LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 690 1676 41.2 %
Date: 2023-08-24 13:40:31 Functions: 60 131 45.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * kernel/workqueue.c - generic async execution with shared worker pool
       4             :  *
       5             :  * Copyright (C) 2002           Ingo Molnar
       6             :  *
       7             :  *   Derived from the taskqueue/keventd code by:
       8             :  *     David Woodhouse <dwmw2@infradead.org>
       9             :  *     Andrew Morton
      10             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      11             :  *     Theodore Ts'o <tytso@mit.edu>
      12             :  *
      13             :  * Made to use alloc_percpu by Christoph Lameter.
      14             :  *
      15             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      16             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      17             :  *
      18             :  * This is the generic async execution mechanism.  Work items as are
      19             :  * executed in process context.  The worker pool is shared and
      20             :  * automatically managed.  There are two worker pools for each CPU (one for
      21             :  * normal work items and the other for high priority ones) and some extra
      22             :  * pools for workqueues which are not bound to any specific CPU - the
      23             :  * number of these backing pools is dynamic.
      24             :  *
      25             :  * Please read Documentation/core-api/workqueue.rst for details.
      26             :  */
      27             : 
      28             : #include <linux/export.h>
      29             : #include <linux/kernel.h>
      30             : #include <linux/sched.h>
      31             : #include <linux/init.h>
      32             : #include <linux/signal.h>
      33             : #include <linux/completion.h>
      34             : #include <linux/workqueue.h>
      35             : #include <linux/slab.h>
      36             : #include <linux/cpu.h>
      37             : #include <linux/notifier.h>
      38             : #include <linux/kthread.h>
      39             : #include <linux/hardirq.h>
      40             : #include <linux/mempolicy.h>
      41             : #include <linux/freezer.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : #include <linux/sched/isolation.h>
      52             : #include <linux/sched/debug.h>
      53             : #include <linux/nmi.h>
      54             : #include <linux/kvm_para.h>
      55             : 
      56             : #include "workqueue_internal.h"
      57             : 
      58             : enum {
      59             :         /*
      60             :          * worker_pool flags
      61             :          *
      62             :          * A bound pool is either associated or disassociated with its CPU.
      63             :          * While associated (!DISASSOCIATED), all workers are bound to the
      64             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      65             :          * is in effect.
      66             :          *
      67             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      68             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      69             :          * be executing on any CPU.  The pool behaves as an unbound one.
      70             :          *
      71             :          * Note that DISASSOCIATED should be flipped only while holding
      72             :          * wq_pool_attach_mutex to avoid changing binding state while
      73             :          * worker_attach_to_pool() is in progress.
      74             :          */
      75             :         POOL_MANAGER_ACTIVE     = 1 << 0, /* being managed */
      76             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      77             : 
      78             :         /* worker flags */
      79             :         WORKER_DIE              = 1 << 1, /* die die die */
      80             :         WORKER_IDLE             = 1 << 2, /* is idle */
      81             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      82             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      83             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      84             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      85             : 
      86             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      87             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      88             : 
      89             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      90             : 
      91             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      92             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      93             : 
      94             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      95             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      96             : 
      97             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      98             :                                                 /* call for help after 10ms
      99             :                                                    (min two ticks) */
     100             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
     101             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
     102             : 
     103             :         /*
     104             :          * Rescue workers are used only on emergencies and shared by
     105             :          * all cpus.  Give MIN_NICE.
     106             :          */
     107             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     108             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     109             : 
     110             :         WQ_NAME_LEN             = 24,
     111             : };
     112             : 
     113             : /*
     114             :  * Structure fields follow one of the following exclusion rules.
     115             :  *
     116             :  * I: Modifiable by initialization/destruction paths and read-only for
     117             :  *    everyone else.
     118             :  *
     119             :  * P: Preemption protected.  Disabling preemption is enough and should
     120             :  *    only be modified and accessed from the local cpu.
     121             :  *
     122             :  * L: pool->lock protected.  Access with pool->lock held.
     123             :  *
     124             :  * X: During normal operation, modification requires pool->lock and should
     125             :  *    be done only from local cpu.  Either disabling preemption on local
     126             :  *    cpu or grabbing pool->lock is enough for read access.  If
     127             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     128             :  *
     129             :  * K: Only modified by worker while holding pool->lock. Can be safely read by
     130             :  *    self, while holding pool->lock or from IRQ context if %current is the
     131             :  *    kworker.
     132             :  *
     133             :  * S: Only modified by worker self.
     134             :  *
     135             :  * A: wq_pool_attach_mutex protected.
     136             :  *
     137             :  * PL: wq_pool_mutex protected.
     138             :  *
     139             :  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
     140             :  *
     141             :  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
     142             :  *
     143             :  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
     144             :  *      RCU for reads.
     145             :  *
     146             :  * WQ: wq->mutex protected.
     147             :  *
     148             :  * WR: wq->mutex protected for writes.  RCU protected for reads.
     149             :  *
     150             :  * MD: wq_mayday_lock protected.
     151             :  *
     152             :  * WD: Used internally by the watchdog.
     153             :  */
     154             : 
     155             : /* struct worker is defined in workqueue_internal.h */
     156             : 
     157             : struct worker_pool {
     158             :         raw_spinlock_t          lock;           /* the pool lock */
     159             :         int                     cpu;            /* I: the associated cpu */
     160             :         int                     node;           /* I: the associated node ID */
     161             :         int                     id;             /* I: pool ID */
     162             :         unsigned int            flags;          /* X: flags */
     163             : 
     164             :         unsigned long           watchdog_ts;    /* L: watchdog timestamp */
     165             :         bool                    cpu_stall;      /* WD: stalled cpu bound pool */
     166             : 
     167             :         /*
     168             :          * The counter is incremented in a process context on the associated CPU
     169             :          * w/ preemption disabled, and decremented or reset in the same context
     170             :          * but w/ pool->lock held. The readers grab pool->lock and are
     171             :          * guaranteed to see if the counter reached zero.
     172             :          */
     173             :         int                     nr_running;
     174             : 
     175             :         struct list_head        worklist;       /* L: list of pending works */
     176             : 
     177             :         int                     nr_workers;     /* L: total number of workers */
     178             :         int                     nr_idle;        /* L: currently idle workers */
     179             : 
     180             :         struct list_head        idle_list;      /* L: list of idle workers */
     181             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     182             :         struct work_struct      idle_cull_work; /* L: worker idle cleanup */
     183             : 
     184             :         struct timer_list       mayday_timer;     /* L: SOS timer for workers */
     185             : 
     186             :         /* a workers is either on busy_hash or idle_list, or the manager */
     187             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     188             :                                                 /* L: hash of busy workers */
     189             : 
     190             :         struct worker           *manager;       /* L: purely informational */
     191             :         struct list_head        workers;        /* A: attached workers */
     192             :         struct list_head        dying_workers;  /* A: workers about to die */
     193             :         struct completion       *detach_completion; /* all workers detached */
     194             : 
     195             :         struct ida              worker_ida;     /* worker IDs for task name */
     196             : 
     197             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     198             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     199             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     200             : 
     201             :         /*
     202             :          * Destruction of pool is RCU protected to allow dereferences
     203             :          * from get_work_pool().
     204             :          */
     205             :         struct rcu_head         rcu;
     206             : };
     207             : 
     208             : /*
     209             :  * Per-pool_workqueue statistics. These can be monitored using
     210             :  * tools/workqueue/wq_monitor.py.
     211             :  */
     212             : enum pool_workqueue_stats {
     213             :         PWQ_STAT_STARTED,       /* work items started execution */
     214             :         PWQ_STAT_COMPLETED,     /* work items completed execution */
     215             :         PWQ_STAT_CPU_TIME,      /* total CPU time consumed */
     216             :         PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
     217             :         PWQ_STAT_CM_WAKEUP,     /* concurrency-management worker wakeups */
     218             :         PWQ_STAT_MAYDAY,        /* maydays to rescuer */
     219             :         PWQ_STAT_RESCUED,       /* linked work items executed by rescuer */
     220             : 
     221             :         PWQ_NR_STATS,
     222             : };
     223             : 
     224             : /*
     225             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     226             :  * of work_struct->data are used for flags and the remaining high bits
     227             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     228             :  * number of flag bits.
     229             :  */
     230             : struct pool_workqueue {
     231             :         struct worker_pool      *pool;          /* I: the associated pool */
     232             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     233             :         int                     work_color;     /* L: current color */
     234             :         int                     flush_color;    /* L: flushing color */
     235             :         int                     refcnt;         /* L: reference count */
     236             :         int                     nr_in_flight[WORK_NR_COLORS];
     237             :                                                 /* L: nr of in_flight works */
     238             : 
     239             :         /*
     240             :          * nr_active management and WORK_STRUCT_INACTIVE:
     241             :          *
     242             :          * When pwq->nr_active >= max_active, new work item is queued to
     243             :          * pwq->inactive_works instead of pool->worklist and marked with
     244             :          * WORK_STRUCT_INACTIVE.
     245             :          *
     246             :          * All work items marked with WORK_STRUCT_INACTIVE do not participate
     247             :          * in pwq->nr_active and all work items in pwq->inactive_works are
     248             :          * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
     249             :          * work items are in pwq->inactive_works.  Some of them are ready to
     250             :          * run in pool->worklist or worker->scheduled.  Those work itmes are
     251             :          * only struct wq_barrier which is used for flush_work() and should
     252             :          * not participate in pwq->nr_active.  For non-barrier work item, it
     253             :          * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
     254             :          */
     255             :         int                     nr_active;      /* L: nr of active works */
     256             :         int                     max_active;     /* L: max active works */
     257             :         struct list_head        inactive_works; /* L: inactive works */
     258             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     259             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     260             : 
     261             :         u64                     stats[PWQ_NR_STATS];
     262             : 
     263             :         /*
     264             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     265             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     266             :          * itself is also RCU protected so that the first pwq can be
     267             :          * determined without grabbing wq->mutex.
     268             :          */
     269             :         struct work_struct      unbound_release_work;
     270             :         struct rcu_head         rcu;
     271             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     272             : 
     273             : /*
     274             :  * Structure used to wait for workqueue flush.
     275             :  */
     276             : struct wq_flusher {
     277             :         struct list_head        list;           /* WQ: list of flushers */
     278             :         int                     flush_color;    /* WQ: flush color waiting for */
     279             :         struct completion       done;           /* flush completion */
     280             : };
     281             : 
     282             : struct wq_device;
     283             : 
     284             : /*
     285             :  * The externally visible workqueue.  It relays the issued work items to
     286             :  * the appropriate worker_pool through its pool_workqueues.
     287             :  */
     288             : struct workqueue_struct {
     289             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     290             :         struct list_head        list;           /* PR: list of all workqueues */
     291             : 
     292             :         struct mutex            mutex;          /* protects this wq */
     293             :         int                     work_color;     /* WQ: current work color */
     294             :         int                     flush_color;    /* WQ: current flush color */
     295             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     296             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     297             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     298             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     299             : 
     300             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     301             :         struct worker           *rescuer;       /* MD: rescue worker */
     302             : 
     303             :         int                     nr_drainers;    /* WQ: drain in progress */
     304             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     305             : 
     306             :         struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
     307             :         struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
     308             : 
     309             : #ifdef CONFIG_SYSFS
     310             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     311             : #endif
     312             : #ifdef CONFIG_LOCKDEP
     313             :         char                    *lock_name;
     314             :         struct lock_class_key   key;
     315             :         struct lockdep_map      lockdep_map;
     316             : #endif
     317             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     318             : 
     319             :         /*
     320             :          * Destruction of workqueue_struct is RCU protected to allow walking
     321             :          * the workqueues list without grabbing wq_pool_mutex.
     322             :          * This is used to dump all workqueues from sysrq.
     323             :          */
     324             :         struct rcu_head         rcu;
     325             : 
     326             :         /* hot fields used during command issue, aligned to cacheline */
     327             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     328             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     329             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
     330             : };
     331             : 
     332             : static struct kmem_cache *pwq_cache;
     333             : 
     334             : static cpumask_var_t *wq_numa_possible_cpumask;
     335             :                                         /* possible CPUs of each node */
     336             : 
     337             : /*
     338             :  * Per-cpu work items which run for longer than the following threshold are
     339             :  * automatically considered CPU intensive and excluded from concurrency
     340             :  * management to prevent them from noticeably delaying other per-cpu work items.
     341             :  */
     342             : static unsigned long wq_cpu_intensive_thresh_us = 10000;
     343             : module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
     344             : 
     345             : static bool wq_disable_numa;
     346             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     347             : 
     348             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     349             : static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
     350             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     351             : 
     352             : static bool wq_online;                  /* can kworkers be created yet? */
     353             : 
     354             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     355             : 
     356             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     357             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     358             : 
     359             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     360             : static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
     361             : static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
     362             : /* wait for manager to go away */
     363             : static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
     364             : 
     365             : static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
     366             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     367             : 
     368             : /* PL&A: allowable cpus for unbound wqs and work items */
     369             : static cpumask_var_t wq_unbound_cpumask;
     370             : 
     371             : /* CPU where unbound work was last round robin scheduled from this CPU */
     372             : static DEFINE_PER_CPU(int, wq_rr_cpu_last);
     373             : 
     374             : /*
     375             :  * Local execution of unbound work items is no longer guaranteed.  The
     376             :  * following always forces round-robin CPU selection on unbound work items
     377             :  * to uncover usages which depend on it.
     378             :  */
     379             : #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
     380             : static bool wq_debug_force_rr_cpu = true;
     381             : #else
     382             : static bool wq_debug_force_rr_cpu = false;
     383             : #endif
     384             : module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
     385             : 
     386             : /* the per-cpu worker pools */
     387             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
     388             : 
     389             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     390             : 
     391             : /* PL: hash of all unbound pools keyed by pool->attrs */
     392             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     393             : 
     394             : /* I: attributes used when instantiating standard unbound pools on demand */
     395             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     396             : 
     397             : /* I: attributes used when instantiating ordered pools on demand */
     398             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     399             : 
     400             : struct workqueue_struct *system_wq __read_mostly;
     401             : EXPORT_SYMBOL(system_wq);
     402             : struct workqueue_struct *system_highpri_wq __read_mostly;
     403             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     404             : struct workqueue_struct *system_long_wq __read_mostly;
     405             : EXPORT_SYMBOL_GPL(system_long_wq);
     406             : struct workqueue_struct *system_unbound_wq __read_mostly;
     407             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     408             : struct workqueue_struct *system_freezable_wq __read_mostly;
     409             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     410             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     411             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     412             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     413             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     414             : 
     415             : static int worker_thread(void *__worker);
     416             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
     417             : static void show_pwq(struct pool_workqueue *pwq);
     418             : static void show_one_worker_pool(struct worker_pool *pool);
     419             : 
     420             : #define CREATE_TRACE_POINTS
     421             : #include <trace/events/workqueue.h>
     422             : 
     423             : #define assert_rcu_or_pool_mutex()                                      \
     424             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     425             :                          !lockdep_is_held(&wq_pool_mutex),          \
     426             :                          "RCU or wq_pool_mutex should be held")
     427             : 
     428             : #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
     429             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     430             :                          !lockdep_is_held(&wq->mutex) &&         \
     431             :                          !lockdep_is_held(&wq_pool_mutex),          \
     432             :                          "RCU, wq->mutex or wq_pool_mutex should be held")
     433             : 
     434             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     435             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     436             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     437             :              (pool)++)
     438             : 
     439             : /**
     440             :  * for_each_pool - iterate through all worker_pools in the system
     441             :  * @pool: iteration cursor
     442             :  * @pi: integer used for iteration
     443             :  *
     444             :  * This must be called either with wq_pool_mutex held or RCU read
     445             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     446             :  * caller is responsible for guaranteeing that the pool stays online.
     447             :  *
     448             :  * The if/else clause exists only for the lockdep assertion and can be
     449             :  * ignored.
     450             :  */
     451             : #define for_each_pool(pool, pi)                                         \
     452             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     453             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     454             :                 else
     455             : 
     456             : /**
     457             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     458             :  * @worker: iteration cursor
     459             :  * @pool: worker_pool to iterate workers of
     460             :  *
     461             :  * This must be called with wq_pool_attach_mutex.
     462             :  *
     463             :  * The if/else clause exists only for the lockdep assertion and can be
     464             :  * ignored.
     465             :  */
     466             : #define for_each_pool_worker(worker, pool)                              \
     467             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     468             :                 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
     469             :                 else
     470             : 
     471             : /**
     472             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     473             :  * @pwq: iteration cursor
     474             :  * @wq: the target workqueue
     475             :  *
     476             :  * This must be called either with wq->mutex held or RCU read locked.
     477             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     478             :  * responsible for guaranteeing that the pwq stays online.
     479             :  *
     480             :  * The if/else clause exists only for the lockdep assertion and can be
     481             :  * ignored.
     482             :  */
     483             : #define for_each_pwq(pwq, wq)                                           \
     484             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,           \
     485             :                                  lockdep_is_held(&(wq->mutex)))
     486             : 
     487             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     488             : 
     489             : static const struct debug_obj_descr work_debug_descr;
     490             : 
     491             : static void *work_debug_hint(void *addr)
     492             : {
     493             :         return ((struct work_struct *) addr)->func;
     494             : }
     495             : 
     496             : static bool work_is_static_object(void *addr)
     497             : {
     498             :         struct work_struct *work = addr;
     499             : 
     500             :         return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
     501             : }
     502             : 
     503             : /*
     504             :  * fixup_init is called when:
     505             :  * - an active object is initialized
     506             :  */
     507             : static bool work_fixup_init(void *addr, enum debug_obj_state state)
     508             : {
     509             :         struct work_struct *work = addr;
     510             : 
     511             :         switch (state) {
     512             :         case ODEBUG_STATE_ACTIVE:
     513             :                 cancel_work_sync(work);
     514             :                 debug_object_init(work, &work_debug_descr);
     515             :                 return true;
     516             :         default:
     517             :                 return false;
     518             :         }
     519             : }
     520             : 
     521             : /*
     522             :  * fixup_free is called when:
     523             :  * - an active object is freed
     524             :  */
     525             : static bool work_fixup_free(void *addr, enum debug_obj_state state)
     526             : {
     527             :         struct work_struct *work = addr;
     528             : 
     529             :         switch (state) {
     530             :         case ODEBUG_STATE_ACTIVE:
     531             :                 cancel_work_sync(work);
     532             :                 debug_object_free(work, &work_debug_descr);
     533             :                 return true;
     534             :         default:
     535             :                 return false;
     536             :         }
     537             : }
     538             : 
     539             : static const struct debug_obj_descr work_debug_descr = {
     540             :         .name           = "work_struct",
     541             :         .debug_hint     = work_debug_hint,
     542             :         .is_static_object = work_is_static_object,
     543             :         .fixup_init     = work_fixup_init,
     544             :         .fixup_free     = work_fixup_free,
     545             : };
     546             : 
     547             : static inline void debug_work_activate(struct work_struct *work)
     548             : {
     549             :         debug_object_activate(work, &work_debug_descr);
     550             : }
     551             : 
     552             : static inline void debug_work_deactivate(struct work_struct *work)
     553             : {
     554             :         debug_object_deactivate(work, &work_debug_descr);
     555             : }
     556             : 
     557             : void __init_work(struct work_struct *work, int onstack)
     558             : {
     559             :         if (onstack)
     560             :                 debug_object_init_on_stack(work, &work_debug_descr);
     561             :         else
     562             :                 debug_object_init(work, &work_debug_descr);
     563             : }
     564             : EXPORT_SYMBOL_GPL(__init_work);
     565             : 
     566             : void destroy_work_on_stack(struct work_struct *work)
     567             : {
     568             :         debug_object_free(work, &work_debug_descr);
     569             : }
     570             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     571             : 
     572             : void destroy_delayed_work_on_stack(struct delayed_work *work)
     573             : {
     574             :         destroy_timer_on_stack(&work->timer);
     575             :         debug_object_free(&work->work, &work_debug_descr);
     576             : }
     577             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     578             : 
     579             : #else
     580             : static inline void debug_work_activate(struct work_struct *work) { }
     581             : static inline void debug_work_deactivate(struct work_struct *work) { }
     582             : #endif
     583             : 
     584             : /**
     585             :  * worker_pool_assign_id - allocate ID and assign it to @pool
     586             :  * @pool: the pool pointer of interest
     587             :  *
     588             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     589             :  * successfully, -errno on failure.
     590             :  */
     591             : static int worker_pool_assign_id(struct worker_pool *pool)
     592             : {
     593             :         int ret;
     594             : 
     595             :         lockdep_assert_held(&wq_pool_mutex);
     596             : 
     597           3 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     598             :                         GFP_KERNEL);
     599           3 :         if (ret >= 0) {
     600           3 :                 pool->id = ret;
     601             :                 return 0;
     602             :         }
     603             :         return ret;
     604             : }
     605             : 
     606             : /**
     607             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     608             :  * @wq: the target workqueue
     609             :  * @node: the node ID
     610             :  *
     611             :  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
     612             :  * read locked.
     613             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     614             :  * responsible for guaranteeing that the pwq stays online.
     615             :  *
     616             :  * Return: The unbound pool_workqueue for @node.
     617             :  */
     618             : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     619             :                                                   int node)
     620             : {
     621             :         assert_rcu_or_wq_mutex_or_pool_mutex(wq);
     622             : 
     623             :         /*
     624             :          * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
     625             :          * delayed item is pending.  The plan is to keep CPU -> NODE
     626             :          * mapping valid and stable across CPU on/offlines.  Once that
     627             :          * happens, this workaround can be removed.
     628             :          */
     629             :         if (unlikely(node == NUMA_NO_NODE))
     630             :                 return wq->dfl_pwq;
     631             : 
     632           7 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     633             : }
     634             : 
     635             : static unsigned int work_color_to_flags(int color)
     636             : {
     637          16 :         return color << WORK_STRUCT_COLOR_SHIFT;
     638             : }
     639             : 
     640             : static int get_work_color(unsigned long work_data)
     641             : {
     642          34 :         return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
     643             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     644             : }
     645             : 
     646             : static int work_next_color(int color)
     647             : {
     648           0 :         return (color + 1) % WORK_NR_COLORS;
     649             : }
     650             : 
     651             : /*
     652             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     653             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     654             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     655             :  *
     656             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     657             :  * and clear_work_data() can be used to set the pwq, pool or clear
     658             :  * work->data.  These functions should only be called while the work is
     659             :  * owned - ie. while the PENDING bit is set.
     660             :  *
     661             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     662             :  * corresponding to a work.  Pool is available once the work has been
     663             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     664             :  * available only while the work item is queued.
     665             :  *
     666             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     667             :  * canceled.  While being canceled, a work item may have its PENDING set
     668             :  * but stay off timer and worklist for arbitrarily long and nobody should
     669             :  * try to steal the PENDING bit.
     670             :  */
     671          53 : static inline void set_work_data(struct work_struct *work, unsigned long data,
     672             :                                  unsigned long flags)
     673             : {
     674         106 :         WARN_ON_ONCE(!work_pending(work));
     675         106 :         atomic_long_set(&work->data, data | flags | work_static(work));
     676          53 : }
     677             : 
     678             : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     679             :                          unsigned long extra_flags)
     680             : {
     681          16 :         set_work_data(work, (unsigned long)pwq,
     682             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     683             : }
     684             : 
     685             : static void set_work_pool_and_keep_pending(struct work_struct *work,
     686             :                                            int pool_id)
     687             : {
     688           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     689             :                       WORK_STRUCT_PENDING);
     690             : }
     691             : 
     692             : static void set_work_pool_and_clear_pending(struct work_struct *work,
     693             :                                             int pool_id)
     694             : {
     695             :         /*
     696             :          * The following wmb is paired with the implied mb in
     697             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     698             :          * here are visible to and precede any updates by the next PENDING
     699             :          * owner.
     700             :          */
     701          37 :         smp_wmb();
     702          37 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     703             :         /*
     704             :          * The following mb guarantees that previous clear of a PENDING bit
     705             :          * will not be reordered with any speculative LOADS or STORES from
     706             :          * work->current_func, which is executed afterwards.  This possible
     707             :          * reordering can lead to a missed execution on attempt to queue
     708             :          * the same @work.  E.g. consider this case:
     709             :          *
     710             :          *   CPU#0                         CPU#1
     711             :          *   ----------------------------  --------------------------------
     712             :          *
     713             :          * 1  STORE event_indicated
     714             :          * 2  queue_work_on() {
     715             :          * 3    test_and_set_bit(PENDING)
     716             :          * 4 }                             set_..._and_clear_pending() {
     717             :          * 5                                 set_work_data() # clear bit
     718             :          * 6                                 smp_mb()
     719             :          * 7                               work->current_func() {
     720             :          * 8                                  LOAD event_indicated
     721             :          *                                 }
     722             :          *
     723             :          * Without an explicit full barrier speculative LOAD on line 8 can
     724             :          * be executed before CPU#0 does STORE on line 1.  If that happens,
     725             :          * CPU#0 observes the PENDING bit is still set and new execution of
     726             :          * a @work is not queued in a hope, that CPU#1 will eventually
     727             :          * finish the queued @work.  Meanwhile CPU#1 does not see
     728             :          * event_indicated is set, because speculative LOAD was executed
     729             :          * before actual STORE.
     730             :          */
     731          37 :         smp_mb();
     732             : }
     733             : 
     734             : static void clear_work_data(struct work_struct *work)
     735             : {
     736           0 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     737           0 :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     738             : }
     739             : 
     740             : static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
     741             : {
     742          20 :         return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
     743             : }
     744             : 
     745             : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     746             : {
     747          40 :         unsigned long data = atomic_long_read(&work->data);
     748             : 
     749          20 :         if (data & WORK_STRUCT_PWQ)
     750          18 :                 return work_struct_pwq(data);
     751             :         else
     752             :                 return NULL;
     753             : }
     754             : 
     755             : /**
     756             :  * get_work_pool - return the worker_pool a given work was associated with
     757             :  * @work: the work item of interest
     758             :  *
     759             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     760             :  * access under RCU read lock.  As such, this function should be
     761             :  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
     762             :  *
     763             :  * All fields of the returned pool are accessible as long as the above
     764             :  * mentioned locking is in effect.  If the returned pool needs to be used
     765             :  * beyond the critical section, the caller is responsible for ensuring the
     766             :  * returned pool is and stays online.
     767             :  *
     768             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     769             :  */
     770          23 : static struct worker_pool *get_work_pool(struct work_struct *work)
     771             : {
     772          46 :         unsigned long data = atomic_long_read(&work->data);
     773             :         int pool_id;
     774             : 
     775             :         assert_rcu_or_pool_mutex();
     776             : 
     777          23 :         if (data & WORK_STRUCT_PWQ)
     778           2 :                 return work_struct_pwq(data)->pool;
     779             : 
     780          21 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     781          21 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     782             :                 return NULL;
     783             : 
     784           8 :         return idr_find(&worker_pool_idr, pool_id);
     785             : }
     786             : 
     787             : /**
     788             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     789             :  * @work: the work item of interest
     790             :  *
     791             :  * Return: The worker_pool ID @work was last associated with.
     792             :  * %WORK_OFFQ_POOL_NONE if none.
     793             :  */
     794             : static int get_work_pool_id(struct work_struct *work)
     795             : {
     796          42 :         unsigned long data = atomic_long_read(&work->data);
     797             : 
     798          21 :         if (data & WORK_STRUCT_PWQ)
     799           0 :                 return work_struct_pwq(data)->pool->id;
     800             : 
     801          21 :         return data >> WORK_OFFQ_POOL_SHIFT;
     802             : }
     803             : 
     804           0 : static void mark_work_canceling(struct work_struct *work)
     805             : {
     806           0 :         unsigned long pool_id = get_work_pool_id(work);
     807             : 
     808           0 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     809           0 :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     810           0 : }
     811             : 
     812             : static bool work_is_canceling(struct work_struct *work)
     813             : {
     814           0 :         unsigned long data = atomic_long_read(&work->data);
     815             : 
     816           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     817             : }
     818             : 
     819             : /*
     820             :  * Policy functions.  These define the policies on how the global worker
     821             :  * pools are managed.  Unless noted otherwise, these functions assume that
     822             :  * they're being called with pool->lock held.
     823             :  */
     824             : 
     825             : static bool __need_more_worker(struct worker_pool *pool)
     826             : {
     827             :         return !pool->nr_running;
     828             : }
     829             : 
     830             : /*
     831             :  * Need to wake up a worker?  Called from anything but currently
     832             :  * running workers.
     833             :  *
     834             :  * Note that, because unbound workers never contribute to nr_running, this
     835             :  * function will always return %true for unbound pools as long as the
     836             :  * worklist isn't empty.
     837             :  */
     838             : static bool need_more_worker(struct worker_pool *pool)
     839             : {
     840          76 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     841             : }
     842             : 
     843             : /* Can I start working?  Called from busy but !running workers. */
     844             : static bool may_start_working(struct worker_pool *pool)
     845             : {
     846             :         return pool->nr_idle;
     847             : }
     848             : 
     849             : /* Do I need to keep working?  Called from currently running workers. */
     850             : static bool keep_working(struct worker_pool *pool)
     851             : {
     852          28 :         return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
     853             : }
     854             : 
     855             : /* Do we need a new worker?  Called from manager. */
     856             : static bool need_to_create_worker(struct worker_pool *pool)
     857             : {
     858           2 :         return need_more_worker(pool) && !may_start_working(pool);
     859             : }
     860             : 
     861             : /* Do we have too many workers and should some go away? */
     862             : static bool too_many_workers(struct worker_pool *pool)
     863             : {
     864          23 :         bool managing = pool->flags & POOL_MANAGER_ACTIVE;
     865          23 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     866          23 :         int nr_busy = pool->nr_workers - nr_idle;
     867             : 
     868          23 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     869             : }
     870             : 
     871             : /*
     872             :  * Wake up functions.
     873             :  */
     874             : 
     875             : /* Return the first idle worker.  Called with pool->lock held. */
     876             : static struct worker *first_idle_worker(struct worker_pool *pool)
     877             : {
     878          32 :         if (unlikely(list_empty(&pool->idle_list)))
     879             :                 return NULL;
     880             : 
     881          16 :         return list_first_entry(&pool->idle_list, struct worker, entry);
     882             : }
     883             : 
     884             : /**
     885             :  * wake_up_worker - wake up an idle worker
     886             :  * @pool: worker pool to wake worker from
     887             :  *
     888             :  * Wake up the first idle worker of @pool.
     889             :  *
     890             :  * CONTEXT:
     891             :  * raw_spin_lock_irq(pool->lock).
     892             :  */
     893             : static void wake_up_worker(struct worker_pool *pool)
     894             : {
     895          16 :         struct worker *worker = first_idle_worker(pool);
     896             : 
     897          16 :         if (likely(worker))
     898          16 :                 wake_up_process(worker->task);
     899             : }
     900             : 
     901             : /**
     902             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     903             :  * @worker: self
     904             :  * @flags: flags to set
     905             :  *
     906             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     907             :  *
     908             :  * CONTEXT:
     909             :  * raw_spin_lock_irq(pool->lock)
     910             :  */
     911          13 : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     912             : {
     913          13 :         struct worker_pool *pool = worker->pool;
     914             : 
     915          26 :         WARN_ON_ONCE(worker->task != current);
     916             : 
     917             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     918          26 :         if ((flags & WORKER_NOT_RUNNING) &&
     919          13 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     920           6 :                 pool->nr_running--;
     921             :         }
     922             : 
     923          13 :         worker->flags |= flags;
     924          13 : }
     925             : 
     926             : /**
     927             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     928             :  * @worker: self
     929             :  * @flags: flags to clear
     930             :  *
     931             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     932             :  *
     933             :  * CONTEXT:
     934             :  * raw_spin_lock_irq(pool->lock)
     935             :  */
     936          47 : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
     937             : {
     938          47 :         struct worker_pool *pool = worker->pool;
     939          47 :         unsigned int oflags = worker->flags;
     940             : 
     941          94 :         WARN_ON_ONCE(worker->task != current);
     942             : 
     943          47 :         worker->flags &= ~flags;
     944             : 
     945             :         /*
     946             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
     947             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
     948             :          * of multiple flags, not a single flag.
     949             :          */
     950          47 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
     951          22 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
     952           6 :                         pool->nr_running++;
     953          47 : }
     954             : 
     955             : #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
     956             : 
     957             : /*
     958             :  * Concurrency-managed per-cpu work items that hog CPU for longer than
     959             :  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
     960             :  * which prevents them from stalling other concurrency-managed work items. If a
     961             :  * work function keeps triggering this mechanism, it's likely that the work item
     962             :  * should be using an unbound workqueue instead.
     963             :  *
     964             :  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
     965             :  * and report them so that they can be examined and converted to use unbound
     966             :  * workqueues as appropriate. To avoid flooding the console, each violating work
     967             :  * function is tracked and reported with exponential backoff.
     968             :  */
     969             : #define WCI_MAX_ENTS 128
     970             : 
     971             : struct wci_ent {
     972             :         work_func_t             func;
     973             :         atomic64_t              cnt;
     974             :         struct hlist_node       hash_node;
     975             : };
     976             : 
     977             : static struct wci_ent wci_ents[WCI_MAX_ENTS];
     978             : static int wci_nr_ents;
     979             : static DEFINE_RAW_SPINLOCK(wci_lock);
     980             : static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
     981             : 
     982             : static struct wci_ent *wci_find_ent(work_func_t func)
     983             : {
     984             :         struct wci_ent *ent;
     985             : 
     986             :         hash_for_each_possible_rcu(wci_hash, ent, hash_node,
     987             :                                    (unsigned long)func) {
     988             :                 if (ent->func == func)
     989             :                         return ent;
     990             :         }
     991             :         return NULL;
     992             : }
     993             : 
     994             : static void wq_cpu_intensive_report(work_func_t func)
     995             : {
     996             :         struct wci_ent *ent;
     997             : 
     998             : restart:
     999             :         ent = wci_find_ent(func);
    1000             :         if (ent) {
    1001             :                 u64 cnt;
    1002             : 
    1003             :                 /*
    1004             :                  * Start reporting from the fourth time and back off
    1005             :                  * exponentially.
    1006             :                  */
    1007             :                 cnt = atomic64_inc_return_relaxed(&ent->cnt);
    1008             :                 if (cnt >= 4 && is_power_of_2(cnt))
    1009             :                         printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
    1010             :                                         ent->func, wq_cpu_intensive_thresh_us,
    1011             :                                         atomic64_read(&ent->cnt));
    1012             :                 return;
    1013             :         }
    1014             : 
    1015             :         /*
    1016             :          * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
    1017             :          * is exhausted, something went really wrong and we probably made enough
    1018             :          * noise already.
    1019             :          */
    1020             :         if (wci_nr_ents >= WCI_MAX_ENTS)
    1021             :                 return;
    1022             : 
    1023             :         raw_spin_lock(&wci_lock);
    1024             : 
    1025             :         if (wci_nr_ents >= WCI_MAX_ENTS) {
    1026             :                 raw_spin_unlock(&wci_lock);
    1027             :                 return;
    1028             :         }
    1029             : 
    1030             :         if (wci_find_ent(func)) {
    1031             :                 raw_spin_unlock(&wci_lock);
    1032             :                 goto restart;
    1033             :         }
    1034             : 
    1035             :         ent = &wci_ents[wci_nr_ents++];
    1036             :         ent->func = func;
    1037             :         atomic64_set(&ent->cnt, 1);
    1038             :         hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
    1039             : 
    1040             :         raw_spin_unlock(&wci_lock);
    1041             : }
    1042             : 
    1043             : #else   /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
    1044             : static void wq_cpu_intensive_report(work_func_t func) {}
    1045             : #endif  /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
    1046             : 
    1047             : /**
    1048             :  * wq_worker_running - a worker is running again
    1049             :  * @task: task waking up
    1050             :  *
    1051             :  * This function is called when a worker returns from schedule()
    1052             :  */
    1053          15 : void wq_worker_running(struct task_struct *task)
    1054             : {
    1055          15 :         struct worker *worker = kthread_data(task);
    1056             : 
    1057          15 :         if (!READ_ONCE(worker->sleeping))
    1058             :                 return;
    1059             : 
    1060             :         /*
    1061             :          * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
    1062             :          * and the nr_running increment below, we may ruin the nr_running reset
    1063             :          * and leave with an unexpected pool->nr_running == 1 on the newly unbound
    1064             :          * pool. Protect against such race.
    1065             :          */
    1066           0 :         preempt_disable();
    1067           0 :         if (!(worker->flags & WORKER_NOT_RUNNING))
    1068           0 :                 worker->pool->nr_running++;
    1069           0 :         preempt_enable();
    1070             : 
    1071             :         /*
    1072             :          * CPU intensive auto-detection cares about how long a work item hogged
    1073             :          * CPU without sleeping. Reset the starting timestamp on wakeup.
    1074             :          */
    1075           0 :         worker->current_at = worker->task->se.sum_exec_runtime;
    1076             : 
    1077           0 :         WRITE_ONCE(worker->sleeping, 0);
    1078             : }
    1079             : 
    1080             : /**
    1081             :  * wq_worker_sleeping - a worker is going to sleep
    1082             :  * @task: task going to sleep
    1083             :  *
    1084             :  * This function is called from schedule() when a busy worker is
    1085             :  * going to sleep.
    1086             :  */
    1087          24 : void wq_worker_sleeping(struct task_struct *task)
    1088             : {
    1089          24 :         struct worker *worker = kthread_data(task);
    1090             :         struct worker_pool *pool;
    1091             : 
    1092             :         /*
    1093             :          * Rescuers, which may not have all the fields set up like normal
    1094             :          * workers, also reach here, let's not access anything before
    1095             :          * checking NOT_RUNNING.
    1096             :          */
    1097          24 :         if (worker->flags & WORKER_NOT_RUNNING)
    1098             :                 return;
    1099             : 
    1100           0 :         pool = worker->pool;
    1101             : 
    1102             :         /* Return if preempted before wq_worker_running() was reached */
    1103           0 :         if (READ_ONCE(worker->sleeping))
    1104             :                 return;
    1105             : 
    1106           0 :         WRITE_ONCE(worker->sleeping, 1);
    1107           0 :         raw_spin_lock_irq(&pool->lock);
    1108             : 
    1109             :         /*
    1110             :          * Recheck in case unbind_workers() preempted us. We don't
    1111             :          * want to decrement nr_running after the worker is unbound
    1112             :          * and nr_running has been reset.
    1113             :          */
    1114           0 :         if (worker->flags & WORKER_NOT_RUNNING) {
    1115           0 :                 raw_spin_unlock_irq(&pool->lock);
    1116           0 :                 return;
    1117             :         }
    1118             : 
    1119           0 :         pool->nr_running--;
    1120           0 :         if (need_more_worker(pool)) {
    1121           0 :                 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
    1122             :                 wake_up_worker(pool);
    1123             :         }
    1124           0 :         raw_spin_unlock_irq(&pool->lock);
    1125             : }
    1126             : 
    1127             : /**
    1128             :  * wq_worker_tick - a scheduler tick occurred while a kworker is running
    1129             :  * @task: task currently running
    1130             :  *
    1131             :  * Called from scheduler_tick(). We're in the IRQ context and the current
    1132             :  * worker's fields which follow the 'K' locking rule can be accessed safely.
    1133             :  */
    1134           0 : void wq_worker_tick(struct task_struct *task)
    1135             : {
    1136           0 :         struct worker *worker = kthread_data(task);
    1137           0 :         struct pool_workqueue *pwq = worker->current_pwq;
    1138           0 :         struct worker_pool *pool = worker->pool;
    1139             : 
    1140           0 :         if (!pwq)
    1141             :                 return;
    1142             : 
    1143           0 :         pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
    1144             : 
    1145           0 :         if (!wq_cpu_intensive_thresh_us)
    1146             :                 return;
    1147             : 
    1148             :         /*
    1149             :          * If the current worker is concurrency managed and hogged the CPU for
    1150             :          * longer than wq_cpu_intensive_thresh_us, it's automatically marked
    1151             :          * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
    1152             :          *
    1153             :          * Set @worker->sleeping means that @worker is in the process of
    1154             :          * switching out voluntarily and won't be contributing to
    1155             :          * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
    1156             :          * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
    1157             :          * double decrements. The task is releasing the CPU anyway. Let's skip.
    1158             :          * We probably want to make this prettier in the future.
    1159             :          */
    1160           0 :         if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
    1161           0 :             worker->task->se.sum_exec_runtime - worker->current_at <
    1162           0 :             wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
    1163             :                 return;
    1164             : 
    1165           0 :         raw_spin_lock(&pool->lock);
    1166             : 
    1167           0 :         worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    1168           0 :         wq_cpu_intensive_report(worker->current_func);
    1169           0 :         pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
    1170             : 
    1171           0 :         if (need_more_worker(pool)) {
    1172           0 :                 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
    1173             :                 wake_up_worker(pool);
    1174             :         }
    1175             : 
    1176           0 :         raw_spin_unlock(&pool->lock);
    1177             : }
    1178             : 
    1179             : /**
    1180             :  * wq_worker_last_func - retrieve worker's last work function
    1181             :  * @task: Task to retrieve last work function of.
    1182             :  *
    1183             :  * Determine the last function a worker executed. This is called from
    1184             :  * the scheduler to get a worker's last known identity.
    1185             :  *
    1186             :  * CONTEXT:
    1187             :  * raw_spin_lock_irq(rq->lock)
    1188             :  *
    1189             :  * This function is called during schedule() when a kworker is going
    1190             :  * to sleep. It's used by psi to identify aggregation workers during
    1191             :  * dequeuing, to allow periodic aggregation to shut-off when that
    1192             :  * worker is the last task in the system or cgroup to go to sleep.
    1193             :  *
    1194             :  * As this function doesn't involve any workqueue-related locking, it
    1195             :  * only returns stable values when called from inside the scheduler's
    1196             :  * queuing and dequeuing paths, when @task, which must be a kworker,
    1197             :  * is guaranteed to not be processing any works.
    1198             :  *
    1199             :  * Return:
    1200             :  * The last work function %current executed as a worker, NULL if it
    1201             :  * hasn't executed any work yet.
    1202             :  */
    1203           0 : work_func_t wq_worker_last_func(struct task_struct *task)
    1204             : {
    1205           0 :         struct worker *worker = kthread_data(task);
    1206             : 
    1207           0 :         return worker->last_func;
    1208             : }
    1209             : 
    1210             : /**
    1211             :  * find_worker_executing_work - find worker which is executing a work
    1212             :  * @pool: pool of interest
    1213             :  * @work: work to find worker for
    1214             :  *
    1215             :  * Find a worker which is executing @work on @pool by searching
    1216             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
    1217             :  * to match, its current execution should match the address of @work and
    1218             :  * its work function.  This is to avoid unwanted dependency between
    1219             :  * unrelated work executions through a work item being recycled while still
    1220             :  * being executed.
    1221             :  *
    1222             :  * This is a bit tricky.  A work item may be freed once its execution
    1223             :  * starts and nothing prevents the freed area from being recycled for
    1224             :  * another work item.  If the same work item address ends up being reused
    1225             :  * before the original execution finishes, workqueue will identify the
    1226             :  * recycled work item as currently executing and make it wait until the
    1227             :  * current execution finishes, introducing an unwanted dependency.
    1228             :  *
    1229             :  * This function checks the work item address and work function to avoid
    1230             :  * false positives.  Note that this isn't complete as one may construct a
    1231             :  * work function which can introduce dependency onto itself through a
    1232             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
    1233             :  * foot that badly, there's only so much we can do, and if such deadlock
    1234             :  * actually occurs, it should be easy to locate the culprit work function.
    1235             :  *
    1236             :  * CONTEXT:
    1237             :  * raw_spin_lock_irq(pool->lock).
    1238             :  *
    1239             :  * Return:
    1240             :  * Pointer to worker which is executing @work if found, %NULL
    1241             :  * otherwise.
    1242             :  */
    1243             : static struct worker *find_worker_executing_work(struct worker_pool *pool,
    1244             :                                                  struct work_struct *work)
    1245             : {
    1246             :         struct worker *worker;
    1247             : 
    1248          36 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
    1249             :                                (unsigned long)work)
    1250           0 :                 if (worker->current_work == work &&
    1251           0 :                     worker->current_func == work->func)
    1252             :                         return worker;
    1253             : 
    1254             :         return NULL;
    1255             : }
    1256             : 
    1257             : /**
    1258             :  * move_linked_works - move linked works to a list
    1259             :  * @work: start of series of works to be scheduled
    1260             :  * @head: target list to append @work to
    1261             :  * @nextp: out parameter for nested worklist walking
    1262             :  *
    1263             :  * Schedule linked works starting from @work to @head.  Work series to
    1264             :  * be scheduled starts at @work and includes any consecutive work with
    1265             :  * WORK_STRUCT_LINKED set in its predecessor.
    1266             :  *
    1267             :  * If @nextp is not NULL, it's updated to point to the next work of
    1268             :  * the last scheduled work.  This allows move_linked_works() to be
    1269             :  * nested inside outer list_for_each_entry_safe().
    1270             :  *
    1271             :  * CONTEXT:
    1272             :  * raw_spin_lock_irq(pool->lock).
    1273             :  */
    1274             : static void move_linked_works(struct work_struct *work, struct list_head *head,
    1275             :                               struct work_struct **nextp)
    1276             : {
    1277             :         struct work_struct *n;
    1278             : 
    1279             :         /*
    1280             :          * Linked worklist will always end before the end of the list,
    1281             :          * use NULL for list head.
    1282             :          */
    1283           4 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
    1284           8 :                 list_move_tail(&work->entry, head);
    1285           4 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
    1286             :                         break;
    1287             :         }
    1288             : 
    1289             :         /*
    1290             :          * If we're already inside safe list traversal and have moved
    1291             :          * multiple works to the scheduled queue, the next position
    1292             :          * needs to be updated.
    1293             :          */
    1294             :         if (nextp)
    1295           0 :                 *nextp = n;
    1296             : }
    1297             : 
    1298             : /**
    1299             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1300             :  * @pwq: pool_workqueue to get
    1301             :  *
    1302             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1303             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1304             :  */
    1305          16 : static void get_pwq(struct pool_workqueue *pwq)
    1306             : {
    1307             :         lockdep_assert_held(&pwq->pool->lock);
    1308          16 :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1309          16 :         pwq->refcnt++;
    1310          16 : }
    1311             : 
    1312             : /**
    1313             :  * put_pwq - put a pool_workqueue reference
    1314             :  * @pwq: pool_workqueue to put
    1315             :  *
    1316             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1317             :  * destruction.  The caller should be holding the matching pool->lock.
    1318             :  */
    1319          16 : static void put_pwq(struct pool_workqueue *pwq)
    1320             : {
    1321             :         lockdep_assert_held(&pwq->pool->lock);
    1322          16 :         if (likely(--pwq->refcnt))
    1323             :                 return;
    1324           0 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1325             :                 return;
    1326             :         /*
    1327             :          * @pwq can't be released under pool->lock, bounce to
    1328             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1329             :          * pool->lock as this path is taken only for unbound workqueues and
    1330             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1331             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1332             :          * subclass of 1 in get_unbound_pool().
    1333             :          */
    1334           0 :         schedule_work(&pwq->unbound_release_work);
    1335             : }
    1336             : 
    1337             : /**
    1338             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1339             :  * @pwq: pool_workqueue to put (can be %NULL)
    1340             :  *
    1341             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1342             :  */
    1343           6 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1344             : {
    1345           6 :         if (pwq) {
    1346             :                 /*
    1347             :                  * As both pwqs and pools are RCU protected, the
    1348             :                  * following lock operations are safe.
    1349             :                  */
    1350           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    1351           0 :                 put_pwq(pwq);
    1352           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    1353             :         }
    1354           6 : }
    1355             : 
    1356           0 : static void pwq_activate_inactive_work(struct work_struct *work)
    1357             : {
    1358           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    1359             : 
    1360           0 :         trace_workqueue_activate_work(work);
    1361           0 :         if (list_empty(&pwq->pool->worklist))
    1362           0 :                 pwq->pool->watchdog_ts = jiffies;
    1363           0 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1364           0 :         __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
    1365           0 :         pwq->nr_active++;
    1366           0 : }
    1367             : 
    1368             : static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
    1369             : {
    1370           0 :         struct work_struct *work = list_first_entry(&pwq->inactive_works,
    1371             :                                                     struct work_struct, entry);
    1372             : 
    1373           0 :         pwq_activate_inactive_work(work);
    1374             : }
    1375             : 
    1376             : /**
    1377             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1378             :  * @pwq: pwq of interest
    1379             :  * @work_data: work_data of work which left the queue
    1380             :  *
    1381             :  * A work either has completed or is removed from pending queue,
    1382             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1383             :  *
    1384             :  * CONTEXT:
    1385             :  * raw_spin_lock_irq(pool->lock).
    1386             :  */
    1387          16 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
    1388             : {
    1389          16 :         int color = get_work_color(work_data);
    1390             : 
    1391          16 :         if (!(work_data & WORK_STRUCT_INACTIVE)) {
    1392          14 :                 pwq->nr_active--;
    1393          28 :                 if (!list_empty(&pwq->inactive_works)) {
    1394             :                         /* one down, submit an inactive one */
    1395           0 :                         if (pwq->nr_active < pwq->max_active)
    1396           0 :                                 pwq_activate_first_inactive(pwq);
    1397             :                 }
    1398             :         }
    1399             : 
    1400          16 :         pwq->nr_in_flight[color]--;
    1401             : 
    1402             :         /* is flush in progress and are we at the flushing tip? */
    1403          16 :         if (likely(pwq->flush_color != color))
    1404             :                 goto out_put;
    1405             : 
    1406             :         /* are there still in-flight works? */
    1407           0 :         if (pwq->nr_in_flight[color])
    1408             :                 goto out_put;
    1409             : 
    1410             :         /* this pwq is done, clear flush_color */
    1411           0 :         pwq->flush_color = -1;
    1412             : 
    1413             :         /*
    1414             :          * If this was the last pwq, wake up the first flusher.  It
    1415             :          * will handle the rest.
    1416             :          */
    1417           0 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1418           0 :                 complete(&pwq->wq->first_flusher->done);
    1419             : out_put:
    1420          16 :         put_pwq(pwq);
    1421          16 : }
    1422             : 
    1423             : /**
    1424             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1425             :  * @work: work item to steal
    1426             :  * @is_dwork: @work is a delayed_work
    1427             :  * @flags: place to store irq state
    1428             :  *
    1429             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1430             :  * stable state - idle, on timer or on worklist.
    1431             :  *
    1432             :  * Return:
    1433             :  *
    1434             :  *  ========    ================================================================
    1435             :  *  1           if @work was pending and we successfully stole PENDING
    1436             :  *  0           if @work was idle and we claimed PENDING
    1437             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1438             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1439             :  *              for arbitrarily long
    1440             :  *  ========    ================================================================
    1441             :  *
    1442             :  * Note:
    1443             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1444             :  * interrupted while holding PENDING and @work off queue, irq must be
    1445             :  * disabled on entry.  This, combined with delayed_work->timer being
    1446             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1447             :  *
    1448             :  * On successful return, >= 0, irq is disabled and the caller is
    1449             :  * responsible for releasing it using local_irq_restore(*@flags).
    1450             :  *
    1451             :  * This function is safe to call from any context including IRQ handler.
    1452             :  */
    1453          21 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1454             :                                unsigned long *flags)
    1455             : {
    1456             :         struct worker_pool *pool;
    1457             :         struct pool_workqueue *pwq;
    1458             : 
    1459          21 :         local_irq_save(*flags);
    1460             : 
    1461             :         /* try to steal the timer if it exists */
    1462          21 :         if (is_dwork) {
    1463          21 :                 struct delayed_work *dwork = to_delayed_work(work);
    1464             : 
    1465             :                 /*
    1466             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1467             :                  * guaranteed that the timer is not queued anywhere and not
    1468             :                  * running on the local CPU.
    1469             :                  */
    1470          42 :                 if (likely(del_timer(&dwork->timer)))
    1471             :                         return 1;
    1472             :         }
    1473             : 
    1474             :         /* try to claim PENDING the normal way */
    1475          42 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1476             :                 return 0;
    1477             : 
    1478             :         rcu_read_lock();
    1479             :         /*
    1480             :          * The queueing is in progress, or it is already queued. Try to
    1481             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1482             :          */
    1483           0 :         pool = get_work_pool(work);
    1484           0 :         if (!pool)
    1485             :                 goto fail;
    1486             : 
    1487           0 :         raw_spin_lock(&pool->lock);
    1488             :         /*
    1489             :          * work->data is guaranteed to point to pwq only while the work
    1490             :          * item is queued on pwq->wq, and both updating work->data to point
    1491             :          * to pwq on queueing and to pool on dequeueing are done under
    1492             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1493             :          * points to pwq which is associated with a locked pool, the work
    1494             :          * item is currently queued on that pool.
    1495             :          */
    1496           0 :         pwq = get_work_pwq(work);
    1497           0 :         if (pwq && pwq->pool == pool) {
    1498           0 :                 debug_work_deactivate(work);
    1499             : 
    1500             :                 /*
    1501             :                  * A cancelable inactive work item must be in the
    1502             :                  * pwq->inactive_works since a queued barrier can't be
    1503             :                  * canceled (see the comments in insert_wq_barrier()).
    1504             :                  *
    1505             :                  * An inactive work item cannot be grabbed directly because
    1506             :                  * it might have linked barrier work items which, if left
    1507             :                  * on the inactive_works list, will confuse pwq->nr_active
    1508             :                  * management later on and cause stall.  Make sure the work
    1509             :                  * item is activated before grabbing.
    1510             :                  */
    1511           0 :                 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
    1512           0 :                         pwq_activate_inactive_work(work);
    1513             : 
    1514           0 :                 list_del_init(&work->entry);
    1515           0 :                 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
    1516             : 
    1517             :                 /* work->data points to pwq iff queued, point to pool */
    1518           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1519             : 
    1520           0 :                 raw_spin_unlock(&pool->lock);
    1521             :                 rcu_read_unlock();
    1522           0 :                 return 1;
    1523             :         }
    1524           0 :         raw_spin_unlock(&pool->lock);
    1525             : fail:
    1526             :         rcu_read_unlock();
    1527           0 :         local_irq_restore(*flags);
    1528           0 :         if (work_is_canceling(work))
    1529             :                 return -ENOENT;
    1530             :         cpu_relax();
    1531           0 :         return -EAGAIN;
    1532             : }
    1533             : 
    1534             : /**
    1535             :  * insert_work - insert a work into a pool
    1536             :  * @pwq: pwq @work belongs to
    1537             :  * @work: work to insert
    1538             :  * @head: insertion point
    1539             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1540             :  *
    1541             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1542             :  * work_struct flags.
    1543             :  *
    1544             :  * CONTEXT:
    1545             :  * raw_spin_lock_irq(pool->lock).
    1546             :  */
    1547          16 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1548             :                         struct list_head *head, unsigned int extra_flags)
    1549             : {
    1550          16 :         struct worker_pool *pool = pwq->pool;
    1551             : 
    1552             :         /* record the work call stack in order to print it in KASAN reports */
    1553          16 :         kasan_record_aux_stack_noalloc(work);
    1554             : 
    1555             :         /* we own @work, set data and link */
    1556          32 :         set_work_pwq(work, pwq, extra_flags);
    1557          32 :         list_add_tail(&work->entry, head);
    1558          16 :         get_pwq(pwq);
    1559             : 
    1560          16 :         if (__need_more_worker(pool))
    1561             :                 wake_up_worker(pool);
    1562          16 : }
    1563             : 
    1564             : /*
    1565             :  * Test whether @work is being queued from another work executing on the
    1566             :  * same workqueue.
    1567             :  */
    1568             : static bool is_chained_work(struct workqueue_struct *wq)
    1569             : {
    1570             :         struct worker *worker;
    1571             : 
    1572           0 :         worker = current_wq_worker();
    1573             :         /*
    1574             :          * Return %true iff I'm a worker executing a work item on @wq.  If
    1575             :          * I'm @worker, it's safe to dereference it without locking.
    1576             :          */
    1577           0 :         return worker && worker->current_pwq->wq == wq;
    1578             : }
    1579             : 
    1580             : /*
    1581             :  * When queueing an unbound work item to a wq, prefer local CPU if allowed
    1582             :  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
    1583             :  * avoid perturbing sensitive tasks.
    1584             :  */
    1585           7 : static int wq_select_unbound_cpu(int cpu)
    1586             : {
    1587             :         int new_cpu;
    1588             : 
    1589           7 :         if (likely(!wq_debug_force_rr_cpu)) {
    1590           7 :                 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
    1591             :                         return cpu;
    1592             :         } else {
    1593           0 :                 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
    1594             :         }
    1595             : 
    1596           0 :         if (cpumask_empty(wq_unbound_cpumask))
    1597             :                 return cpu;
    1598             : 
    1599           0 :         new_cpu = __this_cpu_read(wq_rr_cpu_last);
    1600           0 :         new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
    1601           0 :         if (unlikely(new_cpu >= nr_cpu_ids)) {
    1602           0 :                 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
    1603           0 :                 if (unlikely(new_cpu >= nr_cpu_ids))
    1604             :                         return cpu;
    1605             :         }
    1606           0 :         __this_cpu_write(wq_rr_cpu_last, new_cpu);
    1607             : 
    1608           0 :         return new_cpu;
    1609             : }
    1610             : 
    1611          14 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1612             :                          struct work_struct *work)
    1613             : {
    1614             :         struct pool_workqueue *pwq;
    1615             :         struct worker_pool *last_pool;
    1616             :         struct list_head *worklist;
    1617             :         unsigned int work_flags;
    1618          14 :         unsigned int req_cpu = cpu;
    1619             : 
    1620             :         /*
    1621             :          * While a work item is PENDING && off queue, a task trying to
    1622             :          * steal the PENDING will busy-loop waiting for it to either get
    1623             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1624             :          * happen with IRQ disabled.
    1625             :          */
    1626             :         lockdep_assert_irqs_disabled();
    1627             : 
    1628             : 
    1629             :         /*
    1630             :          * For a draining wq, only works from the same workqueue are
    1631             :          * allowed. The __WQ_DESTROYING helps to spot the issue that
    1632             :          * queues a new work item to a wq after destroy_workqueue(wq).
    1633             :          */
    1634          14 :         if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
    1635             :                      WARN_ON_ONCE(!is_chained_work(wq))))
    1636             :                 return;
    1637             :         rcu_read_lock();
    1638             : retry:
    1639             :         /* pwq which will be used unless @work is executing elsewhere */
    1640          14 :         if (wq->flags & WQ_UNBOUND) {
    1641           7 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1642           7 :                         cpu = wq_select_unbound_cpu(raw_smp_processor_id());
    1643           7 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1644             :         } else {
    1645           7 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1646           7 :                         cpu = raw_smp_processor_id();
    1647           7 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1648             :         }
    1649             : 
    1650             :         /*
    1651             :          * If @work was previously on a different pool, it might still be
    1652             :          * running there, in which case the work needs to be queued on that
    1653             :          * pool to guarantee non-reentrancy.
    1654             :          */
    1655          14 :         last_pool = get_work_pool(work);
    1656          14 :         if (last_pool && last_pool != pwq->pool) {
    1657             :                 struct worker *worker;
    1658             : 
    1659           0 :                 raw_spin_lock(&last_pool->lock);
    1660             : 
    1661           0 :                 worker = find_worker_executing_work(last_pool, work);
    1662             : 
    1663           0 :                 if (worker && worker->current_pwq->wq == wq) {
    1664             :                         pwq = worker->current_pwq;
    1665             :                 } else {
    1666             :                         /* meh... not running there, queue here */
    1667           0 :                         raw_spin_unlock(&last_pool->lock);
    1668           0 :                         raw_spin_lock(&pwq->pool->lock);
    1669             :                 }
    1670             :         } else {
    1671          14 :                 raw_spin_lock(&pwq->pool->lock);
    1672             :         }
    1673             : 
    1674             :         /*
    1675             :          * pwq is determined and locked.  For unbound pools, we could have
    1676             :          * raced with pwq release and it could already be dead.  If its
    1677             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1678             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1679             :          * work items are executing on it, so the retrying is guaranteed to
    1680             :          * make forward-progress.
    1681             :          */
    1682          14 :         if (unlikely(!pwq->refcnt)) {
    1683           0 :                 if (wq->flags & WQ_UNBOUND) {
    1684           0 :                         raw_spin_unlock(&pwq->pool->lock);
    1685             :                         cpu_relax();
    1686             :                         goto retry;
    1687             :                 }
    1688             :                 /* oops */
    1689           0 :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1690             :                           wq->name, cpu);
    1691             :         }
    1692             : 
    1693             :         /* pwq determined, queue */
    1694          14 :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1695             : 
    1696          28 :         if (WARN_ON(!list_empty(&work->entry)))
    1697             :                 goto out;
    1698             : 
    1699          14 :         pwq->nr_in_flight[pwq->work_color]++;
    1700          28 :         work_flags = work_color_to_flags(pwq->work_color);
    1701             : 
    1702          14 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1703          14 :                 trace_workqueue_activate_work(work);
    1704          14 :                 pwq->nr_active++;
    1705          14 :                 worklist = &pwq->pool->worklist;
    1706          14 :                 if (list_empty(worklist))
    1707          13 :                         pwq->pool->watchdog_ts = jiffies;
    1708             :         } else {
    1709           0 :                 work_flags |= WORK_STRUCT_INACTIVE;
    1710           0 :                 worklist = &pwq->inactive_works;
    1711             :         }
    1712             : 
    1713          14 :         debug_work_activate(work);
    1714          14 :         insert_work(pwq, work, worklist, work_flags);
    1715             : 
    1716             : out:
    1717          14 :         raw_spin_unlock(&pwq->pool->lock);
    1718             :         rcu_read_unlock();
    1719             : }
    1720             : 
    1721             : /**
    1722             :  * queue_work_on - queue work on specific cpu
    1723             :  * @cpu: CPU number to execute work on
    1724             :  * @wq: workqueue to use
    1725             :  * @work: work to queue
    1726             :  *
    1727             :  * We queue the work to a specific CPU, the caller must ensure it
    1728             :  * can't go away.  Callers that fail to ensure that the specified
    1729             :  * CPU cannot go away will execute on a randomly chosen CPU.
    1730             :  * But note well that callers specifying a CPU that never has been
    1731             :  * online will get a splat.
    1732             :  *
    1733             :  * Return: %false if @work was already on a queue, %true otherwise.
    1734             :  */
    1735          15 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1736             :                    struct work_struct *work)
    1737             : {
    1738          15 :         bool ret = false;
    1739             :         unsigned long flags;
    1740             : 
    1741          15 :         local_irq_save(flags);
    1742             : 
    1743          30 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1744          14 :                 __queue_work(cpu, wq, work);
    1745          14 :                 ret = true;
    1746             :         }
    1747             : 
    1748          30 :         local_irq_restore(flags);
    1749          15 :         return ret;
    1750             : }
    1751             : EXPORT_SYMBOL(queue_work_on);
    1752             : 
    1753             : /**
    1754             :  * workqueue_select_cpu_near - Select a CPU based on NUMA node
    1755             :  * @node: NUMA node ID that we want to select a CPU from
    1756             :  *
    1757             :  * This function will attempt to find a "random" cpu available on a given
    1758             :  * node. If there are no CPUs available on the given node it will return
    1759             :  * WORK_CPU_UNBOUND indicating that we should just schedule to any
    1760             :  * available CPU if we need to schedule this work.
    1761             :  */
    1762             : static int workqueue_select_cpu_near(int node)
    1763             : {
    1764             :         int cpu;
    1765             : 
    1766             :         /* No point in doing this if NUMA isn't enabled for workqueues */
    1767           0 :         if (!wq_numa_enabled)
    1768             :                 return WORK_CPU_UNBOUND;
    1769             : 
    1770             :         /* Delay binding to CPU if node is not valid or online */
    1771           0 :         if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
    1772             :                 return WORK_CPU_UNBOUND;
    1773             : 
    1774             :         /* Use local node/cpu if we are already there */
    1775             :         cpu = raw_smp_processor_id();
    1776             :         if (node == cpu_to_node(cpu))
    1777             :                 return cpu;
    1778             : 
    1779             :         /* Use "random" otherwise know as "first" online CPU of node */
    1780             :         cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
    1781             : 
    1782             :         /* If CPU is valid return that, otherwise just defer */
    1783             :         return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
    1784             : }
    1785             : 
    1786             : /**
    1787             :  * queue_work_node - queue work on a "random" cpu for a given NUMA node
    1788             :  * @node: NUMA node that we are targeting the work for
    1789             :  * @wq: workqueue to use
    1790             :  * @work: work to queue
    1791             :  *
    1792             :  * We queue the work to a "random" CPU within a given NUMA node. The basic
    1793             :  * idea here is to provide a way to somehow associate work with a given
    1794             :  * NUMA node.
    1795             :  *
    1796             :  * This function will only make a best effort attempt at getting this onto
    1797             :  * the right NUMA node. If no node is requested or the requested node is
    1798             :  * offline then we just fall back to standard queue_work behavior.
    1799             :  *
    1800             :  * Currently the "random" CPU ends up being the first available CPU in the
    1801             :  * intersection of cpu_online_mask and the cpumask of the node, unless we
    1802             :  * are running on the node. In that case we just use the current CPU.
    1803             :  *
    1804             :  * Return: %false if @work was already on a queue, %true otherwise.
    1805             :  */
    1806           0 : bool queue_work_node(int node, struct workqueue_struct *wq,
    1807             :                      struct work_struct *work)
    1808             : {
    1809             :         unsigned long flags;
    1810           0 :         bool ret = false;
    1811             : 
    1812             :         /*
    1813             :          * This current implementation is specific to unbound workqueues.
    1814             :          * Specifically we only return the first available CPU for a given
    1815             :          * node instead of cycling through individual CPUs within the node.
    1816             :          *
    1817             :          * If this is used with a per-cpu workqueue then the logic in
    1818             :          * workqueue_select_cpu_near would need to be updated to allow for
    1819             :          * some round robin type logic.
    1820             :          */
    1821           0 :         WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
    1822             : 
    1823           0 :         local_irq_save(flags);
    1824             : 
    1825           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1826           0 :                 int cpu = workqueue_select_cpu_near(node);
    1827             : 
    1828           0 :                 __queue_work(cpu, wq, work);
    1829           0 :                 ret = true;
    1830             :         }
    1831             : 
    1832           0 :         local_irq_restore(flags);
    1833           0 :         return ret;
    1834             : }
    1835             : EXPORT_SYMBOL_GPL(queue_work_node);
    1836             : 
    1837           0 : void delayed_work_timer_fn(struct timer_list *t)
    1838             : {
    1839           0 :         struct delayed_work *dwork = from_timer(dwork, t, timer);
    1840             : 
    1841             :         /* should have been called from irqsafe timer with irq already off */
    1842           0 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1843           0 : }
    1844             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1845             : 
    1846           2 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1847             :                                 struct delayed_work *dwork, unsigned long delay)
    1848             : {
    1849           2 :         struct timer_list *timer = &dwork->timer;
    1850           2 :         struct work_struct *work = &dwork->work;
    1851             : 
    1852           2 :         WARN_ON_ONCE(!wq);
    1853           2 :         WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
    1854           2 :         WARN_ON_ONCE(timer_pending(timer));
    1855           4 :         WARN_ON_ONCE(!list_empty(&work->entry));
    1856             : 
    1857             :         /*
    1858             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1859             :          * both optimization and correctness.  The earliest @timer can
    1860             :          * expire is on the closest next tick and delayed_work users depend
    1861             :          * on that there's no such delay when @delay is 0.
    1862             :          */
    1863           2 :         if (!delay) {
    1864           0 :                 __queue_work(cpu, wq, &dwork->work);
    1865           0 :                 return;
    1866             :         }
    1867             : 
    1868           2 :         dwork->wq = wq;
    1869           2 :         dwork->cpu = cpu;
    1870           2 :         timer->expires = jiffies + delay;
    1871             : 
    1872           2 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1873           0 :                 add_timer_on(timer, cpu);
    1874             :         else
    1875           2 :                 add_timer(timer);
    1876             : }
    1877             : 
    1878             : /**
    1879             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1880             :  * @cpu: CPU number to execute work on
    1881             :  * @wq: workqueue to use
    1882             :  * @dwork: work to queue
    1883             :  * @delay: number of jiffies to wait before queueing
    1884             :  *
    1885             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1886             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1887             :  * execution.
    1888             :  */
    1889           2 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1890             :                            struct delayed_work *dwork, unsigned long delay)
    1891             : {
    1892           2 :         struct work_struct *work = &dwork->work;
    1893           2 :         bool ret = false;
    1894             :         unsigned long flags;
    1895             : 
    1896             :         /* read the comment in __queue_work() */
    1897           2 :         local_irq_save(flags);
    1898             : 
    1899           4 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1900           2 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1901           2 :                 ret = true;
    1902             :         }
    1903             : 
    1904           4 :         local_irq_restore(flags);
    1905           2 :         return ret;
    1906             : }
    1907             : EXPORT_SYMBOL(queue_delayed_work_on);
    1908             : 
    1909             : /**
    1910             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1911             :  * @cpu: CPU number to execute work on
    1912             :  * @wq: workqueue to use
    1913             :  * @dwork: work to queue
    1914             :  * @delay: number of jiffies to wait before queueing
    1915             :  *
    1916             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1917             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1918             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1919             :  * current state.
    1920             :  *
    1921             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1922             :  * pending and its timer was modified.
    1923             :  *
    1924             :  * This function is safe to call from any context including IRQ handler.
    1925             :  * See try_to_grab_pending() for details.
    1926             :  */
    1927           0 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1928             :                          struct delayed_work *dwork, unsigned long delay)
    1929             : {
    1930             :         unsigned long flags;
    1931             :         int ret;
    1932             : 
    1933             :         do {
    1934           0 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1935           0 :         } while (unlikely(ret == -EAGAIN));
    1936             : 
    1937           0 :         if (likely(ret >= 0)) {
    1938           0 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1939           0 :                 local_irq_restore(flags);
    1940             :         }
    1941             : 
    1942             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1943           0 :         return ret;
    1944             : }
    1945             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1946             : 
    1947           0 : static void rcu_work_rcufn(struct rcu_head *rcu)
    1948             : {
    1949           0 :         struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
    1950             : 
    1951             :         /* read the comment in __queue_work() */
    1952             :         local_irq_disable();
    1953           0 :         __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
    1954             :         local_irq_enable();
    1955           0 : }
    1956             : 
    1957             : /**
    1958             :  * queue_rcu_work - queue work after a RCU grace period
    1959             :  * @wq: workqueue to use
    1960             :  * @rwork: work to queue
    1961             :  *
    1962             :  * Return: %false if @rwork was already pending, %true otherwise.  Note
    1963             :  * that a full RCU grace period is guaranteed only after a %true return.
    1964             :  * While @rwork is guaranteed to be executed after a %false return, the
    1965             :  * execution may happen before a full RCU grace period has passed.
    1966             :  */
    1967           0 : bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
    1968             : {
    1969           0 :         struct work_struct *work = &rwork->work;
    1970             : 
    1971           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1972           0 :                 rwork->wq = wq;
    1973           0 :                 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
    1974           0 :                 return true;
    1975             :         }
    1976             : 
    1977             :         return false;
    1978             : }
    1979             : EXPORT_SYMBOL(queue_rcu_work);
    1980             : 
    1981             : /**
    1982             :  * worker_enter_idle - enter idle state
    1983             :  * @worker: worker which is entering idle state
    1984             :  *
    1985             :  * @worker is entering idle state.  Update stats and idle timer if
    1986             :  * necessary.
    1987             :  *
    1988             :  * LOCKING:
    1989             :  * raw_spin_lock_irq(pool->lock).
    1990             :  */
    1991          23 : static void worker_enter_idle(struct worker *worker)
    1992             : {
    1993          23 :         struct worker_pool *pool = worker->pool;
    1994             : 
    1995          46 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1996          46 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1997             :                          (worker->hentry.next || worker->hentry.pprev)))
    1998             :                 return;
    1999             : 
    2000             :         /* can't use worker_set_flags(), also called from create_worker() */
    2001          23 :         worker->flags |= WORKER_IDLE;
    2002          23 :         pool->nr_idle++;
    2003          23 :         worker->last_active = jiffies;
    2004             : 
    2005             :         /* idle_list is LIFO */
    2006          46 :         list_add(&worker->entry, &pool->idle_list);
    2007             : 
    2008          46 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    2009           0 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    2010             : 
    2011             :         /* Sanity check nr_running. */
    2012          23 :         WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
    2013             : }
    2014             : 
    2015             : /**
    2016             :  * worker_leave_idle - leave idle state
    2017             :  * @worker: worker which is leaving idle state
    2018             :  *
    2019             :  * @worker is leaving idle state.  Update stats.
    2020             :  *
    2021             :  * LOCKING:
    2022             :  * raw_spin_lock_irq(pool->lock).
    2023             :  */
    2024          18 : static void worker_leave_idle(struct worker *worker)
    2025             : {
    2026          18 :         struct worker_pool *pool = worker->pool;
    2027             : 
    2028          18 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    2029             :                 return;
    2030          18 :         worker_clr_flags(worker, WORKER_IDLE);
    2031          18 :         pool->nr_idle--;
    2032          18 :         list_del_init(&worker->entry);
    2033             : }
    2034             : 
    2035           9 : static struct worker *alloc_worker(int node)
    2036             : {
    2037             :         struct worker *worker;
    2038             : 
    2039           9 :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    2040           9 :         if (worker) {
    2041          18 :                 INIT_LIST_HEAD(&worker->entry);
    2042          18 :                 INIT_LIST_HEAD(&worker->scheduled);
    2043          18 :                 INIT_LIST_HEAD(&worker->node);
    2044             :                 /* on creation a worker is in !idle && prep state */
    2045           9 :                 worker->flags = WORKER_PREP;
    2046             :         }
    2047           9 :         return worker;
    2048             : }
    2049             : 
    2050             : /**
    2051             :  * worker_attach_to_pool() - attach a worker to a pool
    2052             :  * @worker: worker to be attached
    2053             :  * @pool: the target pool
    2054             :  *
    2055             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    2056             :  * cpu-binding of @worker are kept coordinated with the pool across
    2057             :  * cpu-[un]hotplugs.
    2058             :  */
    2059           5 : static void worker_attach_to_pool(struct worker *worker,
    2060             :                                    struct worker_pool *pool)
    2061             : {
    2062           5 :         mutex_lock(&wq_pool_attach_mutex);
    2063             : 
    2064             :         /*
    2065             :          * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
    2066             :          * stable across this function.  See the comments above the flag
    2067             :          * definition for details.
    2068             :          */
    2069           5 :         if (pool->flags & POOL_DISASSOCIATED)
    2070           2 :                 worker->flags |= WORKER_UNBOUND;
    2071             :         else
    2072           3 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    2073             : 
    2074           5 :         if (worker->rescue_wq)
    2075           0 :                 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    2076             : 
    2077          10 :         list_add_tail(&worker->node, &pool->workers);
    2078           5 :         worker->pool = pool;
    2079             : 
    2080           5 :         mutex_unlock(&wq_pool_attach_mutex);
    2081           5 : }
    2082             : 
    2083             : /**
    2084             :  * worker_detach_from_pool() - detach a worker from its pool
    2085             :  * @worker: worker which is attached to its pool
    2086             :  *
    2087             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    2088             :  * caller worker shouldn't access to the pool after detached except it has
    2089             :  * other reference to the pool.
    2090             :  */
    2091           0 : static void worker_detach_from_pool(struct worker *worker)
    2092             : {
    2093           0 :         struct worker_pool *pool = worker->pool;
    2094           0 :         struct completion *detach_completion = NULL;
    2095             : 
    2096           0 :         mutex_lock(&wq_pool_attach_mutex);
    2097             : 
    2098           0 :         kthread_set_per_cpu(worker->task, -1);
    2099           0 :         list_del(&worker->node);
    2100           0 :         worker->pool = NULL;
    2101             : 
    2102           0 :         if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
    2103           0 :                 detach_completion = pool->detach_completion;
    2104           0 :         mutex_unlock(&wq_pool_attach_mutex);
    2105             : 
    2106             :         /* clear leftover flags without pool->lock after it is detached */
    2107           0 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    2108             : 
    2109           0 :         if (detach_completion)
    2110           0 :                 complete(detach_completion);
    2111           0 : }
    2112             : 
    2113             : /**
    2114             :  * create_worker - create a new workqueue worker
    2115             :  * @pool: pool the new worker will belong to
    2116             :  *
    2117             :  * Create and start a new worker which is attached to @pool.
    2118             :  *
    2119             :  * CONTEXT:
    2120             :  * Might sleep.  Does GFP_KERNEL allocations.
    2121             :  *
    2122             :  * Return:
    2123             :  * Pointer to the newly created worker.
    2124             :  */
    2125           5 : static struct worker *create_worker(struct worker_pool *pool)
    2126             : {
    2127             :         struct worker *worker;
    2128             :         int id;
    2129             :         char id_buf[16];
    2130             : 
    2131             :         /* ID is needed to determine kthread name */
    2132          10 :         id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
    2133           5 :         if (id < 0) {
    2134           0 :                 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
    2135             :                             ERR_PTR(id));
    2136             :                 return NULL;
    2137             :         }
    2138             : 
    2139           5 :         worker = alloc_worker(pool->node);
    2140           5 :         if (!worker) {
    2141           0 :                 pr_err_once("workqueue: Failed to allocate a worker\n");
    2142             :                 goto fail;
    2143             :         }
    2144             : 
    2145           5 :         worker->id = id;
    2146             : 
    2147           5 :         if (pool->cpu >= 0)
    2148           3 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    2149           3 :                          pool->attrs->nice < 0  ? "H" : "");
    2150             :         else
    2151           2 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    2152             : 
    2153           5 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    2154             :                                               "kworker/%s", id_buf);
    2155          10 :         if (IS_ERR(worker->task)) {
    2156           0 :                 if (PTR_ERR(worker->task) == -EINTR) {
    2157           0 :                         pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
    2158             :                                id_buf);
    2159             :                 } else {
    2160           0 :                         pr_err_once("workqueue: Failed to create a worker thread: %pe",
    2161             :                                     worker->task);
    2162             :                 }
    2163             :                 goto fail;
    2164             :         }
    2165             : 
    2166           5 :         set_user_nice(worker->task, pool->attrs->nice);
    2167           5 :         kthread_bind_mask(worker->task, pool->attrs->cpumask);
    2168             : 
    2169             :         /* successful, attach the worker to the pool */
    2170           5 :         worker_attach_to_pool(worker, pool);
    2171             : 
    2172             :         /* start the newly created worker */
    2173           5 :         raw_spin_lock_irq(&pool->lock);
    2174           5 :         worker->pool->nr_workers++;
    2175           5 :         worker_enter_idle(worker);
    2176           5 :         wake_up_process(worker->task);
    2177           5 :         raw_spin_unlock_irq(&pool->lock);
    2178             : 
    2179           5 :         return worker;
    2180             : 
    2181             : fail:
    2182           0 :         ida_free(&pool->worker_ida, id);
    2183           0 :         kfree(worker);
    2184           0 :         return NULL;
    2185             : }
    2186             : 
    2187           0 : static void unbind_worker(struct worker *worker)
    2188             : {
    2189             :         lockdep_assert_held(&wq_pool_attach_mutex);
    2190             : 
    2191           0 :         kthread_set_per_cpu(worker->task, -1);
    2192           0 :         if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
    2193           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
    2194             :         else
    2195           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
    2196           0 : }
    2197             : 
    2198           0 : static void wake_dying_workers(struct list_head *cull_list)
    2199             : {
    2200             :         struct worker *worker, *tmp;
    2201             : 
    2202           0 :         list_for_each_entry_safe(worker, tmp, cull_list, entry) {
    2203           0 :                 list_del_init(&worker->entry);
    2204           0 :                 unbind_worker(worker);
    2205             :                 /*
    2206             :                  * If the worker was somehow already running, then it had to be
    2207             :                  * in pool->idle_list when set_worker_dying() happened or we
    2208             :                  * wouldn't have gotten here.
    2209             :                  *
    2210             :                  * Thus, the worker must either have observed the WORKER_DIE
    2211             :                  * flag, or have set its state to TASK_IDLE. Either way, the
    2212             :                  * below will be observed by the worker and is safe to do
    2213             :                  * outside of pool->lock.
    2214             :                  */
    2215           0 :                 wake_up_process(worker->task);
    2216             :         }
    2217           0 : }
    2218             : 
    2219             : /**
    2220             :  * set_worker_dying - Tag a worker for destruction
    2221             :  * @worker: worker to be destroyed
    2222             :  * @list: transfer worker away from its pool->idle_list and into list
    2223             :  *
    2224             :  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
    2225             :  * should be idle.
    2226             :  *
    2227             :  * CONTEXT:
    2228             :  * raw_spin_lock_irq(pool->lock).
    2229             :  */
    2230           0 : static void set_worker_dying(struct worker *worker, struct list_head *list)
    2231             : {
    2232           0 :         struct worker_pool *pool = worker->pool;
    2233             : 
    2234             :         lockdep_assert_held(&pool->lock);
    2235             :         lockdep_assert_held(&wq_pool_attach_mutex);
    2236             : 
    2237             :         /* sanity check frenzy */
    2238           0 :         if (WARN_ON(worker->current_work) ||
    2239           0 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    2240           0 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    2241             :                 return;
    2242             : 
    2243           0 :         pool->nr_workers--;
    2244           0 :         pool->nr_idle--;
    2245             : 
    2246           0 :         worker->flags |= WORKER_DIE;
    2247             : 
    2248           0 :         list_move(&worker->entry, list);
    2249           0 :         list_move(&worker->node, &pool->dying_workers);
    2250             : }
    2251             : 
    2252             : /**
    2253             :  * idle_worker_timeout - check if some idle workers can now be deleted.
    2254             :  * @t: The pool's idle_timer that just expired
    2255             :  *
    2256             :  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
    2257             :  * worker_leave_idle(), as a worker flicking between idle and active while its
    2258             :  * pool is at the too_many_workers() tipping point would cause too much timer
    2259             :  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
    2260             :  * it expire and re-evaluate things from there.
    2261             :  */
    2262           0 : static void idle_worker_timeout(struct timer_list *t)
    2263             : {
    2264           0 :         struct worker_pool *pool = from_timer(pool, t, idle_timer);
    2265           0 :         bool do_cull = false;
    2266             : 
    2267           0 :         if (work_pending(&pool->idle_cull_work))
    2268             :                 return;
    2269             : 
    2270           0 :         raw_spin_lock_irq(&pool->lock);
    2271             : 
    2272           0 :         if (too_many_workers(pool)) {
    2273             :                 struct worker *worker;
    2274             :                 unsigned long expires;
    2275             : 
    2276             :                 /* idle_list is kept in LIFO order, check the last one */
    2277           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2278           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2279           0 :                 do_cull = !time_before(jiffies, expires);
    2280             : 
    2281           0 :                 if (!do_cull)
    2282           0 :                         mod_timer(&pool->idle_timer, expires);
    2283             :         }
    2284           0 :         raw_spin_unlock_irq(&pool->lock);
    2285             : 
    2286           0 :         if (do_cull)
    2287           0 :                 queue_work(system_unbound_wq, &pool->idle_cull_work);
    2288             : }
    2289             : 
    2290             : /**
    2291             :  * idle_cull_fn - cull workers that have been idle for too long.
    2292             :  * @work: the pool's work for handling these idle workers
    2293             :  *
    2294             :  * This goes through a pool's idle workers and gets rid of those that have been
    2295             :  * idle for at least IDLE_WORKER_TIMEOUT seconds.
    2296             :  *
    2297             :  * We don't want to disturb isolated CPUs because of a pcpu kworker being
    2298             :  * culled, so this also resets worker affinity. This requires a sleepable
    2299             :  * context, hence the split between timer callback and work item.
    2300             :  */
    2301           0 : static void idle_cull_fn(struct work_struct *work)
    2302             : {
    2303           0 :         struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
    2304             :         struct list_head cull_list;
    2305             : 
    2306           0 :         INIT_LIST_HEAD(&cull_list);
    2307             :         /*
    2308             :          * Grabbing wq_pool_attach_mutex here ensures an already-running worker
    2309             :          * cannot proceed beyong worker_detach_from_pool() in its self-destruct
    2310             :          * path. This is required as a previously-preempted worker could run after
    2311             :          * set_worker_dying() has happened but before wake_dying_workers() did.
    2312             :          */
    2313           0 :         mutex_lock(&wq_pool_attach_mutex);
    2314           0 :         raw_spin_lock_irq(&pool->lock);
    2315             : 
    2316           0 :         while (too_many_workers(pool)) {
    2317             :                 struct worker *worker;
    2318             :                 unsigned long expires;
    2319             : 
    2320           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2321           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2322             : 
    2323           0 :                 if (time_before(jiffies, expires)) {
    2324           0 :                         mod_timer(&pool->idle_timer, expires);
    2325           0 :                         break;
    2326             :                 }
    2327             : 
    2328           0 :                 set_worker_dying(worker, &cull_list);
    2329             :         }
    2330             : 
    2331           0 :         raw_spin_unlock_irq(&pool->lock);
    2332           0 :         wake_dying_workers(&cull_list);
    2333           0 :         mutex_unlock(&wq_pool_attach_mutex);
    2334           0 : }
    2335             : 
    2336           0 : static void send_mayday(struct work_struct *work)
    2337             : {
    2338           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2339           0 :         struct workqueue_struct *wq = pwq->wq;
    2340             : 
    2341             :         lockdep_assert_held(&wq_mayday_lock);
    2342             : 
    2343           0 :         if (!wq->rescuer)
    2344             :                 return;
    2345             : 
    2346             :         /* mayday mayday mayday */
    2347           0 :         if (list_empty(&pwq->mayday_node)) {
    2348             :                 /*
    2349             :                  * If @pwq is for an unbound wq, its base ref may be put at
    2350             :                  * any time due to an attribute change.  Pin @pwq until the
    2351             :                  * rescuer is done with it.
    2352             :                  */
    2353           0 :                 get_pwq(pwq);
    2354           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    2355           0 :                 wake_up_process(wq->rescuer->task);
    2356           0 :                 pwq->stats[PWQ_STAT_MAYDAY]++;
    2357             :         }
    2358             : }
    2359             : 
    2360           0 : static void pool_mayday_timeout(struct timer_list *t)
    2361             : {
    2362           0 :         struct worker_pool *pool = from_timer(pool, t, mayday_timer);
    2363             :         struct work_struct *work;
    2364             : 
    2365           0 :         raw_spin_lock_irq(&pool->lock);
    2366           0 :         raw_spin_lock(&wq_mayday_lock);             /* for wq->maydays */
    2367             : 
    2368           0 :         if (need_to_create_worker(pool)) {
    2369             :                 /*
    2370             :                  * We've been trying to create a new worker but
    2371             :                  * haven't been successful.  We might be hitting an
    2372             :                  * allocation deadlock.  Send distress signals to
    2373             :                  * rescuers.
    2374             :                  */
    2375           0 :                 list_for_each_entry(work, &pool->worklist, entry)
    2376           0 :                         send_mayday(work);
    2377             :         }
    2378             : 
    2379           0 :         raw_spin_unlock(&wq_mayday_lock);
    2380           0 :         raw_spin_unlock_irq(&pool->lock);
    2381             : 
    2382           0 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    2383           0 : }
    2384             : 
    2385             : /**
    2386             :  * maybe_create_worker - create a new worker if necessary
    2387             :  * @pool: pool to create a new worker for
    2388             :  *
    2389             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    2390             :  * have at least one idle worker on return from this function.  If
    2391             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    2392             :  * sent to all rescuers with works scheduled on @pool to resolve
    2393             :  * possible allocation deadlock.
    2394             :  *
    2395             :  * On return, need_to_create_worker() is guaranteed to be %false and
    2396             :  * may_start_working() %true.
    2397             :  *
    2398             :  * LOCKING:
    2399             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2400             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    2401             :  * manager.
    2402             :  */
    2403           2 : static void maybe_create_worker(struct worker_pool *pool)
    2404             : __releases(&pool->lock)
    2405             : __acquires(&pool->lock)
    2406             : {
    2407             : restart:
    2408           2 :         raw_spin_unlock_irq(&pool->lock);
    2409             : 
    2410             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    2411           2 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    2412             : 
    2413             :         while (true) {
    2414           2 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    2415             :                         break;
    2416             : 
    2417           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    2418             : 
    2419           0 :                 if (!need_to_create_worker(pool))
    2420             :                         break;
    2421             :         }
    2422             : 
    2423           4 :         del_timer_sync(&pool->mayday_timer);
    2424           2 :         raw_spin_lock_irq(&pool->lock);
    2425             :         /*
    2426             :          * This is necessary even after a new worker was just successfully
    2427             :          * created as @pool->lock was dropped and the new worker might have
    2428             :          * already become busy.
    2429             :          */
    2430           2 :         if (need_to_create_worker(pool))
    2431             :                 goto restart;
    2432           2 : }
    2433             : 
    2434             : /**
    2435             :  * manage_workers - manage worker pool
    2436             :  * @worker: self
    2437             :  *
    2438             :  * Assume the manager role and manage the worker pool @worker belongs
    2439             :  * to.  At any given time, there can be only zero or one manager per
    2440             :  * pool.  The exclusion is handled automatically by this function.
    2441             :  *
    2442             :  * The caller can safely start processing works on false return.  On
    2443             :  * true return, it's guaranteed that need_to_create_worker() is false
    2444             :  * and may_start_working() is true.
    2445             :  *
    2446             :  * CONTEXT:
    2447             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2448             :  * multiple times.  Does GFP_KERNEL allocations.
    2449             :  *
    2450             :  * Return:
    2451             :  * %false if the pool doesn't need management and the caller can safely
    2452             :  * start processing works, %true if management function was performed and
    2453             :  * the conditions that the caller verified before calling the function may
    2454             :  * no longer be true.
    2455             :  */
    2456           2 : static bool manage_workers(struct worker *worker)
    2457             : {
    2458           2 :         struct worker_pool *pool = worker->pool;
    2459             : 
    2460           2 :         if (pool->flags & POOL_MANAGER_ACTIVE)
    2461             :                 return false;
    2462             : 
    2463           2 :         pool->flags |= POOL_MANAGER_ACTIVE;
    2464           2 :         pool->manager = worker;
    2465             : 
    2466           2 :         maybe_create_worker(pool);
    2467             : 
    2468           2 :         pool->manager = NULL;
    2469           2 :         pool->flags &= ~POOL_MANAGER_ACTIVE;
    2470           2 :         rcuwait_wake_up(&manager_wait);
    2471           2 :         return true;
    2472             : }
    2473             : 
    2474             : /**
    2475             :  * process_one_work - process single work
    2476             :  * @worker: self
    2477             :  * @work: work to process
    2478             :  *
    2479             :  * Process @work.  This function contains all the logics necessary to
    2480             :  * process a single work including synchronization against and
    2481             :  * interaction with other workers on the same cpu, queueing and
    2482             :  * flushing.  As long as context requirement is met, any worker can
    2483             :  * call this function to process a work.
    2484             :  *
    2485             :  * CONTEXT:
    2486             :  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
    2487             :  */
    2488          16 : static void process_one_work(struct worker *worker, struct work_struct *work)
    2489             : __releases(&pool->lock)
    2490             : __acquires(&pool->lock)
    2491             : {
    2492          16 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2493          16 :         struct worker_pool *pool = worker->pool;
    2494             :         unsigned long work_data;
    2495             :         struct worker *collision;
    2496             : #ifdef CONFIG_LOCKDEP
    2497             :         /*
    2498             :          * It is permissible to free the struct work_struct from
    2499             :          * inside the function that is called from it, this we need to
    2500             :          * take into account for lockdep too.  To avoid bogus "held
    2501             :          * lock freed" warnings as well as problems when looking into
    2502             :          * work->lockdep_map, make a copy and use that here.
    2503             :          */
    2504             :         struct lockdep_map lockdep_map;
    2505             : 
    2506             :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    2507             : #endif
    2508             :         /* ensure we're on the correct CPU */
    2509          16 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    2510             :                      raw_smp_processor_id() != pool->cpu);
    2511             : 
    2512             :         /*
    2513             :          * A single work shouldn't be executed concurrently by
    2514             :          * multiple workers on a single cpu.  Check whether anyone is
    2515             :          * already processing the work.  If so, defer the work to the
    2516             :          * currently executing one.
    2517             :          */
    2518          16 :         collision = find_worker_executing_work(pool, work);
    2519          16 :         if (unlikely(collision)) {
    2520           0 :                 move_linked_works(work, &collision->scheduled, NULL);
    2521             :                 return;
    2522             :         }
    2523             : 
    2524             :         /* claim and dequeue */
    2525          16 :         debug_work_deactivate(work);
    2526          32 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    2527          16 :         worker->current_work = work;
    2528          16 :         worker->current_func = work->func;
    2529          16 :         worker->current_pwq = pwq;
    2530          16 :         worker->current_at = worker->task->se.sum_exec_runtime;
    2531          16 :         work_data = *work_data_bits(work);
    2532          16 :         worker->current_color = get_work_color(work_data);
    2533             : 
    2534             :         /*
    2535             :          * Record wq name for cmdline and debug reporting, may get
    2536             :          * overridden through set_worker_desc().
    2537             :          */
    2538          32 :         strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
    2539             : 
    2540          32 :         list_del_init(&work->entry);
    2541             : 
    2542             :         /*
    2543             :          * CPU intensive works don't participate in concurrency management.
    2544             :          * They're the scheduler's responsibility.  This takes @worker out
    2545             :          * of concurrency management and the next code block will chain
    2546             :          * execution of the pending work items.
    2547             :          */
    2548          16 :         if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
    2549           0 :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    2550             : 
    2551             :         /*
    2552             :          * Wake up another worker if necessary.  The condition is always
    2553             :          * false for normal per-cpu workers since nr_running would always
    2554             :          * be >= 1 at this point.  This is used to chain execution of the
    2555             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    2556             :          * UNBOUND and CPU_INTENSIVE ones.
    2557             :          */
    2558          16 :         if (need_more_worker(pool))
    2559             :                 wake_up_worker(pool);
    2560             : 
    2561             :         /*
    2562             :          * Record the last pool and clear PENDING which should be the last
    2563             :          * update to @work.  Also, do this inside @pool->lock so that
    2564             :          * PENDING and queued state changes happen together while IRQ is
    2565             :          * disabled.
    2566             :          */
    2567          32 :         set_work_pool_and_clear_pending(work, pool->id);
    2568             : 
    2569          16 :         raw_spin_unlock_irq(&pool->lock);
    2570             : 
    2571             :         lock_map_acquire(&pwq->wq->lockdep_map);
    2572             :         lock_map_acquire(&lockdep_map);
    2573             :         /*
    2574             :          * Strictly speaking we should mark the invariant state without holding
    2575             :          * any locks, that is, before these two lock_map_acquire()'s.
    2576             :          *
    2577             :          * However, that would result in:
    2578             :          *
    2579             :          *   A(W1)
    2580             :          *   WFC(C)
    2581             :          *              A(W1)
    2582             :          *              C(C)
    2583             :          *
    2584             :          * Which would create W1->C->W1 dependencies, even though there is no
    2585             :          * actual deadlock possible. There are two solutions, using a
    2586             :          * read-recursive acquire on the work(queue) 'locks', but this will then
    2587             :          * hit the lockdep limitation on recursive locks, or simply discard
    2588             :          * these locks.
    2589             :          *
    2590             :          * AFAICT there is no possible deadlock scenario between the
    2591             :          * flush_work() and complete() primitives (except for single-threaded
    2592             :          * workqueues), so hiding them isn't a problem.
    2593             :          */
    2594          16 :         lockdep_invariant_state(true);
    2595          16 :         pwq->stats[PWQ_STAT_STARTED]++;
    2596          16 :         trace_workqueue_execute_start(work);
    2597          16 :         worker->current_func(work);
    2598             :         /*
    2599             :          * While we must be careful to not use "work" after this, the trace
    2600             :          * point will only record its address.
    2601             :          */
    2602          16 :         trace_workqueue_execute_end(work, worker->current_func);
    2603          16 :         pwq->stats[PWQ_STAT_COMPLETED]++;
    2604             :         lock_map_release(&lockdep_map);
    2605             :         lock_map_release(&pwq->wq->lockdep_map);
    2606             : 
    2607          16 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2608           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2609             :                        "     last function: %ps\n",
    2610             :                        current->comm, preempt_count(), task_pid_nr(current),
    2611             :                        worker->current_func);
    2612           0 :                 debug_show_held_locks(current);
    2613           0 :                 dump_stack();
    2614             :         }
    2615             : 
    2616             :         /*
    2617             :          * The following prevents a kworker from hogging CPU on !PREEMPTION
    2618             :          * kernels, where a requeueing work item waiting for something to
    2619             :          * happen could deadlock with stop_machine as such work item could
    2620             :          * indefinitely requeue itself while all other CPUs are trapped in
    2621             :          * stop_machine. At the same time, report a quiescent RCU state so
    2622             :          * the same condition doesn't freeze RCU.
    2623             :          */
    2624          16 :         cond_resched();
    2625             : 
    2626          16 :         raw_spin_lock_irq(&pool->lock);
    2627             : 
    2628             :         /*
    2629             :          * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
    2630             :          * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
    2631             :          * wq_cpu_intensive_thresh_us. Clear it.
    2632             :          */
    2633          16 :         worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2634             : 
    2635             :         /* tag the worker for identification in schedule() */
    2636          16 :         worker->last_func = worker->current_func;
    2637             : 
    2638             :         /* we're done with it, release */
    2639          32 :         hash_del(&worker->hentry);
    2640          16 :         worker->current_work = NULL;
    2641          16 :         worker->current_func = NULL;
    2642          16 :         worker->current_pwq = NULL;
    2643          16 :         worker->current_color = INT_MAX;
    2644          16 :         pwq_dec_nr_in_flight(pwq, work_data);
    2645             : }
    2646             : 
    2647             : /**
    2648             :  * process_scheduled_works - process scheduled works
    2649             :  * @worker: self
    2650             :  *
    2651             :  * Process all scheduled works.  Please note that the scheduled list
    2652             :  * may change while processing a work, so this function repeatedly
    2653             :  * fetches a work from the top and executes it.
    2654             :  *
    2655             :  * CONTEXT:
    2656             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2657             :  * multiple times.
    2658             :  */
    2659             : static void process_scheduled_works(struct worker *worker)
    2660             : {
    2661          12 :         while (!list_empty(&worker->scheduled)) {
    2662           4 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2663             :                                                 struct work_struct, entry);
    2664           4 :                 process_one_work(worker, work);
    2665             :         }
    2666             : }
    2667             : 
    2668           9 : static void set_pf_worker(bool val)
    2669             : {
    2670           9 :         mutex_lock(&wq_pool_attach_mutex);
    2671           9 :         if (val)
    2672           9 :                 current->flags |= PF_WQ_WORKER;
    2673             :         else
    2674           0 :                 current->flags &= ~PF_WQ_WORKER;
    2675           9 :         mutex_unlock(&wq_pool_attach_mutex);
    2676           9 : }
    2677             : 
    2678             : /**
    2679             :  * worker_thread - the worker thread function
    2680             :  * @__worker: self
    2681             :  *
    2682             :  * The worker thread function.  All workers belong to a worker_pool -
    2683             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2684             :  * work items regardless of their specific target workqueue.  The only
    2685             :  * exception is work items which belong to workqueues with a rescuer which
    2686             :  * will be explained in rescuer_thread().
    2687             :  *
    2688             :  * Return: 0
    2689             :  */
    2690           5 : static int worker_thread(void *__worker)
    2691             : {
    2692           5 :         struct worker *worker = __worker;
    2693           5 :         struct worker_pool *pool = worker->pool;
    2694             : 
    2695             :         /* tell the scheduler that this is a workqueue worker */
    2696           5 :         set_pf_worker(true);
    2697             : woke_up:
    2698          18 :         raw_spin_lock_irq(&pool->lock);
    2699             : 
    2700             :         /* am I supposed to die? */
    2701          18 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2702           0 :                 raw_spin_unlock_irq(&pool->lock);
    2703           0 :                 set_pf_worker(false);
    2704             : 
    2705           0 :                 set_task_comm(worker->task, "kworker/dying");
    2706           0 :                 ida_free(&pool->worker_ida, worker->id);
    2707           0 :                 worker_detach_from_pool(worker);
    2708           0 :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2709           0 :                 kfree(worker);
    2710           0 :                 return 0;
    2711             :         }
    2712             : 
    2713          18 :         worker_leave_idle(worker);
    2714             : recheck:
    2715             :         /* no more worker necessary? */
    2716          20 :         if (!need_more_worker(pool))
    2717             :                 goto sleep;
    2718             : 
    2719             :         /* do we need to manage? */
    2720          15 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2721             :                 goto recheck;
    2722             : 
    2723             :         /*
    2724             :          * ->scheduled list can only be filled while a worker is
    2725             :          * preparing to process a work or actually processing it.
    2726             :          * Make sure nobody diddled with it while I was sleeping.
    2727             :          */
    2728          26 :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2729             : 
    2730             :         /*
    2731             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2732             :          * worker or that someone else has already assumed the manager
    2733             :          * role.  This is where @worker starts participating in concurrency
    2734             :          * management if applicable and concurrency management is restored
    2735             :          * after being rebound.  See rebind_workers() for details.
    2736             :          */
    2737          13 :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2738             : 
    2739             :         do {
    2740          14 :                 struct work_struct *work =
    2741          14 :                         list_first_entry(&pool->worklist,
    2742             :                                          struct work_struct, entry);
    2743             : 
    2744          14 :                 pool->watchdog_ts = jiffies;
    2745             : 
    2746          14 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2747             :                         /* optimization path, not strictly necessary */
    2748          12 :                         process_one_work(worker, work);
    2749          24 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2750             :                                 process_scheduled_works(worker);
    2751             :                 } else {
    2752           2 :                         move_linked_works(work, &worker->scheduled, NULL);
    2753             :                         process_scheduled_works(worker);
    2754             :                 }
    2755          14 :         } while (keep_working(pool));
    2756             : 
    2757          13 :         worker_set_flags(worker, WORKER_PREP);
    2758             : sleep:
    2759             :         /*
    2760             :          * pool->lock is held and there's no work to process and no need to
    2761             :          * manage, sleep.  Workers are woken up only while holding
    2762             :          * pool->lock or from local cpu, so setting the current state
    2763             :          * before releasing pool->lock is enough to prevent losing any
    2764             :          * event.
    2765             :          */
    2766          18 :         worker_enter_idle(worker);
    2767          18 :         __set_current_state(TASK_IDLE);
    2768          18 :         raw_spin_unlock_irq(&pool->lock);
    2769          18 :         schedule();
    2770          13 :         goto woke_up;
    2771             : }
    2772             : 
    2773             : /**
    2774             :  * rescuer_thread - the rescuer thread function
    2775             :  * @__rescuer: self
    2776             :  *
    2777             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2778             :  * workqueue which has WQ_MEM_RECLAIM set.
    2779             :  *
    2780             :  * Regular work processing on a pool may block trying to create a new
    2781             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2782             :  * developing into deadlock if some works currently on the same queue
    2783             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2784             :  * the problem rescuer solves.
    2785             :  *
    2786             :  * When such condition is possible, the pool summons rescuers of all
    2787             :  * workqueues which have works queued on the pool and let them process
    2788             :  * those works so that forward progress can be guaranteed.
    2789             :  *
    2790             :  * This should happen rarely.
    2791             :  *
    2792             :  * Return: 0
    2793             :  */
    2794           4 : static int rescuer_thread(void *__rescuer)
    2795             : {
    2796           4 :         struct worker *rescuer = __rescuer;
    2797           4 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2798           4 :         struct list_head *scheduled = &rescuer->scheduled;
    2799             :         bool should_stop;
    2800             : 
    2801           4 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2802             : 
    2803             :         /*
    2804             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2805             :          * doesn't participate in concurrency management.
    2806             :          */
    2807           4 :         set_pf_worker(true);
    2808             : repeat:
    2809           4 :         set_current_state(TASK_IDLE);
    2810             : 
    2811             :         /*
    2812             :          * By the time the rescuer is requested to stop, the workqueue
    2813             :          * shouldn't have any work pending, but @wq->maydays may still have
    2814             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2815             :          * all the work items before the rescuer got to them.  Go through
    2816             :          * @wq->maydays processing before acting on should_stop so that the
    2817             :          * list is always empty on exit.
    2818             :          */
    2819           4 :         should_stop = kthread_should_stop();
    2820             : 
    2821             :         /* see whether any pwq is asking for help */
    2822           4 :         raw_spin_lock_irq(&wq_mayday_lock);
    2823             : 
    2824          12 :         while (!list_empty(&wq->maydays)) {
    2825           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2826             :                                         struct pool_workqueue, mayday_node);
    2827           0 :                 struct worker_pool *pool = pwq->pool;
    2828             :                 struct work_struct *work, *n;
    2829           0 :                 bool first = true;
    2830             : 
    2831           0 :                 __set_current_state(TASK_RUNNING);
    2832           0 :                 list_del_init(&pwq->mayday_node);
    2833             : 
    2834           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    2835             : 
    2836           0 :                 worker_attach_to_pool(rescuer, pool);
    2837             : 
    2838           0 :                 raw_spin_lock_irq(&pool->lock);
    2839             : 
    2840             :                 /*
    2841             :                  * Slurp in all works issued via this workqueue and
    2842             :                  * process'em.
    2843             :                  */
    2844           0 :                 WARN_ON_ONCE(!list_empty(scheduled));
    2845           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
    2846           0 :                         if (get_work_pwq(work) == pwq) {
    2847           0 :                                 if (first)
    2848           0 :                                         pool->watchdog_ts = jiffies;
    2849           0 :                                 move_linked_works(work, scheduled, &n);
    2850           0 :                                 pwq->stats[PWQ_STAT_RESCUED]++;
    2851             :                         }
    2852           0 :                         first = false;
    2853             :                 }
    2854             : 
    2855           0 :                 if (!list_empty(scheduled)) {
    2856           0 :                         process_scheduled_works(rescuer);
    2857             : 
    2858             :                         /*
    2859             :                          * The above execution of rescued work items could
    2860             :                          * have created more to rescue through
    2861             :                          * pwq_activate_first_inactive() or chained
    2862             :                          * queueing.  Let's put @pwq back on mayday list so
    2863             :                          * that such back-to-back work items, which may be
    2864             :                          * being used to relieve memory pressure, don't
    2865             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2866             :                          */
    2867           0 :                         if (pwq->nr_active && need_to_create_worker(pool)) {
    2868           0 :                                 raw_spin_lock(&wq_mayday_lock);
    2869             :                                 /*
    2870             :                                  * Queue iff we aren't racing destruction
    2871             :                                  * and somebody else hasn't queued it already.
    2872             :                                  */
    2873           0 :                                 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
    2874           0 :                                         get_pwq(pwq);
    2875           0 :                                         list_add_tail(&pwq->mayday_node, &wq->maydays);
    2876             :                                 }
    2877           0 :                                 raw_spin_unlock(&wq_mayday_lock);
    2878             :                         }
    2879             :                 }
    2880             : 
    2881             :                 /*
    2882             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2883             :                  * go away while we're still attached to it.
    2884             :                  */
    2885           0 :                 put_pwq(pwq);
    2886             : 
    2887             :                 /*
    2888             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2889             :                  * regular worker; otherwise, we end up with 0 concurrency
    2890             :                  * and stalling the execution.
    2891             :                  */
    2892           0 :                 if (need_more_worker(pool))
    2893             :                         wake_up_worker(pool);
    2894             : 
    2895           0 :                 raw_spin_unlock_irq(&pool->lock);
    2896             : 
    2897           0 :                 worker_detach_from_pool(rescuer);
    2898             : 
    2899           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    2900             :         }
    2901             : 
    2902           4 :         raw_spin_unlock_irq(&wq_mayday_lock);
    2903             : 
    2904           4 :         if (should_stop) {
    2905           0 :                 __set_current_state(TASK_RUNNING);
    2906           0 :                 set_pf_worker(false);
    2907           0 :                 return 0;
    2908             :         }
    2909             : 
    2910             :         /* rescuers should never participate in concurrency management */
    2911           4 :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2912           4 :         schedule();
    2913           0 :         goto repeat;
    2914             : }
    2915             : 
    2916             : /**
    2917             :  * check_flush_dependency - check for flush dependency sanity
    2918             :  * @target_wq: workqueue being flushed
    2919             :  * @target_work: work item being flushed (NULL for workqueue flushes)
    2920             :  *
    2921             :  * %current is trying to flush the whole @target_wq or @target_work on it.
    2922             :  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
    2923             :  * reclaiming memory or running on a workqueue which doesn't have
    2924             :  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
    2925             :  * a deadlock.
    2926             :  */
    2927           2 : static void check_flush_dependency(struct workqueue_struct *target_wq,
    2928             :                                    struct work_struct *target_work)
    2929             : {
    2930           2 :         work_func_t target_func = target_work ? target_work->func : NULL;
    2931             :         struct worker *worker;
    2932             : 
    2933           2 :         if (target_wq->flags & WQ_MEM_RECLAIM)
    2934             :                 return;
    2935             : 
    2936           2 :         worker = current_wq_worker();
    2937             : 
    2938           2 :         WARN_ONCE(current->flags & PF_MEMALLOC,
    2939             :                   "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
    2940             :                   current->pid, current->comm, target_wq->name, target_func);
    2941           2 :         WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
    2942             :                               (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
    2943             :                   "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
    2944             :                   worker->current_pwq->wq->name, worker->current_func,
    2945             :                   target_wq->name, target_func);
    2946             : }
    2947             : 
    2948             : struct wq_barrier {
    2949             :         struct work_struct      work;
    2950             :         struct completion       done;
    2951             :         struct task_struct      *task;  /* purely informational */
    2952             : };
    2953             : 
    2954           2 : static void wq_barrier_func(struct work_struct *work)
    2955             : {
    2956           2 :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2957           2 :         complete(&barr->done);
    2958           2 : }
    2959             : 
    2960             : /**
    2961             :  * insert_wq_barrier - insert a barrier work
    2962             :  * @pwq: pwq to insert barrier into
    2963             :  * @barr: wq_barrier to insert
    2964             :  * @target: target work to attach @barr to
    2965             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2966             :  *
    2967             :  * @barr is linked to @target such that @barr is completed only after
    2968             :  * @target finishes execution.  Please note that the ordering
    2969             :  * guarantee is observed only with respect to @target and on the local
    2970             :  * cpu.
    2971             :  *
    2972             :  * Currently, a queued barrier can't be canceled.  This is because
    2973             :  * try_to_grab_pending() can't determine whether the work to be
    2974             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2975             :  * flag of the previous work while there must be a valid next work
    2976             :  * after a work with LINKED flag set.
    2977             :  *
    2978             :  * Note that when @worker is non-NULL, @target may be modified
    2979             :  * underneath us, so we can't reliably determine pwq from @target.
    2980             :  *
    2981             :  * CONTEXT:
    2982             :  * raw_spin_lock_irq(pool->lock).
    2983             :  */
    2984           2 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2985             :                               struct wq_barrier *barr,
    2986             :                               struct work_struct *target, struct worker *worker)
    2987             : {
    2988           2 :         unsigned int work_flags = 0;
    2989             :         unsigned int work_color;
    2990             :         struct list_head *head;
    2991             : 
    2992             :         /*
    2993             :          * debugobject calls are safe here even with pool->lock locked
    2994             :          * as we know for sure that this will not trigger any of the
    2995             :          * checks and call back into the fixup functions where we
    2996             :          * might deadlock.
    2997             :          */
    2998           4 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2999           2 :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    3000             : 
    3001           4 :         init_completion_map(&barr->done, &target->lockdep_map);
    3002             : 
    3003           2 :         barr->task = current;
    3004             : 
    3005             :         /* The barrier work item does not participate in pwq->nr_active. */
    3006           2 :         work_flags |= WORK_STRUCT_INACTIVE;
    3007             : 
    3008             :         /*
    3009             :          * If @target is currently being executed, schedule the
    3010             :          * barrier to the worker; otherwise, put it after @target.
    3011             :          */
    3012           2 :         if (worker) {
    3013           0 :                 head = worker->scheduled.next;
    3014           0 :                 work_color = worker->current_color;
    3015             :         } else {
    3016           2 :                 unsigned long *bits = work_data_bits(target);
    3017             : 
    3018           2 :                 head = target->entry.next;
    3019             :                 /* there can already be other linked works, inherit and set */
    3020           2 :                 work_flags |= *bits & WORK_STRUCT_LINKED;
    3021           4 :                 work_color = get_work_color(*bits);
    3022           2 :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    3023             :         }
    3024             : 
    3025           2 :         pwq->nr_in_flight[work_color]++;
    3026           4 :         work_flags |= work_color_to_flags(work_color);
    3027             : 
    3028           2 :         debug_work_activate(&barr->work);
    3029           2 :         insert_work(pwq, &barr->work, head, work_flags);
    3030           2 : }
    3031             : 
    3032             : /**
    3033             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    3034             :  * @wq: workqueue being flushed
    3035             :  * @flush_color: new flush color, < 0 for no-op
    3036             :  * @work_color: new work color, < 0 for no-op
    3037             :  *
    3038             :  * Prepare pwqs for workqueue flushing.
    3039             :  *
    3040             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    3041             :  * -1.  If no pwq has in-flight commands at the specified color, all
    3042             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    3043             :  * has in flight commands, its pwq->flush_color is set to
    3044             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    3045             :  * wakeup logic is armed and %true is returned.
    3046             :  *
    3047             :  * The caller should have initialized @wq->first_flusher prior to
    3048             :  * calling this function with non-negative @flush_color.  If
    3049             :  * @flush_color is negative, no flush color update is done and %false
    3050             :  * is returned.
    3051             :  *
    3052             :  * If @work_color is non-negative, all pwqs should have the same
    3053             :  * work_color which is previous to @work_color and all will be
    3054             :  * advanced to @work_color.
    3055             :  *
    3056             :  * CONTEXT:
    3057             :  * mutex_lock(wq->mutex).
    3058             :  *
    3059             :  * Return:
    3060             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    3061             :  * otherwise.
    3062             :  */
    3063           0 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    3064             :                                       int flush_color, int work_color)
    3065             : {
    3066           0 :         bool wait = false;
    3067             :         struct pool_workqueue *pwq;
    3068             : 
    3069           0 :         if (flush_color >= 0) {
    3070           0 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    3071           0 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    3072             :         }
    3073             : 
    3074           0 :         for_each_pwq(pwq, wq) {
    3075           0 :                 struct worker_pool *pool = pwq->pool;
    3076             : 
    3077           0 :                 raw_spin_lock_irq(&pool->lock);
    3078             : 
    3079           0 :                 if (flush_color >= 0) {
    3080           0 :                         WARN_ON_ONCE(pwq->flush_color != -1);
    3081             : 
    3082           0 :                         if (pwq->nr_in_flight[flush_color]) {
    3083           0 :                                 pwq->flush_color = flush_color;
    3084           0 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    3085           0 :                                 wait = true;
    3086             :                         }
    3087             :                 }
    3088             : 
    3089           0 :                 if (work_color >= 0) {
    3090           0 :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    3091           0 :                         pwq->work_color = work_color;
    3092             :                 }
    3093             : 
    3094           0 :                 raw_spin_unlock_irq(&pool->lock);
    3095             :         }
    3096             : 
    3097           0 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    3098           0 :                 complete(&wq->first_flusher->done);
    3099             : 
    3100           0 :         return wait;
    3101             : }
    3102             : 
    3103             : /**
    3104             :  * __flush_workqueue - ensure that any scheduled work has run to completion.
    3105             :  * @wq: workqueue to flush
    3106             :  *
    3107             :  * This function sleeps until all work items which were queued on entry
    3108             :  * have finished execution, but it is not livelocked by new incoming ones.
    3109             :  */
    3110           0 : void __flush_workqueue(struct workqueue_struct *wq)
    3111             : {
    3112           0 :         struct wq_flusher this_flusher = {
    3113             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    3114             :                 .flush_color = -1,
    3115           0 :                 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
    3116             :         };
    3117             :         int next_color;
    3118             : 
    3119           0 :         if (WARN_ON(!wq_online))
    3120           0 :                 return;
    3121             : 
    3122             :         lock_map_acquire(&wq->lockdep_map);
    3123             :         lock_map_release(&wq->lockdep_map);
    3124             : 
    3125           0 :         mutex_lock(&wq->mutex);
    3126             : 
    3127             :         /*
    3128             :          * Start-to-wait phase
    3129             :          */
    3130           0 :         next_color = work_next_color(wq->work_color);
    3131             : 
    3132           0 :         if (next_color != wq->flush_color) {
    3133             :                 /*
    3134             :                  * Color space is not full.  The current work_color
    3135             :                  * becomes our flush_color and work_color is advanced
    3136             :                  * by one.
    3137             :                  */
    3138           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    3139           0 :                 this_flusher.flush_color = wq->work_color;
    3140           0 :                 wq->work_color = next_color;
    3141             : 
    3142           0 :                 if (!wq->first_flusher) {
    3143             :                         /* no flush in progress, become the first flusher */
    3144           0 :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    3145             : 
    3146           0 :                         wq->first_flusher = &this_flusher;
    3147             : 
    3148           0 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    3149             :                                                        wq->work_color)) {
    3150             :                                 /* nothing to flush, done */
    3151           0 :                                 wq->flush_color = next_color;
    3152           0 :                                 wq->first_flusher = NULL;
    3153           0 :                                 goto out_unlock;
    3154             :                         }
    3155             :                 } else {
    3156             :                         /* wait in queue */
    3157           0 :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    3158           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    3159           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    3160             :                 }
    3161             :         } else {
    3162             :                 /*
    3163             :                  * Oops, color space is full, wait on overflow queue.
    3164             :                  * The next flush completion will assign us
    3165             :                  * flush_color and transfer to flusher_queue.
    3166             :                  */
    3167           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    3168             :         }
    3169             : 
    3170           0 :         check_flush_dependency(wq, NULL);
    3171             : 
    3172           0 :         mutex_unlock(&wq->mutex);
    3173             : 
    3174           0 :         wait_for_completion(&this_flusher.done);
    3175             : 
    3176             :         /*
    3177             :          * Wake-up-and-cascade phase
    3178             :          *
    3179             :          * First flushers are responsible for cascading flushes and
    3180             :          * handling overflow.  Non-first flushers can simply return.
    3181             :          */
    3182           0 :         if (READ_ONCE(wq->first_flusher) != &this_flusher)
    3183             :                 return;
    3184             : 
    3185           0 :         mutex_lock(&wq->mutex);
    3186             : 
    3187             :         /* we might have raced, check again with mutex held */
    3188           0 :         if (wq->first_flusher != &this_flusher)
    3189             :                 goto out_unlock;
    3190             : 
    3191           0 :         WRITE_ONCE(wq->first_flusher, NULL);
    3192             : 
    3193           0 :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    3194           0 :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    3195             : 
    3196           0 :         while (true) {
    3197             :                 struct wq_flusher *next, *tmp;
    3198             : 
    3199             :                 /* complete all the flushers sharing the current flush color */
    3200           0 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    3201           0 :                         if (next->flush_color != wq->flush_color)
    3202             :                                 break;
    3203           0 :                         list_del_init(&next->list);
    3204           0 :                         complete(&next->done);
    3205             :                 }
    3206             : 
    3207           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    3208             :                              wq->flush_color != work_next_color(wq->work_color));
    3209             : 
    3210             :                 /* this flush_color is finished, advance by one */
    3211           0 :                 wq->flush_color = work_next_color(wq->flush_color);
    3212             : 
    3213             :                 /* one color has been freed, handle overflow queue */
    3214           0 :                 if (!list_empty(&wq->flusher_overflow)) {
    3215             :                         /*
    3216             :                          * Assign the same color to all overflowed
    3217             :                          * flushers, advance work_color and append to
    3218             :                          * flusher_queue.  This is the start-to-wait
    3219             :                          * phase for these overflowed flushers.
    3220             :                          */
    3221           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    3222           0 :                                 tmp->flush_color = wq->work_color;
    3223             : 
    3224           0 :                         wq->work_color = work_next_color(wq->work_color);
    3225             : 
    3226           0 :                         list_splice_tail_init(&wq->flusher_overflow,
    3227             :                                               &wq->flusher_queue);
    3228           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    3229             :                 }
    3230             : 
    3231           0 :                 if (list_empty(&wq->flusher_queue)) {
    3232           0 :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    3233             :                         break;
    3234             :                 }
    3235             : 
    3236             :                 /*
    3237             :                  * Need to flush more colors.  Make the next flusher
    3238             :                  * the new first flusher and arm pwqs.
    3239             :                  */
    3240           0 :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    3241           0 :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    3242             : 
    3243           0 :                 list_del_init(&next->list);
    3244           0 :                 wq->first_flusher = next;
    3245             : 
    3246           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    3247             :                         break;
    3248             : 
    3249             :                 /*
    3250             :                  * Meh... this color is already done, clear first
    3251             :                  * flusher and repeat cascading.
    3252             :                  */
    3253           0 :                 wq->first_flusher = NULL;
    3254             :         }
    3255             : 
    3256             : out_unlock:
    3257           0 :         mutex_unlock(&wq->mutex);
    3258             : }
    3259             : EXPORT_SYMBOL(__flush_workqueue);
    3260             : 
    3261             : /**
    3262             :  * drain_workqueue - drain a workqueue
    3263             :  * @wq: workqueue to drain
    3264             :  *
    3265             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    3266             :  * only chain queueing is allowed.  IOW, only currently pending or running
    3267             :  * work items on @wq can queue further work items on it.  @wq is flushed
    3268             :  * repeatedly until it becomes empty.  The number of flushing is determined
    3269             :  * by the depth of chaining and should be relatively short.  Whine if it
    3270             :  * takes too long.
    3271             :  */
    3272           0 : void drain_workqueue(struct workqueue_struct *wq)
    3273             : {
    3274           0 :         unsigned int flush_cnt = 0;
    3275             :         struct pool_workqueue *pwq;
    3276             : 
    3277             :         /*
    3278             :          * __queue_work() needs to test whether there are drainers, is much
    3279             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    3280             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    3281             :          */
    3282           0 :         mutex_lock(&wq->mutex);
    3283           0 :         if (!wq->nr_drainers++)
    3284           0 :                 wq->flags |= __WQ_DRAINING;
    3285           0 :         mutex_unlock(&wq->mutex);
    3286             : reflush:
    3287           0 :         __flush_workqueue(wq);
    3288             : 
    3289           0 :         mutex_lock(&wq->mutex);
    3290             : 
    3291           0 :         for_each_pwq(pwq, wq) {
    3292             :                 bool drained;
    3293             : 
    3294           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    3295           0 :                 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
    3296           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    3297             : 
    3298           0 :                 if (drained)
    3299           0 :                         continue;
    3300             : 
    3301           0 :                 if (++flush_cnt == 10 ||
    3302           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    3303           0 :                         pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
    3304             :                                 wq->name, __func__, flush_cnt);
    3305             : 
    3306           0 :                 mutex_unlock(&wq->mutex);
    3307           0 :                 goto reflush;
    3308             :         }
    3309             : 
    3310           0 :         if (!--wq->nr_drainers)
    3311           0 :                 wq->flags &= ~__WQ_DRAINING;
    3312           0 :         mutex_unlock(&wq->mutex);
    3313           0 : }
    3314             : EXPORT_SYMBOL_GPL(drain_workqueue);
    3315             : 
    3316           9 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
    3317             :                              bool from_cancel)
    3318             : {
    3319           9 :         struct worker *worker = NULL;
    3320             :         struct worker_pool *pool;
    3321             :         struct pool_workqueue *pwq;
    3322             : 
    3323             :         might_sleep();
    3324             : 
    3325             :         rcu_read_lock();
    3326           9 :         pool = get_work_pool(work);
    3327           9 :         if (!pool) {
    3328             :                 rcu_read_unlock();
    3329           5 :                 return false;
    3330             :         }
    3331             : 
    3332           4 :         raw_spin_lock_irq(&pool->lock);
    3333             :         /* see the comment in try_to_grab_pending() with the same code */
    3334           4 :         pwq = get_work_pwq(work);
    3335           4 :         if (pwq) {
    3336           2 :                 if (unlikely(pwq->pool != pool))
    3337             :                         goto already_gone;
    3338             :         } else {
    3339           2 :                 worker = find_worker_executing_work(pool, work);
    3340           2 :                 if (!worker)
    3341             :                         goto already_gone;
    3342           0 :                 pwq = worker->current_pwq;
    3343             :         }
    3344             : 
    3345           2 :         check_flush_dependency(pwq->wq, work);
    3346             : 
    3347           2 :         insert_wq_barrier(pwq, barr, work, worker);
    3348           2 :         raw_spin_unlock_irq(&pool->lock);
    3349             : 
    3350             :         /*
    3351             :          * Force a lock recursion deadlock when using flush_work() inside a
    3352             :          * single-threaded or rescuer equipped workqueue.
    3353             :          *
    3354             :          * For single threaded workqueues the deadlock happens when the work
    3355             :          * is after the work issuing the flush_work(). For rescuer equipped
    3356             :          * workqueues the deadlock happens when the rescuer stalls, blocking
    3357             :          * forward progress.
    3358             :          */
    3359             :         if (!from_cancel &&
    3360             :             (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
    3361             :                 lock_map_acquire(&pwq->wq->lockdep_map);
    3362             :                 lock_map_release(&pwq->wq->lockdep_map);
    3363             :         }
    3364             :         rcu_read_unlock();
    3365           2 :         return true;
    3366             : already_gone:
    3367           2 :         raw_spin_unlock_irq(&pool->lock);
    3368             :         rcu_read_unlock();
    3369           2 :         return false;
    3370             : }
    3371             : 
    3372           9 : static bool __flush_work(struct work_struct *work, bool from_cancel)
    3373             : {
    3374             :         struct wq_barrier barr;
    3375             : 
    3376           9 :         if (WARN_ON(!wq_online))
    3377             :                 return false;
    3378             : 
    3379           9 :         if (WARN_ON(!work->func))
    3380             :                 return false;
    3381             : 
    3382             :         lock_map_acquire(&work->lockdep_map);
    3383             :         lock_map_release(&work->lockdep_map);
    3384             : 
    3385           9 :         if (start_flush_work(work, &barr, from_cancel)) {
    3386           2 :                 wait_for_completion(&barr.done);
    3387           2 :                 destroy_work_on_stack(&barr.work);
    3388           2 :                 return true;
    3389             :         } else {
    3390             :                 return false;
    3391             :         }
    3392             : }
    3393             : 
    3394             : /**
    3395             :  * flush_work - wait for a work to finish executing the last queueing instance
    3396             :  * @work: the work to flush
    3397             :  *
    3398             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    3399             :  * on return if it hasn't been requeued since flush started.
    3400             :  *
    3401             :  * Return:
    3402             :  * %true if flush_work() waited for the work to finish execution,
    3403             :  * %false if it was already idle.
    3404             :  */
    3405           9 : bool flush_work(struct work_struct *work)
    3406             : {
    3407           9 :         return __flush_work(work, false);
    3408             : }
    3409             : EXPORT_SYMBOL_GPL(flush_work);
    3410             : 
    3411             : struct cwt_wait {
    3412             :         wait_queue_entry_t              wait;
    3413             :         struct work_struct      *work;
    3414             : };
    3415             : 
    3416           0 : static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
    3417             : {
    3418           0 :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    3419             : 
    3420           0 :         if (cwait->work != key)
    3421             :                 return 0;
    3422           0 :         return autoremove_wake_function(wait, mode, sync, key);
    3423             : }
    3424             : 
    3425           0 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    3426             : {
    3427             :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    3428             :         unsigned long flags;
    3429             :         int ret;
    3430             : 
    3431             :         do {
    3432           0 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3433             :                 /*
    3434             :                  * If someone else is already canceling, wait for it to
    3435             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    3436             :                  * because we may get scheduled between @work's completion
    3437             :                  * and the other canceling task resuming and clearing
    3438             :                  * CANCELING - flush_work() will return false immediately
    3439             :                  * as @work is no longer busy, try_to_grab_pending() will
    3440             :                  * return -ENOENT as @work is still being canceled and the
    3441             :                  * other canceling task won't be able to clear CANCELING as
    3442             :                  * we're hogging the CPU.
    3443             :                  *
    3444             :                  * Let's wait for completion using a waitqueue.  As this
    3445             :                  * may lead to the thundering herd problem, use a custom
    3446             :                  * wake function which matches @work along with exclusive
    3447             :                  * wait and wakeup.
    3448             :                  */
    3449           0 :                 if (unlikely(ret == -ENOENT)) {
    3450             :                         struct cwt_wait cwait;
    3451             : 
    3452           0 :                         init_wait(&cwait.wait);
    3453           0 :                         cwait.wait.func = cwt_wakefn;
    3454           0 :                         cwait.work = work;
    3455             : 
    3456           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    3457             :                                                   TASK_UNINTERRUPTIBLE);
    3458           0 :                         if (work_is_canceling(work))
    3459           0 :                                 schedule();
    3460           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    3461             :                 }
    3462           0 :         } while (unlikely(ret < 0));
    3463             : 
    3464             :         /* tell other tasks trying to grab @work to back off */
    3465           0 :         mark_work_canceling(work);
    3466           0 :         local_irq_restore(flags);
    3467             : 
    3468             :         /*
    3469             :          * This allows canceling during early boot.  We know that @work
    3470             :          * isn't executing.
    3471             :          */
    3472           0 :         if (wq_online)
    3473           0 :                 __flush_work(work, true);
    3474             : 
    3475           0 :         clear_work_data(work);
    3476             : 
    3477             :         /*
    3478             :          * Paired with prepare_to_wait() above so that either
    3479             :          * waitqueue_active() is visible here or !work_is_canceling() is
    3480             :          * visible there.
    3481             :          */
    3482           0 :         smp_mb();
    3483           0 :         if (waitqueue_active(&cancel_waitq))
    3484           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    3485             : 
    3486           0 :         return ret;
    3487             : }
    3488             : 
    3489             : /**
    3490             :  * cancel_work_sync - cancel a work and wait for it to finish
    3491             :  * @work: the work to cancel
    3492             :  *
    3493             :  * Cancel @work and wait for its execution to finish.  This function
    3494             :  * can be used even if the work re-queues itself or migrates to
    3495             :  * another workqueue.  On return from this function, @work is
    3496             :  * guaranteed to be not pending or executing on any CPU.
    3497             :  *
    3498             :  * cancel_work_sync(&delayed_work->work) must not be used for
    3499             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    3500             :  *
    3501             :  * The caller must ensure that the workqueue on which @work was last
    3502             :  * queued can't be destroyed before this function returns.
    3503             :  *
    3504             :  * Return:
    3505             :  * %true if @work was pending, %false otherwise.
    3506             :  */
    3507           0 : bool cancel_work_sync(struct work_struct *work)
    3508             : {
    3509           0 :         return __cancel_work_timer(work, false);
    3510             : }
    3511             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    3512             : 
    3513             : /**
    3514             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    3515             :  * @dwork: the delayed work to flush
    3516             :  *
    3517             :  * Delayed timer is cancelled and the pending work is queued for
    3518             :  * immediate execution.  Like flush_work(), this function only
    3519             :  * considers the last queueing instance of @dwork.
    3520             :  *
    3521             :  * Return:
    3522             :  * %true if flush_work() waited for the work to finish execution,
    3523             :  * %false if it was already idle.
    3524             :  */
    3525           0 : bool flush_delayed_work(struct delayed_work *dwork)
    3526             : {
    3527             :         local_irq_disable();
    3528           0 :         if (del_timer_sync(&dwork->timer))
    3529           0 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    3530             :         local_irq_enable();
    3531           0 :         return flush_work(&dwork->work);
    3532             : }
    3533             : EXPORT_SYMBOL(flush_delayed_work);
    3534             : 
    3535             : /**
    3536             :  * flush_rcu_work - wait for a rwork to finish executing the last queueing
    3537             :  * @rwork: the rcu work to flush
    3538             :  *
    3539             :  * Return:
    3540             :  * %true if flush_rcu_work() waited for the work to finish execution,
    3541             :  * %false if it was already idle.
    3542             :  */
    3543           0 : bool flush_rcu_work(struct rcu_work *rwork)
    3544             : {
    3545           0 :         if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
    3546           0 :                 rcu_barrier();
    3547           0 :                 flush_work(&rwork->work);
    3548           0 :                 return true;
    3549             :         } else {
    3550           0 :                 return flush_work(&rwork->work);
    3551             :         }
    3552             : }
    3553             : EXPORT_SYMBOL(flush_rcu_work);
    3554             : 
    3555          21 : static bool __cancel_work(struct work_struct *work, bool is_dwork)
    3556             : {
    3557             :         unsigned long flags;
    3558             :         int ret;
    3559             : 
    3560             :         do {
    3561          21 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3562          21 :         } while (unlikely(ret == -EAGAIN));
    3563             : 
    3564          21 :         if (unlikely(ret < 0))
    3565             :                 return false;
    3566             : 
    3567          42 :         set_work_pool_and_clear_pending(work, get_work_pool_id(work));
    3568          42 :         local_irq_restore(flags);
    3569          21 :         return ret;
    3570             : }
    3571             : 
    3572             : /*
    3573             :  * See cancel_delayed_work()
    3574             :  */
    3575           0 : bool cancel_work(struct work_struct *work)
    3576             : {
    3577           0 :         return __cancel_work(work, false);
    3578             : }
    3579             : EXPORT_SYMBOL(cancel_work);
    3580             : 
    3581             : /**
    3582             :  * cancel_delayed_work - cancel a delayed work
    3583             :  * @dwork: delayed_work to cancel
    3584             :  *
    3585             :  * Kill off a pending delayed_work.
    3586             :  *
    3587             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    3588             :  * pending.
    3589             :  *
    3590             :  * Note:
    3591             :  * The work callback function may still be running on return, unless
    3592             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    3593             :  * use cancel_delayed_work_sync() to wait on it.
    3594             :  *
    3595             :  * This function is safe to call from any context including IRQ handler.
    3596             :  */
    3597          21 : bool cancel_delayed_work(struct delayed_work *dwork)
    3598             : {
    3599          21 :         return __cancel_work(&dwork->work, true);
    3600             : }
    3601             : EXPORT_SYMBOL(cancel_delayed_work);
    3602             : 
    3603             : /**
    3604             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    3605             :  * @dwork: the delayed work cancel
    3606             :  *
    3607             :  * This is cancel_work_sync() for delayed works.
    3608             :  *
    3609             :  * Return:
    3610             :  * %true if @dwork was pending, %false otherwise.
    3611             :  */
    3612           0 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    3613             : {
    3614           0 :         return __cancel_work_timer(&dwork->work, true);
    3615             : }
    3616             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    3617             : 
    3618             : /**
    3619             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    3620             :  * @func: the function to call
    3621             :  *
    3622             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    3623             :  * system workqueue and blocks until all CPUs have completed.
    3624             :  * schedule_on_each_cpu() is very slow.
    3625             :  *
    3626             :  * Return:
    3627             :  * 0 on success, -errno on failure.
    3628             :  */
    3629           0 : int schedule_on_each_cpu(work_func_t func)
    3630             : {
    3631             :         int cpu;
    3632             :         struct work_struct __percpu *works;
    3633             : 
    3634           0 :         works = alloc_percpu(struct work_struct);
    3635           0 :         if (!works)
    3636             :                 return -ENOMEM;
    3637             : 
    3638             :         cpus_read_lock();
    3639             : 
    3640           0 :         for_each_online_cpu(cpu) {
    3641           0 :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    3642             : 
    3643           0 :                 INIT_WORK(work, func);
    3644           0 :                 schedule_work_on(cpu, work);
    3645             :         }
    3646             : 
    3647           0 :         for_each_online_cpu(cpu)
    3648           0 :                 flush_work(per_cpu_ptr(works, cpu));
    3649             : 
    3650             :         cpus_read_unlock();
    3651           0 :         free_percpu(works);
    3652           0 :         return 0;
    3653             : }
    3654             : 
    3655             : /**
    3656             :  * execute_in_process_context - reliably execute the routine with user context
    3657             :  * @fn:         the function to execute
    3658             :  * @ew:         guaranteed storage for the execute work structure (must
    3659             :  *              be available when the work executes)
    3660             :  *
    3661             :  * Executes the function immediately if process context is available,
    3662             :  * otherwise schedules the function for delayed execution.
    3663             :  *
    3664             :  * Return:      0 - function was executed
    3665             :  *              1 - function was scheduled for execution
    3666             :  */
    3667           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    3668             : {
    3669           0 :         if (!in_interrupt()) {
    3670           0 :                 fn(&ew->work);
    3671           0 :                 return 0;
    3672             :         }
    3673             : 
    3674           0 :         INIT_WORK(&ew->work, fn);
    3675           0 :         schedule_work(&ew->work);
    3676             : 
    3677           0 :         return 1;
    3678             : }
    3679             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    3680             : 
    3681             : /**
    3682             :  * free_workqueue_attrs - free a workqueue_attrs
    3683             :  * @attrs: workqueue_attrs to free
    3684             :  *
    3685             :  * Undo alloc_workqueue_attrs().
    3686             :  */
    3687           0 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3688             : {
    3689           3 :         if (attrs) {
    3690           6 :                 free_cpumask_var(attrs->cpumask);
    3691           6 :                 kfree(attrs);
    3692             :         }
    3693           0 : }
    3694             : 
    3695             : /**
    3696             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3697             :  *
    3698             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3699             :  * return it.
    3700             :  *
    3701             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3702             :  */
    3703          16 : struct workqueue_attrs *alloc_workqueue_attrs(void)
    3704             : {
    3705             :         struct workqueue_attrs *attrs;
    3706             : 
    3707          16 :         attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
    3708          16 :         if (!attrs)
    3709             :                 goto fail;
    3710          16 :         if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
    3711             :                 goto fail;
    3712             : 
    3713          32 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3714          16 :         return attrs;
    3715             : fail:
    3716             :         free_workqueue_attrs(attrs);
    3717             :         return NULL;
    3718             : }
    3719             : 
    3720             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3721             :                                  const struct workqueue_attrs *from)
    3722             : {
    3723          13 :         to->nice = from->nice;
    3724          26 :         cpumask_copy(to->cpumask, from->cpumask);
    3725             :         /*
    3726             :          * Unlike hash and equality test, this function doesn't ignore
    3727             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3728             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3729             :          */
    3730          13 :         to->no_numa = from->no_numa;
    3731             : }
    3732             : 
    3733             : /* hash value of the content of @attr */
    3734           3 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3735             : {
    3736           3 :         u32 hash = 0;
    3737             : 
    3738           6 :         hash = jhash_1word(attrs->nice, hash);
    3739           3 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3740             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3741           3 :         return hash;
    3742             : }
    3743             : 
    3744             : /* content equality test */
    3745             : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3746             :                           const struct workqueue_attrs *b)
    3747             : {
    3748           2 :         if (a->nice != b->nice)
    3749             :                 return false;
    3750           4 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3751             :                 return false;
    3752             :         return true;
    3753             : }
    3754             : 
    3755             : /**
    3756             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3757             :  * @pool: worker_pool to initialize
    3758             :  *
    3759             :  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3760             :  *
    3761             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3762             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3763             :  * on @pool safely to release it.
    3764             :  */
    3765           3 : static int init_worker_pool(struct worker_pool *pool)
    3766             : {
    3767             :         raw_spin_lock_init(&pool->lock);
    3768           3 :         pool->id = -1;
    3769           3 :         pool->cpu = -1;
    3770           3 :         pool->node = NUMA_NO_NODE;
    3771           3 :         pool->flags |= POOL_DISASSOCIATED;
    3772           3 :         pool->watchdog_ts = jiffies;
    3773           6 :         INIT_LIST_HEAD(&pool->worklist);
    3774           6 :         INIT_LIST_HEAD(&pool->idle_list);
    3775           6 :         hash_init(pool->busy_hash);
    3776             : 
    3777           3 :         timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
    3778           6 :         INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
    3779             : 
    3780           3 :         timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
    3781             : 
    3782           6 :         INIT_LIST_HEAD(&pool->workers);
    3783           6 :         INIT_LIST_HEAD(&pool->dying_workers);
    3784             : 
    3785           6 :         ida_init(&pool->worker_ida);
    3786           6 :         INIT_HLIST_NODE(&pool->hash_node);
    3787           3 :         pool->refcnt = 1;
    3788             : 
    3789             :         /* shouldn't fail above this point */
    3790           3 :         pool->attrs = alloc_workqueue_attrs();
    3791           3 :         if (!pool->attrs)
    3792             :                 return -ENOMEM;
    3793           3 :         return 0;
    3794             : }
    3795             : 
    3796             : #ifdef CONFIG_LOCKDEP
    3797             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3798             : {
    3799             :         char *lock_name;
    3800             : 
    3801             :         lockdep_register_key(&wq->key);
    3802             :         lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
    3803             :         if (!lock_name)
    3804             :                 lock_name = wq->name;
    3805             : 
    3806             :         wq->lock_name = lock_name;
    3807             :         lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
    3808             : }
    3809             : 
    3810             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3811             : {
    3812             :         lockdep_unregister_key(&wq->key);
    3813             : }
    3814             : 
    3815             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3816             : {
    3817             :         if (wq->lock_name != wq->name)
    3818             :                 kfree(wq->lock_name);
    3819             : }
    3820             : #else
    3821             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3822             : {
    3823             : }
    3824             : 
    3825             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3826             : {
    3827             : }
    3828             : 
    3829             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3830             : {
    3831             : }
    3832             : #endif
    3833             : 
    3834           0 : static void rcu_free_wq(struct rcu_head *rcu)
    3835             : {
    3836           0 :         struct workqueue_struct *wq =
    3837           0 :                 container_of(rcu, struct workqueue_struct, rcu);
    3838             : 
    3839           0 :         wq_free_lockdep(wq);
    3840             : 
    3841           0 :         if (!(wq->flags & WQ_UNBOUND))
    3842           0 :                 free_percpu(wq->cpu_pwqs);
    3843             :         else
    3844           0 :                 free_workqueue_attrs(wq->unbound_attrs);
    3845             : 
    3846           0 :         kfree(wq);
    3847           0 : }
    3848             : 
    3849           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3850             : {
    3851           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3852             : 
    3853           0 :         ida_destroy(&pool->worker_ida);
    3854           0 :         free_workqueue_attrs(pool->attrs);
    3855           0 :         kfree(pool);
    3856           0 : }
    3857             : 
    3858             : /**
    3859             :  * put_unbound_pool - put a worker_pool
    3860             :  * @pool: worker_pool to put
    3861             :  *
    3862             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
    3863             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3864             :  * and this function should be able to release pools which went through,
    3865             :  * successfully or not, init_worker_pool().
    3866             :  *
    3867             :  * Should be called with wq_pool_mutex held.
    3868             :  */
    3869           0 : static void put_unbound_pool(struct worker_pool *pool)
    3870             : {
    3871           0 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3872             :         struct list_head cull_list;
    3873             :         struct worker *worker;
    3874             : 
    3875           0 :         INIT_LIST_HEAD(&cull_list);
    3876             : 
    3877             :         lockdep_assert_held(&wq_pool_mutex);
    3878             : 
    3879           0 :         if (--pool->refcnt)
    3880           0 :                 return;
    3881             : 
    3882             :         /* sanity checks */
    3883           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3884           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3885             :                 return;
    3886             : 
    3887             :         /* release id and unhash */
    3888           0 :         if (pool->id >= 0)
    3889           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3890           0 :         hash_del(&pool->hash_node);
    3891             : 
    3892             :         /*
    3893             :          * Become the manager and destroy all workers.  This prevents
    3894             :          * @pool's workers from blocking on attach_mutex.  We're the last
    3895             :          * manager and @pool gets freed with the flag set.
    3896             :          *
    3897             :          * Having a concurrent manager is quite unlikely to happen as we can
    3898             :          * only get here with
    3899             :          *   pwq->refcnt == pool->refcnt == 0
    3900             :          * which implies no work queued to the pool, which implies no worker can
    3901             :          * become the manager. However a worker could have taken the role of
    3902             :          * manager before the refcnts dropped to 0, since maybe_create_worker()
    3903             :          * drops pool->lock
    3904             :          */
    3905             :         while (true) {
    3906           0 :                 rcuwait_wait_event(&manager_wait,
    3907             :                                    !(pool->flags & POOL_MANAGER_ACTIVE),
    3908             :                                    TASK_UNINTERRUPTIBLE);
    3909             : 
    3910           0 :                 mutex_lock(&wq_pool_attach_mutex);
    3911           0 :                 raw_spin_lock_irq(&pool->lock);
    3912           0 :                 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
    3913           0 :                         pool->flags |= POOL_MANAGER_ACTIVE;
    3914             :                         break;
    3915             :                 }
    3916           0 :                 raw_spin_unlock_irq(&pool->lock);
    3917           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    3918             :         }
    3919             : 
    3920           0 :         while ((worker = first_idle_worker(pool)))
    3921           0 :                 set_worker_dying(worker, &cull_list);
    3922           0 :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3923           0 :         raw_spin_unlock_irq(&pool->lock);
    3924             : 
    3925           0 :         wake_dying_workers(&cull_list);
    3926             : 
    3927           0 :         if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
    3928           0 :                 pool->detach_completion = &detach_completion;
    3929           0 :         mutex_unlock(&wq_pool_attach_mutex);
    3930             : 
    3931           0 :         if (pool->detach_completion)
    3932           0 :                 wait_for_completion(pool->detach_completion);
    3933             : 
    3934             :         /* shut down the timers */
    3935           0 :         del_timer_sync(&pool->idle_timer);
    3936           0 :         cancel_work_sync(&pool->idle_cull_work);
    3937           0 :         del_timer_sync(&pool->mayday_timer);
    3938             : 
    3939             :         /* RCU protected to allow dereferences from get_work_pool() */
    3940           0 :         call_rcu(&pool->rcu, rcu_free_pool);
    3941             : }
    3942             : 
    3943             : /**
    3944             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3945             :  * @attrs: the attributes of the worker_pool to get
    3946             :  *
    3947             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3948             :  * reference count and return it.  If there already is a matching
    3949             :  * worker_pool, it will be used; otherwise, this function attempts to
    3950             :  * create a new one.
    3951             :  *
    3952             :  * Should be called with wq_pool_mutex held.
    3953             :  *
    3954             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3955             :  * On failure, %NULL.
    3956             :  */
    3957           3 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3958             : {
    3959           3 :         u32 hash = wqattrs_hash(attrs);
    3960             :         struct worker_pool *pool;
    3961             :         int node;
    3962           3 :         int target_node = NUMA_NO_NODE;
    3963             : 
    3964             :         lockdep_assert_held(&wq_pool_mutex);
    3965             : 
    3966             :         /* do we already have a matching pool? */
    3967           3 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3968           4 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3969           2 :                         pool->refcnt++;
    3970           2 :                         return pool;
    3971             :                 }
    3972             :         }
    3973             : 
    3974             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3975           1 :         if (wq_numa_enabled) {
    3976           0 :                 for_each_node(node) {
    3977           0 :                         if (cpumask_subset(attrs->cpumask,
    3978           0 :                                            wq_numa_possible_cpumask[node])) {
    3979             :                                 target_node = node;
    3980             :                                 break;
    3981             :                         }
    3982             :                 }
    3983             :         }
    3984             : 
    3985             :         /* nope, create a new one */
    3986           1 :         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
    3987           1 :         if (!pool || init_worker_pool(pool) < 0)
    3988             :                 goto fail;
    3989             : 
    3990             :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3991           2 :         copy_workqueue_attrs(pool->attrs, attrs);
    3992           1 :         pool->node = target_node;
    3993             : 
    3994             :         /*
    3995             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3996             :          * 'struct workqueue_attrs' comments for detail.
    3997             :          */
    3998           1 :         pool->attrs->no_numa = false;
    3999             : 
    4000           1 :         if (worker_pool_assign_id(pool) < 0)
    4001             :                 goto fail;
    4002             : 
    4003             :         /* create and start the initial worker */
    4004           1 :         if (wq_online && !create_worker(pool))
    4005             :                 goto fail;
    4006             : 
    4007             :         /* install */
    4008           2 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    4009             : 
    4010           1 :         return pool;
    4011             : fail:
    4012           0 :         if (pool)
    4013           0 :                 put_unbound_pool(pool);
    4014             :         return NULL;
    4015             : }
    4016             : 
    4017           0 : static void rcu_free_pwq(struct rcu_head *rcu)
    4018             : {
    4019           0 :         kmem_cache_free(pwq_cache,
    4020           0 :                         container_of(rcu, struct pool_workqueue, rcu));
    4021           0 : }
    4022             : 
    4023             : /*
    4024             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    4025             :  * and needs to be destroyed.
    4026             :  */
    4027           0 : static void pwq_unbound_release_workfn(struct work_struct *work)
    4028             : {
    4029           0 :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    4030             :                                                   unbound_release_work);
    4031           0 :         struct workqueue_struct *wq = pwq->wq;
    4032           0 :         struct worker_pool *pool = pwq->pool;
    4033           0 :         bool is_last = false;
    4034             : 
    4035             :         /*
    4036             :          * when @pwq is not linked, it doesn't hold any reference to the
    4037             :          * @wq, and @wq is invalid to access.
    4038             :          */
    4039           0 :         if (!list_empty(&pwq->pwqs_node)) {
    4040           0 :                 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    4041             :                         return;
    4042             : 
    4043           0 :                 mutex_lock(&wq->mutex);
    4044           0 :                 list_del_rcu(&pwq->pwqs_node);
    4045           0 :                 is_last = list_empty(&wq->pwqs);
    4046           0 :                 mutex_unlock(&wq->mutex);
    4047             :         }
    4048             : 
    4049           0 :         mutex_lock(&wq_pool_mutex);
    4050           0 :         put_unbound_pool(pool);
    4051           0 :         mutex_unlock(&wq_pool_mutex);
    4052             : 
    4053           0 :         call_rcu(&pwq->rcu, rcu_free_pwq);
    4054             : 
    4055             :         /*
    4056             :          * If we're the last pwq going away, @wq is already dead and no one
    4057             :          * is gonna access it anymore.  Schedule RCU free.
    4058             :          */
    4059           0 :         if (is_last) {
    4060           0 :                 wq_unregister_lockdep(wq);
    4061           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4062             :         }
    4063             : }
    4064             : 
    4065             : /**
    4066             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    4067             :  * @pwq: target pool_workqueue
    4068             :  *
    4069             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    4070             :  * workqueue's saved_max_active and activate inactive work items
    4071             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    4072             :  */
    4073          28 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    4074             : {
    4075          28 :         struct workqueue_struct *wq = pwq->wq;
    4076          28 :         bool freezable = wq->flags & WQ_FREEZABLE;
    4077             :         unsigned long flags;
    4078             : 
    4079             :         /* for @wq->saved_max_active */
    4080             :         lockdep_assert_held(&wq->mutex);
    4081             : 
    4082             :         /* fast exit for non-freezable wqs */
    4083          28 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    4084             :                 return;
    4085             : 
    4086             :         /* this function can be called during early boot w/ irq disabled */
    4087          17 :         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    4088             : 
    4089             :         /*
    4090             :          * During [un]freezing, the caller is responsible for ensuring that
    4091             :          * this function is called at least once after @workqueue_freezing
    4092             :          * is updated and visible.
    4093             :          */
    4094          17 :         if (!freezable || !workqueue_freezing) {
    4095          17 :                 bool kick = false;
    4096             : 
    4097          17 :                 pwq->max_active = wq->saved_max_active;
    4098             : 
    4099          51 :                 while (!list_empty(&pwq->inactive_works) &&
    4100           0 :                        pwq->nr_active < pwq->max_active) {
    4101           0 :                         pwq_activate_first_inactive(pwq);
    4102           0 :                         kick = true;
    4103             :                 }
    4104             : 
    4105             :                 /*
    4106             :                  * Need to kick a worker after thawed or an unbound wq's
    4107             :                  * max_active is bumped. In realtime scenarios, always kicking a
    4108             :                  * worker will cause interference on the isolated cpu cores, so
    4109             :                  * let's kick iff work items were activated.
    4110             :                  */
    4111          17 :                 if (kick)
    4112           0 :                         wake_up_worker(pwq->pool);
    4113             :         } else {
    4114           0 :                 pwq->max_active = 0;
    4115             :         }
    4116             : 
    4117          34 :         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    4118             : }
    4119             : 
    4120             : /* initialize newly allocated @pwq which is associated with @wq and @pool */
    4121          14 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    4122             :                      struct worker_pool *pool)
    4123             : {
    4124          14 :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    4125             : 
    4126          28 :         memset(pwq, 0, sizeof(*pwq));
    4127             : 
    4128          14 :         pwq->pool = pool;
    4129          14 :         pwq->wq = wq;
    4130          14 :         pwq->flush_color = -1;
    4131          14 :         pwq->refcnt = 1;
    4132          28 :         INIT_LIST_HEAD(&pwq->inactive_works);
    4133          28 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    4134          28 :         INIT_LIST_HEAD(&pwq->mayday_node);
    4135          28 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    4136          14 : }
    4137             : 
    4138             : /* sync @pwq with the current state of its associated wq and link it */
    4139          17 : static void link_pwq(struct pool_workqueue *pwq)
    4140             : {
    4141          17 :         struct workqueue_struct *wq = pwq->wq;
    4142             : 
    4143             :         lockdep_assert_held(&wq->mutex);
    4144             : 
    4145             :         /* may be called multiple times, ignore if already linked */
    4146          34 :         if (!list_empty(&pwq->pwqs_node))
    4147             :                 return;
    4148             : 
    4149             :         /* set the matching work_color */
    4150          14 :         pwq->work_color = wq->work_color;
    4151             : 
    4152             :         /* sync max_active to the current setting */
    4153          14 :         pwq_adjust_max_active(pwq);
    4154             : 
    4155             :         /* link in @pwq */
    4156          14 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    4157             : }
    4158             : 
    4159             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    4160           3 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    4161             :                                         const struct workqueue_attrs *attrs)
    4162             : {
    4163             :         struct worker_pool *pool;
    4164             :         struct pool_workqueue *pwq;
    4165             : 
    4166             :         lockdep_assert_held(&wq_pool_mutex);
    4167             : 
    4168           3 :         pool = get_unbound_pool(attrs);
    4169           3 :         if (!pool)
    4170             :                 return NULL;
    4171             : 
    4172           3 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    4173           3 :         if (!pwq) {
    4174           0 :                 put_unbound_pool(pool);
    4175           0 :                 return NULL;
    4176             :         }
    4177             : 
    4178           3 :         init_pwq(pwq, wq, pool);
    4179           3 :         return pwq;
    4180             : }
    4181             : 
    4182             : /**
    4183             :  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
    4184             :  * @attrs: the wq_attrs of the default pwq of the target workqueue
    4185             :  * @node: the target NUMA node
    4186             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    4187             :  * @cpumask: outarg, the resulting cpumask
    4188             :  *
    4189             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    4190             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    4191             :  * calculation.  The result is stored in @cpumask.
    4192             :  *
    4193             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    4194             :  * enabled and @node has online CPUs requested by @attrs, the returned
    4195             :  * cpumask is the intersection of the possible CPUs of @node and
    4196             :  * @attrs->cpumask.
    4197             :  *
    4198             :  * The caller is responsible for ensuring that the cpumask of @node stays
    4199             :  * stable.
    4200             :  *
    4201             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    4202             :  * %false if equal.
    4203             :  */
    4204           3 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    4205             :                                  int cpu_going_down, cpumask_t *cpumask)
    4206             : {
    4207           3 :         if (!wq_numa_enabled || attrs->no_numa)
    4208             :                 goto use_dfl;
    4209             : 
    4210             :         /* does @node have any online CPUs @attrs wants? */
    4211           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    4212           0 :         if (cpu_going_down >= 0)
    4213             :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    4214             : 
    4215           0 :         if (cpumask_empty(cpumask))
    4216             :                 goto use_dfl;
    4217             : 
    4218             :         /* yeap, return possible CPUs in @node that @attrs wants */
    4219           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    4220             : 
    4221           0 :         if (cpumask_empty(cpumask)) {
    4222           0 :                 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
    4223             :                                 "possible intersect\n");
    4224             :                 return false;
    4225             :         }
    4226             : 
    4227           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    4228             : 
    4229             : use_dfl:
    4230           6 :         cpumask_copy(cpumask, attrs->cpumask);
    4231           3 :         return false;
    4232             : }
    4233             : 
    4234             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    4235             : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    4236             :                                                    int node,
    4237             :                                                    struct pool_workqueue *pwq)
    4238             : {
    4239             :         struct pool_workqueue *old_pwq;
    4240             : 
    4241             :         lockdep_assert_held(&wq_pool_mutex);
    4242             :         lockdep_assert_held(&wq->mutex);
    4243             : 
    4244             :         /* link_pwq() can handle duplicate calls */
    4245           3 :         link_pwq(pwq);
    4246             : 
    4247           3 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4248           3 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    4249             :         return old_pwq;
    4250             : }
    4251             : 
    4252             : /* context to store the prepared attrs & pwqs before applying */
    4253             : struct apply_wqattrs_ctx {
    4254             :         struct workqueue_struct *wq;            /* target workqueue */
    4255             :         struct workqueue_attrs  *attrs;         /* attrs to apply */
    4256             :         struct list_head        list;           /* queued for batching commit */
    4257             :         struct pool_workqueue   *dfl_pwq;
    4258             :         struct pool_workqueue   *pwq_tbl[];
    4259             : };
    4260             : 
    4261             : /* free the resources after success or abort */
    4262           3 : static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
    4263             : {
    4264           3 :         if (ctx) {
    4265             :                 int node;
    4266             : 
    4267           3 :                 for_each_node(node)
    4268           3 :                         put_pwq_unlocked(ctx->pwq_tbl[node]);
    4269           3 :                 put_pwq_unlocked(ctx->dfl_pwq);
    4270             : 
    4271           6 :                 free_workqueue_attrs(ctx->attrs);
    4272             : 
    4273           3 :                 kfree(ctx);
    4274             :         }
    4275           3 : }
    4276             : 
    4277             : /* allocate the attrs and pwqs for later installation */
    4278             : static struct apply_wqattrs_ctx *
    4279           3 : apply_wqattrs_prepare(struct workqueue_struct *wq,
    4280             :                       const struct workqueue_attrs *attrs,
    4281             :                       const cpumask_var_t unbound_cpumask)
    4282             : {
    4283             :         struct apply_wqattrs_ctx *ctx;
    4284             :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    4285             :         int node;
    4286             : 
    4287             :         lockdep_assert_held(&wq_pool_mutex);
    4288             : 
    4289           3 :         ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
    4290             : 
    4291           3 :         new_attrs = alloc_workqueue_attrs();
    4292           3 :         tmp_attrs = alloc_workqueue_attrs();
    4293           3 :         if (!ctx || !new_attrs || !tmp_attrs)
    4294             :                 goto out_free;
    4295             : 
    4296             :         /*
    4297             :          * Calculate the attrs of the default pwq with unbound_cpumask
    4298             :          * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
    4299             :          * If the user configured cpumask doesn't overlap with the
    4300             :          * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
    4301             :          */
    4302           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4303           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
    4304           6 :         if (unlikely(cpumask_empty(new_attrs->cpumask)))
    4305           0 :                 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
    4306             : 
    4307             :         /*
    4308             :          * We may create multiple pwqs with differing cpumasks.  Make a
    4309             :          * copy of @new_attrs which will be modified and used to obtain
    4310             :          * pools.
    4311             :          */
    4312           3 :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    4313             : 
    4314             :         /*
    4315             :          * If something goes wrong during CPU up/down, we'll fall back to
    4316             :          * the default pwq covering whole @attrs->cpumask.  Always create
    4317             :          * it even if we don't use it immediately.
    4318             :          */
    4319           3 :         ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    4320           3 :         if (!ctx->dfl_pwq)
    4321             :                 goto out_free;
    4322             : 
    4323           6 :         for_each_node(node) {
    4324           3 :                 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
    4325           0 :                         ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    4326           0 :                         if (!ctx->pwq_tbl[node])
    4327             :                                 goto out_free;
    4328             :                 } else {
    4329           3 :                         ctx->dfl_pwq->refcnt++;
    4330           3 :                         ctx->pwq_tbl[node] = ctx->dfl_pwq;
    4331             :                 }
    4332             :         }
    4333             : 
    4334             :         /* save the user configured attrs and sanitize it. */
    4335           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4336           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    4337           3 :         ctx->attrs = new_attrs;
    4338             : 
    4339           3 :         ctx->wq = wq;
    4340           3 :         free_workqueue_attrs(tmp_attrs);
    4341           3 :         return ctx;
    4342             : 
    4343             : out_free:
    4344           0 :         free_workqueue_attrs(tmp_attrs);
    4345           0 :         free_workqueue_attrs(new_attrs);
    4346           0 :         apply_wqattrs_cleanup(ctx);
    4347           0 :         return NULL;
    4348             : }
    4349             : 
    4350             : /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
    4351           3 : static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
    4352             : {
    4353             :         int node;
    4354             : 
    4355             :         /* all pwqs have been created successfully, let's install'em */
    4356           3 :         mutex_lock(&ctx->wq->mutex);
    4357             : 
    4358           6 :         copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
    4359             : 
    4360             :         /* save the previous pwq and install the new one */
    4361           6 :         for_each_node(node)
    4362           6 :                 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
    4363             :                                                           ctx->pwq_tbl[node]);
    4364             : 
    4365             :         /* @dfl_pwq might not have been used, ensure it's linked */
    4366           3 :         link_pwq(ctx->dfl_pwq);
    4367           3 :         swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
    4368             : 
    4369           3 :         mutex_unlock(&ctx->wq->mutex);
    4370           3 : }
    4371             : 
    4372             : static void apply_wqattrs_lock(void)
    4373             : {
    4374             :         /* CPUs should stay stable across pwq creations and installations */
    4375             :         cpus_read_lock();
    4376           0 :         mutex_lock(&wq_pool_mutex);
    4377             : }
    4378             : 
    4379             : static void apply_wqattrs_unlock(void)
    4380             : {
    4381           0 :         mutex_unlock(&wq_pool_mutex);
    4382             :         cpus_read_unlock();
    4383             : }
    4384             : 
    4385           3 : static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
    4386             :                                         const struct workqueue_attrs *attrs)
    4387             : {
    4388             :         struct apply_wqattrs_ctx *ctx;
    4389             : 
    4390             :         /* only unbound workqueues can change attributes */
    4391           3 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    4392             :                 return -EINVAL;
    4393             : 
    4394             :         /* creating multiple pwqs breaks ordering guarantee */
    4395           6 :         if (!list_empty(&wq->pwqs)) {
    4396           0 :                 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4397             :                         return -EINVAL;
    4398             : 
    4399           0 :                 wq->flags &= ~__WQ_ORDERED;
    4400             :         }
    4401             : 
    4402           3 :         ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
    4403           3 :         if (!ctx)
    4404             :                 return -ENOMEM;
    4405             : 
    4406             :         /* the ctx has been prepared successfully, let's commit it */
    4407           3 :         apply_wqattrs_commit(ctx);
    4408           3 :         apply_wqattrs_cleanup(ctx);
    4409             : 
    4410           3 :         return 0;
    4411             : }
    4412             : 
    4413             : /**
    4414             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    4415             :  * @wq: the target workqueue
    4416             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    4417             :  *
    4418             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    4419             :  * machines, this function maps a separate pwq to each NUMA node with
    4420             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    4421             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    4422             :  * items finish.  Note that a work item which repeatedly requeues itself
    4423             :  * back-to-back will stay on its current pwq.
    4424             :  *
    4425             :  * Performs GFP_KERNEL allocations.
    4426             :  *
    4427             :  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
    4428             :  *
    4429             :  * Return: 0 on success and -errno on failure.
    4430             :  */
    4431           3 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    4432             :                           const struct workqueue_attrs *attrs)
    4433             : {
    4434             :         int ret;
    4435             : 
    4436             :         lockdep_assert_cpus_held();
    4437             : 
    4438           3 :         mutex_lock(&wq_pool_mutex);
    4439           3 :         ret = apply_workqueue_attrs_locked(wq, attrs);
    4440           3 :         mutex_unlock(&wq_pool_mutex);
    4441             : 
    4442           3 :         return ret;
    4443             : }
    4444             : 
    4445             : /**
    4446             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    4447             :  * @wq: the target workqueue
    4448             :  * @cpu: the CPU coming up or going down
    4449             :  * @online: whether @cpu is coming up or going down
    4450             :  *
    4451             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    4452             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    4453             :  * @wq accordingly.
    4454             :  *
    4455             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    4456             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    4457             :  * correct.
    4458             :  *
    4459             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    4460             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    4461             :  * already executing the work items for the workqueue will lose their CPU
    4462             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    4463             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    4464             :  * affinity, it's the user's responsibility to flush the work item from
    4465             :  * CPU_DOWN_PREPARE.
    4466             :  */
    4467           8 : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    4468             :                                    bool online)
    4469             : {
    4470           8 :         int node = cpu_to_node(cpu);
    4471           8 :         int cpu_off = online ? -1 : cpu;
    4472           8 :         struct pool_workqueue *old_pwq = NULL, *pwq;
    4473             :         struct workqueue_attrs *target_attrs;
    4474             :         cpumask_t *cpumask;
    4475             : 
    4476             :         lockdep_assert_held(&wq_pool_mutex);
    4477             : 
    4478           8 :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
    4479           0 :             wq->unbound_attrs->no_numa)
    4480             :                 return;
    4481             : 
    4482             :         /*
    4483             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    4484             :          * Let's use a preallocated one.  The following buf is protected by
    4485             :          * CPU hotplug exclusion.
    4486             :          */
    4487           0 :         target_attrs = wq_update_unbound_numa_attrs_buf;
    4488           0 :         cpumask = target_attrs->cpumask;
    4489             : 
    4490           0 :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    4491           0 :         pwq = unbound_pwq_by_node(wq, node);
    4492             : 
    4493             :         /*
    4494             :          * Let's determine what needs to be done.  If the target cpumask is
    4495             :          * different from the default pwq's, we need to compare it to @pwq's
    4496             :          * and create a new one if they don't match.  If the target cpumask
    4497             :          * equals the default pwq's, the default pwq should be used.
    4498             :          */
    4499           0 :         if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
    4500           0 :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    4501             :                         return;
    4502             :         } else {
    4503             :                 goto use_dfl_pwq;
    4504             :         }
    4505             : 
    4506             :         /* create a new pwq */
    4507           0 :         pwq = alloc_unbound_pwq(wq, target_attrs);
    4508           0 :         if (!pwq) {
    4509           0 :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    4510             :                         wq->name);
    4511           0 :                 goto use_dfl_pwq;
    4512             :         }
    4513             : 
    4514             :         /* Install the new pwq. */
    4515           0 :         mutex_lock(&wq->mutex);
    4516           0 :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    4517           0 :         goto out_unlock;
    4518             : 
    4519             : use_dfl_pwq:
    4520           0 :         mutex_lock(&wq->mutex);
    4521           0 :         raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4522           0 :         get_pwq(wq->dfl_pwq);
    4523           0 :         raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4524           0 :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4525             : out_unlock:
    4526           0 :         mutex_unlock(&wq->mutex);
    4527           0 :         put_pwq_unlocked(old_pwq);
    4528             : }
    4529             : 
    4530          14 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4531             : {
    4532          14 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4533             :         int cpu, ret;
    4534             : 
    4535          14 :         if (!(wq->flags & WQ_UNBOUND)) {
    4536          11 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4537          11 :                 if (!wq->cpu_pwqs)
    4538             :                         return -ENOMEM;
    4539             : 
    4540          11 :                 for_each_possible_cpu(cpu) {
    4541          11 :                         struct pool_workqueue *pwq =
    4542          11 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4543          11 :                         struct worker_pool *cpu_pools =
    4544          11 :                                 per_cpu(cpu_worker_pools, cpu);
    4545             : 
    4546          11 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4547             : 
    4548          11 :                         mutex_lock(&wq->mutex);
    4549          11 :                         link_pwq(pwq);
    4550          11 :                         mutex_unlock(&wq->mutex);
    4551             :                 }
    4552             :                 return 0;
    4553             :         }
    4554             : 
    4555             :         cpus_read_lock();
    4556           3 :         if (wq->flags & __WQ_ORDERED) {
    4557           1 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4558             :                 /* there should only be single pwq for ordering guarantee */
    4559           1 :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4560             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4561             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4562             :         } else {
    4563           2 :                 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4564             :         }
    4565             :         cpus_read_unlock();
    4566             : 
    4567             :         return ret;
    4568             : }
    4569             : 
    4570          14 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4571             :                                const char *name)
    4572             : {
    4573          14 :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4574             : 
    4575          14 :         if (max_active < 1 || max_active > lim)
    4576           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4577             :                         max_active, name, 1, lim);
    4578             : 
    4579          14 :         return clamp_val(max_active, 1, lim);
    4580             : }
    4581             : 
    4582             : /*
    4583             :  * Workqueues which may be used during memory reclaim should have a rescuer
    4584             :  * to guarantee forward progress.
    4585             :  */
    4586          14 : static int init_rescuer(struct workqueue_struct *wq)
    4587             : {
    4588             :         struct worker *rescuer;
    4589             :         int ret;
    4590             : 
    4591          14 :         if (!(wq->flags & WQ_MEM_RECLAIM))
    4592             :                 return 0;
    4593             : 
    4594           4 :         rescuer = alloc_worker(NUMA_NO_NODE);
    4595           4 :         if (!rescuer) {
    4596           0 :                 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
    4597             :                        wq->name);
    4598           0 :                 return -ENOMEM;
    4599             :         }
    4600             : 
    4601           4 :         rescuer->rescue_wq = wq;
    4602           4 :         rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
    4603           8 :         if (IS_ERR(rescuer->task)) {
    4604           0 :                 ret = PTR_ERR(rescuer->task);
    4605           0 :                 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
    4606             :                        wq->name, ERR_PTR(ret));
    4607           0 :                 kfree(rescuer);
    4608           0 :                 return ret;
    4609             :         }
    4610             : 
    4611           4 :         wq->rescuer = rescuer;
    4612           4 :         kthread_bind_mask(rescuer->task, cpu_possible_mask);
    4613           4 :         wake_up_process(rescuer->task);
    4614             : 
    4615           4 :         return 0;
    4616             : }
    4617             : 
    4618             : __printf(1, 4)
    4619          14 : struct workqueue_struct *alloc_workqueue(const char *fmt,
    4620             :                                          unsigned int flags,
    4621             :                                          int max_active, ...)
    4622             : {
    4623          14 :         size_t tbl_size = 0;
    4624             :         va_list args;
    4625             :         struct workqueue_struct *wq;
    4626             :         struct pool_workqueue *pwq;
    4627             : 
    4628             :         /*
    4629             :          * Unbound && max_active == 1 used to imply ordered, which is no
    4630             :          * longer the case on NUMA machines due to per-node pools.  While
    4631             :          * alloc_ordered_workqueue() is the right way to create an ordered
    4632             :          * workqueue, keep the previous behavior to avoid subtle breakages
    4633             :          * on NUMA.
    4634             :          */
    4635          14 :         if ((flags & WQ_UNBOUND) && max_active == 1)
    4636           1 :                 flags |= __WQ_ORDERED;
    4637             : 
    4638             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4639          14 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4640           0 :                 flags |= WQ_UNBOUND;
    4641             : 
    4642             :         /* allocate wq and format name */
    4643          14 :         if (flags & WQ_UNBOUND)
    4644           3 :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4645             : 
    4646          14 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4647          14 :         if (!wq)
    4648             :                 return NULL;
    4649             : 
    4650          14 :         if (flags & WQ_UNBOUND) {
    4651           3 :                 wq->unbound_attrs = alloc_workqueue_attrs();
    4652           3 :                 if (!wq->unbound_attrs)
    4653             :                         goto err_free_wq;
    4654             :         }
    4655             : 
    4656          14 :         va_start(args, max_active);
    4657          14 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4658          14 :         va_end(args);
    4659             : 
    4660          14 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4661          14 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4662             : 
    4663             :         /* init wq */
    4664          14 :         wq->flags = flags;
    4665          14 :         wq->saved_max_active = max_active;
    4666          14 :         mutex_init(&wq->mutex);
    4667          28 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4668          28 :         INIT_LIST_HEAD(&wq->pwqs);
    4669          28 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4670          28 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4671          28 :         INIT_LIST_HEAD(&wq->maydays);
    4672             : 
    4673          14 :         wq_init_lockdep(wq);
    4674          28 :         INIT_LIST_HEAD(&wq->list);
    4675             : 
    4676          14 :         if (alloc_and_link_pwqs(wq) < 0)
    4677             :                 goto err_unreg_lockdep;
    4678             : 
    4679          14 :         if (wq_online && init_rescuer(wq) < 0)
    4680             :                 goto err_destroy;
    4681             : 
    4682          14 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4683             :                 goto err_destroy;
    4684             : 
    4685             :         /*
    4686             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4687             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4688             :          * list.
    4689             :          */
    4690          14 :         mutex_lock(&wq_pool_mutex);
    4691             : 
    4692          14 :         mutex_lock(&wq->mutex);
    4693          28 :         for_each_pwq(pwq, wq)
    4694          14 :                 pwq_adjust_max_active(pwq);
    4695          14 :         mutex_unlock(&wq->mutex);
    4696             : 
    4697          28 :         list_add_tail_rcu(&wq->list, &workqueues);
    4698             : 
    4699          14 :         mutex_unlock(&wq_pool_mutex);
    4700             : 
    4701          14 :         return wq;
    4702             : 
    4703             : err_unreg_lockdep:
    4704             :         wq_unregister_lockdep(wq);
    4705             :         wq_free_lockdep(wq);
    4706             : err_free_wq:
    4707           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4708           0 :         kfree(wq);
    4709           0 :         return NULL;
    4710             : err_destroy:
    4711           0 :         destroy_workqueue(wq);
    4712           0 :         return NULL;
    4713             : }
    4714             : EXPORT_SYMBOL_GPL(alloc_workqueue);
    4715             : 
    4716             : static bool pwq_busy(struct pool_workqueue *pwq)
    4717             : {
    4718             :         int i;
    4719             : 
    4720           0 :         for (i = 0; i < WORK_NR_COLORS; i++)
    4721           0 :                 if (pwq->nr_in_flight[i])
    4722             :                         return true;
    4723             : 
    4724           0 :         if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
    4725             :                 return true;
    4726           0 :         if (pwq->nr_active || !list_empty(&pwq->inactive_works))
    4727             :                 return true;
    4728             : 
    4729             :         return false;
    4730             : }
    4731             : 
    4732             : /**
    4733             :  * destroy_workqueue - safely terminate a workqueue
    4734             :  * @wq: target workqueue
    4735             :  *
    4736             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4737             :  */
    4738           0 : void destroy_workqueue(struct workqueue_struct *wq)
    4739             : {
    4740             :         struct pool_workqueue *pwq;
    4741             :         int node;
    4742             : 
    4743             :         /*
    4744             :          * Remove it from sysfs first so that sanity check failure doesn't
    4745             :          * lead to sysfs name conflicts.
    4746             :          */
    4747           0 :         workqueue_sysfs_unregister(wq);
    4748             : 
    4749             :         /* mark the workqueue destruction is in progress */
    4750           0 :         mutex_lock(&wq->mutex);
    4751           0 :         wq->flags |= __WQ_DESTROYING;
    4752           0 :         mutex_unlock(&wq->mutex);
    4753             : 
    4754             :         /* drain it before proceeding with destruction */
    4755           0 :         drain_workqueue(wq);
    4756             : 
    4757             :         /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
    4758           0 :         if (wq->rescuer) {
    4759           0 :                 struct worker *rescuer = wq->rescuer;
    4760             : 
    4761             :                 /* this prevents new queueing */
    4762           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    4763           0 :                 wq->rescuer = NULL;
    4764           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    4765             : 
    4766             :                 /* rescuer will empty maydays list before exiting */
    4767           0 :                 kthread_stop(rescuer->task);
    4768           0 :                 kfree(rescuer);
    4769             :         }
    4770             : 
    4771             :         /*
    4772             :          * Sanity checks - grab all the locks so that we wait for all
    4773             :          * in-flight operations which may do put_pwq().
    4774             :          */
    4775           0 :         mutex_lock(&wq_pool_mutex);
    4776           0 :         mutex_lock(&wq->mutex);
    4777           0 :         for_each_pwq(pwq, wq) {
    4778           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    4779           0 :                 if (WARN_ON(pwq_busy(pwq))) {
    4780           0 :                         pr_warn("%s: %s has the following busy pwq\n",
    4781             :                                 __func__, wq->name);
    4782           0 :                         show_pwq(pwq);
    4783           0 :                         raw_spin_unlock_irq(&pwq->pool->lock);
    4784           0 :                         mutex_unlock(&wq->mutex);
    4785           0 :                         mutex_unlock(&wq_pool_mutex);
    4786           0 :                         show_one_workqueue(wq);
    4787           0 :                         return;
    4788             :                 }
    4789           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    4790             :         }
    4791           0 :         mutex_unlock(&wq->mutex);
    4792             : 
    4793             :         /*
    4794             :          * wq list is used to freeze wq, remove from list after
    4795             :          * flushing is complete in case freeze races us.
    4796             :          */
    4797           0 :         list_del_rcu(&wq->list);
    4798           0 :         mutex_unlock(&wq_pool_mutex);
    4799             : 
    4800           0 :         if (!(wq->flags & WQ_UNBOUND)) {
    4801           0 :                 wq_unregister_lockdep(wq);
    4802             :                 /*
    4803             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4804             :                  * schedule RCU free.
    4805             :                  */
    4806           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4807             :         } else {
    4808             :                 /*
    4809             :                  * We're the sole accessor of @wq at this point.  Directly
    4810             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4811             :                  * @wq will be freed when the last pwq is released.
    4812             :                  */
    4813           0 :                 for_each_node(node) {
    4814           0 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4815           0 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4816           0 :                         put_pwq_unlocked(pwq);
    4817             :                 }
    4818             : 
    4819             :                 /*
    4820             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4821             :                  * put.  Don't access it afterwards.
    4822             :                  */
    4823           0 :                 pwq = wq->dfl_pwq;
    4824           0 :                 wq->dfl_pwq = NULL;
    4825           0 :                 put_pwq_unlocked(pwq);
    4826             :         }
    4827             : }
    4828             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4829             : 
    4830             : /**
    4831             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4832             :  * @wq: target workqueue
    4833             :  * @max_active: new max_active value.
    4834             :  *
    4835             :  * Set max_active of @wq to @max_active.
    4836             :  *
    4837             :  * CONTEXT:
    4838             :  * Don't call from IRQ context.
    4839             :  */
    4840           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4841             : {
    4842             :         struct pool_workqueue *pwq;
    4843             : 
    4844             :         /* disallow meddling with max_active for ordered workqueues */
    4845           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4846             :                 return;
    4847             : 
    4848           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4849             : 
    4850           0 :         mutex_lock(&wq->mutex);
    4851             : 
    4852           0 :         wq->flags &= ~__WQ_ORDERED;
    4853           0 :         wq->saved_max_active = max_active;
    4854             : 
    4855           0 :         for_each_pwq(pwq, wq)
    4856           0 :                 pwq_adjust_max_active(pwq);
    4857             : 
    4858           0 :         mutex_unlock(&wq->mutex);
    4859             : }
    4860             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4861             : 
    4862             : /**
    4863             :  * current_work - retrieve %current task's work struct
    4864             :  *
    4865             :  * Determine if %current task is a workqueue worker and what it's working on.
    4866             :  * Useful to find out the context that the %current task is running in.
    4867             :  *
    4868             :  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
    4869             :  */
    4870           0 : struct work_struct *current_work(void)
    4871             : {
    4872           0 :         struct worker *worker = current_wq_worker();
    4873             : 
    4874           0 :         return worker ? worker->current_work : NULL;
    4875             : }
    4876             : EXPORT_SYMBOL(current_work);
    4877             : 
    4878             : /**
    4879             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4880             :  *
    4881             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4882             :  * work functions to determine whether it's being run off the rescuer task.
    4883             :  *
    4884             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4885             :  */
    4886           0 : bool current_is_workqueue_rescuer(void)
    4887             : {
    4888           0 :         struct worker *worker = current_wq_worker();
    4889             : 
    4890           0 :         return worker && worker->rescue_wq;
    4891             : }
    4892             : 
    4893             : /**
    4894             :  * workqueue_congested - test whether a workqueue is congested
    4895             :  * @cpu: CPU in question
    4896             :  * @wq: target workqueue
    4897             :  *
    4898             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4899             :  * no synchronization around this function and the test result is
    4900             :  * unreliable and only useful as advisory hints or for debugging.
    4901             :  *
    4902             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4903             :  * Note that both per-cpu and unbound workqueues may be associated with
    4904             :  * multiple pool_workqueues which have separate congested states.  A
    4905             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4906             :  * contested on other CPUs / NUMA nodes.
    4907             :  *
    4908             :  * Return:
    4909             :  * %true if congested, %false otherwise.
    4910             :  */
    4911           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4912             : {
    4913             :         struct pool_workqueue *pwq;
    4914             :         bool ret;
    4915             : 
    4916             :         rcu_read_lock();
    4917           0 :         preempt_disable();
    4918             : 
    4919             :         if (cpu == WORK_CPU_UNBOUND)
    4920             :                 cpu = smp_processor_id();
    4921             : 
    4922           0 :         if (!(wq->flags & WQ_UNBOUND))
    4923           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4924             :         else
    4925           0 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4926             : 
    4927           0 :         ret = !list_empty(&pwq->inactive_works);
    4928           0 :         preempt_enable();
    4929             :         rcu_read_unlock();
    4930             : 
    4931           0 :         return ret;
    4932             : }
    4933             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4934             : 
    4935             : /**
    4936             :  * work_busy - test whether a work is currently pending or running
    4937             :  * @work: the work to be tested
    4938             :  *
    4939             :  * Test whether @work is currently pending or running.  There is no
    4940             :  * synchronization around this function and the test result is
    4941             :  * unreliable and only useful as advisory hints or for debugging.
    4942             :  *
    4943             :  * Return:
    4944             :  * OR'd bitmask of WORK_BUSY_* bits.
    4945             :  */
    4946           0 : unsigned int work_busy(struct work_struct *work)
    4947             : {
    4948             :         struct worker_pool *pool;
    4949             :         unsigned long flags;
    4950           0 :         unsigned int ret = 0;
    4951             : 
    4952           0 :         if (work_pending(work))
    4953           0 :                 ret |= WORK_BUSY_PENDING;
    4954             : 
    4955             :         rcu_read_lock();
    4956           0 :         pool = get_work_pool(work);
    4957           0 :         if (pool) {
    4958           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4959           0 :                 if (find_worker_executing_work(pool, work))
    4960           0 :                         ret |= WORK_BUSY_RUNNING;
    4961           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4962             :         }
    4963             :         rcu_read_unlock();
    4964             : 
    4965           0 :         return ret;
    4966             : }
    4967             : EXPORT_SYMBOL_GPL(work_busy);
    4968             : 
    4969             : /**
    4970             :  * set_worker_desc - set description for the current work item
    4971             :  * @fmt: printf-style format string
    4972             :  * @...: arguments for the format string
    4973             :  *
    4974             :  * This function can be called by a running work function to describe what
    4975             :  * the work item is about.  If the worker task gets dumped, this
    4976             :  * information will be printed out together to help debugging.  The
    4977             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4978             :  */
    4979           0 : void set_worker_desc(const char *fmt, ...)
    4980             : {
    4981           0 :         struct worker *worker = current_wq_worker();
    4982             :         va_list args;
    4983             : 
    4984           0 :         if (worker) {
    4985           0 :                 va_start(args, fmt);
    4986           0 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4987           0 :                 va_end(args);
    4988             :         }
    4989           0 : }
    4990             : EXPORT_SYMBOL_GPL(set_worker_desc);
    4991             : 
    4992             : /**
    4993             :  * print_worker_info - print out worker information and description
    4994             :  * @log_lvl: the log level to use when printing
    4995             :  * @task: target task
    4996             :  *
    4997             :  * If @task is a worker and currently executing a work item, print out the
    4998             :  * name of the workqueue being serviced and worker description set with
    4999             :  * set_worker_desc() by the currently executing work item.
    5000             :  *
    5001             :  * This function can be safely called on any task as long as the
    5002             :  * task_struct itself is accessible.  While safe, this function isn't
    5003             :  * synchronized and may print out mixups or garbages of limited length.
    5004             :  */
    5005           1 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    5006             : {
    5007           1 :         work_func_t *fn = NULL;
    5008           1 :         char name[WQ_NAME_LEN] = { };
    5009           1 :         char desc[WORKER_DESC_LEN] = { };
    5010           1 :         struct pool_workqueue *pwq = NULL;
    5011           1 :         struct workqueue_struct *wq = NULL;
    5012             :         struct worker *worker;
    5013             : 
    5014           1 :         if (!(task->flags & PF_WQ_WORKER))
    5015           1 :                 return;
    5016             : 
    5017             :         /*
    5018             :          * This function is called without any synchronization and @task
    5019             :          * could be in any state.  Be careful with dereferences.
    5020             :          */
    5021           0 :         worker = kthread_probe_data(task);
    5022             : 
    5023             :         /*
    5024             :          * Carefully copy the associated workqueue's workfn, name and desc.
    5025             :          * Keep the original last '\0' in case the original is garbage.
    5026             :          */
    5027           0 :         copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
    5028           0 :         copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
    5029           0 :         copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
    5030           0 :         copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
    5031           0 :         copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
    5032             : 
    5033           0 :         if (fn || name[0] || desc[0]) {
    5034           0 :                 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
    5035           0 :                 if (strcmp(name, desc))
    5036           0 :                         pr_cont(" (%s)", desc);
    5037           0 :                 pr_cont("\n");
    5038             :         }
    5039             : }
    5040             : 
    5041           0 : static void pr_cont_pool_info(struct worker_pool *pool)
    5042             : {
    5043           0 :         pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
    5044           0 :         if (pool->node != NUMA_NO_NODE)
    5045           0 :                 pr_cont(" node=%d", pool->node);
    5046           0 :         pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
    5047           0 : }
    5048             : 
    5049             : struct pr_cont_work_struct {
    5050             :         bool comma;
    5051             :         work_func_t func;
    5052             :         long ctr;
    5053             : };
    5054             : 
    5055           0 : static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
    5056             : {
    5057           0 :         if (!pcwsp->ctr)
    5058             :                 goto out_record;
    5059           0 :         if (func == pcwsp->func) {
    5060           0 :                 pcwsp->ctr++;
    5061           0 :                 return;
    5062             :         }
    5063           0 :         if (pcwsp->ctr == 1)
    5064           0 :                 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
    5065             :         else
    5066           0 :                 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
    5067           0 :         pcwsp->ctr = 0;
    5068             : out_record:
    5069           0 :         if ((long)func == -1L)
    5070             :                 return;
    5071           0 :         pcwsp->comma = comma;
    5072           0 :         pcwsp->func = func;
    5073           0 :         pcwsp->ctr = 1;
    5074             : }
    5075             : 
    5076           0 : static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
    5077             : {
    5078           0 :         if (work->func == wq_barrier_func) {
    5079             :                 struct wq_barrier *barr;
    5080             : 
    5081           0 :                 barr = container_of(work, struct wq_barrier, work);
    5082             : 
    5083           0 :                 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    5084           0 :                 pr_cont("%s BAR(%d)", comma ? "," : "",
    5085             :                         task_pid_nr(barr->task));
    5086             :         } else {
    5087           0 :                 if (!comma)
    5088           0 :                         pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    5089           0 :                 pr_cont_work_flush(comma, work->func, pcwsp);
    5090             :         }
    5091           0 : }
    5092             : 
    5093           0 : static void show_pwq(struct pool_workqueue *pwq)
    5094             : {
    5095           0 :         struct pr_cont_work_struct pcws = { .ctr = 0, };
    5096           0 :         struct worker_pool *pool = pwq->pool;
    5097             :         struct work_struct *work;
    5098             :         struct worker *worker;
    5099           0 :         bool has_in_flight = false, has_pending = false;
    5100             :         int bkt;
    5101             : 
    5102           0 :         pr_info("  pwq %d:", pool->id);
    5103           0 :         pr_cont_pool_info(pool);
    5104             : 
    5105           0 :         pr_cont(" active=%d/%d refcnt=%d%s\n",
    5106             :                 pwq->nr_active, pwq->max_active, pwq->refcnt,
    5107             :                 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
    5108             : 
    5109           0 :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    5110           0 :                 if (worker->current_pwq == pwq) {
    5111             :                         has_in_flight = true;
    5112             :                         break;
    5113             :                 }
    5114             :         }
    5115           0 :         if (has_in_flight) {
    5116           0 :                 bool comma = false;
    5117             : 
    5118           0 :                 pr_info("    in-flight:");
    5119           0 :                 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    5120           0 :                         if (worker->current_pwq != pwq)
    5121           0 :                                 continue;
    5122             : 
    5123           0 :                         pr_cont("%s %d%s:%ps", comma ? "," : "",
    5124             :                                 task_pid_nr(worker->task),
    5125             :                                 worker->rescue_wq ? "(RESCUER)" : "",
    5126             :                                 worker->current_func);
    5127           0 :                         list_for_each_entry(work, &worker->scheduled, entry)
    5128           0 :                                 pr_cont_work(false, work, &pcws);
    5129           0 :                         pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    5130           0 :                         comma = true;
    5131             :                 }
    5132           0 :                 pr_cont("\n");
    5133             :         }
    5134             : 
    5135           0 :         list_for_each_entry(work, &pool->worklist, entry) {
    5136           0 :                 if (get_work_pwq(work) == pwq) {
    5137             :                         has_pending = true;
    5138             :                         break;
    5139             :                 }
    5140             :         }
    5141           0 :         if (has_pending) {
    5142           0 :                 bool comma = false;
    5143             : 
    5144           0 :                 pr_info("    pending:");
    5145           0 :                 list_for_each_entry(work, &pool->worklist, entry) {
    5146           0 :                         if (get_work_pwq(work) != pwq)
    5147           0 :                                 continue;
    5148             : 
    5149           0 :                         pr_cont_work(comma, work, &pcws);
    5150           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    5151             :                 }
    5152           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    5153           0 :                 pr_cont("\n");
    5154             :         }
    5155             : 
    5156           0 :         if (!list_empty(&pwq->inactive_works)) {
    5157           0 :                 bool comma = false;
    5158             : 
    5159           0 :                 pr_info("    inactive:");
    5160           0 :                 list_for_each_entry(work, &pwq->inactive_works, entry) {
    5161           0 :                         pr_cont_work(comma, work, &pcws);
    5162           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    5163             :                 }
    5164           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    5165           0 :                 pr_cont("\n");
    5166             :         }
    5167           0 : }
    5168             : 
    5169             : /**
    5170             :  * show_one_workqueue - dump state of specified workqueue
    5171             :  * @wq: workqueue whose state will be printed
    5172             :  */
    5173           0 : void show_one_workqueue(struct workqueue_struct *wq)
    5174             : {
    5175             :         struct pool_workqueue *pwq;
    5176           0 :         bool idle = true;
    5177             :         unsigned long flags;
    5178             : 
    5179           0 :         for_each_pwq(pwq, wq) {
    5180           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    5181             :                         idle = false;
    5182             :                         break;
    5183             :                 }
    5184             :         }
    5185           0 :         if (idle) /* Nothing to print for idle workqueue */
    5186             :                 return;
    5187             : 
    5188           0 :         pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
    5189             : 
    5190           0 :         for_each_pwq(pwq, wq) {
    5191           0 :                 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    5192           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    5193             :                         /*
    5194             :                          * Defer printing to avoid deadlocks in console
    5195             :                          * drivers that queue work while holding locks
    5196             :                          * also taken in their write paths.
    5197             :                          */
    5198           0 :                         printk_deferred_enter();
    5199           0 :                         show_pwq(pwq);
    5200           0 :                         printk_deferred_exit();
    5201             :                 }
    5202           0 :                 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    5203             :                 /*
    5204             :                  * We could be printing a lot from atomic context, e.g.
    5205             :                  * sysrq-t -> show_all_workqueues(). Avoid triggering
    5206             :                  * hard lockup.
    5207             :                  */
    5208             :                 touch_nmi_watchdog();
    5209             :         }
    5210             : 
    5211             : }
    5212             : 
    5213             : /**
    5214             :  * show_one_worker_pool - dump state of specified worker pool
    5215             :  * @pool: worker pool whose state will be printed
    5216             :  */
    5217           0 : static void show_one_worker_pool(struct worker_pool *pool)
    5218             : {
    5219             :         struct worker *worker;
    5220           0 :         bool first = true;
    5221             :         unsigned long flags;
    5222           0 :         unsigned long hung = 0;
    5223             : 
    5224           0 :         raw_spin_lock_irqsave(&pool->lock, flags);
    5225           0 :         if (pool->nr_workers == pool->nr_idle)
    5226             :                 goto next_pool;
    5227             : 
    5228             :         /* How long the first pending work is waiting for a worker. */
    5229           0 :         if (!list_empty(&pool->worklist))
    5230           0 :                 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
    5231             : 
    5232             :         /*
    5233             :          * Defer printing to avoid deadlocks in console drivers that
    5234             :          * queue work while holding locks also taken in their write
    5235             :          * paths.
    5236             :          */
    5237           0 :         printk_deferred_enter();
    5238           0 :         pr_info("pool %d:", pool->id);
    5239           0 :         pr_cont_pool_info(pool);
    5240           0 :         pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
    5241           0 :         if (pool->manager)
    5242           0 :                 pr_cont(" manager: %d",
    5243             :                         task_pid_nr(pool->manager->task));
    5244           0 :         list_for_each_entry(worker, &pool->idle_list, entry) {
    5245           0 :                 pr_cont(" %s%d", first ? "idle: " : "",
    5246             :                         task_pid_nr(worker->task));
    5247           0 :                 first = false;
    5248             :         }
    5249           0 :         pr_cont("\n");
    5250           0 :         printk_deferred_exit();
    5251             : next_pool:
    5252           0 :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    5253             :         /*
    5254             :          * We could be printing a lot from atomic context, e.g.
    5255             :          * sysrq-t -> show_all_workqueues(). Avoid triggering
    5256             :          * hard lockup.
    5257             :          */
    5258             :         touch_nmi_watchdog();
    5259             : 
    5260           0 : }
    5261             : 
    5262             : /**
    5263             :  * show_all_workqueues - dump workqueue state
    5264             :  *
    5265             :  * Called from a sysrq handler and prints out all busy workqueues and pools.
    5266             :  */
    5267           0 : void show_all_workqueues(void)
    5268             : {
    5269             :         struct workqueue_struct *wq;
    5270             :         struct worker_pool *pool;
    5271             :         int pi;
    5272             : 
    5273             :         rcu_read_lock();
    5274             : 
    5275           0 :         pr_info("Showing busy workqueues and worker pools:\n");
    5276             : 
    5277           0 :         list_for_each_entry_rcu(wq, &workqueues, list)
    5278           0 :                 show_one_workqueue(wq);
    5279             : 
    5280           0 :         for_each_pool(pool, pi)
    5281           0 :                 show_one_worker_pool(pool);
    5282             : 
    5283             :         rcu_read_unlock();
    5284           0 : }
    5285             : 
    5286             : /**
    5287             :  * show_freezable_workqueues - dump freezable workqueue state
    5288             :  *
    5289             :  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
    5290             :  * still busy.
    5291             :  */
    5292           0 : void show_freezable_workqueues(void)
    5293             : {
    5294             :         struct workqueue_struct *wq;
    5295             : 
    5296             :         rcu_read_lock();
    5297             : 
    5298           0 :         pr_info("Showing freezable workqueues that are still busy:\n");
    5299             : 
    5300           0 :         list_for_each_entry_rcu(wq, &workqueues, list) {
    5301           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5302           0 :                         continue;
    5303           0 :                 show_one_workqueue(wq);
    5304             :         }
    5305             : 
    5306             :         rcu_read_unlock();
    5307           0 : }
    5308             : 
    5309             : /* used to show worker information through /proc/PID/{comm,stat,status} */
    5310           0 : void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
    5311             : {
    5312             :         int off;
    5313             : 
    5314             :         /* always show the actual comm */
    5315           0 :         off = strscpy(buf, task->comm, size);
    5316           0 :         if (off < 0)
    5317             :                 return;
    5318             : 
    5319             :         /* stabilize PF_WQ_WORKER and worker pool association */
    5320           0 :         mutex_lock(&wq_pool_attach_mutex);
    5321             : 
    5322           0 :         if (task->flags & PF_WQ_WORKER) {
    5323           0 :                 struct worker *worker = kthread_data(task);
    5324           0 :                 struct worker_pool *pool = worker->pool;
    5325             : 
    5326           0 :                 if (pool) {
    5327           0 :                         raw_spin_lock_irq(&pool->lock);
    5328             :                         /*
    5329             :                          * ->desc tracks information (wq name or
    5330             :                          * set_worker_desc()) for the latest execution.  If
    5331             :                          * current, prepend '+', otherwise '-'.
    5332             :                          */
    5333           0 :                         if (worker->desc[0] != '\0') {
    5334           0 :                                 if (worker->current_work)
    5335           0 :                                         scnprintf(buf + off, size - off, "+%s",
    5336           0 :                                                   worker->desc);
    5337             :                                 else
    5338           0 :                                         scnprintf(buf + off, size - off, "-%s",
    5339           0 :                                                   worker->desc);
    5340             :                         }
    5341           0 :                         raw_spin_unlock_irq(&pool->lock);
    5342             :                 }
    5343             :         }
    5344             : 
    5345           0 :         mutex_unlock(&wq_pool_attach_mutex);
    5346             : }
    5347             : 
    5348             : #ifdef CONFIG_SMP
    5349             : 
    5350             : /*
    5351             :  * CPU hotplug.
    5352             :  *
    5353             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    5354             :  * are a lot of assumptions on strong associations among work, pwq and
    5355             :  * pool which make migrating pending and scheduled works very
    5356             :  * difficult to implement without impacting hot paths.  Secondly,
    5357             :  * worker pools serve mix of short, long and very long running works making
    5358             :  * blocked draining impractical.
    5359             :  *
    5360             :  * This is solved by allowing the pools to be disassociated from the CPU
    5361             :  * running as an unbound one and allowing it to be reattached later if the
    5362             :  * cpu comes back online.
    5363             :  */
    5364             : 
    5365             : static void unbind_workers(int cpu)
    5366             : {
    5367             :         struct worker_pool *pool;
    5368             :         struct worker *worker;
    5369             : 
    5370             :         for_each_cpu_worker_pool(pool, cpu) {
    5371             :                 mutex_lock(&wq_pool_attach_mutex);
    5372             :                 raw_spin_lock_irq(&pool->lock);
    5373             : 
    5374             :                 /*
    5375             :                  * We've blocked all attach/detach operations. Make all workers
    5376             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    5377             :                  * must be on the cpu.  After this, they may become diasporas.
    5378             :                  * And the preemption disabled section in their sched callbacks
    5379             :                  * are guaranteed to see WORKER_UNBOUND since the code here
    5380             :                  * is on the same cpu.
    5381             :                  */
    5382             :                 for_each_pool_worker(worker, pool)
    5383             :                         worker->flags |= WORKER_UNBOUND;
    5384             : 
    5385             :                 pool->flags |= POOL_DISASSOCIATED;
    5386             : 
    5387             :                 /*
    5388             :                  * The handling of nr_running in sched callbacks are disabled
    5389             :                  * now.  Zap nr_running.  After this, nr_running stays zero and
    5390             :                  * need_more_worker() and keep_working() are always true as
    5391             :                  * long as the worklist is not empty.  This pool now behaves as
    5392             :                  * an unbound (in terms of concurrency management) pool which
    5393             :                  * are served by workers tied to the pool.
    5394             :                  */
    5395             :                 pool->nr_running = 0;
    5396             : 
    5397             :                 /*
    5398             :                  * With concurrency management just turned off, a busy
    5399             :                  * worker blocking could lead to lengthy stalls.  Kick off
    5400             :                  * unbound chain execution of currently pending work items.
    5401             :                  */
    5402             :                 wake_up_worker(pool);
    5403             : 
    5404             :                 raw_spin_unlock_irq(&pool->lock);
    5405             : 
    5406             :                 for_each_pool_worker(worker, pool)
    5407             :                         unbind_worker(worker);
    5408             : 
    5409             :                 mutex_unlock(&wq_pool_attach_mutex);
    5410             :         }
    5411             : }
    5412             : 
    5413             : /**
    5414             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    5415             :  * @pool: pool of interest
    5416             :  *
    5417             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    5418             :  */
    5419             : static void rebind_workers(struct worker_pool *pool)
    5420             : {
    5421             :         struct worker *worker;
    5422             : 
    5423             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5424             : 
    5425             :         /*
    5426             :          * Restore CPU affinity of all workers.  As all idle workers should
    5427             :          * be on the run-queue of the associated CPU before any local
    5428             :          * wake-ups for concurrency management happen, restore CPU affinity
    5429             :          * of all workers first and then clear UNBOUND.  As we're called
    5430             :          * from CPU_ONLINE, the following shouldn't fail.
    5431             :          */
    5432             :         for_each_pool_worker(worker, pool) {
    5433             :                 kthread_set_per_cpu(worker->task, pool->cpu);
    5434             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    5435             :                                                   pool->attrs->cpumask) < 0);
    5436             :         }
    5437             : 
    5438             :         raw_spin_lock_irq(&pool->lock);
    5439             : 
    5440             :         pool->flags &= ~POOL_DISASSOCIATED;
    5441             : 
    5442             :         for_each_pool_worker(worker, pool) {
    5443             :                 unsigned int worker_flags = worker->flags;
    5444             : 
    5445             :                 /*
    5446             :                  * We want to clear UNBOUND but can't directly call
    5447             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    5448             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    5449             :                  * @worker will clear REBOUND using worker_clr_flags() when
    5450             :                  * it initiates the next execution cycle thus restoring
    5451             :                  * concurrency management.  Note that when or whether
    5452             :                  * @worker clears REBOUND doesn't affect correctness.
    5453             :                  *
    5454             :                  * WRITE_ONCE() is necessary because @worker->flags may be
    5455             :                  * tested without holding any lock in
    5456             :                  * wq_worker_running().  Without it, NOT_RUNNING test may
    5457             :                  * fail incorrectly leading to premature concurrency
    5458             :                  * management operations.
    5459             :                  */
    5460             :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    5461             :                 worker_flags |= WORKER_REBOUND;
    5462             :                 worker_flags &= ~WORKER_UNBOUND;
    5463             :                 WRITE_ONCE(worker->flags, worker_flags);
    5464             :         }
    5465             : 
    5466             :         raw_spin_unlock_irq(&pool->lock);
    5467             : }
    5468             : 
    5469             : /**
    5470             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    5471             :  * @pool: unbound pool of interest
    5472             :  * @cpu: the CPU which is coming up
    5473             :  *
    5474             :  * An unbound pool may end up with a cpumask which doesn't have any online
    5475             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    5476             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    5477             :  * online CPU before, cpus_allowed of all its workers should be restored.
    5478             :  */
    5479             : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    5480             : {
    5481             :         static cpumask_t cpumask;
    5482             :         struct worker *worker;
    5483             : 
    5484             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5485             : 
    5486             :         /* is @cpu allowed for @pool? */
    5487             :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    5488             :                 return;
    5489             : 
    5490             :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    5491             : 
    5492             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    5493             :         for_each_pool_worker(worker, pool)
    5494             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
    5495             : }
    5496             : 
    5497             : int workqueue_prepare_cpu(unsigned int cpu)
    5498             : {
    5499             :         struct worker_pool *pool;
    5500             : 
    5501             :         for_each_cpu_worker_pool(pool, cpu) {
    5502             :                 if (pool->nr_workers)
    5503             :                         continue;
    5504             :                 if (!create_worker(pool))
    5505             :                         return -ENOMEM;
    5506             :         }
    5507             :         return 0;
    5508             : }
    5509             : 
    5510             : int workqueue_online_cpu(unsigned int cpu)
    5511             : {
    5512             :         struct worker_pool *pool;
    5513             :         struct workqueue_struct *wq;
    5514             :         int pi;
    5515             : 
    5516             :         mutex_lock(&wq_pool_mutex);
    5517             : 
    5518             :         for_each_pool(pool, pi) {
    5519             :                 mutex_lock(&wq_pool_attach_mutex);
    5520             : 
    5521             :                 if (pool->cpu == cpu)
    5522             :                         rebind_workers(pool);
    5523             :                 else if (pool->cpu < 0)
    5524             :                         restore_unbound_workers_cpumask(pool, cpu);
    5525             : 
    5526             :                 mutex_unlock(&wq_pool_attach_mutex);
    5527             :         }
    5528             : 
    5529             :         /* update NUMA affinity of unbound workqueues */
    5530             :         list_for_each_entry(wq, &workqueues, list)
    5531             :                 wq_update_unbound_numa(wq, cpu, true);
    5532             : 
    5533             :         mutex_unlock(&wq_pool_mutex);
    5534             :         return 0;
    5535             : }
    5536             : 
    5537             : int workqueue_offline_cpu(unsigned int cpu)
    5538             : {
    5539             :         struct workqueue_struct *wq;
    5540             : 
    5541             :         /* unbinding per-cpu workers should happen on the local CPU */
    5542             :         if (WARN_ON(cpu != smp_processor_id()))
    5543             :                 return -1;
    5544             : 
    5545             :         unbind_workers(cpu);
    5546             : 
    5547             :         /* update NUMA affinity of unbound workqueues */
    5548             :         mutex_lock(&wq_pool_mutex);
    5549             :         list_for_each_entry(wq, &workqueues, list)
    5550             :                 wq_update_unbound_numa(wq, cpu, false);
    5551             :         mutex_unlock(&wq_pool_mutex);
    5552             : 
    5553             :         return 0;
    5554             : }
    5555             : 
    5556             : struct work_for_cpu {
    5557             :         struct work_struct work;
    5558             :         long (*fn)(void *);
    5559             :         void *arg;
    5560             :         long ret;
    5561             : };
    5562             : 
    5563             : static void work_for_cpu_fn(struct work_struct *work)
    5564             : {
    5565             :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    5566             : 
    5567             :         wfc->ret = wfc->fn(wfc->arg);
    5568             : }
    5569             : 
    5570             : /**
    5571             :  * work_on_cpu - run a function in thread context on a particular cpu
    5572             :  * @cpu: the cpu to run on
    5573             :  * @fn: the function to run
    5574             :  * @arg: the function arg
    5575             :  *
    5576             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    5577             :  * The caller must not hold any locks which would prevent @fn from completing.
    5578             :  *
    5579             :  * Return: The value @fn returns.
    5580             :  */
    5581             : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    5582             : {
    5583             :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    5584             : 
    5585             :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    5586             :         schedule_work_on(cpu, &wfc.work);
    5587             :         flush_work(&wfc.work);
    5588             :         destroy_work_on_stack(&wfc.work);
    5589             :         return wfc.ret;
    5590             : }
    5591             : EXPORT_SYMBOL_GPL(work_on_cpu);
    5592             : 
    5593             : /**
    5594             :  * work_on_cpu_safe - run a function in thread context on a particular cpu
    5595             :  * @cpu: the cpu to run on
    5596             :  * @fn:  the function to run
    5597             :  * @arg: the function argument
    5598             :  *
    5599             :  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
    5600             :  * any locks which would prevent @fn from completing.
    5601             :  *
    5602             :  * Return: The value @fn returns.
    5603             :  */
    5604             : long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
    5605             : {
    5606             :         long ret = -ENODEV;
    5607             : 
    5608             :         cpus_read_lock();
    5609             :         if (cpu_online(cpu))
    5610             :                 ret = work_on_cpu(cpu, fn, arg);
    5611             :         cpus_read_unlock();
    5612             :         return ret;
    5613             : }
    5614             : EXPORT_SYMBOL_GPL(work_on_cpu_safe);
    5615             : #endif /* CONFIG_SMP */
    5616             : 
    5617             : #ifdef CONFIG_FREEZER
    5618             : 
    5619             : /**
    5620             :  * freeze_workqueues_begin - begin freezing workqueues
    5621             :  *
    5622             :  * Start freezing workqueues.  After this function returns, all freezable
    5623             :  * workqueues will queue new works to their inactive_works list instead of
    5624             :  * pool->worklist.
    5625             :  *
    5626             :  * CONTEXT:
    5627             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5628             :  */
    5629           0 : void freeze_workqueues_begin(void)
    5630             : {
    5631             :         struct workqueue_struct *wq;
    5632             :         struct pool_workqueue *pwq;
    5633             : 
    5634           0 :         mutex_lock(&wq_pool_mutex);
    5635             : 
    5636           0 :         WARN_ON_ONCE(workqueue_freezing);
    5637           0 :         workqueue_freezing = true;
    5638             : 
    5639           0 :         list_for_each_entry(wq, &workqueues, list) {
    5640           0 :                 mutex_lock(&wq->mutex);
    5641           0 :                 for_each_pwq(pwq, wq)
    5642           0 :                         pwq_adjust_max_active(pwq);
    5643           0 :                 mutex_unlock(&wq->mutex);
    5644             :         }
    5645             : 
    5646           0 :         mutex_unlock(&wq_pool_mutex);
    5647           0 : }
    5648             : 
    5649             : /**
    5650             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    5651             :  *
    5652             :  * Check whether freezing is complete.  This function must be called
    5653             :  * between freeze_workqueues_begin() and thaw_workqueues().
    5654             :  *
    5655             :  * CONTEXT:
    5656             :  * Grabs and releases wq_pool_mutex.
    5657             :  *
    5658             :  * Return:
    5659             :  * %true if some freezable workqueues are still busy.  %false if freezing
    5660             :  * is complete.
    5661             :  */
    5662           0 : bool freeze_workqueues_busy(void)
    5663             : {
    5664           0 :         bool busy = false;
    5665             :         struct workqueue_struct *wq;
    5666             :         struct pool_workqueue *pwq;
    5667             : 
    5668           0 :         mutex_lock(&wq_pool_mutex);
    5669             : 
    5670           0 :         WARN_ON_ONCE(!workqueue_freezing);
    5671             : 
    5672           0 :         list_for_each_entry(wq, &workqueues, list) {
    5673           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5674           0 :                         continue;
    5675             :                 /*
    5676             :                  * nr_active is monotonically decreasing.  It's safe
    5677             :                  * to peek without lock.
    5678             :                  */
    5679             :                 rcu_read_lock();
    5680           0 :                 for_each_pwq(pwq, wq) {
    5681           0 :                         WARN_ON_ONCE(pwq->nr_active < 0);
    5682           0 :                         if (pwq->nr_active) {
    5683           0 :                                 busy = true;
    5684             :                                 rcu_read_unlock();
    5685             :                                 goto out_unlock;
    5686             :                         }
    5687             :                 }
    5688             :                 rcu_read_unlock();
    5689             :         }
    5690             : out_unlock:
    5691           0 :         mutex_unlock(&wq_pool_mutex);
    5692           0 :         return busy;
    5693             : }
    5694             : 
    5695             : /**
    5696             :  * thaw_workqueues - thaw workqueues
    5697             :  *
    5698             :  * Thaw workqueues.  Normal queueing is restored and all collected
    5699             :  * frozen works are transferred to their respective pool worklists.
    5700             :  *
    5701             :  * CONTEXT:
    5702             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5703             :  */
    5704           0 : void thaw_workqueues(void)
    5705             : {
    5706             :         struct workqueue_struct *wq;
    5707             :         struct pool_workqueue *pwq;
    5708             : 
    5709           0 :         mutex_lock(&wq_pool_mutex);
    5710             : 
    5711           0 :         if (!workqueue_freezing)
    5712             :                 goto out_unlock;
    5713             : 
    5714           0 :         workqueue_freezing = false;
    5715             : 
    5716             :         /* restore max_active and repopulate worklist */
    5717           0 :         list_for_each_entry(wq, &workqueues, list) {
    5718           0 :                 mutex_lock(&wq->mutex);
    5719           0 :                 for_each_pwq(pwq, wq)
    5720           0 :                         pwq_adjust_max_active(pwq);
    5721           0 :                 mutex_unlock(&wq->mutex);
    5722             :         }
    5723             : 
    5724             : out_unlock:
    5725           0 :         mutex_unlock(&wq_pool_mutex);
    5726           0 : }
    5727             : #endif /* CONFIG_FREEZER */
    5728             : 
    5729           0 : static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
    5730             : {
    5731           0 :         LIST_HEAD(ctxs);
    5732           0 :         int ret = 0;
    5733             :         struct workqueue_struct *wq;
    5734             :         struct apply_wqattrs_ctx *ctx, *n;
    5735             : 
    5736             :         lockdep_assert_held(&wq_pool_mutex);
    5737             : 
    5738           0 :         list_for_each_entry(wq, &workqueues, list) {
    5739           0 :                 if (!(wq->flags & WQ_UNBOUND))
    5740           0 :                         continue;
    5741             :                 /* creating multiple pwqs breaks ordering guarantee */
    5742           0 :                 if (wq->flags & __WQ_ORDERED)
    5743           0 :                         continue;
    5744             : 
    5745           0 :                 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
    5746           0 :                 if (!ctx) {
    5747             :                         ret = -ENOMEM;
    5748             :                         break;
    5749             :                 }
    5750             : 
    5751           0 :                 list_add_tail(&ctx->list, &ctxs);
    5752             :         }
    5753             : 
    5754           0 :         list_for_each_entry_safe(ctx, n, &ctxs, list) {
    5755           0 :                 if (!ret)
    5756           0 :                         apply_wqattrs_commit(ctx);
    5757           0 :                 apply_wqattrs_cleanup(ctx);
    5758             :         }
    5759             : 
    5760           0 :         if (!ret) {
    5761           0 :                 mutex_lock(&wq_pool_attach_mutex);
    5762           0 :                 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
    5763           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    5764             :         }
    5765           0 :         return ret;
    5766             : }
    5767             : 
    5768             : /**
    5769             :  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
    5770             :  *  @cpumask: the cpumask to set
    5771             :  *
    5772             :  *  The low-level workqueues cpumask is a global cpumask that limits
    5773             :  *  the affinity of all unbound workqueues.  This function check the @cpumask
    5774             :  *  and apply it to all unbound workqueues and updates all pwqs of them.
    5775             :  *
    5776             :  *  Return:     0       - Success
    5777             :  *              -EINVAL - Invalid @cpumask
    5778             :  *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
    5779             :  */
    5780           0 : int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
    5781             : {
    5782           0 :         int ret = -EINVAL;
    5783             : 
    5784             :         /*
    5785             :          * Not excluding isolated cpus on purpose.
    5786             :          * If the user wishes to include them, we allow that.
    5787             :          */
    5788           0 :         cpumask_and(cpumask, cpumask, cpu_possible_mask);
    5789           0 :         if (!cpumask_empty(cpumask)) {
    5790           0 :                 apply_wqattrs_lock();
    5791           0 :                 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
    5792             :                         ret = 0;
    5793             :                         goto out_unlock;
    5794             :                 }
    5795             : 
    5796           0 :                 ret = workqueue_apply_unbound_cpumask(cpumask);
    5797             : 
    5798             : out_unlock:
    5799             :                 apply_wqattrs_unlock();
    5800             :         }
    5801             : 
    5802           0 :         return ret;
    5803             : }
    5804             : 
    5805             : #ifdef CONFIG_SYSFS
    5806             : /*
    5807             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    5808             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    5809             :  * following attributes.
    5810             :  *
    5811             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    5812             :  *  max_active  RW int  : maximum number of in-flight work items
    5813             :  *
    5814             :  * Unbound workqueues have the following extra attributes.
    5815             :  *
    5816             :  *  pool_ids    RO int  : the associated pool IDs for each node
    5817             :  *  nice        RW int  : nice value of the workers
    5818             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    5819             :  *  numa        RW bool : whether enable NUMA affinity
    5820             :  */
    5821             : struct wq_device {
    5822             :         struct workqueue_struct         *wq;
    5823             :         struct device                   dev;
    5824             : };
    5825             : 
    5826             : static struct workqueue_struct *dev_to_wq(struct device *dev)
    5827             : {
    5828           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5829             : 
    5830           0 :         return wq_dev->wq;
    5831             : }
    5832             : 
    5833           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    5834             :                             char *buf)
    5835             : {
    5836           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5837             : 
    5838           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    5839             : }
    5840             : static DEVICE_ATTR_RO(per_cpu);
    5841             : 
    5842           0 : static ssize_t max_active_show(struct device *dev,
    5843             :                                struct device_attribute *attr, char *buf)
    5844             : {
    5845           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5846             : 
    5847           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    5848             : }
    5849             : 
    5850           0 : static ssize_t max_active_store(struct device *dev,
    5851             :                                 struct device_attribute *attr, const char *buf,
    5852             :                                 size_t count)
    5853             : {
    5854           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5855             :         int val;
    5856             : 
    5857           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    5858             :                 return -EINVAL;
    5859             : 
    5860           0 :         workqueue_set_max_active(wq, val);
    5861           0 :         return count;
    5862             : }
    5863             : static DEVICE_ATTR_RW(max_active);
    5864             : 
    5865             : static struct attribute *wq_sysfs_attrs[] = {
    5866             :         &dev_attr_per_cpu.attr,
    5867             :         &dev_attr_max_active.attr,
    5868             :         NULL,
    5869             : };
    5870             : ATTRIBUTE_GROUPS(wq_sysfs);
    5871             : 
    5872           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    5873             :                                 struct device_attribute *attr, char *buf)
    5874             : {
    5875           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5876           0 :         const char *delim = "";
    5877           0 :         int node, written = 0;
    5878             : 
    5879             :         cpus_read_lock();
    5880             :         rcu_read_lock();
    5881           0 :         for_each_node(node) {
    5882           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    5883             :                                      "%s%d:%d", delim, node,
    5884           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    5885           0 :                 delim = " ";
    5886             :         }
    5887           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    5888             :         rcu_read_unlock();
    5889             :         cpus_read_unlock();
    5890             : 
    5891           0 :         return written;
    5892             : }
    5893             : 
    5894           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    5895             :                             char *buf)
    5896             : {
    5897           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5898             :         int written;
    5899             : 
    5900           0 :         mutex_lock(&wq->mutex);
    5901           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    5902           0 :         mutex_unlock(&wq->mutex);
    5903             : 
    5904           0 :         return written;
    5905             : }
    5906             : 
    5907             : /* prepare workqueue_attrs for sysfs store operations */
    5908           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    5909             : {
    5910             :         struct workqueue_attrs *attrs;
    5911             : 
    5912             :         lockdep_assert_held(&wq_pool_mutex);
    5913             : 
    5914           0 :         attrs = alloc_workqueue_attrs();
    5915           0 :         if (!attrs)
    5916             :                 return NULL;
    5917             : 
    5918           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    5919           0 :         return attrs;
    5920             : }
    5921             : 
    5922           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    5923             :                              const char *buf, size_t count)
    5924             : {
    5925           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5926             :         struct workqueue_attrs *attrs;
    5927           0 :         int ret = -ENOMEM;
    5928             : 
    5929             :         apply_wqattrs_lock();
    5930             : 
    5931           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5932           0 :         if (!attrs)
    5933             :                 goto out_unlock;
    5934             : 
    5935           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    5936           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    5937           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5938             :         else
    5939             :                 ret = -EINVAL;
    5940             : 
    5941             : out_unlock:
    5942           0 :         apply_wqattrs_unlock();
    5943           0 :         free_workqueue_attrs(attrs);
    5944           0 :         return ret ?: count;
    5945             : }
    5946             : 
    5947           0 : static ssize_t wq_cpumask_show(struct device *dev,
    5948             :                                struct device_attribute *attr, char *buf)
    5949             : {
    5950           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5951             :         int written;
    5952             : 
    5953           0 :         mutex_lock(&wq->mutex);
    5954           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5955           0 :                             cpumask_pr_args(wq->unbound_attrs->cpumask));
    5956           0 :         mutex_unlock(&wq->mutex);
    5957           0 :         return written;
    5958             : }
    5959             : 
    5960           0 : static ssize_t wq_cpumask_store(struct device *dev,
    5961             :                                 struct device_attribute *attr,
    5962             :                                 const char *buf, size_t count)
    5963             : {
    5964           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5965             :         struct workqueue_attrs *attrs;
    5966           0 :         int ret = -ENOMEM;
    5967             : 
    5968             :         apply_wqattrs_lock();
    5969             : 
    5970           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5971           0 :         if (!attrs)
    5972             :                 goto out_unlock;
    5973             : 
    5974           0 :         ret = cpumask_parse(buf, attrs->cpumask);
    5975           0 :         if (!ret)
    5976           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5977             : 
    5978             : out_unlock:
    5979           0 :         apply_wqattrs_unlock();
    5980           0 :         free_workqueue_attrs(attrs);
    5981           0 :         return ret ?: count;
    5982             : }
    5983             : 
    5984           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    5985             :                             char *buf)
    5986             : {
    5987           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5988             :         int written;
    5989             : 
    5990           0 :         mutex_lock(&wq->mutex);
    5991           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    5992           0 :                             !wq->unbound_attrs->no_numa);
    5993           0 :         mutex_unlock(&wq->mutex);
    5994             : 
    5995           0 :         return written;
    5996             : }
    5997             : 
    5998           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    5999             :                              const char *buf, size_t count)
    6000             : {
    6001           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    6002             :         struct workqueue_attrs *attrs;
    6003           0 :         int v, ret = -ENOMEM;
    6004             : 
    6005             :         apply_wqattrs_lock();
    6006             : 
    6007           0 :         attrs = wq_sysfs_prep_attrs(wq);
    6008           0 :         if (!attrs)
    6009             :                 goto out_unlock;
    6010             : 
    6011           0 :         ret = -EINVAL;
    6012           0 :         if (sscanf(buf, "%d", &v) == 1) {
    6013           0 :                 attrs->no_numa = !v;
    6014           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    6015             :         }
    6016             : 
    6017             : out_unlock:
    6018           0 :         apply_wqattrs_unlock();
    6019           0 :         free_workqueue_attrs(attrs);
    6020           0 :         return ret ?: count;
    6021             : }
    6022             : 
    6023             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    6024             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    6025             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    6026             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    6027             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    6028             :         __ATTR_NULL,
    6029             : };
    6030             : 
    6031             : static struct bus_type wq_subsys = {
    6032             :         .name                           = "workqueue",
    6033             :         .dev_groups                     = wq_sysfs_groups,
    6034             : };
    6035             : 
    6036           0 : static ssize_t wq_unbound_cpumask_show(struct device *dev,
    6037             :                 struct device_attribute *attr, char *buf)
    6038             : {
    6039             :         int written;
    6040             : 
    6041           0 :         mutex_lock(&wq_pool_mutex);
    6042           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    6043             :                             cpumask_pr_args(wq_unbound_cpumask));
    6044           0 :         mutex_unlock(&wq_pool_mutex);
    6045             : 
    6046           0 :         return written;
    6047             : }
    6048             : 
    6049           0 : static ssize_t wq_unbound_cpumask_store(struct device *dev,
    6050             :                 struct device_attribute *attr, const char *buf, size_t count)
    6051             : {
    6052             :         cpumask_var_t cpumask;
    6053             :         int ret;
    6054             : 
    6055           0 :         if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
    6056             :                 return -ENOMEM;
    6057             : 
    6058           0 :         ret = cpumask_parse(buf, cpumask);
    6059           0 :         if (!ret)
    6060           0 :                 ret = workqueue_set_unbound_cpumask(cpumask);
    6061             : 
    6062           0 :         free_cpumask_var(cpumask);
    6063           0 :         return ret ? ret : count;
    6064             : }
    6065             : 
    6066             : static struct device_attribute wq_sysfs_cpumask_attr =
    6067             :         __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
    6068             :                wq_unbound_cpumask_store);
    6069             : 
    6070           1 : static int __init wq_sysfs_init(void)
    6071             : {
    6072             :         struct device *dev_root;
    6073             :         int err;
    6074             : 
    6075           1 :         err = subsys_virtual_register(&wq_subsys, NULL);
    6076           1 :         if (err)
    6077             :                 return err;
    6078             : 
    6079           1 :         dev_root = bus_get_dev_root(&wq_subsys);
    6080           1 :         if (dev_root) {
    6081           1 :                 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
    6082           1 :                 put_device(dev_root);
    6083             :         }
    6084             :         return err;
    6085             : }
    6086             : core_initcall(wq_sysfs_init);
    6087             : 
    6088           0 : static void wq_device_release(struct device *dev)
    6089             : {
    6090           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    6091             : 
    6092           0 :         kfree(wq_dev);
    6093           0 : }
    6094             : 
    6095             : /**
    6096             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    6097             :  * @wq: the workqueue to register
    6098             :  *
    6099             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    6100             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    6101             :  * which is the preferred method.
    6102             :  *
    6103             :  * Workqueue user should use this function directly iff it wants to apply
    6104             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    6105             :  * apply_workqueue_attrs() may race against userland updating the
    6106             :  * attributes.
    6107             :  *
    6108             :  * Return: 0 on success, -errno on failure.
    6109             :  */
    6110           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    6111             : {
    6112             :         struct wq_device *wq_dev;
    6113             :         int ret;
    6114             : 
    6115             :         /*
    6116             :          * Adjusting max_active or creating new pwqs by applying
    6117             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    6118             :          * workqueues.
    6119             :          */
    6120           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    6121             :                 return -EINVAL;
    6122             : 
    6123           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    6124           1 :         if (!wq_dev)
    6125             :                 return -ENOMEM;
    6126             : 
    6127           1 :         wq_dev->wq = wq;
    6128           1 :         wq_dev->dev.bus = &wq_subsys;
    6129           1 :         wq_dev->dev.release = wq_device_release;
    6130           1 :         dev_set_name(&wq_dev->dev, "%s", wq->name);
    6131             : 
    6132             :         /*
    6133             :          * unbound_attrs are created separately.  Suppress uevent until
    6134             :          * everything is ready.
    6135             :          */
    6136           2 :         dev_set_uevent_suppress(&wq_dev->dev, true);
    6137             : 
    6138           1 :         ret = device_register(&wq_dev->dev);
    6139           1 :         if (ret) {
    6140           0 :                 put_device(&wq_dev->dev);
    6141           0 :                 wq->wq_dev = NULL;
    6142           0 :                 return ret;
    6143             :         }
    6144             : 
    6145           1 :         if (wq->flags & WQ_UNBOUND) {
    6146             :                 struct device_attribute *attr;
    6147             : 
    6148           4 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    6149           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    6150           4 :                         if (ret) {
    6151           0 :                                 device_unregister(&wq_dev->dev);
    6152           0 :                                 wq->wq_dev = NULL;
    6153           0 :                                 return ret;
    6154             :                         }
    6155             :                 }
    6156             :         }
    6157             : 
    6158           2 :         dev_set_uevent_suppress(&wq_dev->dev, false);
    6159           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    6160           1 :         return 0;
    6161             : }
    6162             : 
    6163             : /**
    6164             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    6165             :  * @wq: the workqueue to unregister
    6166             :  *
    6167             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    6168             :  */
    6169             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    6170             : {
    6171           0 :         struct wq_device *wq_dev = wq->wq_dev;
    6172             : 
    6173           0 :         if (!wq->wq_dev)
    6174             :                 return;
    6175             : 
    6176           0 :         wq->wq_dev = NULL;
    6177           0 :         device_unregister(&wq_dev->dev);
    6178             : }
    6179             : #else   /* CONFIG_SYSFS */
    6180             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    6181             : #endif  /* CONFIG_SYSFS */
    6182             : 
    6183             : /*
    6184             :  * Workqueue watchdog.
    6185             :  *
    6186             :  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
    6187             :  * flush dependency, a concurrency managed work item which stays RUNNING
    6188             :  * indefinitely.  Workqueue stalls can be very difficult to debug as the
    6189             :  * usual warning mechanisms don't trigger and internal workqueue state is
    6190             :  * largely opaque.
    6191             :  *
    6192             :  * Workqueue watchdog monitors all worker pools periodically and dumps
    6193             :  * state if some pools failed to make forward progress for a while where
    6194             :  * forward progress is defined as the first item on ->worklist changing.
    6195             :  *
    6196             :  * This mechanism is controlled through the kernel parameter
    6197             :  * "workqueue.watchdog_thresh" which can be updated at runtime through the
    6198             :  * corresponding sysfs parameter file.
    6199             :  */
    6200             : #ifdef CONFIG_WQ_WATCHDOG
    6201             : 
    6202             : static unsigned long wq_watchdog_thresh = 30;
    6203             : static struct timer_list wq_watchdog_timer;
    6204             : 
    6205             : static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
    6206             : static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
    6207             : 
    6208             : /*
    6209             :  * Show workers that might prevent the processing of pending work items.
    6210             :  * The only candidates are CPU-bound workers in the running state.
    6211             :  * Pending work items should be handled by another idle worker
    6212             :  * in all other situations.
    6213             :  */
    6214             : static void show_cpu_pool_hog(struct worker_pool *pool)
    6215             : {
    6216             :         struct worker *worker;
    6217             :         unsigned long flags;
    6218             :         int bkt;
    6219             : 
    6220             :         raw_spin_lock_irqsave(&pool->lock, flags);
    6221             : 
    6222             :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    6223             :                 if (task_is_running(worker->task)) {
    6224             :                         /*
    6225             :                          * Defer printing to avoid deadlocks in console
    6226             :                          * drivers that queue work while holding locks
    6227             :                          * also taken in their write paths.
    6228             :                          */
    6229             :                         printk_deferred_enter();
    6230             : 
    6231             :                         pr_info("pool %d:\n", pool->id);
    6232             :                         sched_show_task(worker->task);
    6233             : 
    6234             :                         printk_deferred_exit();
    6235             :                 }
    6236             :         }
    6237             : 
    6238             :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    6239             : }
    6240             : 
    6241             : static void show_cpu_pools_hogs(void)
    6242             : {
    6243             :         struct worker_pool *pool;
    6244             :         int pi;
    6245             : 
    6246             :         pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
    6247             : 
    6248             :         rcu_read_lock();
    6249             : 
    6250             :         for_each_pool(pool, pi) {
    6251             :                 if (pool->cpu_stall)
    6252             :                         show_cpu_pool_hog(pool);
    6253             : 
    6254             :         }
    6255             : 
    6256             :         rcu_read_unlock();
    6257             : }
    6258             : 
    6259             : static void wq_watchdog_reset_touched(void)
    6260             : {
    6261             :         int cpu;
    6262             : 
    6263             :         wq_watchdog_touched = jiffies;
    6264             :         for_each_possible_cpu(cpu)
    6265             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    6266             : }
    6267             : 
    6268             : static void wq_watchdog_timer_fn(struct timer_list *unused)
    6269             : {
    6270             :         unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
    6271             :         bool lockup_detected = false;
    6272             :         bool cpu_pool_stall = false;
    6273             :         unsigned long now = jiffies;
    6274             :         struct worker_pool *pool;
    6275             :         int pi;
    6276             : 
    6277             :         if (!thresh)
    6278             :                 return;
    6279             : 
    6280             :         rcu_read_lock();
    6281             : 
    6282             :         for_each_pool(pool, pi) {
    6283             :                 unsigned long pool_ts, touched, ts;
    6284             : 
    6285             :                 pool->cpu_stall = false;
    6286             :                 if (list_empty(&pool->worklist))
    6287             :                         continue;
    6288             : 
    6289             :                 /*
    6290             :                  * If a virtual machine is stopped by the host it can look to
    6291             :                  * the watchdog like a stall.
    6292             :                  */
    6293             :                 kvm_check_and_clear_guest_paused();
    6294             : 
    6295             :                 /* get the latest of pool and touched timestamps */
    6296             :                 if (pool->cpu >= 0)
    6297             :                         touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
    6298             :                 else
    6299             :                         touched = READ_ONCE(wq_watchdog_touched);
    6300             :                 pool_ts = READ_ONCE(pool->watchdog_ts);
    6301             : 
    6302             :                 if (time_after(pool_ts, touched))
    6303             :                         ts = pool_ts;
    6304             :                 else
    6305             :                         ts = touched;
    6306             : 
    6307             :                 /* did we stall? */
    6308             :                 if (time_after(now, ts + thresh)) {
    6309             :                         lockup_detected = true;
    6310             :                         if (pool->cpu >= 0) {
    6311             :                                 pool->cpu_stall = true;
    6312             :                                 cpu_pool_stall = true;
    6313             :                         }
    6314             :                         pr_emerg("BUG: workqueue lockup - pool");
    6315             :                         pr_cont_pool_info(pool);
    6316             :                         pr_cont(" stuck for %us!\n",
    6317             :                                 jiffies_to_msecs(now - pool_ts) / 1000);
    6318             :                 }
    6319             : 
    6320             : 
    6321             :         }
    6322             : 
    6323             :         rcu_read_unlock();
    6324             : 
    6325             :         if (lockup_detected)
    6326             :                 show_all_workqueues();
    6327             : 
    6328             :         if (cpu_pool_stall)
    6329             :                 show_cpu_pools_hogs();
    6330             : 
    6331             :         wq_watchdog_reset_touched();
    6332             :         mod_timer(&wq_watchdog_timer, jiffies + thresh);
    6333             : }
    6334             : 
    6335             : notrace void wq_watchdog_touch(int cpu)
    6336             : {
    6337             :         if (cpu >= 0)
    6338             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    6339             : 
    6340             :         wq_watchdog_touched = jiffies;
    6341             : }
    6342             : 
    6343             : static void wq_watchdog_set_thresh(unsigned long thresh)
    6344             : {
    6345             :         wq_watchdog_thresh = 0;
    6346             :         del_timer_sync(&wq_watchdog_timer);
    6347             : 
    6348             :         if (thresh) {
    6349             :                 wq_watchdog_thresh = thresh;
    6350             :                 wq_watchdog_reset_touched();
    6351             :                 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
    6352             :         }
    6353             : }
    6354             : 
    6355             : static int wq_watchdog_param_set_thresh(const char *val,
    6356             :                                         const struct kernel_param *kp)
    6357             : {
    6358             :         unsigned long thresh;
    6359             :         int ret;
    6360             : 
    6361             :         ret = kstrtoul(val, 0, &thresh);
    6362             :         if (ret)
    6363             :                 return ret;
    6364             : 
    6365             :         if (system_wq)
    6366             :                 wq_watchdog_set_thresh(thresh);
    6367             :         else
    6368             :                 wq_watchdog_thresh = thresh;
    6369             : 
    6370             :         return 0;
    6371             : }
    6372             : 
    6373             : static const struct kernel_param_ops wq_watchdog_thresh_ops = {
    6374             :         .set    = wq_watchdog_param_set_thresh,
    6375             :         .get    = param_get_ulong,
    6376             : };
    6377             : 
    6378             : module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
    6379             :                 0644);
    6380             : 
    6381             : static void wq_watchdog_init(void)
    6382             : {
    6383             :         timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
    6384             :         wq_watchdog_set_thresh(wq_watchdog_thresh);
    6385             : }
    6386             : 
    6387             : #else   /* CONFIG_WQ_WATCHDOG */
    6388             : 
    6389             : static inline void wq_watchdog_init(void) { }
    6390             : 
    6391             : #endif  /* CONFIG_WQ_WATCHDOG */
    6392             : 
    6393             : static void __init wq_numa_init(void)
    6394             : {
    6395             :         cpumask_var_t *tbl;
    6396             :         int node, cpu;
    6397             : 
    6398           1 :         if (num_possible_nodes() <= 1)
    6399             :                 return;
    6400             : 
    6401             :         if (wq_disable_numa) {
    6402             :                 pr_info("workqueue: NUMA affinity support disabled\n");
    6403             :                 return;
    6404             :         }
    6405             : 
    6406             :         for_each_possible_cpu(cpu) {
    6407             :                 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
    6408             :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    6409             :                         return;
    6410             :                 }
    6411             :         }
    6412             : 
    6413             :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
    6414             :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    6415             : 
    6416             :         /*
    6417             :          * We want masks of possible CPUs of each node which isn't readily
    6418             :          * available.  Build one from cpu_to_node() which should have been
    6419             :          * fully initialized by now.
    6420             :          */
    6421             :         tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
    6422             :         BUG_ON(!tbl);
    6423             : 
    6424             :         for_each_node(node)
    6425             :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    6426             :                                 node_online(node) ? node : NUMA_NO_NODE));
    6427             : 
    6428             :         for_each_possible_cpu(cpu) {
    6429             :                 node = cpu_to_node(cpu);
    6430             :                 cpumask_set_cpu(cpu, tbl[node]);
    6431             :         }
    6432             : 
    6433             :         wq_numa_possible_cpumask = tbl;
    6434             :         wq_numa_enabled = true;
    6435             : }
    6436             : 
    6437             : /**
    6438             :  * workqueue_init_early - early init for workqueue subsystem
    6439             :  *
    6440             :  * This is the first half of two-staged workqueue subsystem initialization
    6441             :  * and invoked as soon as the bare basics - memory allocation, cpumasks and
    6442             :  * idr are up.  It sets up all the data structures and system workqueues
    6443             :  * and allows early boot code to create workqueues and queue/cancel work
    6444             :  * items.  Actual work item execution starts only after kthreads can be
    6445             :  * created and scheduled right before early initcalls.
    6446             :  */
    6447           1 : void __init workqueue_init_early(void)
    6448             : {
    6449           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    6450             :         int i, cpu;
    6451             : 
    6452             :         BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    6453             : 
    6454           1 :         BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
    6455           2 :         cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
    6456           2 :         cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
    6457             : 
    6458           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    6459             : 
    6460             :         /* initialize CPU pools */
    6461           2 :         for_each_possible_cpu(cpu) {
    6462             :                 struct worker_pool *pool;
    6463             : 
    6464             :                 i = 0;
    6465           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6466           2 :                         BUG_ON(init_worker_pool(pool));
    6467           2 :                         pool->cpu = cpu;
    6468           6 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    6469           2 :                         pool->attrs->nice = std_nice[i++];
    6470           2 :                         pool->node = cpu_to_node(cpu);
    6471             : 
    6472             :                         /* alloc pool ID */
    6473           2 :                         mutex_lock(&wq_pool_mutex);
    6474           2 :                         BUG_ON(worker_pool_assign_id(pool));
    6475           2 :                         mutex_unlock(&wq_pool_mutex);
    6476             :                 }
    6477             :         }
    6478             : 
    6479             :         /* create default unbound and ordered wq attrs */
    6480           2 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    6481             :                 struct workqueue_attrs *attrs;
    6482             : 
    6483           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6484           2 :                 attrs->nice = std_nice[i];
    6485           2 :                 unbound_std_wq_attrs[i] = attrs;
    6486             : 
    6487             :                 /*
    6488             :                  * An ordered wq should have only one pwq as ordering is
    6489             :                  * guaranteed by max_active which is enforced by pwqs.
    6490             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    6491             :                  */
    6492           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6493           2 :                 attrs->nice = std_nice[i];
    6494           2 :                 attrs->no_numa = true;
    6495           2 :                 ordered_wq_attrs[i] = attrs;
    6496             :         }
    6497             : 
    6498           1 :         system_wq = alloc_workqueue("events", 0, 0);
    6499           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    6500           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    6501           1 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    6502             :                                             WQ_UNBOUND_MAX_ACTIVE);
    6503           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    6504             :                                               WQ_FREEZABLE, 0);
    6505           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    6506             :                                               WQ_POWER_EFFICIENT, 0);
    6507           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    6508             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    6509             :                                               0);
    6510           1 :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    6511             :                !system_unbound_wq || !system_freezable_wq ||
    6512             :                !system_power_efficient_wq ||
    6513             :                !system_freezable_power_efficient_wq);
    6514           1 : }
    6515             : 
    6516             : /**
    6517             :  * workqueue_init - bring workqueue subsystem fully online
    6518             :  *
    6519             :  * This is the latter half of two-staged workqueue subsystem initialization
    6520             :  * and invoked as soon as kthreads can be created and scheduled.
    6521             :  * Workqueues have been created and work items queued on them, but there
    6522             :  * are no kworkers executing the work items yet.  Populate the worker pools
    6523             :  * with the initial workers and enable future kworker creations.
    6524             :  */
    6525           1 : void __init workqueue_init(void)
    6526             : {
    6527             :         struct workqueue_struct *wq;
    6528             :         struct worker_pool *pool;
    6529             :         int cpu, bkt;
    6530             : 
    6531             :         /*
    6532             :          * It'd be simpler to initialize NUMA in workqueue_init_early() but
    6533             :          * CPU to node mapping may not be available that early on some
    6534             :          * archs such as power and arm64.  As per-cpu pools created
    6535             :          * previously could be missing node hint and unbound pools NUMA
    6536             :          * affinity, fix them up.
    6537             :          *
    6538             :          * Also, while iterating workqueues, create rescuers if requested.
    6539             :          */
    6540             :         wq_numa_init();
    6541             : 
    6542           1 :         mutex_lock(&wq_pool_mutex);
    6543             : 
    6544           2 :         for_each_possible_cpu(cpu) {
    6545           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6546           2 :                         pool->node = cpu_to_node(cpu);
    6547             :                 }
    6548             :         }
    6549             : 
    6550           9 :         list_for_each_entry(wq, &workqueues, list) {
    6551           8 :                 wq_update_unbound_numa(wq, smp_processor_id(), true);
    6552           8 :                 WARN(init_rescuer(wq),
    6553             :                      "workqueue: failed to create early rescuer for %s",
    6554             :                      wq->name);
    6555             :         }
    6556             : 
    6557           1 :         mutex_unlock(&wq_pool_mutex);
    6558             : 
    6559             :         /* create the initial workers */
    6560           2 :         for_each_online_cpu(cpu) {
    6561           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6562           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    6563           2 :                         BUG_ON(!create_worker(pool));
    6564             :                 }
    6565             :         }
    6566             : 
    6567          65 :         hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
    6568           1 :                 BUG_ON(!create_worker(pool));
    6569             : 
    6570           1 :         wq_online = true;
    6571             :         wq_watchdog_init();
    6572           1 : }
    6573             : 
    6574             : /*
    6575             :  * Despite the naming, this is a no-op function which is here only for avoiding
    6576             :  * link error. Since compile-time warning may fail to catch, we will need to
    6577             :  * emit run-time warning from __flush_workqueue().
    6578             :  */
    6579           0 : void __warn_flushing_systemwide_wq(void) { }
    6580             : EXPORT_SYMBOL(__warn_flushing_systemwide_wq);

Generated by: LCOV version 1.14