Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <crypto/hash.h>
3 : #include <linux/export.h>
4 : #include <linux/bvec.h>
5 : #include <linux/fault-inject-usercopy.h>
6 : #include <linux/uio.h>
7 : #include <linux/pagemap.h>
8 : #include <linux/highmem.h>
9 : #include <linux/slab.h>
10 : #include <linux/vmalloc.h>
11 : #include <linux/splice.h>
12 : #include <linux/compat.h>
13 : #include <net/checksum.h>
14 : #include <linux/scatterlist.h>
15 : #include <linux/instrumented.h>
16 :
17 : /* covers ubuf and kbuf alike */
18 : #define iterate_buf(i, n, base, len, off, __p, STEP) { \
19 : size_t __maybe_unused off = 0; \
20 : len = n; \
21 : base = __p + i->iov_offset; \
22 : len -= (STEP); \
23 : i->iov_offset += len; \
24 : n = len; \
25 : }
26 :
27 : /* covers iovec and kvec alike */
28 : #define iterate_iovec(i, n, base, len, off, __p, STEP) { \
29 : size_t off = 0; \
30 : size_t skip = i->iov_offset; \
31 : do { \
32 : len = min(n, __p->iov_len - skip); \
33 : if (likely(len)) { \
34 : base = __p->iov_base + skip; \
35 : len -= (STEP); \
36 : off += len; \
37 : skip += len; \
38 : n -= len; \
39 : if (skip < __p->iov_len) \
40 : break; \
41 : } \
42 : __p++; \
43 : skip = 0; \
44 : } while (n); \
45 : i->iov_offset = skip; \
46 : n = off; \
47 : }
48 :
49 : #define iterate_bvec(i, n, base, len, off, p, STEP) { \
50 : size_t off = 0; \
51 : unsigned skip = i->iov_offset; \
52 : while (n) { \
53 : unsigned offset = p->bv_offset + skip; \
54 : unsigned left; \
55 : void *kaddr = kmap_local_page(p->bv_page + \
56 : offset / PAGE_SIZE); \
57 : base = kaddr + offset % PAGE_SIZE; \
58 : len = min(min(n, (size_t)(p->bv_len - skip)), \
59 : (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
60 : left = (STEP); \
61 : kunmap_local(kaddr); \
62 : len -= left; \
63 : off += len; \
64 : skip += len; \
65 : if (skip == p->bv_len) { \
66 : skip = 0; \
67 : p++; \
68 : } \
69 : n -= len; \
70 : if (left) \
71 : break; \
72 : } \
73 : i->iov_offset = skip; \
74 : n = off; \
75 : }
76 :
77 : #define iterate_xarray(i, n, base, len, __off, STEP) { \
78 : __label__ __out; \
79 : size_t __off = 0; \
80 : struct folio *folio; \
81 : loff_t start = i->xarray_start + i->iov_offset; \
82 : pgoff_t index = start / PAGE_SIZE; \
83 : XA_STATE(xas, i->xarray, index); \
84 : \
85 : len = PAGE_SIZE - offset_in_page(start); \
86 : rcu_read_lock(); \
87 : xas_for_each(&xas, folio, ULONG_MAX) { \
88 : unsigned left; \
89 : size_t offset; \
90 : if (xas_retry(&xas, folio)) \
91 : continue; \
92 : if (WARN_ON(xa_is_value(folio))) \
93 : break; \
94 : if (WARN_ON(folio_test_hugetlb(folio))) \
95 : break; \
96 : offset = offset_in_folio(folio, start + __off); \
97 : while (offset < folio_size(folio)) { \
98 : base = kmap_local_folio(folio, offset); \
99 : len = min(n, len); \
100 : left = (STEP); \
101 : kunmap_local(base); \
102 : len -= left; \
103 : __off += len; \
104 : n -= len; \
105 : if (left || n == 0) \
106 : goto __out; \
107 : offset += len; \
108 : len = PAGE_SIZE; \
109 : } \
110 : } \
111 : __out: \
112 : rcu_read_unlock(); \
113 : i->iov_offset += __off; \
114 : n = __off; \
115 : }
116 :
117 : #define __iterate_and_advance(i, n, base, len, off, I, K) { \
118 : if (unlikely(i->count < n)) \
119 : n = i->count; \
120 : if (likely(n)) { \
121 : if (likely(iter_is_ubuf(i))) { \
122 : void __user *base; \
123 : size_t len; \
124 : iterate_buf(i, n, base, len, off, \
125 : i->ubuf, (I)) \
126 : } else if (likely(iter_is_iovec(i))) { \
127 : const struct iovec *iov = iter_iov(i); \
128 : void __user *base; \
129 : size_t len; \
130 : iterate_iovec(i, n, base, len, off, \
131 : iov, (I)) \
132 : i->nr_segs -= iov - iter_iov(i); \
133 : i->__iov = iov; \
134 : } else if (iov_iter_is_bvec(i)) { \
135 : const struct bio_vec *bvec = i->bvec; \
136 : void *base; \
137 : size_t len; \
138 : iterate_bvec(i, n, base, len, off, \
139 : bvec, (K)) \
140 : i->nr_segs -= bvec - i->bvec; \
141 : i->bvec = bvec; \
142 : } else if (iov_iter_is_kvec(i)) { \
143 : const struct kvec *kvec = i->kvec; \
144 : void *base; \
145 : size_t len; \
146 : iterate_iovec(i, n, base, len, off, \
147 : kvec, (K)) \
148 : i->nr_segs -= kvec - i->kvec; \
149 : i->kvec = kvec; \
150 : } else if (iov_iter_is_xarray(i)) { \
151 : void *base; \
152 : size_t len; \
153 : iterate_xarray(i, n, base, len, off, \
154 : (K)) \
155 : } \
156 : i->count -= n; \
157 : } \
158 : }
159 : #define iterate_and_advance(i, n, base, len, off, I, K) \
160 : __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161 :
162 0 : static int copyout(void __user *to, const void *from, size_t n)
163 : {
164 : if (should_fail_usercopy())
165 : return n;
166 0 : if (access_ok(to, n)) {
167 0 : instrument_copy_to_user(to, from, n);
168 0 : n = raw_copy_to_user(to, from, n);
169 : }
170 0 : return n;
171 : }
172 :
173 : static int copyout_nofault(void __user *to, const void *from, size_t n)
174 : {
175 : long res;
176 :
177 : if (should_fail_usercopy())
178 : return n;
179 :
180 0 : res = copy_to_user_nofault(to, from, n);
181 :
182 0 : return res < 0 ? n : res;
183 : }
184 :
185 0 : static int copyin(void *to, const void __user *from, size_t n)
186 : {
187 0 : size_t res = n;
188 :
189 : if (should_fail_usercopy())
190 : return n;
191 0 : if (access_ok(from, n)) {
192 0 : instrument_copy_from_user_before(to, from, n);
193 0 : res = raw_copy_from_user(to, from, n);
194 : instrument_copy_from_user_after(to, from, n, res);
195 : }
196 0 : return res;
197 : }
198 :
199 : /*
200 : * fault_in_iov_iter_readable - fault in iov iterator for reading
201 : * @i: iterator
202 : * @size: maximum length
203 : *
204 : * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205 : * @size. For each iovec, fault in each page that constitutes the iovec.
206 : *
207 : * Returns the number of bytes not faulted in (like copy_to_user() and
208 : * copy_from_user()).
209 : *
210 : * Always returns 0 for non-userspace iterators.
211 : */
212 0 : size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 : {
214 0 : if (iter_is_ubuf(i)) {
215 0 : size_t n = min(size, iov_iter_count(i));
216 0 : n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217 0 : return size - n;
218 0 : } else if (iter_is_iovec(i)) {
219 0 : size_t count = min(size, iov_iter_count(i));
220 : const struct iovec *p;
221 : size_t skip;
222 :
223 0 : size -= count;
224 0 : for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225 0 : size_t len = min(count, p->iov_len - skip);
226 : size_t ret;
227 :
228 0 : if (unlikely(!len))
229 0 : continue;
230 0 : ret = fault_in_readable(p->iov_base + skip, len);
231 0 : count -= len - ret;
232 0 : if (ret)
233 : break;
234 : }
235 0 : return count + size;
236 : }
237 : return 0;
238 : }
239 : EXPORT_SYMBOL(fault_in_iov_iter_readable);
240 :
241 : /*
242 : * fault_in_iov_iter_writeable - fault in iov iterator for writing
243 : * @i: iterator
244 : * @size: maximum length
245 : *
246 : * Faults in the iterator using get_user_pages(), i.e., without triggering
247 : * hardware page faults. This is primarily useful when we already know that
248 : * some or all of the pages in @i aren't in memory.
249 : *
250 : * Returns the number of bytes not faulted in, like copy_to_user() and
251 : * copy_from_user().
252 : *
253 : * Always returns 0 for non-user-space iterators.
254 : */
255 0 : size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 : {
257 0 : if (iter_is_ubuf(i)) {
258 0 : size_t n = min(size, iov_iter_count(i));
259 0 : n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260 0 : return size - n;
261 0 : } else if (iter_is_iovec(i)) {
262 0 : size_t count = min(size, iov_iter_count(i));
263 : const struct iovec *p;
264 : size_t skip;
265 :
266 0 : size -= count;
267 0 : for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268 0 : size_t len = min(count, p->iov_len - skip);
269 : size_t ret;
270 :
271 0 : if (unlikely(!len))
272 0 : continue;
273 0 : ret = fault_in_safe_writeable(p->iov_base + skip, len);
274 0 : count -= len - ret;
275 0 : if (ret)
276 : break;
277 : }
278 0 : return count + size;
279 : }
280 : return 0;
281 : }
282 : EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283 :
284 0 : void iov_iter_init(struct iov_iter *i, unsigned int direction,
285 : const struct iovec *iov, unsigned long nr_segs,
286 : size_t count)
287 : {
288 0 : WARN_ON(direction & ~(READ | WRITE));
289 0 : *i = (struct iov_iter) {
290 : .iter_type = ITER_IOVEC,
291 : .copy_mc = false,
292 : .nofault = false,
293 : .user_backed = true,
294 : .data_source = direction,
295 : .__iov = iov,
296 : .nr_segs = nr_segs,
297 : .iov_offset = 0,
298 : .count = count
299 : };
300 0 : }
301 : EXPORT_SYMBOL(iov_iter_init);
302 :
303 0 : static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304 : __wsum sum, size_t off)
305 : {
306 0 : __wsum next = csum_partial_copy_nocheck(from, to, len);
307 0 : return csum_block_add(sum, next, off);
308 : }
309 :
310 0 : size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 : {
312 0 : if (WARN_ON_ONCE(i->data_source))
313 : return 0;
314 0 : if (user_backed_iter(i))
315 : might_fault();
316 0 : iterate_and_advance(i, bytes, base, len, off,
317 : copyout(base, addr + off, len),
318 : memcpy(base, addr + off, len)
319 : )
320 :
321 : return bytes;
322 : }
323 : EXPORT_SYMBOL(_copy_to_iter);
324 :
325 : #ifdef CONFIG_ARCH_HAS_COPY_MC
326 : static int copyout_mc(void __user *to, const void *from, size_t n)
327 : {
328 : if (access_ok(to, n)) {
329 : instrument_copy_to_user(to, from, n);
330 : n = copy_mc_to_user((__force void *) to, from, n);
331 : }
332 : return n;
333 : }
334 :
335 : /**
336 : * _copy_mc_to_iter - copy to iter with source memory error exception handling
337 : * @addr: source kernel address
338 : * @bytes: total transfer length
339 : * @i: destination iterator
340 : *
341 : * The pmem driver deploys this for the dax operation
342 : * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343 : * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344 : * successfully copied.
345 : *
346 : * The main differences between this and typical _copy_to_iter().
347 : *
348 : * * Typical tail/residue handling after a fault retries the copy
349 : * byte-by-byte until the fault happens again. Re-triggering machine
350 : * checks is potentially fatal so the implementation uses source
351 : * alignment and poison alignment assumptions to avoid re-triggering
352 : * hardware exceptions.
353 : *
354 : * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
355 : * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356 : *
357 : * Return: number of bytes copied (may be %0)
358 : */
359 : size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 : {
361 : if (WARN_ON_ONCE(i->data_source))
362 : return 0;
363 : if (user_backed_iter(i))
364 : might_fault();
365 : __iterate_and_advance(i, bytes, base, len, off,
366 : copyout_mc(base, addr + off, len),
367 : copy_mc_to_kernel(base, addr + off, len)
368 : )
369 :
370 : return bytes;
371 : }
372 : EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 : #endif /* CONFIG_ARCH_HAS_COPY_MC */
374 :
375 0 : static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376 : size_t size)
377 : {
378 0 : if (iov_iter_is_copy_mc(i))
379 : return (void *)copy_mc_to_kernel(to, from, size);
380 0 : return memcpy(to, from, size);
381 : }
382 :
383 0 : size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 : {
385 0 : if (WARN_ON_ONCE(!i->data_source))
386 : return 0;
387 :
388 0 : if (user_backed_iter(i))
389 : might_fault();
390 0 : iterate_and_advance(i, bytes, base, len, off,
391 : copyin(addr + off, base, len),
392 : memcpy_from_iter(i, addr + off, base, len)
393 : )
394 :
395 : return bytes;
396 : }
397 : EXPORT_SYMBOL(_copy_from_iter);
398 :
399 0 : size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 : {
401 0 : if (WARN_ON_ONCE(!i->data_source))
402 : return 0;
403 :
404 0 : iterate_and_advance(i, bytes, base, len, off,
405 : __copy_from_user_inatomic_nocache(addr + off, base, len),
406 : memcpy(addr + off, base, len)
407 : )
408 :
409 : return bytes;
410 : }
411 : EXPORT_SYMBOL(_copy_from_iter_nocache);
412 :
413 : #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 : /**
415 : * _copy_from_iter_flushcache - write destination through cpu cache
416 : * @addr: destination kernel address
417 : * @bytes: total transfer length
418 : * @i: source iterator
419 : *
420 : * The pmem driver arranges for filesystem-dax to use this facility via
421 : * dax_copy_from_iter() for ensuring that writes to persistent memory
422 : * are flushed through the CPU cache. It is differentiated from
423 : * _copy_from_iter_nocache() in that guarantees all data is flushed for
424 : * all iterator types. The _copy_from_iter_nocache() only attempts to
425 : * bypass the cache for the ITER_IOVEC case, and on some archs may use
426 : * instructions that strand dirty-data in the cache.
427 : *
428 : * Return: number of bytes copied (may be %0)
429 : */
430 : size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 : {
432 : if (WARN_ON_ONCE(!i->data_source))
433 : return 0;
434 :
435 : iterate_and_advance(i, bytes, base, len, off,
436 : __copy_from_user_flushcache(addr + off, base, len),
437 : memcpy_flushcache(addr + off, base, len)
438 : )
439 :
440 : return bytes;
441 : }
442 : EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 : #endif
444 :
445 0 : static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 : {
447 : struct page *head;
448 0 : size_t v = n + offset;
449 :
450 : /*
451 : * The general case needs to access the page order in order
452 : * to compute the page size.
453 : * However, we mostly deal with order-0 pages and thus can
454 : * avoid a possible cache line miss for requests that fit all
455 : * page orders.
456 : */
457 0 : if (n <= v && v <= PAGE_SIZE)
458 : return true;
459 :
460 0 : head = compound_head(page);
461 0 : v += (page - head) << PAGE_SHIFT;
462 :
463 0 : if (WARN_ON(n > v || v > page_size(head)))
464 : return false;
465 0 : return true;
466 : }
467 :
468 0 : size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469 : struct iov_iter *i)
470 : {
471 0 : size_t res = 0;
472 0 : if (!page_copy_sane(page, offset, bytes))
473 : return 0;
474 0 : if (WARN_ON_ONCE(i->data_source))
475 : return 0;
476 0 : page += offset / PAGE_SIZE; // first subpage
477 0 : offset %= PAGE_SIZE;
478 : while (1) {
479 0 : void *kaddr = kmap_local_page(page);
480 0 : size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481 0 : n = _copy_to_iter(kaddr + offset, n, i);
482 : kunmap_local(kaddr);
483 0 : res += n;
484 0 : bytes -= n;
485 0 : if (!bytes || !n)
486 : break;
487 0 : offset += n;
488 0 : if (offset == PAGE_SIZE) {
489 0 : page++;
490 0 : offset = 0;
491 : }
492 : }
493 : return res;
494 : }
495 : EXPORT_SYMBOL(copy_page_to_iter);
496 :
497 0 : size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498 : struct iov_iter *i)
499 : {
500 0 : size_t res = 0;
501 :
502 0 : if (!page_copy_sane(page, offset, bytes))
503 : return 0;
504 0 : if (WARN_ON_ONCE(i->data_source))
505 : return 0;
506 0 : page += offset / PAGE_SIZE; // first subpage
507 0 : offset %= PAGE_SIZE;
508 : while (1) {
509 0 : void *kaddr = kmap_local_page(page);
510 0 : size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511 :
512 0 : iterate_and_advance(i, n, base, len, off,
513 : copyout_nofault(base, kaddr + offset + off, len),
514 : memcpy(base, kaddr + offset + off, len)
515 : )
516 : kunmap_local(kaddr);
517 0 : res += n;
518 0 : bytes -= n;
519 0 : if (!bytes || !n)
520 : break;
521 0 : offset += n;
522 0 : if (offset == PAGE_SIZE) {
523 0 : page++;
524 0 : offset = 0;
525 : }
526 : }
527 : return res;
528 : }
529 : EXPORT_SYMBOL(copy_page_to_iter_nofault);
530 :
531 0 : size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532 : struct iov_iter *i)
533 : {
534 0 : size_t res = 0;
535 0 : if (!page_copy_sane(page, offset, bytes))
536 : return 0;
537 0 : page += offset / PAGE_SIZE; // first subpage
538 0 : offset %= PAGE_SIZE;
539 : while (1) {
540 0 : void *kaddr = kmap_local_page(page);
541 0 : size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542 0 : n = _copy_from_iter(kaddr + offset, n, i);
543 : kunmap_local(kaddr);
544 0 : res += n;
545 0 : bytes -= n;
546 0 : if (!bytes || !n)
547 : break;
548 0 : offset += n;
549 0 : if (offset == PAGE_SIZE) {
550 0 : page++;
551 0 : offset = 0;
552 : }
553 : }
554 : return res;
555 : }
556 : EXPORT_SYMBOL(copy_page_from_iter);
557 :
558 0 : size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 : {
560 0 : iterate_and_advance(i, bytes, base, len, count,
561 : clear_user(base, len),
562 : memset(base, 0, len)
563 : )
564 :
565 0 : return bytes;
566 : }
567 : EXPORT_SYMBOL(iov_iter_zero);
568 :
569 0 : size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
570 : struct iov_iter *i)
571 : {
572 0 : char *kaddr = kmap_atomic(page), *p = kaddr + offset;
573 0 : if (!page_copy_sane(page, offset, bytes)) {
574 0 : kunmap_atomic(kaddr);
575 0 : return 0;
576 : }
577 0 : if (WARN_ON_ONCE(!i->data_source)) {
578 0 : kunmap_atomic(kaddr);
579 0 : return 0;
580 : }
581 0 : iterate_and_advance(i, bytes, base, len, off,
582 : copyin(p + off, base, len),
583 : memcpy_from_iter(i, p + off, base, len)
584 : )
585 0 : kunmap_atomic(kaddr);
586 0 : return bytes;
587 : }
588 : EXPORT_SYMBOL(copy_page_from_iter_atomic);
589 :
590 0 : static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
591 : {
592 : const struct bio_vec *bvec, *end;
593 :
594 0 : if (!i->count)
595 : return;
596 0 : i->count -= size;
597 :
598 0 : size += i->iov_offset;
599 :
600 0 : for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
601 0 : if (likely(size < bvec->bv_len))
602 : break;
603 0 : size -= bvec->bv_len;
604 : }
605 0 : i->iov_offset = size;
606 0 : i->nr_segs -= bvec - i->bvec;
607 0 : i->bvec = bvec;
608 : }
609 :
610 0 : static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
611 : {
612 : const struct iovec *iov, *end;
613 :
614 0 : if (!i->count)
615 : return;
616 0 : i->count -= size;
617 :
618 0 : size += i->iov_offset; // from beginning of current segment
619 0 : for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
620 0 : if (likely(size < iov->iov_len))
621 : break;
622 0 : size -= iov->iov_len;
623 : }
624 0 : i->iov_offset = size;
625 0 : i->nr_segs -= iov - iter_iov(i);
626 0 : i->__iov = iov;
627 : }
628 :
629 0 : void iov_iter_advance(struct iov_iter *i, size_t size)
630 : {
631 0 : if (unlikely(i->count < size))
632 0 : size = i->count;
633 0 : if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
634 0 : i->iov_offset += size;
635 0 : i->count -= size;
636 0 : } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
637 : /* iovec and kvec have identical layouts */
638 0 : iov_iter_iovec_advance(i, size);
639 0 : } else if (iov_iter_is_bvec(i)) {
640 0 : iov_iter_bvec_advance(i, size);
641 0 : } else if (iov_iter_is_discard(i)) {
642 0 : i->count -= size;
643 : }
644 0 : }
645 : EXPORT_SYMBOL(iov_iter_advance);
646 :
647 0 : void iov_iter_revert(struct iov_iter *i, size_t unroll)
648 : {
649 0 : if (!unroll)
650 : return;
651 0 : if (WARN_ON(unroll > MAX_RW_COUNT))
652 : return;
653 0 : i->count += unroll;
654 0 : if (unlikely(iov_iter_is_discard(i)))
655 : return;
656 0 : if (unroll <= i->iov_offset) {
657 0 : i->iov_offset -= unroll;
658 0 : return;
659 : }
660 0 : unroll -= i->iov_offset;
661 0 : if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
662 0 : BUG(); /* We should never go beyond the start of the specified
663 : * range since we might then be straying into pages that
664 : * aren't pinned.
665 : */
666 0 : } else if (iov_iter_is_bvec(i)) {
667 0 : const struct bio_vec *bvec = i->bvec;
668 0 : while (1) {
669 0 : size_t n = (--bvec)->bv_len;
670 0 : i->nr_segs++;
671 0 : if (unroll <= n) {
672 0 : i->bvec = bvec;
673 0 : i->iov_offset = n - unroll;
674 0 : return;
675 : }
676 0 : unroll -= n;
677 : }
678 : } else { /* same logics for iovec and kvec */
679 0 : const struct iovec *iov = iter_iov(i);
680 0 : while (1) {
681 0 : size_t n = (--iov)->iov_len;
682 0 : i->nr_segs++;
683 0 : if (unroll <= n) {
684 0 : i->__iov = iov;
685 0 : i->iov_offset = n - unroll;
686 0 : return;
687 : }
688 0 : unroll -= n;
689 : }
690 : }
691 : }
692 : EXPORT_SYMBOL(iov_iter_revert);
693 :
694 : /*
695 : * Return the count of just the current iov_iter segment.
696 : */
697 0 : size_t iov_iter_single_seg_count(const struct iov_iter *i)
698 : {
699 0 : if (i->nr_segs > 1) {
700 0 : if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
701 0 : return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
702 0 : if (iov_iter_is_bvec(i))
703 0 : return min(i->count, i->bvec->bv_len - i->iov_offset);
704 : }
705 0 : return i->count;
706 : }
707 : EXPORT_SYMBOL(iov_iter_single_seg_count);
708 :
709 0 : void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
710 : const struct kvec *kvec, unsigned long nr_segs,
711 : size_t count)
712 : {
713 0 : WARN_ON(direction & ~(READ | WRITE));
714 0 : *i = (struct iov_iter){
715 : .iter_type = ITER_KVEC,
716 : .copy_mc = false,
717 : .data_source = direction,
718 : .kvec = kvec,
719 : .nr_segs = nr_segs,
720 : .iov_offset = 0,
721 : .count = count
722 : };
723 0 : }
724 : EXPORT_SYMBOL(iov_iter_kvec);
725 :
726 0 : void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
727 : const struct bio_vec *bvec, unsigned long nr_segs,
728 : size_t count)
729 : {
730 0 : WARN_ON(direction & ~(READ | WRITE));
731 0 : *i = (struct iov_iter){
732 : .iter_type = ITER_BVEC,
733 : .copy_mc = false,
734 : .data_source = direction,
735 : .bvec = bvec,
736 : .nr_segs = nr_segs,
737 : .iov_offset = 0,
738 : .count = count
739 : };
740 0 : }
741 : EXPORT_SYMBOL(iov_iter_bvec);
742 :
743 : /**
744 : * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
745 : * @i: The iterator to initialise.
746 : * @direction: The direction of the transfer.
747 : * @xarray: The xarray to access.
748 : * @start: The start file position.
749 : * @count: The size of the I/O buffer in bytes.
750 : *
751 : * Set up an I/O iterator to either draw data out of the pages attached to an
752 : * inode or to inject data into those pages. The pages *must* be prevented
753 : * from evaporation, either by taking a ref on them or locking them by the
754 : * caller.
755 : */
756 0 : void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
757 : struct xarray *xarray, loff_t start, size_t count)
758 : {
759 0 : BUG_ON(direction & ~1);
760 0 : *i = (struct iov_iter) {
761 : .iter_type = ITER_XARRAY,
762 : .copy_mc = false,
763 : .data_source = direction,
764 : .xarray = xarray,
765 : .xarray_start = start,
766 : .count = count,
767 : .iov_offset = 0
768 : };
769 0 : }
770 : EXPORT_SYMBOL(iov_iter_xarray);
771 :
772 : /**
773 : * iov_iter_discard - Initialise an I/O iterator that discards data
774 : * @i: The iterator to initialise.
775 : * @direction: The direction of the transfer.
776 : * @count: The size of the I/O buffer in bytes.
777 : *
778 : * Set up an I/O iterator that just discards everything that's written to it.
779 : * It's only available as a READ iterator.
780 : */
781 0 : void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
782 : {
783 0 : BUG_ON(direction != READ);
784 0 : *i = (struct iov_iter){
785 : .iter_type = ITER_DISCARD,
786 : .copy_mc = false,
787 : .data_source = false,
788 : .count = count,
789 : .iov_offset = 0
790 : };
791 0 : }
792 : EXPORT_SYMBOL(iov_iter_discard);
793 :
794 0 : static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
795 : unsigned len_mask)
796 : {
797 0 : size_t size = i->count;
798 0 : size_t skip = i->iov_offset;
799 : unsigned k;
800 :
801 0 : for (k = 0; k < i->nr_segs; k++, skip = 0) {
802 0 : const struct iovec *iov = iter_iov(i) + k;
803 0 : size_t len = iov->iov_len - skip;
804 :
805 0 : if (len > size)
806 0 : len = size;
807 0 : if (len & len_mask)
808 : return false;
809 0 : if ((unsigned long)(iov->iov_base + skip) & addr_mask)
810 : return false;
811 :
812 0 : size -= len;
813 0 : if (!size)
814 : break;
815 : }
816 : return true;
817 : }
818 :
819 0 : static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
820 : unsigned len_mask)
821 : {
822 0 : size_t size = i->count;
823 0 : unsigned skip = i->iov_offset;
824 : unsigned k;
825 :
826 0 : for (k = 0; k < i->nr_segs; k++, skip = 0) {
827 0 : size_t len = i->bvec[k].bv_len - skip;
828 :
829 0 : if (len > size)
830 0 : len = size;
831 0 : if (len & len_mask)
832 : return false;
833 0 : if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
834 : return false;
835 :
836 0 : size -= len;
837 0 : if (!size)
838 : break;
839 : }
840 : return true;
841 : }
842 :
843 : /**
844 : * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
845 : * are aligned to the parameters.
846 : *
847 : * @i: &struct iov_iter to restore
848 : * @addr_mask: bit mask to check against the iov element's addresses
849 : * @len_mask: bit mask to check against the iov element's lengths
850 : *
851 : * Return: false if any addresses or lengths intersect with the provided masks
852 : */
853 0 : bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
854 : unsigned len_mask)
855 : {
856 0 : if (likely(iter_is_ubuf(i))) {
857 0 : if (i->count & len_mask)
858 : return false;
859 0 : if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
860 : return false;
861 0 : return true;
862 : }
863 :
864 0 : if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
865 0 : return iov_iter_aligned_iovec(i, addr_mask, len_mask);
866 :
867 0 : if (iov_iter_is_bvec(i))
868 0 : return iov_iter_aligned_bvec(i, addr_mask, len_mask);
869 :
870 0 : if (iov_iter_is_xarray(i)) {
871 0 : if (i->count & len_mask)
872 : return false;
873 0 : if ((i->xarray_start + i->iov_offset) & addr_mask)
874 : return false;
875 : }
876 :
877 0 : return true;
878 : }
879 : EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
880 :
881 0 : static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
882 : {
883 0 : unsigned long res = 0;
884 0 : size_t size = i->count;
885 0 : size_t skip = i->iov_offset;
886 : unsigned k;
887 :
888 0 : for (k = 0; k < i->nr_segs; k++, skip = 0) {
889 0 : const struct iovec *iov = iter_iov(i) + k;
890 0 : size_t len = iov->iov_len - skip;
891 0 : if (len) {
892 0 : res |= (unsigned long)iov->iov_base + skip;
893 0 : if (len > size)
894 0 : len = size;
895 0 : res |= len;
896 0 : size -= len;
897 0 : if (!size)
898 : break;
899 : }
900 : }
901 0 : return res;
902 : }
903 :
904 0 : static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
905 : {
906 0 : unsigned res = 0;
907 0 : size_t size = i->count;
908 0 : unsigned skip = i->iov_offset;
909 : unsigned k;
910 :
911 0 : for (k = 0; k < i->nr_segs; k++, skip = 0) {
912 0 : size_t len = i->bvec[k].bv_len - skip;
913 0 : res |= (unsigned long)i->bvec[k].bv_offset + skip;
914 0 : if (len > size)
915 0 : len = size;
916 0 : res |= len;
917 0 : size -= len;
918 0 : if (!size)
919 : break;
920 : }
921 0 : return res;
922 : }
923 :
924 0 : unsigned long iov_iter_alignment(const struct iov_iter *i)
925 : {
926 0 : if (likely(iter_is_ubuf(i))) {
927 0 : size_t size = i->count;
928 0 : if (size)
929 0 : return ((unsigned long)i->ubuf + i->iov_offset) | size;
930 : return 0;
931 : }
932 :
933 : /* iovec and kvec have identical layouts */
934 0 : if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
935 0 : return iov_iter_alignment_iovec(i);
936 :
937 0 : if (iov_iter_is_bvec(i))
938 0 : return iov_iter_alignment_bvec(i);
939 :
940 0 : if (iov_iter_is_xarray(i))
941 0 : return (i->xarray_start + i->iov_offset) | i->count;
942 :
943 : return 0;
944 : }
945 : EXPORT_SYMBOL(iov_iter_alignment);
946 :
947 0 : unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
948 : {
949 0 : unsigned long res = 0;
950 0 : unsigned long v = 0;
951 0 : size_t size = i->count;
952 : unsigned k;
953 :
954 0 : if (iter_is_ubuf(i))
955 : return 0;
956 :
957 0 : if (WARN_ON(!iter_is_iovec(i)))
958 : return ~0U;
959 :
960 0 : for (k = 0; k < i->nr_segs; k++) {
961 0 : const struct iovec *iov = iter_iov(i) + k;
962 0 : if (iov->iov_len) {
963 0 : unsigned long base = (unsigned long)iov->iov_base;
964 0 : if (v) // if not the first one
965 0 : res |= base | v; // this start | previous end
966 0 : v = base + iov->iov_len;
967 0 : if (size <= iov->iov_len)
968 : break;
969 0 : size -= iov->iov_len;
970 : }
971 : }
972 : return res;
973 : }
974 : EXPORT_SYMBOL(iov_iter_gap_alignment);
975 :
976 0 : static int want_pages_array(struct page ***res, size_t size,
977 : size_t start, unsigned int maxpages)
978 : {
979 0 : unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
980 :
981 0 : if (count > maxpages)
982 0 : count = maxpages;
983 0 : WARN_ON(!count); // caller should've prevented that
984 0 : if (!*res) {
985 0 : *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
986 0 : if (!*res)
987 : return 0;
988 : }
989 0 : return count;
990 : }
991 :
992 0 : static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
993 : pgoff_t index, unsigned int nr_pages)
994 : {
995 0 : XA_STATE(xas, xa, index);
996 : struct page *page;
997 0 : unsigned int ret = 0;
998 :
999 : rcu_read_lock();
1000 0 : for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1001 0 : if (xas_retry(&xas, page))
1002 0 : continue;
1003 :
1004 : /* Has the page moved or been split? */
1005 0 : if (unlikely(page != xas_reload(&xas))) {
1006 0 : xas_reset(&xas);
1007 0 : continue;
1008 : }
1009 :
1010 0 : pages[ret] = find_subpage(page, xas.xa_index);
1011 0 : get_page(pages[ret]);
1012 0 : if (++ret == nr_pages)
1013 : break;
1014 : }
1015 : rcu_read_unlock();
1016 0 : return ret;
1017 : }
1018 :
1019 0 : static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1020 : struct page ***pages, size_t maxsize,
1021 : unsigned maxpages, size_t *_start_offset)
1022 : {
1023 : unsigned nr, offset, count;
1024 : pgoff_t index;
1025 : loff_t pos;
1026 :
1027 0 : pos = i->xarray_start + i->iov_offset;
1028 0 : index = pos >> PAGE_SHIFT;
1029 0 : offset = pos & ~PAGE_MASK;
1030 0 : *_start_offset = offset;
1031 :
1032 0 : count = want_pages_array(pages, maxsize, offset, maxpages);
1033 0 : if (!count)
1034 : return -ENOMEM;
1035 0 : nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1036 0 : if (nr == 0)
1037 : return 0;
1038 :
1039 0 : maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1040 0 : i->iov_offset += maxsize;
1041 0 : i->count -= maxsize;
1042 0 : return maxsize;
1043 : }
1044 :
1045 : /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1046 0 : static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1047 : {
1048 : size_t skip;
1049 : long k;
1050 :
1051 0 : if (iter_is_ubuf(i))
1052 0 : return (unsigned long)i->ubuf + i->iov_offset;
1053 :
1054 0 : for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1055 0 : const struct iovec *iov = iter_iov(i) + k;
1056 0 : size_t len = iov->iov_len - skip;
1057 :
1058 0 : if (unlikely(!len))
1059 0 : continue;
1060 0 : if (*size > len)
1061 0 : *size = len;
1062 0 : return (unsigned long)iov->iov_base + skip;
1063 : }
1064 0 : BUG(); // if it had been empty, we wouldn't get called
1065 : }
1066 :
1067 : /* must be done on non-empty ITER_BVEC one */
1068 : static struct page *first_bvec_segment(const struct iov_iter *i,
1069 : size_t *size, size_t *start)
1070 : {
1071 : struct page *page;
1072 0 : size_t skip = i->iov_offset, len;
1073 :
1074 0 : len = i->bvec->bv_len - skip;
1075 0 : if (*size > len)
1076 0 : *size = len;
1077 0 : skip += i->bvec->bv_offset;
1078 0 : page = i->bvec->bv_page + skip / PAGE_SIZE;
1079 0 : *start = skip % PAGE_SIZE;
1080 : return page;
1081 : }
1082 :
1083 0 : static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1084 : struct page ***pages, size_t maxsize,
1085 : unsigned int maxpages, size_t *start)
1086 : {
1087 0 : unsigned int n, gup_flags = 0;
1088 :
1089 0 : if (maxsize > i->count)
1090 0 : maxsize = i->count;
1091 0 : if (!maxsize)
1092 : return 0;
1093 0 : if (maxsize > MAX_RW_COUNT)
1094 0 : maxsize = MAX_RW_COUNT;
1095 :
1096 0 : if (likely(user_backed_iter(i))) {
1097 : unsigned long addr;
1098 : int res;
1099 :
1100 0 : if (iov_iter_rw(i) != WRITE)
1101 0 : gup_flags |= FOLL_WRITE;
1102 0 : if (i->nofault)
1103 0 : gup_flags |= FOLL_NOFAULT;
1104 :
1105 0 : addr = first_iovec_segment(i, &maxsize);
1106 0 : *start = addr % PAGE_SIZE;
1107 0 : addr &= PAGE_MASK;
1108 0 : n = want_pages_array(pages, maxsize, *start, maxpages);
1109 0 : if (!n)
1110 : return -ENOMEM;
1111 0 : res = get_user_pages_fast(addr, n, gup_flags, *pages);
1112 0 : if (unlikely(res <= 0))
1113 0 : return res;
1114 0 : maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1115 0 : iov_iter_advance(i, maxsize);
1116 0 : return maxsize;
1117 : }
1118 0 : if (iov_iter_is_bvec(i)) {
1119 : struct page **p;
1120 : struct page *page;
1121 :
1122 0 : page = first_bvec_segment(i, &maxsize, start);
1123 0 : n = want_pages_array(pages, maxsize, *start, maxpages);
1124 0 : if (!n)
1125 : return -ENOMEM;
1126 0 : p = *pages;
1127 0 : for (int k = 0; k < n; k++)
1128 0 : get_page(p[k] = page + k);
1129 0 : maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1130 0 : i->count -= maxsize;
1131 0 : i->iov_offset += maxsize;
1132 0 : if (i->iov_offset == i->bvec->bv_len) {
1133 0 : i->iov_offset = 0;
1134 0 : i->bvec++;
1135 0 : i->nr_segs--;
1136 : }
1137 0 : return maxsize;
1138 : }
1139 0 : if (iov_iter_is_xarray(i))
1140 0 : return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1141 : return -EFAULT;
1142 : }
1143 :
1144 0 : ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1145 : size_t maxsize, unsigned maxpages, size_t *start)
1146 : {
1147 0 : if (!maxpages)
1148 : return 0;
1149 0 : BUG_ON(!pages);
1150 :
1151 0 : return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1152 : }
1153 : EXPORT_SYMBOL(iov_iter_get_pages2);
1154 :
1155 0 : ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1156 : struct page ***pages, size_t maxsize, size_t *start)
1157 : {
1158 : ssize_t len;
1159 :
1160 0 : *pages = NULL;
1161 :
1162 0 : len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1163 0 : if (len <= 0) {
1164 0 : kvfree(*pages);
1165 0 : *pages = NULL;
1166 : }
1167 0 : return len;
1168 : }
1169 : EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1170 :
1171 0 : size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1172 : struct iov_iter *i)
1173 : {
1174 : __wsum sum, next;
1175 0 : sum = *csum;
1176 0 : if (WARN_ON_ONCE(!i->data_source))
1177 : return 0;
1178 :
1179 0 : iterate_and_advance(i, bytes, base, len, off, ({
1180 : next = csum_and_copy_from_user(base, addr + off, len);
1181 : sum = csum_block_add(sum, next, off);
1182 : next ? 0 : len;
1183 : }), ({
1184 : sum = csum_and_memcpy(addr + off, base, len, sum, off);
1185 : })
1186 : )
1187 0 : *csum = sum;
1188 0 : return bytes;
1189 : }
1190 : EXPORT_SYMBOL(csum_and_copy_from_iter);
1191 :
1192 0 : size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1193 : struct iov_iter *i)
1194 : {
1195 0 : struct csum_state *csstate = _csstate;
1196 : __wsum sum, next;
1197 :
1198 0 : if (WARN_ON_ONCE(i->data_source))
1199 : return 0;
1200 0 : if (unlikely(iov_iter_is_discard(i))) {
1201 : // can't use csum_memcpy() for that one - data is not copied
1202 0 : csstate->csum = csum_block_add(csstate->csum,
1203 : csum_partial(addr, bytes, 0),
1204 0 : csstate->off);
1205 0 : csstate->off += bytes;
1206 0 : return bytes;
1207 : }
1208 :
1209 0 : sum = csum_shift(csstate->csum, csstate->off);
1210 0 : iterate_and_advance(i, bytes, base, len, off, ({
1211 : next = csum_and_copy_to_user(addr + off, base, len);
1212 : sum = csum_block_add(sum, next, off);
1213 : next ? 0 : len;
1214 : }), ({
1215 : sum = csum_and_memcpy(base, addr + off, len, sum, off);
1216 : })
1217 : )
1218 0 : csstate->csum = csum_shift(sum, csstate->off);
1219 0 : csstate->off += bytes;
1220 0 : return bytes;
1221 : }
1222 : EXPORT_SYMBOL(csum_and_copy_to_iter);
1223 :
1224 0 : size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1225 : struct iov_iter *i)
1226 : {
1227 : #ifdef CONFIG_CRYPTO_HASH
1228 : struct ahash_request *hash = hashp;
1229 : struct scatterlist sg;
1230 : size_t copied;
1231 :
1232 : copied = copy_to_iter(addr, bytes, i);
1233 : sg_init_one(&sg, addr, copied);
1234 : ahash_request_set_crypt(hash, &sg, NULL, copied);
1235 : crypto_ahash_update(hash);
1236 : return copied;
1237 : #else
1238 0 : return 0;
1239 : #endif
1240 : }
1241 : EXPORT_SYMBOL(hash_and_copy_to_iter);
1242 :
1243 0 : static int iov_npages(const struct iov_iter *i, int maxpages)
1244 : {
1245 0 : size_t skip = i->iov_offset, size = i->count;
1246 : const struct iovec *p;
1247 0 : int npages = 0;
1248 :
1249 0 : for (p = iter_iov(i); size; skip = 0, p++) {
1250 0 : unsigned offs = offset_in_page(p->iov_base + skip);
1251 0 : size_t len = min(p->iov_len - skip, size);
1252 :
1253 0 : if (len) {
1254 0 : size -= len;
1255 0 : npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1256 0 : if (unlikely(npages > maxpages))
1257 : return maxpages;
1258 : }
1259 : }
1260 : return npages;
1261 : }
1262 :
1263 : static int bvec_npages(const struct iov_iter *i, int maxpages)
1264 : {
1265 0 : size_t skip = i->iov_offset, size = i->count;
1266 : const struct bio_vec *p;
1267 0 : int npages = 0;
1268 :
1269 0 : for (p = i->bvec; size; skip = 0, p++) {
1270 0 : unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1271 0 : size_t len = min(p->bv_len - skip, size);
1272 :
1273 0 : size -= len;
1274 0 : npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1275 0 : if (unlikely(npages > maxpages))
1276 : return maxpages;
1277 : }
1278 : return npages;
1279 : }
1280 :
1281 0 : int iov_iter_npages(const struct iov_iter *i, int maxpages)
1282 : {
1283 0 : if (unlikely(!i->count))
1284 : return 0;
1285 0 : if (likely(iter_is_ubuf(i))) {
1286 0 : unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1287 0 : int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1288 0 : return min(npages, maxpages);
1289 : }
1290 : /* iovec and kvec have identical layouts */
1291 0 : if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1292 0 : return iov_npages(i, maxpages);
1293 0 : if (iov_iter_is_bvec(i))
1294 : return bvec_npages(i, maxpages);
1295 0 : if (iov_iter_is_xarray(i)) {
1296 0 : unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1297 0 : int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1298 0 : return min(npages, maxpages);
1299 : }
1300 : return 0;
1301 : }
1302 : EXPORT_SYMBOL(iov_iter_npages);
1303 :
1304 0 : const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1305 : {
1306 0 : *new = *old;
1307 0 : if (iov_iter_is_bvec(new))
1308 0 : return new->bvec = kmemdup(new->bvec,
1309 0 : new->nr_segs * sizeof(struct bio_vec),
1310 : flags);
1311 0 : else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1312 : /* iovec and kvec have identical layout */
1313 0 : return new->__iov = kmemdup(new->__iov,
1314 0 : new->nr_segs * sizeof(struct iovec),
1315 : flags);
1316 : return NULL;
1317 : }
1318 : EXPORT_SYMBOL(dup_iter);
1319 :
1320 0 : static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1321 : const struct iovec __user *uvec, unsigned long nr_segs)
1322 : {
1323 0 : const struct compat_iovec __user *uiov =
1324 : (const struct compat_iovec __user *)uvec;
1325 0 : int ret = -EFAULT, i;
1326 :
1327 0 : if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1328 : return -EFAULT;
1329 :
1330 0 : for (i = 0; i < nr_segs; i++) {
1331 : compat_uptr_t buf;
1332 : compat_ssize_t len;
1333 :
1334 0 : unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1335 0 : unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1336 :
1337 : /* check for compat_size_t not fitting in compat_ssize_t .. */
1338 0 : if (len < 0) {
1339 : ret = -EINVAL;
1340 : goto uaccess_end;
1341 : }
1342 0 : iov[i].iov_base = compat_ptr(buf);
1343 0 : iov[i].iov_len = len;
1344 : }
1345 :
1346 : ret = 0;
1347 : uaccess_end:
1348 : user_access_end();
1349 : return ret;
1350 : }
1351 :
1352 0 : static __noclone int copy_iovec_from_user(struct iovec *iov,
1353 : const struct iovec __user *uiov, unsigned long nr_segs)
1354 : {
1355 0 : int ret = -EFAULT;
1356 :
1357 0 : if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1358 : return -EFAULT;
1359 :
1360 : do {
1361 : void __user *buf;
1362 : ssize_t len;
1363 :
1364 0 : unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1365 0 : unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1366 :
1367 : /* check for size_t not fitting in ssize_t .. */
1368 0 : if (unlikely(len < 0)) {
1369 : ret = -EINVAL;
1370 : goto uaccess_end;
1371 : }
1372 0 : iov->iov_base = buf;
1373 0 : iov->iov_len = len;
1374 :
1375 0 : uiov++; iov++;
1376 0 : } while (--nr_segs);
1377 :
1378 : ret = 0;
1379 : uaccess_end:
1380 : user_access_end();
1381 : return ret;
1382 : }
1383 :
1384 0 : struct iovec *iovec_from_user(const struct iovec __user *uvec,
1385 : unsigned long nr_segs, unsigned long fast_segs,
1386 : struct iovec *fast_iov, bool compat)
1387 : {
1388 0 : struct iovec *iov = fast_iov;
1389 : int ret;
1390 :
1391 : /*
1392 : * SuS says "The readv() function *may* fail if the iovcnt argument was
1393 : * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1394 : * traditionally returned zero for zero segments, so...
1395 : */
1396 0 : if (nr_segs == 0)
1397 : return iov;
1398 0 : if (nr_segs > UIO_MAXIOV)
1399 : return ERR_PTR(-EINVAL);
1400 0 : if (nr_segs > fast_segs) {
1401 0 : iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1402 0 : if (!iov)
1403 : return ERR_PTR(-ENOMEM);
1404 : }
1405 :
1406 0 : if (unlikely(compat))
1407 0 : ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1408 : else
1409 0 : ret = copy_iovec_from_user(iov, uvec, nr_segs);
1410 0 : if (ret) {
1411 0 : if (iov != fast_iov)
1412 0 : kfree(iov);
1413 0 : return ERR_PTR(ret);
1414 : }
1415 :
1416 : return iov;
1417 : }
1418 :
1419 : /*
1420 : * Single segment iovec supplied by the user, import it as ITER_UBUF.
1421 : */
1422 0 : static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1423 : struct iovec **iovp, struct iov_iter *i,
1424 : bool compat)
1425 : {
1426 0 : struct iovec *iov = *iovp;
1427 : ssize_t ret;
1428 :
1429 0 : if (compat)
1430 0 : ret = copy_compat_iovec_from_user(iov, uvec, 1);
1431 : else
1432 0 : ret = copy_iovec_from_user(iov, uvec, 1);
1433 0 : if (unlikely(ret))
1434 : return ret;
1435 :
1436 0 : ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1437 0 : if (unlikely(ret))
1438 : return ret;
1439 0 : *iovp = NULL;
1440 0 : return i->count;
1441 : }
1442 :
1443 0 : ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1444 : unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1445 : struct iov_iter *i, bool compat)
1446 : {
1447 0 : ssize_t total_len = 0;
1448 : unsigned long seg;
1449 : struct iovec *iov;
1450 :
1451 0 : if (nr_segs == 1)
1452 0 : return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1453 :
1454 0 : iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1455 0 : if (IS_ERR(iov)) {
1456 0 : *iovp = NULL;
1457 0 : return PTR_ERR(iov);
1458 : }
1459 :
1460 : /*
1461 : * According to the Single Unix Specification we should return EINVAL if
1462 : * an element length is < 0 when cast to ssize_t or if the total length
1463 : * would overflow the ssize_t return value of the system call.
1464 : *
1465 : * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1466 : * overflow case.
1467 : */
1468 0 : for (seg = 0; seg < nr_segs; seg++) {
1469 0 : ssize_t len = (ssize_t)iov[seg].iov_len;
1470 :
1471 0 : if (!access_ok(iov[seg].iov_base, len)) {
1472 0 : if (iov != *iovp)
1473 0 : kfree(iov);
1474 0 : *iovp = NULL;
1475 0 : return -EFAULT;
1476 : }
1477 :
1478 0 : if (len > MAX_RW_COUNT - total_len) {
1479 0 : len = MAX_RW_COUNT - total_len;
1480 0 : iov[seg].iov_len = len;
1481 : }
1482 0 : total_len += len;
1483 : }
1484 :
1485 0 : iov_iter_init(i, type, iov, nr_segs, total_len);
1486 0 : if (iov == *iovp)
1487 0 : *iovp = NULL;
1488 : else
1489 0 : *iovp = iov;
1490 : return total_len;
1491 : }
1492 :
1493 : /**
1494 : * import_iovec() - Copy an array of &struct iovec from userspace
1495 : * into the kernel, check that it is valid, and initialize a new
1496 : * &struct iov_iter iterator to access it.
1497 : *
1498 : * @type: One of %READ or %WRITE.
1499 : * @uvec: Pointer to the userspace array.
1500 : * @nr_segs: Number of elements in userspace array.
1501 : * @fast_segs: Number of elements in @iov.
1502 : * @iovp: (input and output parameter) Pointer to pointer to (usually small
1503 : * on-stack) kernel array.
1504 : * @i: Pointer to iterator that will be initialized on success.
1505 : *
1506 : * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1507 : * then this function places %NULL in *@iov on return. Otherwise, a new
1508 : * array will be allocated and the result placed in *@iov. This means that
1509 : * the caller may call kfree() on *@iov regardless of whether the small
1510 : * on-stack array was used or not (and regardless of whether this function
1511 : * returns an error or not).
1512 : *
1513 : * Return: Negative error code on error, bytes imported on success
1514 : */
1515 0 : ssize_t import_iovec(int type, const struct iovec __user *uvec,
1516 : unsigned nr_segs, unsigned fast_segs,
1517 : struct iovec **iovp, struct iov_iter *i)
1518 : {
1519 0 : return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1520 : in_compat_syscall());
1521 : }
1522 : EXPORT_SYMBOL(import_iovec);
1523 :
1524 0 : int import_single_range(int rw, void __user *buf, size_t len,
1525 : struct iovec *iov, struct iov_iter *i)
1526 : {
1527 0 : if (len > MAX_RW_COUNT)
1528 0 : len = MAX_RW_COUNT;
1529 0 : if (unlikely(!access_ok(buf, len)))
1530 : return -EFAULT;
1531 :
1532 0 : iov_iter_ubuf(i, rw, buf, len);
1533 0 : return 0;
1534 : }
1535 : EXPORT_SYMBOL(import_single_range);
1536 :
1537 0 : int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1538 : {
1539 0 : if (len > MAX_RW_COUNT)
1540 0 : len = MAX_RW_COUNT;
1541 0 : if (unlikely(!access_ok(buf, len)))
1542 : return -EFAULT;
1543 :
1544 0 : iov_iter_ubuf(i, rw, buf, len);
1545 0 : return 0;
1546 : }
1547 :
1548 : /**
1549 : * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1550 : * iov_iter_save_state() was called.
1551 : *
1552 : * @i: &struct iov_iter to restore
1553 : * @state: state to restore from
1554 : *
1555 : * Used after iov_iter_save_state() to bring restore @i, if operations may
1556 : * have advanced it.
1557 : *
1558 : * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1559 : */
1560 0 : void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1561 : {
1562 0 : if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1563 0 : !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1564 : return;
1565 0 : i->iov_offset = state->iov_offset;
1566 0 : i->count = state->count;
1567 0 : if (iter_is_ubuf(i))
1568 : return;
1569 : /*
1570 : * For the *vec iters, nr_segs + iov is constant - if we increment
1571 : * the vec, then we also decrement the nr_segs count. Hence we don't
1572 : * need to track both of these, just one is enough and we can deduct
1573 : * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1574 : * size, so we can just increment the iov pointer as they are unionzed.
1575 : * ITER_BVEC _may_ be the same size on some archs, but on others it is
1576 : * not. Be safe and handle it separately.
1577 : */
1578 : BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1579 0 : if (iov_iter_is_bvec(i))
1580 0 : i->bvec -= state->nr_segs - i->nr_segs;
1581 : else
1582 0 : i->__iov -= state->nr_segs - i->nr_segs;
1583 0 : i->nr_segs = state->nr_segs;
1584 : }
1585 :
1586 : /*
1587 : * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1588 : * get references on the pages, nor does it get a pin on them.
1589 : */
1590 0 : static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1591 : struct page ***pages, size_t maxsize,
1592 : unsigned int maxpages,
1593 : iov_iter_extraction_t extraction_flags,
1594 : size_t *offset0)
1595 : {
1596 : struct page *page, **p;
1597 0 : unsigned int nr = 0, offset;
1598 0 : loff_t pos = i->xarray_start + i->iov_offset;
1599 0 : pgoff_t index = pos >> PAGE_SHIFT;
1600 0 : XA_STATE(xas, i->xarray, index);
1601 :
1602 0 : offset = pos & ~PAGE_MASK;
1603 0 : *offset0 = offset;
1604 :
1605 0 : maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1606 0 : if (!maxpages)
1607 : return -ENOMEM;
1608 0 : p = *pages;
1609 :
1610 : rcu_read_lock();
1611 0 : for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1612 0 : if (xas_retry(&xas, page))
1613 0 : continue;
1614 :
1615 : /* Has the page moved or been split? */
1616 0 : if (unlikely(page != xas_reload(&xas))) {
1617 0 : xas_reset(&xas);
1618 0 : continue;
1619 : }
1620 :
1621 0 : p[nr++] = find_subpage(page, xas.xa_index);
1622 0 : if (nr == maxpages)
1623 : break;
1624 : }
1625 : rcu_read_unlock();
1626 :
1627 0 : maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1628 0 : iov_iter_advance(i, maxsize);
1629 0 : return maxsize;
1630 : }
1631 :
1632 : /*
1633 : * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1634 : * not get references on the pages, nor does it get a pin on them.
1635 : */
1636 0 : static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1637 : struct page ***pages, size_t maxsize,
1638 : unsigned int maxpages,
1639 : iov_iter_extraction_t extraction_flags,
1640 : size_t *offset0)
1641 : {
1642 : struct page **p, *page;
1643 0 : size_t skip = i->iov_offset, offset;
1644 : int k;
1645 :
1646 : for (;;) {
1647 0 : if (i->nr_segs == 0)
1648 : return 0;
1649 0 : maxsize = min(maxsize, i->bvec->bv_len - skip);
1650 0 : if (maxsize)
1651 : break;
1652 0 : i->iov_offset = 0;
1653 0 : i->nr_segs--;
1654 0 : i->bvec++;
1655 0 : skip = 0;
1656 : }
1657 :
1658 0 : skip += i->bvec->bv_offset;
1659 0 : page = i->bvec->bv_page + skip / PAGE_SIZE;
1660 0 : offset = skip % PAGE_SIZE;
1661 0 : *offset0 = offset;
1662 :
1663 0 : maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1664 0 : if (!maxpages)
1665 : return -ENOMEM;
1666 0 : p = *pages;
1667 0 : for (k = 0; k < maxpages; k++)
1668 0 : p[k] = page + k;
1669 :
1670 0 : maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1671 0 : iov_iter_advance(i, maxsize);
1672 0 : return maxsize;
1673 : }
1674 :
1675 : /*
1676 : * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1677 : * This does not get references on the pages, nor does it get a pin on them.
1678 : */
1679 0 : static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1680 : struct page ***pages, size_t maxsize,
1681 : unsigned int maxpages,
1682 : iov_iter_extraction_t extraction_flags,
1683 : size_t *offset0)
1684 : {
1685 : struct page **p, *page;
1686 : const void *kaddr;
1687 0 : size_t skip = i->iov_offset, offset, len;
1688 : int k;
1689 :
1690 : for (;;) {
1691 0 : if (i->nr_segs == 0)
1692 : return 0;
1693 0 : maxsize = min(maxsize, i->kvec->iov_len - skip);
1694 0 : if (maxsize)
1695 : break;
1696 0 : i->iov_offset = 0;
1697 0 : i->nr_segs--;
1698 0 : i->kvec++;
1699 0 : skip = 0;
1700 : }
1701 :
1702 0 : kaddr = i->kvec->iov_base + skip;
1703 0 : offset = (unsigned long)kaddr & ~PAGE_MASK;
1704 0 : *offset0 = offset;
1705 :
1706 0 : maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1707 0 : if (!maxpages)
1708 : return -ENOMEM;
1709 0 : p = *pages;
1710 :
1711 0 : kaddr -= offset;
1712 0 : len = offset + maxsize;
1713 0 : for (k = 0; k < maxpages; k++) {
1714 0 : size_t seg = min_t(size_t, len, PAGE_SIZE);
1715 :
1716 0 : if (is_vmalloc_or_module_addr(kaddr))
1717 0 : page = vmalloc_to_page(kaddr);
1718 : else
1719 0 : page = virt_to_page(kaddr);
1720 :
1721 0 : p[k] = page;
1722 0 : len -= seg;
1723 0 : kaddr += PAGE_SIZE;
1724 : }
1725 :
1726 0 : maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1727 0 : iov_iter_advance(i, maxsize);
1728 0 : return maxsize;
1729 : }
1730 :
1731 : /*
1732 : * Extract a list of contiguous pages from a user iterator and get a pin on
1733 : * each of them. This should only be used if the iterator is user-backed
1734 : * (IOBUF/UBUF).
1735 : *
1736 : * It does not get refs on the pages, but the pages must be unpinned by the
1737 : * caller once the transfer is complete.
1738 : *
1739 : * This is safe to be used where background IO/DMA *is* going to be modifying
1740 : * the buffer; using a pin rather than a ref makes forces fork() to give the
1741 : * child a copy of the page.
1742 : */
1743 0 : static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1744 : struct page ***pages,
1745 : size_t maxsize,
1746 : unsigned int maxpages,
1747 : iov_iter_extraction_t extraction_flags,
1748 : size_t *offset0)
1749 : {
1750 : unsigned long addr;
1751 0 : unsigned int gup_flags = 0;
1752 : size_t offset;
1753 : int res;
1754 :
1755 0 : if (i->data_source == ITER_DEST)
1756 0 : gup_flags |= FOLL_WRITE;
1757 0 : if (extraction_flags & ITER_ALLOW_P2PDMA)
1758 0 : gup_flags |= FOLL_PCI_P2PDMA;
1759 0 : if (i->nofault)
1760 0 : gup_flags |= FOLL_NOFAULT;
1761 :
1762 0 : addr = first_iovec_segment(i, &maxsize);
1763 0 : *offset0 = offset = addr % PAGE_SIZE;
1764 0 : addr &= PAGE_MASK;
1765 0 : maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1766 0 : if (!maxpages)
1767 : return -ENOMEM;
1768 0 : res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1769 0 : if (unlikely(res <= 0))
1770 0 : return res;
1771 0 : maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1772 0 : iov_iter_advance(i, maxsize);
1773 0 : return maxsize;
1774 : }
1775 :
1776 : /**
1777 : * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1778 : * @i: The iterator to extract from
1779 : * @pages: Where to return the list of pages
1780 : * @maxsize: The maximum amount of iterator to extract
1781 : * @maxpages: The maximum size of the list of pages
1782 : * @extraction_flags: Flags to qualify request
1783 : * @offset0: Where to return the starting offset into (*@pages)[0]
1784 : *
1785 : * Extract a list of contiguous pages from the current point of the iterator,
1786 : * advancing the iterator. The maximum number of pages and the maximum amount
1787 : * of page contents can be set.
1788 : *
1789 : * If *@pages is NULL, a page list will be allocated to the required size and
1790 : * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1791 : * that the caller allocated a page list at least @maxpages in size and this
1792 : * will be filled in.
1793 : *
1794 : * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1795 : * be allowed on the pages extracted.
1796 : *
1797 : * The iov_iter_extract_will_pin() function can be used to query how cleanup
1798 : * should be performed.
1799 : *
1800 : * Extra refs or pins on the pages may be obtained as follows:
1801 : *
1802 : * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1803 : * added to the pages, but refs will not be taken.
1804 : * iov_iter_extract_will_pin() will return true.
1805 : *
1806 : * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1807 : * merely listed; no extra refs or pins are obtained.
1808 : * iov_iter_extract_will_pin() will return 0.
1809 : *
1810 : * Note also:
1811 : *
1812 : * (*) Use with ITER_DISCARD is not supported as that has no content.
1813 : *
1814 : * On success, the function sets *@pages to the new pagelist, if allocated, and
1815 : * sets *offset0 to the offset into the first page.
1816 : *
1817 : * It may also return -ENOMEM and -EFAULT.
1818 : */
1819 0 : ssize_t iov_iter_extract_pages(struct iov_iter *i,
1820 : struct page ***pages,
1821 : size_t maxsize,
1822 : unsigned int maxpages,
1823 : iov_iter_extraction_t extraction_flags,
1824 : size_t *offset0)
1825 : {
1826 0 : maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1827 0 : if (!maxsize)
1828 : return 0;
1829 :
1830 0 : if (likely(user_backed_iter(i)))
1831 0 : return iov_iter_extract_user_pages(i, pages, maxsize,
1832 : maxpages, extraction_flags,
1833 : offset0);
1834 0 : if (iov_iter_is_kvec(i))
1835 0 : return iov_iter_extract_kvec_pages(i, pages, maxsize,
1836 : maxpages, extraction_flags,
1837 : offset0);
1838 0 : if (iov_iter_is_bvec(i))
1839 0 : return iov_iter_extract_bvec_pages(i, pages, maxsize,
1840 : maxpages, extraction_flags,
1841 : offset0);
1842 0 : if (iov_iter_is_xarray(i))
1843 0 : return iov_iter_extract_xarray_pages(i, pages, maxsize,
1844 : maxpages, extraction_flags,
1845 : offset0);
1846 : return -EFAULT;
1847 : }
1848 : EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
|