        1034 :         if (se->on_rq) {
    5042             :                 /*
    5043             :                  * Any task has to be enqueued before it get to execute on
    5044             :                  * a CPU. So account for the time it spent waiting on the
    5045             :                  * runqueue.
    5046             :                  */
    5047        2068 :                 update_stats_wait_end_fair(cfs_rq, se);
    5048             :                 __dequeue_entity(cfs_rq, se);
    5049             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    5050             :         }
    5051             : 
    5052        2068 :         update_stats_curr_start(cfs_rq, se);
    5053        1034 :         cfs_rq->curr = se;
    5054             : 
    5055             :         /*
    5056             :          * Track our maximum slice length, if the CPU's load is at
    5057             :          * least twice that of our own weight (i.e. dont track it
    5058             :          * when there are only lesser-weight tasks around):
    5059             :          */
    5060             :         if (schedstat_enabled() &&
    5061             :             rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
    5062             :                 struct sched_statistics *stats;
    5063             : 
    5064             :                 stats = __schedstats_from_se(se);
    5065             :                 __schedstat_set(stats->slice_max,
    5066             :                                 max((u64)stats->slice_max,
    5067             :                                     se->sum_exec_runtime - se->prev_sum_exec_runtime));
    5068             :         }
    5069             : 
    5070        1034 :         se->prev_sum_exec_runtime = se->sum_exec_runtime;
    5071        1034 : }
    5072             : 
    5073             : static int
    5074             : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
    5075             : 
    5076             : /*
    5077             :  * Pick the next process, keeping these things in mind, in this order:
    5078             :  * 1) keep things fair between processes/task groups
    5079             :  * 2) pick the "next" process, since someone really wants that to run
    5080             :  * 3) pick the "last" process, for cache locality
    5081             :  * 4) do not run the "skip" process, if something else is available
    5082             :  */
    5083             : static struct sched_entity *
    5084        1030 : pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    5085             : {
    5086        1030 :         struct sched_entity *left = __pick_first_entity(cfs_rq);
    5087             :         struct sched_entity *se;
    5088             : 
    5089             :         /*
    5090             :          * If curr is set we have to see if its left of the leftmost entity
    5091             :          * still in the tree, provided there was anything in the tree at all.
    5092             :          */
    5093        1030 :         if (!left || (curr && entity_before(curr, left)))
    5094             :                 left = curr;
    5095             : 
    5096        1030 :         se = left; /* ideally we run the leftmost entity */
    5097             : 
    5098             :         /*
    5099             :          * Avoid running the skip buddy, if running something else can
    5100             :          * be done without getting too unfair.
    5101             :          */
    5102        1030 :         if (cfs_rq->skip && cfs_rq->skip == se) {
    5103             :                 struct sched_entity *second;
    5104             : 
    5105           0 :                 if (se == curr) {
    5106             :                         second = __pick_first_entity(cfs_rq);
    5107             :                 } else {
    5108           0 :                         second = __pick_next_entity(se);
    5109           0 :                         if (!second || (curr && entity_before(curr, second)))
    5110             :                                 second = curr;
    5111             :                 }
    5112             : 
    5113           0 :                 if (second && wakeup_preempt_entity(second, left) < 1)
    5114           0 :                         se = second;
    5115             :         }
    5116             : 
    5117        1030 :         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
    5118             :                 /*
    5119             :                  * Someone really wants this to run. If it's not unfair, run it.
    5120             :                  */
    5121         336 :                 se = cfs_rq->next;
    5122         694 :         } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
    5123             :                 /*
    5124             :                  * Prefer last buddy, try to return the CPU to a preempted task.
    5125             :                  */
    5126           0 :                 se = cfs_rq->last;
    5127             :         }
    5128             : 
    5129        1030 :         return se;
    5130             : }
    5131             : 
    5132             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    5133             : 
    5134        1033 : static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    5135             : {
    5136             :         /*
    5137             :          * If still on the runqueue then deactivate_task()
    5138             :          * was not called and update_curr() has to be done:
    5139             :          */
    5140        1033 :         if (prev->on_rq)
    5141           0 :                 update_curr(cfs_rq);
    5142             : 
    5143             :         /* throttle cfs_rqs exceeding runtime */
    5144        1033 :         check_cfs_rq_runtime(cfs_rq);
    5145             : 
    5146        1033 :         check_spread(cfs_rq, prev);
    5147             : 
    5148        1033 :         if (prev->on_rq) {
    5149           0 :                 update_stats_wait_start_fair(cfs_rq, prev);
    5150             :                 /* Put 'current' back into the tree. */
    5151           0 :                 __enqueue_entity(cfs_rq, prev);
    5152             :                 /* in !on_rq case, update occurred at dequeue */
    5153           0 :                 update_load_avg(cfs_rq, prev, 0);
    5154             :         }
    5155        1033 :         cfs_rq->curr = NULL;
    5156        1033 : }
    5157             : 
    5158             : static void
    5159           1 : entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
    5160             : {
    5161             :         /*
    5162             :          * Update run-time statistics of the 'current'.
    5163             :          */
    5164           1 :         update_curr(cfs_rq);
    5165             : 
    5166             :         /*
    5167             :          * Ensure that runnable average is periodically updated.
    5168             :          */
    5169           1 :         update_load_avg(cfs_rq, curr, UPDATE_TG);
    5170           1 :         update_cfs_group(curr);
    5171             : 
    5172             : #ifdef CONFIG_SCHED_HRTICK
    5173             :         /*
    5174             :          * queued ticks are scheduled to match the slice, so don't bother
    5175             :          * validating it and just reschedule.
    5176             :          */
    5177             :         if (queued) {
    5178             :                 resched_curr(rq_of(cfs_rq));
    5179             :                 return;
    5180             :         }
    5181             :         /*
    5182             :          * don't let the period tick interfere with the hrtick preemption
    5183             :          */
    5184             :         if (!sched_feat(DOUBLE_TICK) &&
    5185             :                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
    5186             :                 return;
    5187             : #endif
    5188             : 
    5189           1 :         if (cfs_rq->nr_running > 1)
    5190           1 :                 check_preempt_tick(cfs_rq, curr);
    5191           1 : }
    5192             : 
    5193             : 
    5194             : /**************************************************
    5195             :  * CFS bandwidth control machinery
    5196             :  */
    5197             : 
    5198             : #ifdef CONFIG_CFS_BANDWIDTH
    5199             : 
    5200             : #ifdef CONFIG_JUMP_LABEL
    5201             : static struct static_key __cfs_bandwidth_used;
    5202             : 
    5203             : static inline bool cfs_bandwidth_used(void)
    5204             : {
    5205             :         return static_key_false(&__cfs_bandwidth_used);
    5206             : }
    5207             : 
    5208             : void cfs_bandwidth_usage_inc(void)
    5209             : {
    5210             :         static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
    5211             : }
    5212             : 
    5213             : void cfs_bandwidth_usage_dec(void)
    5214             : {
    5215             :         static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
    5216             : }
    5217             : #else /* CONFIG_JUMP_LABEL */
    5218             : static bool cfs_bandwidth_used(void)
    5219             : {
    5220             :         return true;
    5221             : }
    5222             : 
    5223             : void cfs_bandwidth_usage_inc(void) {}
    5224             : void cfs_bandwidth_usage_dec(void) {}
    5225             : #endif /* CONFIG_JUMP_LABEL */
    5226             : 
    5227             : /*
    5228             :  * default period for cfs group bandwidth.
    5229             :  * default: 0.1s, units: nanoseconds
    5230             :  */
    5231             : static inline u64 default_cfs_period(void)
    5232             : {
    5233             :         return 100000000ULL;
    5234             : }
    5235             : 
    5236             : static inline u64 sched_cfs_bandwidth_slice(void)
    5237             : {
    5238             :         return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
    5239             : }
    5240             : 
    5241             : /*
    5242             :  * Replenish runtime according to assigned quota. We use sched_clock_cpu
    5243             :  * directly instead of rq->clock to avoid adding additional synchronization
    5244             :  * around rq->lock.
    5245             :  *
    5246             :  * requires cfs_b->lock
    5247             :  */
    5248             : void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
    5249             : {
    5250             :         s64 runtime;
    5251             : 
    5252             :         if (unlikely(cfs_b->quota == RUNTIME_INF))
    5253             :                 return;
    5254             : 
    5255             :         cfs_b->runtime += cfs_b->quota;
    5256             :         runtime = cfs_b->runtime_snap - cfs_b->runtime;
    5257             :         if (runtime > 0) {
    5258             :                 cfs_b->burst_time += runtime;
    5259             :                 cfs_b->nr_burst++;
    5260             :         }
    5261             : 
    5262             :         cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
    5263             :         cfs_b->runtime_snap = cfs_b->runtime;
    5264             : }
    5265             : 
    5266             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    5267             : {
    5268             :         return &tg->cfs_bandwidth;
    5269             : }
    5270             : 
    5271             : /* returns 0 on failure to allocate runtime */
    5272             : static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
    5273             :                                    struct cfs_rq *cfs_rq, u64 target_runtime)
    5274             : {
    5275             :         u64 min_amount, amount = 0;
    5276             : 
    5277             :         lockdep_assert_held(&cfs_b->lock);
    5278             : 
    5279             :         /* note: this is a positive sum as runtime_remaining <= 0 */
    5280             :         min_amount = target_runtime - cfs_rq->runtime_remaining;
    5281             : 
    5282             :         if (cfs_b->quota == RUNTIME_INF)
    5283             :                 amount = min_amount;
    5284             :         else {
    5285             :                 start_cfs_bandwidth(cfs_b);
    5286             : 
    5287             :                 if (cfs_b->runtime > 0) {
    5288             :                         amount = min(cfs_b->runtime, min_amount);
    5289             :                         cfs_b->runtime -= amount;
    5290             :                         cfs_b->idle = 0;
    5291             :                 }
    5292             :         }
    5293             : 
    5294             :         cfs_rq->runtime_remaining += amount;
    5295             : 
    5296             :         return cfs_rq->runtime_remaining > 0;
    5297             : }
    5298             : 
    5299             : /* returns 0 on failure to allocate runtime */
    5300             : static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5301             : {
    5302             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5303             :         int ret;
    5304             : 
    5305             :         raw_spin_lock(&cfs_b->lock);
    5306             :         ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
    5307             :         raw_spin_unlock(&cfs_b->lock);
    5308             : 
    5309             :         return ret;
    5310             : }
    5311             : 
    5312             : static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    5313             : {
    5314             :         /* dock delta_exec before expiring quota (as it could span periods) */
    5315             :         cfs_rq->runtime_remaining -= delta_exec;
    5316             : 
    5317             :         if (likely(cfs_rq->runtime_remaining > 0))
    5318             :                 return;
    5319             : 
    5320             :         if (cfs_rq->throttled)
    5321             :                 return;
    5322             :         /*
    5323             :          * if we're unable to extend our runtime we resched so that the active
    5324             :          * hierarchy can be throttled
    5325             :          */
    5326             :         if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
    5327             :                 resched_curr(rq_of(cfs_rq));
    5328             : }
    5329             : 
    5330             : static __always_inline
    5331             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    5332             : {
    5333             :         if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
    5334             :                 return;
    5335             : 
    5336             :         __account_cfs_rq_runtime(cfs_rq, delta_exec);
    5337             : }
    5338             : 
    5339             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    5340             : {
    5341             :         return cfs_bandwidth_used() && cfs_rq->throttled;
    5342             : }
    5343             : 
    5344             : /* check whether cfs_rq, or any parent, is throttled */
    5345             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    5346             : {
    5347             :         return cfs_bandwidth_used() && cfs_rq->throttle_count;
    5348             : }
    5349             : 
    5350             : /*
    5351             :  * Ensure that neither of the group entities corresponding to src_cpu or
    5352             :  * dest_cpu are members of a throttled hierarchy when performing group
    5353             :  * load-balance operations.
    5354             :  */
    5355             : static inline int throttled_lb_pair(struct task_group *tg,
    5356             :                                     int src_cpu, int dest_cpu)
    5357             : {
    5358             :         struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
    5359             : 
    5360             :         src_cfs_rq = tg->cfs_rq[src_cpu];
    5361             :         dest_cfs_rq = tg->cfs_rq[dest_cpu];
    5362             : 
    5363             :         return throttled_hierarchy(src_cfs_rq) ||
    5364             :                throttled_hierarchy(dest_cfs_rq);
    5365             : }
    5366             : 
    5367             : static int tg_unthrottle_up(struct task_group *tg, void *data)
    5368             : {
    5369             :         struct rq *rq = data;
    5370             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5371             : 
    5372             :         cfs_rq->throttle_count--;
    5373             :         if (!cfs_rq->throttle_count) {
    5374             :                 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
    5375             :                                              cfs_rq->throttled_clock_pelt;
    5376             : 
    5377             :                 /* Add cfs_rq with load or one or more already running entities to the list */
    5378             :                 if (!cfs_rq_is_decayed(cfs_rq))
    5379             :                         list_add_leaf_cfs_rq(cfs_rq);
    5380             :         }
    5381             : 
    5382             :         return 0;
    5383             : }
    5384             : 
    5385             : static int tg_throttle_down(struct task_group *tg, void *data)
    5386             : {
    5387             :         struct rq *rq = data;
    5388             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5389             : 
    5390             :         /* group is entering throttled state, stop time */
    5391             :         if (!cfs_rq->throttle_count) {
    5392             :                 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
    5393             :                 list_del_leaf_cfs_rq(cfs_rq);
    5394             :         }
    5395             :         cfs_rq->throttle_count++;
    5396             : 
    5397             :         return 0;
    5398             : }
    5399             : 
    5400             : static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
    5401             : {
    5402             :         struct rq *rq = rq_of(cfs_rq);
    5403             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5404             :         struct sched_entity *se;
    5405             :         long task_delta, idle_task_delta, dequeue = 1;
    5406             : 
    5407             :         raw_spin_lock(&cfs_b->lock);
    5408             :         /* This will start the period timer if necessary */
    5409             :         if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
    5410             :                 /*
    5411             :                  * We have raced with bandwidth becoming available, and if we
    5412             :                  * actually throttled the timer might not unthrottle us for an
    5413             :                  * entire period. We additionally needed to make sure that any
    5414             :                  * subsequent check_cfs_rq_runtime calls agree not to throttle
    5415             :                  * us, as we may commit to do cfs put_prev+pick_next, so we ask
    5416             :                  * for 1ns of runtime rather than just check cfs_b.
    5417             :                  */
    5418             :                 dequeue = 0;
    5419             :         } else {
    5420             :                 list_add_tail_rcu(&cfs_rq->throttled_list,
    5421             :                                   &cfs_b->throttled_cfs_rq);
    5422             :         }
    5423             :         raw_spin_unlock(&cfs_b->lock);
    5424             : 
    5425             :         if (!dequeue)
    5426             :                 return false;  /* Throttle no longer required. */
    5427             : 
    5428             :         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
    5429             : 
    5430             :         /* freeze hierarchy runnable averages while throttled */
    5431             :         rcu_read_lock();
    5432             :         walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
    5433             :         rcu_read_unlock();
    5434             : 
    5435             :         task_delta = cfs_rq->h_nr_running;
    5436             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    5437             :         for_each_sched_entity(se) {
    5438             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5439             :                 /* throttled entity or throttle-on-deactivate */
    5440             :                 if (!se->on_rq)
    5441             :                         goto done;
    5442             : 
    5443             :                 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
    5444             : 
    5445             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5446             :                         idle_task_delta = cfs_rq->h_nr_running;
    5447             : 
    5448             :                 qcfs_rq->h_nr_running -= task_delta;
    5449             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    5450             : 
    5451             :                 if (qcfs_rq->load.weight) {
    5452             :                         /* Avoid re-evaluating load for this entity: */
    5453             :                         se = parent_entity(se);
    5454             :                         break;
    5455             :                 }
    5456             :         }
    5457             : 
    5458             :         for_each_sched_entity(se) {
    5459             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5460             :                 /* throttled entity or throttle-on-deactivate */
    5461             :                 if (!se->on_rq)
    5462             :                         goto done;
    5463             : 
    5464             :                 update_load_avg(qcfs_rq, se, 0);
    5465             :                 se_update_runnable(se);
    5466             : 
    5467             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5468             :                         idle_task_delta = cfs_rq->h_nr_running;
    5469             : 
    5470             :                 qcfs_rq->h_nr_running -= task_delta;
    5471             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    5472             :         }
    5473             : 
    5474             :         /* At this point se is NULL and we are at root level*/
    5475             :         sub_nr_running(rq, task_delta);
    5476             : 
    5477             : done:
    5478             :         /*
    5479             :          * Note: distribution will already see us throttled via the
    5480             :          * throttled-list.  rq->lock protects completion.
    5481             :          */
    5482             :         cfs_rq->throttled = 1;
    5483             :         cfs_rq->throttled_clock = rq_clock(rq);
    5484             :         return true;
    5485             : }
    5486             : 
    5487             : void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
    5488             : {
    5489             :         struct rq *rq = rq_of(cfs_rq);
    5490             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5491             :         struct sched_entity *se;
    5492             :         long task_delta, idle_task_delta;
    5493             : 
    5494             :         se = cfs_rq->tg->se[cpu_of(rq)];
    5495             : 
    5496             :         cfs_rq->throttled = 0;
    5497             : 
    5498             :         update_rq_clock(rq);
    5499             : 
    5500             :         raw_spin_lock(&cfs_b->lock);
    5501             :         cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
    5502             :         list_del_rcu(&cfs_rq->throttled_list);
    5503             :         raw_spin_unlock(&cfs_b->lock);
    5504             : 
    5505             :         /* update hierarchical throttle state */
    5506             :         walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
    5507             : 
    5508             :         if (!cfs_rq->load.weight) {
    5509             :                 if (!cfs_rq->on_list)
    5510             :                         return;
    5511             :                 /*
    5512             :                  * Nothing to run but something to decay (on_list)?
    5513             :                  * Complete the branch.
    5514             :                  */
    5515             :                 for_each_sched_entity(se) {
    5516             :                         if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
    5517             :                                 break;
    5518             :                 }
    5519             :                 goto unthrottle_throttle;
    5520             :         }
    5521             : 
    5522             :         task_delta = cfs_rq->h_nr_running;
    5523             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    5524             :         for_each_sched_entity(se) {
    5525             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5526             : 
    5527             :                 if (se->on_rq)
    5528             :                         break;
    5529             :                 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
    5530             : 
    5531             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5532             :                         idle_task_delta = cfs_rq->h_nr_running;
    5533             : 
    5534             :                 qcfs_rq->h_nr_running += task_delta;
    5535             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5536             : 
    5537             :                 /* end evaluation on encountering a throttled cfs_rq */
    5538             :                 if (cfs_rq_throttled(qcfs_rq))
    5539             :                         goto unthrottle_throttle;
    5540             :         }
    5541             : 
    5542             :         for_each_sched_entity(se) {
    5543             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5544             : 
    5545             :                 update_load_avg(qcfs_rq, se, UPDATE_TG);
    5546             :                 se_update_runnable(se);
    5547             : 
    5548             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5549             :                         idle_task_delta = cfs_rq->h_nr_running;
    5550             : 
    5551             :                 qcfs_rq->h_nr_running += task_delta;
    5552             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5553             : 
    5554             :                 /* end evaluation on encountering a throttled cfs_rq */
    5555             :                 if (cfs_rq_throttled(qcfs_rq))
    5556             :                         goto unthrottle_throttle;
    5557             :         }
    5558             : 
    5559             :         /* At this point se is NULL and we are at root level*/
    5560             :         add_nr_running(rq, task_delta);
    5561             : 
    5562             : unthrottle_throttle:
    5563             :         assert_list_leaf_cfs_rq(rq);
    5564             : 
    5565             :         /* Determine whether we need to wake up potentially idle CPU: */
    5566             :         if (rq->curr == rq->idle && rq->cfs.nr_running)
    5567             :                 resched_curr(rq);
    5568             : }
    5569             : 
    5570             : #ifdef CONFIG_SMP
    5571             : static void __cfsb_csd_unthrottle(void *arg)
    5572             : {
    5573             :         struct cfs_rq *cursor, *tmp;
    5574             :         struct rq *rq = arg;
    5575             :         struct rq_flags rf;
    5576             : 
    5577             :         rq_lock(rq, &rf);
    5578             : 
    5579             :         /*
    5580             :          * Iterating over the list can trigger several call to
    5581             :          * update_rq_clock() in unthrottle_cfs_rq().
    5582             :          * Do it once and skip the potential next ones.
    5583             :          */
    5584             :         update_rq_clock(rq);
    5585             :         rq_clock_start_loop_update(rq);
    5586             : 
    5587             :         /*
    5588             :          * Since we hold rq lock we're safe from concurrent manipulation of
    5589             :          * the CSD list. However, this RCU critical section annotates the
    5590             :          * fact that we pair with sched_free_group_rcu(), so that we cannot
    5591             :          * race with group being freed in the window between removing it
    5592             :          * from the list and advancing to the next entry in the list.
    5593             :          */
    5594             :         rcu_read_lock();
    5595             : 
    5596             :         list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
    5597             :                                  throttled_csd_list) {
    5598             :                 list_del_init(&cursor->throttled_csd_list);
    5599             : 
    5600             :                 if (cfs_rq_throttled(cursor))
    5601             :                         unthrottle_cfs_rq(cursor);
    5602             :         }
    5603             : 
    5604             :         rcu_read_unlock();
    5605             : 
    5606             :         rq_clock_stop_loop_update(rq);
    5607             :         rq_unlock(rq, &rf);
    5608             : }
    5609             : 
    5610             : static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5611             : {
    5612             :         struct rq *rq = rq_of(cfs_rq);
    5613             :         bool first;
    5614             : 
    5615             :         if (rq == this_rq()) {
    5616             :                 unthrottle_cfs_rq(cfs_rq);
    5617             :                 return;
    5618             :         }
    5619             : 
    5620             :         /* Already enqueued */
    5621             :         if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
    5622             :                 return;
    5623             : 
    5624             :         first = list_empty(&rq->cfsb_csd_list);
    5625             :         list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
    5626             :         if (first)
    5627             :                 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
    5628             : }
    5629             : #else
    5630             : static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5631             : {
    5632             :         unthrottle_cfs_rq(cfs_rq);
    5633             : }
    5634             : #endif
    5635             : 
    5636             : static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
    5637             : {
    5638             :         lockdep_assert_rq_held(rq_of(cfs_rq));
    5639             : 
    5640             :         if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
    5641             :             cfs_rq->runtime_remaining <= 0))
    5642             :                 return;
    5643             : 
    5644             :         __unthrottle_cfs_rq_async(cfs_rq);
    5645             : }
    5646             : 
    5647             : static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
    5648             : {
    5649             :         struct cfs_rq *local_unthrottle = NULL;
    5650             :         int this_cpu = smp_processor_id();
    5651             :         u64 runtime, remaining = 1;
    5652             :         bool throttled = false;
    5653             :         struct cfs_rq *cfs_rq;
    5654             :         struct rq_flags rf;
    5655             :         struct rq *rq;
    5656             : 
    5657             :         rcu_read_lock();
    5658             :         list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
    5659             :                                 throttled_list) {
    5660             :                 rq = rq_of(cfs_rq);
    5661             : 
    5662             :                 if (!remaining) {
    5663             :                         throttled = true;
    5664             :                         break;
    5665             :                 }
    5666             : 
    5667             :                 rq_lock_irqsave(rq, &rf);
    5668             :                 if (!cfs_rq_throttled(cfs_rq))
    5669             :                         goto next;
    5670             : 
    5671             : #ifdef CONFIG_SMP
    5672             :                 /* Already queued for async unthrottle */
    5673             :                 if (!list_empty(&cfs_rq->throttled_csd_list))
    5674             :                         goto next;
    5675             : #endif
    5676             : 
    5677             :                 /* By the above checks, this should never be true */
    5678             :                 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
    5679             : 
    5680             :                 raw_spin_lock(&cfs_b->lock);
    5681             :                 runtime = -cfs_rq->runtime_remaining + 1;
    5682             :                 if (runtime > cfs_b->runtime)
    5683             :                         runtime = cfs_b->runtime;
    5684             :                 cfs_b->runtime -= runtime;
    5685             :                 remaining = cfs_b->runtime;
    5686             :                 raw_spin_unlock(&cfs_b->lock);
    5687             : 
    5688             :                 cfs_rq->runtime_remaining += runtime;
    5689             : 
    5690             :                 /* we check whether we're throttled above */
    5691             :                 if (cfs_rq->runtime_remaining > 0) {
    5692             :                         if (cpu_of(rq) != this_cpu ||
    5693             :                             SCHED_WARN_ON(local_unthrottle))
    5694             :                                 unthrottle_cfs_rq_async(cfs_rq);
    5695             :                         else
    5696             :                                 local_unthrottle = cfs_rq;
    5697             :                 } else {
    5698             :                         throttled = true;
    5699             :                 }
    5700             : 
    5701             : next:
    5702             :                 rq_unlock_irqrestore(rq, &rf);
    5703             :         }
    5704             :         rcu_read_unlock();
    5705             : 
    5706             :         if (local_unthrottle) {
    5707             :                 rq = cpu_rq(this_cpu);
    5708             :                 rq_lock_irqsave(rq, &rf);
    5709             :                 if (cfs_rq_throttled(local_unthrottle))
    5710             :                         unthrottle_cfs_rq(local_unthrottle);
    5711             :                 rq_unlock_irqrestore(rq, &rf);
    5712             :         }
    5713             : 
    5714             :         return throttled;
    5715             : }
    5716             : 
    5717             : /*
    5718             :  * Responsible for refilling a task_group's bandwidth and unthrottling its
    5719             :  * cfs_rqs as appropriate. If there has been no activity within the last
    5720             :  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
    5721             :  * used to track this state.
    5722             :  */
    5723             : static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
    5724             : {
    5725             :         int throttled;
    5726             : 
    5727             :         /* no need to continue the timer with no bandwidth constraint */
    5728             :         if (cfs_b->quota == RUNTIME_INF)
    5729             :                 goto out_deactivate;
    5730             : 
    5731             :         throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    5732             :         cfs_b->nr_periods += overrun;
    5733             : 
    5734             :         /* Refill extra burst quota even if cfs_b->idle */
    5735             :         __refill_cfs_bandwidth_runtime(cfs_b);
    5736             : 
    5737             :         /*
    5738             :          * idle depends on !throttled (for the case of a large deficit), and if
    5739             :          * we're going inactive then everything else can be deferred
    5740             :          */
    5741             :         if (cfs_b->idle && !throttled)
    5742             :                 goto out_deactivate;
    5743             : 
    5744             :         if (!throttled) {
    5745             :                 /* mark as potentially idle for the upcoming period */
    5746             :                 cfs_b->idle = 1;
    5747             :                 return 0;
    5748             :         }
    5749             : 
    5750             :         /* account preceding periods in which throttling occurred */
    5751             :         cfs_b->nr_throttled += overrun;
    5752             : 
    5753             :         /*
    5754             :          * This check is repeated as we release cfs_b->lock while we unthrottle.
    5755             :          */
    5756             :         while (throttled && cfs_b->runtime > 0) {
    5757             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5758             :                 /* we can't nest cfs_b->lock while distributing bandwidth */
    5759             :                 throttled = distribute_cfs_runtime(cfs_b);
    5760             :                 raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5761             :         }
    5762             : 
    5763             :         /*
    5764             :          * While we are ensured activity in the period following an
    5765             :          * unthrottle, this also covers the case in which the new bandwidth is
    5766             :          * insufficient to cover the existing bandwidth deficit.  (Forcing the
    5767             :          * timer to remain active while there are any throttled entities.)
    5768             :          */
    5769             :         cfs_b->idle = 0;
    5770             : 
    5771             :         return 0;
    5772             : 
    5773             : out_deactivate:
    5774             :         return 1;
    5775             : }
    5776             : 
    5777             : /* a cfs_rq won't donate quota below this amount */
    5778             : static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
    5779             : /* minimum remaining period time to redistribute slack quota */
    5780             : static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
    5781             : /* how long we wait to gather additional slack before distributing */
    5782             : static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
    5783             : 
    5784             : /*
    5785             :  * Are we near the end of the current quota period?
    5786             :  *
    5787             :  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
    5788             :  * hrtimer base being cleared by hrtimer_start. In the case of
    5789             :  * migrate_hrtimers, base is never cleared, so we are fine.
    5790             :  */
    5791             : static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
    5792             : {
    5793             :         struct hrtimer *refresh_timer = &cfs_b->period_timer;
    5794             :         s64 remaining;
    5795             : 
    5796             :         /* if the call-back is running a quota refresh is already occurring */
    5797             :         if (hrtimer_callback_running(refresh_timer))
    5798             :                 return 1;
    5799             : 
    5800             :         /* is a quota refresh about to occur? */
    5801             :         remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
    5802             :         if (remaining < (s64)min_expire)
    5803             :                 return 1;
    5804             : 
    5805             :         return 0;
    5806             : }
    5807             : 
    5808             : static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
    5809             : {
    5810             :         u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
    5811             : 
    5812             :         /* if there's a quota refresh soon don't bother with slack */
    5813             :         if (runtime_refresh_within(cfs_b, min_left))
    5814             :                 return;
    5815             : 
    5816             :         /* don't push forwards an existing deferred unthrottle */
    5817             :         if (cfs_b->slack_started)
    5818             :                 return;
    5819             :         cfs_b->slack_started = true;
    5820             : 
    5821             :         hrtimer_start(&cfs_b->slack_timer,
    5822             :                         ns_to_ktime(cfs_bandwidth_slack_period),
    5823             :                         HRTIMER_MODE_REL);
    5824             : }
    5825             : 
    5826             : /* we know any runtime found here is valid as update_curr() precedes return */
    5827             : static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5828             : {
    5829             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5830             :         s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
    5831             : 
    5832             :         if (slack_runtime <= 0)
    5833             :                 return;
    5834             : 
    5835             :         raw_spin_lock(&cfs_b->lock);
    5836             :         if (cfs_b->quota != RUNTIME_INF) {
    5837             :                 cfs_b->runtime += slack_runtime;
    5838             : 
    5839             :                 /* we are under rq->lock, defer unthrottling using a timer */
    5840             :                 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
    5841             :                     !list_empty(&cfs_b->throttled_cfs_rq))
    5842             :                         start_cfs_slack_bandwidth(cfs_b);
    5843             :         }
    5844             :         raw_spin_unlock(&cfs_b->lock);
    5845             : 
    5846             :         /* even if it's not valid for return we don't want to try again */
    5847             :         cfs_rq->runtime_remaining -= slack_runtime;
    5848             : }
    5849             : 
    5850             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5851             : {
    5852             :         if (!cfs_bandwidth_used())
    5853             :                 return;
    5854             : 
    5855             :         if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
    5856             :                 return;
    5857             : 
    5858             :         __return_cfs_rq_runtime(cfs_rq);
    5859             : }
    5860             : 
    5861             : /*
    5862             :  * This is done with a timer (instead of inline with bandwidth return) since
    5863             :  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
    5864             :  */
    5865             : static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
    5866             : {
    5867             :         u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
    5868             :         unsigned long flags;
    5869             : 
    5870             :         /* confirm we're still not at a refresh boundary */
    5871             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5872             :         cfs_b->slack_started = false;
    5873             : 
    5874             :         if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
    5875             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5876             :                 return;
    5877             :         }
    5878             : 
    5879             :         if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
    5880             :                 runtime = cfs_b->runtime;
    5881             : 
    5882             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5883             : 
    5884             :         if (!runtime)
    5885             :                 return;
    5886             : 
    5887             :         distribute_cfs_runtime(cfs_b);
    5888             : }
    5889             : 
    5890             : /*
    5891             :  * When a group wakes up we want to make sure that its quota is not already
    5892             :  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
    5893             :  * runtime as update_curr() throttling can not trigger until it's on-rq.
    5894             :  */
    5895             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
    5896             : {
    5897             :         if (!cfs_bandwidth_used())
    5898             :                 return;
    5899             : 
    5900             :         /* an active group must be handled by the update_curr()->put() path */
    5901             :         if (!cfs_rq->runtime_enabled || cfs_rq->curr)
    5902             :                 return;
    5903             : 
    5904             :         /* ensure the group is not already throttled */
    5905             :         if (cfs_rq_throttled(cfs_rq))
    5906             :                 return;
    5907             : 
    5908             :         /* update runtime allocation */
    5909             :         account_cfs_rq_runtime(cfs_rq, 0);
    5910             :         if (cfs_rq->runtime_remaining <= 0)
    5911             :                 throttle_cfs_rq(cfs_rq);
    5912             : }
    5913             : 
    5914             : static void sync_throttle(struct task_group *tg, int cpu)
    5915             : {
    5916             :         struct cfs_rq *pcfs_rq, *cfs_rq;
    5917             : 
    5918             :         if (!cfs_bandwidth_used())
    5919             :                 return;
    5920             : 
    5921             :         if (!tg->parent)
    5922             :                 return;
    5923             : 
    5924             :         cfs_rq = tg->cfs_rq[cpu];
    5925             :         pcfs_rq = tg->parent->cfs_rq[cpu];
    5926             : 
    5927             :         cfs_rq->throttle_count = pcfs_rq->throttle_count;
    5928             :         cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
    5929             : }
    5930             : 
    5931             : /* conditionally throttle active cfs_rq's from put_prev_entity() */
    5932             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5933             : {
    5934             :         if (!cfs_bandwidth_used())
    5935             :                 return false;
    5936             : 
    5937             :         if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
    5938             :                 return false;
    5939             : 
    5940             :         /*
    5941             :          * it's possible for a throttled entity to be forced into a running
    5942             :          * state (e.g. set_curr_task), in this case we're finished.
    5943             :          */
    5944             :         if (cfs_rq_throttled(cfs_rq))
    5945             :                 return true;
    5946             : 
    5947             :         return throttle_cfs_rq(cfs_rq);
    5948             : }
    5949             : 
    5950             : static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
    5951             : {
    5952             :         struct cfs_bandwidth *cfs_b =
    5953             :                 container_of(timer, struct cfs_bandwidth, slack_timer);
    5954             : 
    5955             :         do_sched_cfs_slack_timer(cfs_b);
    5956             : 
    5957             :         return HRTIMER_NORESTART;
    5958             : }
    5959             : 
    5960             : extern const u64 max_cfs_quota_period;
    5961             : 
    5962             : static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
    5963             : {
    5964             :         struct cfs_bandwidth *cfs_b =
    5965             :                 container_of(timer, struct cfs_bandwidth, period_timer);
    5966             :         unsigned long flags;
    5967             :         int overrun;
    5968             :         int idle = 0;
    5969             :         int count = 0;
    5970             : 
    5971             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5972             :         for (;;) {
    5973             :                 overrun = hrtimer_forward_now(timer, cfs_b->period);
    5974             :                 if (!overrun)
    5975             :                         break;
    5976             : 
    5977             :                 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
    5978             : 
    5979             :                 if (++count > 3) {
    5980             :                         u64 new, old = ktime_to_ns(cfs_b->period);
    5981             : 
    5982             :                         /*
    5983             :                          * Grow period by a factor of 2 to avoid losing precision.
    5984             :                          * Precision loss in the quota/period ratio can cause __cfs_schedulable
    5985             :                          * to fail.
    5986             :                          */
    5987             :                         new = old * 2;
    5988             :                         if (new < max_cfs_quota_period) {
    5989             :                                 cfs_b->period = ns_to_ktime(new);
    5990             :                                 cfs_b->quota *= 2;
    5991             :                                 cfs_b->burst *= 2;
    5992             : 
    5993             :                                 pr_warn_ratelimited(
    5994             :         "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5995             :                                         smp_processor_id(),
    5996             :                                         div_u64(new, NSEC_PER_USEC),
    5997             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5998             :                         } else {
    5999             :                                 pr_warn_ratelimited(
    6000             :         "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    6001             :                                         smp_processor_id(),
    6002             :                                         div_u64(old, NSEC_PER_USEC),
    6003             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    6004             :                         }
    6005             : 
    6006             :                         /* reset count so we don't come right back in here */
    6007             :                         count = 0;
    6008             :                 }
    6009             :         }
    6010             :         if (idle)
    6011             :                 cfs_b->period_active = 0;
    6012             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    6013             : 
    6014             :         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
    6015             : }
    6016             : 
    6017             : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    6018             : {
    6019             :         raw_spin_lock_init(&cfs_b->lock);
    6020             :         cfs_b->runtime = 0;
    6021             :         cfs_b->quota = RUNTIME_INF;
    6022             :         cfs_b->period = ns_to_ktime(default_cfs_period());
    6023             :         cfs_b->burst = 0;
    6024             : 
    6025             :         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
    6026             :         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
    6027             :         cfs_b->period_timer.function = sched_cfs_period_timer;
    6028             : 
    6029             :         /* Add a random offset so that timers interleave */
    6030             :         hrtimer_set_expires(&cfs_b->period_timer,
    6031             :                             get_random_u32_below(cfs_b->period));
    6032             :         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    6033             :         cfs_b->slack_timer.function = sched_cfs_slack_timer;
    6034             :         cfs_b->slack_started = false;
    6035             : }
    6036             : 
    6037             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    6038             : {
    6039             :         cfs_rq->runtime_enabled = 0;
    6040             :         INIT_LIST_HEAD(&cfs_rq->throttled_list);
    6041             : #ifdef CONFIG_SMP
    6042             :         INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
    6043             : #endif
    6044             : }
    6045             : 
    6046             : void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    6047             : {
    6048             :         lockdep_assert_held(&cfs_b->lock);
    6049             : 
    6050             :         if (cfs_b->period_active)
    6051             :                 return;
    6052             : 
    6053             :         cfs_b->period_active = 1;
    6054             :         hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
    6055             :         hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
    6056             : }
    6057             : 
    6058             : static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    6059             : {
    6060             :         int __maybe_unused i;
    6061             : 
    6062             :         /* init_cfs_bandwidth() was not called */
    6063             :         if (!cfs_b->throttled_cfs_rq.next)
    6064             :                 return;
    6065             : 
    6066             :         hrtimer_cancel(&cfs_b->period_timer);
    6067             :         hrtimer_cancel(&cfs_b->slack_timer);
    6068             : 
    6069             :         /*
    6070             :          * It is possible that we still have some cfs_rq's pending on a CSD
    6071             :          * list, though this race is very rare. In order for this to occur, we
    6072             :          * must have raced with the last task leaving the group while there
    6073             :          * exist throttled cfs_rq(s), and the period_timer must have queued the
    6074             :          * CSD item but the remote cpu has not yet processed it. To handle this,
    6075             :          * we can simply flush all pending CSD work inline here. We're
    6076             :          * guaranteed at this point that no additional cfs_rq of this group can
    6077             :          * join a CSD list.
    6078             :          */
    6079             : #ifdef CONFIG_SMP
    6080             :         for_each_possible_cpu(i) {
    6081             :                 struct rq *rq = cpu_rq(i);
    6082             :                 unsigned long flags;
    6083             : 
    6084             :                 if (list_empty(&rq->cfsb_csd_list))
    6085             :                         continue;
    6086             : 
    6087             :                 local_irq_save(flags);
    6088             :                 __cfsb_csd_unthrottle(rq);
    6089             :                 local_irq_restore(flags);
    6090             :         }
    6091             : #endif
    6092             : }
    6093             : 
    6094             : /*
    6095             :  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
    6096             :  *
    6097             :  * The race is harmless, since modifying bandwidth settings of unhooked group
    6098             :  * bits doesn't do much.
    6099             :  */
    6100             : 
    6101             : /* cpu online callback */
    6102             : static void __maybe_unused update_runtime_enabled(struct rq *rq)
    6103             : {
    6104             :         struct task_group *tg;
    6105             : 
    6106             :         lockdep_assert_rq_held(rq);
    6107             : 
    6108             :         rcu_read_lock();
    6109             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    6110             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    6111             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    6112             : 
    6113             :                 raw_spin_lock(&cfs_b->lock);
    6114             :                 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
    6115             :                 raw_spin_unlock(&cfs_b->lock);
    6116             :         }
    6117             :         rcu_read_unlock();
    6118             : }
    6119             : 
    6120             : /* cpu offline callback */
    6121             : static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
    6122             : {
    6123             :         struct task_group *tg;
    6124             : 
    6125             :         lockdep_assert_rq_held(rq);
    6126             : 
    6127             :         /*
    6128             :          * The rq clock has already been updated in the
    6129             :          * set_rq_offline(), so we should skip updating
    6130             :          * the rq clock again in unthrottle_cfs_rq().
    6131             :          */
    6132             :         rq_clock_start_loop_update(rq);
    6133             : 
    6134             :         rcu_read_lock();
    6135             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    6136             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    6137             : 
    6138             :                 if (!cfs_rq->runtime_enabled)
    6139             :                         continue;
    6140             : 
    6141             :                 /*
    6142             :                  * clock_task is not advancing so we just need to make sure
    6143             :                  * there's some valid quota amount
    6144             :                  */
    6145             :                 cfs_rq->runtime_remaining = 1;
    6146             :                 /*
    6147             :                  * Offline rq is schedulable till CPU is completely disabled
    6148             :                  * in take_cpu_down(), so we prevent new cfs throttling here.
    6149             :                  */
    6150             :                 cfs_rq->runtime_enabled = 0;
    6151             : 
    6152             :                 if (cfs_rq_throttled(cfs_rq))
    6153             :                         unthrottle_cfs_rq(cfs_rq);
    6154             :         }
    6155             :         rcu_read_unlock();
    6156             : 
    6157             :         rq_clock_stop_loop_update(rq);
    6158             : }
    6159             : 
    6160             : #else /* CONFIG_CFS_BANDWIDTH */
    6161             : 
    6162             : static inline bool cfs_bandwidth_used(void)
    6163             : {
    6164             :         return false;
    6165             : }
    6166             : 
    6167             : static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
    6168             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
    6169             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
    6170             : static inline void sync_throttle(struct task_group *tg, int cpu) {}
    6171             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    6172             : 
    6173             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    6174             : {
    6175             :         return 0;
    6176             : }
    6177             : 
    6178             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    6179             : {
    6180             :         return 0;
    6181             : }
    6182             : 
    6183             : static inline int throttled_lb_pair(struct task_group *tg,
    6184             :                                     int src_cpu, int dest_cpu)
    6185             : {
    6186             :         return 0;
    6187             : }
    6188             : 
    6189           0 : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    6190             : 
    6191             : #ifdef CONFIG_FAIR_GROUP_SCHED
    6192             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    6193             : #endif
    6194             : 
    6195             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    6196             : {
    6197             :         return NULL;
    6198             : }
    6199             : static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    6200             : static inline void update_runtime_enabled(struct rq *rq) {}
    6201             : static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
    6202             : 
    6203             : #endif /* CONFIG_CFS_BANDWIDTH */
    6204             : 
    6205             : /**************************************************
    6206             :  * CFS operations on tasks:
    6207             :  */
    6208             : 
    6209             : #ifdef CONFIG_SCHED_HRTICK
    6210             : static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
    6211             : {
    6212             :         struct sched_entity *se = &p->se;
    6213             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    6214             : 
    6215             :         SCHED_WARN_ON(task_rq(p) != rq);
    6216             : 
    6217             :         if (rq->cfs.h_nr_running > 1) {
    6218             :                 u64 slice = sched_slice(cfs_rq, se);
    6219             :                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
    6220             :                 s64 delta = slice - ran;
    6221             : 
    6222             :                 if (delta < 0) {
    6223             :                         if (task_current(rq, p))
    6224             :                                 resched_curr(rq);
    6225             :                         return;
    6226             :                 }
    6227             :                 hrtick_start(rq, delta);
    6228             :         }
    6229             : }
    6230             : 
    6231             : /*
    6232             :  * called from enqueue/dequeue and updates the hrtick when the
    6233             :  * current task is from our class and nr_running is low enough
    6234             :  * to matter.
    6235             :  */
    6236             : static void hrtick_update(struct rq *rq)
    6237             : {
    6238             :         struct task_struct *curr = rq->curr;
    6239             : 
    6240             :         if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
    6241             :                 return;
    6242             : 
    6243             :         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
    6244             :                 hrtick_start_fair(rq, curr);
    6245             : }
    6246             : #else /* !CONFIG_SCHED_HRTICK */
    6247             : static inline void
    6248             : hrtick_start_fair(struct rq *rq, struct task_struct *p)
    6249             : {
    6250             : }
    6251             : 
    6252             : static inline void hrtick_update(struct rq *rq)
    6253             : {
    6254             : }
    6255             : #endif
    6256             : 
    6257             : #ifdef CONFIG_SMP
    6258             : static inline bool cpu_overutilized(int cpu)
    6259             : {
    6260             :         unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
    6261             :         unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
    6262             : 
    6263             :         /* Return true only if the utilization doesn't fit CPU's capacity */
    6264             :         return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
    6265             : }
    6266             : 
    6267             : static inline void update_overutilized_status(struct rq *rq)
    6268             : {
    6269             :         if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
    6270             :                 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
    6271             :                 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
    6272             :         }
    6273             : }
    6274             : #else
    6275             : static inline void update_overutilized_status(struct rq *rq) { }
    6276             : #endif
    6277             : 
    6278             : /* Runqueue only has SCHED_IDLE tasks enqueued */
    6279             : static int sched_idle_rq(struct rq *rq)
    6280             : {
    6281        2066 :         return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
    6282             :                         rq->nr_running);
    6283             : }
    6284             : 
    6285             : /*
    6286             :  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
    6287             :  * of idle_nr_running, which does not consider idle descendants of normal
    6288             :  * entities.
    6289             :  */
    6290             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
    6291             : {
    6292             :         return cfs_rq->nr_running &&
    6293             :                 cfs_rq->nr_running == cfs_rq->idle_nr_running;
    6294             : }
    6295             : 
    6296             : #ifdef CONFIG_SMP
    6297             : static int sched_idle_cpu(int cpu)
    6298             : {
    6299             :         return sched_idle_rq(cpu_rq(cpu));
    6300             : }
    6301             : #endif
    6302             : 
    6303             : /*
    6304             :  * The enqueue_task method is called before nr_running is
    6305             :  * increased. Here we update the fair scheduling stats and
    6306             :  * then put the task into the rbtree:
    6307             :  */
    6308             : static void
    6309        1035 : enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    6310             : {
    6311             :         struct cfs_rq *cfs_rq;
    6312        1035 :         struct sched_entity *se = &p->se;
    6313        2070 :         int idle_h_nr_running = task_has_idle_policy(p);
    6314        1035 :         int task_new = !(flags & ENQUEUE_WAKEUP);
    6315             : 
    6316             :         /*
    6317             :          * The code below (indirectly) updates schedutil which looks at
    6318             :          * the cfs_rq utilization to select a frequency.
    6319             :          * Let's add the task's estimated utilization to the cfs_rq's
    6320             :          * estimated utilization, before we update schedutil.
    6321             :          */
    6322        1035 :         util_est_enqueue(&rq->cfs, p);
    6323             : 
    6324             :         /*
    6325             :          * If in_iowait is set, the code below may not trigger any cpufreq
    6326             :          * utilization updates, so do it here explicitly with the IOWAIT flag
    6327             :          * passed.
    6328             :          */
    6329             :         if (p->in_iowait)
    6330             :                 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
    6331             : 
    6332        2070 :         for_each_sched_entity(se) {
    6333        1035 :                 if (se->on_rq)
    6334             :                         break;
    6335        2070 :                 cfs_rq = cfs_rq_of(se);
    6336        1035 :                 enqueue_entity(cfs_rq, se, flags);
    6337             : 
    6338        1035 :                 cfs_rq->h_nr_running++;
    6339        1035 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    6340             : 
    6341             :                 if (cfs_rq_is_idle(cfs_rq))
    6342             :                         idle_h_nr_running = 1;
    6343             : 
    6344             :                 /* end evaluation on encountering a throttled cfs_rq */
    6345             :                 if (cfs_rq_throttled(cfs_rq))
    6346             :                         goto enqueue_throttle;
    6347             : 
    6348             :                 flags = ENQUEUE_WAKEUP;
    6349             :         }
    6350             : 
    6351        1035 :         for_each_sched_entity(se) {
    6352           0 :                 cfs_rq = cfs_rq_of(se);
    6353             : 
    6354           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    6355           0 :                 se_update_runnable(se);
    6356           0 :                 update_cfs_group(se);
    6357             : 
    6358           0 :                 cfs_rq->h_nr_running++;
    6359           0 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    6360             : 
    6361             :                 if (cfs_rq_is_idle(cfs_rq))
    6362             :                         idle_h_nr_running = 1;
    6363             : 
    6364             :                 /* end evaluation on encountering a throttled cfs_rq */
    6365             :                 if (cfs_rq_throttled(cfs_rq))
    6366             :                         goto enqueue_throttle;
    6367             :         }
    6368             : 
    6369             :         /* At this point se is NULL and we are at root level*/
    6370        2070 :         add_nr_running(rq, 1);
    6371             : 
    6372             :         /*
    6373             :          * Since new tasks are assigned an initial util_avg equal to
    6374             :          * half of the spare capacity of their CPU, tiny tasks have the
    6375             :          * ability to cross the overutilized threshold, which will
    6376             :          * result in the load balancer ruining all the task placement
    6377             :          * done by EAS. As a way to mitigate that effect, do not account
    6378             :          * for the first enqueue operation of new tasks during the
    6379             :          * overutilized flag detection.
    6380             :          *
    6381             :          * A better way of solving this problem would be to wait for
    6382             :          * the PELT signals of tasks to converge before taking them
    6383             :          * into account, but that is not straightforward to implement,
    6384             :          * and the following generally works well enough in practice.
    6385             :          */
    6386             :         if (!task_new)
    6387             :                 update_overutilized_status(rq);
    6388             : 
    6389             : enqueue_throttle:
    6390        1035 :         assert_list_leaf_cfs_rq(rq);
    6391             : 
    6392        1035 :         hrtick_update(rq);
    6393        1035 : }
    6394             : 
    6395             : static void set_next_buddy(struct sched_entity *se);
    6396             : 
    6397             : /*
    6398             :  * The dequeue_task method is called before nr_running is
    6399             :  * decreased. We remove the task from the rbtree and
    6400             :  * update the fair scheduling stats:
    6401             :  */
    6402        1033 : static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    6403             : {
    6404             :         struct cfs_rq *cfs_rq;
    6405        1033 :         struct sched_entity *se = &p->se;
    6406        1033 :         int task_sleep = flags & DEQUEUE_SLEEP;
    6407        2066 :         int idle_h_nr_running = task_has_idle_policy(p);
    6408        2066 :         bool was_sched_idle = sched_idle_rq(rq);
    6409             : 
    6410        1033 :         util_est_dequeue(&rq->cfs, p);
    6411             : 
    6412           1 :         for_each_sched_entity(se) {
    6413        2066 :                 cfs_rq = cfs_rq_of(se);
    6414        1033 :                 dequeue_entity(cfs_rq, se, flags);
    6415             : 
    6416        1033 :                 cfs_rq->h_nr_running--;
    6417        1033 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    6418             : 
    6419             :                 if (cfs_rq_is_idle(cfs_rq))
    6420             :                         idle_h_nr_running = 1;
    6421             : 
    6422             :                 /* end evaluation on encountering a throttled cfs_rq */
    6423             :                 if (cfs_rq_throttled(cfs_rq))
    6424             :                         goto dequeue_throttle;
    6425             : 
    6426             :                 /* Don't dequeue parent if it has other entities besides us */
    6427        1033 :                 if (cfs_rq->load.weight) {
    6428             :                         /* Avoid re-evaluating load for this entity: */
    6429             :                         se = parent_entity(se);
    6430             :                         /*
    6431             :                          * Bias pick_next to pick a task from this cfs_rq, as
    6432             :                          * p is sleeping when it is within its sched_slice.
    6433             :                          */
    6434             :                         if (task_sleep && se && !throttled_hierarchy(cfs_rq))
    6435             :                                 set_next_buddy(se);
    6436             :                         break;
    6437             :                 }
    6438           1 :                 flags |= DEQUEUE_SLEEP;
    6439             :         }
    6440             : 
    6441        1033 :         for_each_sched_entity(se) {
    6442           0 :                 cfs_rq = cfs_rq_of(se);
    6443             : 
    6444           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    6445           0 :                 se_update_runnable(se);
    6446           0 :                 update_cfs_group(se);
    6447             : 
    6448           0 :                 cfs_rq->h_nr_running--;
    6449           0 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    6450             : 
    6451             :                 if (cfs_rq_is_idle(cfs_rq))
    6452             :                         idle_h_nr_running = 1;
    6453             : 
    6454             :                 /* end evaluation on encountering a throttled cfs_rq */
    6455             :                 if (cfs_rq_throttled(cfs_rq))
    6456             :                         goto dequeue_throttle;
    6457             : 
    6458             :         }
    6459             : 
    6460             :         /* At this point se is NULL and we are at root level*/
    6461        2066 :         sub_nr_running(rq, 1);
    6462             : 
    6463             :         /* balance early to pull high priority tasks */
    6464        2066 :         if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
    6465           0 :                 rq->next_balance = jiffies;
    6466             : 
    6467             : dequeue_throttle:
    6468        1033 :         util_est_update(&rq->cfs, p, task_sleep);
    6469        1033 :         hrtick_update(rq);
    6470        1033 : }
    6471             : 
    6472             : #ifdef CONFIG_SMP
    6473             : 
    6474             : /* Working cpumask for: load_balance, load_balance_newidle. */
    6475             : static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
    6476             : static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
    6477             : 
    6478             : #ifdef CONFIG_NO_HZ_COMMON
    6479             : 
    6480             : static struct {
    6481             :         cpumask_var_t idle_cpus_mask;
    6482             :         atomic_t nr_cpus;
    6483             :         int has_blocked;                /* Idle CPUS has blocked load */
    6484             :         int needs_update;               /* Newly idle CPUs need their next_balance collated */
    6485             :         unsigned long next_balance;     /* in jiffy units */
    6486             :         unsigned long next_blocked;     /* Next update of blocked load in jiffies */
    6487             : } nohz ____cacheline_aligned;
    6488             : 
    6489             : #endif /* CONFIG_NO_HZ_COMMON */
    6490             : 
    6491             : static unsigned long cpu_load(struct rq *rq)
    6492             : {
    6493             :         return cfs_rq_load_avg(&rq->cfs);
    6494             : }
    6495             : 
    6496             : /*
    6497             :  * cpu_load_without - compute CPU load without any contributions from *p
    6498             :  * @cpu: the CPU which load is requested
    6499             :  * @p: the task which load should be discounted
    6500             :  *
    6501             :  * The load of a CPU is defined by the load of tasks currently enqueued on that
    6502             :  * CPU as well as tasks which are currently sleeping after an execution on that
    6503             :  * CPU.
    6504             :  *
    6505             :  * This method returns the load of the specified CPU by discounting the load of
    6506             :  * the specified task, whenever the task is currently contributing to the CPU
    6507             :  * load.
    6508             :  */
    6509             : static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
    6510             : {
    6511             :         struct cfs_rq *cfs_rq;
    6512             :         unsigned int load;
    6513             : 
    6514             :         /* Task has no contribution or is new */
    6515             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6516             :                 return cpu_load(rq);
    6517             : 
    6518             :         cfs_rq = &rq->cfs;
    6519             :         load = READ_ONCE(cfs_rq->avg.load_avg);
    6520             : 
    6521             :         /* Discount task's util from CPU's util */
    6522             :         lsub_positive(&load, task_h_load(p));
    6523             : 
    6524             :         return load;
    6525             : }
    6526             : 
    6527             : static unsigned long cpu_runnable(struct rq *rq)
    6528             : {
    6529             :         return cfs_rq_runnable_avg(&rq->cfs);
    6530             : }
    6531             : 
    6532             : static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
    6533             : {
    6534             :         struct cfs_rq *cfs_rq;
    6535             :         unsigned int runnable;
    6536             : 
    6537             :         /* Task has no contribution or is new */
    6538             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6539             :                 return cpu_runnable(rq);
    6540             : 
    6541             :         cfs_rq = &rq->cfs;
    6542             :         runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
    6543             : 
    6544             :         /* Discount task's runnable from CPU's runnable */
    6545             :         lsub_positive(&runnable, p->se.avg.runnable_avg);
    6546             : 
    6547             :         return runnable;
    6548             : }
    6549             : 
    6550             : static unsigned long capacity_of(int cpu)
    6551             : {
    6552             :         return cpu_rq(cpu)->cpu_capacity;
    6553             : }
    6554             : 
    6555             : static void record_wakee(struct task_struct *p)
    6556             : {
    6557             :         /*
    6558             :          * Only decay a single time; tasks that have less then 1 wakeup per
    6559             :          * jiffy will not have built up many flips.
    6560             :          */
    6561             :         if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
    6562             :                 current->wakee_flips >>= 1;
    6563             :                 current->wakee_flip_decay_ts = jiffies;
    6564             :         }
    6565             : 
    6566             :         if (current->last_wakee != p) {
    6567             :                 current->last_wakee = p;
    6568             :                 current->wakee_flips++;
    6569             :         }
    6570             : }
    6571             : 
    6572             : /*
    6573             :  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
    6574             :  *
    6575             :  * A waker of many should wake a different task than the one last awakened
    6576             :  * at a frequency roughly N times higher than one of its wakees.
    6577             :  *
    6578             :  * In order to determine whether we should let the load spread vs consolidating
    6579             :  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
    6580             :  * partner, and a factor of lls_size higher frequency in the other.
    6581             :  *
    6582             :  * With both conditions met, we can be relatively sure that the relationship is
    6583             :  * non-monogamous, with partner count exceeding socket size.
    6584             :  *
    6585             :  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
    6586             :  * whatever is irrelevant, spread criteria is apparent partner count exceeds
    6587             :  * socket size.
    6588             :  */
    6589             : static int wake_wide(struct task_struct *p)
    6590             : {
    6591             :         unsigned int master = current->wakee_flips;
    6592             :         unsigned int slave = p->wakee_flips;
    6593             :         int factor = __this_cpu_read(sd_llc_size);
    6594             : 
    6595             :         if (master < slave)
    6596             :                 swap(master, slave);
    6597             :         if (slave < factor || master < slave * factor)
    6598             :                 return 0;
    6599             :         return 1;
    6600             : }
    6601             : 
    6602             : /*
    6603             :  * The purpose of wake_affine() is to quickly determine on which CPU we can run
    6604             :  * soonest. For the purpose of speed we only consider the waking and previous
    6605             :  * CPU.
    6606             :  *
    6607             :  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
    6608             :  *                      cache-affine and is (or will be) idle.
    6609             :  *
    6610             :  * wake_affine_weight() - considers the weight to reflect the average
    6611             :  *                        scheduling latency of the CPUs. This seems to work
    6612             :  *                        for the overloaded case.
    6613             :  */
    6614             : static int
    6615             : wake_affine_idle(int this_cpu, int prev_cpu, int sync)
    6616             : {
    6617             :         /*
    6618             :          * If this_cpu is idle, it implies the wakeup is from interrupt
    6619             :          * context. Only allow the move if cache is shared. Otherwise an
    6620             :          * interrupt intensive workload could force all tasks onto one
    6621             :          * node depending on the IO topology or IRQ affinity settings.
    6622             :          *
    6623             :          * If the prev_cpu is idle and cache affine then avoid a migration.
    6624             :          * There is no guarantee that the cache hot data from an interrupt
    6625             :          * is more important than cache hot data on the prev_cpu and from
    6626             :          * a cpufreq perspective, it's better to have higher utilisation
    6627             :          * on one CPU.
    6628             :          */
    6629             :         if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
    6630             :                 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
    6631             : 
    6632             :         if (sync && cpu_rq(this_cpu)->nr_running == 1)
    6633             :                 return this_cpu;
    6634             : 
    6635             :         if (available_idle_cpu(prev_cpu))
    6636             :                 return prev_cpu;
    6637             : 
    6638             :         return nr_cpumask_bits;
    6639             : }
    6640             : 
    6641             : static int
    6642             : wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
    6643             :                    int this_cpu, int prev_cpu, int sync)
    6644             : {
    6645             :         s64 this_eff_load, prev_eff_load;
    6646             :         unsigned long task_load;
    6647             : 
    6648             :         this_eff_load = cpu_load(cpu_rq(this_cpu));
    6649             : 
    6650             :         if (sync) {
    6651             :                 unsigned long current_load = task_h_load(current);
    6652             : 
    6653             :                 if (current_load > this_eff_load)
    6654             :                         return this_cpu;
    6655             : 
    6656             :                 this_eff_load -= current_load;
    6657             :         }
    6658             : 
    6659             :         task_load = task_h_load(p);
    6660             : 
    6661             :         this_eff_load += task_load;
    6662             :         if (sched_feat(WA_BIAS))
    6663             :                 this_eff_load *= 100;
    6664             :         this_eff_load *= capacity_of(prev_cpu);
    6665             : 
    6666             :         prev_eff_load = cpu_load(cpu_rq(prev_cpu));
    6667             :         prev_eff_load -= task_load;
    6668             :         if (sched_feat(WA_BIAS))
    6669             :                 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
    6670             :         prev_eff_load *= capacity_of(this_cpu);
    6671             : 
    6672             :         /*
    6673             :          * If sync, adjust the weight of prev_eff_load such that if
    6674             :          * prev_eff == this_eff that select_idle_sibling() will consider
    6675             :          * stacking the wakee on top of the waker if no other CPU is
    6676             :          * idle.
    6677             :          */
    6678             :         if (sync)
    6679             :                 prev_eff_load += 1;
    6680             : 
    6681             :         return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
    6682             : }
    6683             : 
    6684             : static int wake_affine(struct sched_domain *sd, struct task_struct *p,
    6685             :                        int this_cpu, int prev_cpu, int sync)
    6686             : {
    6687             :         int target = nr_cpumask_bits;
    6688             : 
    6689             :         if (sched_feat(WA_IDLE))
    6690             :                 target = wake_affine_idle(this_cpu, prev_cpu, sync);
    6691             : 
    6692             :         if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
    6693             :                 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
    6694             : 
    6695             :         schedstat_inc(p->stats.nr_wakeups_affine_attempts);
    6696             :         if (target != this_cpu)
    6697             :                 return prev_cpu;
    6698             : 
    6699             :         schedstat_inc(sd->ttwu_move_affine);
    6700             :         schedstat_inc(p->stats.nr_wakeups_affine);
    6701             :         return target;
    6702             : }
    6703             : 
    6704             : static struct sched_group *
    6705             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
    6706             : 
    6707             : /*
    6708             :  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
    6709             :  */
    6710             : static int
    6711             : find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
    6712             : {
    6713             :         unsigned long load, min_load = ULONG_MAX;
    6714             :         unsigned int min_exit_latency = UINT_MAX;
    6715             :         u64 latest_idle_timestamp = 0;
    6716             :         int least_loaded_cpu = this_cpu;
    6717             :         int shallowest_idle_cpu = -1;
    6718             :         int i;
    6719             : 
    6720             :         /* Check if we have any choice: */
    6721             :         if (group->group_weight == 1)
    6722             :                 return cpumask_first(sched_group_span(group));
    6723             : 
    6724             :         /* Traverse only the allowed CPUs */
    6725             :         for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
    6726             :                 struct rq *rq = cpu_rq(i);
    6727             : 
    6728             :                 if (!sched_core_cookie_match(rq, p))
    6729             :                         continue;
    6730             : 
    6731             :                 if (sched_idle_cpu(i))
    6732             :                         return i;
    6733             : 
    6734             :                 if (available_idle_cpu(i)) {
    6735             :                         struct cpuidle_state *idle = idle_get_state(rq);
    6736             :                         if (idle && idle->exit_latency < min_exit_latency) {
    6737             :                                 /*
    6738             :                                  * We give priority to a CPU whose idle state
    6739             :                                  * has the smallest exit latency irrespective
    6740             :                                  * of any idle timestamp.
    6741             :                                  */
    6742             :                                 min_exit_latency = idle->exit_latency;
    6743             :                                 latest_idle_timestamp = rq->idle_stamp;
    6744             :                                 shallowest_idle_cpu = i;
    6745             :                         } else if ((!idle || idle->exit_latency == min_exit_latency) &&
    6746             :                                    rq->idle_stamp > latest_idle_timestamp) {
    6747             :                                 /*
    6748             :                                  * If equal or no active idle state, then
    6749             :                                  * the most recently idled CPU might have
    6750             :                                  * a warmer cache.
    6751             :                                  */
    6752             :                                 latest_idle_timestamp = rq->idle_stamp;
    6753             :                                 shallowest_idle_cpu = i;
    6754             :                         }
    6755             :                 } else if (shallowest_idle_cpu == -1) {
    6756             :                         load = cpu_load(cpu_rq(i));
    6757             :                         if (load < min_load) {
    6758             :                                 min_load = load;
    6759             :                                 least_loaded_cpu = i;
    6760             :                         }
    6761             :                 }
    6762             :         }
    6763             : 
    6764             :         return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
    6765             : }
    6766             : 
    6767             : static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
    6768             :                                   int cpu, int prev_cpu, int sd_flag)
    6769             : {
    6770             :         int new_cpu = cpu;
    6771             : 
    6772             :         if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
    6773             :                 return prev_cpu;
    6774             : 
    6775             :         /*
    6776             :          * We need task's util for cpu_util_without, sync it up to
    6777             :          * prev_cpu's last_update_time.
    6778             :          */
    6779             :         if (!(sd_flag & SD_BALANCE_FORK))
    6780             :                 sync_entity_load_avg(&p->se);
    6781             : 
    6782             :         while (sd) {
    6783             :                 struct sched_group *group;
    6784             :                 struct sched_domain *tmp;
    6785             :                 int weight;
    6786             : 
    6787             :                 if (!(sd->flags & sd_flag)) {
    6788             :                         sd = sd->child;
    6789             :                         continue;
    6790             :                 }
    6791             : 
    6792             :                 group = find_idlest_group(sd, p, cpu);
    6793             :                 if (!group) {
    6794             :                         sd = sd->child;
    6795             :                         continue;
    6796             :                 }
    6797             : 
    6798             :                 new_cpu = find_idlest_group_cpu(group, p, cpu);
    6799             :                 if (new_cpu == cpu) {
    6800             :                         /* Now try balancing at a lower domain level of 'cpu': */
    6801             :                         sd = sd->child;
    6802             :                         continue;
    6803             :                 }
    6804             : 
    6805             :                 /* Now try balancing at a lower domain level of 'new_cpu': */
    6806             :                 cpu = new_cpu;
    6807             :                 weight = sd->span_weight;
    6808             :                 sd = NULL;
    6809             :                 for_each_domain(cpu, tmp) {
    6810             :                         if (weight <= tmp->span_weight)
    6811             :                                 break;
    6812             :                         if (tmp->flags & sd_flag)
    6813             :                                 sd = tmp;
    6814             :                 }
    6815             :         }
    6816             : 
    6817             :         return new_cpu;
    6818             : }
    6819             : 
    6820             : static inline int __select_idle_cpu(int cpu, struct task_struct *p)
    6821             : {
    6822             :         if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
    6823             :             sched_cpu_cookie_match(cpu_rq(cpu), p))
    6824             :                 return cpu;
    6825             : 
    6826             :         return -1;
    6827             : }
    6828             : 
    6829             : #ifdef CONFIG_SCHED_SMT
    6830             : DEFINE_STATIC_KEY_FALSE(sched_smt_present);
    6831             : EXPORT_SYMBOL_GPL(sched_smt_present);
    6832             : 
    6833             : static inline void set_idle_cores(int cpu, int val)
    6834             : {
    6835             :         struct sched_domain_shared *sds;
    6836             : 
    6837             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6838             :         if (sds)
    6839             :                 WRITE_ONCE(sds->has_idle_cores, val);
    6840             : }
    6841             : 
    6842             : static inline bool test_idle_cores(int cpu)
    6843             : {
    6844             :         struct sched_domain_shared *sds;
    6845             : 
    6846             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6847             :         if (sds)
    6848             :                 return READ_ONCE(sds->has_idle_cores);
    6849             : 
    6850             :         return false;
    6851             : }
    6852             : 
    6853             : /*
    6854             :  * Scans the local SMT mask to see if the entire core is idle, and records this
    6855             :  * information in sd_llc_shared->has_idle_cores.
    6856             :  *
    6857             :  * Since SMT siblings share all cache levels, inspecting this limited remote
    6858             :  * state should be fairly cheap.
    6859             :  */
    6860             : void __update_idle_core(struct rq *rq)
    6861             : {
    6862             :         int core = cpu_of(rq);
    6863             :         int cpu;
    6864             : 
    6865             :         rcu_read_lock();
    6866             :         if (test_idle_cores(core))
    6867             :                 goto unlock;
    6868             : 
    6869             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6870             :                 if (cpu == core)
    6871             :                         continue;
    6872             : 
    6873             :                 if (!available_idle_cpu(cpu))
    6874             :                         goto unlock;
    6875             :         }
    6876             : 
    6877             :         set_idle_cores(core, 1);
    6878             : unlock:
    6879             :         rcu_read_unlock();
    6880             : }
    6881             : 
    6882             : /*
    6883             :  * Scan the entire LLC domain for idle cores; this dynamically switches off if
    6884             :  * there are no idle cores left in the system; tracked through
    6885             :  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
    6886             :  */
    6887             : static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6888             : {
    6889             :         bool idle = true;
    6890             :         int cpu;
    6891             : 
    6892             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6893             :                 if (!available_idle_cpu(cpu)) {
    6894             :                         idle = false;
    6895             :                         if (*idle_cpu == -1) {
    6896             :                                 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
    6897             :                                         *idle_cpu = cpu;
    6898             :                                         break;
    6899             :                                 }
    6900             :                                 continue;
    6901             :                         }
    6902             :                         break;
    6903             :                 }
    6904             :                 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
    6905             :                         *idle_cpu = cpu;
    6906             :         }
    6907             : 
    6908             :         if (idle)
    6909             :                 return core;
    6910             : 
    6911             :         cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
    6912             :         return -1;
    6913             : }
    6914             : 
    6915             : /*
    6916             :  * Scan the local SMT mask for idle CPUs.
    6917             :  */
    6918             : static int select_idle_smt(struct task_struct *p, int target)
    6919             : {
    6920             :         int cpu;
    6921             : 
    6922             :         for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
    6923             :                 if (cpu == target)
    6924             :                         continue;
    6925             :                 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
    6926             :                         return cpu;
    6927             :         }
    6928             : 
    6929             :         return -1;
    6930             : }
    6931             : 
    6932             : #else /* CONFIG_SCHED_SMT */
    6933             : 
    6934             : static inline void set_idle_cores(int cpu, int val)
    6935             : {
    6936             : }
    6937             : 
    6938             : static inline bool test_idle_cores(int cpu)
    6939             : {
    6940             :         return false;
    6941             : }
    6942             : 
    6943             : static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6944             : {
    6945             :         return __select_idle_cpu(core, p);
    6946             : }
    6947             : 
    6948             : static inline int select_idle_smt(struct task_struct *p, int target)
    6949             : {
    6950             :         return -1;
    6951             : }
    6952             : 
    6953             : #endif /* CONFIG_SCHED_SMT */
    6954             : 
    6955             : /*
    6956             :  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
    6957             :  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
    6958             :  * average idle time for this rq (as found in rq->avg_idle).
    6959             :  */
    6960             : static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
    6961             : {
    6962             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    6963             :         int i, cpu, idle_cpu = -1, nr = INT_MAX;
    6964             :         struct sched_domain_shared *sd_share;
    6965             :         struct rq *this_rq = this_rq();
    6966             :         int this = smp_processor_id();
    6967             :         struct sched_domain *this_sd = NULL;
    6968             :         u64 time = 0;
    6969             : 
    6970             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6971             : 
    6972             :         if (sched_feat(SIS_PROP) && !has_idle_core) {
    6973             :                 u64 avg_cost, avg_idle, span_avg;
    6974             :                 unsigned long now = jiffies;
    6975             : 
    6976             :                 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
    6977             :                 if (!this_sd)
    6978             :                         return -1;
    6979             : 
    6980             :                 /*
    6981             :                  * If we're busy, the assumption that the last idle period
    6982             :                  * predicts the future is flawed; age away the remaining
    6983             :                  * predicted idle time.
    6984             :                  */
    6985             :                 if (unlikely(this_rq->wake_stamp < now)) {
    6986             :                         while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
    6987             :                                 this_rq->wake_stamp++;
    6988             :                                 this_rq->wake_avg_idle >>= 1;
    6989             :                         }
    6990             :                 }
    6991             : 
    6992             :                 avg_idle = this_rq->wake_avg_idle;
    6993             :                 avg_cost = this_sd->avg_scan_cost + 1;
    6994             : 
    6995             :                 span_avg = sd->span_weight * avg_idle;
    6996             :                 if (span_avg > 4*avg_cost)
    6997             :                         nr = div_u64(span_avg, avg_cost);
    6998             :                 else
    6999             :                         nr = 4;
    7000             : 
    7001             :                 time = cpu_clock(this);
    7002             :         }
    7003             : 
    7004             :         if (sched_feat(SIS_UTIL)) {
    7005             :                 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
    7006             :                 if (sd_share) {
    7007             :                         /* because !--nr is the condition to stop scan */
    7008             :                         nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
    7009             :                         /* overloaded LLC is unlikely to have idle cpu/core */
    7010             :                         if (nr == 1)
    7011             :                                 return -1;
    7012             :                 }
    7013             :         }
    7014             : 
    7015             :         for_each_cpu_wrap(cpu, cpus, target + 1) {
    7016             :                 if (has_idle_core) {
    7017             :                         i = select_idle_core(p, cpu, cpus, &idle_cpu);
    7018             :                         if ((unsigned int)i < nr_cpumask_bits)
    7019             :                                 return i;
    7020             : 
    7021             :                 } else {
    7022             :                         if (!--nr)
    7023             :                                 return -1;
    7024             :                         idle_cpu = __select_idle_cpu(cpu, p);
    7025             :                         if ((unsigned int)idle_cpu < nr_cpumask_bits)
    7026             :                                 break;
    7027             :                 }
    7028             :         }
    7029             : 
    7030             :         if (has_idle_core)
    7031             :                 set_idle_cores(target, false);
    7032             : 
    7033             :         if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
    7034             :                 time = cpu_clock(this) - time;
    7035             : 
    7036             :                 /*
    7037             :                  * Account for the scan cost of wakeups against the average
    7038             :                  * idle time.
    7039             :                  */
    7040             :                 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
    7041             : 
    7042             :                 update_avg(&this_sd->avg_scan_cost, time);
    7043             :         }
    7044             : 
    7045             :         return idle_cpu;
    7046             : }
    7047             : 
    7048             : /*
    7049             :  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
    7050             :  * the task fits. If no CPU is big enough, but there are idle ones, try to
    7051             :  * maximize capacity.
    7052             :  */
    7053             : static int
    7054             : select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
    7055             : {
    7056             :         unsigned long task_util, util_min, util_max, best_cap = 0;
    7057             :         int fits, best_fits = 0;
    7058             :         int cpu, best_cpu = -1;
    7059             :         struct cpumask *cpus;
    7060             : 
    7061             :         cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    7062             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    7063             : 
    7064             :         task_util = task_util_est(p);
    7065             :         util_min = uclamp_eff_value(p, UCLAMP_MIN);
    7066             :         util_max = uclamp_eff_value(p, UCLAMP_MAX);
    7067             : 
    7068             :         for_each_cpu_wrap(cpu, cpus, target + 1) {
    7069             :                 unsigned long cpu_cap = capacity_of(cpu);
    7070             : 
    7071             :                 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
    7072             :                         continue;
    7073             : 
    7074             :                 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
    7075             : 
    7076             :                 /* This CPU fits with all requirements */
    7077             :                 if (fits > 0)
    7078             :                         return cpu;
    7079             :                 /*
    7080             :                  * Only the min performance hint (i.e. uclamp_min) doesn't fit.
    7081             :                  * Look for the CPU with best capacity.
    7082             :                  */
    7083             :                 else if (fits < 0)
    7084             :                         cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
    7085             : 
    7086             :                 /*
    7087             :                  * First, select CPU which fits better (-1 being better than 0).
    7088             :                  * Then, select the one with best capacity at same level.
    7089             :                  */
    7090             :                 if ((fits < best_fits) ||
    7091             :                     ((fits == best_fits) && (cpu_cap > best_cap))) {
    7092             :                         best_cap = cpu_cap;
    7093             :                         best_cpu = cpu;
    7094             :                         best_fits = fits;
    7095             :                 }
    7096             :         }
    7097             : 
    7098             :         return best_cpu;
    7099             : }
    7100             : 
    7101             : static inline bool asym_fits_cpu(unsigned long util,
    7102             :                                  unsigned long util_min,
    7103             :                                  unsigned long util_max,
    7104             :                                  int cpu)
    7105             : {
    7106             :         if (sched_asym_cpucap_active())
    7107             :                 /*
    7108             :                  * Return true only if the cpu fully fits the task requirements
    7109             :                  * which include the utilization and the performance hints.
    7110             :                  */
    7111             :                 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
    7112             : 
    7113             :         return true;
    7114             : }
    7115             : 
    7116             : /*
    7117             :  * Try and locate an idle core/thread in the LLC cache domain.
    7118             :  */
    7119             : static int select_idle_sibling(struct task_struct *p, int prev, int target)
    7120             : {
    7121             :         bool has_idle_core = false;
    7122             :         struct sched_domain *sd;
    7123             :         unsigned long task_util, util_min, util_max;
    7124             :         int i, recent_used_cpu;
    7125             : 
    7126             :         /*
    7127             :          * On asymmetric system, update task utilization because we will check
    7128             :          * that the task fits with cpu's capacity.
    7129             :          */
    7130             :         if (sched_asym_cpucap_active()) {
    7131             :                 sync_entity_load_avg(&p->se);
    7132             :                 task_util = task_util_est(p);
    7133             :                 util_min = uclamp_eff_value(p, UCLAMP_MIN);
    7134             :                 util_max = uclamp_eff_value(p, UCLAMP_MAX);
    7135             :         }
    7136             : 
    7137             :         /*
    7138             :          * per-cpu select_rq_mask usage
    7139             :          */
    7140             :         lockdep_assert_irqs_disabled();
    7141             : 
    7142             :         if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
    7143             :             asym_fits_cpu(task_util, util_min, util_max, target))
    7144             :                 return target;
    7145             : 
    7146             :         /*
    7147             :          * If the previous CPU is cache affine and idle, don't be stupid:
    7148             :          */
    7149             :         if (prev != target && cpus_share_cache(prev, target) &&
    7150             :             (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
    7151             :             asym_fits_cpu(task_util, util_min, util_max, prev))
    7152             :                 return prev;
    7153             : 
    7154             :         /*
    7155             :          * Allow a per-cpu kthread to stack with the wakee if the
    7156             :          * kworker thread and the tasks previous CPUs are the same.
    7157             :          * The assumption is that the wakee queued work for the
    7158             :          * per-cpu kthread that is now complete and the wakeup is
    7159             :          * essentially a sync wakeup. An obvious example of this
    7160             :          * pattern is IO completions.
    7161             :          */
    7162             :         if (is_per_cpu_kthread(current) &&
    7163             :             in_task() &&
    7164             :             prev == smp_processor_id() &&
    7165             :             this_rq()->nr_running <= 1 &&
    7166             :             asym_fits_cpu(task_util, util_min, util_max, prev)) {
    7167             :                 return prev;
    7168             :         }
    7169             : 
    7170             :         /* Check a recently used CPU as a potential idle candidate: */
    7171             :         recent_used_cpu = p->recent_used_cpu;
    7172             :         p->recent_used_cpu = prev;
    7173             :         if (recent_used_cpu != prev &&
    7174             :             recent_used_cpu != target &&
    7175             :             cpus_share_cache(recent_used_cpu, target) &&
    7176             :             (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
    7177             :             cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
    7178             :             asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
    7179             :                 return recent_used_cpu;
    7180             :         }
    7181             : 
    7182             :         /*
    7183             :          * For asymmetric CPU capacity systems, our domain of interest is
    7184             :          * sd_asym_cpucapacity rather than sd_llc.
    7185             :          */
    7186             :         if (sched_asym_cpucap_active()) {
    7187             :                 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
    7188             :                 /*
    7189             :                  * On an asymmetric CPU capacity system where an exclusive
    7190             :                  * cpuset defines a symmetric island (i.e. one unique
    7191             :                  * capacity_orig value through the cpuset), the key will be set
    7192             :                  * but the CPUs within that cpuset will not have a domain with
    7193             :                  * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
    7194             :                  * capacity path.
    7195             :                  */
    7196             :                 if (sd) {
    7197             :                         i = select_idle_capacity(p, sd, target);
    7198             :                         return ((unsigned)i < nr_cpumask_bits) ? i : target;
    7199             :                 }
    7200             :         }
    7201             : 
    7202             :         sd = rcu_dereference(per_cpu(sd_llc, target));
    7203             :         if (!sd)
    7204             :                 return target;
    7205             : 
    7206             :         if (sched_smt_active()) {
    7207             :                 has_idle_core = test_idle_cores(target);
    7208             : 
    7209             :                 if (!has_idle_core && cpus_share_cache(prev, target)) {
    7210             :                         i = select_idle_smt(p, prev);
    7211             :                         if ((unsigned int)i < nr_cpumask_bits)
    7212             :                                 return i;
    7213             :                 }
    7214             :         }
    7215             : 
    7216             :         i = select_idle_cpu(p, sd, has_idle_core, target);
    7217             :         if ((unsigned)i < nr_cpumask_bits)
    7218             :                 return i;
    7219             : 
    7220             :         return target;
    7221             : }
    7222             : 
    7223             : /**
    7224             :  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
    7225             :  * @cpu: the CPU to get the utilization for
    7226             :  * @p: task for which the CPU utilization should be predicted or NULL
    7227             :  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
    7228             :  * @boost: 1 to enable boosting, otherwise 0
    7229             :  *
    7230             :  * The unit of the return value must be the same as the one of CPU capacity
    7231             :  * so that CPU utilization can be compared with CPU capacity.
    7232             :  *
    7233             :  * CPU utilization is the sum of running time of runnable tasks plus the
    7234             :  * recent utilization of currently non-runnable tasks on that CPU.
    7235             :  * It represents the amount of CPU capacity currently used by CFS tasks in
    7236             :  * the range [0..max CPU capacity] with max CPU capacity being the CPU
    7237             :  * capacity at f_max.
    7238             :  *
    7239             :  * The estimated CPU utilization is defined as the maximum between CPU
    7240             :  * utilization and sum of the estimated utilization of the currently
    7241             :  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
    7242             :  * previously-executed tasks, which helps better deduce how busy a CPU will
    7243             :  * be when a long-sleeping task wakes up. The contribution to CPU utilization
    7244             :  * of such a task would be significantly decayed at this point of time.
    7245             :  *
    7246             :  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
    7247             :  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
    7248             :  * utilization. Boosting is implemented in cpu_util() so that internal
    7249             :  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
    7250             :  * latter via cpu_util_cfs_boost().
    7251             :  *
    7252             :  * CPU utilization can be higher than the current CPU capacity
    7253             :  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
    7254             :  * of rounding errors as well as task migrations or wakeups of new tasks.
    7255             :  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
    7256             :  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
    7257             :  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
    7258             :  * capacity. CPU utilization is allowed to overshoot current CPU capacity
    7259             :  * though since this is useful for predicting the CPU capacity required
    7260             :  * after task migrations (scheduler-driven DVFS).
    7261             :  *
    7262             :  * Return: (Boosted) (estimated) utilization for the specified CPU.
    7263             :  */
    7264             : static unsigned long
    7265             : cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
    7266             : {
    7267             :         struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
    7268             :         unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
    7269             :         unsigned long runnable;
    7270             : 
    7271             :         if (boost) {
    7272             :                 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
    7273             :                 util = max(util, runnable);
    7274             :         }
    7275             : 
    7276             :         /*
    7277             :          * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
    7278             :          * contribution. If @p migrates from another CPU to @cpu add its
    7279             :          * contribution. In all the other cases @cpu is not impacted by the
    7280             :          * migration so its util_avg is already correct.
    7281             :          */
    7282             :         if (p && task_cpu(p) == cpu && dst_cpu != cpu)
    7283             :                 lsub_positive(&util, task_util(p));
    7284             :         else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
    7285             :                 util += task_util(p);
    7286             : 
    7287             :         if (sched_feat(UTIL_EST)) {
    7288             :                 unsigned long util_est;
    7289             : 
    7290             :                 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
    7291             : 
    7292             :                 if (boost)
    7293             :                         util_est = max(util_est, runnable);
    7294             : 
    7295             :                 /*
    7296             :                  * During wake-up @p isn't enqueued yet and doesn't contribute
    7297             :                  * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
    7298             :                  * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
    7299             :                  * has been enqueued.
    7300             :                  *
    7301             :                  * During exec (@dst_cpu = -1) @p is enqueued and does
    7302             :                  * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
    7303             :                  * Remove it to "simulate" cpu_util without @p's contribution.
    7304             :                  *
    7305             :                  * Despite the task_on_rq_queued(@p) check there is still a
    7306             :                  * small window for a possible race when an exec
    7307             :                  * select_task_rq_fair() races with LB's detach_task().
    7308             :                  *
    7309             :                  *   detach_task()
    7310             :                  *     deactivate_task()
    7311             :                  *       p->on_rq = TASK_ON_RQ_MIGRATING;
    7312             :                  *       -------------------------------- A
    7313             :                  *       dequeue_task()                    \
    7314             :                  *         dequeue_task_fair()              + Race Time
    7315             :                  *           util_est_dequeue()            /
    7316             :                  *       -------------------------------- B
    7317             :                  *
    7318             :                  * The additional check "current == p" is required to further
    7319             :                  * reduce the race window.
    7320             :                  */
    7321             :                 if (dst_cpu == cpu)
    7322             :                         util_est += _task_util_est(p);
    7323             :                 else if (p && unlikely(task_on_rq_queued(p) || current == p))
    7324             :                         lsub_positive(&util_est, _task_util_est(p));
    7325             : 
    7326             :                 util = max(util, util_est);
    7327             :         }
    7328             : 
    7329             :         return min(util, capacity_orig_of(cpu));
    7330             : }
    7331             : 
    7332             : unsigned long cpu_util_cfs(int cpu)
    7333             : {
    7334             :         return cpu_util(cpu, NULL, -1, 0);
    7335             : }
    7336             : 
    7337             : unsigned long cpu_util_cfs_boost(int cpu)
    7338             : {
    7339             :         return cpu_util(cpu, NULL, -1, 1);
    7340             : }
    7341             : 
    7342             : /*
    7343             :  * cpu_util_without: compute cpu utilization without any contributions from *p
    7344             :  * @cpu: the CPU which utilization is requested
    7345             :  * @p: the task which utilization should be discounted
    7346             :  *
    7347             :  * The utilization of a CPU is defined by the utilization of tasks currently
    7348             :  * enqueued on that CPU as well as tasks which are currently sleeping after an
    7349             :  * execution on that CPU.
    7350             :  *
    7351             :  * This method returns the utilization of the specified CPU by discounting the
    7352             :  * utilization of the specified task, whenever the task is currently
    7353             :  * contributing to the CPU utilization.
    7354             :  */
    7355             : static unsigned long cpu_util_without(int cpu, struct task_struct *p)
    7356             : {
    7357             :         /* Task has no contribution or is new */
    7358             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    7359             :                 p = NULL;
    7360             : 
    7361             :         return cpu_util(cpu, p, -1, 0);
    7362             : }
    7363             : 
    7364             : /*
    7365             :  * energy_env - Utilization landscape for energy estimation.
    7366             :  * @task_busy_time: Utilization contribution by the task for which we test the
    7367             :  *                  placement. Given by eenv_task_busy_time().
    7368             :  * @pd_busy_time:   Utilization of the whole perf domain without the task
    7369             :  *                  contribution. Given by eenv_pd_busy_time().
    7370             :  * @cpu_cap:        Maximum CPU capacity for the perf domain.
    7371             :  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
    7372             :  */
    7373             : struct energy_env {
    7374             :         unsigned long task_busy_time;
    7375             :         unsigned long pd_busy_time;
    7376             :         unsigned long cpu_cap;
    7377             :         unsigned long pd_cap;
    7378             : };
    7379             : 
    7380             : /*
    7381             :  * Compute the task busy time for compute_energy(). This time cannot be
    7382             :  * injected directly into effective_cpu_util() because of the IRQ scaling.
    7383             :  * The latter only makes sense with the most recent CPUs where the task has
    7384             :  * run.
    7385             :  */
    7386             : static inline void eenv_task_busy_time(struct energy_env *eenv,
    7387             :                                        struct task_struct *p, int prev_cpu)
    7388             : {
    7389             :         unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
    7390             :         unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
    7391             : 
    7392             :         if (unlikely(irq >= max_cap))
    7393             :                 busy_time = max_cap;
    7394             :         else
    7395             :                 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
    7396             : 
    7397             :         eenv->task_busy_time = busy_time;
    7398             : }
    7399             : 
    7400             : /*
    7401             :  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
    7402             :  * utilization for each @pd_cpus, it however doesn't take into account
    7403             :  * clamping since the ratio (utilization / cpu_capacity) is already enough to
    7404             :  * scale the EM reported power consumption at the (eventually clamped)
    7405             :  * cpu_capacity.
    7406             :  *
    7407             :  * The contribution of the task @p for which we want to estimate the
    7408             :  * energy cost is removed (by cpu_util()) and must be calculated
    7409             :  * separately (see eenv_task_busy_time). This ensures:
    7410             :  *
    7411             :  *   - A stable PD utilization, no matter which CPU of that PD we want to place
    7412             :  *     the task on.
    7413             :  *
    7414             :  *   - A fair comparison between CPUs as the task contribution (task_util())
    7415             :  *     will always be the same no matter which CPU utilization we rely on
    7416             :  *     (util_avg or util_est).
    7417             :  *
    7418             :  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
    7419             :  * exceed @eenv->pd_cap.
    7420             :  */
    7421             : static inline void eenv_pd_busy_time(struct energy_env *eenv,
    7422             :                                      struct cpumask *pd_cpus,
    7423             :                                      struct task_struct *p)
    7424             : {
    7425             :         unsigned long busy_time = 0;
    7426             :         int cpu;
    7427             : 
    7428             :         for_each_cpu(cpu, pd_cpus) {
    7429             :                 unsigned long util = cpu_util(cpu, p, -1, 0);
    7430             : 
    7431             :                 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
    7432             :         }
    7433             : 
    7434             :         eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
    7435             : }
    7436             : 
    7437             : /*
    7438             :  * Compute the maximum utilization for compute_energy() when the task @p
    7439             :  * is placed on the cpu @dst_cpu.
    7440             :  *
    7441             :  * Returns the maximum utilization among @eenv->cpus. This utilization can't
    7442             :  * exceed @eenv->cpu_cap.
    7443             :  */
    7444             : static inline unsigned long
    7445             : eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
    7446             :                  struct task_struct *p, int dst_cpu)
    7447             : {
    7448             :         unsigned long max_util = 0;
    7449             :         int cpu;
    7450             : 
    7451             :         for_each_cpu(cpu, pd_cpus) {
    7452             :                 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
    7453             :                 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
    7454             :                 unsigned long eff_util;
    7455             : 
    7456             :                 /*
    7457             :                  * Performance domain frequency: utilization clamping
    7458             :                  * must be considered since it affects the selection
    7459             :                  * of the performance domain frequency.
    7460             :                  * NOTE: in case RT tasks are running, by default the
    7461             :                  * FREQUENCY_UTIL's utilization can be max OPP.
    7462             :                  */
    7463             :                 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
    7464             :                 max_util = max(max_util, eff_util);
    7465             :         }
    7466             : 
    7467             :         return min(max_util, eenv->cpu_cap);
    7468             : }
    7469             : 
    7470             : /*
    7471             :  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
    7472             :  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
    7473             :  * contribution is ignored.
    7474             :  */
    7475             : static inline unsigned long
    7476             : compute_energy(struct energy_env *eenv, struct perf_domain *pd,
    7477             :                struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
    7478             : {
    7479             :         unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
    7480             :         unsigned long busy_time = eenv->pd_busy_time;
    7481             : 
    7482             :         if (dst_cpu >= 0)
    7483             :                 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
    7484             : 
    7485             :         return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
    7486             : }
    7487             : 
    7488             : /*
    7489             :  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
    7490             :  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
    7491             :  * spare capacity in each performance domain and uses it as a potential
    7492             :  * candidate to execute the task. Then, it uses the Energy Model to figure
    7493             :  * out which of the CPU candidates is the most energy-efficient.
    7494             :  *
    7495             :  * The rationale for this heuristic is as follows. In a performance domain,
    7496             :  * all the most energy efficient CPU candidates (according to the Energy
    7497             :  * Model) are those for which we'll request a low frequency. When there are
    7498             :  * several CPUs for which the frequency request will be the same, we don't
    7499             :  * have enough data to break the tie between them, because the Energy Model
    7500             :  * only includes active power costs. With this model, if we assume that
    7501             :  * frequency requests follow utilization (e.g. using schedutil), the CPU with
    7502             :  * the maximum spare capacity in a performance domain is guaranteed to be among
    7503             :  * the best candidates of the performance domain.
    7504             :  *
    7505             :  * In practice, it could be preferable from an energy standpoint to pack
    7506             :  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
    7507             :  * but that could also hurt our chances to go cluster idle, and we have no
    7508             :  * ways to tell with the current Energy Model if this is actually a good
    7509             :  * idea or not. So, find_energy_efficient_cpu() basically favors
    7510             :  * cluster-packing, and spreading inside a cluster. That should at least be
    7511             :  * a good thing for latency, and this is consistent with the idea that most
    7512             :  * of the energy savings of EAS come from the asymmetry of the system, and
    7513             :  * not so much from breaking the tie between identical CPUs. That's also the
    7514             :  * reason why EAS is enabled in the topology code only for systems where
    7515             :  * SD_ASYM_CPUCAPACITY is set.
    7516             :  *
    7517             :  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
    7518             :  * they don't have any useful utilization data yet and it's not possible to
    7519             :  * forecast their impact on energy consumption. Consequently, they will be
    7520             :  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
    7521             :  * to be energy-inefficient in some use-cases. The alternative would be to
    7522             :  * bias new tasks towards specific types of CPUs first, or to try to infer
    7523             :  * their util_avg from the parent task, but those heuristics could hurt
    7524             :  * other use-cases too. So, until someone finds a better way to solve this,
    7525             :  * let's keep things simple by re-using the existing slow path.
    7526             :  */
    7527             : static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
    7528             : {
    7529             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
    7530             :         unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
    7531             :         unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
    7532             :         unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
    7533             :         struct root_domain *rd = this_rq()->rd;
    7534             :         int cpu, best_energy_cpu, target = -1;
    7535             :         int prev_fits = -1, best_fits = -1;
    7536             :         unsigned long best_thermal_cap = 0;
    7537             :         unsigned long prev_thermal_cap = 0;
    7538             :         struct sched_domain *sd;
    7539             :         struct perf_domain *pd;
    7540             :         struct energy_env eenv;
    7541             : 
    7542             :         rcu_read_lock();
    7543             :         pd = rcu_dereference(rd->pd);
    7544             :         if (!pd || READ_ONCE(rd->overutilized))
    7545             :                 goto unlock;
    7546             : 
    7547             :         /*
    7548             :          * Energy-aware wake-up happens on the lowest sched_domain starting
    7549             :          * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
    7550             :          */
    7551             :         sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
    7552             :         while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
    7553             :                 sd = sd->parent;
    7554             :         if (!sd)
    7555             :                 goto unlock;
    7556             : 
    7557             :         target = prev_cpu;
    7558             : 
    7559             :         sync_entity_load_avg(&p->se);
    7560             :         if (!uclamp_task_util(p, p_util_min, p_util_max))
    7561             :                 goto unlock;
    7562             : 
    7563             :         eenv_task_busy_time(&eenv, p, prev_cpu);
    7564             : 
    7565             :         for (; pd; pd = pd->next) {
    7566             :                 unsigned long util_min = p_util_min, util_max = p_util_max;
    7567             :                 unsigned long cpu_cap, cpu_thermal_cap, util;
    7568             :                 unsigned long cur_delta, max_spare_cap = 0;
    7569             :                 unsigned long rq_util_min, rq_util_max;
    7570             :                 unsigned long prev_spare_cap = 0;
    7571             :                 int max_spare_cap_cpu = -1;
    7572             :                 unsigned long base_energy;
    7573             :                 int fits, max_fits = -1;
    7574             : 
    7575             :                 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
    7576             : 
    7577             :                 if (cpumask_empty(cpus))
    7578             :                         continue;
    7579             : 
    7580             :                 /* Account thermal pressure for the energy estimation */
    7581             :                 cpu = cpumask_first(cpus);
    7582             :                 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
    7583             :                 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
    7584             : 
    7585             :                 eenv.cpu_cap = cpu_thermal_cap;
    7586             :                 eenv.pd_cap = 0;
    7587             : 
    7588             :                 for_each_cpu(cpu, cpus) {
    7589             :                         struct rq *rq = cpu_rq(cpu);
    7590             : 
    7591             :                         eenv.pd_cap += cpu_thermal_cap;
    7592             : 
    7593             :                         if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
    7594             :                                 continue;
    7595             : 
    7596             :                         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    7597             :                                 continue;
    7598             : 
    7599             :                         util = cpu_util(cpu, p, cpu, 0);
    7600             :                         cpu_cap = capacity_of(cpu);
    7601             : 
    7602             :                         /*
    7603             :                          * Skip CPUs that cannot satisfy the capacity request.
    7604             :                          * IOW, placing the task there would make the CPU
    7605             :                          * overutilized. Take uclamp into account to see how
    7606             :                          * much capacity we can get out of the CPU; this is
    7607             :                          * aligned with sched_cpu_util().
    7608             :                          */
    7609             :                         if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
    7610             :                                 /*
    7611             :                                  * Open code uclamp_rq_util_with() except for
    7612             :                                  * the clamp() part. Ie: apply max aggregation
    7613             :                                  * only. util_fits_cpu() logic requires to
    7614             :                                  * operate on non clamped util but must use the
    7615             :                                  * max-aggregated uclamp_{min, max}.
    7616             :                                  */
    7617             :                                 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
    7618             :                                 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
    7619             : 
    7620             :                                 util_min = max(rq_util_min, p_util_min);
    7621             :                                 util_max = max(rq_util_max, p_util_max);
    7622             :                         }
    7623             : 
    7624             :                         fits = util_fits_cpu(util, util_min, util_max, cpu);
    7625             :                         if (!fits)
    7626             :                                 continue;
    7627             : 
    7628             :                         lsub_positive(&cpu_cap, util);
    7629             : 
    7630             :                         if (cpu == prev_cpu) {
    7631             :                                 /* Always use prev_cpu as a candidate. */
    7632             :                                 prev_spare_cap = cpu_cap;
    7633             :                                 prev_fits = fits;
    7634             :                         } else if ((fits > max_fits) ||
    7635             :                                    ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
    7636             :                                 /*
    7637             :                                  * Find the CPU with the maximum spare capacity
    7638             :                                  * among the remaining CPUs in the performance
    7639             :                                  * domain.
    7640             :                                  */
    7641             :                                 max_spare_cap = cpu_cap;
    7642             :                                 max_spare_cap_cpu = cpu;
    7643             :                                 max_fits = fits;
    7644             :                         }
    7645             :                 }
    7646             : 
    7647             :                 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
    7648             :                         continue;
    7649             : 
    7650             :                 eenv_pd_busy_time(&eenv, cpus, p);
    7651             :                 /* Compute the 'base' energy of the pd, without @p */
    7652             :                 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
    7653             : 
    7654             :                 /* Evaluate the energy impact of using prev_cpu. */
    7655             :                 if (prev_spare_cap > 0) {
    7656             :                         prev_delta = compute_energy(&eenv, pd, cpus, p,
    7657             :                                                     prev_cpu);
    7658             :                         /* CPU utilization has changed */
    7659             :                         if (prev_delta < base_energy)
    7660             :                                 goto unlock;
    7661             :                         prev_delta -= base_energy;
    7662             :                         prev_thermal_cap = cpu_thermal_cap;
    7663             :                         best_delta = min(best_delta, prev_delta);
    7664             :                 }
    7665             : 
    7666             :                 /* Evaluate the energy impact of using max_spare_cap_cpu. */
    7667             :                 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
    7668             :                         /* Current best energy cpu fits better */
    7669             :                         if (max_fits < best_fits)
    7670             :                                 continue;
    7671             : 
    7672             :                         /*
    7673             :                          * Both don't fit performance hint (i.e. uclamp_min)
    7674             :                          * but best energy cpu has better capacity.
    7675             :                          */
    7676             :                         if ((max_fits < 0) &&
    7677             :                             (cpu_thermal_cap <= best_thermal_cap))
    7678             :                                 continue;
    7679             : 
    7680             :                         cur_delta = compute_energy(&eenv, pd, cpus, p,
    7681             :                                                    max_spare_cap_cpu);
    7682             :                         /* CPU utilization has changed */
    7683             :                         if (cur_delta < base_energy)
    7684             :                                 goto unlock;
    7685             :                         cur_delta -= base_energy;
    7686             : 
    7687             :                         /*
    7688             :                          * Both fit for the task but best energy cpu has lower
    7689             :                          * energy impact.
    7690             :                          */
    7691             :                         if ((max_fits > 0) && (best_fits > 0) &&
    7692             :                             (cur_delta >= best_delta))
    7693             :                                 continue;
    7694             : 
    7695             :                         best_delta = cur_delta;
    7696             :                         best_energy_cpu = max_spare_cap_cpu;
    7697             :                         best_fits = max_fits;
    7698             :                         best_thermal_cap = cpu_thermal_cap;
    7699             :                 }
    7700             :         }
    7701             :         rcu_read_unlock();
    7702             : 
    7703             :         if ((best_fits > prev_fits) ||
    7704             :             ((best_fits > 0) && (best_delta < prev_delta)) ||
    7705             :             ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
    7706             :                 target = best_energy_cpu;
    7707             : 
    7708             :         return target;
    7709             : 
    7710             : unlock:
    7711             :         rcu_read_unlock();
    7712             : 
    7713             :         return target;
    7714             : }
    7715             : 
    7716             : /*
    7717             :  * select_task_rq_fair: Select target runqueue for the waking task in domains
    7718             :  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
    7719             :  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
    7720             :  *
    7721             :  * Balances load by selecting the idlest CPU in the idlest group, or under
    7722             :  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
    7723             :  *
    7724             :  * Returns the target CPU number.
    7725             :  */
    7726             : static int
    7727             : select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
    7728             : {
    7729             :         int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
    7730             :         struct sched_domain *tmp, *sd = NULL;
    7731             :         int cpu = smp_processor_id();
    7732             :         int new_cpu = prev_cpu;
    7733             :         int want_affine = 0;
    7734             :         /* SD_flags and WF_flags share the first nibble */
    7735             :         int sd_flag = wake_flags & 0xF;
    7736             : 
    7737             :         /*
    7738             :          * required for stable ->cpus_allowed
    7739             :          */
    7740             :         lockdep_assert_held(&p->pi_lock);
    7741             :         if (wake_flags & WF_TTWU) {
    7742             :                 record_wakee(p);
    7743             : 
    7744             :                 if (sched_energy_enabled()) {
    7745             :                         new_cpu = find_energy_efficient_cpu(p, prev_cpu);
    7746             :                         if (new_cpu >= 0)
    7747             :                                 return new_cpu;
    7748             :                         new_cpu = prev_cpu;
    7749             :                 }
    7750             : 
    7751             :                 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
    7752             :         }
    7753             : 
    7754             :         rcu_read_lock();
    7755             :         for_each_domain(cpu, tmp) {
    7756             :                 /*
    7757             :                  * If both 'cpu' and 'prev_cpu' are part of this domain,
    7758             :                  * cpu is a valid SD_WAKE_AFFINE target.
    7759             :                  */
    7760             :                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
    7761             :                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
    7762             :                         if (cpu != prev_cpu)
    7763             :                                 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
    7764             : 
    7765             :                         sd = NULL; /* Prefer wake_affine over balance flags */
    7766             :                         break;
    7767             :                 }
    7768             : 
    7769             :                 /*
    7770             :                  * Usually only true for WF_EXEC and WF_FORK, as sched_domains
    7771             :                  * usually do not have SD_BALANCE_WAKE set. That means wakeup
    7772             :                  * will usually go to the fast path.
    7773             :                  */
    7774             :                 if (tmp->flags & sd_flag)
    7775             :                         sd = tmp;
    7776             :                 else if (!want_affine)
    7777             :                         break;
    7778             :         }
    7779             : 
    7780             :         if (unlikely(sd)) {
    7781             :                 /* Slow path */
    7782             :                 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
    7783             :         } else if (wake_flags & WF_TTWU) { /* XXX always ? */
    7784             :                 /* Fast path */
    7785             :                 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
    7786             :         }
    7787             :         rcu_read_unlock();
    7788             : 
    7789             :         return new_cpu;
    7790             : }
    7791             : 
    7792             : /*
    7793             :  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
    7794             :  * cfs_rq_of(p) references at time of call are still valid and identify the
    7795             :  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
    7796             :  */
    7797             : static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
    7798             : {
    7799             :         struct sched_entity *se = &p->se;
    7800             : 
    7801             :         /*
    7802             :          * As blocked tasks retain absolute vruntime the migration needs to
    7803             :          * deal with this by subtracting the old and adding the new
    7804             :          * min_vruntime -- the latter is done by enqueue_entity() when placing
    7805             :          * the task on the new runqueue.
    7806             :          */
    7807             :         if (READ_ONCE(p->__state) == TASK_WAKING) {
    7808             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    7809             : 
    7810             :                 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
    7811             :         }
    7812             : 
    7813             :         if (!task_on_rq_migrating(p)) {
    7814             :                 remove_entity_load_avg(se);
    7815             : 
    7816             :                 /*
    7817             :                  * Here, the task's PELT values have been updated according to
    7818             :                  * the current rq's clock. But if that clock hasn't been
    7819             :                  * updated in a while, a substantial idle time will be missed,
    7820             :                  * leading to an inflation after wake-up on the new rq.
    7821             :                  *
    7822             :                  * Estimate the missing time from the cfs_rq last_update_time
    7823             :                  * and update sched_avg to improve the PELT continuity after
    7824             :                  * migration.
    7825             :                  */
    7826             :                 migrate_se_pelt_lag(se);
    7827             :         }
    7828             : 
    7829             :         /* Tell new CPU we are migrated */
    7830             :         se->avg.last_update_time = 0;
    7831             : 
    7832             :         update_scan_period(p, new_cpu);
    7833             : }
    7834             : 
    7835             : static void task_dead_fair(struct task_struct *p)
    7836             : {
    7837             :         remove_entity_load_avg(&p->se);
    7838             : }
    7839             : 
    7840             : static int
    7841             : balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7842             : {
    7843             :         if (rq->nr_running)
    7844             :                 return 1;
    7845             : 
    7846             :         return newidle_balance(rq, rf) != 0;
    7847             : }
    7848             : #endif /* CONFIG_SMP */
    7849             : 
    7850             : static unsigned long wakeup_gran(struct sched_entity *se)
    7851             : {
    7852         338 :         unsigned long gran = sysctl_sched_wakeup_granularity;
    7853             : 
    7854             :         /*
    7855             :          * Since its curr running now, convert the gran from real-time
    7856             :          * to virtual-time in his units.
    7857             :          *
    7858             :          * By using 'se' instead of 'curr' we penalize light tasks, so
    7859             :          * they get preempted easier. That is, if 'se' < 'curr' then
    7860             :          * the resulting gran will be larger, therefore penalizing the
    7861             :          * lighter, if otoh 'se' > 'curr' then the resulting gran will
    7862             :          * be smaller, again penalizing the lighter task.
    7863             :          *
    7864             :          * This is especially important for buddies when the leftmost
    7865             :          * task is higher priority than the buddy.
    7866             :          */
    7867         338 :         return calc_delta_fair(gran, se);
    7868             : }
    7869             : 
    7870             : /*
    7871             :  * Should 'se' preempt 'curr'.
    7872             :  *
    7873             :  *             |s1
    7874             :  *        |s2
    7875             :  *   |s3
    7876             :  *         g
    7877             :  *      |<--->|c
    7878             :  *
    7879             :  *  w(c, s1) = -1
    7880             :  *  w(c, s2) =  0
    7881             :  *  w(c, s3) =  1
    7882             :  *
    7883             :  */
    7884             : static int
    7885        1198 : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
    7886             : {
    7887        1198 :         s64 gran, vdiff = curr->vruntime - se->vruntime;
    7888             : 
    7889        1198 :         if (vdiff <= 0)
    7890             :                 return -1;
    7891             : 
    7892         338 :         gran = wakeup_gran(se);
    7893         338 :         if (vdiff > gran)
    7894             :                 return 1;
    7895             : 
    7896             :         return 0;
    7897             : }
    7898             : 
    7899             : static void set_last_buddy(struct sched_entity *se)
    7900             : {
    7901           0 :         for_each_sched_entity(se) {
    7902             :                 if (SCHED_WARN_ON(!se->on_rq))
    7903             :                         return;
    7904           0 :                 if (se_is_idle(se))
    7905             :                         return;
    7906           0 :                 cfs_rq_of(se)->last = se;
    7907             :         }
    7908             : }
    7909             : 
    7910             : static void set_next_buddy(struct sched_entity *se)
    7911             : {
    7912         336 :         for_each_sched_entity(se) {
    7913             :                 if (SCHED_WARN_ON(!se->on_rq))
    7914             :                         return;
    7915         336 :                 if (se_is_idle(se))
    7916             :                         return;
    7917         672 :                 cfs_rq_of(se)->next = se;
    7918             :         }
    7919             : }
    7920             : 
    7921             : static void set_skip_buddy(struct sched_entity *se)
    7922             : {
    7923           0 :         for_each_sched_entity(se)
    7924           0 :                 cfs_rq_of(se)->skip = se;
    7925             : }
    7926             : 
    7927             : /*
    7928             :  * Preempt the current task with a newly woken task if needed:
    7929             :  */
    7930        1028 : static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
    7931             : {
    7932        1028 :         struct task_struct *curr = rq->curr;
    7933        1028 :         struct sched_entity *se = &curr->se, *pse = &p->se;
    7934        2056 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    7935        1028 :         int scale = cfs_rq->nr_running >= sched_nr_latency;
    7936        1028 :         int next_buddy_marked = 0;
    7937             :         int cse_is_idle, pse_is_idle;
    7938             : 
    7939        1028 :         if (unlikely(se == pse))
    7940             :                 return;
    7941             : 
    7942             :         /*
    7943             :          * This is possible from callers such as attach_tasks(), in which we
    7944             :          * unconditionally check_preempt_curr() after an enqueue (which may have
    7945             :          * lead to a throttle).  This both saves work and prevents false
    7946             :          * next-buddy nomination below.
    7947             :          */
    7948        1028 :         if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
    7949             :                 return;
    7950             : 
    7951             :         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
    7952             :                 set_next_buddy(pse);
    7953             :                 next_buddy_marked = 1;
    7954             :         }
    7955             : 
    7956             :         /*
    7957             :          * We can come here with TIF_NEED_RESCHED already set from new task
    7958             :          * wake up path.
    7959             :          *
    7960             :          * Note: this also catches the edge-case of curr being in a throttled
    7961             :          * group (e.g. via set_curr_task), since update_curr() (in the
    7962             :          * enqueue of curr) will have resulted in resched being set.  This
    7963             :          * prevents us from potentially nominating it as a false LAST_BUDDY
    7964             :          * below.
    7965             :          */
    7966        1028 :         if (test_tsk_need_resched(curr))
    7967             :                 return;
    7968             : 
    7969             :         /* Idle tasks are by definition preempted by non-idle tasks. */
    7970        1724 :         if (unlikely(task_has_idle_policy(curr)) &&
    7971           0 :             likely(!task_has_idle_policy(p)))
    7972             :                 goto preempt;
    7973             : 
    7974             :         /*
    7975             :          * Batch and idle tasks do not preempt non-idle tasks (their preemption
    7976             :          * is driven by the tick):
    7977             :          */
    7978         862 :         if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
    7979             :                 return;
    7980             : 
    7981         862 :         find_matching_se(&se, &pse);
    7982         862 :         WARN_ON_ONCE(!pse);
    7983             : 
    7984         862 :         cse_is_idle = se_is_idle(se);
    7985         862 :         pse_is_idle = se_is_idle(pse);
    7986             : 
    7987             :         /*
    7988             :          * Preempt an idle group in favor of a non-idle group (and don't preempt
    7989             :          * in the inverse case).
    7990             :          */
    7991             :         if (cse_is_idle && !pse_is_idle)
    7992             :                 goto preempt;
    7993             :         if (cse_is_idle != pse_is_idle)
    7994             :                 return;
    7995             : 
    7996        1724 :         update_curr(cfs_rq_of(se));
    7997         862 :         if (wakeup_preempt_entity(se, pse) == 1) {
    7998             :                 /*
    7999             :                  * Bias pick_next to pick the sched entity that is
    8000             :                  * triggering this preemption.
    8001             :                  */
    8002             :                 if (!next_buddy_marked)
    8003             :                         set_next_buddy(pse);
    8004             :                 goto preempt;
    8005             :         }
    8006             : 
    8007             :         return;
    8008             : 
    8009             : preempt:
    8010         336 :         resched_curr(rq);
    8011             :         /*
    8012             :          * Only set the backward buddy when the current task is still
    8013             :          * on the rq. This can happen when a wakeup gets interleaved
    8014             :          * with schedule on the ->pre_schedule() or idle_balance()
    8015             :          * point, either of which can * drop the rq lock.
    8016             :          *
    8017             :          * Also, during early boot the idle thread is in the fair class,
    8018             :          * for obvious reasons its a bad idea to schedule back to it.
    8019             :          */
    8020         336 :         if (unlikely(!se->on_rq || curr == rq->idle))
    8021             :                 return;
    8022             : 
    8023         336 :         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
    8024             :                 set_last_buddy(se);
    8025             : }
    8026             : 
    8027             : #ifdef CONFIG_SMP
    8028             : static struct task_struct *pick_task_fair(struct rq *rq)
    8029             : {
    8030             :         struct sched_entity *se;
    8031             :         struct cfs_rq *cfs_rq;
    8032             : 
    8033             : again:
    8034             :         cfs_rq = &rq->cfs;
    8035             :         if (!cfs_rq->nr_running)
    8036             :                 return NULL;
    8037             : 
    8038             :         do {
    8039             :                 struct sched_entity *curr = cfs_rq->curr;
    8040             : 
    8041             :                 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
    8042             :                 if (curr) {
    8043             :                         if (curr->on_rq)
    8044             :                                 update_curr(cfs_rq);
    8045             :                         else
    8046             :                                 curr = NULL;
    8047             : 
    8048             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq)))
    8049             :                                 goto again;
    8050             :                 }
    8051             : 
    8052             :                 se = pick_next_entity(cfs_rq, curr);
    8053             :                 cfs_rq = group_cfs_rq(se);
    8054             :         } while (cfs_rq);
    8055             : 
    8056             :         return task_of(se);
    8057             : }
    8058             : #endif
    8059             : 
    8060             : struct task_struct *
    8061        1032 : pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    8062             : {
    8063        1032 :         struct cfs_rq *cfs_rq = &rq->cfs;
    8064             :         struct sched_entity *se;
    8065             :         struct task_struct *p;
    8066             :         int new_tasks;
    8067             : 
    8068             : again:
    8069        1032 :         if (!sched_fair_runnable(rq))
    8070             :                 goto idle;
    8071             : 
    8072             : #ifdef CONFIG_FAIR_GROUP_SCHED
    8073             :         if (!prev || prev->sched_class != &fair_sched_class)
    8074             :                 goto simple;
    8075             : 
    8076             :         /*
    8077             :          * Because of the set_next_buddy() in dequeue_task_fair() it is rather
    8078             :          * likely that a next task is from the same cgroup as the current.
    8079             :          *
    8080             :          * Therefore attempt to avoid putting and setting the entire cgroup
    8081             :          * hierarchy, only change the part that actually changes.
    8082             :          */
    8083             : 
    8084             :         do {
    8085             :                 struct sched_entity *curr = cfs_rq->curr;
    8086             : 
    8087             :                 /*
    8088             :                  * Since we got here without doing put_prev_entity() we also
    8089             :                  * have to consider cfs_rq->curr. If it is still a runnable
    8090             :                  * entity, update_curr() will update its vruntime, otherwise
    8091             :                  * forget we've ever seen it.
    8092             :                  */
    8093             :                 if (curr) {
    8094             :                         if (curr->on_rq)
    8095             :                                 update_curr(cfs_rq);
    8096             :                         else
    8097             :                                 curr = NULL;
    8098             : 
    8099             :                         /*
    8100             :                          * This call to check_cfs_rq_runtime() will do the
    8101             :                          * throttle and dequeue its entity in the parent(s).
    8102             :                          * Therefore the nr_running test will indeed
    8103             :                          * be correct.
    8104             :                          */
    8105             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
    8106             :                                 cfs_rq = &rq->cfs;
    8107             : 
    8108             :                                 if (!cfs_rq->nr_running)
    8109             :                                         goto idle;
    8110             : 
    8111             :                                 goto simple;
    8112             :                         }
    8113             :                 }
    8114             : 
    8115             :                 se = pick_next_entity(cfs_rq, curr);
    8116             :                 cfs_rq = group_cfs_rq(se);
    8117             :         } while (cfs_rq);
    8118             : 
    8119             :         p = task_of(se);
    8120             : 
    8121             :         /*
    8122             :          * Since we haven't yet done put_prev_entity and if the selected task
    8123             :          * is a different task than we started out with, try and touch the
    8124             :          * least amount of cfs_rqs.
    8125             :          */
    8126             :         if (prev != p) {
    8127             :                 struct sched_entity *pse = &prev->se;
    8128             : 
    8129             :                 while (!(cfs_rq = is_same_group(se, pse))) {
    8130             :                         int se_depth = se->depth;
    8131             :                         int pse_depth = pse->depth;
    8132             : 
    8133             :                         if (se_depth <= pse_depth) {
    8134             :                                 put_prev_entity(cfs_rq_of(pse), pse);
    8135             :                                 pse = parent_entity(pse);
    8136             :                         }
    8137             :                         if (se_depth >= pse_depth) {
    8138             :                                 set_next_entity(cfs_rq_of(se), se);
    8139             :                                 se = parent_entity(se);
    8140             :                         }
    8141             :                 }
    8142             : 
    8143             :                 put_prev_entity(cfs_rq, pse);
    8144             :                 set_next_entity(cfs_rq, se);
    8145             :         }
    8146             : 
    8147             :         goto done;
    8148             : simple:
    8149             : #endif
    8150        1030 :         if (prev)
    8151        1030 :                 put_prev_task(rq, prev);
    8152             : 
    8153             :         do {
    8154        1030 :                 se = pick_next_entity(cfs_rq, NULL);
    8155        1030 :                 set_next_entity(cfs_rq, se);
    8156        1030 :                 cfs_rq = group_cfs_rq(se);
    8157             :         } while (cfs_rq);
    8158             : 
    8159        1030 :         p = task_of(se);
    8160             : 
    8161             : done: __maybe_unused;
    8162             : #ifdef CONFIG_SMP
    8163             :         /*
    8164             :          * Move the next running task to the front of
    8165             :          * the list, so our cfs_tasks list becomes MRU
    8166             :          * one.
    8167             :          */
    8168             :         list_move(&p->se.group_node, &rq->cfs_tasks);
    8169             : #endif
    8170             : 
    8171        1030 :         if (hrtick_enabled_fair(rq))
    8172             :                 hrtick_start_fair(rq, p);
    8173             : 
    8174        1030 :         update_misfit_status(p, rq);
    8175             : 
    8176        1030 :         return p;
    8177             : 
    8178             : idle:
    8179             :         if (!rf)
    8180             :                 return NULL;
    8181             : 
    8182             :         new_tasks = newidle_balance(rq, rf);
    8183             : 
    8184             :         /*
    8185             :          * Because newidle_balance() releases (and re-acquires) rq->lock, it is
    8186             :          * possible for any higher priority task to appear. In that case we
    8187             :          * must re-start the pick_next_entity() loop.
    8188             :          */
    8189             :         if (new_tasks < 0)
    8190             :                 return RETRY_TASK;
    8191             : 
    8192             :         if (new_tasks > 0)
    8193             :                 goto again;
    8194             : 
    8195             :         /*
    8196             :          * rq is about to be idle, check if we need to update the
    8197             :          * lost_idle_time of clock_pelt
    8198             :          */
    8199             :         update_idle_rq_clock_pelt(rq);
    8200             : 
    8201             :         return NULL;
    8202             : }
    8203             : 
    8204           0 : static struct task_struct *__pick_next_task_fair(struct rq *rq)
    8205             : {
    8206           0 :         return pick_next_task_fair(rq, NULL, NULL);
    8207             : }
    8208             : 
    8209             : /*
    8210             :  * Account for a descheduled task:
    8211             :  */
    8212        1033 : static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
    8213             : {
    8214        1033 :         struct sched_entity *se = &prev->se;
    8215             :         struct cfs_rq *cfs_rq;
    8216             : 
    8217        2066 :         for_each_sched_entity(se) {
    8218        2066 :                 cfs_rq = cfs_rq_of(se);
    8219        1033 :                 put_prev_entity(cfs_rq, se);
    8220             :         }
    8221        1033 : }
    8222             : 
    8223             : /*
    8224             :  * sched_yield() is very simple
    8225             :  *
    8226             :  * The magic of dealing with the ->skip buddy is in pick_next_entity.
    8227             :  */
    8228           0 : static void yield_task_fair(struct rq *rq)
    8229             : {
    8230           0 :         struct task_struct *curr = rq->curr;
    8231           0 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    8232           0 :         struct sched_entity *se = &curr->se;
    8233             : 
    8234             :         /*
    8235             :          * Are we the only task in the tree?
    8236             :          */
    8237           0 :         if (unlikely(rq->nr_running == 1))
    8238             :                 return;
    8239             : 
    8240           0 :         clear_buddies(cfs_rq, se);
    8241             : 
    8242           0 :         if (curr->policy != SCHED_BATCH) {
    8243           0 :                 update_rq_clock(rq);
    8244             :                 /*
    8245             :                  * Update run-time statistics of the 'current'.
    8246             :                  */
    8247           0 :                 update_curr(cfs_rq);
    8248             :                 /*
    8249             :                  * Tell update_rq_clock() that we've just updated,
    8250             :                  * so we don't do microscopic update in schedule()
    8251             :                  * and double the fastpath cost.
    8252             :                  */
    8253           0 :                 rq_clock_skip_update(rq);
    8254             :         }
    8255             : 
    8256             :         set_skip_buddy(se);
    8257             : }
    8258             : 
    8259           0 : static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
    8260             : {
    8261           0 :         struct sched_entity *se = &p->se;
    8262             : 
    8263             :         /* throttled hierarchies are not runnable */
    8264           0 :         if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
    8265             :                 return false;
    8266             : 
    8267             :         /* Tell the scheduler that we'd really like pse to run next. */
    8268           0 :         set_next_buddy(se);
    8269             : 
    8270           0 :         yield_task_fair(rq);
    8271             : 
    8272           0 :         return true;
    8273             : }
    8274             : 
    8275             : #ifdef CONFIG_SMP
    8276             : /**************************************************
    8277             :  * Fair scheduling class load-balancing methods.
    8278             :  *
    8279             :  * BASICS
    8280             :  *
    8281             :  * The purpose of load-balancing is to achieve the same basic fairness the
    8282             :  * per-CPU scheduler provides, namely provide a proportional amount of compute
    8283             :  * time to each task. This is expressed in the following equation:
    8284             :  *
    8285             :  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
    8286             :  *
    8287             :  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
    8288             :  * W_i,0 is defined as:
    8289             :  *
    8290             :  *   W_i,0 = \Sum_j w_i,j                                             (2)
    8291             :  *
    8292             :  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
    8293             :  * is derived from the nice value as per sched_prio_to_weight[].
    8294             :  *
    8295             :  * The weight average is an exponential decay average of the instantaneous
    8296             :  * weight:
    8297             :  *
    8298             :  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
    8299             :  *
    8300             :  * C_i is the compute capacity of CPU i, typically it is the
    8301             :  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
    8302             :  * can also include other factors [XXX].
    8303             :  *
    8304             :  * To achieve this balance we define a measure of imbalance which follows
    8305             :  * directly from (1):
    8306             :  *
    8307             :  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
    8308             :  *
    8309             :  * We them move tasks around to minimize the imbalance. In the continuous
    8310             :  * function space it is obvious this converges, in the discrete case we get
    8311             :  * a few fun cases generally called infeasible weight scenarios.
    8312             :  *
    8313             :  * [XXX expand on:
    8314             :  *     - infeasible weights;
    8315             :  *     - local vs global optima in the discrete case. ]
    8316             :  *
    8317             :  *
    8318             :  * SCHED DOMAINS
    8319             :  *
    8320             :  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
    8321             :  * for all i,j solution, we create a tree of CPUs that follows the hardware
    8322             :  * topology where each level pairs two lower groups (or better). This results
    8323             :  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
    8324             :  * tree to only the first of the previous level and we decrease the frequency
    8325             :  * of load-balance at each level inv. proportional to the number of CPUs in
    8326             :  * the groups.
    8327             :  *
    8328             :  * This yields:
    8329             :  *
    8330             :  *     log_2 n     1     n
    8331             :  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
    8332             :  *     i = 0      2^i   2^i
    8333             :  *                               `- size of each group
    8334             :  *         |         |     `- number of CPUs doing load-balance
    8335             :  *         |         `- freq
    8336             :  *         `- sum over all levels
    8337             :  *
    8338             :  * Coupled with a limit on how many tasks we can migrate every balance pass,
    8339             :  * this makes (5) the runtime complexity of the balancer.
    8340             :  *
    8341             :  * An important property here is that each CPU is still (indirectly) connected
    8342             :  * to every other CPU in at most O(log n) steps:
    8343             :  *
    8344             :  * The adjacency matrix of the resulting graph is given by:
    8345             :  *
    8346             :  *             log_2 n
    8347             :  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
    8348             :  *             k = 0
    8349             :  *
    8350             :  * And you'll find that:
    8351             :  *
    8352             :  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
    8353             :  *
    8354             :  * Showing there's indeed a path between every CPU in at most O(log n) steps.
    8355             :  * The task movement gives a factor of O(m), giving a convergence complexity
    8356             :  * of:
    8357             :  *
    8358             :  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
    8359             :  *
    8360             :  *
    8361             :  * WORK CONSERVING
    8362             :  *
    8363             :  * In order to avoid CPUs going idle while there's still work to do, new idle
    8364             :  * balancing is more aggressive and has the newly idle CPU iterate up the domain
    8365             :  * tree itself instead of relying on other CPUs to bring it work.
    8366             :  *
    8367             :  * This adds some complexity to both (5) and (8) but it reduces the total idle
    8368             :  * time.
    8369             :  *
    8370             :  * [XXX more?]
    8371             :  *
    8372             :  *
    8373             :  * CGROUPS
    8374             :  *
    8375             :  * Cgroups make a horror show out of (2), instead of a simple sum we get:
    8376             :  *
    8377             :  *                                s_k,i
    8378             :  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
    8379             :  *                                 S_k
    8380             :  *
    8381             :  * Where
    8382             :  *
    8383             :  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
    8384             :  *
    8385             :  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
    8386             :  *
    8387             :  * The big problem is S_k, its a global sum needed to compute a local (W_i)
    8388             :  * property.
    8389             :  *
    8390             :  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
    8391             :  *      rewrite all of this once again.]
    8392             :  */
    8393             : 
    8394             : static unsigned long __read_mostly max_load_balance_interval = HZ/10;
    8395             : 
    8396             : enum fbq_type { regular, remote, all };
    8397             : 
    8398             : /*
    8399             :  * 'group_type' describes the group of CPUs at the moment of load balancing.
    8400             :  *
    8401             :  * The enum is ordered by pulling priority, with the group with lowest priority
    8402             :  * first so the group_type can simply be compared when selecting the busiest
    8403             :  * group. See update_sd_pick_busiest().
    8404             :  */
    8405             : enum group_type {
    8406             :         /* The group has spare capacity that can be used to run more tasks.  */
    8407             :         group_has_spare = 0,
    8408             :         /*
    8409             :          * The group is fully used and the tasks don't compete for more CPU
    8410             :          * cycles. Nevertheless, some tasks might wait before running.
    8411             :          */
    8412             :         group_fully_busy,
    8413             :         /*
    8414             :          * One task doesn't fit with CPU's capacity and must be migrated to a
    8415             :          * more powerful CPU.
    8416             :          */
    8417             :         group_misfit_task,
    8418             :         /*
    8419             :          * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
    8420             :          * and the task should be migrated to it instead of running on the
    8421             :          * current CPU.
    8422             :          */
    8423             :         group_asym_packing,
    8424             :         /*
    8425             :          * The tasks' affinity constraints previously prevented the scheduler
    8426             :          * from balancing the load across the system.
    8427             :          */
    8428             :         group_imbalanced,
    8429             :         /*
    8430             :          * The CPU is overloaded and can't provide expected CPU cycles to all
    8431             :          * tasks.
    8432             :          */
    8433             :         group_overloaded
    8434             : };
    8435             : 
    8436             : enum migration_type {
    8437             :         migrate_load = 0,
    8438             :         migrate_util,
    8439             :         migrate_task,
    8440             :         migrate_misfit
    8441             : };
    8442             : 
    8443             : #define LBF_ALL_PINNED  0x01
    8444             : #define LBF_NEED_BREAK  0x02
    8445             : #define LBF_DST_PINNED  0x04
    8446             : #define LBF_SOME_PINNED 0x08
    8447             : #define LBF_ACTIVE_LB   0x10
    8448             : 
    8449             : struct lb_env {
    8450             :         struct sched_domain     *sd;
    8451             : 
    8452             :         struct rq               *src_rq;
    8453             :         int                     src_cpu;
    8454             : 
    8455             :         int                     dst_cpu;
    8456             :         struct rq               *dst_rq;
    8457             : 
    8458             :         struct cpumask          *dst_grpmask;
    8459             :         int                     new_dst_cpu;
    8460             :         enum cpu_idle_type      idle;
    8461             :         long                    imbalance;
    8462             :         /* The set of CPUs under consideration for load-balancing */
    8463             :         struct cpumask          *cpus;
    8464             : 
    8465             :         unsigned int            flags;
    8466             : 
    8467             :         unsigned int            loop;
    8468             :         unsigned int            loop_break;
    8469             :         unsigned int            loop_max;
    8470             : 
    8471             :         enum fbq_type           fbq_type;
    8472             :         enum migration_type     migration_type;
    8473             :         struct list_head        tasks;
    8474             : };
    8475             : 
    8476             : /*
    8477             :  * Is this task likely cache-hot:
    8478             :  */
    8479             : static int task_hot(struct task_struct *p, struct lb_env *env)
    8480             : {
    8481             :         s64 delta;
    8482             : 
    8483             :         lockdep_assert_rq_held(env->src_rq);
    8484             : 
    8485             :         if (p->sched_class != &fair_sched_class)
    8486             :                 return 0;
    8487             : 
    8488             :         if (unlikely(task_has_idle_policy(p)))
    8489             :                 return 0;
    8490             : 
    8491             :         /* SMT siblings share cache */
    8492             :         if (env->sd->flags & SD_SHARE_CPUCAPACITY)
    8493             :                 return 0;
    8494             : 
    8495             :         /*
    8496             :          * Buddy candidates are cache hot:
    8497             :          */
    8498             :         if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
    8499             :                         (&p->se == cfs_rq_of(&p->se)->next ||
    8500             :                          &p->se == cfs_rq_of(&p->se)->last))
    8501             :                 return 1;
    8502             : 
    8503             :         if (sysctl_sched_migration_cost == -1)
    8504             :                 return 1;
    8505             : 
    8506             :         /*
    8507             :          * Don't migrate task if the task's cookie does not match
    8508             :          * with the destination CPU's core cookie.
    8509             :          */
    8510             :         if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
    8511             :                 return 1;
    8512             : 
    8513             :         if (sysctl_sched_migration_cost == 0)
    8514             :                 return 0;
    8515             : 
    8516             :         delta = rq_clock_task(env->src_rq) - p->se.exec_start;
    8517             : 
    8518             :         return delta < (s64)sysctl_sched_migration_cost;
    8519             : }
    8520             : 
    8521             : #ifdef CONFIG_NUMA_BALANCING
    8522             : /*
    8523             :  * Returns 1, if task migration degrades locality
    8524             :  * Returns 0, if task migration improves locality i.e migration preferred.
    8525             :  * Returns -1, if task migration is not affected by locality.
    8526             :  */
    8527             : static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
    8528             : {
    8529             :         struct numa_group *numa_group = rcu_dereference(p->numa_group);
    8530             :         unsigned long src_weight, dst_weight;
    8531             :         int src_nid, dst_nid, dist;
    8532             : 
    8533             :         if (!static_branch_likely(&sched_numa_balancing))
    8534             :                 return -1;
    8535             : 
    8536             :         if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
    8537             :                 return -1;
    8538             : 
    8539             :         src_nid = cpu_to_node(env->src_cpu);
    8540             :         dst_nid = cpu_to_node(env->dst_cpu);
    8541             : 
    8542             :         if (src_nid == dst_nid)
    8543             :                 return -1;
    8544             : 
    8545             :         /* Migrating away from the preferred node is always bad. */
    8546             :         if (src_nid == p->numa_preferred_nid) {
    8547             :                 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
    8548             :                         return 1;
    8549             :                 else
    8550             :                         return -1;
    8551             :         }
    8552             : 
    8553             :         /* Encourage migration to the preferred node. */
    8554             :         if (dst_nid == p->numa_preferred_nid)
    8555             :                 return 0;
    8556             : 
    8557             :         /* Leaving a core idle is often worse than degrading locality. */
    8558             :         if (env->idle == CPU_IDLE)
    8559             :                 return -1;
    8560             : 
    8561             :         dist = node_distance(src_nid, dst_nid);
    8562             :         if (numa_group) {
    8563             :                 src_weight = group_weight(p, src_nid, dist);
    8564             :                 dst_weight = group_weight(p, dst_nid, dist);
    8565             :         } else {
    8566             :                 src_weight = task_weight(p, src_nid, dist);
    8567             :                 dst_weight = task_weight(p, dst_nid, dist);
    8568             :         }
    8569             : 
    8570             :         return dst_weight < src_weight;
    8571             : }
    8572             : 
    8573             : #else
    8574             : static inline int migrate_degrades_locality(struct task_struct *p,
    8575             :                                              struct lb_env *env)
    8576             : {
    8577             :         return -1;
    8578             : }
    8579             : #endif
    8580             : 
    8581             : /*
    8582             :  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
    8583             :  */
    8584             : static
    8585             : int can_migrate_task(struct task_struct *p, struct lb_env *env)
    8586             : {
    8587             :         int tsk_cache_hot;
    8588             : 
    8589             :         lockdep_assert_rq_held(env->src_rq);
    8590             : 
    8591             :         /*
    8592             :          * We do not migrate tasks that are:
    8593             :          * 1) throttled_lb_pair, or
    8594             :          * 2) cannot be migrated to this CPU due to cpus_ptr, or
    8595             :          * 3) running (obviously), or
    8596             :          * 4) are cache-hot on their current CPU.
    8597             :          */
    8598             :         if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
    8599             :                 return 0;
    8600             : 
    8601             :         /* Disregard pcpu kthreads; they are where they need to be. */
    8602             :         if (kthread_is_per_cpu(p))
    8603             :                 return 0;
    8604             : 
    8605             :         if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
    8606             :                 int cpu;
    8607             : 
    8608             :                 schedstat_inc(p->stats.nr_failed_migrations_affine);
    8609             : 
    8610             :                 env->flags |= LBF_SOME_PINNED;
    8611             : 
    8612             :                 /*
    8613             :                  * Remember if this task can be migrated to any other CPU in
    8614             :                  * our sched_group. We may want to revisit it if we couldn't
    8615             :                  * meet load balance goals by pulling other tasks on src_cpu.
    8616             :                  *
    8617             :                  * Avoid computing new_dst_cpu
    8618             :                  * - for NEWLY_IDLE
    8619             :                  * - if we have already computed one in current iteration
    8620             :                  * - if it's an active balance
    8621             :                  */
    8622             :                 if (env->idle == CPU_NEWLY_IDLE ||
    8623             :                     env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
    8624             :                         return 0;
    8625             : 
    8626             :                 /* Prevent to re-select dst_cpu via env's CPUs: */
    8627             :                 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
    8628             :                         if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
    8629             :                                 env->flags |= LBF_DST_PINNED;
    8630             :                                 env->new_dst_cpu = cpu;
    8631             :                                 break;
    8632             :                         }
    8633             :                 }
    8634             : 
    8635             :                 return 0;
    8636             :         }
    8637             : 
    8638             :         /* Record that we found at least one task that could run on dst_cpu */
    8639             :         env->flags &= ~LBF_ALL_PINNED;
    8640             : 
    8641             :         if (task_on_cpu(env->src_rq, p)) {
    8642             :                 schedstat_inc(p->stats.nr_failed_migrations_running);
    8643             :                 return 0;
    8644             :         }
    8645             : 
    8646             :         /*
    8647             :          * Aggressive migration if:
    8648             :          * 1) active balance
    8649             :          * 2) destination numa is preferred
    8650             :          * 3) task is cache cold, or
    8651             :          * 4) too many balance attempts have failed.
    8652             :          */
    8653             :         if (env->flags & LBF_ACTIVE_LB)
    8654             :                 return 1;
    8655             : 
    8656             :         tsk_cache_hot = migrate_degrades_locality(p, env);
    8657             :         if (tsk_cache_hot == -1)
    8658             :                 tsk_cache_hot = task_hot(p, env);
    8659             : 
    8660             :         if (tsk_cache_hot <= 0 ||
    8661             :             env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
    8662             :                 if (tsk_cache_hot == 1) {
    8663             :                         schedstat_inc(env->sd->lb_hot_gained[env->idle]);
    8664             :                         schedstat_inc(p->stats.nr_forced_migrations);
    8665             :                 }
    8666             :                 return 1;
    8667             :         }
    8668             : 
    8669             :         schedstat_inc(p->stats.nr_failed_migrations_hot);
    8670             :         return 0;
    8671             : }
    8672             : 
    8673             : /*
    8674             :  * detach_task() -- detach the task for the migration specified in env
    8675             :  */
    8676             : static void detach_task(struct task_struct *p, struct lb_env *env)
    8677             : {
    8678             :         lockdep_assert_rq_held(env->src_rq);
    8679             : 
    8680             :         deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
    8681             :         set_task_cpu(p, env->dst_cpu);
    8682             : }
    8683             : 
    8684             : /*
    8685             :  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
    8686             :  * part of active balancing operations within "domain".
    8687             :  *
    8688             :  * Returns a task if successful and NULL otherwise.
    8689             :  */
    8690             : static struct task_struct *detach_one_task(struct lb_env *env)
    8691             : {
    8692             :         struct task_struct *p;
    8693             : 
    8694             :         lockdep_assert_rq_held(env->src_rq);
    8695             : 
    8696             :         list_for_each_entry_reverse(p,
    8697             :                         &env->src_rq->cfs_tasks, se.group_node) {
    8698             :                 if (!can_migrate_task(p, env))
    8699             :                         continue;
    8700             : 
    8701             :                 detach_task(p, env);
    8702             : 
    8703             :                 /*
    8704             :                  * Right now, this is only the second place where
    8705             :                  * lb_gained[env->idle] is updated (other is detach_tasks)
    8706             :                  * so we can safely collect stats here rather than
    8707             :                  * inside detach_tasks().
    8708             :                  */
    8709             :                 schedstat_inc(env->sd->lb_gained[env->idle]);
    8710             :                 return p;
    8711             :         }
    8712             :         return NULL;
    8713             : }
    8714             : 
    8715             : /*
    8716             :  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
    8717             :  * busiest_rq, as part of a balancing operation within domain "sd".
    8718             :  *
    8719             :  * Returns number of detached tasks if successful and 0 otherwise.
    8720             :  */
    8721             : static int detach_tasks(struct lb_env *env)
    8722             : {
    8723             :         struct list_head *tasks = &env->src_rq->cfs_tasks;
    8724             :         unsigned long util, load;
    8725             :         struct task_struct *p;
    8726             :         int detached = 0;
    8727             : 
    8728             :         lockdep_assert_rq_held(env->src_rq);
    8729             : 
    8730             :         /*
    8731             :          * Source run queue has been emptied by another CPU, clear
    8732             :          * LBF_ALL_PINNED flag as we will not test any task.
    8733             :          */
    8734             :         if (env->src_rq->nr_running <= 1) {
    8735             :                 env->flags &= ~LBF_ALL_PINNED;
    8736             :                 return 0;
    8737             :         }
    8738             : 
    8739             :         if (env->imbalance <= 0)
    8740             :                 return 0;
    8741             : 
    8742             :         while (!list_empty(tasks)) {
    8743             :                 /*
    8744             :                  * We don't want to steal all, otherwise we may be treated likewise,
    8745             :                  * which could at worst lead to a livelock crash.
    8746             :                  */
    8747             :                 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
    8748             :                         break;
    8749             : 
    8750             :                 env->loop++;
    8751             :                 /*
    8752             :                  * We've more or less seen every task there is, call it quits
    8753             :                  * unless we haven't found any movable task yet.
    8754             :                  */
    8755             :                 if (env->loop > env->loop_max &&
    8756             :                     !(env->flags & LBF_ALL_PINNED))
    8757             :                         break;
    8758             : 
    8759             :                 /* take a breather every nr_migrate tasks */
    8760             :                 if (env->loop > env->loop_break) {
    8761             :                         env->loop_break += SCHED_NR_MIGRATE_BREAK;
    8762             :                         env->flags |= LBF_NEED_BREAK;
    8763             :                         break;
    8764             :                 }
    8765             : 
    8766             :                 p = list_last_entry(tasks, struct task_struct, se.group_node);
    8767             : 
    8768             :                 if (!can_migrate_task(p, env))
    8769             :                         goto next;
    8770             : 
    8771             :                 switch (env->migration_type) {
    8772             :                 case migrate_load:
    8773             :                         /*
    8774             :                          * Depending of the number of CPUs and tasks and the
    8775             :                          * cgroup hierarchy, task_h_load() can return a null
    8776             :                          * value. Make sure that env->imbalance decreases
    8777             :                          * otherwise detach_tasks() will stop only after
    8778             :                          * detaching up to loop_max tasks.
    8779             :                          */
    8780             :                         load = max_t(unsigned long, task_h_load(p), 1);
    8781             : 
    8782             :                         if (sched_feat(LB_MIN) &&
    8783             :                             load < 16 && !env->sd->nr_balance_failed)
    8784             :                                 goto next;
    8785             : 
    8786             :                         /*
    8787             :                          * Make sure that we don't migrate too much load.
    8788             :                          * Nevertheless, let relax the constraint if
    8789             :                          * scheduler fails to find a good waiting task to
    8790             :                          * migrate.
    8791             :                          */
    8792             :                         if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
    8793             :                                 goto next;
    8794             : 
    8795             :                         env->imbalance -= load;
    8796             :                         break;
    8797             : 
    8798             :                 case migrate_util:
    8799             :                         util = task_util_est(p);
    8800             : 
    8801             :                         if (util > env->imbalance)
    8802             :                                 goto next;
    8803             : 
    8804             :                         env->imbalance -= util;
    8805             :                         break;
    8806             : 
    8807             :                 case migrate_task:
    8808             :                         env->imbalance--;
    8809             :                         break;
    8810             : 
    8811             :                 case migrate_misfit:
    8812             :                         /* This is not a misfit task */
    8813             :                         if (task_fits_cpu(p, env->src_cpu))
    8814             :                                 goto next;
    8815             : 
    8816             :                         env->imbalance = 0;
    8817             :                         break;
    8818             :                 }
    8819             : 
    8820             :                 detach_task(p, env);
    8821             :                 list_add(&p->se.group_node, &env->tasks);
    8822             : 
    8823             :                 detached++;
    8824             : 
    8825             : #ifdef CONFIG_PREEMPTION
    8826             :                 /*
    8827             :                  * NEWIDLE balancing is a source of latency, so preemptible
    8828             :                  * kernels will stop after the first task is detached to minimize
    8829             :                  * the critical section.
    8830             :                  */
    8831             :                 if (env->idle == CPU_NEWLY_IDLE)
    8832             :                         break;
    8833             : #endif
    8834             : 
    8835             :                 /*
    8836             :                  * We only want to steal up to the prescribed amount of
    8837             :                  * load/util/tasks.
    8838             :                  */
    8839             :                 if (env->imbalance <= 0)
    8840             :                         break;
    8841             : 
    8842             :                 continue;
    8843             : next:
    8844             :                 list_move(&p->se.group_node, tasks);
    8845             :         }
    8846             : 
    8847             :         /*
    8848             :          * Right now, this is one of only two places we collect this stat
    8849             :          * so we can safely collect detach_one_task() stats here rather
    8850             :          * than inside detach_one_task().
    8851             :          */
    8852             :         schedstat_add(env->sd->lb_gained[env->idle], detached);
    8853             : 
    8854             :         return detached;
    8855             : }
    8856             : 
    8857             : /*
    8858             :  * attach_task() -- attach the task detached by detach_task() to its new rq.
    8859             :  */
    8860             : static void attach_task(struct rq *rq, struct task_struct *p)
    8861             : {
    8862             :         lockdep_assert_rq_held(rq);
    8863             : 
    8864             :         WARN_ON_ONCE(task_rq(p) != rq);
    8865             :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    8866             :         check_preempt_curr(rq, p, 0);
    8867             : }
    8868             : 
    8869             : /*
    8870             :  * attach_one_task() -- attaches the task returned from detach_one_task() to
    8871             :  * its new rq.
    8872             :  */
    8873             : static void attach_one_task(struct rq *rq, struct task_struct *p)
    8874             : {
    8875             :         struct rq_flags rf;
    8876             : 
    8877             :         rq_lock(rq, &rf);
    8878             :         update_rq_clock(rq);
    8879             :         attach_task(rq, p);
    8880             :         rq_unlock(rq, &rf);
    8881             : }
    8882             : 
    8883             : /*
    8884             :  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
    8885             :  * new rq.
    8886             :  */
    8887             : static void attach_tasks(struct lb_env *env)
    8888             : {
    8889             :         struct list_head *tasks = &env->tasks;
    8890             :         struct task_struct *p;
    8891             :         struct rq_flags rf;
    8892             : 
    8893             :         rq_lock(env->dst_rq, &rf);
    8894             :         update_rq_clock(env->dst_rq);
    8895             : 
    8896             :         while (!list_empty(tasks)) {
    8897             :                 p = list_first_entry(tasks, struct task_struct, se.group_node);
    8898             :                 list_del_init(&p->se.group_node);
    8899             : 
    8900             :                 attach_task(env->dst_rq, p);
    8901             :         }
    8902             : 
    8903             :         rq_unlock(env->dst_rq, &rf);
    8904             : }
    8905             : 
    8906             : #ifdef CONFIG_NO_HZ_COMMON
    8907             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
    8908             : {
    8909             :         if (cfs_rq->avg.load_avg)
    8910             :                 return true;
    8911             : 
    8912             :         if (cfs_rq->avg.util_avg)
    8913             :                 return true;
    8914             : 
    8915             :         return false;
    8916             : }
    8917             : 
    8918             : static inline bool others_have_blocked(struct rq *rq)
    8919             : {
    8920             :         if (READ_ONCE(rq->avg_rt.util_avg))
    8921             :                 return true;
    8922             : 
    8923             :         if (READ_ONCE(rq->avg_dl.util_avg))
    8924             :                 return true;
    8925             : 
    8926             :         if (thermal_load_avg(rq))
    8927             :                 return true;
    8928             : 
    8929             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
    8930             :         if (READ_ONCE(rq->avg_irq.util_avg))
    8931             :                 return true;
    8932             : #endif
    8933             : 
    8934             :         return false;
    8935             : }
    8936             : 
    8937             : static inline void update_blocked_load_tick(struct rq *rq)
    8938             : {
    8939             :         WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
    8940             : }
    8941             : 
    8942             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
    8943             : {
    8944             :         if (!has_blocked)
    8945             :                 rq->has_blocked_load = 0;
    8946             : }
    8947             : #else
    8948             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
    8949             : static inline bool others_have_blocked(struct rq *rq) { return false; }
    8950             : static inline void update_blocked_load_tick(struct rq *rq) {}
    8951             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
    8952             : #endif
    8953             : 
    8954             : static bool __update_blocked_others(struct rq *rq, bool *done)
    8955             : {
    8956             :         const struct sched_class *curr_class;
    8957             :         u64 now = rq_clock_pelt(rq);
    8958             :         unsigned long thermal_pressure;
    8959             :         bool decayed;
    8960             : 
    8961             :         /*
    8962             :          * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
    8963             :          * DL and IRQ signals have been updated before updating CFS.
    8964             :          */
    8965             :         curr_class = rq->curr->sched_class;
    8966             : 
    8967             :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    8968             : 
    8969             :         decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
    8970             :                   update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
    8971             :                   update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
    8972             :                   update_irq_load_avg(rq, 0);
    8973             : 
    8974             :         if (others_have_blocked(rq))
    8975             :                 *done = false;
    8976             : 
    8977             :         return decayed;
    8978             : }
    8979             : 
    8980             : #ifdef CONFIG_FAIR_GROUP_SCHED
    8981             : 
    8982             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8983             : {
    8984             :         struct cfs_rq *cfs_rq, *pos;
    8985             :         bool decayed = false;
    8986             :         int cpu = cpu_of(rq);
    8987             : 
    8988             :         /*
    8989             :          * Iterates the task_group tree in a bottom up fashion, see
    8990             :          * list_add_leaf_cfs_rq() for details.
    8991             :          */
    8992             :         for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
    8993             :                 struct sched_entity *se;
    8994             : 
    8995             :                 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
    8996             :                         update_tg_load_avg(cfs_rq);
    8997             : 
    8998             :                         if (cfs_rq->nr_running == 0)
    8999             :                                 update_idle_cfs_rq_clock_pelt(cfs_rq);
    9000             : 
    9001             :                         if (cfs_rq == &rq->cfs)
    9002             :                                 decayed = true;
    9003             :                 }
    9004             : 
    9005             :                 /* Propagate pending load changes to the parent, if any: */
    9006             :                 se = cfs_rq->tg->se[cpu];
    9007             :                 if (se && !skip_blocked_update(se))
    9008             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
    9009             : 
    9010             :                 /*
    9011             :                  * There can be a lot of idle CPU cgroups.  Don't let fully
    9012             :                  * decayed cfs_rqs linger on the list.
    9013             :                  */
    9014             :                 if (cfs_rq_is_decayed(cfs_rq))
    9015             :                         list_del_leaf_cfs_rq(cfs_rq);
    9016             : 
    9017             :                 /* Don't need periodic decay once load/util_avg are null */
    9018             :                 if (cfs_rq_has_blocked(cfs_rq))
    9019             :                         *done = false;
    9020             :         }
    9021             : 
    9022             :         return decayed;
    9023             : }
    9024             : 
    9025             : /*
    9026             :  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
    9027             :  * This needs to be done in a top-down fashion because the load of a child
    9028             :  * group is a fraction of its parents load.
    9029             :  */
    9030             : static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
    9031             : {
    9032             :         struct rq *rq = rq_of(cfs_rq);
    9033             :         struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
    9034             :         unsigned long now = jiffies;
    9035             :         unsigned long load;
    9036             : 
    9037             :         if (cfs_rq->last_h_load_update == now)
    9038             :                 return;
    9039             : 
    9040             :         WRITE_ONCE(cfs_rq->h_load_next, NULL);
    9041             :         for_each_sched_entity(se) {
    9042             :                 cfs_rq = cfs_rq_of(se);
    9043             :                 WRITE_ONCE(cfs_rq->h_load_next, se);
    9044             :                 if (cfs_rq->last_h_load_update == now)
    9045             :                         break;
    9046             :         }
    9047             : 
    9048             :         if (!se) {
    9049             :                 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
    9050             :                 cfs_rq->last_h_load_update = now;
    9051             :         }
    9052             : 
    9053             :         while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
    9054             :                 load = cfs_rq->h_load;
    9055             :                 load = div64_ul(load * se->avg.load_avg,
    9056             :                         cfs_rq_load_avg(cfs_rq) + 1);
    9057             :                 cfs_rq = group_cfs_rq(se);
    9058             :                 cfs_rq->h_load = load;
    9059             :                 cfs_rq->last_h_load_update = now;
    9060             :         }
    9061             : }
    9062             : 
    9063             : static unsigned long task_h_load(struct task_struct *p)
    9064             : {
    9065             :         struct cfs_rq *cfs_rq = task_cfs_rq(p);
    9066             : 
    9067             :         update_cfs_rq_h_load(cfs_rq);
    9068             :         return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
    9069             :                         cfs_rq_load_avg(cfs_rq) + 1);
    9070             : }
    9071             : #else
    9072             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    9073             : {
    9074             :         struct cfs_rq *cfs_rq = &rq->cfs;
    9075             :         bool decayed;
    9076             : 
    9077             :         decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
    9078             :         if (cfs_rq_has_blocked(cfs_rq))
    9079             :                 *done = false;
    9080             : 
    9081             :         return decayed;
    9082             : }
    9083             : 
    9084             : static unsigned long task_h_load(struct task_struct *p)
    9085             : {
    9086             :         return p->se.avg.load_avg;
    9087             : }
    9088             : #endif
    9089             : 
    9090             : static void update_blocked_averages(int cpu)
    9091             : {
    9092             :         bool decayed = false, done = true;
    9093             :         struct rq *rq = cpu_rq(cpu);
    9094             :         struct rq_flags rf;
    9095             : 
    9096             :         rq_lock_irqsave(rq, &rf);
    9097             :         update_blocked_load_tick(rq);
    9098             :         update_rq_clock(rq);
    9099             : 
    9100             :         decayed |= __update_blocked_others(rq, &done);
    9101             :         decayed |= __update_blocked_fair(rq, &done);
    9102             : 
    9103             :         update_blocked_load_status(rq, !done);
    9104             :         if (decayed)
    9105             :                 cpufreq_update_util(rq, 0);
    9106             :         rq_unlock_irqrestore(rq, &rf);
    9107             : }
    9108             : 
    9109             : /********** Helpers for find_busiest_group ************************/
    9110             : 
    9111             : /*
    9112             :  * sg_lb_stats - stats of a sched_group required for load_balancing
    9113             :  */
    9114             : struct sg_lb_stats {
    9115             :         unsigned long avg_load; /*Avg load across the CPUs of the group */
    9116             :         unsigned long group_load; /* Total load over the CPUs of the group */
    9117             :         unsigned long group_capacity;
    9118             :         unsigned long group_util; /* Total utilization over the CPUs of the group */
    9119             :         unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
    9120             :         unsigned int sum_nr_running; /* Nr of tasks running in the group */
    9121             :         unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
    9122             :         unsigned int idle_cpus;
    9123             :         unsigned int group_weight;
    9124             :         enum group_type group_type;
    9125             :         unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
    9126             :         unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
    9127             : #ifdef CONFIG_NUMA_BALANCING
    9128             :         unsigned int nr_numa_running;
    9129             :         unsigned int nr_preferred_running;
    9130             : #endif
    9131             : };
    9132             : 
    9133             : /*
    9134             :  * sd_lb_stats - Structure to store the statistics of a sched_domain
    9135             :  *               during load balancing.
    9136             :  */
    9137             : struct sd_lb_stats {
    9138             :         struct sched_group *busiest;    /* Busiest group in this sd */
    9139             :         struct sched_group *local;      /* Local group in this sd */
    9140             :         unsigned long total_load;       /* Total load of all groups in sd */
    9141             :         unsigned long total_capacity;   /* Total capacity of all groups in sd */
    9142             :         unsigned long avg_load; /* Average load across all groups in sd */
    9143             :         unsigned int prefer_sibling; /* tasks should go to sibling first */
    9144             : 
    9145             :         struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
    9146             :         struct sg_lb_stats local_stat;  /* Statistics of the local group */
    9147             : };
    9148             : 
    9149             : static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
    9150             : {
    9151             :         /*
    9152             :          * Skimp on the clearing to avoid duplicate work. We can avoid clearing
    9153             :          * local_stat because update_sg_lb_stats() does a full clear/assignment.
    9154             :          * We must however set busiest_stat::group_type and
    9155             :          * busiest_stat::idle_cpus to the worst busiest group because
    9156             :          * update_sd_pick_busiest() reads these before assignment.
    9157             :          */
    9158             :         *sds = (struct sd_lb_stats){
    9159             :                 .busiest = NULL,
    9160             :                 .local = NULL,
    9161             :                 .total_load = 0UL,
    9162             :                 .total_capacity = 0UL,
    9163             :                 .busiest_stat = {
    9164             :                         .idle_cpus = UINT_MAX,
    9165             :                         .group_type = group_has_spare,
    9166             :                 },
    9167             :         };
    9168             : }
    9169             : 
    9170             : static unsigned long scale_rt_capacity(int cpu)
    9171             : {
    9172             :         struct rq *rq = cpu_rq(cpu);
    9173             :         unsigned long max = arch_scale_cpu_capacity(cpu);
    9174             :         unsigned long used, free;
    9175             :         unsigned long irq;
    9176             : 
    9177             :         irq = cpu_util_irq(rq);
    9178             : 
    9179             :         if (unlikely(irq >= max))
    9180             :                 return 1;
    9181             : 
    9182             :         /*
    9183             :          * avg_rt.util_avg and avg_dl.util_avg track binary signals
    9184             :          * (running and not running) with weights 0 and 1024 respectively.
    9185             :          * avg_thermal.load_avg tracks thermal pressure and the weighted
    9186             :          * average uses the actual delta max capacity(load).
    9187             :          */
    9188             :         used = READ_ONCE(rq->avg_rt.util_avg);
    9189             :         used += READ_ONCE(rq->avg_dl.util_avg);
    9190             :         used += thermal_load_avg(rq);
    9191             : 
    9192             :         if (unlikely(used >= max))
    9193             :                 return 1;
    9194             : 
    9195             :         free = max - used;
    9196             : 
    9197             :         return scale_irq_capacity(free, irq, max);
    9198             : }
    9199             : 
    9200             : static void update_cpu_capacity(struct sched_domain *sd, int cpu)
    9201             : {
    9202             :         unsigned long capacity = scale_rt_capacity(cpu);
    9203             :         struct sched_group *sdg = sd->groups;
    9204             : 
    9205             :         cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
    9206             : 
    9207             :         if (!capacity)
    9208             :                 capacity = 1;
    9209             : 
    9210             :         cpu_rq(cpu)->cpu_capacity = capacity;
    9211             :         trace_sched_cpu_capacity_tp(cpu_rq(cpu));
    9212             : 
    9213             :         sdg->sgc->capacity = capacity;
    9214             :         sdg->sgc->min_capacity = capacity;
    9215             :         sdg->sgc->max_capacity = capacity;
    9216             : }
    9217             : 
    9218             : void update_group_capacity(struct sched_domain *sd, int cpu)
    9219             : {
    9220             :         struct sched_domain *child = sd->child;
    9221             :         struct sched_group *group, *sdg = sd->groups;
    9222             :         unsigned long capacity, min_capacity, max_capacity;
    9223             :         unsigned long interval;
    9224             : 
    9225             :         interval = msecs_to_jiffies(sd->balance_interval);
    9226             :         interval = clamp(interval, 1UL, max_load_balance_interval);
    9227             :         sdg->sgc->next_update = jiffies + interval;
    9228             : 
    9229             :         if (!child) {
    9230             :                 update_cpu_capacity(sd, cpu);
    9231             :                 return;
    9232             :         }
    9233             : 
    9234             :         capacity = 0;
    9235             :         min_capacity = ULONG_MAX;
    9236             :         max_capacity = 0;
    9237             : 
    9238             :         if (child->flags & SD_OVERLAP) {
    9239             :                 /*
    9240             :                  * SD_OVERLAP domains cannot assume that child groups
    9241             :                  * span the current group.
    9242             :                  */
    9243             : 
    9244             :                 for_each_cpu(cpu, sched_group_span(sdg)) {
    9245             :                         unsigned long cpu_cap = capacity_of(cpu);
    9246             : 
    9247             :                         capacity += cpu_cap;
    9248             :                         min_capacity = min(cpu_cap, min_capacity);
    9249             :                         max_capacity = max(cpu_cap, max_capacity);
    9250             :                 }
    9251             :         } else  {
    9252             :                 /*
    9253             :                  * !SD_OVERLAP domains can assume that child groups
    9254             :                  * span the current group.
    9255             :                  */
    9256             : 
    9257             :                 group = child->groups;
    9258             :                 do {
    9259             :                         struct sched_group_capacity *sgc = group->sgc;
    9260             : 
    9261             :                         capacity += sgc->capacity;
    9262             :                         min_capacity = min(sgc->min_capacity, min_capacity);
    9263             :                         max_capacity = max(sgc->max_capacity, max_capacity);
    9264             :                         group = group->next;
    9265             :                 } while (group != child->groups);
    9266             :         }
    9267             : 
    9268             :         sdg->sgc->capacity = capacity;
    9269             :         sdg->sgc->min_capacity = min_capacity;
    9270             :         sdg->sgc->max_capacity = max_capacity;
    9271             : }
    9272             : 
    9273             : /*
    9274             :  * Check whether the capacity of the rq has been noticeably reduced by side
    9275             :  * activity. The imbalance_pct is used for the threshold.
    9276             :  * Return true is the capacity is reduced
    9277             :  */
    9278             : static inline int
    9279             : check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
    9280             : {
    9281             :         return ((rq->cpu_capacity * sd->imbalance_pct) <
    9282             :                                 (rq->cpu_capacity_orig * 100));
    9283             : }
    9284             : 
    9285             : /*
    9286             :  * Check whether a rq has a misfit task and if it looks like we can actually
    9287             :  * help that task: we can migrate the task to a CPU of higher capacity, or
    9288             :  * the task's current CPU is heavily pressured.
    9289             :  */
    9290             : static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
    9291             : {
    9292             :         return rq->misfit_task_load &&
    9293             :                 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
    9294             :                  check_cpu_capacity(rq, sd));
    9295             : }
    9296             : 
    9297             : /*
    9298             :  * Group imbalance indicates (and tries to solve) the problem where balancing
    9299             :  * groups is inadequate due to ->cpus_ptr constraints.
    9300             :  *
    9301             :  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
    9302             :  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
    9303             :  * Something like:
    9304             :  *
    9305             :  *      { 0 1 2 3 } { 4 5 6 7 }
    9306             :  *              *     * * *
    9307             :  *
    9308             :  * If we were to balance group-wise we'd place two tasks in the first group and
    9309             :  * two tasks in the second group. Clearly this is undesired as it will overload
    9310             :  * cpu 3 and leave one of the CPUs in the second group unused.
    9311             :  *
    9312             :  * The current solution to this issue is detecting the skew in the first group
    9313             :  * by noticing the lower domain failed to reach balance and had difficulty
    9314             :  * moving tasks due to affinity constraints.
    9315             :  *
    9316             :  * When this is so detected; this group becomes a candidate for busiest; see
    9317             :  * update_sd_pick_busiest(). And calculate_imbalance() and
    9318             :  * find_busiest_group() avoid some of the usual balance conditions to allow it
    9319             :  * to create an effective group imbalance.
    9320             :  *
    9321             :  * This is a somewhat tricky proposition since the next run might not find the
    9322             :  * group imbalance and decide the groups need to be balanced again. A most
    9323             :  * subtle and fragile situation.
    9324             :  */
    9325             : 
    9326             : static inline int sg_imbalanced(struct sched_group *group)
    9327             : {
    9328             :         return group->sgc->imbalance;
    9329             : }
    9330             : 
    9331             : /*
    9332             :  * group_has_capacity returns true if the group has spare capacity that could
    9333             :  * be used by some tasks.
    9334             :  * We consider that a group has spare capacity if the number of task is
    9335             :  * smaller than the number of CPUs or if the utilization is lower than the
    9336             :  * available capacity for CFS tasks.
    9337             :  * For the latter, we use a threshold to stabilize the state, to take into
    9338             :  * account the variance of the tasks' load and to return true if the available
    9339             :  * capacity in meaningful for the load balancer.
    9340             :  * As an example, an available capacity of 1% can appear but it doesn't make
    9341             :  * any benefit for the load balance.
    9342             :  */
    9343             : static inline bool
    9344             : group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    9345             : {
    9346             :         if (sgs->sum_nr_running < sgs->group_weight)
    9347             :                 return true;
    9348             : 
    9349             :         if ((sgs->group_capacity * imbalance_pct) <
    9350             :                         (sgs->group_runnable * 100))
    9351             :                 return false;
    9352             : 
    9353             :         if ((sgs->group_capacity * 100) >
    9354             :                         (sgs->group_util * imbalance_pct))
    9355             :                 return true;
    9356             : 
    9357             :         return false;
    9358             : }
    9359             : 
    9360             : /*
    9361             :  *  group_is_overloaded returns true if the group has more tasks than it can
    9362             :  *  handle.
    9363             :  *  group_is_overloaded is not equals to !group_has_capacity because a group
    9364             :  *  with the exact right number of tasks, has no more spare capacity but is not
    9365             :  *  overloaded so both group_has_capacity and group_is_overloaded return
    9366             :  *  false.
    9367             :  */
    9368             : static inline bool
    9369             : group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    9370             : {
    9371             :         if (sgs->sum_nr_running <= sgs->group_weight)
    9372             :                 return false;
    9373             : 
    9374             :         if ((sgs->group_capacity * 100) <
    9375             :                         (sgs->group_util * imbalance_pct))
    9376             :                 return true;
    9377             : 
    9378             :         if ((sgs->group_capacity * imbalance_pct) <
    9379             :                         (sgs->group_runnable * 100))
    9380             :                 return true;
    9381             : 
    9382             :         return false;
    9383             : }
    9384             : 
    9385             : static inline enum
    9386             : group_type group_classify(unsigned int imbalance_pct,
    9387             :                           struct sched_group *group,
    9388             :                           struct sg_lb_stats *sgs)
    9389             : {
    9390             :         if (group_is_overloaded(imbalance_pct, sgs))
    9391             :                 return group_overloaded;
    9392             : 
    9393             :         if (sg_imbalanced(group))
    9394             :                 return group_imbalanced;
    9395             : 
    9396             :         if (sgs->group_asym_packing)
    9397             :                 return group_asym_packing;
    9398             : 
    9399             :         if (sgs->group_misfit_task_load)
    9400             :                 return group_misfit_task;
    9401             : 
    9402             :         if (!group_has_capacity(imbalance_pct, sgs))
    9403             :                 return group_fully_busy;
    9404             : 
    9405             :         return group_has_spare;
    9406             : }
    9407             : 
    9408             : /**
    9409             :  * sched_use_asym_prio - Check whether asym_packing priority must be used
    9410             :  * @sd:         The scheduling domain of the load balancing
    9411             :  * @cpu:        A CPU
    9412             :  *
    9413             :  * Always use CPU priority when balancing load between SMT siblings. When
    9414             :  * balancing load between cores, it is not sufficient that @cpu is idle. Only
    9415             :  * use CPU priority if the whole core is idle.
    9416             :  *
    9417             :  * Returns: True if the priority of @cpu must be followed. False otherwise.
    9418             :  */
    9419             : static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
    9420             : {
    9421             :         if (!sched_smt_active())
    9422             :                 return true;
    9423             : 
    9424             :         return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
    9425             : }
    9426             : 
    9427             : /**
    9428             :  * sched_asym - Check if the destination CPU can do asym_packing load balance
    9429             :  * @env:        The load balancing environment
    9430             :  * @sds:        Load-balancing data with statistics of the local group
    9431             :  * @sgs:        Load-balancing statistics of the candidate busiest group
    9432             :  * @group:      The candidate busiest group
    9433             :  *
    9434             :  * @env::dst_cpu can do asym_packing if it has higher priority than the
    9435             :  * preferred CPU of @group.
    9436             :  *
    9437             :  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
    9438             :  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
    9439             :  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
    9440             :  * imbalances in the number of CPUS are dealt with in find_busiest_group().
    9441             :  *
    9442             :  * If we are balancing load within an SMT core, or at DIE domain level, always
    9443             :  * proceed.
    9444             :  *
    9445             :  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
    9446             :  * otherwise.
    9447             :  */
    9448             : static inline bool
    9449             : sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
    9450             :            struct sched_group *group)
    9451             : {
    9452             :         /* Ensure that the whole local core is idle, if applicable. */
    9453             :         if (!sched_use_asym_prio(env->sd, env->dst_cpu))
    9454             :                 return false;
    9455             : 
    9456             :         /*
    9457             :          * CPU priorities does not make sense for SMT cores with more than one
    9458             :          * busy sibling.
    9459             :          */
    9460             :         if (group->flags & SD_SHARE_CPUCAPACITY) {
    9461             :                 if (sgs->group_weight - sgs->idle_cpus != 1)
    9462             :                         return false;
    9463             :         }
    9464             : 
    9465             :         return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
    9466             : }
    9467             : 
    9468             : static inline bool
    9469             : sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
    9470             : {
    9471             :         /*
    9472             :          * When there is more than 1 task, the group_overloaded case already
    9473             :          * takes care of cpu with reduced capacity
    9474             :          */
    9475             :         if (rq->cfs.h_nr_running != 1)
    9476             :                 return false;
    9477             : 
    9478             :         return check_cpu_capacity(rq, sd);
    9479             : }
    9480             : 
    9481             : /**
    9482             :  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
    9483             :  * @env: The load balancing environment.
    9484             :  * @sds: Load-balancing data with statistics of the local group.
    9485             :  * @group: sched_group whose statistics are to be updated.
    9486             :  * @sgs: variable to hold the statistics for this group.
    9487             :  * @sg_status: Holds flag indicating the status of the sched_group
    9488             :  */
    9489             : static inline void update_sg_lb_stats(struct lb_env *env,
    9490             :                                       struct sd_lb_stats *sds,
    9491             :                                       struct sched_group *group,
    9492             :                                       struct sg_lb_stats *sgs,
    9493             :                                       int *sg_status)
    9494             : {
    9495             :         int i, nr_running, local_group;
    9496             : 
    9497             :         memset(sgs, 0, sizeof(*sgs));
    9498             : 
    9499             :         local_group = group == sds->local;
    9500             : 
    9501             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    9502             :                 struct rq *rq = cpu_rq(i);
    9503             :                 unsigned long load = cpu_load(rq);
    9504             : 
    9505             :                 sgs->group_load += load;
    9506             :                 sgs->group_util += cpu_util_cfs(i);
    9507             :                 sgs->group_runnable += cpu_runnable(rq);
    9508             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
    9509             : 
    9510             :                 nr_running = rq->nr_running;
    9511             :                 sgs->sum_nr_running += nr_running;
    9512             : 
    9513             :                 if (nr_running > 1)
    9514             :                         *sg_status |= SG_OVERLOAD;
    9515             : 
    9516             :                 if (cpu_overutilized(i))
    9517             :                         *sg_status |= SG_OVERUTILIZED;
    9518             : 
    9519             : #ifdef CONFIG_NUMA_BALANCING
    9520             :                 sgs->nr_numa_running += rq->nr_numa_running;
    9521             :                 sgs->nr_preferred_running += rq->nr_preferred_running;
    9522             : #endif
    9523             :                 /*
    9524             :                  * No need to call idle_cpu() if nr_running is not 0
    9525             :                  */
    9526             :                 if (!nr_running && idle_cpu(i)) {
    9527             :                         sgs->idle_cpus++;
    9528             :                         /* Idle cpu can't have misfit task */
    9529             :                         continue;
    9530             :                 }
    9531             : 
    9532             :                 if (local_group)
    9533             :                         continue;
    9534             : 
    9535             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
    9536             :                         /* Check for a misfit task on the cpu */
    9537             :                         if (sgs->group_misfit_task_load < rq->misfit_task_load) {
    9538             :                                 sgs->group_misfit_task_load = rq->misfit_task_load;
    9539             :                                 *sg_status |= SG_OVERLOAD;
    9540             :                         }
    9541             :                 } else if ((env->idle != CPU_NOT_IDLE) &&
    9542             :                            sched_reduced_capacity(rq, env->sd)) {
    9543             :                         /* Check for a task running on a CPU with reduced capacity */
    9544             :                         if (sgs->group_misfit_task_load < load)
    9545             :                                 sgs->group_misfit_task_load = load;
    9546             :                 }
    9547             :         }
    9548             : 
    9549             :         sgs->group_capacity = group->sgc->capacity;
    9550             : 
    9551             :         sgs->group_weight = group->group_weight;
    9552             : 
    9553             :         /* Check if dst CPU is idle and preferred to this group */
    9554             :         if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
    9555             :             env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
    9556             :             sched_asym(env, sds, sgs, group)) {
    9557             :                 sgs->group_asym_packing = 1;
    9558             :         }
    9559             : 
    9560             :         sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
    9561             : 
    9562             :         /* Computing avg_load makes sense only when group is overloaded */
    9563             :         if (sgs->group_type == group_overloaded)
    9564             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    9565             :                                 sgs->group_capacity;
    9566             : }
    9567             : 
    9568             : /**
    9569             :  * update_sd_pick_busiest - return 1 on busiest group
    9570             :  * @env: The load balancing environment.
    9571             :  * @sds: sched_domain statistics
    9572             :  * @sg: sched_group candidate to be checked for being the busiest
    9573             :  * @sgs: sched_group statistics
    9574             :  *
    9575             :  * Determine if @sg is a busier group than the previously selected
    9576             :  * busiest group.
    9577             :  *
    9578             :  * Return: %true if @sg is a busier group than the previously selected
    9579             :  * busiest group. %false otherwise.
    9580             :  */
    9581             : static bool update_sd_pick_busiest(struct lb_env *env,
    9582             :                                    struct sd_lb_stats *sds,
    9583             :                                    struct sched_group *sg,
    9584             :                                    struct sg_lb_stats *sgs)
    9585             : {
    9586             :         struct sg_lb_stats *busiest = &sds->busiest_stat;
    9587             : 
    9588             :         /* Make sure that there is at least one task to pull */
    9589             :         if (!sgs->sum_h_nr_running)
    9590             :                 return false;
    9591             : 
    9592             :         /*
    9593             :          * Don't try to pull misfit tasks we can't help.
    9594             :          * We can use max_capacity here as reduction in capacity on some
    9595             :          * CPUs in the group should either be possible to resolve
    9596             :          * internally or be covered by avg_load imbalance (eventually).
    9597             :          */
    9598             :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    9599             :             (sgs->group_type == group_misfit_task) &&
    9600             :             (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
    9601             :              sds->local_stat.group_type != group_has_spare))
    9602             :                 return false;
    9603             : 
    9604             :         if (sgs->group_type > busiest->group_type)
    9605             :                 return true;
    9606             : 
    9607             :         if (sgs->group_type < busiest->group_type)
    9608             :                 return false;
    9609             : 
    9610             :         /*
    9611             :          * The candidate and the current busiest group are the same type of
    9612             :          * group. Let check which one is the busiest according to the type.
    9613             :          */
    9614             : 
    9615             :         switch (sgs->group_type) {
    9616             :         case group_overloaded:
    9617             :                 /* Select the overloaded group with highest avg_load. */
    9618             :                 if (sgs->avg_load <= busiest->avg_load)
    9619             :                         return false;
    9620             :                 break;
    9621             : 
    9622             :         case group_imbalanced:
    9623             :                 /*
    9624             :                  * Select the 1st imbalanced group as we don't have any way to
    9625             :                  * choose one more than another.
    9626             :                  */
    9627             :                 return false;
    9628             : 
    9629             :         case group_asym_packing:
    9630             :                 /* Prefer to move from lowest priority CPU's work */
    9631             :                 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
    9632             :                         return false;
    9633             :                 break;
    9634             : 
    9635             :         case group_misfit_task:
    9636             :                 /*
    9637             :                  * If we have more than one misfit sg go with the biggest
    9638             :                  * misfit.
    9639             :                  */
    9640             :                 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
    9641             :                         return false;
    9642             :                 break;
    9643             : 
    9644             :         case group_fully_busy:
    9645             :                 /*
    9646             :                  * Select the fully busy group with highest avg_load. In
    9647             :                  * theory, there is no need to pull task from such kind of
    9648             :                  * group because tasks have all compute capacity that they need
    9649             :                  * but we can still improve the overall throughput by reducing
    9650             :                  * contention when accessing shared HW resources.
    9651             :                  *
    9652             :                  * XXX for now avg_load is not computed and always 0 so we
    9653             :                  * select the 1st one, except if @sg is composed of SMT
    9654             :                  * siblings.
    9655             :                  */
    9656             : 
    9657             :                 if (sgs->avg_load < busiest->avg_load)
    9658             :                         return false;
    9659             : 
    9660             :                 if (sgs->avg_load == busiest->avg_load) {
    9661             :                         /*
    9662             :                          * SMT sched groups need more help than non-SMT groups.
    9663             :                          * If @sg happens to also be SMT, either choice is good.
    9664             :                          */
    9665             :                         if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
    9666             :                                 return false;
    9667             :                 }
    9668             : 
    9669             :                 break;
    9670             : 
    9671             :         case group_has_spare:
    9672             :                 /*
    9673             :                  * Select not overloaded group with lowest number of idle cpus
    9674             :                  * and highest number of running tasks. We could also compare
    9675             :                  * the spare capacity which is more stable but it can end up
    9676             :                  * that the group has less spare capacity but finally more idle
    9677             :                  * CPUs which means less opportunity to pull tasks.
    9678             :                  */
    9679             :                 if (sgs->idle_cpus > busiest->idle_cpus)
    9680             :                         return false;
    9681             :                 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
    9682             :                          (sgs->sum_nr_running <= busiest->sum_nr_running))
    9683             :                         return false;
    9684             : 
    9685             :                 break;
    9686             :         }
    9687             : 
    9688             :         /*
    9689             :          * Candidate sg has no more than one task per CPU and has higher
    9690             :          * per-CPU capacity. Migrating tasks to less capable CPUs may harm
    9691             :          * throughput. Maximize throughput, power/energy consequences are not
    9692             :          * considered.
    9693             :          */
    9694             :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    9695             :             (sgs->group_type <= group_fully_busy) &&
    9696             :             (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
    9697             :                 return false;
    9698             : 
    9699             :         return true;
    9700             : }
    9701             : 
    9702             : #ifdef CONFIG_NUMA_BALANCING
    9703             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    9704             : {
    9705             :         if (sgs->sum_h_nr_running > sgs->nr_numa_running)
    9706             :                 return regular;
    9707             :         if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
    9708             :                 return remote;
    9709             :         return all;
    9710             : }
    9711             : 
    9712             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    9713             : {
    9714             :         if (rq->nr_running > rq->nr_numa_running)
    9715             :                 return regular;
    9716             :         if (rq->nr_running > rq->nr_preferred_running)
    9717             :                 return remote;
    9718             :         return all;
    9719             : }
    9720             : #else
    9721             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    9722             : {
    9723             :         return all;
    9724             : }
    9725             : 
    9726             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    9727             : {
    9728             :         return regular;
    9729             : }
    9730             : #endif /* CONFIG_NUMA_BALANCING */
    9731             : 
    9732             : 
    9733             : struct sg_lb_stats;
    9734             : 
    9735             : /*
    9736             :  * task_running_on_cpu - return 1 if @p is running on @cpu.
    9737             :  */
    9738             : 
    9739             : static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
    9740             : {
    9741             :         /* Task has no contribution or is new */
    9742             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    9743             :                 return 0;
    9744             : 
    9745             :         if (task_on_rq_queued(p))
    9746             :                 return 1;
    9747             : 
    9748             :         return 0;
    9749             : }
    9750             : 
    9751             : /**
    9752             :  * idle_cpu_without - would a given CPU be idle without p ?
    9753             :  * @cpu: the processor on which idleness is tested.
    9754             :  * @p: task which should be ignored.
    9755             :  *
    9756             :  * Return: 1 if the CPU would be idle. 0 otherwise.
    9757             :  */
    9758             : static int idle_cpu_without(int cpu, struct task_struct *p)
    9759             : {
    9760             :         struct rq *rq = cpu_rq(cpu);
    9761             : 
    9762             :         if (rq->curr != rq->idle && rq->curr != p)
    9763             :                 return 0;
    9764             : 
    9765             :         /*
    9766             :          * rq->nr_running can't be used but an updated version without the
    9767             :          * impact of p on cpu must be used instead. The updated nr_running
    9768             :          * be computed and tested before calling idle_cpu_without().
    9769             :          */
    9770             : 
    9771             : #ifdef CONFIG_SMP
    9772             :         if (rq->ttwu_pending)
    9773             :                 return 0;
    9774             : #endif
    9775             : 
    9776             :         return 1;
    9777             : }
    9778             : 
    9779             : /*
    9780             :  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
    9781             :  * @sd: The sched_domain level to look for idlest group.
    9782             :  * @group: sched_group whose statistics are to be updated.
    9783             :  * @sgs: variable to hold the statistics for this group.
    9784             :  * @p: The task for which we look for the idlest group/CPU.
    9785             :  */
    9786             : static inline void update_sg_wakeup_stats(struct sched_domain *sd,
    9787             :                                           struct sched_group *group,
    9788             :                                           struct sg_lb_stats *sgs,
    9789             :                                           struct task_struct *p)
    9790             : {
    9791             :         int i, nr_running;
    9792             : 
    9793             :         memset(sgs, 0, sizeof(*sgs));
    9794             : 
    9795             :         /* Assume that task can't fit any CPU of the group */
    9796             :         if (sd->flags & SD_ASYM_CPUCAPACITY)
    9797             :                 sgs->group_misfit_task_load = 1;
    9798             : 
    9799             :         for_each_cpu(i, sched_group_span(group)) {
    9800             :                 struct rq *rq = cpu_rq(i);
    9801             :                 unsigned int local;
    9802             : 
    9803             :                 sgs->group_load += cpu_load_without(rq, p);
    9804             :                 sgs->group_util += cpu_util_without(i, p);
    9805             :                 sgs->group_runnable += cpu_runnable_without(rq, p);
    9806             :                 local = task_running_on_cpu(i, p);
    9807             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
    9808             : 
    9809             :                 nr_running = rq->nr_running - local;
    9810             :                 sgs->sum_nr_running += nr_running;
    9811             : 
    9812             :                 /*
    9813             :                  * No need to call idle_cpu_without() if nr_running is not 0
    9814             :                  */
    9815             :                 if (!nr_running && idle_cpu_without(i, p))
    9816             :                         sgs->idle_cpus++;
    9817             : 
    9818             :                 /* Check if task fits in the CPU */
    9819             :                 if (sd->flags & SD_ASYM_CPUCAPACITY &&
    9820             :                     sgs->group_misfit_task_load &&
    9821             :                     task_fits_cpu(p, i))
    9822             :                         sgs->group_misfit_task_load = 0;
    9823             : 
    9824             :         }
    9825             : 
    9826             :         sgs->group_capacity = group->sgc->capacity;
    9827             : 
    9828             :         sgs->group_weight = group->group_weight;
    9829             : 
    9830             :         sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
    9831             : 
    9832             :         /*
    9833             :          * Computing avg_load makes sense only when group is fully busy or
    9834             :          * overloaded
    9835             :          */
    9836             :         if (sgs->group_type == group_fully_busy ||
    9837             :                 sgs->group_type == group_overloaded)
    9838             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    9839             :                                 sgs->group_capacity;
    9840             : }
    9841             : 
    9842             : static bool update_pick_idlest(struct sched_group *idlest,
    9843             :                                struct sg_lb_stats *idlest_sgs,
    9844             :                                struct sched_group *group,
    9845             :                                struct sg_lb_stats *sgs)
    9846             : {
    9847             :         if (sgs->group_type < idlest_sgs->group_type)
    9848             :                 return true;
    9849             : 
    9850             :         if (sgs->group_type > idlest_sgs->group_type)
    9851             :                 return false;
    9852             : 
    9853             :         /*
    9854             :          * The candidate and the current idlest group are the same type of
    9855             :          * group. Let check which one is the idlest according to the type.
    9856             :          */
    9857             : 
    9858             :         switch (sgs->group_type) {
    9859             :         case group_overloaded:
    9860             :         case group_fully_busy:
    9861             :                 /* Select the group with lowest avg_load. */
    9862             :                 if (idlest_sgs->avg_load <= sgs->avg_load)
    9863             :                         return false;
    9864             :                 break;
    9865             : 
    9866             :         case group_imbalanced:
    9867             :         case group_asym_packing:
    9868             :                 /* Those types are not used in the slow wakeup path */
    9869             :                 return false;
    9870             : 
    9871             :         case group_misfit_task:
    9872             :                 /* Select group with the highest max capacity */
    9873             :                 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
    9874             :                         return false;
    9875             :                 break;
    9876             : 
    9877             :         case group_has_spare:
    9878             :                 /* Select group with most idle CPUs */
    9879             :                 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
    9880             :                         return false;
    9881             : 
    9882             :                 /* Select group with lowest group_util */
    9883             :                 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
    9884             :                         idlest_sgs->group_util <= sgs->group_util)
    9885             :                         return false;
    9886             : 
    9887             :                 break;
    9888             :         }
    9889             : 
    9890             :         return true;
    9891             : }
    9892             : 
    9893             : /*
    9894             :  * find_idlest_group() finds and returns the least busy CPU group within the
    9895             :  * domain.
    9896             :  *
    9897             :  * Assumes p is allowed on at least one CPU in sd.
    9898             :  */
    9899             : static struct sched_group *
    9900             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
    9901             : {
    9902             :         struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
    9903             :         struct sg_lb_stats local_sgs, tmp_sgs;
    9904             :         struct sg_lb_stats *sgs;
    9905             :         unsigned long imbalance;
    9906             :         struct sg_lb_stats idlest_sgs = {
    9907             :                         .avg_load = UINT_MAX,
    9908             :                         .group_type = group_overloaded,
    9909             :         };
    9910             : 
    9911             :         do {
    9912             :                 int local_group;
    9913             : 
    9914             :                 /* Skip over this group if it has no CPUs allowed */
    9915             :                 if (!cpumask_intersects(sched_group_span(group),
    9916             :                                         p->cpus_ptr))
    9917             :                         continue;
    9918             : 
    9919             :                 /* Skip over this group if no cookie matched */
    9920             :                 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
    9921             :                         continue;
    9922             : 
    9923             :                 local_group = cpumask_test_cpu(this_cpu,
    9924             :                                                sched_group_span(group));
    9925             : 
    9926             :                 if (local_group) {
    9927             :                         sgs = &local_sgs;
    9928             :                         local = group;
    9929             :                 } else {
    9930             :                         sgs = &tmp_sgs;
    9931             :                 }
    9932             : 
    9933             :                 update_sg_wakeup_stats(sd, group, sgs, p);
    9934             : 
    9935             :                 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
    9936             :                         idlest = group;
    9937             :                         idlest_sgs = *sgs;
    9938             :                 }
    9939             : 
    9940             :         } while (group = group->next, group != sd->groups);
    9941             : 
    9942             : 
    9943             :         /* There is no idlest group to push tasks to */
    9944             :         if (!idlest)
    9945             :                 return NULL;
    9946             : 
    9947             :         /* The local group has been skipped because of CPU affinity */
    9948             :         if (!local)
    9949             :                 return idlest;
    9950             : 
    9951             :         /*
    9952             :          * If the local group is idler than the selected idlest group
    9953             :          * don't try and push the task.
    9954             :          */
    9955             :         if (local_sgs.group_type < idlest_sgs.group_type)
    9956             :                 return NULL;
    9957             : 
    9958             :         /*
    9959             :          * If the local group is busier than the selected idlest group
    9960             :          * try and push the task.
    9961             :          */
    9962             :         if (local_sgs.group_type > idlest_sgs.group_type)
    9963             :                 return idlest;
    9964             : 
    9965             :         switch (local_sgs.group_type) {
    9966             :         case group_overloaded:
    9967             :         case group_fully_busy:
    9968             : 
    9969             :                 /* Calculate allowed imbalance based on load */
    9970             :                 imbalance = scale_load_down(NICE_0_LOAD) *
    9971             :                                 (sd->imbalance_pct-100) / 100;
    9972             : 
    9973             :                 /*
    9974             :                  * When comparing groups across NUMA domains, it's possible for
    9975             :                  * the local domain to be very lightly loaded relative to the
    9976             :                  * remote domains but "imbalance" skews the comparison making
    9977             :                  * remote CPUs look much more favourable. When considering
    9978             :                  * cross-domain, add imbalance to the load on the remote node
    9979             :                  * and consider staying local.
    9980             :                  */
    9981             : 
    9982             :                 if ((sd->flags & SD_NUMA) &&
    9983             :                     ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
    9984             :                         return NULL;
    9985             : 
    9986             :                 /*
    9987             :                  * If the local group is less loaded than the selected
    9988             :                  * idlest group don't try and push any tasks.
    9989             :                  */
    9990             :                 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
    9991             :                         return NULL;
    9992             : 
    9993             :                 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
    9994             :                         return NULL;
    9995             :                 break;
    9996             : 
    9997             :         case group_imbalanced:
    9998             :         case group_asym_packing:
    9999             :                 /* Those type are not used in the slow wakeup path */
   10000             :                 return NULL;
   10001             : 
   10002             :         case group_misfit_task:
   10003             :                 /* Select group with the highest max capacity */
   10004             :                 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
   10005             :                         return NULL;
   10006             :                 break;
   10007             : 
   10008             :         case group_has_spare:
   10009             : #ifdef CONFIG_NUMA
   10010             :                 if (sd->flags & SD_NUMA) {
   10011             :                         int imb_numa_nr = sd->imb_numa_nr;
   10012             : #ifdef CONFIG_NUMA_BALANCING
   10013             :                         int idlest_cpu;
   10014             :                         /*
   10015             :                          * If there is spare capacity at NUMA, try to select
   10016             :                          * the preferred node
   10017             :                          */
   10018             :                         if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
   10019             :                                 return NULL;
   10020             : 
   10021             :                         idlest_cpu = cpumask_first(sched_group_span(idlest));
   10022             :                         if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
   10023             :                                 return idlest;
   10024             : #endif /* CONFIG_NUMA_BALANCING */
   10025             :                         /*
   10026             :                          * Otherwise, keep the task close to the wakeup source
   10027             :                          * and improve locality if the number of running tasks
   10028             :                          * would remain below threshold where an imbalance is
   10029             :                          * allowed while accounting for the possibility the
   10030             :                          * task is pinned to a subset of CPUs. If there is a
   10031             :                          * real need of migration, periodic load balance will
   10032             :                          * take care of it.
   10033             :                          */
   10034             :                         if (p->nr_cpus_allowed != NR_CPUS) {
   10035             :                                 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
   10036             : 
   10037             :                                 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
   10038             :                                 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
   10039             :                         }
   10040             : 
   10041             :                         imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
   10042             :                         if (!adjust_numa_imbalance(imbalance,
   10043             :                                                    local_sgs.sum_nr_running + 1,
   10044             :                                                    imb_numa_nr)) {
   10045             :                                 return NULL;
   10046             :                         }
   10047             :                 }
   10048             : #endif /* CONFIG_NUMA */
   10049             : 
   10050             :                 /*
   10051             :                  * Select group with highest number of idle CPUs. We could also
   10052             :                  * compare the utilization which is more stable but it can end
   10053             :                  * up that the group has less spare capacity but finally more
   10054             :                  * idle CPUs which means more opportunity to run task.
   10055             :                  */
   10056             :                 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
   10057             :                         return NULL;
   10058             :                 break;
   10059             :         }
   10060             : 
   10061             :         return idlest;
   10062             : }
   10063             : 
   10064             : static void update_idle_cpu_scan(struct lb_env *env,
   10065             :                                  unsigned long sum_util)
   10066             : {
   10067             :         struct sched_domain_shared *sd_share;
   10068             :         int llc_weight, pct;
   10069             :         u64 x, y, tmp;
   10070             :         /*
   10071             :          * Update the number of CPUs to scan in LLC domain, which could
   10072             :          * be used as a hint in select_idle_cpu(). The update of sd_share
   10073             :          * could be expensive because it is within a shared cache line.
   10074             :          * So the write of this hint only occurs during periodic load
   10075             :          * balancing, rather than CPU_NEWLY_IDLE, because the latter
   10076             :          * can fire way more frequently than the former.
   10077             :          */
   10078             :         if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
   10079             :                 return;
   10080             : 
   10081             :         llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
   10082             :         if (env->sd->span_weight != llc_weight)
   10083             :                 return;
   10084             : 
   10085             :         sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
   10086             :         if (!sd_share)
   10087             :                 return;
   10088             : 
   10089             :         /*
   10090             :          * The number of CPUs to search drops as sum_util increases, when
   10091             :          * sum_util hits 85% or above, the scan stops.
   10092             :          * The reason to choose 85% as the threshold is because this is the
   10093             :          * imbalance_pct(117) when a LLC sched group is overloaded.
   10094             :          *
   10095             :          * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
   10096             :          * and y'= y / SCHED_CAPACITY_SCALE
   10097             :          *
   10098             :          * x is the ratio of sum_util compared to the CPU capacity:
   10099             :          * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
   10100             :          * y' is the ratio of CPUs to be scanned in the LLC domain,
   10101             :          * and the number of CPUs to scan is calculated by:
   10102             :          *
   10103             :          * nr_scan = llc_weight * y'                                    [2]
   10104             :          *
   10105             :          * When x hits the threshold of overloaded, AKA, when
   10106             :          * x = 100 / pct, y drops to 0. According to [1],
   10107             :          * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
   10108             :          *
   10109             :          * Scale x by SCHED_CAPACITY_SCALE:
   10110             :          * x' = sum_util / llc_weight;                                  [3]
   10111             :          *
   10112             :          * and finally [1] becomes:
   10113             :          * y = SCHED_CAPACITY_SCALE -
   10114             :          *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
   10115             :          *
   10116             :          */
   10117             :         /* equation [3] */
   10118             :         x = sum_util;
   10119             :         do_div(x, llc_weight);
   10120             : 
   10121             :         /* equation [4] */
   10122             :         pct = env->sd->imbalance_pct;
   10123             :         tmp = x * x * pct * pct;
   10124             :         do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
   10125             :         tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
   10126             :         y = SCHED_CAPACITY_SCALE - tmp;
   10127             : 
   10128             :         /* equation [2] */
   10129             :         y *= llc_weight;
   10130             :         do_div(y, SCHED_CAPACITY_SCALE);
   10131             :         if ((int)y != sd_share->nr_idle_scan)
   10132             :                 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
   10133             : }
   10134             : 
   10135             : /**
   10136             :  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
   10137             :  * @env: The load balancing environment.
   10138             :  * @sds: variable to hold the statistics for this sched_domain.
   10139             :  */
   10140             : 
   10141             : static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
   10142             : {
   10143             :         struct sched_group *sg = env->sd->groups;
   10144             :         struct sg_lb_stats *local = &sds->local_stat;
   10145             :         struct sg_lb_stats tmp_sgs;
   10146             :         unsigned long sum_util = 0;
   10147             :         int sg_status = 0;
   10148             : 
   10149             :         do {
   10150             :                 struct sg_lb_stats *sgs = &tmp_sgs;
   10151             :                 int local_group;
   10152             : 
   10153             :                 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
   10154             :                 if (local_group) {
   10155             :                         sds->local = sg;
   10156             :                         sgs = local;
   10157             : 
   10158             :                         if (env->idle != CPU_NEWLY_IDLE ||
   10159             :                             time_after_eq(jiffies, sg->sgc->next_update))
   10160             :                                 update_group_capacity(env->sd, env->dst_cpu);
   10161             :                 }
   10162             : 
   10163             :                 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
   10164             : 
   10165             :                 if (local_group)
   10166             :                         goto next_group;
   10167             : 
   10168             : 
   10169             :                 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
   10170             :                         sds->busiest = sg;
   10171             :                         sds->busiest_stat = *sgs;
   10172             :                 }
   10173             : 
   10174             : next_group:
   10175             :                 /* Now, start updating sd_lb_stats */
   10176             :                 sds->total_load += sgs->group_load;
   10177             :                 sds->total_capacity += sgs->group_capacity;
   10178             : 
   10179             :                 sum_util += sgs->group_util;
   10180             :                 sg = sg->next;
   10181             :         } while (sg != env->sd->groups);
   10182             : 
   10183             :         /*
   10184             :          * Indicate that the child domain of the busiest group prefers tasks
   10185             :          * go to a child's sibling domains first. NB the flags of a sched group
   10186             :          * are those of the child domain.
   10187             :          */
   10188             :         if (sds->busiest)
   10189             :                 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
   10190             : 
   10191             : 
   10192             :         if (env->sd->flags & SD_NUMA)
   10193             :                 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
   10194             : 
   10195             :         if (!env->sd->parent) {
   10196             :                 struct root_domain *rd = env->dst_rq->rd;
   10197             : 
   10198             :                 /* update overload indicator if we are at root domain */
   10199             :                 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
   10200             : 
   10201             :                 /* Update over-utilization (tipping point, U >= 0) indicator */
   10202             :                 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
   10203             :                 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
   10204             :         } else if (sg_status & SG_OVERUTILIZED) {
   10205             :                 struct root_domain *rd = env->dst_rq->rd;
   10206             : 
   10207             :                 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
   10208             :                 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
   10209             :         }
   10210             : 
   10211             :         update_idle_cpu_scan(env, sum_util);
   10212             : }
   10213             : 
   10214             : /**
   10215             :  * calculate_imbalance - Calculate the amount of imbalance present within the
   10216             :  *                       groups of a given sched_domain during load balance.
   10217             :  * @env: load balance environment
   10218             :  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
   10219             :  */
   10220             : static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
   10221             : {
   10222             :         struct sg_lb_stats *local, *busiest;
   10223             : 
   10224             :         local = &sds->local_stat;
   10225             :         busiest = &sds->busiest_stat;
   10226             : 
   10227             :         if (busiest->group_type == group_misfit_task) {
   10228             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
   10229             :                         /* Set imbalance to allow misfit tasks to be balanced. */
   10230             :                         env->migration_type = migrate_misfit;
   10231             :                         env->imbalance = 1;
   10232             :                 } else {
   10233             :                         /*
   10234             :                          * Set load imbalance to allow moving task from cpu
   10235             :                          * with reduced capacity.
   10236             :                          */
   10237             :                         env->migration_type = migrate_load;
   10238             :                         env->imbalance = busiest->group_misfit_task_load;
   10239             :                 }
   10240             :                 return;
   10241             :         }
   10242             : 
   10243             :         if (busiest->group_type == group_asym_packing) {
   10244             :                 /*
   10245             :                  * In case of asym capacity, we will try to migrate all load to
   10246             :                  * the preferred CPU.
   10247             :                  */
   10248             :                 env->migration_type = migrate_task;
   10249             :                 env->imbalance = busiest->sum_h_nr_running;
   10250             :                 return;
   10251             :         }
   10252             : 
   10253             :         if (busiest->group_type == group_imbalanced) {
   10254             :                 /*
   10255             :                  * In the group_imb case we cannot rely on group-wide averages
   10256             :                  * to ensure CPU-load equilibrium, try to move any task to fix
   10257             :                  * the imbalance. The next load balance will take care of
   10258             :                  * balancing back the system.
   10259             :                  */
   10260             :                 env->migration_type = migrate_task;
   10261             :                 env->imbalance = 1;
   10262             :                 return;
   10263             :         }
   10264             : 
   10265             :         /*
   10266             :          * Try to use spare capacity of local group without overloading it or
   10267             :          * emptying busiest.
   10268             :          */
   10269             :         if (local->group_type == group_has_spare) {
   10270             :                 if ((busiest->group_type > group_fully_busy) &&
   10271             :                     !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
   10272             :                         /*
   10273             :                          * If busiest is overloaded, try to fill spare
   10274             :                          * capacity. This might end up creating spare capacity
   10275             :                          * in busiest or busiest still being overloaded but
   10276             :                          * there is no simple way to directly compute the
   10277             :                          * amount of load to migrate in order to balance the
   10278             :                          * system.
   10279             :                          */
   10280             :                         env->migration_type = migrate_util;
   10281             :                         env->imbalance = max(local->group_capacity, local->group_util) -
   10282             :                                          local->group_util;
   10283             : 
   10284             :                         /*
   10285             :                          * In some cases, the group's utilization is max or even
   10286             :                          * higher than capacity because of migrations but the
   10287             :                          * local CPU is (newly) idle. There is at least one
   10288             :                          * waiting task in this overloaded busiest group. Let's
   10289             :                          * try to pull it.
   10290             :                          */
   10291             :                         if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
   10292             :                                 env->migration_type = migrate_task;
   10293             :                                 env->imbalance = 1;
   10294             :                         }
   10295             : 
   10296             :                         return;
   10297             :                 }
   10298             : 
   10299             :                 if (busiest->group_weight == 1 || sds->prefer_sibling) {
   10300             :                         unsigned int nr_diff = busiest->sum_nr_running;
   10301             :                         /*
   10302             :                          * When prefer sibling, evenly spread running tasks on
   10303             :                          * groups.
   10304             :                          */
   10305             :                         env->migration_type = migrate_task;
   10306             :                         lsub_positive(&nr_diff, local->sum_nr_running);
   10307             :                         env->imbalance = nr_diff;
   10308             :                 } else {
   10309             : 
   10310             :                         /*
   10311             :                          * If there is no overload, we just want to even the number of
   10312             :                          * idle cpus.
   10313             :                          */
   10314             :                         env->migration_type = migrate_task;
   10315             :                         env->imbalance = max_t(long, 0,
   10316             :                                                (local->idle_cpus - busiest->idle_cpus));
   10317             :                 }
   10318             : 
   10319             : #ifdef CONFIG_NUMA
   10320             :                 /* Consider allowing a small imbalance between NUMA groups */
   10321             :                 if (env->sd->flags & SD_NUMA) {
   10322             :                         env->imbalance = adjust_numa_imbalance(env->imbalance,
   10323             :                                                                local->sum_nr_running + 1,
   10324             :                                                                env->sd->imb_numa_nr);
   10325             :                 }
   10326             : #endif
   10327             : 
   10328             :                 /* Number of tasks to move to restore balance */
   10329             :                 env->imbalance >>= 1;
   10330             : 
   10331             :                 return;
   10332             :         }
   10333             : 
   10334             :         /*
   10335             :          * Local is fully busy but has to take more load to relieve the
   10336             :          * busiest group
   10337             :          */
   10338             :         if (local->group_type < group_overloaded) {
   10339             :                 /*
   10340             :                  * Local will become overloaded so the avg_load metrics are
   10341             :                  * finally needed.
   10342             :                  */
   10343             : 
   10344             :                 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
   10345             :                                   local->group_capacity;
   10346             : 
   10347             :                 /*
   10348             :                  * If the local group is more loaded than the selected
   10349             :                  * busiest group don't try to pull any tasks.
   10350             :                  */
   10351             :                 if (local->avg_load >= busiest->avg_load) {
   10352             :                         env->imbalance = 0;
   10353             :                         return;
   10354             :                 }
   10355             : 
   10356             :                 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
   10357             :                                 sds->total_capacity;
   10358             : 
   10359             :                 /*
   10360             :                  * If the local group is more loaded than the average system
   10361             :                  * load, don't try to pull any tasks.
   10362             :                  */
   10363             :                 if (local->avg_load >= sds->avg_load) {
   10364             :                         env->imbalance = 0;
   10365             :                         return;
   10366             :                 }
   10367             : 
   10368             :         }
   10369             : 
   10370             :         /*
   10371             :          * Both group are or will become overloaded and we're trying to get all
   10372             :          * the CPUs to the average_load, so we don't want to push ourselves
   10373             :          * above the average load, nor do we wish to reduce the max loaded CPU
   10374             :          * below the average load. At the same time, we also don't want to
   10375             :          * reduce the group load below the group capacity. Thus we look for
   10376             :          * the minimum possible imbalance.
   10377             :          */
   10378             :         env->migration_type = migrate_load;
   10379             :         env->imbalance = min(
   10380             :                 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
   10381             :                 (sds->avg_load - local->avg_load) * local->group_capacity
   10382             :         ) / SCHED_CAPACITY_SCALE;
   10383             : }
   10384             : 
   10385             : /******* find_busiest_group() helpers end here *********************/
   10386             : 
   10387             : /*
   10388             :  * Decision matrix according to the local and busiest group type:
   10389             :  *
   10390             :  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
   10391             :  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
   10392             :  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
   10393             :  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
   10394             :  * asym_packing     force     force      N/A    N/A  force      force
   10395             :  * imbalanced       force     force      N/A    N/A  force      force
   10396             :  * overloaded       force     force      N/A    N/A  force      avg_load
   10397             :  *
   10398             :  * N/A :      Not Applicable because already filtered while updating
   10399             :  *            statistics.
   10400             :  * balanced : The system is balanced for these 2 groups.
   10401             :  * force :    Calculate the imbalance as load migration is probably needed.
   10402             :  * avg_load : Only if imbalance is significant enough.
   10403             :  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
   10404             :  *            different in groups.
   10405             :  */
   10406             : 
   10407             : /**
   10408             :  * find_busiest_group - Returns the busiest group within the sched_domain
   10409             :  * if there is an imbalance.
   10410             :  * @env: The load balancing environment.
   10411             :  *
   10412             :  * Also calculates the amount of runnable load which should be moved
   10413             :  * to restore balance.
   10414             :  *
   10415             :  * Return:      - The busiest group if imbalance exists.
   10416             :  */
   10417             : static struct sched_group *find_busiest_group(struct lb_env *env)
   10418             : {
   10419             :         struct sg_lb_stats *local, *busiest;
   10420             :         struct sd_lb_stats sds;
   10421             : 
   10422             :         init_sd_lb_stats(&sds);
   10423             : 
   10424             :         /*
   10425             :          * Compute the various statistics relevant for load balancing at
   10426             :          * this level.
   10427             :          */
   10428             :         update_sd_lb_stats(env, &sds);
   10429             : 
   10430             :         /* There is no busy sibling group to pull tasks from */
   10431             :         if (!sds.busiest)
   10432             :                 goto out_balanced;
   10433             : 
   10434             :         busiest = &sds.busiest_stat;
   10435             : 
   10436             :         /* Misfit tasks should be dealt with regardless of the avg load */
   10437             :         if (busiest->group_type == group_misfit_task)
   10438             :                 goto force_balance;
   10439             : 
   10440             :         if (sched_energy_enabled()) {
   10441             :                 struct root_domain *rd = env->dst_rq->rd;
   10442             : 
   10443             :                 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
   10444             :                         goto out_balanced;
   10445             :         }
   10446             : 
   10447             :         /* ASYM feature bypasses nice load balance check */
   10448             :         if (busiest->group_type == group_asym_packing)
   10449             :                 goto force_balance;
   10450             : 
   10451             :         /*
   10452             :          * If the busiest group is imbalanced the below checks don't
   10453             :          * work because they assume all things are equal, which typically
   10454             :          * isn't true due to cpus_ptr constraints and the like.
   10455             :          */
   10456             :         if (busiest->group_type == group_imbalanced)
   10457             :                 goto force_balance;
   10458             : 
   10459             :         local = &sds.local_stat;
   10460             :         /*
   10461             :          * If the local group is busier than the selected busiest group
   10462             :          * don't try and pull any tasks.
   10463             :          */
   10464             :         if (local->group_type > busiest->group_type)
   10465             :                 goto out_balanced;
   10466             : 
   10467             :         /*
   10468             :          * When groups are overloaded, use the avg_load to ensure fairness
   10469             :          * between tasks.
   10470             :          */
   10471             :         if (local->group_type == group_overloaded) {
   10472             :                 /*
   10473             :                  * If the local group is more loaded than the selected
   10474             :                  * busiest group don't try to pull any tasks.
   10475             :                  */
   10476             :                 if (local->avg_load >= busiest->avg_load)
   10477             :                         goto out_balanced;
   10478             : 
   10479             :                 /* XXX broken for overlapping NUMA groups */
   10480             :                 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
   10481             :                                 sds.total_capacity;
   10482             : 
   10483             :                 /*
   10484             :                  * Don't pull any tasks if this group is already above the
   10485             :                  * domain average load.
   10486             :                  */
   10487             :                 if (local->avg_load >= sds.avg_load)
   10488             :                         goto out_balanced;
   10489             : 
   10490             :                 /*
   10491             :                  * If the busiest group is more loaded, use imbalance_pct to be
   10492             :                  * conservative.
   10493             :                  */
   10494             :                 if (100 * busiest->avg_load <=
   10495             :                                 env->sd->imbalance_pct * local->avg_load)
   10496             :                         goto out_balanced;
   10497             :         }
   10498             : 
   10499             :         /*
   10500             :          * Try to move all excess tasks to a sibling domain of the busiest
   10501             :          * group's child domain.
   10502             :          */
   10503             :         if (sds.prefer_sibling && local->group_type == group_has_spare &&
   10504             :             busiest->sum_nr_running > local->sum_nr_running + 1)
   10505             :                 goto force_balance;
   10506             : 
   10507             :         if (busiest->group_type != group_overloaded) {
   10508             :                 if (env->idle == CPU_NOT_IDLE)
   10509             :                         /*
   10510             :                          * If the busiest group is not overloaded (and as a
   10511             :                          * result the local one too) but this CPU is already
   10512             :                          * busy, let another idle CPU try to pull task.
   10513             :                          */
   10514             :                         goto out_balanced;
   10515             : 
   10516             :                 if (busiest->group_weight > 1 &&
   10517             :                     local->idle_cpus <= (busiest->idle_cpus + 1))
   10518             :                         /*
   10519             :                          * If the busiest group is not overloaded
   10520             :                          * and there is no imbalance between this and busiest
   10521             :                          * group wrt idle CPUs, it is balanced. The imbalance
   10522             :                          * becomes significant if the diff is greater than 1
   10523             :                          * otherwise we might end up to just move the imbalance
   10524             :                          * on another group. Of course this applies only if
   10525             :                          * there is more than 1 CPU per group.
   10526             :                          */
   10527             :                         goto out_balanced;
   10528             : 
   10529             :                 if (busiest->sum_h_nr_running == 1)
   10530             :                         /*
   10531             :                          * busiest doesn't have any tasks waiting to run
   10532             :                          */
   10533             :                         goto out_balanced;
   10534             :         }
   10535             : 
   10536             : force_balance:
   10537             :         /* Looks like there is an imbalance. Compute it */
   10538             :         calculate_imbalance(env, &sds);
   10539             :         return env->imbalance ? sds.busiest : NULL;
   10540             : 
   10541             : out_balanced:
   10542             :         env->imbalance = 0;
   10543             :         return NULL;
   10544             : }
   10545             : 
   10546             : /*
   10547             :  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
   10548             :  */
   10549             : static struct rq *find_busiest_queue(struct lb_env *env,
   10550             :                                      struct sched_group *group)
   10551             : {
   10552             :         struct rq *busiest = NULL, *rq;
   10553             :         unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
   10554             :         unsigned int busiest_nr = 0;
   10555             :         int i;
   10556             : 
   10557             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
   10558             :                 unsigned long capacity, load, util;
   10559             :                 unsigned int nr_running;
   10560             :                 enum fbq_type rt;
   10561             : 
   10562             :                 rq = cpu_rq(i);
   10563             :                 rt = fbq_classify_rq(rq);
   10564             : 
   10565             :                 /*
   10566             :                  * We classify groups/runqueues into three groups:
   10567             :                  *  - regular: there are !numa tasks
   10568             :                  *  - remote:  there are numa tasks that run on the 'wrong' node
   10569             :                  *  - all:     there is no distinction
   10570             :                  *
   10571             :                  * In order to avoid migrating ideally placed numa tasks,
   10572             :                  * ignore those when there's better options.
   10573             :                  *
   10574             :                  * If we ignore the actual busiest queue to migrate another
   10575             :                  * task, the next balance pass can still reduce the busiest
   10576             :                  * queue by moving tasks around inside the node.
   10577             :                  *
   10578             :                  * If we cannot move enough load due to this classification
   10579             :                  * the next pass will adjust the group classification and
   10580             :                  * allow migration of more tasks.
   10581             :                  *
   10582             :                  * Both cases only affect the total convergence complexity.
   10583             :                  */
   10584             :                 if (rt > env->fbq_type)
   10585             :                         continue;
   10586             : 
   10587             :                 nr_running = rq->cfs.h_nr_running;
   10588             :                 if (!nr_running)
   10589             :                         continue;
   10590             : 
   10591             :                 capacity = capacity_of(i);
   10592             : 
   10593             :                 /*
   10594             :                  * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
   10595             :                  * eventually lead to active_balancing high->low capacity.
   10596             :                  * Higher per-CPU capacity is considered better than balancing
   10597             :                  * average load.
   10598             :                  */
   10599             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
   10600             :                     !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
   10601             :                     nr_running == 1)
   10602             :                         continue;
   10603             : 
   10604             :                 /*
   10605             :                  * Make sure we only pull tasks from a CPU of lower priority
   10606             :                  * when balancing between SMT siblings.
   10607             :                  *
   10608             :                  * If balancing between cores, let lower priority CPUs help
   10609             :                  * SMT cores with more than one busy sibling.
   10610             :                  */
   10611             :                 if ((env->sd->flags & SD_ASYM_PACKING) &&
   10612             :                     sched_use_asym_prio(env->sd, i) &&
   10613             :                     sched_asym_prefer(i, env->dst_cpu) &&
   10614             :                     nr_running == 1)
   10615             :                         continue;
   10616             : 
   10617             :                 switch (env->migration_type) {
   10618             :                 case migrate_load:
   10619             :                         /*
   10620             :                          * When comparing with load imbalance, use cpu_load()
   10621             :                          * which is not scaled with the CPU capacity.
   10622             :                          */
   10623             :                         load = cpu_load(rq);
   10624             : 
   10625             :                         if (nr_running == 1 && load > env->imbalance &&
   10626             :                             !check_cpu_capacity(rq, env->sd))
   10627             :                                 break;
   10628             : 
   10629             :                         /*
   10630             :                          * For the load comparisons with the other CPUs,
   10631             :                          * consider the cpu_load() scaled with the CPU
   10632             :                          * capacity, so that the load can be moved away
   10633             :                          * from the CPU that is potentially running at a
   10634             :                          * lower capacity.
   10635             :                          *
   10636             :                          * Thus we're looking for max(load_i / capacity_i),
   10637             :                          * crosswise multiplication to rid ourselves of the
   10638             :                          * division works out to:
   10639             :                          * load_i * capacity_j > load_j * capacity_i;
   10640             :                          * where j is our previous maximum.
   10641             :                          */
   10642             :                         if (load * busiest_capacity > busiest_load * capacity) {
   10643             :                                 busiest_load = load;
   10644             :                                 busiest_capacity = capacity;
   10645             :                                 busiest = rq;
   10646             :                         }
   10647             :                         break;
   10648             : 
   10649             :                 case migrate_util:
   10650             :                         util = cpu_util_cfs_boost(i);
   10651             : 
   10652             :                         /*
   10653             :                          * Don't try to pull utilization from a CPU with one
   10654             :                          * running task. Whatever its utilization, we will fail
   10655             :                          * detach the task.
   10656             :                          */
   10657             :                         if (nr_running <= 1)
   10658             :                                 continue;
   10659             : 
   10660             :                         if (busiest_util < util) {
   10661             :                                 busiest_util = util;
   10662             :                                 busiest = rq;
   10663             :                         }
   10664             :                         break;
   10665             : 
   10666             :                 case migrate_task:
   10667             :                         if (busiest_nr < nr_running) {
   10668             :                                 busiest_nr = nr_running;
   10669             :                                 busiest = rq;
   10670             :                         }
   10671             :                         break;
   10672             : 
   10673             :                 case migrate_misfit:
   10674             :                         /*
   10675             :                          * For ASYM_CPUCAPACITY domains with misfit tasks we
   10676             :                          * simply seek the "biggest" misfit task.
   10677             :                          */
   10678             :                         if (rq->misfit_task_load > busiest_load) {
   10679             :                                 busiest_load = rq->misfit_task_load;
   10680             :                                 busiest = rq;
   10681             :                         }
   10682             : 
   10683             :                         break;
   10684             : 
   10685             :                 }
   10686             :         }
   10687             : 
   10688             :         return busiest;
   10689             : }
   10690             : 
   10691             : /*
   10692             :  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
   10693             :  * so long as it is large enough.
   10694             :  */
   10695             : #define MAX_PINNED_INTERVAL     512
   10696             : 
   10697             : static inline bool
   10698             : asym_active_balance(struct lb_env *env)
   10699             : {
   10700             :         /*
   10701             :          * ASYM_PACKING needs to force migrate tasks from busy but lower
   10702             :          * priority CPUs in order to pack all tasks in the highest priority
   10703             :          * CPUs. When done between cores, do it only if the whole core if the
   10704             :          * whole core is idle.
   10705             :          *
   10706             :          * If @env::src_cpu is an SMT core with busy siblings, let
   10707             :          * the lower priority @env::dst_cpu help it. Do not follow
   10708             :          * CPU priority.
   10709             :          */
   10710             :         return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
   10711             :                sched_use_asym_prio(env->sd, env->dst_cpu) &&
   10712             :                (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
   10713             :                 !sched_use_asym_prio(env->sd, env->src_cpu));
   10714             : }
   10715             : 
   10716             : static inline bool
   10717             : imbalanced_active_balance(struct lb_env *env)
   10718             : {
   10719             :         struct sched_domain *sd = env->sd;
   10720             : 
   10721             :         /*
   10722             :          * The imbalanced case includes the case of pinned tasks preventing a fair
   10723             :          * distribution of the load on the system but also the even distribution of the
   10724             :          * threads on a system with spare capacity
   10725             :          */
   10726             :         if ((env->migration_type == migrate_task) &&
   10727             :             (sd->nr_balance_failed > sd->cache_nice_tries+2))
   10728             :                 return 1;
   10729             : 
   10730             :         return 0;
   10731             : }
   10732             : 
   10733             : static int need_active_balance(struct lb_env *env)
   10734             : {
   10735             :         struct sched_domain *sd = env->sd;
   10736             : 
   10737             :         if (asym_active_balance(env))
   10738             :                 return 1;
   10739             : 
   10740             :         if (imbalanced_active_balance(env))
   10741             :                 return 1;
   10742             : 
   10743             :         /*
   10744             :          * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
   10745             :          * It's worth migrating the task if the src_cpu's capacity is reduced
   10746             :          * because of other sched_class or IRQs if more capacity stays
   10747             :          * available on dst_cpu.
   10748             :          */
   10749             :         if ((env->idle != CPU_NOT_IDLE) &&
   10750             :             (env->src_rq->cfs.h_nr_running == 1)) {
   10751             :                 if ((check_cpu_capacity(env->src_rq, sd)) &&
   10752             :                     (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
   10753             :                         return 1;
   10754             :         }
   10755             : 
   10756             :         if (env->migration_type == migrate_misfit)
   10757             :                 return 1;
   10758             : 
   10759             :         return 0;
   10760             : }
   10761             : 
   10762             : static int active_load_balance_cpu_stop(void *data);
   10763             : 
   10764             : static int should_we_balance(struct lb_env *env)
   10765             : {
   10766             :         struct sched_group *sg = env->sd->groups;
   10767             :         int cpu;
   10768             : 
   10769             :         /*
   10770             :          * Ensure the balancing environment is consistent; can happen
   10771             :          * when the softirq triggers 'during' hotplug.
   10772             :          */
   10773             :         if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
   10774             :                 return 0;
   10775             : 
   10776             :         /*
   10777             :          * In the newly idle case, we will allow all the CPUs
   10778             :          * to do the newly idle load balance.
   10779             :          *
   10780             :          * However, we bail out if we already have tasks or a wakeup pending,
   10781             :          * to optimize wakeup latency.
   10782             :          */
   10783             :         if (env->idle == CPU_NEWLY_IDLE) {
   10784             :                 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
   10785             :                         return 0;
   10786             :                 return 1;
   10787             :         }
   10788             : 
   10789             :         /* Try to find first idle CPU */
   10790             :         for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
   10791             :                 if (!idle_cpu(cpu))
   10792             :                         continue;
   10793             : 
   10794             :                 /* Are we the first idle CPU? */
   10795             :                 return cpu == env->dst_cpu;
   10796             :         }
   10797             : 
   10798             :         /* Are we the first CPU of this group ? */
   10799             :         return group_balance_cpu(sg) == env->dst_cpu;
   10800             : }
   10801             : 
   10802             : /*
   10803             :  * Check this_cpu to ensure it is balanced within domain. Attempt to move
   10804             :  * tasks if there is an imbalance.
   10805             :  */
   10806             : static int load_balance(int this_cpu, struct rq *this_rq,
   10807             :                         struct sched_domain *sd, enum cpu_idle_type idle,
   10808             :                         int *continue_balancing)
   10809             : {
   10810             :         int ld_moved, cur_ld_moved, active_balance = 0;
   10811             :         struct sched_domain *sd_parent = sd->parent;
   10812             :         struct sched_group *group;
   10813             :         struct rq *busiest;
   10814             :         struct rq_flags rf;
   10815             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
   10816             :         struct lb_env env = {
   10817             :                 .sd             = sd,
   10818             :                 .dst_cpu        = this_cpu,
   10819             :                 .dst_rq         = this_rq,
   10820             :                 .dst_grpmask    = group_balance_mask(sd->groups),
   10821             :                 .idle           = idle,
   10822             :                 .loop_break     = SCHED_NR_MIGRATE_BREAK,
   10823             :                 .cpus           = cpus,
   10824             :                 .fbq_type       = all,
   10825             :                 .tasks          = LIST_HEAD_INIT(env.tasks),
   10826             :         };
   10827             : 
   10828             :         cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
   10829             : 
   10830             :         schedstat_inc(sd->lb_count[idle]);
   10831             : 
   10832             : redo:
   10833             :         if (!should_we_balance(&env)) {
   10834             :                 *continue_balancing = 0;
   10835             :                 goto out_balanced;
   10836             :         }
   10837             : 
   10838             :         group = find_busiest_group(&env);
   10839             :         if (!group) {
   10840             :                 schedstat_inc(sd->lb_nobusyg[idle]);
   10841             :                 goto out_balanced;
   10842             :         }
   10843             : 
   10844             :         busiest = find_busiest_queue(&env, group);
   10845             :         if (!busiest) {
   10846             :                 schedstat_inc(sd->lb_nobusyq[idle]);
   10847             :                 goto out_balanced;
   10848             :         }
   10849             : 
   10850             :         WARN_ON_ONCE(busiest == env.dst_rq);
   10851             : 
   10852             :         schedstat_add(sd->lb_imbalance[idle], env.imbalance);
   10853             : 
   10854             :         env.src_cpu = busiest->cpu;
   10855             :         env.src_rq = busiest;
   10856             : 
   10857             :         ld_moved = 0;
   10858             :         /* Clear this flag as soon as we find a pullable task */
   10859             :         env.flags |= LBF_ALL_PINNED;
   10860             :         if (busiest->nr_running > 1) {
   10861             :                 /*
   10862             :                  * Attempt to move tasks. If find_busiest_group has found
   10863             :                  * an imbalance but busiest->nr_running <= 1, the group is
   10864             :                  * still unbalanced. ld_moved simply stays zero, so it is
   10865             :                  * correctly treated as an imbalance.
   10866             :                  */
   10867             :                 env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
   10868             : 
   10869             : more_balance:
   10870             :                 rq_lock_irqsave(busiest, &rf);
   10871             :                 update_rq_clock(busiest);
   10872             : 
   10873             :                 /*
   10874             :                  * cur_ld_moved - load moved in current iteration
   10875             :                  * ld_moved     - cumulative load moved across iterations
   10876             :                  */
   10877             :                 cur_ld_moved = detach_tasks(&env);
   10878             : 
   10879             :                 /*
   10880             :                  * We've detached some tasks from busiest_rq. Every
   10881             :                  * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
   10882             :                  * unlock busiest->lock, and we are able to be sure
   10883             :                  * that nobody can manipulate the tasks in parallel.
   10884             :                  * See task_rq_lock() family for the details.
   10885             :                  */
   10886             : 
   10887             :                 rq_unlock(busiest, &rf);
   10888             : 
   10889             :                 if (cur_ld_moved) {
   10890             :                         attach_tasks(&env);
   10891             :                         ld_moved += cur_ld_moved;
   10892             :                 }
   10893             : 
   10894             :                 local_irq_restore(rf.flags);
   10895             : 
   10896             :                 if (env.flags & LBF_NEED_BREAK) {
   10897             :                         env.flags &= ~LBF_NEED_BREAK;
   10898             :                         /* Stop if we tried all running tasks */
   10899             :                         if (env.loop < busiest->nr_running)
   10900             :                                 goto more_balance;
   10901             :                 }
   10902             : 
   10903             :                 /*
   10904             :                  * Revisit (affine) tasks on src_cpu that couldn't be moved to
   10905             :                  * us and move them to an alternate dst_cpu in our sched_group
   10906             :                  * where they can run. The upper limit on how many times we
   10907             :                  * iterate on same src_cpu is dependent on number of CPUs in our
   10908             :                  * sched_group.
   10909             :                  *
   10910             :                  * This changes load balance semantics a bit on who can move
   10911             :                  * load to a given_cpu. In addition to the given_cpu itself
   10912             :                  * (or a ilb_cpu acting on its behalf where given_cpu is
   10913             :                  * nohz-idle), we now have balance_cpu in a position to move
   10914             :                  * load to given_cpu. In rare situations, this may cause
   10915             :                  * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
   10916             :                  * _independently_ and at _same_ time to move some load to
   10917             :                  * given_cpu) causing excess load to be moved to given_cpu.
   10918             :                  * This however should not happen so much in practice and
   10919             :                  * moreover subsequent load balance cycles should correct the
   10920             :                  * excess load moved.
   10921             :                  */
   10922             :                 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
   10923             : 
   10924             :                         /* Prevent to re-select dst_cpu via env's CPUs */
   10925             :                         __cpumask_clear_cpu(env.dst_cpu, env.cpus);
   10926             : 
   10927             :                         env.dst_rq       = cpu_rq(env.new_dst_cpu);
   10928             :                         env.dst_cpu      = env.new_dst_cpu;
   10929             :                         env.flags       &= ~LBF_DST_PINNED;
   10930             :                         env.loop         = 0;
   10931             :                         env.loop_break   = SCHED_NR_MIGRATE_BREAK;
   10932             : 
   10933             :                         /*
   10934             :                          * Go back to "more_balance" rather than "redo" since we
   10935             :                          * need to continue with same src_cpu.
   10936             :                          */
   10937             :                         goto more_balance;
   10938             :                 }
   10939             : 
   10940             :                 /*
   10941             :                  * We failed to reach balance because of affinity.
   10942             :                  */
   10943             :                 if (sd_parent) {
   10944             :                         int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   10945             : 
   10946             :                         if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
   10947             :                                 *group_imbalance = 1;
   10948             :                 }
   10949             : 
   10950             :                 /* All tasks on this runqueue were pinned by CPU affinity */
   10951             :                 if (unlikely(env.flags & LBF_ALL_PINNED)) {
   10952             :                         __cpumask_clear_cpu(cpu_of(busiest), cpus);
   10953             :                         /*
   10954             :                          * Attempting to continue load balancing at the current
   10955             :                          * sched_domain level only makes sense if there are
   10956             :                          * active CPUs remaining as possible busiest CPUs to
   10957             :                          * pull load from which are not contained within the
   10958             :                          * destination group that is receiving any migrated
   10959             :                          * load.
   10960             :                          */
   10961             :                         if (!cpumask_subset(cpus, env.dst_grpmask)) {
   10962             :                                 env.loop = 0;
   10963             :                                 env.loop_break = SCHED_NR_MIGRATE_BREAK;
   10964             :                                 goto redo;
   10965             :                         }
   10966             :                         goto out_all_pinned;
   10967             :                 }
   10968             :         }
   10969             : 
   10970             :         if (!ld_moved) {
   10971             :                 schedstat_inc(sd->lb_failed[idle]);
   10972             :                 /*
   10973             :                  * Increment the failure counter only on periodic balance.
   10974             :                  * We do not want newidle balance, which can be very
   10975             :                  * frequent, pollute the failure counter causing
   10976             :                  * excessive cache_hot migrations and active balances.
   10977             :                  */
   10978             :                 if (idle != CPU_NEWLY_IDLE)
   10979             :                         sd->nr_balance_failed++;
   10980             : 
   10981             :                 if (need_active_balance(&env)) {
   10982             :                         unsigned long flags;
   10983             : 
   10984             :                         raw_spin_rq_lock_irqsave(busiest, flags);
   10985             : 
   10986             :                         /*
   10987             :                          * Don't kick the active_load_balance_cpu_stop,
   10988             :                          * if the curr task on busiest CPU can't be
   10989             :                          * moved to this_cpu:
   10990             :                          */
   10991             :                         if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
   10992             :                                 raw_spin_rq_unlock_irqrestore(busiest, flags);
   10993             :                                 goto out_one_pinned;
   10994             :                         }
   10995             : 
   10996             :                         /* Record that we found at least one task that could run on this_cpu */
   10997             :                         env.flags &= ~LBF_ALL_PINNED;
   10998             : 
   10999             :                         /*
   11000             :                          * ->active_balance synchronizes accesses to
   11001             :                          * ->active_balance_work.  Once set, it's cleared
   11002             :                          * only after active load balance is finished.
   11003             :                          */
   11004             :                         if (!busiest->active_balance) {
   11005             :                                 busiest->active_balance = 1;
   11006             :                                 busiest->push_cpu = this_cpu;
   11007             :                                 active_balance = 1;
   11008             :                         }
   11009             :                         raw_spin_rq_unlock_irqrestore(busiest, flags);
   11010             : 
   11011             :                         if (active_balance) {
   11012             :                                 stop_one_cpu_nowait(cpu_of(busiest),
   11013             :                                         active_load_balance_cpu_stop, busiest,
   11014             :                                         &busiest->active_balance_work);
   11015             :                         }
   11016             :                 }
   11017             :         } else {
   11018             :                 sd->nr_balance_failed = 0;
   11019             :         }
   11020             : 
   11021             :         if (likely(!active_balance) || need_active_balance(&env)) {
   11022             :                 /* We were unbalanced, so reset the balancing interval */
   11023             :                 sd->balance_interval = sd->min_interval;
   11024             :         }
   11025             : 
   11026             :         goto out;
   11027             : 
   11028             : out_balanced:
   11029             :         /*
   11030             :          * We reach balance although we may have faced some affinity
   11031             :          * constraints. Clear the imbalance flag only if other tasks got
   11032             :          * a chance to move and fix the imbalance.
   11033             :          */
   11034             :         if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
   11035             :                 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   11036             : 
   11037             :                 if (*group_imbalance)
   11038             :                         *group_imbalance = 0;
   11039             :         }
   11040             : 
   11041             : out_all_pinned:
   11042             :         /*
   11043             :          * We reach balance because all tasks are pinned at this level so
   11044             :          * we can't migrate them. Let the imbalance flag set so parent level
   11045             :          * can try to migrate them.
   11046             :          */
   11047             :         schedstat_inc(sd->lb_balanced[idle]);
   11048             : 
   11049             :         sd->nr_balance_failed = 0;
   11050             : 
   11051             : out_one_pinned:
   11052             :         ld_moved = 0;
   11053             : 
   11054             :         /*
   11055             :          * newidle_balance() disregards balance intervals, so we could
   11056             :          * repeatedly reach this code, which would lead to balance_interval
   11057             :          * skyrocketing in a short amount of time. Skip the balance_interval
   11058             :          * increase logic to avoid that.
   11059             :          */
   11060             :         if (env.idle == CPU_NEWLY_IDLE)
   11061             :                 goto out;
   11062             : 
   11063             :         /* tune up the balancing interval */
   11064             :         if ((env.flags & LBF_ALL_PINNED &&
   11065             :              sd->balance_interval < MAX_PINNED_INTERVAL) ||
   11066             :             sd->balance_interval < sd->max_interval)
   11067             :                 sd->balance_interval *= 2;
   11068             : out:
   11069             :         return ld_moved;
   11070             : }
   11071             : 
   11072             : static inline unsigned long
   11073             : get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
   11074             : {
   11075             :         unsigned long interval = sd->balance_interval;
   11076             : 
   11077             :         if (cpu_busy)
   11078             :                 interval *= sd->busy_factor;
   11079             : 
   11080             :         /* scale ms to jiffies */
   11081             :         interval = msecs_to_jiffies(interval);
   11082             : 
   11083             :         /*
   11084             :          * Reduce likelihood of busy balancing at higher domains racing with
   11085             :          * balancing at lower domains by preventing their balancing periods
   11086             :          * from being multiples of each other.
   11087             :          */
   11088             :         if (cpu_busy)
   11089             :                 interval -= 1;
   11090             : 
   11091             :         interval = clamp(interval, 1UL, max_load_balance_interval);
   11092             : 
   11093             :         return interval;
   11094             : }
   11095             : 
   11096             : static inline void
   11097             : update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
   11098             : {
   11099             :         unsigned long interval, next;
   11100             : 
   11101             :         /* used by idle balance, so cpu_busy = 0 */
   11102             :         interval = get_sd_balance_interval(sd, 0);
   11103             :         next = sd->last_balance + interval;
   11104             : 
   11105             :         if (time_after(*next_balance, next))
   11106             :                 *next_balance = next;
   11107             : }
   11108             : 
   11109             : /*
   11110             :  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
   11111             :  * running tasks off the busiest CPU onto idle CPUs. It requires at
   11112             :  * least 1 task to be running on each physical CPU where possible, and
   11113             :  * avoids physical / logical imbalances.
   11114             :  */
   11115             : static int active_load_balance_cpu_stop(void *data)
   11116             : {
   11117             :         struct rq *busiest_rq = data;
   11118             :         int busiest_cpu = cpu_of(busiest_rq);
   11119             :         int target_cpu = busiest_rq->push_cpu;
   11120             :         struct rq *target_rq = cpu_rq(target_cpu);
   11121             :         struct sched_domain *sd;
   11122             :         struct task_struct *p = NULL;
   11123             :         struct rq_flags rf;
   11124             : 
   11125             :         rq_lock_irq(busiest_rq, &rf);
   11126             :         /*
   11127             :          * Between queueing the stop-work and running it is a hole in which
   11128             :          * CPUs can become inactive. We should not move tasks from or to
   11129             :          * inactive CPUs.
   11130             :          */
   11131             :         if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
   11132             :                 goto out_unlock;
   11133             : 
   11134             :         /* Make sure the requested CPU hasn't gone down in the meantime: */
   11135             :         if (unlikely(busiest_cpu != smp_processor_id() ||
   11136             :                      !busiest_rq->active_balance))
   11137             :                 goto out_unlock;
   11138             : 
   11139             :         /* Is there any task to move? */
   11140             :         if (busiest_rq->nr_running <= 1)
   11141             :                 goto out_unlock;
   11142             : 
   11143             :         /*
   11144             :          * This condition is "impossible", if it occurs
   11145             :          * we need to fix it. Originally reported by
   11146             :          * Bjorn Helgaas on a 128-CPU setup.
   11147             :          */
   11148             :         WARN_ON_ONCE(busiest_rq == target_rq);
   11149             : 
   11150             :         /* Search for an sd spanning us and the target CPU. */
   11151             :         rcu_read_lock();
   11152             :         for_each_domain(target_cpu, sd) {
   11153             :                 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
   11154             :                         break;
   11155             :         }
   11156             : 
   11157             :         if (likely(sd)) {
   11158             :                 struct lb_env env = {
   11159             :                         .sd             = sd,
   11160             :                         .dst_cpu        = target_cpu,
   11161             :                         .dst_rq         = target_rq,
   11162             :                         .src_cpu        = busiest_rq->cpu,
   11163             :                         .src_rq         = busiest_rq,
   11164             :                         .idle           = CPU_IDLE,
   11165             :                         .flags          = LBF_ACTIVE_LB,
   11166             :                 };
   11167             : 
   11168             :                 schedstat_inc(sd->alb_count);
   11169             :                 update_rq_clock(busiest_rq);
   11170             : 
   11171             :                 p = detach_one_task(&env);
   11172             :                 if (p) {
   11173             :                         schedstat_inc(sd->alb_pushed);
   11174             :                         /* Active balancing done, reset the failure counter. */
   11175             :                         sd->nr_balance_failed = 0;
   11176             :                 } else {
   11177             :                         schedstat_inc(sd->alb_failed);
   11178             :                 }
   11179             :         }
   11180             :         rcu_read_unlock();
   11181             : out_unlock:
   11182             :         busiest_rq->active_balance = 0;
   11183             :         rq_unlock(busiest_rq, &rf);
   11184             : 
   11185             :         if (p)
   11186             :                 attach_one_task(target_rq, p);
   11187             : 
   11188             :         local_irq_enable();
   11189             : 
   11190             :         return 0;
   11191             : }
   11192             : 
   11193             : static DEFINE_SPINLOCK(balancing);
   11194             : 
   11195             : /*
   11196             :  * Scale the max load_balance interval with the number of CPUs in the system.
   11197             :  * This trades load-balance latency on larger machines for less cross talk.
   11198             :  */
   11199             : void update_max_interval(void)
   11200             : {
   11201             :         max_load_balance_interval = HZ*num_online_cpus()/10;
   11202             : }
   11203             : 
   11204             : static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
   11205             : {
   11206             :         if (cost > sd->max_newidle_lb_cost) {
   11207             :                 /*
   11208             :                  * Track max cost of a domain to make sure to not delay the
   11209             :                  * next wakeup on the CPU.
   11210             :                  */
   11211             :                 sd->max_newidle_lb_cost = cost;
   11212             :                 sd->last_decay_max_lb_cost = jiffies;
   11213             :         } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
   11214             :                 /*
   11215             :                  * Decay the newidle max times by ~1% per second to ensure that
   11216             :                  * it is not outdated and the current max cost is actually
   11217             :                  * shorter.
   11218             :                  */
   11219             :                 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
   11220             :                 sd->last_decay_max_lb_cost = jiffies;
   11221             : 
   11222             :                 return true;
   11223             :         }
   11224             : 
   11225             :         return false;
   11226             : }
   11227             : 
   11228             : /*
   11229             :  * It checks each scheduling domain to see if it is due to be balanced,
   11230             :  * and initiates a balancing operation if so.
   11231             :  *
   11232             :  * Balancing parameters are set up in init_sched_domains.
   11233             :  */
   11234             : static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
   11235             : {
   11236             :         int continue_balancing = 1;
   11237             :         int cpu = rq->cpu;
   11238             :         int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   11239             :         unsigned long interval;
   11240             :         struct sched_domain *sd;
   11241             :         /* Earliest time when we have to do rebalance again */
   11242             :         unsigned long next_balance = jiffies + 60*HZ;
   11243             :         int update_next_balance = 0;
   11244             :         int need_serialize, need_decay = 0;
   11245             :         u64 max_cost = 0;
   11246             : 
   11247             :         rcu_read_lock();
   11248             :         for_each_domain(cpu, sd) {
   11249             :                 /*
   11250             :                  * Decay the newidle max times here because this is a regular
   11251             :                  * visit to all the domains.
   11252             :                  */
   11253             :                 need_decay = update_newidle_cost(sd, 0);
   11254             :                 max_cost += sd->max_newidle_lb_cost;
   11255             : 
   11256             :                 /*
   11257             :                  * Stop the load balance at this level. There is another
   11258             :                  * CPU in our sched group which is doing load balancing more
   11259             :                  * actively.
   11260             :                  */
   11261             :                 if (!continue_balancing) {
   11262             :                         if (need_decay)
   11263             :                                 continue;
   11264             :                         break;
   11265             :                 }
   11266             : 
   11267             :                 interval = get_sd_balance_interval(sd, busy);
   11268             : 
   11269             :                 need_serialize = sd->flags & SD_SERIALIZE;
   11270             :                 if (need_serialize) {
   11271             :                         if (!spin_trylock(&balancing))
   11272             :                                 goto out;
   11273             :                 }
   11274             : 
   11275             :                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
   11276             :                         if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
   11277             :                                 /*
   11278             :                                  * The LBF_DST_PINNED logic could have changed
   11279             :                                  * env->dst_cpu, so we can't know our idle
   11280             :                                  * state even if we migrated tasks. Update it.
   11281             :                                  */
   11282             :                                 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
   11283             :                                 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   11284             :                         }
   11285             :                         sd->last_balance = jiffies;
   11286             :                         interval = get_sd_balance_interval(sd, busy);
   11287             :                 }
   11288             :                 if (need_serialize)
   11289             :                         spin_unlock(&balancing);
   11290             : out:
   11291             :                 if (time_after(next_balance, sd->last_balance + interval)) {
   11292             :                         next_balance = sd->last_balance + interval;
   11293             :                         update_next_balance = 1;
   11294             :                 }
   11295             :         }
   11296             :         if (need_decay) {
   11297             :                 /*
   11298             :                  * Ensure the rq-wide value also decays but keep it at a
   11299             :                  * reasonable floor to avoid funnies with rq->avg_idle.
   11300             :                  */
   11301             :                 rq->max_idle_balance_cost =
   11302             :                         max((u64)sysctl_sched_migration_cost, max_cost);
   11303             :         }
   11304             :         rcu_read_unlock();
   11305             : 
   11306             :         /*
   11307             :          * next_balance will be updated only when there is a need.
   11308             :          * When the cpu is attached to null domain for ex, it will not be
   11309             :          * updated.
   11310             :          */
   11311             :         if (likely(update_next_balance))
   11312             :                 rq->next_balance = next_balance;
   11313             : 
   11314             : }
   11315             : 
   11316             : static inline int on_null_domain(struct rq *rq)
   11317             : {
   11318             :         return unlikely(!rcu_dereference_sched(rq->sd));
   11319             : }
   11320             : 
   11321             : #ifdef CONFIG_NO_HZ_COMMON
   11322             : /*
   11323             :  * idle load balancing details
   11324             :  * - When one of the busy CPUs notice that there may be an idle rebalancing
   11325             :  *   needed, they will kick the idle load balancer, which then does idle
   11326             :  *   load balancing for all the idle CPUs.
   11327             :  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
   11328             :  *   anywhere yet.
   11329             :  */
   11330             : 
   11331             : static inline int find_new_ilb(void)
   11332             : {
   11333             :         int ilb;
   11334             :         const struct cpumask *hk_mask;
   11335             : 
   11336             :         hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
   11337             : 
   11338             :         for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
   11339             : 
   11340             :                 if (ilb == smp_processor_id())
   11341             :                         continue;
   11342             : 
   11343             :                 if (idle_cpu(ilb))
   11344             :                         return ilb;
   11345             :         }
   11346             : 
   11347             :         return nr_cpu_ids;
   11348             : }
   11349             : 
   11350             : /*
   11351             :  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
   11352             :  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
   11353             :  */
   11354             : static void kick_ilb(unsigned int flags)
   11355             : {
   11356             :         int ilb_cpu;
   11357             : 
   11358             :         /*
   11359             :          * Increase nohz.next_balance only when if full ilb is triggered but
   11360             :          * not if we only update stats.
   11361             :          */
   11362             :         if (flags & NOHZ_BALANCE_KICK)
   11363             :                 nohz.next_balance = jiffies+1;
   11364             : 
   11365             :         ilb_cpu = find_new_ilb();
   11366             : 
   11367             :         if (ilb_cpu >= nr_cpu_ids)
   11368             :                 return;
   11369             : 
   11370             :         /*
   11371             :          * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
   11372             :          * the first flag owns it; cleared by nohz_csd_func().
   11373             :          */
   11374             :         flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
   11375             :         if (flags & NOHZ_KICK_MASK)
   11376             :                 return;
   11377             : 
   11378             :         /*
   11379             :          * This way we generate an IPI on the target CPU which
   11380             :          * is idle. And the softirq performing nohz idle load balance
   11381             :          * will be run before returning from the IPI.
   11382             :          */
   11383             :         smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
   11384             : }
   11385             : 
   11386             : /*
   11387             :  * Current decision point for kicking the idle load balancer in the presence
   11388             :  * of idle CPUs in the system.
   11389             :  */
   11390             : static void nohz_balancer_kick(struct rq *rq)
   11391             : {
   11392             :         unsigned long now = jiffies;
   11393             :         struct sched_domain_shared *sds;
   11394             :         struct sched_domain *sd;
   11395             :         int nr_busy, i, cpu = rq->cpu;
   11396             :         unsigned int flags = 0;
   11397             : 
   11398             :         if (unlikely(rq->idle_balance))
   11399             :                 return;
   11400             : 
   11401             :         /*
   11402             :          * We may be recently in ticked or tickless idle mode. At the first
   11403             :          * busy tick after returning from idle, we will update the busy stats.
   11404             :          */
   11405             :         nohz_balance_exit_idle(rq);
   11406             : 
   11407             :         /*
   11408             :          * None are in tickless mode and hence no need for NOHZ idle load
   11409             :          * balancing.
   11410             :          */
   11411             :         if (likely(!atomic_read(&nohz.nr_cpus)))
   11412             :                 return;
   11413             : 
   11414             :         if (READ_ONCE(nohz.has_blocked) &&
   11415             :             time_after(now, READ_ONCE(nohz.next_blocked)))
   11416             :                 flags = NOHZ_STATS_KICK;
   11417             : 
   11418             :         if (time_before(now, nohz.next_balance))
   11419             :                 goto out;
   11420             : 
   11421             :         if (rq->nr_running >= 2) {
   11422             :                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11423             :                 goto out;
   11424             :         }
   11425             : 
   11426             :         rcu_read_lock();
   11427             : 
   11428             :         sd = rcu_dereference(rq->sd);
   11429             :         if (sd) {
   11430             :                 /*
   11431             :                  * If there's a CFS task and the current CPU has reduced
   11432             :                  * capacity; kick the ILB to see if there's a better CPU to run
   11433             :                  * on.
   11434             :                  */
   11435             :                 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
   11436             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11437             :                         goto unlock;
   11438             :                 }
   11439             :         }
   11440             : 
   11441             :         sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
   11442             :         if (sd) {
   11443             :                 /*
   11444             :                  * When ASYM_PACKING; see if there's a more preferred CPU
   11445             :                  * currently idle; in which case, kick the ILB to move tasks
   11446             :                  * around.
   11447             :                  *
   11448             :                  * When balancing betwen cores, all the SMT siblings of the
   11449             :                  * preferred CPU must be idle.
   11450             :                  */
   11451             :                 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
   11452             :                         if (sched_use_asym_prio(sd, i) &&
   11453             :                             sched_asym_prefer(i, cpu)) {
   11454             :                                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11455             :                                 goto unlock;
   11456             :                         }
   11457             :                 }
   11458             :         }
   11459             : 
   11460             :         sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
   11461             :         if (sd) {
   11462             :                 /*
   11463             :                  * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
   11464             :                  * to run the misfit task on.
   11465             :                  */
   11466             :                 if (check_misfit_status(rq, sd)) {
   11467             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11468             :                         goto unlock;
   11469             :                 }
   11470             : 
   11471             :                 /*
   11472             :                  * For asymmetric systems, we do not want to nicely balance
   11473             :                  * cache use, instead we want to embrace asymmetry and only
   11474             :                  * ensure tasks have enough CPU capacity.
   11475             :                  *
   11476             :                  * Skip the LLC logic because it's not relevant in that case.
   11477             :                  */
   11478             :                 goto unlock;
   11479             :         }
   11480             : 
   11481             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
   11482             :         if (sds) {
   11483             :                 /*
   11484             :                  * If there is an imbalance between LLC domains (IOW we could
   11485             :                  * increase the overall cache use), we need some less-loaded LLC
   11486             :                  * domain to pull some load. Likewise, we may need to spread
   11487             :                  * load within the current LLC domain (e.g. packed SMT cores but
   11488             :                  * other CPUs are idle). We can't really know from here how busy
   11489             :                  * the others are - so just get a nohz balance going if it looks
   11490             :                  * like this LLC domain has tasks we could move.
   11491             :                  */
   11492             :                 nr_busy = atomic_read(&sds->nr_busy_cpus);
   11493             :                 if (nr_busy > 1) {
   11494             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   11495             :                         goto unlock;
   11496             :                 }
   11497             :         }
   11498             : unlock:
   11499             :         rcu_read_unlock();
   11500             : out:
   11501             :         if (READ_ONCE(nohz.needs_update))
   11502             :                 flags |= NOHZ_NEXT_KICK;
   11503             : 
   11504             :         if (flags)
   11505             :                 kick_ilb(flags);
   11506             : }
   11507             : 
   11508             : static void set_cpu_sd_state_busy(int cpu)
   11509             : {
   11510             :         struct sched_domain *sd;
   11511             : 
   11512             :         rcu_read_lock();
   11513             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   11514             : 
   11515             :         if (!sd || !sd->nohz_idle)
   11516             :                 goto unlock;
   11517             :         sd->nohz_idle = 0;
   11518             : 
   11519             :         atomic_inc(&sd->shared->nr_busy_cpus);
   11520             : unlock:
   11521             :         rcu_read_unlock();
   11522             : }
   11523             : 
   11524             : void nohz_balance_exit_idle(struct rq *rq)
   11525             : {
   11526             :         SCHED_WARN_ON(rq != this_rq());
   11527             : 
   11528             :         if (likely(!rq->nohz_tick_stopped))
   11529             :                 return;
   11530             : 
   11531             :         rq->nohz_tick_stopped = 0;
   11532             :         cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
   11533             :         atomic_dec(&nohz.nr_cpus);
   11534             : 
   11535             :         set_cpu_sd_state_busy(rq->cpu);
   11536             : }
   11537             : 
   11538             : static void set_cpu_sd_state_idle(int cpu)
   11539             : {
   11540             :         struct sched_domain *sd;
   11541             : 
   11542             :         rcu_read_lock();
   11543             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   11544             : 
   11545             :         if (!sd || sd->nohz_idle)
   11546             :                 goto unlock;
   11547             :         sd->nohz_idle = 1;
   11548             : 
   11549             :         atomic_dec(&sd->shared->nr_busy_cpus);
   11550             : unlock:
   11551             :         rcu_read_unlock();
   11552             : }
   11553             : 
   11554             : /*
   11555             :  * This routine will record that the CPU is going idle with tick stopped.
   11556             :  * This info will be used in performing idle load balancing in the future.
   11557             :  */
   11558             : void nohz_balance_enter_idle(int cpu)
   11559             : {
   11560             :         struct rq *rq = cpu_rq(cpu);
   11561             : 
   11562             :         SCHED_WARN_ON(cpu != smp_processor_id());
   11563             : 
   11564             :         /* If this CPU is going down, then nothing needs to be done: */
   11565             :         if (!cpu_active(cpu))
   11566             :                 return;
   11567             : 
   11568             :         /* Spare idle load balancing on CPUs that don't want to be disturbed: */
   11569             :         if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
   11570             :                 return;
   11571             : 
   11572             :         /*
   11573             :          * Can be set safely without rq->lock held
   11574             :          * If a clear happens, it will have evaluated last additions because
   11575             :          * rq->lock is held during the check and the clear
   11576             :          */
   11577             :         rq->has_blocked_load = 1;
   11578             : 
   11579             :         /*
   11580             :          * The tick is still stopped but load could have been added in the
   11581             :          * meantime. We set the nohz.has_blocked flag to trig a check of the
   11582             :          * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
   11583             :          * of nohz.has_blocked can only happen after checking the new load
   11584             :          */
   11585             :         if (rq->nohz_tick_stopped)
   11586             :                 goto out;
   11587             : 
   11588             :         /* If we're a completely isolated CPU, we don't play: */
   11589             :         if (on_null_domain(rq))
   11590             :                 return;
   11591             : 
   11592             :         rq->nohz_tick_stopped = 1;
   11593             : 
   11594             :         cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
   11595             :         atomic_inc(&nohz.nr_cpus);
   11596             : 
   11597             :         /*
   11598             :          * Ensures that if nohz_idle_balance() fails to observe our
   11599             :          * @idle_cpus_mask store, it must observe the @has_blocked
   11600             :          * and @needs_update stores.
   11601             :          */
   11602             :         smp_mb__after_atomic();
   11603             : 
   11604             :         set_cpu_sd_state_idle(cpu);
   11605             : 
   11606             :         WRITE_ONCE(nohz.needs_update, 1);
   11607             : out:
   11608             :         /*
   11609             :          * Each time a cpu enter idle, we assume that it has blocked load and
   11610             :          * enable the periodic update of the load of idle cpus
   11611             :          */
   11612             :         WRITE_ONCE(nohz.has_blocked, 1);
   11613             : }
   11614             : 
   11615             : static bool update_nohz_stats(struct rq *rq)
   11616             : {
   11617             :         unsigned int cpu = rq->cpu;
   11618             : 
   11619             :         if (!rq->has_blocked_load)
   11620             :                 return false;
   11621             : 
   11622             :         if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
   11623             :                 return false;
   11624             : 
   11625             :         if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
   11626             :                 return true;
   11627             : 
   11628             :         update_blocked_averages(cpu);
   11629             : 
   11630             :         return rq->has_blocked_load;
   11631             : }
   11632             : 
   11633             : /*
   11634             :  * Internal function that runs load balance for all idle cpus. The load balance
   11635             :  * can be a simple update of blocked load or a complete load balance with
   11636             :  * tasks movement depending of flags.
   11637             :  */
   11638             : static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
   11639             : {
   11640             :         /* Earliest time when we have to do rebalance again */
   11641             :         unsigned long now = jiffies;
   11642             :         unsigned long next_balance = now + 60*HZ;
   11643             :         bool has_blocked_load = false;
   11644             :         int update_next_balance = 0;
   11645             :         int this_cpu = this_rq->cpu;
   11646             :         int balance_cpu;
   11647             :         struct rq *rq;
   11648             : 
   11649             :         SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
   11650             : 
   11651             :         /*
   11652             :          * We assume there will be no idle load after this update and clear
   11653             :          * the has_blocked flag. If a cpu enters idle in the mean time, it will
   11654             :          * set the has_blocked flag and trigger another update of idle load.
   11655             :          * Because a cpu that becomes idle, is added to idle_cpus_mask before
   11656             :          * setting the flag, we are sure to not clear the state and not
   11657             :          * check the load of an idle cpu.
   11658             :          *
   11659             :          * Same applies to idle_cpus_mask vs needs_update.
   11660             :          */
   11661             :         if (flags & NOHZ_STATS_KICK)
   11662             :                 WRITE_ONCE(nohz.has_blocked, 0);
   11663             :         if (flags & NOHZ_NEXT_KICK)
   11664             :                 WRITE_ONCE(nohz.needs_update, 0);
   11665             : 
   11666             :         /*
   11667             :          * Ensures that if we miss the CPU, we must see the has_blocked
   11668             :          * store from nohz_balance_enter_idle().
   11669             :          */
   11670             :         smp_mb();
   11671             : 
   11672             :         /*
   11673             :          * Start with the next CPU after this_cpu so we will end with this_cpu and let a
   11674             :          * chance for other idle cpu to pull load.
   11675             :          */
   11676             :         for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
   11677             :                 if (!idle_cpu(balance_cpu))
   11678             :                         continue;
   11679             : 
   11680             :                 /*
   11681             :                  * If this CPU gets work to do, stop the load balancing
   11682             :                  * work being done for other CPUs. Next load
   11683             :                  * balancing owner will pick it up.
   11684             :                  */
   11685             :                 if (need_resched()) {
   11686             :                         if (flags & NOHZ_STATS_KICK)
   11687             :                                 has_blocked_load = true;
   11688             :                         if (flags & NOHZ_NEXT_KICK)
   11689             :                                 WRITE_ONCE(nohz.needs_update, 1);
   11690             :                         goto abort;
   11691             :                 }
   11692             : 
   11693             :                 rq = cpu_rq(balance_cpu);
   11694             : 
   11695             :                 if (flags & NOHZ_STATS_KICK)
   11696             :                         has_blocked_load |= update_nohz_stats(rq);
   11697             : 
   11698             :                 /*
   11699             :                  * If time for next balance is due,
   11700             :                  * do the balance.
   11701             :                  */
   11702             :                 if (time_after_eq(jiffies, rq->next_balance)) {
   11703             :                         struct rq_flags rf;
   11704             : 
   11705             :                         rq_lock_irqsave(rq, &rf);
   11706             :                         update_rq_clock(rq);
   11707             :                         rq_unlock_irqrestore(rq, &rf);
   11708             : 
   11709             :                         if (flags & NOHZ_BALANCE_KICK)
   11710             :                                 rebalance_domains(rq, CPU_IDLE);
   11711             :                 }
   11712             : 
   11713             :                 if (time_after(next_balance, rq->next_balance)) {
   11714             :                         next_balance = rq->next_balance;
   11715             :                         update_next_balance = 1;
   11716             :                 }
   11717             :         }
   11718             : 
   11719             :         /*
   11720             :          * next_balance will be updated only when there is a need.
   11721             :          * When the CPU is attached to null domain for ex, it will not be
   11722             :          * updated.
   11723             :          */
   11724             :         if (likely(update_next_balance))
   11725             :                 nohz.next_balance = next_balance;
   11726             : 
   11727             :         if (flags & NOHZ_STATS_KICK)
   11728             :                 WRITE_ONCE(nohz.next_blocked,
   11729             :                            now + msecs_to_jiffies(LOAD_AVG_PERIOD));
   11730             : 
   11731             : abort:
   11732             :         /* There is still blocked load, enable periodic update */
   11733             :         if (has_blocked_load)
   11734             :                 WRITE_ONCE(nohz.has_blocked, 1);
   11735             : }
   11736             : 
   11737             : /*
   11738             :  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
   11739             :  * rebalancing for all the cpus for whom scheduler ticks are stopped.
   11740             :  */
   11741             : static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   11742             : {
   11743             :         unsigned int flags = this_rq->nohz_idle_balance;
   11744             : 
   11745             :         if (!flags)
   11746             :                 return false;
   11747             : 
   11748             :         this_rq->nohz_idle_balance = 0;
   11749             : 
   11750             :         if (idle != CPU_IDLE)
   11751             :                 return false;
   11752             : 
   11753             :         _nohz_idle_balance(this_rq, flags);
   11754             : 
   11755             :         return true;
   11756             : }
   11757             : 
   11758             : /*
   11759             :  * Check if we need to run the ILB for updating blocked load before entering
   11760             :  * idle state.
   11761             :  */
   11762             : void nohz_run_idle_balance(int cpu)
   11763             : {
   11764             :         unsigned int flags;
   11765             : 
   11766             :         flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
   11767             : 
   11768             :         /*
   11769             :          * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
   11770             :          * (ie NOHZ_STATS_KICK set) and will do the same.
   11771             :          */
   11772             :         if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
   11773             :                 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
   11774             : }
   11775             : 
   11776             : static void nohz_newidle_balance(struct rq *this_rq)
   11777             : {
   11778             :         int this_cpu = this_rq->cpu;
   11779             : 
   11780             :         /*
   11781             :          * This CPU doesn't want to be disturbed by scheduler
   11782             :          * housekeeping
   11783             :          */
   11784             :         if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
   11785             :                 return;
   11786             : 
   11787             :         /* Will wake up very soon. No time for doing anything else*/
   11788             :         if (this_rq->avg_idle < sysctl_sched_migration_cost)
   11789             :                 return;
   11790             : 
   11791             :         /* Don't need to update blocked load of idle CPUs*/
   11792             :         if (!READ_ONCE(nohz.has_blocked) ||
   11793             :             time_before(jiffies, READ_ONCE(nohz.next_blocked)))
   11794             :                 return;
   11795             : 
   11796             :         /*
   11797             :          * Set the need to trigger ILB in order to update blocked load
   11798             :          * before entering idle state.
   11799             :          */
   11800             :         atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
   11801             : }
   11802             : 
   11803             : #else /* !CONFIG_NO_HZ_COMMON */
   11804             : static inline void nohz_balancer_kick(struct rq *rq) { }
   11805             : 
   11806             : static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   11807             : {
   11808             :         return false;
   11809             : }
   11810             : 
   11811             : static inline void nohz_newidle_balance(struct rq *this_rq) { }
   11812             : #endif /* CONFIG_NO_HZ_COMMON */
   11813             : 
   11814             : /*
   11815             :  * newidle_balance is called by schedule() if this_cpu is about to become
   11816             :  * idle. Attempts to pull tasks from other CPUs.
   11817             :  *
   11818             :  * Returns:
   11819             :  *   < 0 - we released the lock and there are !fair tasks present
   11820             :  *     0 - failed, no new tasks
   11821             :  *   > 0 - success, new (fair) tasks present
   11822             :  */
   11823             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
   11824             : {
   11825             :         unsigned long next_balance = jiffies + HZ;
   11826             :         int this_cpu = this_rq->cpu;
   11827             :         u64 t0, t1, curr_cost = 0;
   11828             :         struct sched_domain *sd;
   11829             :         int pulled_task = 0;
   11830             : 
   11831             :         update_misfit_status(NULL, this_rq);
   11832             : 
   11833             :         /*
   11834             :          * There is a task waiting to run. No need to search for one.
   11835             :          * Return 0; the task will be enqueued when switching to idle.
   11836             :          */
   11837             :         if (this_rq->ttwu_pending)
   11838             :                 return 0;
   11839             : 
   11840             :         /*
   11841             :          * We must set idle_stamp _before_ calling idle_balance(), such that we
   11842             :          * measure the duration of idle_balance() as idle time.
   11843             :          */
   11844             :         this_rq->idle_stamp = rq_clock(this_rq);
   11845             : 
   11846             :         /*
   11847             :          * Do not pull tasks towards !active CPUs...
   11848             :          */
   11849             :         if (!cpu_active(this_cpu))
   11850             :                 return 0;
   11851             : 
   11852             :         /*
   11853             :          * This is OK, because current is on_cpu, which avoids it being picked
   11854             :          * for load-balance and preemption/IRQs are still disabled avoiding
   11855             :          * further scheduler activity on it and we're being very careful to
   11856             :          * re-start the picking loop.
   11857             :          */
   11858             :         rq_unpin_lock(this_rq, rf);
   11859             : 
   11860             :         rcu_read_lock();
   11861             :         sd = rcu_dereference_check_sched_domain(this_rq->sd);
   11862             : 
   11863             :         if (!READ_ONCE(this_rq->rd->overload) ||
   11864             :             (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
   11865             : 
   11866             :                 if (sd)
   11867             :                         update_next_balance(sd, &next_balance);
   11868             :                 rcu_read_unlock();
   11869             : 
   11870             :                 goto out;
   11871             :         }
   11872             :         rcu_read_unlock();
   11873             : 
   11874             :         raw_spin_rq_unlock(this_rq);
   11875             : 
   11876             :         t0 = sched_clock_cpu(this_cpu);
   11877             :         update_blocked_averages(this_cpu);
   11878             : 
   11879             :         rcu_read_lock();
   11880             :         for_each_domain(this_cpu, sd) {
   11881             :                 int continue_balancing = 1;
   11882             :                 u64 domain_cost;
   11883             : 
   11884             :                 update_next_balance(sd, &next_balance);
   11885             : 
   11886             :                 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
   11887             :                         break;
   11888             : 
   11889             :                 if (sd->flags & SD_BALANCE_NEWIDLE) {
   11890             : 
   11891             :                         pulled_task = load_balance(this_cpu, this_rq,
   11892             :                                                    sd, CPU_NEWLY_IDLE,
   11893             :                                                    &continue_balancing);
   11894             : 
   11895             :                         t1 = sched_clock_cpu(this_cpu);
   11896             :                         domain_cost = t1 - t0;
   11897             :                         update_newidle_cost(sd, domain_cost);
   11898             : 
   11899             :                         curr_cost += domain_cost;
   11900             :                         t0 = t1;
   11901             :                 }
   11902             : 
   11903             :                 /*
   11904             :                  * Stop searching for tasks to pull if there are
   11905             :                  * now runnable tasks on this rq.
   11906             :                  */
   11907             :                 if (pulled_task || this_rq->nr_running > 0 ||
   11908             :                     this_rq->ttwu_pending)
   11909             :                         break;
   11910             :         }
   11911             :         rcu_read_unlock();
   11912             : 
   11913             :         raw_spin_rq_lock(this_rq);
   11914             : 
   11915             :         if (curr_cost > this_rq->max_idle_balance_cost)
   11916             :                 this_rq->max_idle_balance_cost = curr_cost;
   11917             : 
   11918             :         /*
   11919             :          * While browsing the domains, we released the rq lock, a task could
   11920             :          * have been enqueued in the meantime. Since we're not going idle,
   11921             :          * pretend we pulled a task.
   11922             :          */
   11923             :         if (this_rq->cfs.h_nr_running && !pulled_task)
   11924             :                 pulled_task = 1;
   11925             : 
   11926             :         /* Is there a task of a high priority class? */
   11927             :         if (this_rq->nr_running != this_rq->cfs.h_nr_running)
   11928             :                 pulled_task = -1;
   11929             : 
   11930             : out:
   11931             :         /* Move the next balance forward */
   11932             :         if (time_after(this_rq->next_balance, next_balance))
   11933             :                 this_rq->next_balance = next_balance;
   11934             : 
   11935             :         if (pulled_task)
   11936             :                 this_rq->idle_stamp = 0;
   11937             :         else
   11938             :                 nohz_newidle_balance(this_rq);
   11939             : 
   11940             :         rq_repin_lock(this_rq, rf);
   11941             : 
   11942             :         return pulled_task;
   11943             : }
   11944             : 
   11945             : /*
   11946             :  * run_rebalance_domains is triggered when needed from the scheduler tick.
   11947             :  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
   11948             :  */
   11949             : static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
   11950             : {
   11951             :         struct rq *this_rq = this_rq();
   11952             :         enum cpu_idle_type idle = this_rq->idle_balance ?
   11953             :                                                 CPU_IDLE : CPU_NOT_IDLE;
   11954             : 
   11955             :         /*
   11956             :          * If this CPU has a pending nohz_balance_kick, then do the
   11957             :          * balancing on behalf of the other idle CPUs whose ticks are
   11958             :          * stopped. Do nohz_idle_balance *before* rebalance_domains to
   11959             :          * give the idle CPUs a chance to load balance. Else we may
   11960             :          * load balance only within the local sched_domain hierarchy
   11961             :          * and abort nohz_idle_balance altogether if we pull some load.
   11962             :          */
   11963             :         if (nohz_idle_balance(this_rq, idle))
   11964             :                 return;
   11965             : 
   11966             :         /* normal load balance */
   11967             :         update_blocked_averages(this_rq->cpu);
   11968             :         rebalance_domains(this_rq, idle);
   11969             : }
   11970             : 
   11971             : /*
   11972             :  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
   11973             :  */
   11974             : void trigger_load_balance(struct rq *rq)
   11975             : {
   11976             :         /*
   11977             :          * Don't need to rebalance while attached to NULL domain or
   11978             :          * runqueue CPU is not active
   11979             :          */
   11980             :         if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
   11981             :                 return;
   11982             : 
   11983             :         if (time_after_eq(jiffies, rq->next_balance))
   11984             :                 raise_softirq(SCHED_SOFTIRQ);
   11985             : 
   11986             :         nohz_balancer_kick(rq);
   11987             : }
   11988             : 
   11989             : static void rq_online_fair(struct rq *rq)
   11990             : {
   11991             :         update_sysctl();
   11992             : 
   11993             :         update_runtime_enabled(rq);
   11994             : }
   11995             : 
   11996             : static void rq_offline_fair(struct rq *rq)
   11997             : {
   11998             :         update_sysctl();
   11999             : 
   12000             :         /* Ensure any throttled groups are reachable by pick_next_task */
   12001             :         unthrottle_offline_cfs_rqs(rq);
   12002             : }
   12003             : 
   12004             : #endif /* CONFIG_SMP */
   12005             : 
   12006             : #ifdef CONFIG_SCHED_CORE
   12007             : static inline bool
   12008             : __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
   12009             : {
   12010             :         u64 slice = sched_slice(cfs_rq_of(se), se);
   12011             :         u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
   12012             : 
   12013             :         return (rtime * min_nr_tasks > slice);
   12014             : }
   12015             : 
   12016             : #define MIN_NR_TASKS_DURING_FORCEIDLE   2
   12017             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
   12018             : {
   12019             :         if (!sched_core_enabled(rq))
   12020             :                 return;
   12021             : 
   12022             :         /*
   12023             :          * If runqueue has only one task which used up its slice and
   12024             :          * if the sibling is forced idle, then trigger schedule to
   12025             :          * give forced idle task a chance.
   12026             :          *
   12027             :          * sched_slice() considers only this active rq and it gets the
   12028             :          * whole slice. But during force idle, we have siblings acting
   12029             :          * like a single runqueue and hence we need to consider runnable
   12030             :          * tasks on this CPU and the forced idle CPU. Ideally, we should
   12031             :          * go through the forced idle rq, but that would be a perf hit.
   12032             :          * We can assume that the forced idle CPU has at least
   12033             :          * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
   12034             :          * if we need to give up the CPU.
   12035             :          */
   12036             :         if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
   12037             :             __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
   12038             :                 resched_curr(rq);
   12039             : }
   12040             : 
   12041             : /*
   12042             :  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
   12043             :  */
   12044             : static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
   12045             :                          bool forceidle)
   12046             : {
   12047             :         for_each_sched_entity(se) {
   12048             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12049             : 
   12050             :                 if (forceidle) {
   12051             :                         if (cfs_rq->forceidle_seq == fi_seq)
   12052             :                                 break;
   12053             :                         cfs_rq->forceidle_seq = fi_seq;
   12054             :                 }
   12055             : 
   12056             :                 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
   12057             :         }
   12058             : }
   12059             : 
   12060             : void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
   12061             : {
   12062             :         struct sched_entity *se = &p->se;
   12063             : 
   12064             :         if (p->sched_class != &fair_sched_class)
   12065             :                 return;
   12066             : 
   12067             :         se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
   12068             : }
   12069             : 
   12070             : bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
   12071             :                         bool in_fi)
   12072             : {
   12073             :         struct rq *rq = task_rq(a);
   12074             :         const struct sched_entity *sea = &a->se;
   12075             :         const struct sched_entity *seb = &b->se;
   12076             :         struct cfs_rq *cfs_rqa;
   12077             :         struct cfs_rq *cfs_rqb;
   12078             :         s64 delta;
   12079             : 
   12080             :         SCHED_WARN_ON(task_rq(b)->core != rq->core);
   12081             : 
   12082             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12083             :         /*
   12084             :          * Find an se in the hierarchy for tasks a and b, such that the se's
   12085             :          * are immediate siblings.
   12086             :          */
   12087             :         while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
   12088             :                 int sea_depth = sea->depth;
   12089             :                 int seb_depth = seb->depth;
   12090             : 
   12091             :                 if (sea_depth >= seb_depth)
   12092             :                         sea = parent_entity(sea);
   12093             :                 if (sea_depth <= seb_depth)
   12094             :                         seb = parent_entity(seb);
   12095             :         }
   12096             : 
   12097             :         se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
   12098             :         se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
   12099             : 
   12100             :         cfs_rqa = sea->cfs_rq;
   12101             :         cfs_rqb = seb->cfs_rq;
   12102             : #else
   12103             :         cfs_rqa = &task_rq(a)->cfs;
   12104             :         cfs_rqb = &task_rq(b)->cfs;
   12105             : #endif
   12106             : 
   12107             :         /*
   12108             :          * Find delta after normalizing se's vruntime with its cfs_rq's
   12109             :          * min_vruntime_fi, which would have been updated in prior calls
   12110             :          * to se_fi_update().
   12111             :          */
   12112             :         delta = (s64)(sea->vruntime - seb->vruntime) +
   12113             :                 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
   12114             : 
   12115             :         return delta > 0;
   12116             : }
   12117             : 
   12118             : static int task_is_throttled_fair(struct task_struct *p, int cpu)
   12119             : {
   12120             :         struct cfs_rq *cfs_rq;
   12121             : 
   12122             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12123             :         cfs_rq = task_group(p)->cfs_rq[cpu];
   12124             : #else
   12125             :         cfs_rq = &cpu_rq(cpu)->cfs;
   12126             : #endif
   12127             :         return throttled_hierarchy(cfs_rq);
   12128             : }
   12129             : #else
   12130             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
   12131             : #endif
   12132             : 
   12133             : /*
   12134             :  * scheduler tick hitting a task of our scheduling class.
   12135             :  *
   12136             :  * NOTE: This function can be called remotely by the tick offload that
   12137             :  * goes along full dynticks. Therefore no local assumption can be made
   12138             :  * and everything must be accessed through the @rq and @curr passed in
   12139             :  * parameters.
   12140             :  */
   12141           1 : static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
   12142             : {
   12143             :         struct cfs_rq *cfs_rq;
   12144           1 :         struct sched_entity *se = &curr->se;
   12145             : 
   12146           2 :         for_each_sched_entity(se) {
   12147           2 :                 cfs_rq = cfs_rq_of(se);
   12148           1 :                 entity_tick(cfs_rq, se, queued);
   12149             :         }
   12150             : 
   12151           1 :         if (static_branch_unlikely(&sched_numa_balancing))
   12152             :                 task_tick_numa(rq, curr);
   12153             : 
   12154           1 :         update_misfit_status(curr, rq);
   12155           1 :         update_overutilized_status(task_rq(curr));
   12156             : 
   12157           1 :         task_tick_core(rq, curr);
   12158           1 : }
   12159             : 
   12160             : /*
   12161             :  * called on fork with the child task as argument from the parent's context
   12162             :  *  - child not yet on the tasklist
   12163             :  *  - preemption disabled
   12164             :  */
   12165         175 : static void task_fork_fair(struct task_struct *p)
   12166             : {
   12167             :         struct cfs_rq *cfs_rq;
   12168         175 :         struct sched_entity *se = &p->se, *curr;
   12169         175 :         struct rq *rq = this_rq();
   12170             :         struct rq_flags rf;
   12171             : 
   12172         350 :         rq_lock(rq, &rf);
   12173         175 :         update_rq_clock(rq);
   12174             : 
   12175         350 :         cfs_rq = task_cfs_rq(current);
   12176         175 :         curr = cfs_rq->curr;
   12177         175 :         if (curr) {
   12178         173 :                 update_curr(cfs_rq);
   12179         173 :                 se->vruntime = curr->vruntime;
   12180             :         }
   12181         175 :         place_entity(cfs_rq, se, 1);
   12182             : 
   12183         175 :         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
   12184             :                 /*
   12185             :                  * Upon rescheduling, sched_class::put_prev_task() will place
   12186             :                  * 'current' within the tree based on its new key value.
   12187             :                  */
   12188           0 :                 swap(curr->vruntime, se->vruntime);
   12189           0 :                 resched_curr(rq);
   12190             :         }
   12191             : 
   12192         175 :         se->vruntime -= cfs_rq->min_vruntime;
   12193         350 :         rq_unlock(rq, &rf);
   12194         175 : }
   12195             : 
   12196             : /*
   12197             :  * Priority of the task has changed. Check to see if we preempt
   12198             :  * the current task.
   12199             :  */
   12200             : static void
   12201           5 : prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
   12202             : {
   12203           5 :         if (!task_on_rq_queued(p))
   12204             :                 return;
   12205             : 
   12206           4 :         if (rq->cfs.nr_running == 1)
   12207             :                 return;
   12208             : 
   12209             :         /*
   12210             :          * Reschedule if we are currently running on this runqueue and
   12211             :          * our priority decreased, or if we are not currently running on
   12212             :          * this runqueue and our priority is higher than the current's
   12213             :          */
   12214           4 :         if (task_current(rq, p)) {
   12215           4 :                 if (p->prio > oldprio)
   12216           0 :                         resched_curr(rq);
   12217             :         } else
   12218           0 :                 check_preempt_curr(rq, p, 0);
   12219             : }
   12220             : 
   12221             : static inline bool vruntime_normalized(struct task_struct *p)
   12222             : {
   12223           0 :         struct sched_entity *se = &p->se;
   12224             : 
   12225             :         /*
   12226             :          * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
   12227             :          * the dequeue_entity(.flags=0) will already have normalized the
   12228             :          * vruntime.
   12229             :          */
   12230           0 :         if (p->on_rq)
   12231             :                 return true;
   12232             : 
   12233             :         /*
   12234             :          * When !on_rq, vruntime of the task has usually NOT been normalized.
   12235             :          * But there are some cases where it has already been normalized:
   12236             :          *
   12237             :          * - A forked child which is waiting for being woken up by
   12238             :          *   wake_up_new_task().
   12239             :          * - A task which has been woken up by try_to_wake_up() and
   12240             :          *   waiting for actually being woken up by sched_ttwu_pending().
   12241             :          */
   12242           0 :         if (!se->sum_exec_runtime ||
   12243           0 :             (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
   12244             :                 return true;
   12245             : 
   12246             :         return false;
   12247             : }
   12248             : 
   12249             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12250             : /*
   12251             :  * Propagate the changes of the sched_entity across the tg tree to make it
   12252             :  * visible to the root
   12253             :  */
   12254             : static void propagate_entity_cfs_rq(struct sched_entity *se)
   12255             : {
   12256             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12257             : 
   12258             :         if (cfs_rq_throttled(cfs_rq))
   12259             :                 return;
   12260             : 
   12261             :         if (!throttled_hierarchy(cfs_rq))
   12262             :                 list_add_leaf_cfs_rq(cfs_rq);
   12263             : 
   12264             :         /* Start to propagate at parent */
   12265             :         se = se->parent;
   12266             : 
   12267             :         for_each_sched_entity(se) {
   12268             :                 cfs_rq = cfs_rq_of(se);
   12269             : 
   12270             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
   12271             : 
   12272             :                 if (cfs_rq_throttled(cfs_rq))
   12273             :                         break;
   12274             : 
   12275             :                 if (!throttled_hierarchy(cfs_rq))
   12276             :                         list_add_leaf_cfs_rq(cfs_rq);
   12277             :         }
   12278             : }
   12279             : #else
   12280             : static void propagate_entity_cfs_rq(struct sched_entity *se) { }
   12281             : #endif
   12282             : 
   12283             : static void detach_entity_cfs_rq(struct sched_entity *se)
   12284             : {
   12285           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12286             : 
   12287             : #ifdef CONFIG_SMP
   12288             :         /*
   12289             :          * In case the task sched_avg hasn't been attached:
   12290             :          * - A forked task which hasn't been woken up by wake_up_new_task().
   12291             :          * - A task which has been woken up by try_to_wake_up() but is
   12292             :          *   waiting for actually being woken up by sched_ttwu_pending().
   12293             :          */
   12294             :         if (!se->avg.last_update_time)
   12295             :                 return;
   12296             : #endif
   12297             : 
   12298             :         /* Catch up with the cfs_rq and remove our load when we leave */
   12299           0 :         update_load_avg(cfs_rq, se, 0);
   12300           0 :         detach_entity_load_avg(cfs_rq, se);
   12301             :         update_tg_load_avg(cfs_rq);
   12302           0 :         propagate_entity_cfs_rq(se);
   12303             : }
   12304             : 
   12305             : static void attach_entity_cfs_rq(struct sched_entity *se)
   12306             : {
   12307           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12308             : 
   12309             :         /* Synchronize entity with its cfs_rq */
   12310           0 :         update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
   12311           0 :         attach_entity_load_avg(cfs_rq, se);
   12312             :         update_tg_load_avg(cfs_rq);
   12313           0 :         propagate_entity_cfs_rq(se);
   12314             : }
   12315             : 
   12316           0 : static void detach_task_cfs_rq(struct task_struct *p)
   12317             : {
   12318           0 :         struct sched_entity *se = &p->se;
   12319           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12320             : 
   12321           0 :         if (!vruntime_normalized(p)) {
   12322             :                 /*
   12323             :                  * Fix up our vruntime so that the current sleep doesn't
   12324             :                  * cause 'unlimited' sleep bonus.
   12325             :                  */
   12326           0 :                 place_entity(cfs_rq, se, 0);
   12327           0 :                 se->vruntime -= cfs_rq->min_vruntime;
   12328             :         }
   12329             : 
   12330           0 :         detach_entity_cfs_rq(se);
   12331           0 : }
   12332             : 
   12333             : static void attach_task_cfs_rq(struct task_struct *p)
   12334             : {
   12335           0 :         struct sched_entity *se = &p->se;
   12336           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12337             : 
   12338           0 :         attach_entity_cfs_rq(se);
   12339             : 
   12340           0 :         if (!vruntime_normalized(p))
   12341           0 :                 se->vruntime += cfs_rq->min_vruntime;
   12342             : }
   12343             : 
   12344           0 : static void switched_from_fair(struct rq *rq, struct task_struct *p)
   12345             : {
   12346           0 :         detach_task_cfs_rq(p);
   12347           0 : }
   12348             : 
   12349           0 : static void switched_to_fair(struct rq *rq, struct task_struct *p)
   12350             : {
   12351           0 :         attach_task_cfs_rq(p);
   12352             : 
   12353           0 :         if (task_on_rq_queued(p)) {
   12354             :                 /*
   12355             :                  * We were most likely switched from sched_rt, so
   12356             :                  * kick off the schedule if running, otherwise just see
   12357             :                  * if we can still preempt the current task.
   12358             :                  */
   12359           0 :                 if (task_current(rq, p))
   12360           0 :                         resched_curr(rq);
   12361             :                 else
   12362           0 :                         check_preempt_curr(rq, p, 0);
   12363             :         }
   12364           0 : }
   12365             : 
   12366             : /* Account for a task changing its policy or group.
   12367             :  *
   12368             :  * This routine is mostly called to set cfs_rq->curr field when a task
   12369             :  * migrates between groups/classes.
   12370             :  */
   12371           4 : static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
   12372             : {
   12373           4 :         struct sched_entity *se = &p->se;
   12374             : 
   12375             : #ifdef CONFIG_SMP
   12376             :         if (task_on_rq_queued(p)) {
   12377             :                 /*
   12378             :                  * Move the next running task to the front of the list, so our
   12379             :                  * cfs_tasks list becomes MRU one.
   12380             :                  */
   12381             :                 list_move(&se->group_node, &rq->cfs_tasks);
   12382             :         }
   12383             : #endif
   12384             : 
   12385           8 :         for_each_sched_entity(se) {
   12386           8 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12387             : 
   12388           4 :                 set_next_entity(cfs_rq, se);
   12389             :                 /* ensure bandwidth has been allocated on our new cfs_rq */
   12390           4 :                 account_cfs_rq_runtime(cfs_rq, 0);
   12391             :         }
   12392           4 : }
   12393             : 
   12394           1 : void init_cfs_rq(struct cfs_rq *cfs_rq)
   12395             : {
   12396           1 :         cfs_rq->tasks_timeline = RB_ROOT_CACHED;
   12397           1 :         u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
   12398             : #ifdef CONFIG_SMP
   12399             :         raw_spin_lock_init(&cfs_rq->removed.lock);
   12400             : #endif
   12401           1 : }
   12402             : 
   12403             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12404             : static void task_change_group_fair(struct task_struct *p)
   12405             : {
   12406             :         /*
   12407             :          * We couldn't detach or attach a forked task which
   12408             :          * hasn't been woken up by wake_up_new_task().
   12409             :          */
   12410             :         if (READ_ONCE(p->__state) == TASK_NEW)
   12411             :                 return;
   12412             : 
   12413             :         detach_task_cfs_rq(p);
   12414             : 
   12415             : #ifdef CONFIG_SMP
   12416             :         /* Tell se's cfs_rq has been changed -- migrated */
   12417             :         p->se.avg.last_update_time = 0;
   12418             : #endif
   12419             :         set_task_rq(p, task_cpu(p));
   12420             :         attach_task_cfs_rq(p);
   12421             : }
   12422             : 
   12423             : void free_fair_sched_group(struct task_group *tg)
   12424             : {
   12425             :         int i;
   12426             : 
   12427             :         for_each_possible_cpu(i) {
   12428             :                 if (tg->cfs_rq)
   12429             :                         kfree(tg->cfs_rq[i]);
   12430             :                 if (tg->se)
   12431             :                         kfree(tg->se[i]);
   12432             :         }
   12433             : 
   12434             :         kfree(tg->cfs_rq);
   12435             :         kfree(tg->se);
   12436             : }
   12437             : 
   12438             : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   12439             : {
   12440             :         struct sched_entity *se;
   12441             :         struct cfs_rq *cfs_rq;
   12442             :         int i;
   12443             : 
   12444             :         tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
   12445             :         if (!tg->cfs_rq)
   12446             :                 goto err;
   12447             :         tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
   12448             :         if (!tg->se)
   12449             :                 goto err;
   12450             : 
   12451             :         tg->shares = NICE_0_LOAD;
   12452             : 
   12453             :         init_cfs_bandwidth(tg_cfs_bandwidth(tg));
   12454             : 
   12455             :         for_each_possible_cpu(i) {
   12456             :                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
   12457             :                                       GFP_KERNEL, cpu_to_node(i));
   12458             :                 if (!cfs_rq)
   12459             :                         goto err;
   12460             : 
   12461             :                 se = kzalloc_node(sizeof(struct sched_entity_stats),
   12462             :                                   GFP_KERNEL, cpu_to_node(i));
   12463             :                 if (!se)
   12464             :                         goto err_free_rq;
   12465             : 
   12466             :                 init_cfs_rq(cfs_rq);
   12467             :                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
   12468             :                 init_entity_runnable_average(se);
   12469             :         }
   12470             : 
   12471             :         return 1;
   12472             : 
   12473             : err_free_rq:
   12474             :         kfree(cfs_rq);
   12475             : err:
   12476             :         return 0;
   12477             : }
   12478             : 
   12479             : void online_fair_sched_group(struct task_group *tg)
   12480             : {
   12481             :         struct sched_entity *se;
   12482             :         struct rq_flags rf;
   12483             :         struct rq *rq;
   12484             :         int i;
   12485             : 
   12486             :         for_each_possible_cpu(i) {
   12487             :                 rq = cpu_rq(i);
   12488             :                 se = tg->se[i];
   12489             :                 rq_lock_irq(rq, &rf);
   12490             :                 update_rq_clock(rq);
   12491             :                 attach_entity_cfs_rq(se);
   12492             :                 sync_throttle(tg, i);
   12493             :                 rq_unlock_irq(rq, &rf);
   12494             :         }
   12495             : }
   12496             : 
   12497             : void unregister_fair_sched_group(struct task_group *tg)
   12498             : {
   12499             :         unsigned long flags;
   12500             :         struct rq *rq;
   12501             :         int cpu;
   12502             : 
   12503             :         destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
   12504             : 
   12505             :         for_each_possible_cpu(cpu) {
   12506             :                 if (tg->se[cpu])
   12507             :                         remove_entity_load_avg(tg->se[cpu]);
   12508             : 
   12509             :                 /*
   12510             :                  * Only empty task groups can be destroyed; so we can speculatively
   12511             :                  * check on_list without danger of it being re-added.
   12512             :                  */
   12513             :                 if (!tg->cfs_rq[cpu]->on_list)
   12514             :                         continue;
   12515             : 
   12516             :                 rq = cpu_rq(cpu);
   12517             : 
   12518             :                 raw_spin_rq_lock_irqsave(rq, flags);
   12519             :                 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
   12520             :                 raw_spin_rq_unlock_irqrestore(rq, flags);
   12521             :         }
   12522             : }
   12523             : 
   12524             : void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
   12525             :                         struct sched_entity *se, int cpu,
   12526             :                         struct sched_entity *parent)
   12527             : {
   12528             :         struct rq *rq = cpu_rq(cpu);
   12529             : 
   12530             :         cfs_rq->tg = tg;
   12531             :         cfs_rq->rq = rq;
   12532             :         init_cfs_rq_runtime(cfs_rq);
   12533             : 
   12534             :         tg->cfs_rq[cpu] = cfs_rq;
   12535             :         tg->se[cpu] = se;
   12536             : 
   12537             :         /* se could be NULL for root_task_group */
   12538             :         if (!se)
   12539             :                 return;
   12540             : 
   12541             :         if (!parent) {
   12542             :                 se->cfs_rq = &rq->cfs;
   12543             :                 se->depth = 0;
   12544             :         } else {
   12545             :                 se->cfs_rq = parent->my_q;
   12546             :                 se->depth = parent->depth + 1;
   12547             :         }
   12548             : 
   12549             :         se->my_q = cfs_rq;
   12550             :         /* guarantee group entities always have weight */
   12551             :         update_load_set(&se->load, NICE_0_LOAD);
   12552             :         se->parent = parent;
   12553             : }
   12554             : 
   12555             : static DEFINE_MUTEX(shares_mutex);
   12556             : 
   12557             : static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
   12558             : {
   12559             :         int i;
   12560             : 
   12561             :         lockdep_assert_held(&shares_mutex);
   12562             : 
   12563             :         /*
   12564             :          * We can't change the weight of the root cgroup.
   12565             :          */
   12566             :         if (!tg->se[0])
   12567             :                 return -EINVAL;
   12568             : 
   12569             :         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
   12570             : 
   12571             :         if (tg->shares == shares)
   12572             :                 return 0;
   12573             : 
   12574             :         tg->shares = shares;
   12575             :         for_each_possible_cpu(i) {
   12576             :                 struct rq *rq = cpu_rq(i);
   12577             :                 struct sched_entity *se = tg->se[i];
   12578             :                 struct rq_flags rf;
   12579             : 
   12580             :                 /* Propagate contribution to hierarchy */
   12581             :                 rq_lock_irqsave(rq, &rf);
   12582             :                 update_rq_clock(rq);
   12583             :                 for_each_sched_entity(se) {
   12584             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
   12585             :                         update_cfs_group(se);
   12586             :                 }
   12587             :                 rq_unlock_irqrestore(rq, &rf);
   12588             :         }
   12589             : 
   12590             :         return 0;
   12591             : }
   12592             : 
   12593             : int sched_group_set_shares(struct task_group *tg, unsigned long shares)
   12594             : {
   12595             :         int ret;
   12596             : 
   12597             :         mutex_lock(&shares_mutex);
   12598             :         if (tg_is_idle(tg))
   12599             :                 ret = -EINVAL;
   12600             :         else
   12601             :                 ret = __sched_group_set_shares(tg, shares);
   12602             :         mutex_unlock(&shares_mutex);
   12603             : 
   12604             :         return ret;
   12605             : }
   12606             : 
   12607             : int sched_group_set_idle(struct task_group *tg, long idle)
   12608             : {
   12609             :         int i;
   12610             : 
   12611             :         if (tg == &root_task_group)
   12612             :                 return -EINVAL;
   12613             : 
   12614             :         if (idle < 0 || idle > 1)
   12615             :                 return -EINVAL;
   12616             : 
   12617             :         mutex_lock(&shares_mutex);
   12618             : 
   12619             :         if (tg->idle == idle) {
   12620             :                 mutex_unlock(&shares_mutex);
   12621             :                 return 0;
   12622             :         }
   12623             : 
   12624             :         tg->idle = idle;
   12625             : 
   12626             :         for_each_possible_cpu(i) {
   12627             :                 struct rq *rq = cpu_rq(i);
   12628             :                 struct sched_entity *se = tg->se[i];
   12629             :                 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
   12630             :                 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
   12631             :                 long idle_task_delta;
   12632             :                 struct rq_flags rf;
   12633             : 
   12634             :                 rq_lock_irqsave(rq, &rf);
   12635             : 
   12636             :                 grp_cfs_rq->idle = idle;
   12637             :                 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
   12638             :                         goto next_cpu;
   12639             : 
   12640             :                 if (se->on_rq) {
   12641             :                         parent_cfs_rq = cfs_rq_of(se);
   12642             :                         if (cfs_rq_is_idle(grp_cfs_rq))
   12643             :                                 parent_cfs_rq->idle_nr_running++;
   12644             :                         else
   12645             :                                 parent_cfs_rq->idle_nr_running--;
   12646             :                 }
   12647             : 
   12648             :                 idle_task_delta = grp_cfs_rq->h_nr_running -
   12649             :                                   grp_cfs_rq->idle_h_nr_running;
   12650             :                 if (!cfs_rq_is_idle(grp_cfs_rq))
   12651             :                         idle_task_delta *= -1;
   12652             : 
   12653             :                 for_each_sched_entity(se) {
   12654             :                         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   12655             : 
   12656             :                         if (!se->on_rq)
   12657             :                                 break;
   12658             : 
   12659             :                         cfs_rq->idle_h_nr_running += idle_task_delta;
   12660             : 
   12661             :                         /* Already accounted at parent level and above. */
   12662             :                         if (cfs_rq_is_idle(cfs_rq))
   12663             :                                 break;
   12664             :                 }
   12665             : 
   12666             : next_cpu:
   12667             :                 rq_unlock_irqrestore(rq, &rf);
   12668             :         }
   12669             : 
   12670             :         /* Idle groups have minimum weight. */
   12671             :         if (tg_is_idle(tg))
   12672             :                 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
   12673             :         else
   12674             :                 __sched_group_set_shares(tg, NICE_0_LOAD);
   12675             : 
   12676             :         mutex_unlock(&shares_mutex);
   12677             :         return 0;
   12678             : }
   12679             : 
   12680             : #else /* CONFIG_FAIR_GROUP_SCHED */
   12681             : 
   12682           0 : void free_fair_sched_group(struct task_group *tg) { }
   12683             : 
   12684           0 : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   12685             : {
   12686           0 :         return 1;
   12687             : }
   12688             : 
   12689           0 : void online_fair_sched_group(struct task_group *tg) { }
   12690             : 
   12691           0 : void unregister_fair_sched_group(struct task_group *tg) { }
   12692             : 
   12693             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   12694             : 
   12695             : 
   12696           0 : static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
   12697             : {
   12698           0 :         struct sched_entity *se = &task->se;
   12699           0 :         unsigned int rr_interval = 0;
   12700             : 
   12701             :         /*
   12702             :          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
   12703             :          * idle runqueue:
   12704             :          */
   12705           0 :         if (rq->cfs.load.weight)
   12706           0 :                 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
   12707             : 
   12708           0 :         return rr_interval;
   12709             : }
   12710             : 
   12711             : /*
   12712             :  * All the scheduling class methods:
   12713             :  */
   12714             : DEFINE_SCHED_CLASS(fair) = {
   12715             : 
   12716             :         .enqueue_task           = enqueue_task_fair,
   12717             :         .dequeue_task           = dequeue_task_fair,
   12718             :         .yield_task             = yield_task_fair,
   12719             :         .yield_to_task          = yield_to_task_fair,
   12720             : 
   12721             :         .check_preempt_curr     = check_preempt_wakeup,
   12722             : 
   12723             :         .pick_next_task         = __pick_next_task_fair,
   12724             :         .put_prev_task          = put_prev_task_fair,
   12725             :         .set_next_task          = set_next_task_fair,
   12726             : 
   12727             : #ifdef CONFIG_SMP
   12728             :         .balance                = balance_fair,
   12729             :         .pick_task              = pick_task_fair,
   12730             :         .select_task_rq         = select_task_rq_fair,
   12731             :         .migrate_task_rq        = migrate_task_rq_fair,
   12732             : 
   12733             :         .rq_online              = rq_online_fair,
   12734             :         .rq_offline             = rq_offline_fair,
   12735             : 
   12736             :         .task_dead              = task_dead_fair,
   12737             :         .set_cpus_allowed       = set_cpus_allowed_common,
   12738             : #endif
   12739             : 
   12740             :         .task_tick              = task_tick_fair,
   12741             :         .task_fork              = task_fork_fair,
   12742             : 
   12743             :         .prio_changed           = prio_changed_fair,
   12744             :         .switched_from          = switched_from_fair,
   12745             :         .switched_to            = switched_to_fair,
   12746             : 
   12747             :         .get_rr_interval        = get_rr_interval_fair,
   12748             : 
   12749             :         .update_curr            = update_curr_fair,
   12750             : 
   12751             : #ifdef CONFIG_FAIR_GROUP_SCHED
   12752             :         .task_change_group      = task_change_group_fair,
   12753             : #endif
   12754             : 
   12755             : #ifdef CONFIG_SCHED_CORE
   12756             :         .task_is_throttled      = task_is_throttled_fair,
   12757             : #endif
   12758             : 
   12759             : #ifdef CONFIG_UCLAMP_TASK
   12760             :         .uclamp_enabled         = 1,
   12761             : #endif
   12762             : };
   12763             : 
   12764             : #ifdef CONFIG_SCHED_DEBUG
   12765             : void print_cfs_stats(struct seq_file *m, int cpu)
   12766             : {
   12767             :         struct cfs_rq *cfs_rq, *pos;
   12768             : 
   12769             :         rcu_read_lock();
   12770             :         for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
   12771             :                 print_cfs_rq(m, cpu, cfs_rq);
   12772             :         rcu_read_unlock();
   12773             : }
   12774             : 
   12775             : #ifdef CONFIG_NUMA_BALANCING
   12776             : void show_numa_stats(struct task_struct *p, struct seq_file *m)
   12777             : {
   12778             :         int node;
   12779             :         unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
   12780             :         struct numa_group *ng;
   12781             : 
   12782             :         rcu_read_lock();
   12783             :         ng = rcu_dereference(p->numa_group);
   12784             :         for_each_online_node(node) {
   12785             :                 if (p->numa_faults) {
   12786             :                         tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
   12787             :                         tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
   12788             :                 }
   12789             :                 if (ng) {
   12790             :                         gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
   12791             :                         gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
   12792             :                 }
   12793             :                 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
   12794             :         }
   12795             :         rcu_read_unlock();
   12796             : }
   12797             : #endif /* CONFIG_NUMA_BALANCING */
   12798             : #endif /* CONFIG_SCHED_DEBUG */
   12799             : 
   12800           1 : __init void init_sched_fair_class(void)
   12801             : {
   12802             : #ifdef CONFIG_SMP
   12803             :         int i;
   12804             : 
   12805             :         for_each_possible_cpu(i) {
   12806             :                 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
   12807             :                 zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
   12808             : 
   12809             : #ifdef CONFIG_CFS_BANDWIDTH
   12810             :                 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
   12811             :                 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
   12812             : #endif
   12813             :         }
   12814             : 
   12815             :         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
   12816             : 
   12817             : #ifdef CONFIG_NO_HZ_COMMON
   12818             :         nohz.next_balance = jiffies;
   12819             :         nohz.next_blocked = jiffies;
   12820             :         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
   12821             : #endif
   12822             : #endif /* SMP */
   12823             : 
   12824           1 : }

Generated by: LCOV version 1.14