LCOV - code coverage report
Current view: top level - lib - list_sort.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 65 0.0 %
Date: 2023-08-24 13:40:31 Functions: 0 2 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : #include <linux/kernel.h>
       3             : #include <linux/bug.h>
       4             : #include <linux/compiler.h>
       5             : #include <linux/export.h>
       6             : #include <linux/string.h>
       7             : #include <linux/list_sort.h>
       8             : #include <linux/list.h>
       9             : 
      10             : /*
      11             :  * Returns a list organized in an intermediate format suited
      12             :  * to chaining of merge() calls: null-terminated, no reserved or
      13             :  * sentinel head node, "prev" links not maintained.
      14             :  */
      15             : __attribute__((nonnull(2,3,4)))
      16             : static struct list_head *merge(void *priv, list_cmp_func_t cmp,
      17             :                                 struct list_head *a, struct list_head *b)
      18             : {
      19           0 :         struct list_head *head, **tail = &head;
      20             : 
      21             :         for (;;) {
      22             :                 /* if equal, take 'a' -- important for sort stability */
      23           0 :                 if (cmp(priv, a, b) <= 0) {
      24           0 :                         *tail = a;
      25           0 :                         tail = &a->next;
      26           0 :                         a = a->next;
      27           0 :                         if (!a) {
      28           0 :                                 *tail = b;
      29             :                                 break;
      30             :                         }
      31             :                 } else {
      32           0 :                         *tail = b;
      33           0 :                         tail = &b->next;
      34           0 :                         b = b->next;
      35           0 :                         if (!b) {
      36           0 :                                 *tail = a;
      37             :                                 break;
      38             :                         }
      39             :                 }
      40             :         }
      41           0 :         return head;
      42             : }
      43             : 
      44             : /*
      45             :  * Combine final list merge with restoration of standard doubly-linked
      46             :  * list structure.  This approach duplicates code from merge(), but
      47             :  * runs faster than the tidier alternatives of either a separate final
      48             :  * prev-link restoration pass, or maintaining the prev links
      49             :  * throughout.
      50             :  */
      51             : __attribute__((nonnull(2,3,4,5)))
      52           0 : static void merge_final(void *priv, list_cmp_func_t cmp, struct list_head *head,
      53             :                         struct list_head *a, struct list_head *b)
      54             : {
      55           0 :         struct list_head *tail = head;
      56           0 :         u8 count = 0;
      57             : 
      58             :         for (;;) {
      59             :                 /* if equal, take 'a' -- important for sort stability */
      60           0 :                 if (cmp(priv, a, b) <= 0) {
      61           0 :                         tail->next = a;
      62           0 :                         a->prev = tail;
      63           0 :                         tail = a;
      64           0 :                         a = a->next;
      65           0 :                         if (!a)
      66             :                                 break;
      67             :                 } else {
      68           0 :                         tail->next = b;
      69           0 :                         b->prev = tail;
      70           0 :                         tail = b;
      71           0 :                         b = b->next;
      72           0 :                         if (!b) {
      73             :                                 b = a;
      74             :                                 break;
      75             :                         }
      76             :                 }
      77             :         }
      78             : 
      79             :         /* Finish linking remainder of list b on to tail */
      80           0 :         tail->next = b;
      81             :         do {
      82             :                 /*
      83             :                  * If the merge is highly unbalanced (e.g. the input is
      84             :                  * already sorted), this loop may run many iterations.
      85             :                  * Continue callbacks to the client even though no
      86             :                  * element comparison is needed, so the client's cmp()
      87             :                  * routine can invoke cond_resched() periodically.
      88             :                  */
      89           0 :                 if (unlikely(!++count))
      90           0 :                         cmp(priv, b, b);
      91           0 :                 b->prev = tail;
      92           0 :                 tail = b;
      93           0 :                 b = b->next;
      94           0 :         } while (b);
      95             : 
      96             :         /* And the final links to make a circular doubly-linked list */
      97           0 :         tail->next = head;
      98           0 :         head->prev = tail;
      99           0 : }
     100             : 
     101             : /**
     102             :  * list_sort - sort a list
     103             :  * @priv: private data, opaque to list_sort(), passed to @cmp
     104             :  * @head: the list to sort
     105             :  * @cmp: the elements comparison function
     106             :  *
     107             :  * The comparison function @cmp must return > 0 if @a should sort after
     108             :  * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should
     109             :  * sort before @b *or* their original order should be preserved.  It is
     110             :  * always called with the element that came first in the input in @a,
     111             :  * and list_sort is a stable sort, so it is not necessary to distinguish
     112             :  * the @a < @b and @a == @b cases.
     113             :  *
     114             :  * This is compatible with two styles of @cmp function:
     115             :  * - The traditional style which returns <0 / =0 / >0, or
     116             :  * - Returning a boolean 0/1.
     117             :  * The latter offers a chance to save a few cycles in the comparison
     118             :  * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c).
     119             :  *
     120             :  * A good way to write a multi-word comparison is::
     121             :  *
     122             :  *      if (a->high != b->high)
     123             :  *              return a->high > b->high;
     124             :  *      if (a->middle != b->middle)
     125             :  *              return a->middle > b->middle;
     126             :  *      return a->low > b->low;
     127             :  *
     128             :  *
     129             :  * This mergesort is as eager as possible while always performing at least
     130             :  * 2:1 balanced merges.  Given two pending sublists of size 2^k, they are
     131             :  * merged to a size-2^(k+1) list as soon as we have 2^k following elements.
     132             :  *
     133             :  * Thus, it will avoid cache thrashing as long as 3*2^k elements can
     134             :  * fit into the cache.  Not quite as good as a fully-eager bottom-up
     135             :  * mergesort, but it does use 0.2*n fewer comparisons, so is faster in
     136             :  * the common case that everything fits into L1.
     137             :  *
     138             :  *
     139             :  * The merging is controlled by "count", the number of elements in the
     140             :  * pending lists.  This is beautifully simple code, but rather subtle.
     141             :  *
     142             :  * Each time we increment "count", we set one bit (bit k) and clear
     143             :  * bits k-1 .. 0.  Each time this happens (except the very first time
     144             :  * for each bit, when count increments to 2^k), we merge two lists of
     145             :  * size 2^k into one list of size 2^(k+1).
     146             :  *
     147             :  * This merge happens exactly when the count reaches an odd multiple of
     148             :  * 2^k, which is when we have 2^k elements pending in smaller lists,
     149             :  * so it's safe to merge away two lists of size 2^k.
     150             :  *
     151             :  * After this happens twice, we have created two lists of size 2^(k+1),
     152             :  * which will be merged into a list of size 2^(k+2) before we create
     153             :  * a third list of size 2^(k+1), so there are never more than two pending.
     154             :  *
     155             :  * The number of pending lists of size 2^k is determined by the
     156             :  * state of bit k of "count" plus two extra pieces of information:
     157             :  *
     158             :  * - The state of bit k-1 (when k == 0, consider bit -1 always set), and
     159             :  * - Whether the higher-order bits are zero or non-zero (i.e.
     160             :  *   is count >= 2^(k+1)).
     161             :  *
     162             :  * There are six states we distinguish.  "x" represents some arbitrary
     163             :  * bits, and "y" represents some arbitrary non-zero bits:
     164             :  * 0:  00x: 0 pending of size 2^k;           x pending of sizes < 2^k
     165             :  * 1:  01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
     166             :  * 2: x10x: 0 pending of size 2^k; 2^k     + x pending of sizes < 2^k
     167             :  * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
     168             :  * 4: y00x: 1 pending of size 2^k; 2^k     + x pending of sizes < 2^k
     169             :  * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
     170             :  * (merge and loop back to state 2)
     171             :  *
     172             :  * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because
     173             :  * bit k-1 is set while the more significant bits are non-zero) and
     174             :  * merge them away in the 5->2 transition.  Note in particular that just
     175             :  * before the 5->2 transition, all lower-order bits are 11 (state 3),
     176             :  * so there is one list of each smaller size.
     177             :  *
     178             :  * When we reach the end of the input, we merge all the pending
     179             :  * lists, from smallest to largest.  If you work through cases 2 to
     180             :  * 5 above, you can see that the number of elements we merge with a list
     181             :  * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to
     182             :  * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).
     183             :  */
     184             : __attribute__((nonnull(2,3)))
     185           0 : void list_sort(void *priv, struct list_head *head, list_cmp_func_t cmp)
     186             : {
     187           0 :         struct list_head *list = head->next, *pending = NULL;
     188           0 :         size_t count = 0;       /* Count of pending */
     189             : 
     190           0 :         if (list == head->prev)      /* Zero or one elements */
     191           0 :                 return;
     192             : 
     193             :         /* Convert to a null-terminated singly-linked list. */
     194           0 :         head->prev->next = NULL;
     195             : 
     196             :         /*
     197             :          * Data structure invariants:
     198             :          * - All lists are singly linked and null-terminated; prev
     199             :          *   pointers are not maintained.
     200             :          * - pending is a prev-linked "list of lists" of sorted
     201             :          *   sublists awaiting further merging.
     202             :          * - Each of the sorted sublists is power-of-two in size.
     203             :          * - Sublists are sorted by size and age, smallest & newest at front.
     204             :          * - There are zero to two sublists of each size.
     205             :          * - A pair of pending sublists are merged as soon as the number
     206             :          *   of following pending elements equals their size (i.e.
     207             :          *   each time count reaches an odd multiple of that size).
     208             :          *   That ensures each later final merge will be at worst 2:1.
     209             :          * - Each round consists of:
     210             :          *   - Merging the two sublists selected by the highest bit
     211             :          *     which flips when count is incremented, and
     212             :          *   - Adding an element from the input as a size-1 sublist.
     213             :          */
     214             :         do {
     215             :                 size_t bits;
     216           0 :                 struct list_head **tail = &pending;
     217             : 
     218             :                 /* Find the least-significant clear bit in count */
     219           0 :                 for (bits = count; bits & 1; bits >>= 1)
     220           0 :                         tail = &(*tail)->prev;
     221             :                 /* Do the indicated merge */
     222           0 :                 if (likely(bits)) {
     223           0 :                         struct list_head *a = *tail, *b = a->prev;
     224             : 
     225           0 :                         a = merge(priv, cmp, b, a);
     226             :                         /* Install the merged result in place of the inputs */
     227           0 :                         a->prev = b->prev;
     228           0 :                         *tail = a;
     229             :                 }
     230             : 
     231             :                 /* Move one element from input list to pending */
     232           0 :                 list->prev = pending;
     233           0 :                 pending = list;
     234           0 :                 list = list->next;
     235           0 :                 pending->next = NULL;
     236           0 :                 count++;
     237           0 :         } while (list);
     238             : 
     239             :         /* End of input; merge together all the pending lists. */
     240           0 :         list = pending;
     241           0 :         pending = pending->prev;
     242           0 :         for (;;) {
     243           0 :                 struct list_head *next = pending->prev;
     244             : 
     245           0 :                 if (!next)
     246             :                         break;
     247           0 :                 list = merge(priv, cmp, pending, list);
     248           0 :                 pending = next;
     249             :         }
     250             :         /* The final merge, rebuilding prev links */
     251           0 :         merge_final(priv, cmp, head, pending, list);
     252             : }
     253             : EXPORT_SYMBOL(list_sort);

Generated by: LCOV version 1.14