LCOV - code coverage report
Current view: top level - lib - maple_tree.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 801 2358 34.0 %
Date: 2023-08-24 13:40:31 Functions: 55 133 41.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0+
       2             : /*
       3             :  * Maple Tree implementation
       4             :  * Copyright (c) 2018-2022 Oracle Corporation
       5             :  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
       6             :  *          Matthew Wilcox <willy@infradead.org>
       7             :  */
       8             : 
       9             : /*
      10             :  * DOC: Interesting implementation details of the Maple Tree
      11             :  *
      12             :  * Each node type has a number of slots for entries and a number of slots for
      13             :  * pivots.  In the case of dense nodes, the pivots are implied by the position
      14             :  * and are simply the slot index + the minimum of the node.
      15             :  *
      16             :  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
      17             :  * indicate that the tree is specifying ranges,  Pivots may appear in the
      18             :  * subtree with an entry attached to the value where as keys are unique to a
      19             :  * specific position of a B-tree.  Pivot values are inclusive of the slot with
      20             :  * the same index.
      21             :  *
      22             :  *
      23             :  * The following illustrates the layout of a range64 nodes slots and pivots.
      24             :  *
      25             :  *
      26             :  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
      27             :  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
      28             :  *           │   │   │   │     │    │    │    │    └─ Implied maximum
      29             :  *           │   │   │   │     │    │    │    └─ Pivot 14
      30             :  *           │   │   │   │     │    │    └─ Pivot 13
      31             :  *           │   │   │   │     │    └─ Pivot 12
      32             :  *           │   │   │   │     └─ Pivot 11
      33             :  *           │   │   │   └─ Pivot 2
      34             :  *           │   │   └─ Pivot 1
      35             :  *           │   └─ Pivot 0
      36             :  *           └─  Implied minimum
      37             :  *
      38             :  * Slot contents:
      39             :  *  Internal (non-leaf) nodes contain pointers to other nodes.
      40             :  *  Leaf nodes contain entries.
      41             :  *
      42             :  * The location of interest is often referred to as an offset.  All offsets have
      43             :  * a slot, but the last offset has an implied pivot from the node above (or
      44             :  * UINT_MAX for the root node.
      45             :  *
      46             :  * Ranges complicate certain write activities.  When modifying any of
      47             :  * the B-tree variants, it is known that one entry will either be added or
      48             :  * deleted.  When modifying the Maple Tree, one store operation may overwrite
      49             :  * the entire data set, or one half of the tree, or the middle half of the tree.
      50             :  *
      51             :  */
      52             : 
      53             : 
      54             : #include <linux/maple_tree.h>
      55             : #include <linux/xarray.h>
      56             : #include <linux/types.h>
      57             : #include <linux/export.h>
      58             : #include <linux/slab.h>
      59             : #include <linux/limits.h>
      60             : #include <asm/barrier.h>
      61             : 
      62             : #define CREATE_TRACE_POINTS
      63             : #include <trace/events/maple_tree.h>
      64             : 
      65             : #define MA_ROOT_PARENT 1
      66             : 
      67             : /*
      68             :  * Maple state flags
      69             :  * * MA_STATE_BULK              - Bulk insert mode
      70             :  * * MA_STATE_REBALANCE         - Indicate a rebalance during bulk insert
      71             :  * * MA_STATE_PREALLOC          - Preallocated nodes, WARN_ON allocation
      72             :  */
      73             : #define MA_STATE_BULK           1
      74             : #define MA_STATE_REBALANCE      2
      75             : #define MA_STATE_PREALLOC       4
      76             : 
      77             : #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
      78             : #define ma_mnode_ptr(x) ((struct maple_node *)(x))
      79             : #define ma_enode_ptr(x) ((struct maple_enode *)(x))
      80             : static struct kmem_cache *maple_node_cache;
      81             : 
      82             : #ifdef CONFIG_DEBUG_MAPLE_TREE
      83             : static const unsigned long mt_max[] = {
      84             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      85             :         [maple_leaf_64]         = ULONG_MAX,
      86             :         [maple_range_64]        = ULONG_MAX,
      87             :         [maple_arange_64]       = ULONG_MAX,
      88             : };
      89             : #define mt_node_max(x) mt_max[mte_node_type(x)]
      90             : #endif
      91             : 
      92             : static const unsigned char mt_slots[] = {
      93             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      94             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS,
      95             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS,
      96             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS,
      97             : };
      98             : #define mt_slot_count(x) mt_slots[mte_node_type(x)]
      99             : 
     100             : static const unsigned char mt_pivots[] = {
     101             :         [maple_dense]           = 0,
     102             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS - 1,
     103             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS - 1,
     104             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS - 1,
     105             : };
     106             : #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
     107             : 
     108             : static const unsigned char mt_min_slots[] = {
     109             :         [maple_dense]           = MAPLE_NODE_SLOTS / 2,
     110             :         [maple_leaf_64]         = (MAPLE_RANGE64_SLOTS / 2) - 2,
     111             :         [maple_range_64]        = (MAPLE_RANGE64_SLOTS / 2) - 2,
     112             :         [maple_arange_64]       = (MAPLE_ARANGE64_SLOTS / 2) - 1,
     113             : };
     114             : #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
     115             : 
     116             : #define MAPLE_BIG_NODE_SLOTS    (MAPLE_RANGE64_SLOTS * 2 + 2)
     117             : #define MAPLE_BIG_NODE_GAPS     (MAPLE_ARANGE64_SLOTS * 2 + 1)
     118             : 
     119             : struct maple_big_node {
     120             :         struct maple_pnode *parent;
     121             :         unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
     122             :         union {
     123             :                 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
     124             :                 struct {
     125             :                         unsigned long padding[MAPLE_BIG_NODE_GAPS];
     126             :                         unsigned long gap[MAPLE_BIG_NODE_GAPS];
     127             :                 };
     128             :         };
     129             :         unsigned char b_end;
     130             :         enum maple_type type;
     131             : };
     132             : 
     133             : /*
     134             :  * The maple_subtree_state is used to build a tree to replace a segment of an
     135             :  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
     136             :  * dead node and restart on updates.
     137             :  */
     138             : struct maple_subtree_state {
     139             :         struct ma_state *orig_l;        /* Original left side of subtree */
     140             :         struct ma_state *orig_r;        /* Original right side of subtree */
     141             :         struct ma_state *l;             /* New left side of subtree */
     142             :         struct ma_state *m;             /* New middle of subtree (rare) */
     143             :         struct ma_state *r;             /* New right side of subtree */
     144             :         struct ma_topiary *free;        /* nodes to be freed */
     145             :         struct ma_topiary *destroy;     /* Nodes to be destroyed (walked and freed) */
     146             :         struct maple_big_node *bn;
     147             : };
     148             : 
     149             : #ifdef CONFIG_KASAN_STACK
     150             : /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
     151             : #define noinline_for_kasan noinline_for_stack
     152             : #else
     153             : #define noinline_for_kasan inline
     154             : #endif
     155             : 
     156             : /* Functions */
     157             : static inline struct maple_node *mt_alloc_one(gfp_t gfp)
     158             : {
     159           8 :         return kmem_cache_alloc(maple_node_cache, gfp);
     160             : }
     161             : 
     162             : static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
     163             : {
     164           7 :         return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
     165             : }
     166             : 
     167             : static inline void mt_free_bulk(size_t size, void __rcu **nodes)
     168             : {
     169           0 :         kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
     170             : }
     171             : 
     172          16 : static void mt_free_rcu(struct rcu_head *head)
     173             : {
     174          16 :         struct maple_node *node = container_of(head, struct maple_node, rcu);
     175             : 
     176          16 :         kmem_cache_free(maple_node_cache, node);
     177          16 : }
     178             : 
     179             : /*
     180             :  * ma_free_rcu() - Use rcu callback to free a maple node
     181             :  * @node: The node to free
     182             :  *
     183             :  * The maple tree uses the parent pointer to indicate this node is no longer in
     184             :  * use and will be freed.
     185             :  */
     186          16 : static void ma_free_rcu(struct maple_node *node)
     187             : {
     188          16 :         WARN_ON(node->parent != ma_parent_ptr(node));
     189          16 :         call_rcu(&node->rcu, mt_free_rcu);
     190          16 : }
     191             : 
     192           8 : static void mas_set_height(struct ma_state *mas)
     193             : {
     194           8 :         unsigned int new_flags = mas->tree->ma_flags;
     195             : 
     196           8 :         new_flags &= ~MT_FLAGS_HEIGHT_MASK;
     197           8 :         MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
     198           8 :         new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
     199           8 :         mas->tree->ma_flags = new_flags;
     200           8 : }
     201             : 
     202             : static unsigned int mas_mt_height(struct ma_state *mas)
     203             : {
     204           7 :         return mt_height(mas->tree);
     205             : }
     206             : 
     207             : static inline enum maple_type mte_node_type(const struct maple_enode *entry)
     208             : {
     209         421 :         return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
     210             :                 MAPLE_NODE_TYPE_MASK;
     211             : }
     212             : 
     213             : static inline bool ma_is_dense(const enum maple_type type)
     214             : {
     215         166 :         return type < maple_leaf_64;
     216             : }
     217             : 
     218             : static inline bool ma_is_leaf(const enum maple_type type)
     219             : {
     220           0 :         return type < maple_range_64;
     221             : }
     222             : 
     223             : static inline bool mte_is_leaf(const struct maple_enode *entry)
     224             : {
     225          35 :         return ma_is_leaf(mte_node_type(entry));
     226             : }
     227             : 
     228             : /*
     229             :  * We also reserve values with the bottom two bits set to '10' which are
     230             :  * below 4096
     231             :  */
     232             : static inline bool mt_is_reserved(const void *entry)
     233             : {
     234           0 :         return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
     235           0 :                 xa_is_internal(entry);
     236             : }
     237             : 
     238             : static inline void mas_set_err(struct ma_state *mas, long err)
     239             : {
     240           0 :         mas->node = MA_ERROR(err);
     241             : }
     242             : 
     243             : static inline bool mas_is_ptr(const struct ma_state *mas)
     244             : {
     245           0 :         return mas->node == MAS_ROOT;
     246             : }
     247             : 
     248             : static inline bool mas_is_start(const struct ma_state *mas)
     249             : {
     250          64 :         return mas->node == MAS_START;
     251             : }
     252             : 
     253           0 : bool mas_is_err(struct ma_state *mas)
     254             : {
     255         144 :         return xa_is_err(mas->node);
     256             : }
     257             : 
     258             : static inline bool mas_searchable(struct ma_state *mas)
     259             : {
     260           0 :         if (mas_is_none(mas))
     261             :                 return false;
     262             : 
     263           0 :         if (mas_is_ptr(mas))
     264             :                 return false;
     265             : 
     266             :         return true;
     267             : }
     268             : 
     269             : static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
     270             : {
     271         835 :         return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
     272             : }
     273             : 
     274             : /*
     275             :  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
     276             :  * @entry: The maple encoded node
     277             :  *
     278             :  * Return: a maple topiary pointer
     279             :  */
     280             : static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
     281             : {
     282          25 :         return (struct maple_topiary *)
     283          25 :                 ((unsigned long)entry & ~MAPLE_NODE_MASK);
     284             : }
     285             : 
     286             : /*
     287             :  * mas_mn() - Get the maple state node.
     288             :  * @mas: The maple state
     289             :  *
     290             :  * Return: the maple node (not encoded - bare pointer).
     291             :  */
     292             : static inline struct maple_node *mas_mn(const struct ma_state *mas)
     293             : {
     294         534 :         return mte_to_node(mas->node);
     295             : }
     296             : 
     297             : /*
     298             :  * mte_set_node_dead() - Set a maple encoded node as dead.
     299             :  * @mn: The maple encoded node.
     300             :  */
     301             : static inline void mte_set_node_dead(struct maple_enode *mn)
     302             : {
     303          16 :         mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
     304          16 :         smp_wmb(); /* Needed for RCU */
     305             : }
     306             : 
     307             : /* Bit 1 indicates the root is a node */
     308             : #define MAPLE_ROOT_NODE                 0x02
     309             : /* maple_type stored bit 3-6 */
     310             : #define MAPLE_ENODE_TYPE_SHIFT          0x03
     311             : /* Bit 2 means a NULL somewhere below */
     312             : #define MAPLE_ENODE_NULL                0x04
     313             : 
     314             : static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
     315             :                                              enum maple_type type)
     316             : {
     317         158 :         return (void *)((unsigned long)node |
     318         157 :                         (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
     319             : }
     320             : 
     321             : static inline void *mte_mk_root(const struct maple_enode *node)
     322             : {
     323           8 :         return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
     324             : }
     325             : 
     326             : static inline void *mte_safe_root(const struct maple_enode *node)
     327             : {
     328          62 :         return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
     329             : }
     330             : 
     331             : static inline void *mte_set_full(const struct maple_enode *node)
     332             : {
     333             :         return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
     334             : }
     335             : 
     336             : static inline void *mte_clear_full(const struct maple_enode *node)
     337             : {
     338             :         return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
     339             : }
     340             : 
     341             : static inline bool mte_has_null(const struct maple_enode *node)
     342             : {
     343             :         return (unsigned long)node & MAPLE_ENODE_NULL;
     344             : }
     345             : 
     346             : static inline bool ma_is_root(struct maple_node *node)
     347             : {
     348         166 :         return ((unsigned long)node->parent & MA_ROOT_PARENT);
     349             : }
     350             : 
     351             : static inline bool mte_is_root(const struct maple_enode *node)
     352             : {
     353         109 :         return ma_is_root(mte_to_node(node));
     354             : }
     355             : 
     356             : static inline bool mas_is_root_limits(const struct ma_state *mas)
     357             : {
     358           0 :         return !mas->min && mas->max == ULONG_MAX;
     359             : }
     360             : 
     361             : static inline bool mt_is_alloc(struct maple_tree *mt)
     362             : {
     363         194 :         return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
     364             : }
     365             : 
     366             : /*
     367             :  * The Parent Pointer
     368             :  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
     369             :  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
     370             :  * bit values need an extra bit to store the offset.  This extra bit comes from
     371             :  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
     372             :  * indicate if bit 2 is part of the type or the slot.
     373             :  *
     374             :  * Note types:
     375             :  *  0x??1 = Root
     376             :  *  0x?00 = 16 bit nodes
     377             :  *  0x010 = 32 bit nodes
     378             :  *  0x110 = 64 bit nodes
     379             :  *
     380             :  * Slot size and alignment
     381             :  *  0b??1 : Root
     382             :  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
     383             :  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
     384             :  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
     385             :  */
     386             : 
     387             : #define MAPLE_PARENT_ROOT               0x01
     388             : 
     389             : #define MAPLE_PARENT_SLOT_SHIFT         0x03
     390             : #define MAPLE_PARENT_SLOT_MASK          0xF8
     391             : 
     392             : #define MAPLE_PARENT_16B_SLOT_SHIFT     0x02
     393             : #define MAPLE_PARENT_16B_SLOT_MASK      0xFC
     394             : 
     395             : #define MAPLE_PARENT_RANGE64            0x06
     396             : #define MAPLE_PARENT_RANGE32            0x04
     397             : #define MAPLE_PARENT_NOT_RANGE16        0x02
     398             : 
     399             : /*
     400             :  * mte_parent_shift() - Get the parent shift for the slot storage.
     401             :  * @parent: The parent pointer cast as an unsigned long
     402             :  * Return: The shift into that pointer to the star to of the slot
     403             :  */
     404             : static inline unsigned long mte_parent_shift(unsigned long parent)
     405             : {
     406             :         /* Note bit 1 == 0 means 16B */
     407          72 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     408             :                 return MAPLE_PARENT_SLOT_SHIFT;
     409             : 
     410             :         return MAPLE_PARENT_16B_SLOT_SHIFT;
     411             : }
     412             : 
     413             : /*
     414             :  * mte_parent_slot_mask() - Get the slot mask for the parent.
     415             :  * @parent: The parent pointer cast as an unsigned long.
     416             :  * Return: The slot mask for that parent.
     417             :  */
     418             : static inline unsigned long mte_parent_slot_mask(unsigned long parent)
     419             : {
     420             :         /* Note bit 1 == 0 means 16B */
     421          99 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     422             :                 return MAPLE_PARENT_SLOT_MASK;
     423             : 
     424             :         return MAPLE_PARENT_16B_SLOT_MASK;
     425             : }
     426             : 
     427             : /*
     428             :  * mas_parent_type() - Return the maple_type of the parent from the stored
     429             :  * parent type.
     430             :  * @mas: The maple state
     431             :  * @enode: The maple_enode to extract the parent's enum
     432             :  * Return: The node->parent maple_type
     433             :  */
     434             : static inline
     435          99 : enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
     436             : {
     437             :         unsigned long p_type;
     438             : 
     439          99 :         p_type = (unsigned long)mte_to_node(enode)->parent;
     440          99 :         if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
     441             :                 return 0;
     442             : 
     443          99 :         p_type &= MAPLE_NODE_MASK;
     444          99 :         p_type &= ~mte_parent_slot_mask(p_type);
     445          99 :         switch (p_type) {
     446             :         case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
     447         198 :                 if (mt_is_alloc(mas->tree))
     448             :                         return maple_arange_64;
     449             :                 return maple_range_64;
     450             :         }
     451             : 
     452             :         return 0;
     453             : }
     454             : 
     455             : /*
     456             :  * mas_set_parent() - Set the parent node and encode the slot
     457             :  * @enode: The encoded maple node.
     458             :  * @parent: The encoded maple node that is the parent of @enode.
     459             :  * @slot: The slot that @enode resides in @parent.
     460             :  *
     461             :  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
     462             :  * parent type.
     463             :  */
     464             : static inline
     465          37 : void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
     466             :                     const struct maple_enode *parent, unsigned char slot)
     467             : {
     468          37 :         unsigned long val = (unsigned long)parent;
     469             :         unsigned long shift;
     470             :         unsigned long type;
     471          37 :         enum maple_type p_type = mte_node_type(parent);
     472             : 
     473          37 :         MAS_BUG_ON(mas, p_type == maple_dense);
     474          37 :         MAS_BUG_ON(mas, p_type == maple_leaf_64);
     475             : 
     476          37 :         switch (p_type) {
     477             :         case maple_range_64:
     478             :         case maple_arange_64:
     479             :                 shift = MAPLE_PARENT_SLOT_SHIFT;
     480             :                 type = MAPLE_PARENT_RANGE64;
     481             :                 break;
     482             :         default:
     483             :         case maple_dense:
     484             :         case maple_leaf_64:
     485           0 :                 shift = type = 0;
     486           0 :                 break;
     487             :         }
     488             : 
     489          37 :         val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
     490          37 :         val |= (slot << shift) | type;
     491          37 :         mte_to_node(enode)->parent = ma_parent_ptr(val);
     492          37 : }
     493             : 
     494             : /*
     495             :  * mte_parent_slot() - get the parent slot of @enode.
     496             :  * @enode: The encoded maple node.
     497             :  *
     498             :  * Return: The slot in the parent node where @enode resides.
     499             :  */
     500             : static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
     501             : {
     502          80 :         unsigned long val = (unsigned long)mte_to_node(enode)->parent;
     503             : 
     504          80 :         if (val & MA_ROOT_PARENT)
     505             :                 return 0;
     506             : 
     507             :         /*
     508             :          * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
     509             :          * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
     510             :          */
     511         144 :         return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
     512             : }
     513             : 
     514             : /*
     515             :  * mte_parent() - Get the parent of @node.
     516             :  * @node: The encoded maple node.
     517             :  *
     518             :  * Return: The parent maple node.
     519             :  */
     520             : static inline struct maple_node *mte_parent(const struct maple_enode *enode)
     521             : {
     522         383 :         return (void *)((unsigned long)
     523         383 :                         (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
     524             : }
     525             : 
     526             : /*
     527             :  * ma_dead_node() - check if the @enode is dead.
     528             :  * @enode: The encoded maple node
     529             :  *
     530             :  * Return: true if dead, false otherwise.
     531             :  */
     532             : static inline bool ma_dead_node(const struct maple_node *node)
     533             : {
     534             :         struct maple_node *parent;
     535             : 
     536             :         /* Do not reorder reads from the node prior to the parent check */
     537          34 :         smp_rmb();
     538          34 :         parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
     539          34 :         return (parent == node);
     540             : }
     541             : 
     542             : /*
     543             :  * mte_dead_node() - check if the @enode is dead.
     544             :  * @enode: The encoded maple node
     545             :  *
     546             :  * Return: true if dead, false otherwise.
     547             :  */
     548             : static inline bool mte_dead_node(const struct maple_enode *enode)
     549             : {
     550             :         struct maple_node *parent, *node;
     551             : 
     552          62 :         node = mte_to_node(enode);
     553             :         /* Do not reorder reads from the node prior to the parent check */
     554          62 :         smp_rmb();
     555          62 :         parent = mte_parent(enode);
     556           0 :         return (parent == node);
     557             : }
     558             : 
     559             : /*
     560             :  * mas_allocated() - Get the number of nodes allocated in a maple state.
     561             :  * @mas: The maple state
     562             :  *
     563             :  * The ma_state alloc member is overloaded to hold a pointer to the first
     564             :  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
     565             :  * set, then the alloc contains the number of requested nodes.  If there is an
     566             :  * allocated node, then the total allocated nodes is in that node.
     567             :  *
     568             :  * Return: The total number of nodes allocated
     569             :  */
     570             : static inline unsigned long mas_allocated(const struct ma_state *mas)
     571             : {
     572         102 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
     573             :                 return 0;
     574             : 
     575          28 :         return mas->alloc->total;
     576             : }
     577             : 
     578             : /*
     579             :  * mas_set_alloc_req() - Set the requested number of allocations.
     580             :  * @mas: the maple state
     581             :  * @count: the number of allocations.
     582             :  *
     583             :  * The requested number of allocations is either in the first allocated node,
     584             :  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
     585             :  * no allocated node.  Set the request either in the node or do the necessary
     586             :  * encoding to store in @mas->alloc directly.
     587             :  */
     588             : static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
     589             : {
     590          16 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
     591           8 :                 if (!count)
     592           8 :                         mas->alloc = NULL;
     593             :                 else
     594           8 :                         mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
     595             :                 return;
     596             :         }
     597             : 
     598           0 :         mas->alloc->request_count = count;
     599             : }
     600             : 
     601             : /*
     602             :  * mas_alloc_req() - get the requested number of allocations.
     603             :  * @mas: The maple state
     604             :  *
     605             :  * The alloc count is either stored directly in @mas, or in
     606             :  * @mas->alloc->request_count if there is at least one node allocated.  Decode
     607             :  * the request count if it's stored directly in @mas->alloc.
     608             :  *
     609             :  * Return: The allocation request count.
     610             :  */
     611             : static inline unsigned int mas_alloc_req(const struct ma_state *mas)
     612             : {
     613          30 :         if ((unsigned long)mas->alloc & 0x1)
     614           8 :                 return (unsigned long)(mas->alloc) >> 1;
     615          22 :         else if (mas->alloc)
     616          22 :                 return mas->alloc->request_count;
     617             :         return 0;
     618             : }
     619             : 
     620             : /*
     621             :  * ma_pivots() - Get a pointer to the maple node pivots.
     622             :  * @node - the maple node
     623             :  * @type - the node type
     624             :  *
     625             :  * In the event of a dead node, this array may be %NULL
     626             :  *
     627             :  * Return: A pointer to the maple node pivots
     628             :  */
     629             : static inline unsigned long *ma_pivots(struct maple_node *node,
     630             :                                            enum maple_type type)
     631             : {
     632         270 :         switch (type) {
     633             :         case maple_arange_64:
     634         115 :                 return node->ma64.pivot;
     635             :         case maple_range_64:
     636             :         case maple_leaf_64:
     637         156 :                 return node->mr64.pivot;
     638             :         case maple_dense:
     639             :                 return NULL;
     640             :         }
     641             :         return NULL;
     642             : }
     643             : 
     644             : /*
     645             :  * ma_gaps() - Get a pointer to the maple node gaps.
     646             :  * @node - the maple node
     647             :  * @type - the node type
     648             :  *
     649             :  * Return: A pointer to the maple node gaps
     650             :  */
     651             : static inline unsigned long *ma_gaps(struct maple_node *node,
     652             :                                      enum maple_type type)
     653             : {
     654          96 :         switch (type) {
     655             :         case maple_arange_64:
     656          96 :                 return node->ma64.gap;
     657             :         case maple_range_64:
     658             :         case maple_leaf_64:
     659             :         case maple_dense:
     660             :                 return NULL;
     661             :         }
     662             :         return NULL;
     663             : }
     664             : 
     665             : /*
     666             :  * mas_pivot() - Get the pivot at @piv of the maple encoded node.
     667             :  * @mas: The maple state.
     668             :  * @piv: The pivot.
     669             :  *
     670             :  * Return: the pivot at @piv of @mn.
     671             :  */
     672             : static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
     673             : {
     674             :         struct maple_node *node = mas_mn(mas);
     675             :         enum maple_type type = mte_node_type(mas->node);
     676             : 
     677             :         if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
     678             :                 mas_set_err(mas, -EIO);
     679             :                 return 0;
     680             :         }
     681             : 
     682             :         switch (type) {
     683             :         case maple_arange_64:
     684             :                 return node->ma64.pivot[piv];
     685             :         case maple_range_64:
     686             :         case maple_leaf_64:
     687             :                 return node->mr64.pivot[piv];
     688             :         case maple_dense:
     689             :                 return 0;
     690             :         }
     691             :         return 0;
     692             : }
     693             : 
     694             : /*
     695             :  * mas_safe_pivot() - get the pivot at @piv or mas->max.
     696             :  * @mas: The maple state
     697             :  * @pivots: The pointer to the maple node pivots
     698             :  * @piv: The pivot to fetch
     699             :  * @type: The maple node type
     700             :  *
     701             :  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
     702             :  * otherwise.
     703             :  */
     704             : static inline unsigned long
     705             : mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
     706             :                unsigned char piv, enum maple_type type)
     707             : {
     708          40 :         if (piv >= mt_pivots[type])
     709           0 :                 return mas->max;
     710             : 
     711          33 :         return pivots[piv];
     712             : }
     713             : 
     714             : /*
     715             :  * mas_safe_min() - Return the minimum for a given offset.
     716             :  * @mas: The maple state
     717             :  * @pivots: The pointer to the maple node pivots
     718             :  * @offset: The offset into the pivot array
     719             :  *
     720             :  * Return: The minimum range value that is contained in @offset.
     721             :  */
     722             : static inline unsigned long
     723             : mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
     724             : {
     725         110 :         if (likely(offset))
     726         110 :                 return pivots[offset - 1] + 1;
     727             : 
     728           0 :         return mas->min;
     729             : }
     730             : 
     731             : /*
     732             :  * mas_logical_pivot() - Get the logical pivot of a given offset.
     733             :  * @mas: The maple state
     734             :  * @pivots: The pointer to the maple node pivots
     735             :  * @offset: The offset into the pivot array
     736             :  * @type: The maple node type
     737             :  *
     738             :  * When there is no value at a pivot (beyond the end of the data), then the
     739             :  * pivot is actually @mas->max.
     740             :  *
     741             :  * Return: the logical pivot of a given @offset.
     742             :  */
     743             : static inline unsigned long
     744             : mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
     745             :                   unsigned char offset, enum maple_type type)
     746             : {
     747          14 :         unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
     748             : 
     749           7 :         if (likely(lpiv))
     750             :                 return lpiv;
     751             : 
     752           0 :         if (likely(offset))
     753             :                 return mas->max;
     754             : 
     755             :         return lpiv;
     756             : }
     757             : 
     758             : /*
     759             :  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
     760             :  * @mn: The encoded maple node
     761             :  * @piv: The pivot offset
     762             :  * @val: The value of the pivot
     763             :  */
     764           7 : static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
     765             :                                 unsigned long val)
     766             : {
     767           7 :         struct maple_node *node = mte_to_node(mn);
     768           7 :         enum maple_type type = mte_node_type(mn);
     769             : 
     770           7 :         BUG_ON(piv >= mt_pivots[type]);
     771           7 :         switch (type) {
     772             :         default:
     773             :         case maple_range_64:
     774             :         case maple_leaf_64:
     775           7 :                 node->mr64.pivot[piv] = val;
     776           7 :                 break;
     777             :         case maple_arange_64:
     778           0 :                 node->ma64.pivot[piv] = val;
     779           0 :                 break;
     780             :         case maple_dense:
     781             :                 break;
     782             :         }
     783             : 
     784           7 : }
     785             : 
     786             : /*
     787             :  * ma_slots() - Get a pointer to the maple node slots.
     788             :  * @mn: The maple node
     789             :  * @mt: The maple node type
     790             :  *
     791             :  * Return: A pointer to the maple node slots
     792             :  */
     793             : static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
     794             : {
     795         264 :         switch (mt) {
     796             :         default:
     797             :         case maple_arange_64:
     798         115 :                 return mn->ma64.slot;
     799             :         case maple_range_64:
     800             :         case maple_leaf_64:
     801         150 :                 return mn->mr64.slot;
     802             :         case maple_dense:
     803           0 :                 return mn->slot;
     804             :         }
     805             : }
     806             : 
     807             : static inline bool mt_locked(const struct maple_tree *mt)
     808             : {
     809             :         return mt_external_lock(mt) ? mt_lock_is_held(mt) :
     810             :                 lockdep_is_held(&mt->ma_lock);
     811             : }
     812             : 
     813             : static inline void *mt_slot(const struct maple_tree *mt,
     814             :                 void __rcu **slots, unsigned char offset)
     815             : {
     816          34 :         return rcu_dereference_check(slots[offset], mt_locked(mt));
     817             : }
     818             : 
     819             : static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
     820             :                                    unsigned char offset)
     821             : {
     822         156 :         return rcu_dereference_protected(slots[offset], mt_locked(mt));
     823             : }
     824             : /*
     825             :  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
     826             :  * @mas: The maple state
     827             :  * @slots: The pointer to the slots
     828             :  * @offset: The offset into the slots array to fetch
     829             :  *
     830             :  * Return: The entry stored in @slots at the @offset.
     831             :  */
     832             : static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
     833             :                                        unsigned char offset)
     834             : {
     835         312 :         return mt_slot_locked(mas->tree, slots, offset);
     836             : }
     837             : 
     838             : /*
     839             :  * mas_slot() - Get the slot value when not holding the maple tree lock.
     840             :  * @mas: The maple state
     841             :  * @slots: The pointer to the slots
     842             :  * @offset: The offset into the slots array to fetch
     843             :  *
     844             :  * Return: The entry stored in @slots at the @offset
     845             :  */
     846             : static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
     847             :                              unsigned char offset)
     848             : {
     849          40 :         return mt_slot(mas->tree, slots, offset);
     850             : }
     851             : 
     852             : /*
     853             :  * mas_root() - Get the maple tree root.
     854             :  * @mas: The maple state.
     855             :  *
     856             :  * Return: The pointer to the root of the tree
     857             :  */
     858             : static inline void *mas_root(struct ma_state *mas)
     859             : {
     860          64 :         return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
     861             : }
     862             : 
     863             : static inline void *mt_root_locked(struct maple_tree *mt)
     864             : {
     865             :         return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
     866             : }
     867             : 
     868             : /*
     869             :  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
     870             :  * @mas: The maple state.
     871             :  *
     872             :  * Return: The pointer to the root of the tree
     873             :  */
     874             : static inline void *mas_root_locked(struct ma_state *mas)
     875             : {
     876           8 :         return mt_root_locked(mas->tree);
     877             : }
     878             : 
     879             : static inline struct maple_metadata *ma_meta(struct maple_node *mn,
     880             :                                              enum maple_type mt)
     881             : {
     882         291 :         switch (mt) {
     883             :         case maple_arange_64:
     884         177 :                 return &mn->ma64.meta;
     885             :         default:
     886         114 :                 return &mn->mr64.meta;
     887             :         }
     888             : }
     889             : 
     890             : /*
     891             :  * ma_set_meta() - Set the metadata information of a node.
     892             :  * @mn: The maple node
     893             :  * @mt: The maple node type
     894             :  * @offset: The offset of the highest sub-gap in this node.
     895             :  * @end: The end of the data in this node.
     896             :  */
     897             : static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
     898             :                                unsigned char offset, unsigned char end)
     899             : {
     900          70 :         struct maple_metadata *meta = ma_meta(mn, mt);
     901             : 
     902          70 :         meta->gap = offset;
     903          70 :         meta->end = end;
     904             : }
     905             : 
     906             : /*
     907             :  * mt_clear_meta() - clear the metadata information of a node, if it exists
     908             :  * @mt: The maple tree
     909             :  * @mn: The maple node
     910             :  * @type: The maple node type
     911             :  * @offset: The offset of the highest sub-gap in this node.
     912             :  * @end: The end of the data in this node.
     913             :  */
     914           0 : static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
     915             :                                   enum maple_type type)
     916             : {
     917             :         struct maple_metadata *meta;
     918             :         unsigned long *pivots;
     919             :         void __rcu **slots;
     920             :         void *next;
     921             : 
     922           0 :         switch (type) {
     923             :         case maple_range_64:
     924           0 :                 pivots = mn->mr64.pivot;
     925           0 :                 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
     926           0 :                         slots = mn->mr64.slot;
     927           0 :                         next = mt_slot_locked(mt, slots,
     928             :                                               MAPLE_RANGE64_SLOTS - 1);
     929           0 :                         if (unlikely((mte_to_node(next) &&
     930             :                                       mte_node_type(next))))
     931             :                                 return; /* no metadata, could be node */
     932             :                 }
     933             :                 fallthrough;
     934             :         case maple_arange_64:
     935           0 :                 meta = ma_meta(mn, type);
     936             :                 break;
     937             :         default:
     938             :                 return;
     939             :         }
     940             : 
     941           0 :         meta->gap = 0;
     942           0 :         meta->end = 0;
     943             : }
     944             : 
     945             : /*
     946             :  * ma_meta_end() - Get the data end of a node from the metadata
     947             :  * @mn: The maple node
     948             :  * @mt: The maple node type
     949             :  */
     950             : static inline unsigned char ma_meta_end(struct maple_node *mn,
     951             :                                         enum maple_type mt)
     952             : {
     953         228 :         struct maple_metadata *meta = ma_meta(mn, mt);
     954             : 
     955         228 :         return meta->end;
     956             : }
     957             : 
     958             : /*
     959             :  * ma_meta_gap() - Get the largest gap location of a node from the metadata
     960             :  * @mn: The maple node
     961             :  * @mt: The maple node type
     962             :  */
     963             : static inline unsigned char ma_meta_gap(struct maple_node *mn,
     964             :                                         enum maple_type mt)
     965             : {
     966             :         return mn->ma64.meta.gap;
     967             : }
     968             : 
     969             : /*
     970             :  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
     971             :  * @mn: The maple node
     972             :  * @mn: The maple node type
     973             :  * @offset: The location of the largest gap.
     974             :  */
     975             : static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
     976             :                                    unsigned char offset)
     977             : {
     978             : 
     979          42 :         struct maple_metadata *meta = ma_meta(mn, mt);
     980             : 
     981          42 :         meta->gap = offset;
     982             : }
     983             : 
     984             : /*
     985             :  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
     986             :  * @mat - the ma_topiary, a linked list of dead nodes.
     987             :  * @dead_enode - the node to be marked as dead and added to the tail of the list
     988             :  *
     989             :  * Add the @dead_enode to the linked list in @mat.
     990             :  */
     991             : static inline void mat_add(struct ma_topiary *mat,
     992             :                            struct maple_enode *dead_enode)
     993             : {
     994          16 :         mte_set_node_dead(dead_enode);
     995          16 :         mte_to_mat(dead_enode)->next = NULL;
     996          16 :         if (!mat->tail) {
     997           7 :                 mat->tail = mat->head = dead_enode;
     998             :                 return;
     999             :         }
    1000             : 
    1001          18 :         mte_to_mat(mat->tail)->next = dead_enode;
    1002           9 :         mat->tail = dead_enode;
    1003             : }
    1004             : 
    1005             : static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
    1006             : static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
    1007             : 
    1008             : /*
    1009             :  * mas_mat_free() - Free all nodes in a dead list.
    1010             :  * @mas - the maple state
    1011             :  * @mat - the ma_topiary linked list of dead nodes to free.
    1012             :  *
    1013             :  * Free walk a dead list.
    1014             :  */
    1015             : static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
    1016             : {
    1017             :         struct maple_enode *next;
    1018             : 
    1019          23 :         while (mat->head) {
    1020          32 :                 next = mte_to_mat(mat->head)->next;
    1021          16 :                 mas_free(mas, mat->head);
    1022          16 :                 mat->head = next;
    1023             :         }
    1024             : }
    1025             : 
    1026             : /*
    1027             :  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
    1028             :  * @mas - the maple state
    1029             :  * @mat - the ma_topiary linked list of dead nodes to free.
    1030             :  *
    1031             :  * Destroy walk a dead list.
    1032             :  */
    1033             : static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
    1034             : {
    1035             :         struct maple_enode *next;
    1036             : 
    1037           0 :         while (mat->head) {
    1038           0 :                 next = mte_to_mat(mat->head)->next;
    1039           0 :                 mte_destroy_walk(mat->head, mat->mtree);
    1040           0 :                 mat->head = next;
    1041             :         }
    1042             : }
    1043             : /*
    1044             :  * mas_descend() - Descend into the slot stored in the ma_state.
    1045             :  * @mas - the maple state.
    1046             :  *
    1047             :  * Note: Not RCU safe, only use in write side or debug code.
    1048             :  */
    1049          20 : static inline void mas_descend(struct ma_state *mas)
    1050             : {
    1051             :         enum maple_type type;
    1052             :         unsigned long *pivots;
    1053             :         struct maple_node *node;
    1054             :         void __rcu **slots;
    1055             : 
    1056          40 :         node = mas_mn(mas);
    1057          40 :         type = mte_node_type(mas->node);
    1058          20 :         pivots = ma_pivots(node, type);
    1059          20 :         slots = ma_slots(node, type);
    1060             : 
    1061          20 :         if (mas->offset)
    1062          16 :                 mas->min = pivots[mas->offset - 1] + 1;
    1063          40 :         mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
    1064          40 :         mas->node = mas_slot(mas, slots, mas->offset);
    1065          20 : }
    1066             : 
    1067             : /*
    1068             :  * mte_set_gap() - Set a maple node gap.
    1069             :  * @mn: The encoded maple node
    1070             :  * @gap: The offset of the gap to set
    1071             :  * @val: The gap value
    1072             :  */
    1073             : static inline void mte_set_gap(const struct maple_enode *mn,
    1074             :                                  unsigned char gap, unsigned long val)
    1075             : {
    1076           0 :         switch (mte_node_type(mn)) {
    1077             :         default:
    1078             :                 break;
    1079             :         case maple_arange_64:
    1080           0 :                 mte_to_node(mn)->ma64.gap[gap] = val;
    1081             :                 break;
    1082             :         }
    1083             : }
    1084             : 
    1085             : /*
    1086             :  * mas_ascend() - Walk up a level of the tree.
    1087             :  * @mas: The maple state
    1088             :  *
    1089             :  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
    1090             :  * may cause several levels of walking up to find the correct min and max.
    1091             :  * May find a dead node which will cause a premature return.
    1092             :  * Return: 1 on dead node, 0 otherwise
    1093             :  */
    1094          15 : static int mas_ascend(struct ma_state *mas)
    1095             : {
    1096             :         struct maple_enode *p_enode; /* parent enode. */
    1097             :         struct maple_enode *a_enode; /* ancestor enode. */
    1098             :         struct maple_node *a_node; /* ancestor node. */
    1099             :         struct maple_node *p_node; /* parent node. */
    1100             :         unsigned char a_slot;
    1101             :         enum maple_type a_type;
    1102             :         unsigned long min, max;
    1103             :         unsigned long *pivots;
    1104          15 :         bool set_max = false, set_min = false;
    1105             : 
    1106          30 :         a_node = mas_mn(mas);
    1107          15 :         if (ma_is_root(a_node)) {
    1108           0 :                 mas->offset = 0;
    1109           0 :                 return 0;
    1110             :         }
    1111             : 
    1112          30 :         p_node = mte_parent(mas->node);
    1113          15 :         if (unlikely(a_node == p_node))
    1114             :                 return 1;
    1115             : 
    1116          15 :         a_type = mas_parent_type(mas, mas->node);
    1117          30 :         mas->offset = mte_parent_slot(mas->node);
    1118          15 :         a_enode = mt_mk_node(p_node, a_type);
    1119             : 
    1120             :         /* Check to make sure all parent information is still accurate */
    1121          30 :         if (p_node != mte_parent(mas->node))
    1122             :                 return 1;
    1123             : 
    1124          15 :         mas->node = a_enode;
    1125             : 
    1126          15 :         if (mte_is_root(a_enode)) {
    1127          15 :                 mas->max = ULONG_MAX;
    1128          15 :                 mas->min = 0;
    1129          15 :                 return 0;
    1130             :         }
    1131             : 
    1132           0 :         if (!mas->min)
    1133           0 :                 set_min = true;
    1134             : 
    1135           0 :         if (mas->max == ULONG_MAX)
    1136           0 :                 set_max = true;
    1137             : 
    1138             :         min = 0;
    1139             :         max = ULONG_MAX;
    1140             :         do {
    1141           0 :                 p_enode = a_enode;
    1142           0 :                 a_type = mas_parent_type(mas, p_enode);
    1143           0 :                 a_node = mte_parent(p_enode);
    1144           0 :                 a_slot = mte_parent_slot(p_enode);
    1145           0 :                 a_enode = mt_mk_node(a_node, a_type);
    1146           0 :                 pivots = ma_pivots(a_node, a_type);
    1147             : 
    1148           0 :                 if (unlikely(ma_dead_node(a_node)))
    1149             :                         return 1;
    1150             : 
    1151           0 :                 if (!set_min && a_slot) {
    1152           0 :                         set_min = true;
    1153           0 :                         min = pivots[a_slot - 1] + 1;
    1154             :                 }
    1155             : 
    1156           0 :                 if (!set_max && a_slot < mt_pivots[a_type]) {
    1157           0 :                         set_max = true;
    1158           0 :                         max = pivots[a_slot];
    1159             :                 }
    1160             : 
    1161           0 :                 if (unlikely(ma_dead_node(a_node)))
    1162             :                         return 1;
    1163             : 
    1164           0 :                 if (unlikely(ma_is_root(a_node)))
    1165             :                         break;
    1166             : 
    1167           0 :         } while (!set_min || !set_max);
    1168             : 
    1169           0 :         mas->max = max;
    1170           0 :         mas->min = min;
    1171           0 :         return 0;
    1172             : }
    1173             : 
    1174             : /*
    1175             :  * mas_pop_node() - Get a previously allocated maple node from the maple state.
    1176             :  * @mas: The maple state
    1177             :  *
    1178             :  * Return: A pointer to a maple node.
    1179             :  */
    1180          22 : static inline struct maple_node *mas_pop_node(struct ma_state *mas)
    1181             : {
    1182          22 :         struct maple_alloc *ret, *node = mas->alloc;
    1183          44 :         unsigned long total = mas_allocated(mas);
    1184          44 :         unsigned int req = mas_alloc_req(mas);
    1185             : 
    1186             :         /* nothing or a request pending. */
    1187          22 :         if (WARN_ON(!total))
    1188             :                 return NULL;
    1189             : 
    1190          22 :         if (total == 1) {
    1191             :                 /* single allocation in this ma_state */
    1192           2 :                 mas->alloc = NULL;
    1193           2 :                 ret = node;
    1194           2 :                 goto single_node;
    1195             :         }
    1196             : 
    1197          20 :         if (node->node_count == 1) {
    1198             :                 /* Single allocation in this node. */
    1199           1 :                 mas->alloc = node->slot[0];
    1200           1 :                 mas->alloc->total = node->total - 1;
    1201           1 :                 ret = node;
    1202           1 :                 goto new_head;
    1203             :         }
    1204          19 :         node->total--;
    1205          19 :         ret = node->slot[--node->node_count];
    1206          19 :         node->slot[node->node_count] = NULL;
    1207             : 
    1208             : single_node:
    1209             : new_head:
    1210          22 :         if (req) {
    1211           0 :                 req++;
    1212           0 :                 mas_set_alloc_req(mas, req);
    1213             :         }
    1214             : 
    1215          44 :         memset(ret, 0, sizeof(*ret));
    1216          22 :         return (struct maple_node *)ret;
    1217             : }
    1218             : 
    1219             : /*
    1220             :  * mas_push_node() - Push a node back on the maple state allocation.
    1221             :  * @mas: The maple state
    1222             :  * @used: The used maple node
    1223             :  *
    1224             :  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
    1225             :  * requested node count as necessary.
    1226             :  */
    1227           0 : static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
    1228             : {
    1229           0 :         struct maple_alloc *reuse = (struct maple_alloc *)used;
    1230           0 :         struct maple_alloc *head = mas->alloc;
    1231             :         unsigned long count;
    1232           0 :         unsigned int requested = mas_alloc_req(mas);
    1233             : 
    1234           0 :         count = mas_allocated(mas);
    1235             : 
    1236           0 :         reuse->request_count = 0;
    1237           0 :         reuse->node_count = 0;
    1238           0 :         if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
    1239           0 :                 head->slot[head->node_count++] = reuse;
    1240           0 :                 head->total++;
    1241           0 :                 goto done;
    1242             :         }
    1243             : 
    1244           0 :         reuse->total = 1;
    1245           0 :         if ((head) && !((unsigned long)head & 0x1)) {
    1246           0 :                 reuse->slot[0] = head;
    1247           0 :                 reuse->node_count = 1;
    1248           0 :                 reuse->total += head->total;
    1249             :         }
    1250             : 
    1251           0 :         mas->alloc = reuse;
    1252             : done:
    1253           0 :         if (requested > 1)
    1254           0 :                 mas_set_alloc_req(mas, requested - 1);
    1255           0 : }
    1256             : 
    1257             : /*
    1258             :  * mas_alloc_nodes() - Allocate nodes into a maple state
    1259             :  * @mas: The maple state
    1260             :  * @gfp: The GFP Flags
    1261             :  */
    1262           8 : static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
    1263             : {
    1264             :         struct maple_alloc *node;
    1265          16 :         unsigned long allocated = mas_allocated(mas);
    1266          16 :         unsigned int requested = mas_alloc_req(mas);
    1267             :         unsigned int count;
    1268           8 :         void **slots = NULL;
    1269           8 :         unsigned int max_req = 0;
    1270             : 
    1271           8 :         if (!requested)
    1272             :                 return;
    1273             : 
    1274          16 :         mas_set_alloc_req(mas, 0);
    1275           8 :         if (mas->mas_flags & MA_STATE_PREALLOC) {
    1276           0 :                 if (allocated)
    1277             :                         return;
    1278           0 :                 WARN_ON(!allocated);
    1279             :         }
    1280             : 
    1281           8 :         if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
    1282           8 :                 node = (struct maple_alloc *)mt_alloc_one(gfp);
    1283           8 :                 if (!node)
    1284             :                         goto nomem_one;
    1285             : 
    1286           8 :                 if (allocated) {
    1287           0 :                         node->slot[0] = mas->alloc;
    1288           0 :                         node->node_count = 1;
    1289             :                 } else {
    1290           8 :                         node->node_count = 0;
    1291             :                 }
    1292             : 
    1293           8 :                 mas->alloc = node;
    1294           8 :                 node->total = ++allocated;
    1295           8 :                 requested--;
    1296             :         }
    1297             : 
    1298           8 :         node = mas->alloc;
    1299           8 :         node->request_count = 0;
    1300          23 :         while (requested) {
    1301           7 :                 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
    1302           7 :                 slots = (void **)&node->slot[node->node_count];
    1303           7 :                 max_req = min(requested, max_req);
    1304          14 :                 count = mt_alloc_bulk(gfp, max_req, slots);
    1305           7 :                 if (!count)
    1306             :                         goto nomem_bulk;
    1307             : 
    1308           7 :                 if (node->node_count == 0) {
    1309           7 :                         node->slot[0]->node_count = 0;
    1310           7 :                         node->slot[0]->request_count = 0;
    1311             :                 }
    1312             : 
    1313           7 :                 node->node_count += count;
    1314           7 :                 allocated += count;
    1315           7 :                 node = node->slot[0];
    1316           7 :                 requested -= count;
    1317             :         }
    1318           8 :         mas->alloc->total = allocated;
    1319           8 :         return;
    1320             : 
    1321             : nomem_bulk:
    1322             :         /* Clean up potential freed allocations on bulk failure */
    1323           0 :         memset(slots, 0, max_req * sizeof(unsigned long));
    1324             : nomem_one:
    1325           0 :         mas_set_alloc_req(mas, requested);
    1326           0 :         if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
    1327           0 :                 mas->alloc->total = allocated;
    1328           0 :         mas_set_err(mas, -ENOMEM);
    1329             : }
    1330             : 
    1331             : /*
    1332             :  * mas_free() - Free an encoded maple node
    1333             :  * @mas: The maple state
    1334             :  * @used: The encoded maple node to free.
    1335             :  *
    1336             :  * Uses rcu free if necessary, pushes @used back on the maple state allocations
    1337             :  * otherwise.
    1338             :  */
    1339          16 : static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
    1340             : {
    1341          16 :         struct maple_node *tmp = mte_to_node(used);
    1342             : 
    1343          32 :         if (mt_in_rcu(mas->tree))
    1344          16 :                 ma_free_rcu(tmp);
    1345             :         else
    1346           0 :                 mas_push_node(mas, tmp);
    1347          16 : }
    1348             : 
    1349             : /*
    1350             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1351             :  * there is not enough nodes.
    1352             :  * @mas: The maple state
    1353             :  * @count: The number of nodes needed
    1354             :  * @gfp: the gfp flags
    1355             :  */
    1356           8 : static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
    1357             : {
    1358          16 :         unsigned long allocated = mas_allocated(mas);
    1359             : 
    1360           8 :         if (allocated < count) {
    1361          16 :                 mas_set_alloc_req(mas, count - allocated);
    1362           8 :                 mas_alloc_nodes(mas, gfp);
    1363             :         }
    1364           8 : }
    1365             : 
    1366             : /*
    1367             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1368             :  * there is not enough nodes.
    1369             :  * @mas: The maple state
    1370             :  * @count: The number of nodes needed
    1371             :  *
    1372             :  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
    1373             :  */
    1374             : static void mas_node_count(struct ma_state *mas, int count)
    1375             : {
    1376           8 :         return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
    1377             : }
    1378             : 
    1379             : /*
    1380             :  * mas_start() - Sets up maple state for operations.
    1381             :  * @mas: The maple state.
    1382             :  *
    1383             :  * If mas->node == MAS_START, then set the min, max and depth to
    1384             :  * defaults.
    1385             :  *
    1386             :  * Return:
    1387             :  * - If mas->node is an error or not MAS_START, return NULL.
    1388             :  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
    1389             :  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
    1390             :  * - If it's a tree:            NULL & mas->node == safe root node.
    1391             :  */
    1392          64 : static inline struct maple_enode *mas_start(struct ma_state *mas)
    1393             : {
    1394         128 :         if (likely(mas_is_start(mas))) {
    1395             :                 struct maple_enode *root;
    1396             : 
    1397          64 :                 mas->min = 0;
    1398          64 :                 mas->max = ULONG_MAX;
    1399             : 
    1400             : retry:
    1401          64 :                 mas->depth = 0;
    1402         128 :                 root = mas_root(mas);
    1403             :                 /* Tree with nodes */
    1404          64 :                 if (likely(xa_is_node(root))) {
    1405          62 :                         mas->depth = 1;
    1406          62 :                         mas->node = mte_safe_root(root);
    1407          62 :                         mas->offset = 0;
    1408         124 :                         if (mte_dead_node(mas->node))
    1409             :                                 goto retry;
    1410             : 
    1411             :                         return NULL;
    1412             :                 }
    1413             : 
    1414             :                 /* empty tree */
    1415           2 :                 if (unlikely(!root)) {
    1416           1 :                         mas->node = MAS_NONE;
    1417           1 :                         mas->offset = MAPLE_NODE_SLOTS;
    1418           1 :                         return NULL;
    1419             :                 }
    1420             : 
    1421             :                 /* Single entry tree */
    1422           1 :                 mas->node = MAS_ROOT;
    1423           1 :                 mas->offset = MAPLE_NODE_SLOTS;
    1424             : 
    1425             :                 /* Single entry tree. */
    1426           1 :                 if (mas->index > 0)
    1427             :                         return NULL;
    1428             : 
    1429           0 :                 return root;
    1430             :         }
    1431             : 
    1432             :         return NULL;
    1433             : }
    1434             : 
    1435             : /*
    1436             :  * ma_data_end() - Find the end of the data in a node.
    1437             :  * @node: The maple node
    1438             :  * @type: The maple node type
    1439             :  * @pivots: The array of pivots in the node
    1440             :  * @max: The maximum value in the node
    1441             :  *
    1442             :  * Uses metadata to find the end of the data when possible.
    1443             :  * Return: The zero indexed last slot with data (may be null).
    1444             :  */
    1445         208 : static inline unsigned char ma_data_end(struct maple_node *node,
    1446             :                                         enum maple_type type,
    1447             :                                         unsigned long *pivots,
    1448             :                                         unsigned long max)
    1449             : {
    1450             :         unsigned char offset;
    1451             : 
    1452         208 :         if (!pivots)
    1453             :                 return 0;
    1454             : 
    1455         208 :         if (type == maple_arange_64)
    1456          83 :                 return ma_meta_end(node, type);
    1457             : 
    1458         125 :         offset = mt_pivots[type] - 1;
    1459         125 :         if (likely(!pivots[offset]))
    1460          97 :                 return ma_meta_end(node, type);
    1461             : 
    1462          28 :         if (likely(pivots[offset] == max))
    1463             :                 return offset;
    1464             : 
    1465          13 :         return mt_pivots[type];
    1466             : }
    1467             : 
    1468             : /*
    1469             :  * mas_data_end() - Find the end of the data (slot).
    1470             :  * @mas: the maple state
    1471             :  *
    1472             :  * This method is optimized to check the metadata of a node if the node type
    1473             :  * supports data end metadata.
    1474             :  *
    1475             :  * Return: The zero indexed last slot with data (may be null).
    1476             :  */
    1477           9 : static inline unsigned char mas_data_end(struct ma_state *mas)
    1478             : {
    1479             :         enum maple_type type;
    1480             :         struct maple_node *node;
    1481             :         unsigned char offset;
    1482             :         unsigned long *pivots;
    1483             : 
    1484          18 :         type = mte_node_type(mas->node);
    1485          18 :         node = mas_mn(mas);
    1486           9 :         if (type == maple_arange_64)
    1487           3 :                 return ma_meta_end(node, type);
    1488             : 
    1489           6 :         pivots = ma_pivots(node, type);
    1490           6 :         if (unlikely(ma_dead_node(node)))
    1491             :                 return 0;
    1492             : 
    1493           6 :         offset = mt_pivots[type] - 1;
    1494           6 :         if (likely(!pivots[offset]))
    1495           3 :                 return ma_meta_end(node, type);
    1496             : 
    1497           3 :         if (likely(pivots[offset] == mas->max))
    1498             :                 return offset;
    1499             : 
    1500             :         return mt_pivots[type];
    1501             : }
    1502             : 
    1503             : /*
    1504             :  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
    1505             :  * @mas - the maple state
    1506             :  *
    1507             :  * Return: The maximum gap in the leaf.
    1508             :  */
    1509          56 : static unsigned long mas_leaf_max_gap(struct ma_state *mas)
    1510             : {
    1511             :         enum maple_type mt;
    1512             :         unsigned long pstart, gap, max_gap;
    1513             :         struct maple_node *mn;
    1514             :         unsigned long *pivots;
    1515             :         void __rcu **slots;
    1516             :         unsigned char i;
    1517             :         unsigned char max_piv;
    1518             : 
    1519         112 :         mt = mte_node_type(mas->node);
    1520         112 :         mn = mas_mn(mas);
    1521          56 :         slots = ma_slots(mn, mt);
    1522          56 :         max_gap = 0;
    1523          56 :         if (unlikely(ma_is_dense(mt))) {
    1524             :                 gap = 0;
    1525           0 :                 for (i = 0; i < mt_slots[mt]; i++) {
    1526           0 :                         if (slots[i]) {
    1527           0 :                                 if (gap > max_gap)
    1528           0 :                                         max_gap = gap;
    1529             :                                 gap = 0;
    1530             :                         } else {
    1531           0 :                                 gap++;
    1532             :                         }
    1533             :                 }
    1534           0 :                 if (gap > max_gap)
    1535           0 :                         max_gap = gap;
    1536             :                 return max_gap;
    1537             :         }
    1538             : 
    1539             :         /*
    1540             :          * Check the first implied pivot optimizes the loop below and slot 1 may
    1541             :          * be skipped if there is a gap in slot 0.
    1542             :          */
    1543          56 :         pivots = ma_pivots(mn, mt);
    1544          56 :         if (likely(!slots[0])) {
    1545           0 :                 max_gap = pivots[0] - mas->min + 1;
    1546           0 :                 i = 2;
    1547             :         } else {
    1548             :                 i = 1;
    1549             :         }
    1550             : 
    1551             :         /* reduce max_piv as the special case is checked before the loop */
    1552          56 :         max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
    1553             :         /*
    1554             :          * Check end implied pivot which can only be a gap on the right most
    1555             :          * node.
    1556             :          */
    1557          56 :         if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
    1558          49 :                 gap = ULONG_MAX - pivots[max_piv];
    1559          49 :                 if (gap > max_gap)
    1560          49 :                         max_gap = gap;
    1561             :         }
    1562             : 
    1563         566 :         for (; i <= max_piv; i++) {
    1564             :                 /* data == no gap. */
    1565         566 :                 if (likely(slots[i]))
    1566         566 :                         continue;
    1567             : 
    1568           0 :                 pstart = pivots[i - 1];
    1569           0 :                 gap = pivots[i] - pstart;
    1570           0 :                 if (gap > max_gap)
    1571           0 :                         max_gap = gap;
    1572             : 
    1573             :                 /* There cannot be two gaps in a row. */
    1574           0 :                 i++;
    1575             :         }
    1576             :         return max_gap;
    1577             : }
    1578             : 
    1579             : /*
    1580             :  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
    1581             :  * @node: The maple node
    1582             :  * @gaps: The pointer to the gaps
    1583             :  * @mt: The maple node type
    1584             :  * @*off: Pointer to store the offset location of the gap.
    1585             :  *
    1586             :  * Uses the metadata data end to scan backwards across set gaps.
    1587             :  *
    1588             :  * Return: The maximum gap value
    1589             :  */
    1590             : static inline unsigned long
    1591             : ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
    1592             :             unsigned char *off)
    1593             : {
    1594             :         unsigned char offset, i;
    1595          42 :         unsigned long max_gap = 0;
    1596             : 
    1597          42 :         i = offset = ma_meta_end(node, mt);
    1598             :         do {
    1599         132 :                 if (gaps[i] > max_gap) {
    1600          42 :                         max_gap = gaps[i];
    1601          42 :                         offset = i;
    1602             :                 }
    1603         132 :         } while (i--);
    1604             : 
    1605          42 :         *off = offset;
    1606             :         return max_gap;
    1607             : }
    1608             : 
    1609             : /*
    1610             :  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
    1611             :  * @mas: The maple state.
    1612             :  *
    1613             :  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
    1614             :  *
    1615             :  * Return: The gap value.
    1616             :  */
    1617          56 : static inline unsigned long mas_max_gap(struct ma_state *mas)
    1618             : {
    1619             :         unsigned long *gaps;
    1620             :         unsigned char offset;
    1621             :         enum maple_type mt;
    1622             :         struct maple_node *node;
    1623             : 
    1624         112 :         mt = mte_node_type(mas->node);
    1625          56 :         if (ma_is_leaf(mt))
    1626          56 :                 return mas_leaf_max_gap(mas);
    1627             : 
    1628           0 :         node = mas_mn(mas);
    1629           0 :         MAS_BUG_ON(mas, mt != maple_arange_64);
    1630           0 :         offset = ma_meta_gap(node, mt);
    1631           0 :         if (offset == MAPLE_ARANGE64_META_MAX)
    1632             :                 return 0;
    1633             : 
    1634           0 :         gaps = ma_gaps(node, mt);
    1635           0 :         return gaps[offset];
    1636             : }
    1637             : 
    1638             : /*
    1639             :  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
    1640             :  * @mas: The maple state
    1641             :  * @offset: The gap offset in the parent to set
    1642             :  * @new: The new gap value.
    1643             :  *
    1644             :  * Set the parent gap then continue to set the gap upwards, using the metadata
    1645             :  * of the parent to see if it is necessary to check the node above.
    1646             :  */
    1647          42 : static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
    1648             :                 unsigned long new)
    1649             : {
    1650          42 :         unsigned long meta_gap = 0;
    1651             :         struct maple_node *pnode;
    1652             :         struct maple_enode *penode;
    1653             :         unsigned long *pgaps;
    1654             :         unsigned char meta_offset;
    1655             :         enum maple_type pmt;
    1656             : 
    1657          84 :         pnode = mte_parent(mas->node);
    1658          42 :         pmt = mas_parent_type(mas, mas->node);
    1659          42 :         penode = mt_mk_node(pnode, pmt);
    1660             :         pgaps = ma_gaps(pnode, pmt);
    1661             : 
    1662             : ascend:
    1663          42 :         MAS_BUG_ON(mas, pmt != maple_arange_64);
    1664          42 :         meta_offset = ma_meta_gap(pnode, pmt);
    1665          42 :         if (meta_offset == MAPLE_ARANGE64_META_MAX)
    1666             :                 meta_gap = 0;
    1667             :         else
    1668          42 :                 meta_gap = pgaps[meta_offset];
    1669             : 
    1670          42 :         pgaps[offset] = new;
    1671             : 
    1672          42 :         if (meta_gap == new)
    1673             :                 return;
    1674             : 
    1675          42 :         if (offset != meta_offset) {
    1676           0 :                 if (meta_gap > new)
    1677             :                         return;
    1678             : 
    1679           0 :                 ma_set_meta_gap(pnode, pmt, offset);
    1680          42 :         } else if (new < meta_gap) {
    1681          42 :                 meta_offset = 15;
    1682          42 :                 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
    1683          42 :                 ma_set_meta_gap(pnode, pmt, meta_offset);
    1684             :         }
    1685             : 
    1686          84 :         if (ma_is_root(pnode))
    1687             :                 return;
    1688             : 
    1689             :         /* Go to the parent node. */
    1690           0 :         pnode = mte_parent(penode);
    1691           0 :         pmt = mas_parent_type(mas, penode);
    1692           0 :         pgaps = ma_gaps(pnode, pmt);
    1693           0 :         offset = mte_parent_slot(penode);
    1694           0 :         penode = mt_mk_node(pnode, pmt);
    1695           0 :         goto ascend;
    1696             : }
    1697             : 
    1698             : /*
    1699             :  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
    1700             :  * @mas - the maple state.
    1701             :  */
    1702          62 : static inline void mas_update_gap(struct ma_state *mas)
    1703             : {
    1704             :         unsigned char pslot;
    1705             :         unsigned long p_gap;
    1706             :         unsigned long max_gap;
    1707             : 
    1708         124 :         if (!mt_is_alloc(mas->tree))
    1709             :                 return;
    1710             : 
    1711         124 :         if (mte_is_root(mas->node))
    1712             :                 return;
    1713             : 
    1714          42 :         max_gap = mas_max_gap(mas);
    1715             : 
    1716          84 :         pslot = mte_parent_slot(mas->node);
    1717         168 :         p_gap = ma_gaps(mte_parent(mas->node),
    1718          42 :                         mas_parent_type(mas, mas->node))[pslot];
    1719             : 
    1720          42 :         if (p_gap != max_gap)
    1721          42 :                 mas_parent_gap(mas, pslot, max_gap);
    1722             : }
    1723             : 
    1724             : /*
    1725             :  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
    1726             :  * @parent with the slot encoded.
    1727             :  * @mas - the maple state (for the tree)
    1728             :  * @parent - the maple encoded node containing the children.
    1729             :  */
    1730           7 : static inline void mas_adopt_children(struct ma_state *mas,
    1731             :                 struct maple_enode *parent)
    1732             : {
    1733           7 :         enum maple_type type = mte_node_type(parent);
    1734          14 :         struct maple_node *node = mas_mn(mas);
    1735           7 :         void __rcu **slots = ma_slots(node, type);
    1736           7 :         unsigned long *pivots = ma_pivots(node, type);
    1737             :         struct maple_enode *child;
    1738             :         unsigned char offset;
    1739             : 
    1740           7 :         offset = ma_data_end(node, type, pivots, mas->max);
    1741             :         do {
    1742          46 :                 child = mas_slot_locked(mas, slots, offset);
    1743          23 :                 mas_set_parent(mas, child, parent, offset);
    1744          23 :         } while (offset--);
    1745           7 : }
    1746             : 
    1747             : /*
    1748             :  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
    1749             :  * parent encoding to locate the maple node in the tree.
    1750             :  * @mas - the ma_state to use for operations.
    1751             :  * @advanced - boolean to adopt the child nodes and free the old node (false) or
    1752             :  * leave the node (true) and handle the adoption and free elsewhere.
    1753             :  */
    1754           7 : static inline void mas_replace(struct ma_state *mas, bool advanced)
    1755             :         __must_hold(mas->tree->ma_lock)
    1756             : {
    1757          14 :         struct maple_node *mn = mas_mn(mas);
    1758             :         struct maple_enode *old_enode;
    1759           7 :         unsigned char offset = 0;
    1760           7 :         void __rcu **slots = NULL;
    1761             : 
    1762           7 :         if (ma_is_root(mn)) {
    1763          14 :                 old_enode = mas_root_locked(mas);
    1764             :         } else {
    1765           0 :                 offset = mte_parent_slot(mas->node);
    1766           0 :                 slots = ma_slots(mte_parent(mas->node),
    1767             :                                  mas_parent_type(mas, mas->node));
    1768           0 :                 old_enode = mas_slot_locked(mas, slots, offset);
    1769             :         }
    1770             : 
    1771           7 :         if (!advanced && !mte_is_leaf(mas->node))
    1772           0 :                 mas_adopt_children(mas, mas->node);
    1773             : 
    1774          14 :         if (mte_is_root(mas->node)) {
    1775           7 :                 mn->parent = ma_parent_ptr(
    1776             :                               ((unsigned long)mas->tree | MA_ROOT_PARENT));
    1777          14 :                 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    1778           7 :                 mas_set_height(mas);
    1779             :         } else {
    1780           0 :                 rcu_assign_pointer(slots[offset], mas->node);
    1781             :         }
    1782             : 
    1783           7 :         if (!advanced) {
    1784           0 :                 mte_set_node_dead(old_enode);
    1785           0 :                 mas_free(mas, old_enode);
    1786             :         }
    1787           7 : }
    1788             : 
    1789             : /*
    1790             :  * mas_new_child() - Find the new child of a node.
    1791             :  * @mas: the maple state
    1792             :  * @child: the maple state to store the child.
    1793             :  */
    1794          21 : static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
    1795             :         __must_hold(mas->tree->ma_lock)
    1796             : {
    1797             :         enum maple_type mt;
    1798             :         unsigned char offset;
    1799             :         unsigned char end;
    1800             :         unsigned long *pivots;
    1801             :         struct maple_enode *entry;
    1802             :         struct maple_node *node;
    1803             :         void __rcu **slots;
    1804             : 
    1805          42 :         mt = mte_node_type(mas->node);
    1806          42 :         node = mas_mn(mas);
    1807          21 :         slots = ma_slots(node, mt);
    1808          21 :         pivots = ma_pivots(node, mt);
    1809          21 :         end = ma_data_end(node, mt, pivots, mas->max);
    1810          30 :         for (offset = mas->offset; offset <= end; offset++) {
    1811          46 :                 entry = mas_slot_locked(mas, slots, offset);
    1812          23 :                 if (mte_parent(entry) == node) {
    1813          14 :                         *child = *mas;
    1814          14 :                         mas->offset = offset + 1;
    1815          14 :                         child->offset = offset;
    1816          14 :                         mas_descend(child);
    1817          14 :                         child->offset = 0;
    1818          14 :                         return true;
    1819             :                 }
    1820             :         }
    1821             :         return false;
    1822             : }
    1823             : 
    1824             : /*
    1825             :  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
    1826             :  * old data or set b_node->b_end.
    1827             :  * @b_node: the maple_big_node
    1828             :  * @shift: the shift count
    1829             :  */
    1830           3 : static inline void mab_shift_right(struct maple_big_node *b_node,
    1831             :                                  unsigned char shift)
    1832             : {
    1833           3 :         unsigned long size = b_node->b_end * sizeof(unsigned long);
    1834             : 
    1835           6 :         memmove(b_node->pivot + shift, b_node->pivot, size);
    1836           6 :         memmove(b_node->slot + shift, b_node->slot, size);
    1837           3 :         if (b_node->type == maple_arange_64)
    1838           0 :                 memmove(b_node->gap + shift, b_node->gap, size);
    1839           3 : }
    1840             : 
    1841             : /*
    1842             :  * mab_middle_node() - Check if a middle node is needed (unlikely)
    1843             :  * @b_node: the maple_big_node that contains the data.
    1844             :  * @size: the amount of data in the b_node
    1845             :  * @split: the potential split location
    1846             :  * @slot_count: the size that can be stored in a single node being considered.
    1847             :  *
    1848             :  * Return: true if a middle node is required.
    1849             :  */
    1850             : static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
    1851             :                                    unsigned char slot_count)
    1852             : {
    1853           4 :         unsigned char size = b_node->b_end;
    1854             : 
    1855           4 :         if (size >= 2 * slot_count)
    1856             :                 return true;
    1857             : 
    1858           4 :         if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
    1859             :                 return true;
    1860             : 
    1861             :         return false;
    1862             : }
    1863             : 
    1864             : /*
    1865             :  * mab_no_null_split() - ensure the split doesn't fall on a NULL
    1866             :  * @b_node: the maple_big_node with the data
    1867             :  * @split: the suggested split location
    1868             :  * @slot_count: the number of slots in the node being considered.
    1869             :  *
    1870             :  * Return: the split location.
    1871             :  */
    1872             : static inline int mab_no_null_split(struct maple_big_node *b_node,
    1873             :                                     unsigned char split, unsigned char slot_count)
    1874             : {
    1875           7 :         if (!b_node->slot[split]) {
    1876             :                 /*
    1877             :                  * If the split is less than the max slot && the right side will
    1878             :                  * still be sufficient, then increment the split on NULL.
    1879             :                  */
    1880           0 :                 if ((split < slot_count - 1) &&
    1881           0 :                     (b_node->b_end - split) > (mt_min_slots[b_node->type]))
    1882           0 :                         split++;
    1883             :                 else
    1884           0 :                         split--;
    1885             :         }
    1886           7 :         return split;
    1887             : }
    1888             : 
    1889             : /*
    1890             :  * mab_calc_split() - Calculate the split location and if there needs to be two
    1891             :  * splits.
    1892             :  * @bn: The maple_big_node with the data
    1893             :  * @mid_split: The second split, if required.  0 otherwise.
    1894             :  *
    1895             :  * Return: The first split location.  The middle split is set in @mid_split.
    1896             :  */
    1897           4 : static inline int mab_calc_split(struct ma_state *mas,
    1898             :          struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
    1899             : {
    1900           4 :         unsigned char b_end = bn->b_end;
    1901           4 :         int split = b_end / 2; /* Assume equal split. */
    1902           4 :         unsigned char slot_min, slot_count = mt_slots[bn->type];
    1903             : 
    1904             :         /*
    1905             :          * To support gap tracking, all NULL entries are kept together and a node cannot
    1906             :          * end on a NULL entry, with the exception of the left-most leaf.  The
    1907             :          * limitation means that the split of a node must be checked for this condition
    1908             :          * and be able to put more data in one direction or the other.
    1909             :          */
    1910           4 :         if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
    1911           0 :                 *mid_split = 0;
    1912           0 :                 split = b_end - mt_min_slots[bn->type];
    1913             : 
    1914           0 :                 if (!ma_is_leaf(bn->type))
    1915             :                         return split;
    1916             : 
    1917           0 :                 mas->mas_flags |= MA_STATE_REBALANCE;
    1918           0 :                 if (!bn->slot[split])
    1919           0 :                         split--;
    1920             :                 return split;
    1921             :         }
    1922             : 
    1923             :         /*
    1924             :          * Although extremely rare, it is possible to enter what is known as the 3-way
    1925             :          * split scenario.  The 3-way split comes about by means of a store of a range
    1926             :          * that overwrites the end and beginning of two full nodes.  The result is a set
    1927             :          * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
    1928             :          * also be located in different parent nodes which are also full.  This can
    1929             :          * carry upwards all the way to the root in the worst case.
    1930             :          */
    1931           8 :         if (unlikely(mab_middle_node(bn, split, slot_count))) {
    1932           0 :                 split = b_end / 3;
    1933           0 :                 *mid_split = split * 2;
    1934             :         } else {
    1935           4 :                 slot_min = mt_min_slots[bn->type];
    1936             : 
    1937           4 :                 *mid_split = 0;
    1938             :                 /*
    1939             :                  * Avoid having a range less than the slot count unless it
    1940             :                  * causes one node to be deficient.
    1941             :                  * NOTE: mt_min_slots is 1 based, b_end and split are zero.
    1942             :                  */
    1943          12 :                 while ((split < slot_count - 1) &&
    1944           9 :                        ((bn->pivot[split] - min) < slot_count - 1) &&
    1945           3 :                        (b_end - split > slot_min))
    1946           2 :                         split++;
    1947             :         }
    1948             : 
    1949             :         /* Avoid ending a node on a NULL entry */
    1950           8 :         split = mab_no_null_split(bn, split, slot_count);
    1951             : 
    1952           4 :         if (unlikely(*mid_split))
    1953           0 :                 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
    1954             : 
    1955             :         return split;
    1956             : }
    1957             : 
    1958             : /*
    1959             :  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
    1960             :  * and set @b_node->b_end to the next free slot.
    1961             :  * @mas: The maple state
    1962             :  * @mas_start: The starting slot to copy
    1963             :  * @mas_end: The end slot to copy (inclusively)
    1964             :  * @b_node: The maple_big_node to place the data
    1965             :  * @mab_start: The starting location in maple_big_node to store the data.
    1966             :  */
    1967          15 : static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
    1968             :                         unsigned char mas_end, struct maple_big_node *b_node,
    1969             :                         unsigned char mab_start)
    1970             : {
    1971             :         enum maple_type mt;
    1972             :         struct maple_node *node;
    1973             :         void __rcu **slots;
    1974             :         unsigned long *pivots, *gaps;
    1975          15 :         int i = mas_start, j = mab_start;
    1976             :         unsigned char piv_end;
    1977             : 
    1978          30 :         node = mas_mn(mas);
    1979          30 :         mt = mte_node_type(mas->node);
    1980          15 :         pivots = ma_pivots(node, mt);
    1981          15 :         if (!i) {
    1982          15 :                 b_node->pivot[j] = pivots[i++];
    1983          15 :                 if (unlikely(i > mas_end))
    1984             :                         goto complete;
    1985          13 :                 j++;
    1986             :         }
    1987             : 
    1988          13 :         piv_end = min(mas_end, mt_pivots[mt]);
    1989         128 :         for (; i < piv_end; i++, j++) {
    1990         115 :                 b_node->pivot[j] = pivots[i];
    1991         115 :                 if (unlikely(!b_node->pivot[j]))
    1992             :                         break;
    1993             : 
    1994         115 :                 if (unlikely(mas->max == b_node->pivot[j]))
    1995             :                         goto complete;
    1996             :         }
    1997             : 
    1998          13 :         if (likely(i <= mas_end))
    1999          26 :                 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
    2000             : 
    2001             : complete:
    2002          15 :         b_node->b_end = ++j;
    2003          15 :         j -= mab_start;
    2004          15 :         slots = ma_slots(node, mt);
    2005          30 :         memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
    2006          20 :         if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
    2007           5 :                 gaps = ma_gaps(node, mt);
    2008          10 :                 memcpy(b_node->gap + mab_start, gaps + mas_start,
    2009             :                        sizeof(unsigned long) * j);
    2010             :         }
    2011          15 : }
    2012             : 
    2013             : /*
    2014             :  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
    2015             :  * @mas: The maple state
    2016             :  * @node: The maple node
    2017             :  * @pivots: pointer to the maple node pivots
    2018             :  * @mt: The maple type
    2019             :  * @end: The assumed end
    2020             :  *
    2021             :  * Note, end may be incremented within this function but not modified at the
    2022             :  * source.  This is fine since the metadata is the last thing to be stored in a
    2023             :  * node during a write.
    2024             :  */
    2025          14 : static inline void mas_leaf_set_meta(struct ma_state *mas,
    2026             :                 struct maple_node *node, unsigned long *pivots,
    2027             :                 enum maple_type mt, unsigned char end)
    2028             : {
    2029             :         /* There is no room for metadata already */
    2030          14 :         if (mt_pivots[mt] <= end)
    2031             :                 return;
    2032             : 
    2033          14 :         if (pivots[end] && pivots[end] < mas->max)
    2034           0 :                 end++;
    2035             : 
    2036          14 :         if (end < mt_slots[mt] - 1)
    2037          14 :                 ma_set_meta(node, mt, 0, end);
    2038             : }
    2039             : 
    2040             : /*
    2041             :  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
    2042             :  * @b_node: the maple_big_node that has the data
    2043             :  * @mab_start: the start location in @b_node.
    2044             :  * @mab_end: The end location in @b_node (inclusively)
    2045             :  * @mas: The maple state with the maple encoded node.
    2046             :  */
    2047          21 : static inline void mab_mas_cp(struct maple_big_node *b_node,
    2048             :                               unsigned char mab_start, unsigned char mab_end,
    2049             :                               struct ma_state *mas, bool new_max)
    2050             : {
    2051          21 :         int i, j = 0;
    2052          42 :         enum maple_type mt = mte_node_type(mas->node);
    2053          42 :         struct maple_node *node = mte_to_node(mas->node);
    2054          21 :         void __rcu **slots = ma_slots(node, mt);
    2055          21 :         unsigned long *pivots = ma_pivots(node, mt);
    2056          21 :         unsigned long *gaps = NULL;
    2057             :         unsigned char end;
    2058             : 
    2059          21 :         if (mab_end - mab_start > mt_pivots[mt])
    2060           0 :                 mab_end--;
    2061             : 
    2062          21 :         if (!pivots[mt_pivots[mt] - 1])
    2063          21 :                 slots[mt_pivots[mt]] = NULL;
    2064             : 
    2065             :         i = mab_start;
    2066             :         do {
    2067         171 :                 pivots[j++] = b_node->pivot[i++];
    2068         171 :         } while (i <= mab_end && likely(b_node->pivot[i]));
    2069             : 
    2070          42 :         memcpy(slots, b_node->slot + mab_start,
    2071             :                sizeof(void *) * (i - mab_start));
    2072             : 
    2073          21 :         if (new_max)
    2074          14 :                 mas->max = b_node->pivot[i - 1];
    2075             : 
    2076          21 :         end = j - 1;
    2077          28 :         if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
    2078           7 :                 unsigned long max_gap = 0;
    2079           7 :                 unsigned char offset = 15;
    2080             : 
    2081           7 :                 gaps = ma_gaps(node, mt);
    2082             :                 do {
    2083          23 :                         gaps[--j] = b_node->gap[--i];
    2084          23 :                         if (gaps[j] > max_gap) {
    2085           7 :                                 offset = j;
    2086           7 :                                 max_gap = gaps[j];
    2087             :                         }
    2088          23 :                 } while (j);
    2089             : 
    2090           7 :                 ma_set_meta(node, mt, offset, end);
    2091             :         } else {
    2092          14 :                 mas_leaf_set_meta(mas, node, pivots, mt, end);
    2093             :         }
    2094          21 : }
    2095             : 
    2096             : /*
    2097             :  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
    2098             :  * @mas: the maple state with the maple encoded node of the sub-tree.
    2099             :  *
    2100             :  * Descend through a sub-tree and adopt children who do not have the correct
    2101             :  * parents set.  Follow the parents which have the correct parents as they are
    2102             :  * the new entries which need to be followed to find other incorrectly set
    2103             :  * parents.
    2104             :  */
    2105           7 : static inline void mas_descend_adopt(struct ma_state *mas)
    2106             : {
    2107             :         struct ma_state list[3], next[3];
    2108             :         int i, n;
    2109             : 
    2110             :         /*
    2111             :          * At each level there may be up to 3 correct parent pointers which indicates
    2112             :          * the new nodes which need to be walked to find any new nodes at a lower level.
    2113             :          */
    2114             : 
    2115          28 :         for (i = 0; i < 3; i++) {
    2116          21 :                 list[i] = *mas;
    2117          21 :                 list[i].offset = 0;
    2118          21 :                 next[i].offset = 0;
    2119             :         }
    2120           7 :         next[0] = *mas;
    2121             : 
    2122          35 :         while (!mte_is_leaf(list[0].node)) {
    2123             :                 n = 0;
    2124          21 :                 for (i = 0; i < 3; i++) {
    2125          21 :                         if (mas_is_none(&list[i]))
    2126           0 :                                 continue;
    2127             : 
    2128          21 :                         if (i && list[i-1].node == list[i].node)
    2129          14 :                                 continue;
    2130             : 
    2131          21 :                         while ((n < 3) && (mas_new_child(&list[i], &next[n])))
    2132          14 :                                 n++;
    2133             : 
    2134           7 :                         mas_adopt_children(&list[i], list[i].node);
    2135             :                 }
    2136             : 
    2137          14 :                 while (n < 3)
    2138           7 :                         next[n++].node = MAS_NONE;
    2139             : 
    2140             :                 /* descend by setting the list to the children */
    2141          21 :                 for (i = 0; i < 3; i++)
    2142          21 :                         list[i] = next[i];
    2143             :         }
    2144           7 : }
    2145             : 
    2146             : /*
    2147             :  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
    2148             :  * @mas: The maple state
    2149             :  * @end: The maple node end
    2150             :  * @mt: The maple node type
    2151             :  */
    2152             : static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
    2153             :                                       enum maple_type mt)
    2154             : {
    2155           7 :         if (!(mas->mas_flags & MA_STATE_BULK))
    2156             :                 return;
    2157             : 
    2158           0 :         if (mte_is_root(mas->node))
    2159             :                 return;
    2160             : 
    2161           0 :         if (end > mt_min_slots[mt]) {
    2162           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    2163             :                 return;
    2164             :         }
    2165             : }
    2166             : 
    2167             : /*
    2168             :  * mas_store_b_node() - Store an @entry into the b_node while also copying the
    2169             :  * data from a maple encoded node.
    2170             :  * @wr_mas: the maple write state
    2171             :  * @b_node: the maple_big_node to fill with data
    2172             :  * @offset_end: the offset to end copying
    2173             :  *
    2174             :  * Return: The actual end of the data stored in @b_node
    2175             :  */
    2176           7 : static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
    2177             :                 struct maple_big_node *b_node, unsigned char offset_end)
    2178             : {
    2179             :         unsigned char slot;
    2180             :         unsigned char b_end;
    2181             :         /* Possible underflow of piv will wrap back to 0 before use. */
    2182             :         unsigned long piv;
    2183           7 :         struct ma_state *mas = wr_mas->mas;
    2184             : 
    2185           7 :         b_node->type = wr_mas->type;
    2186           7 :         b_end = 0;
    2187           7 :         slot = mas->offset;
    2188           7 :         if (slot) {
    2189             :                 /* Copy start data up to insert. */
    2190           7 :                 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
    2191           7 :                 b_end = b_node->b_end;
    2192           7 :                 piv = b_node->pivot[b_end - 1];
    2193             :         } else
    2194           0 :                 piv = mas->min - 1;
    2195             : 
    2196           7 :         if (piv + 1 < mas->index) {
    2197             :                 /* Handle range starting after old range */
    2198           0 :                 b_node->slot[b_end] = wr_mas->content;
    2199           0 :                 if (!wr_mas->content)
    2200           0 :                         b_node->gap[b_end] = mas->index - 1 - piv;
    2201           0 :                 b_node->pivot[b_end++] = mas->index - 1;
    2202             :         }
    2203             : 
    2204             :         /* Store the new entry. */
    2205           7 :         mas->offset = b_end;
    2206           7 :         b_node->slot[b_end] = wr_mas->entry;
    2207           7 :         b_node->pivot[b_end] = mas->last;
    2208             : 
    2209             :         /* Appended. */
    2210           7 :         if (mas->last >= mas->max)
    2211             :                 goto b_end;
    2212             : 
    2213             :         /* Handle new range ending before old range ends */
    2214          14 :         piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
    2215           7 :         if (piv > mas->last) {
    2216           7 :                 if (piv == ULONG_MAX)
    2217           7 :                         mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
    2218             : 
    2219           7 :                 if (offset_end != slot)
    2220           0 :                         wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    2221             :                                                           offset_end);
    2222             : 
    2223           7 :                 b_node->slot[++b_end] = wr_mas->content;
    2224           7 :                 if (!wr_mas->content)
    2225           7 :                         b_node->gap[b_end] = piv - mas->last + 1;
    2226           7 :                 b_node->pivot[b_end] = piv;
    2227             :         }
    2228             : 
    2229           7 :         slot = offset_end + 1;
    2230           7 :         if (slot > wr_mas->node_end)
    2231             :                 goto b_end;
    2232             : 
    2233             :         /* Copy end data to the end of the node. */
    2234           0 :         mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
    2235           0 :         b_node->b_end--;
    2236           0 :         return;
    2237             : 
    2238             : b_end:
    2239           7 :         b_node->b_end = b_end;
    2240             : }
    2241             : 
    2242             : /*
    2243             :  * mas_prev_sibling() - Find the previous node with the same parent.
    2244             :  * @mas: the maple state
    2245             :  *
    2246             :  * Return: True if there is a previous sibling, false otherwise.
    2247             :  */
    2248           7 : static inline bool mas_prev_sibling(struct ma_state *mas)
    2249             : {
    2250          14 :         unsigned int p_slot = mte_parent_slot(mas->node);
    2251             : 
    2252          14 :         if (mte_is_root(mas->node))
    2253             :                 return false;
    2254             : 
    2255           6 :         if (!p_slot)
    2256             :                 return false;
    2257             : 
    2258           6 :         mas_ascend(mas);
    2259           6 :         mas->offset = p_slot - 1;
    2260           6 :         mas_descend(mas);
    2261           6 :         return true;
    2262             : }
    2263             : 
    2264             : /*
    2265             :  * mas_next_sibling() - Find the next node with the same parent.
    2266             :  * @mas: the maple state
    2267             :  *
    2268             :  * Return: true if there is a next sibling, false otherwise.
    2269             :  */
    2270           4 : static inline bool mas_next_sibling(struct ma_state *mas)
    2271             : {
    2272           4 :         MA_STATE(parent, mas->tree, mas->index, mas->last);
    2273             : 
    2274           8 :         if (mte_is_root(mas->node))
    2275             :                 return false;
    2276             : 
    2277           3 :         parent = *mas;
    2278           3 :         mas_ascend(&parent);
    2279           6 :         parent.offset = mte_parent_slot(mas->node) + 1;
    2280           3 :         if (parent.offset > mas_data_end(&parent))
    2281             :                 return false;
    2282             : 
    2283           0 :         *mas = parent;
    2284           0 :         mas_descend(mas);
    2285           0 :         return true;
    2286             : }
    2287             : 
    2288             : /*
    2289             :  * mte_node_or_node() - Return the encoded node or MAS_NONE.
    2290             :  * @enode: The encoded maple node.
    2291             :  *
    2292             :  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
    2293             :  *
    2294             :  * Return: @enode or MAS_NONE
    2295             :  */
    2296             : static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
    2297             : {
    2298           0 :         if (enode)
    2299             :                 return enode;
    2300             : 
    2301             :         return ma_enode_ptr(MAS_NONE);
    2302             : }
    2303             : 
    2304             : /*
    2305             :  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
    2306             :  * @wr_mas: The maple write state
    2307             :  *
    2308             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    2309             :  */
    2310         110 : static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
    2311             : {
    2312         110 :         struct ma_state *mas = wr_mas->mas;
    2313             :         unsigned char count, offset;
    2314             : 
    2315         220 :         if (unlikely(ma_is_dense(wr_mas->type))) {
    2316           0 :                 wr_mas->r_max = wr_mas->r_min = mas->index;
    2317           0 :                 mas->offset = mas->index = mas->min;
    2318           0 :                 return;
    2319             :         }
    2320             : 
    2321         220 :         wr_mas->node = mas_mn(wr_mas->mas);
    2322         220 :         wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
    2323         110 :         count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
    2324             :                                                wr_mas->pivots, mas->max);
    2325         110 :         offset = mas->offset;
    2326             : 
    2327         977 :         while (offset < count && mas->index > wr_mas->pivots[offset])
    2328         757 :                 offset++;
    2329             : 
    2330         110 :         wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
    2331         220 :         wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
    2332         110 :         wr_mas->offset_end = mas->offset = offset;
    2333             : }
    2334             : 
    2335             : /*
    2336             :  * mas_topiary_range() - Add a range of slots to the topiary.
    2337             :  * @mas: The maple state
    2338             :  * @destroy: The topiary to add the slots (usually destroy)
    2339             :  * @start: The starting slot inclusively
    2340             :  * @end: The end slot inclusively
    2341             :  */
    2342           0 : static inline void mas_topiary_range(struct ma_state *mas,
    2343             :         struct ma_topiary *destroy, unsigned char start, unsigned char end)
    2344             : {
    2345             :         void __rcu **slots;
    2346             :         unsigned char offset;
    2347             : 
    2348           0 :         MAS_BUG_ON(mas, mte_is_leaf(mas->node));
    2349             : 
    2350           0 :         slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
    2351           0 :         for (offset = start; offset <= end; offset++) {
    2352           0 :                 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
    2353             : 
    2354           0 :                 if (mte_dead_node(enode))
    2355           0 :                         continue;
    2356             : 
    2357           0 :                 mat_add(destroy, enode);
    2358             :         }
    2359           0 : }
    2360             : 
    2361             : /*
    2362             :  * mast_topiary() - Add the portions of the tree to the removal list; either to
    2363             :  * be freed or discarded (destroy walk).
    2364             :  * @mast: The maple_subtree_state.
    2365             :  */
    2366           0 : static inline void mast_topiary(struct maple_subtree_state *mast)
    2367             : {
    2368           0 :         MA_WR_STATE(wr_mas, mast->orig_l, NULL);
    2369             :         unsigned char r_start, r_end;
    2370             :         unsigned char l_start, l_end;
    2371             :         void __rcu **l_slots, **r_slots;
    2372             : 
    2373           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2374           0 :         mast->orig_l->index = mast->orig_l->last;
    2375           0 :         mas_wr_node_walk(&wr_mas);
    2376           0 :         l_start = mast->orig_l->offset + 1;
    2377           0 :         l_end = mas_data_end(mast->orig_l);
    2378           0 :         r_start = 0;
    2379           0 :         r_end = mast->orig_r->offset;
    2380             : 
    2381           0 :         if (r_end)
    2382           0 :                 r_end--;
    2383             : 
    2384           0 :         l_slots = ma_slots(mas_mn(mast->orig_l),
    2385           0 :                            mte_node_type(mast->orig_l->node));
    2386             : 
    2387           0 :         r_slots = ma_slots(mas_mn(mast->orig_r),
    2388           0 :                            mte_node_type(mast->orig_r->node));
    2389             : 
    2390           0 :         if ((l_start < l_end) &&
    2391           0 :             mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
    2392           0 :                 l_start++;
    2393             :         }
    2394             : 
    2395           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
    2396           0 :                 if (r_end)
    2397           0 :                         r_end--;
    2398             :         }
    2399             : 
    2400           0 :         if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
    2401           0 :                 return;
    2402             : 
    2403             :         /* At the node where left and right sides meet, add the parts between */
    2404           0 :         if (mast->orig_l->node == mast->orig_r->node) {
    2405           0 :                 return mas_topiary_range(mast->orig_l, mast->destroy,
    2406             :                                              l_start, r_end);
    2407             :         }
    2408             : 
    2409             :         /* mast->orig_r is different and consumed. */
    2410           0 :         if (mte_is_leaf(mast->orig_r->node))
    2411             :                 return;
    2412             : 
    2413           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
    2414           0 :                 l_end--;
    2415             : 
    2416             : 
    2417           0 :         if (l_start <= l_end)
    2418           0 :                 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
    2419             : 
    2420           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
    2421           0 :                 r_start++;
    2422             : 
    2423           0 :         if (r_start <= r_end)
    2424           0 :                 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
    2425             : }
    2426             : 
    2427             : /*
    2428             :  * mast_rebalance_next() - Rebalance against the next node
    2429             :  * @mast: The maple subtree state
    2430             :  * @old_r: The encoded maple node to the right (next node).
    2431             :  */
    2432           0 : static inline void mast_rebalance_next(struct maple_subtree_state *mast)
    2433             : {
    2434           0 :         unsigned char b_end = mast->bn->b_end;
    2435             : 
    2436           0 :         mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
    2437             :                    mast->bn, b_end);
    2438           0 :         mast->orig_r->last = mast->orig_r->max;
    2439           0 : }
    2440             : 
    2441             : /*
    2442             :  * mast_rebalance_prev() - Rebalance against the previous node
    2443             :  * @mast: The maple subtree state
    2444             :  * @old_l: The encoded maple node to the left (previous node)
    2445             :  */
    2446           0 : static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
    2447             : {
    2448           0 :         unsigned char end = mas_data_end(mast->orig_l) + 1;
    2449           0 :         unsigned char b_end = mast->bn->b_end;
    2450             : 
    2451           0 :         mab_shift_right(mast->bn, end);
    2452           0 :         mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
    2453           0 :         mast->l->min = mast->orig_l->min;
    2454           0 :         mast->orig_l->index = mast->orig_l->min;
    2455           0 :         mast->bn->b_end = end + b_end;
    2456           0 :         mast->l->offset += end;
    2457           0 : }
    2458             : 
    2459             : /*
    2460             :  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
    2461             :  * the node to the right.  Checking the nodes to the right then the left at each
    2462             :  * level upwards until root is reached.  Free and destroy as needed.
    2463             :  * Data is copied into the @mast->bn.
    2464             :  * @mast: The maple_subtree_state.
    2465             :  */
    2466             : static inline
    2467           0 : bool mast_spanning_rebalance(struct maple_subtree_state *mast)
    2468             : {
    2469           0 :         struct ma_state r_tmp = *mast->orig_r;
    2470           0 :         struct ma_state l_tmp = *mast->orig_l;
    2471           0 :         struct maple_enode *ancestor = NULL;
    2472             :         unsigned char start, end;
    2473           0 :         unsigned char depth = 0;
    2474             : 
    2475           0 :         r_tmp = *mast->orig_r;
    2476           0 :         l_tmp = *mast->orig_l;
    2477             :         do {
    2478           0 :                 mas_ascend(mast->orig_r);
    2479           0 :                 mas_ascend(mast->orig_l);
    2480           0 :                 depth++;
    2481           0 :                 if (!ancestor &&
    2482           0 :                     (mast->orig_r->node == mast->orig_l->node)) {
    2483           0 :                         ancestor = mast->orig_r->node;
    2484           0 :                         end = mast->orig_r->offset - 1;
    2485           0 :                         start = mast->orig_l->offset + 1;
    2486             :                 }
    2487             : 
    2488           0 :                 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
    2489           0 :                         if (!ancestor) {
    2490           0 :                                 ancestor = mast->orig_r->node;
    2491           0 :                                 start = 0;
    2492             :                         }
    2493             : 
    2494           0 :                         mast->orig_r->offset++;
    2495             :                         do {
    2496           0 :                                 mas_descend(mast->orig_r);
    2497           0 :                                 mast->orig_r->offset = 0;
    2498           0 :                                 depth--;
    2499           0 :                         } while (depth);
    2500             : 
    2501           0 :                         mast_rebalance_next(mast);
    2502             :                         do {
    2503           0 :                                 unsigned char l_off = 0;
    2504           0 :                                 struct maple_enode *child = r_tmp.node;
    2505             : 
    2506           0 :                                 mas_ascend(&r_tmp);
    2507           0 :                                 if (ancestor == r_tmp.node)
    2508           0 :                                         l_off = start;
    2509             : 
    2510           0 :                                 if (r_tmp.offset)
    2511           0 :                                         r_tmp.offset--;
    2512             : 
    2513           0 :                                 if (l_off < r_tmp.offset)
    2514           0 :                                         mas_topiary_range(&r_tmp, mast->destroy,
    2515             :                                                           l_off, r_tmp.offset);
    2516             : 
    2517           0 :                                 if (l_tmp.node != child)
    2518           0 :                                         mat_add(mast->free, child);
    2519             : 
    2520           0 :                         } while (r_tmp.node != ancestor);
    2521             : 
    2522           0 :                         *mast->orig_l = l_tmp;
    2523           0 :                         return true;
    2524             : 
    2525           0 :                 } else if (mast->orig_l->offset != 0) {
    2526           0 :                         if (!ancestor) {
    2527           0 :                                 ancestor = mast->orig_l->node;
    2528           0 :                                 end = mas_data_end(mast->orig_l);
    2529             :                         }
    2530             : 
    2531           0 :                         mast->orig_l->offset--;
    2532             :                         do {
    2533           0 :                                 mas_descend(mast->orig_l);
    2534           0 :                                 mast->orig_l->offset =
    2535           0 :                                         mas_data_end(mast->orig_l);
    2536           0 :                                 depth--;
    2537           0 :                         } while (depth);
    2538             : 
    2539           0 :                         mast_rebalance_prev(mast);
    2540             :                         do {
    2541             :                                 unsigned char r_off;
    2542           0 :                                 struct maple_enode *child = l_tmp.node;
    2543             : 
    2544           0 :                                 mas_ascend(&l_tmp);
    2545           0 :                                 if (ancestor == l_tmp.node)
    2546             :                                         r_off = end;
    2547             :                                 else
    2548           0 :                                         r_off = mas_data_end(&l_tmp);
    2549             : 
    2550           0 :                                 if (l_tmp.offset < r_off)
    2551           0 :                                         l_tmp.offset++;
    2552             : 
    2553           0 :                                 if (l_tmp.offset < r_off)
    2554           0 :                                         mas_topiary_range(&l_tmp, mast->destroy,
    2555             :                                                           l_tmp.offset, r_off);
    2556             : 
    2557           0 :                                 if (r_tmp.node != child)
    2558           0 :                                         mat_add(mast->free, child);
    2559             : 
    2560           0 :                         } while (l_tmp.node != ancestor);
    2561             : 
    2562           0 :                         *mast->orig_r = r_tmp;
    2563           0 :                         return true;
    2564             :                 }
    2565           0 :         } while (!mte_is_root(mast->orig_r->node));
    2566             : 
    2567           0 :         *mast->orig_r = r_tmp;
    2568           0 :         *mast->orig_l = l_tmp;
    2569           0 :         return false;
    2570             : }
    2571             : 
    2572             : /*
    2573             :  * mast_ascend_free() - Add current original maple state nodes to the free list
    2574             :  * and ascend.
    2575             :  * @mast: the maple subtree state.
    2576             :  *
    2577             :  * Ascend the original left and right sides and add the previous nodes to the
    2578             :  * free list.  Set the slots to point to the correct location in the new nodes.
    2579             :  */
    2580             : static inline void
    2581           0 : mast_ascend_free(struct maple_subtree_state *mast)
    2582             : {
    2583           0 :         MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
    2584           0 :         struct maple_enode *left = mast->orig_l->node;
    2585           0 :         struct maple_enode *right = mast->orig_r->node;
    2586             : 
    2587           0 :         mas_ascend(mast->orig_l);
    2588           0 :         mas_ascend(mast->orig_r);
    2589           0 :         mat_add(mast->free, left);
    2590             : 
    2591           0 :         if (left != right)
    2592           0 :                 mat_add(mast->free, right);
    2593             : 
    2594           0 :         mast->orig_r->offset = 0;
    2595           0 :         mast->orig_r->index = mast->r->max;
    2596             :         /* last should be larger than or equal to index */
    2597           0 :         if (mast->orig_r->last < mast->orig_r->index)
    2598           0 :                 mast->orig_r->last = mast->orig_r->index;
    2599             :         /*
    2600             :          * The node may not contain the value so set slot to ensure all
    2601             :          * of the nodes contents are freed or destroyed.
    2602             :          */
    2603           0 :         wr_mas.type = mte_node_type(mast->orig_r->node);
    2604           0 :         mas_wr_node_walk(&wr_mas);
    2605             :         /* Set up the left side of things */
    2606           0 :         mast->orig_l->offset = 0;
    2607           0 :         mast->orig_l->index = mast->l->min;
    2608           0 :         wr_mas.mas = mast->orig_l;
    2609           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2610           0 :         mas_wr_node_walk(&wr_mas);
    2611             : 
    2612           0 :         mast->bn->type = wr_mas.type;
    2613           0 : }
    2614             : 
    2615             : /*
    2616             :  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
    2617             :  * @mas: the maple state with the allocations.
    2618             :  * @b_node: the maple_big_node with the type encoding.
    2619             :  *
    2620             :  * Use the node type from the maple_big_node to allocate a new node from the
    2621             :  * ma_state.  This function exists mainly for code readability.
    2622             :  *
    2623             :  * Return: A new maple encoded node
    2624             :  */
    2625             : static inline struct maple_enode
    2626             : *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
    2627             : {
    2628          42 :         return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
    2629             : }
    2630             : 
    2631             : /*
    2632             :  * mas_mab_to_node() - Set up right and middle nodes
    2633             :  *
    2634             :  * @mas: the maple state that contains the allocations.
    2635             :  * @b_node: the node which contains the data.
    2636             :  * @left: The pointer which will have the left node
    2637             :  * @right: The pointer which may have the right node
    2638             :  * @middle: the pointer which may have the middle node (rare)
    2639             :  * @mid_split: the split location for the middle node
    2640             :  *
    2641             :  * Return: the split of left.
    2642             :  */
    2643           0 : static inline unsigned char mas_mab_to_node(struct ma_state *mas,
    2644             :         struct maple_big_node *b_node, struct maple_enode **left,
    2645             :         struct maple_enode **right, struct maple_enode **middle,
    2646             :         unsigned char *mid_split, unsigned long min)
    2647             : {
    2648           0 :         unsigned char split = 0;
    2649           0 :         unsigned char slot_count = mt_slots[b_node->type];
    2650             : 
    2651           0 :         *left = mas_new_ma_node(mas, b_node);
    2652           0 :         *right = NULL;
    2653           0 :         *middle = NULL;
    2654           0 :         *mid_split = 0;
    2655             : 
    2656           0 :         if (b_node->b_end < slot_count) {
    2657             :                 split = b_node->b_end;
    2658             :         } else {
    2659           0 :                 split = mab_calc_split(mas, b_node, mid_split, min);
    2660           0 :                 *right = mas_new_ma_node(mas, b_node);
    2661             :         }
    2662             : 
    2663           0 :         if (*mid_split)
    2664           0 :                 *middle = mas_new_ma_node(mas, b_node);
    2665             : 
    2666           0 :         return split;
    2667             : 
    2668             : }
    2669             : 
    2670             : /*
    2671             :  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
    2672             :  * pointer.
    2673             :  * @b_node - the big node to add the entry
    2674             :  * @mas - the maple state to get the pivot (mas->max)
    2675             :  * @entry - the entry to add, if NULL nothing happens.
    2676             :  */
    2677          14 : static inline void mab_set_b_end(struct maple_big_node *b_node,
    2678             :                                  struct ma_state *mas,
    2679             :                                  void *entry)
    2680             : {
    2681          14 :         if (!entry)
    2682             :                 return;
    2683             : 
    2684          14 :         b_node->slot[b_node->b_end] = entry;
    2685          28 :         if (mt_is_alloc(mas->tree))
    2686          14 :                 b_node->gap[b_node->b_end] = mas_max_gap(mas);
    2687          14 :         b_node->pivot[b_node->b_end++] = mas->max;
    2688             : }
    2689             : 
    2690             : /*
    2691             :  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
    2692             :  * of @mas->node to either @left or @right, depending on @slot and @split
    2693             :  *
    2694             :  * @mas - the maple state with the node that needs a parent
    2695             :  * @left - possible parent 1
    2696             :  * @right - possible parent 2
    2697             :  * @slot - the slot the mas->node was placed
    2698             :  * @split - the split location between @left and @right
    2699             :  */
    2700           0 : static inline void mas_set_split_parent(struct ma_state *mas,
    2701             :                                         struct maple_enode *left,
    2702             :                                         struct maple_enode *right,
    2703             :                                         unsigned char *slot, unsigned char split)
    2704             : {
    2705           0 :         if (mas_is_none(mas))
    2706             :                 return;
    2707             : 
    2708           0 :         if ((*slot) <= split)
    2709           0 :                 mas_set_parent(mas, mas->node, left, *slot);
    2710           0 :         else if (right)
    2711           0 :                 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
    2712             : 
    2713           0 :         (*slot)++;
    2714             : }
    2715             : 
    2716             : /*
    2717             :  * mte_mid_split_check() - Check if the next node passes the mid-split
    2718             :  * @**l: Pointer to left encoded maple node.
    2719             :  * @**m: Pointer to middle encoded maple node.
    2720             :  * @**r: Pointer to right encoded maple node.
    2721             :  * @slot: The offset
    2722             :  * @*split: The split location.
    2723             :  * @mid_split: The middle split.
    2724             :  */
    2725             : static inline void mte_mid_split_check(struct maple_enode **l,
    2726             :                                        struct maple_enode **r,
    2727             :                                        struct maple_enode *right,
    2728             :                                        unsigned char slot,
    2729             :                                        unsigned char *split,
    2730             :                                        unsigned char mid_split)
    2731             : {
    2732           0 :         if (*r == right)
    2733             :                 return;
    2734             : 
    2735           0 :         if (slot < mid_split)
    2736             :                 return;
    2737             : 
    2738           0 :         *l = *r;
    2739           0 :         *r = right;
    2740           0 :         *split = mid_split;
    2741             : }
    2742             : 
    2743             : /*
    2744             :  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
    2745             :  * is taken from @mast->l.
    2746             :  * @mast - the maple subtree state
    2747             :  * @left - the left node
    2748             :  * @right - the right node
    2749             :  * @split - the split location.
    2750             :  */
    2751           0 : static inline void mast_set_split_parents(struct maple_subtree_state *mast,
    2752             :                                           struct maple_enode *left,
    2753             :                                           struct maple_enode *middle,
    2754             :                                           struct maple_enode *right,
    2755             :                                           unsigned char split,
    2756             :                                           unsigned char mid_split)
    2757             : {
    2758             :         unsigned char slot;
    2759           0 :         struct maple_enode *l = left;
    2760           0 :         struct maple_enode *r = right;
    2761             : 
    2762           0 :         if (mas_is_none(mast->l))
    2763           0 :                 return;
    2764             : 
    2765           0 :         if (middle)
    2766           0 :                 r = middle;
    2767             : 
    2768           0 :         slot = mast->l->offset;
    2769             : 
    2770           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2771           0 :         mas_set_split_parent(mast->l, l, r, &slot, split);
    2772             : 
    2773           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2774           0 :         mas_set_split_parent(mast->m, l, r, &slot, split);
    2775             : 
    2776           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2777           0 :         mas_set_split_parent(mast->r, l, r, &slot, split);
    2778             : }
    2779             : 
    2780             : /*
    2781             :  * mas_wmb_replace() - Write memory barrier and replace
    2782             :  * @mas: The maple state
    2783             :  * @free: the maple topiary list of nodes to free
    2784             :  * @destroy: The maple topiary list of nodes to destroy (walk and free)
    2785             :  *
    2786             :  * Updates gap as necessary.
    2787             :  */
    2788           7 : static inline void mas_wmb_replace(struct ma_state *mas,
    2789             :                                    struct ma_topiary *free,
    2790             :                                    struct ma_topiary *destroy)
    2791             : {
    2792             :         /* All nodes must see old data as dead prior to replacing that data */
    2793           7 :         smp_wmb(); /* Needed for RCU */
    2794             : 
    2795             :         /* Insert the new data in the tree */
    2796           7 :         mas_replace(mas, true);
    2797             : 
    2798          14 :         if (!mte_is_leaf(mas->node))
    2799           7 :                 mas_descend_adopt(mas);
    2800             : 
    2801           7 :         mas_mat_free(mas, free);
    2802             : 
    2803           7 :         if (destroy)
    2804             :                 mas_mat_destroy(mas, destroy);
    2805             : 
    2806          14 :         if (mte_is_leaf(mas->node))
    2807             :                 return;
    2808             : 
    2809           7 :         mas_update_gap(mas);
    2810             : }
    2811             : 
    2812             : /*
    2813             :  * mast_new_root() - Set a new tree root during subtree creation
    2814             :  * @mast: The maple subtree state
    2815             :  * @mas: The maple state
    2816             :  */
    2817           0 : static inline void mast_new_root(struct maple_subtree_state *mast,
    2818             :                                  struct ma_state *mas)
    2819             : {
    2820           0 :         mas_mn(mast->l)->parent =
    2821           0 :                 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
    2822           0 :         if (!mte_dead_node(mast->orig_l->node) &&
    2823           0 :             !mte_is_root(mast->orig_l->node)) {
    2824             :                 do {
    2825           0 :                         mast_ascend_free(mast);
    2826           0 :                         mast_topiary(mast);
    2827           0 :                 } while (!mte_is_root(mast->orig_l->node));
    2828             :         }
    2829           0 :         if ((mast->orig_l->node != mas->node) &&
    2830           0 :                    (mast->l->depth > mas_mt_height(mas))) {
    2831           0 :                 mat_add(mast->free, mas->node);
    2832             :         }
    2833           0 : }
    2834             : 
    2835             : /*
    2836             :  * mast_cp_to_nodes() - Copy data out to nodes.
    2837             :  * @mast: The maple subtree state
    2838             :  * @left: The left encoded maple node
    2839             :  * @middle: The middle encoded maple node
    2840             :  * @right: The right encoded maple node
    2841             :  * @split: The location to split between left and (middle ? middle : right)
    2842             :  * @mid_split: The location to split between middle and right.
    2843             :  */
    2844           0 : static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
    2845             :         struct maple_enode *left, struct maple_enode *middle,
    2846             :         struct maple_enode *right, unsigned char split, unsigned char mid_split)
    2847             : {
    2848           0 :         bool new_lmax = true;
    2849             : 
    2850           0 :         mast->l->node = mte_node_or_none(left);
    2851           0 :         mast->m->node = mte_node_or_none(middle);
    2852           0 :         mast->r->node = mte_node_or_none(right);
    2853             : 
    2854           0 :         mast->l->min = mast->orig_l->min;
    2855           0 :         if (split == mast->bn->b_end) {
    2856           0 :                 mast->l->max = mast->orig_r->max;
    2857           0 :                 new_lmax = false;
    2858             :         }
    2859             : 
    2860           0 :         mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
    2861             : 
    2862           0 :         if (middle) {
    2863           0 :                 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
    2864           0 :                 mast->m->min = mast->bn->pivot[split] + 1;
    2865           0 :                 split = mid_split;
    2866             :         }
    2867             : 
    2868           0 :         mast->r->max = mast->orig_r->max;
    2869           0 :         if (right) {
    2870           0 :                 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
    2871           0 :                 mast->r->min = mast->bn->pivot[split] + 1;
    2872             :         }
    2873           0 : }
    2874             : 
    2875             : /*
    2876             :  * mast_combine_cp_left - Copy in the original left side of the tree into the
    2877             :  * combined data set in the maple subtree state big node.
    2878             :  * @mast: The maple subtree state
    2879             :  */
    2880             : static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
    2881             : {
    2882           0 :         unsigned char l_slot = mast->orig_l->offset;
    2883             : 
    2884           0 :         if (!l_slot)
    2885             :                 return;
    2886             : 
    2887           0 :         mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
    2888             : }
    2889             : 
    2890             : /*
    2891             :  * mast_combine_cp_right: Copy in the original right side of the tree into the
    2892             :  * combined data set in the maple subtree state big node.
    2893             :  * @mast: The maple subtree state
    2894             :  */
    2895           0 : static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
    2896             : {
    2897           0 :         if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
    2898             :                 return;
    2899             : 
    2900           0 :         mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
    2901           0 :                    mt_slot_count(mast->orig_r->node), mast->bn,
    2902             :                    mast->bn->b_end);
    2903           0 :         mast->orig_r->last = mast->orig_r->max;
    2904             : }
    2905             : 
    2906             : /*
    2907             :  * mast_sufficient: Check if the maple subtree state has enough data in the big
    2908             :  * node to create at least one sufficient node
    2909             :  * @mast: the maple subtree state
    2910             :  */
    2911             : static inline bool mast_sufficient(struct maple_subtree_state *mast)
    2912             : {
    2913           0 :         if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
    2914             :                 return true;
    2915             : 
    2916             :         return false;
    2917             : }
    2918             : 
    2919             : /*
    2920             :  * mast_overflow: Check if there is too much data in the subtree state for a
    2921             :  * single node.
    2922             :  * @mast: The maple subtree state
    2923             :  */
    2924             : static inline bool mast_overflow(struct maple_subtree_state *mast)
    2925             : {
    2926           0 :         if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
    2927             :                 return true;
    2928             : 
    2929             :         return false;
    2930             : }
    2931             : 
    2932           7 : static inline void *mtree_range_walk(struct ma_state *mas)
    2933             : {
    2934             :         unsigned long *pivots;
    2935             :         unsigned char offset;
    2936             :         struct maple_node *node;
    2937             :         struct maple_enode *next, *last;
    2938             :         enum maple_type type;
    2939             :         void __rcu **slots;
    2940             :         unsigned char end;
    2941             :         unsigned long max, min;
    2942             :         unsigned long prev_max, prev_min;
    2943             : 
    2944           7 :         next = mas->node;
    2945           7 :         min = mas->min;
    2946           7 :         max = mas->max;
    2947             :         do {
    2948          14 :                 offset = 0;
    2949          14 :                 last = next;
    2950          14 :                 node = mte_to_node(next);
    2951          14 :                 type = mte_node_type(next);
    2952          14 :                 pivots = ma_pivots(node, type);
    2953          14 :                 end = ma_data_end(node, type, pivots, max);
    2954          14 :                 if (unlikely(ma_dead_node(node)))
    2955             :                         goto dead_node;
    2956             : 
    2957          14 :                 if (pivots[offset] >= mas->index) {
    2958             :                         prev_max = max;
    2959             :                         prev_min = min;
    2960             :                         max = pivots[offset];
    2961             :                         goto next;
    2962             :                 }
    2963             : 
    2964             :                 do {
    2965          67 :                         offset++;
    2966          67 :                 } while ((offset < end) && (pivots[offset] < mas->index));
    2967             : 
    2968          14 :                 prev_min = min;
    2969          14 :                 min = pivots[offset - 1] + 1;
    2970          14 :                 prev_max = max;
    2971          14 :                 if (likely(offset < end && pivots[offset]))
    2972           7 :                         max = pivots[offset];
    2973             : 
    2974             : next:
    2975          14 :                 slots = ma_slots(node, type);
    2976          28 :                 next = mt_slot(mas->tree, slots, offset);
    2977          14 :                 if (unlikely(ma_dead_node(node)))
    2978             :                         goto dead_node;
    2979          14 :         } while (!ma_is_leaf(type));
    2980             : 
    2981           7 :         mas->offset = offset;
    2982           7 :         mas->index = min;
    2983           7 :         mas->last = max;
    2984           7 :         mas->min = prev_min;
    2985           7 :         mas->max = prev_max;
    2986           7 :         mas->node = last;
    2987           7 :         return (void *)next;
    2988             : 
    2989             : dead_node:
    2990           0 :         mas_reset(mas);
    2991           0 :         return NULL;
    2992             : }
    2993             : 
    2994             : /*
    2995             :  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
    2996             :  * @mas: The starting maple state
    2997             :  * @mast: The maple_subtree_state, keeps track of 4 maple states.
    2998             :  * @count: The estimated count of iterations needed.
    2999             :  *
    3000             :  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
    3001             :  * is hit.  First @b_node is split into two entries which are inserted into the
    3002             :  * next iteration of the loop.  @b_node is returned populated with the final
    3003             :  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
    3004             :  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
    3005             :  * to account of what has been copied into the new sub-tree.  The update of
    3006             :  * orig_l_mas->last is used in mas_consume to find the slots that will need to
    3007             :  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
    3008             :  * the new sub-tree in case the sub-tree becomes the full tree.
    3009             :  *
    3010             :  * Return: the number of elements in b_node during the last loop.
    3011             :  */
    3012           0 : static int mas_spanning_rebalance(struct ma_state *mas,
    3013             :                 struct maple_subtree_state *mast, unsigned char count)
    3014             : {
    3015             :         unsigned char split, mid_split;
    3016           0 :         unsigned char slot = 0;
    3017           0 :         struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
    3018             : 
    3019           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->index);
    3020           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3021           0 :         MA_STATE(m_mas, mas->tree, mas->index, mas->index);
    3022           0 :         MA_TOPIARY(free, mas->tree);
    3023           0 :         MA_TOPIARY(destroy, mas->tree);
    3024             : 
    3025             :         /*
    3026             :          * The tree needs to be rebalanced and leaves need to be kept at the same level.
    3027             :          * Rebalancing is done by use of the ``struct maple_topiary``.
    3028             :          */
    3029           0 :         mast->l = &l_mas;
    3030           0 :         mast->m = &m_mas;
    3031           0 :         mast->r = &r_mas;
    3032           0 :         mast->free = &free;
    3033           0 :         mast->destroy = &destroy;
    3034           0 :         l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
    3035             : 
    3036             :         /* Check if this is not root and has sufficient data.  */
    3037           0 :         if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
    3038           0 :             unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
    3039           0 :                 mast_spanning_rebalance(mast);
    3040             : 
    3041           0 :         mast->orig_l->depth = 0;
    3042             : 
    3043             :         /*
    3044             :          * Each level of the tree is examined and balanced, pushing data to the left or
    3045             :          * right, or rebalancing against left or right nodes is employed to avoid
    3046             :          * rippling up the tree to limit the amount of churn.  Once a new sub-section of
    3047             :          * the tree is created, there may be a mix of new and old nodes.  The old nodes
    3048             :          * will have the incorrect parent pointers and currently be in two trees: the
    3049             :          * original tree and the partially new tree.  To remedy the parent pointers in
    3050             :          * the old tree, the new data is swapped into the active tree and a walk down
    3051             :          * the tree is performed and the parent pointers are updated.
    3052             :          * See mas_descend_adopt() for more information..
    3053             :          */
    3054           0 :         while (count--) {
    3055           0 :                 mast->bn->b_end--;
    3056           0 :                 mast->bn->type = mte_node_type(mast->orig_l->node);
    3057           0 :                 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
    3058           0 :                                         &mid_split, mast->orig_l->min);
    3059           0 :                 mast_set_split_parents(mast, left, middle, right, split,
    3060             :                                        mid_split);
    3061           0 :                 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
    3062             : 
    3063             :                 /*
    3064             :                  * Copy data from next level in the tree to mast->bn from next
    3065             :                  * iteration
    3066             :                  */
    3067           0 :                 memset(mast->bn, 0, sizeof(struct maple_big_node));
    3068           0 :                 mast->bn->type = mte_node_type(left);
    3069           0 :                 mast->orig_l->depth++;
    3070             : 
    3071             :                 /* Root already stored in l->node. */
    3072           0 :                 if (mas_is_root_limits(mast->l))
    3073             :                         goto new_root;
    3074             : 
    3075           0 :                 mast_ascend_free(mast);
    3076           0 :                 mast_combine_cp_left(mast);
    3077           0 :                 l_mas.offset = mast->bn->b_end;
    3078           0 :                 mab_set_b_end(mast->bn, &l_mas, left);
    3079           0 :                 mab_set_b_end(mast->bn, &m_mas, middle);
    3080           0 :                 mab_set_b_end(mast->bn, &r_mas, right);
    3081             : 
    3082             :                 /* Copy anything necessary out of the right node. */
    3083           0 :                 mast_combine_cp_right(mast);
    3084           0 :                 mast_topiary(mast);
    3085           0 :                 mast->orig_l->last = mast->orig_l->max;
    3086             : 
    3087           0 :                 if (mast_sufficient(mast))
    3088           0 :                         continue;
    3089             : 
    3090           0 :                 if (mast_overflow(mast))
    3091           0 :                         continue;
    3092             : 
    3093             :                 /* May be a new root stored in mast->bn */
    3094           0 :                 if (mas_is_root_limits(mast->orig_l))
    3095             :                         break;
    3096             : 
    3097           0 :                 mast_spanning_rebalance(mast);
    3098             : 
    3099             :                 /* rebalancing from other nodes may require another loop. */
    3100           0 :                 if (!count)
    3101           0 :                         count++;
    3102             :         }
    3103             : 
    3104           0 :         l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
    3105           0 :                                 mte_node_type(mast->orig_l->node));
    3106           0 :         mast->orig_l->depth++;
    3107           0 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
    3108           0 :         mas_set_parent(mas, left, l_mas.node, slot);
    3109           0 :         if (middle)
    3110           0 :                 mas_set_parent(mas, middle, l_mas.node, ++slot);
    3111             : 
    3112           0 :         if (right)
    3113           0 :                 mas_set_parent(mas, right, l_mas.node, ++slot);
    3114             : 
    3115           0 :         if (mas_is_root_limits(mast->l)) {
    3116             : new_root:
    3117           0 :                 mast_new_root(mast, mas);
    3118             :         } else {
    3119           0 :                 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
    3120             :         }
    3121             : 
    3122           0 :         if (!mte_dead_node(mast->orig_l->node))
    3123           0 :                 mat_add(&free, mast->orig_l->node);
    3124             : 
    3125           0 :         mas->depth = mast->orig_l->depth;
    3126           0 :         *mast->orig_l = l_mas;
    3127           0 :         mte_set_node_dead(mas->node);
    3128             : 
    3129             :         /* Set up mas for insertion. */
    3130           0 :         mast->orig_l->depth = mas->depth;
    3131           0 :         mast->orig_l->alloc = mas->alloc;
    3132           0 :         *mas = *mast->orig_l;
    3133           0 :         mas_wmb_replace(mas, &free, &destroy);
    3134           0 :         mtree_range_walk(mas);
    3135           0 :         return mast->bn->b_end;
    3136             : }
    3137             : 
    3138             : /*
    3139             :  * mas_rebalance() - Rebalance a given node.
    3140             :  * @mas: The maple state
    3141             :  * @b_node: The big maple node.
    3142             :  *
    3143             :  * Rebalance two nodes into a single node or two new nodes that are sufficient.
    3144             :  * Continue upwards until tree is sufficient.
    3145             :  *
    3146             :  * Return: the number of elements in b_node during the last loop.
    3147             :  */
    3148           0 : static inline int mas_rebalance(struct ma_state *mas,
    3149             :                                 struct maple_big_node *b_node)
    3150             : {
    3151           0 :         char empty_count = mas_mt_height(mas);
    3152             :         struct maple_subtree_state mast;
    3153           0 :         unsigned char shift, b_end = ++b_node->b_end;
    3154             : 
    3155           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3156           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3157             : 
    3158           0 :         trace_ma_op(__func__, mas);
    3159             : 
    3160             :         /*
    3161             :          * Rebalancing occurs if a node is insufficient.  Data is rebalanced
    3162             :          * against the node to the right if it exists, otherwise the node to the
    3163             :          * left of this node is rebalanced against this node.  If rebalancing
    3164             :          * causes just one node to be produced instead of two, then the parent
    3165             :          * is also examined and rebalanced if it is insufficient.  Every level
    3166             :          * tries to combine the data in the same way.  If one node contains the
    3167             :          * entire range of the tree, then that node is used as a new root node.
    3168             :          */
    3169           0 :         mas_node_count(mas, 1 + empty_count * 3);
    3170           0 :         if (mas_is_err(mas))
    3171             :                 return 0;
    3172             : 
    3173           0 :         mast.orig_l = &l_mas;
    3174           0 :         mast.orig_r = &r_mas;
    3175           0 :         mast.bn = b_node;
    3176           0 :         mast.bn->type = mte_node_type(mas->node);
    3177             : 
    3178           0 :         l_mas = r_mas = *mas;
    3179             : 
    3180           0 :         if (mas_next_sibling(&r_mas)) {
    3181           0 :                 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
    3182           0 :                 r_mas.last = r_mas.index = r_mas.max;
    3183             :         } else {
    3184           0 :                 mas_prev_sibling(&l_mas);
    3185           0 :                 shift = mas_data_end(&l_mas) + 1;
    3186           0 :                 mab_shift_right(b_node, shift);
    3187           0 :                 mas->offset += shift;
    3188           0 :                 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
    3189           0 :                 b_node->b_end = shift + b_end;
    3190           0 :                 l_mas.index = l_mas.last = l_mas.min;
    3191             :         }
    3192             : 
    3193           0 :         return mas_spanning_rebalance(mas, &mast, empty_count);
    3194             : }
    3195             : 
    3196             : /*
    3197             :  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
    3198             :  * state.
    3199             :  * @mas: The maple state
    3200             :  * @end: The end of the left-most node.
    3201             :  *
    3202             :  * During a mass-insert event (such as forking), it may be necessary to
    3203             :  * rebalance the left-most node when it is not sufficient.
    3204             :  */
    3205           0 : static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
    3206             : {
    3207           0 :         enum maple_type mt = mte_node_type(mas->node);
    3208             :         struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
    3209             :         struct maple_enode *eparent;
    3210           0 :         unsigned char offset, tmp, split = mt_slots[mt] / 2;
    3211             :         void __rcu **l_slots, **slots;
    3212             :         unsigned long *l_pivs, *pivs, gap;
    3213           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    3214             : 
    3215             :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3216             : 
    3217           0 :         l_mas = *mas;
    3218           0 :         mas_prev_sibling(&l_mas);
    3219             : 
    3220             :         /* set up node. */
    3221           0 :         if (in_rcu) {
    3222             :                 /* Allocate for both left and right as well as parent. */
    3223           0 :                 mas_node_count(mas, 3);
    3224           0 :                 if (mas_is_err(mas))
    3225           0 :                         return;
    3226             : 
    3227           0 :                 newnode = mas_pop_node(mas);
    3228             :         } else {
    3229             :                 newnode = &reuse;
    3230             :         }
    3231             : 
    3232           0 :         node = mas_mn(mas);
    3233           0 :         newnode->parent = node->parent;
    3234           0 :         slots = ma_slots(newnode, mt);
    3235           0 :         pivs = ma_pivots(newnode, mt);
    3236           0 :         left = mas_mn(&l_mas);
    3237           0 :         l_slots = ma_slots(left, mt);
    3238           0 :         l_pivs = ma_pivots(left, mt);
    3239           0 :         if (!l_slots[split])
    3240           0 :                 split++;
    3241           0 :         tmp = mas_data_end(&l_mas) - split;
    3242             : 
    3243           0 :         memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
    3244           0 :         memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
    3245           0 :         pivs[tmp] = l_mas.max;
    3246           0 :         memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
    3247           0 :         memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
    3248             : 
    3249           0 :         l_mas.max = l_pivs[split];
    3250           0 :         mas->min = l_mas.max + 1;
    3251           0 :         eparent = mt_mk_node(mte_parent(l_mas.node),
    3252             :                              mas_parent_type(&l_mas, l_mas.node));
    3253           0 :         tmp += end;
    3254           0 :         if (!in_rcu) {
    3255           0 :                 unsigned char max_p = mt_pivots[mt];
    3256           0 :                 unsigned char max_s = mt_slots[mt];
    3257             : 
    3258           0 :                 if (tmp < max_p)
    3259           0 :                         memset(pivs + tmp, 0,
    3260             :                                sizeof(unsigned long) * (max_p - tmp));
    3261             : 
    3262           0 :                 if (tmp < mt_slots[mt])
    3263           0 :                         memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3264             : 
    3265           0 :                 memcpy(node, newnode, sizeof(struct maple_node));
    3266           0 :                 ma_set_meta(node, mt, 0, tmp - 1);
    3267           0 :                 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
    3268             :                               l_pivs[split]);
    3269             : 
    3270             :                 /* Remove data from l_pivs. */
    3271           0 :                 tmp = split + 1;
    3272           0 :                 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
    3273           0 :                 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3274           0 :                 ma_set_meta(left, mt, 0, split);
    3275             : 
    3276             :                 goto done;
    3277             :         }
    3278             : 
    3279             :         /* RCU requires replacing both l_mas, mas, and parent. */
    3280           0 :         mas->node = mt_mk_node(newnode, mt);
    3281           0 :         ma_set_meta(newnode, mt, 0, tmp);
    3282             : 
    3283           0 :         new_left = mas_pop_node(mas);
    3284           0 :         new_left->parent = left->parent;
    3285           0 :         mt = mte_node_type(l_mas.node);
    3286           0 :         slots = ma_slots(new_left, mt);
    3287           0 :         pivs = ma_pivots(new_left, mt);
    3288           0 :         memcpy(slots, l_slots, sizeof(void *) * split);
    3289           0 :         memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
    3290           0 :         ma_set_meta(new_left, mt, 0, split);
    3291           0 :         l_mas.node = mt_mk_node(new_left, mt);
    3292             : 
    3293             :         /* replace parent. */
    3294           0 :         offset = mte_parent_slot(mas->node);
    3295           0 :         mt = mas_parent_type(&l_mas, l_mas.node);
    3296           0 :         parent = mas_pop_node(mas);
    3297           0 :         slots = ma_slots(parent, mt);
    3298           0 :         pivs = ma_pivots(parent, mt);
    3299           0 :         memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
    3300           0 :         rcu_assign_pointer(slots[offset], mas->node);
    3301           0 :         rcu_assign_pointer(slots[offset - 1], l_mas.node);
    3302           0 :         pivs[offset - 1] = l_mas.max;
    3303           0 :         eparent = mt_mk_node(parent, mt);
    3304             : done:
    3305           0 :         gap = mas_leaf_max_gap(mas);
    3306           0 :         mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
    3307           0 :         gap = mas_leaf_max_gap(&l_mas);
    3308           0 :         mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
    3309           0 :         mas_ascend(mas);
    3310             : 
    3311           0 :         if (in_rcu)
    3312           0 :                 mas_replace(mas, false);
    3313             : 
    3314           0 :         mas_update_gap(mas);
    3315             : }
    3316             : 
    3317             : /*
    3318             :  * mas_split_final_node() - Split the final node in a subtree operation.
    3319             :  * @mast: the maple subtree state
    3320             :  * @mas: The maple state
    3321             :  * @height: The height of the tree in case it's a new root.
    3322             :  */
    3323           7 : static inline bool mas_split_final_node(struct maple_subtree_state *mast,
    3324             :                                         struct ma_state *mas, int height)
    3325             : {
    3326             :         struct maple_enode *ancestor;
    3327             : 
    3328          14 :         if (mte_is_root(mas->node)) {
    3329          14 :                 if (mt_is_alloc(mas->tree))
    3330           7 :                         mast->bn->type = maple_arange_64;
    3331             :                 else
    3332           0 :                         mast->bn->type = maple_range_64;
    3333           7 :                 mas->depth = height;
    3334             :         }
    3335             :         /*
    3336             :          * Only a single node is used here, could be root.
    3337             :          * The Big_node data should just fit in a single node.
    3338             :          */
    3339          14 :         ancestor = mas_new_ma_node(mas, mast->bn);
    3340           7 :         mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
    3341           7 :         mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
    3342          14 :         mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
    3343             : 
    3344           7 :         mast->l->node = ancestor;
    3345           7 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
    3346           7 :         mas->offset = mast->bn->b_end - 1;
    3347           7 :         return true;
    3348             : }
    3349             : 
    3350             : /*
    3351             :  * mast_fill_bnode() - Copy data into the big node in the subtree state
    3352             :  * @mast: The maple subtree state
    3353             :  * @mas: the maple state
    3354             :  * @skip: The number of entries to skip for new nodes insertion.
    3355             :  */
    3356           7 : static inline void mast_fill_bnode(struct maple_subtree_state *mast,
    3357             :                                          struct ma_state *mas,
    3358             :                                          unsigned char skip)
    3359             : {
    3360           7 :         bool cp = true;
    3361           7 :         struct maple_enode *old = mas->node;
    3362             :         unsigned char split;
    3363             : 
    3364          14 :         memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
    3365          14 :         memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
    3366          14 :         memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
    3367           7 :         mast->bn->b_end = 0;
    3368             : 
    3369          14 :         if (mte_is_root(mas->node)) {
    3370             :                 cp = false;
    3371             :         } else {
    3372           6 :                 mas_ascend(mas);
    3373          12 :                 mat_add(mast->free, old);
    3374          12 :                 mas->offset = mte_parent_slot(mas->node);
    3375             :         }
    3376             : 
    3377           7 :         if (cp && mast->l->offset)
    3378           5 :                 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
    3379             : 
    3380           7 :         split = mast->bn->b_end;
    3381           7 :         mab_set_b_end(mast->bn, mast->l, mast->l->node);
    3382           7 :         mast->r->offset = mast->bn->b_end;
    3383           7 :         mab_set_b_end(mast->bn, mast->r, mast->r->node);
    3384           7 :         if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
    3385           7 :                 cp = false;
    3386             : 
    3387           7 :         if (cp)
    3388           0 :                 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
    3389             :                            mast->bn, mast->bn->b_end);
    3390             : 
    3391           7 :         mast->bn->b_end--;
    3392          14 :         mast->bn->type = mte_node_type(mas->node);
    3393           7 : }
    3394             : 
    3395             : /*
    3396             :  * mast_split_data() - Split the data in the subtree state big node into regular
    3397             :  * nodes.
    3398             :  * @mast: The maple subtree state
    3399             :  * @mas: The maple state
    3400             :  * @split: The location to split the big node
    3401             :  */
    3402           7 : static inline void mast_split_data(struct maple_subtree_state *mast,
    3403             :            struct ma_state *mas, unsigned char split)
    3404             : {
    3405             :         unsigned char p_slot;
    3406             : 
    3407           7 :         mab_mas_cp(mast->bn, 0, split, mast->l, true);
    3408           7 :         mte_set_pivot(mast->r->node, 0, mast->r->max);
    3409           7 :         mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
    3410          14 :         mast->l->offset = mte_parent_slot(mas->node);
    3411           7 :         mast->l->max = mast->bn->pivot[split];
    3412           7 :         mast->r->min = mast->l->max + 1;
    3413          14 :         if (mte_is_leaf(mas->node))
    3414           7 :                 return;
    3415             : 
    3416           0 :         p_slot = mast->orig_l->offset;
    3417           0 :         mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
    3418             :                              &p_slot, split);
    3419           0 :         mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
    3420             :                              &p_slot, split);
    3421             : }
    3422             : 
    3423             : /*
    3424             :  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
    3425             :  * data to the right or left node if there is room.
    3426             :  * @mas: The maple state
    3427             :  * @height: The current height of the maple state
    3428             :  * @mast: The maple subtree state
    3429             :  * @left: Push left or not.
    3430             :  *
    3431             :  * Keeping the height of the tree low means faster lookups.
    3432             :  *
    3433             :  * Return: True if pushed, false otherwise.
    3434             :  */
    3435          11 : static inline bool mas_push_data(struct ma_state *mas, int height,
    3436             :                                  struct maple_subtree_state *mast, bool left)
    3437             : {
    3438          11 :         unsigned char slot_total = mast->bn->b_end;
    3439             :         unsigned char end, space, split;
    3440             : 
    3441             :         MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
    3442          11 :         tmp_mas = *mas;
    3443          11 :         tmp_mas.depth = mast->l->depth;
    3444             : 
    3445          11 :         if (left && !mas_prev_sibling(&tmp_mas))
    3446             :                 return false;
    3447          10 :         else if (!left && !mas_next_sibling(&tmp_mas))
    3448             :                 return false;
    3449             : 
    3450           6 :         end = mas_data_end(&tmp_mas);
    3451           6 :         slot_total += end;
    3452          12 :         space = 2 * mt_slot_count(mas->node) - 2;
    3453             :         /* -2 instead of -1 to ensure there isn't a triple split */
    3454           6 :         if (ma_is_leaf(mast->bn->type))
    3455           6 :                 space--;
    3456             : 
    3457           6 :         if (mas->max == ULONG_MAX)
    3458           6 :                 space--;
    3459             : 
    3460           6 :         if (slot_total >= space)
    3461             :                 return false;
    3462             : 
    3463             :         /* Get the data; Fill mast->bn */
    3464           3 :         mast->bn->b_end++;
    3465           3 :         if (left) {
    3466           3 :                 mab_shift_right(mast->bn, end + 1);
    3467           3 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
    3468           3 :                 mast->bn->b_end = slot_total + 1;
    3469             :         } else {
    3470           0 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
    3471             :         }
    3472             : 
    3473             :         /* Configure mast for splitting of mast->bn */
    3474           3 :         split = mt_slots[mast->bn->type] - 2;
    3475           3 :         if (left) {
    3476             :                 /*  Switch mas to prev node  */
    3477           6 :                 mat_add(mast->free, mas->node);
    3478           3 :                 *mas = tmp_mas;
    3479             :                 /* Start using mast->l for the left side. */
    3480           3 :                 tmp_mas.node = mast->l->node;
    3481           3 :                 *mast->l = tmp_mas;
    3482             :         } else {
    3483           0 :                 mat_add(mast->free, tmp_mas.node);
    3484           0 :                 tmp_mas.node = mast->r->node;
    3485           0 :                 *mast->r = tmp_mas;
    3486           0 :                 split = slot_total - split;
    3487             :         }
    3488           6 :         split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
    3489             :         /* Update parent slot for split calculation. */
    3490           3 :         if (left)
    3491           3 :                 mast->orig_l->offset += end + 1;
    3492             : 
    3493           3 :         mast_split_data(mast, mas, split);
    3494           3 :         mast_fill_bnode(mast, mas, 2);
    3495           3 :         mas_split_final_node(mast, mas, height + 1);
    3496           3 :         return true;
    3497             : }
    3498             : 
    3499             : /*
    3500             :  * mas_split() - Split data that is too big for one node into two.
    3501             :  * @mas: The maple state
    3502             :  * @b_node: The maple big node
    3503             :  * Return: 1 on success, 0 on failure.
    3504             :  */
    3505           7 : static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
    3506             : {
    3507             :         struct maple_subtree_state mast;
    3508           7 :         int height = 0;
    3509           7 :         unsigned char mid_split, split = 0;
    3510             : 
    3511             :         /*
    3512             :          * Splitting is handled differently from any other B-tree; the Maple
    3513             :          * Tree splits upwards.  Splitting up means that the split operation
    3514             :          * occurs when the walk of the tree hits the leaves and not on the way
    3515             :          * down.  The reason for splitting up is that it is impossible to know
    3516             :          * how much space will be needed until the leaf is (or leaves are)
    3517             :          * reached.  Since overwriting data is allowed and a range could
    3518             :          * overwrite more than one range or result in changing one entry into 3
    3519             :          * entries, it is impossible to know if a split is required until the
    3520             :          * data is examined.
    3521             :          *
    3522             :          * Splitting is a balancing act between keeping allocations to a minimum
    3523             :          * and avoiding a 'jitter' event where a tree is expanded to make room
    3524             :          * for an entry followed by a contraction when the entry is removed.  To
    3525             :          * accomplish the balance, there are empty slots remaining in both left
    3526             :          * and right nodes after a split.
    3527             :          */
    3528           7 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3529           7 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3530           7 :         MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
    3531           7 :         MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
    3532           7 :         MA_TOPIARY(mat, mas->tree);
    3533             : 
    3534           7 :         trace_ma_op(__func__, mas);
    3535          14 :         mas->depth = mas_mt_height(mas);
    3536             :         /* Allocation failures will happen early. */
    3537          14 :         mas_node_count(mas, 1 + mas->depth * 2);
    3538           7 :         if (mas_is_err(mas))
    3539             :                 return 0;
    3540             : 
    3541           7 :         mast.l = &l_mas;
    3542           7 :         mast.r = &r_mas;
    3543           7 :         mast.orig_l = &prev_l_mas;
    3544           7 :         mast.orig_r = &prev_r_mas;
    3545           7 :         mast.free = &mat;
    3546           7 :         mast.bn = b_node;
    3547             : 
    3548          18 :         while (height++ <= mas->depth) {
    3549          11 :                 if (mt_slots[b_node->type] > b_node->b_end) {
    3550           4 :                         mas_split_final_node(&mast, mas, height);
    3551           4 :                         break;
    3552             :                 }
    3553             : 
    3554           7 :                 l_mas = r_mas = *mas;
    3555          14 :                 l_mas.node = mas_new_ma_node(mas, b_node);
    3556          14 :                 r_mas.node = mas_new_ma_node(mas, b_node);
    3557             :                 /*
    3558             :                  * Another way that 'jitter' is avoided is to terminate a split up early if the
    3559             :                  * left or right node has space to spare.  This is referred to as "pushing left"
    3560             :                  * or "pushing right" and is similar to the B* tree, except the nodes left or
    3561             :                  * right can rarely be reused due to RCU, but the ripple upwards is halted which
    3562             :                  * is a significant savings.
    3563             :                  */
    3564             :                 /* Try to push left. */
    3565           7 :                 if (mas_push_data(mas, height, &mast, true))
    3566             :                         break;
    3567             : 
    3568             :                 /* Try to push right. */
    3569           4 :                 if (mas_push_data(mas, height, &mast, false))
    3570             :                         break;
    3571             : 
    3572           4 :                 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
    3573           4 :                 mast_split_data(&mast, mas, split);
    3574             :                 /*
    3575             :                  * Usually correct, mab_mas_cp in the above call overwrites
    3576             :                  * r->max.
    3577             :                  */
    3578           4 :                 mast.r->max = mas->max;
    3579           4 :                 mast_fill_bnode(&mast, mas, 1);
    3580           4 :                 prev_l_mas = *mast.l;
    3581           4 :                 prev_r_mas = *mast.r;
    3582             :         }
    3583             : 
    3584             :         /* Set the original node as dead */
    3585          14 :         mat_add(mast.free, mas->node);
    3586           7 :         mas->node = l_mas.node;
    3587           7 :         mas_wmb_replace(mas, mast.free, NULL);
    3588           7 :         mtree_range_walk(mas);
    3589           7 :         return 1;
    3590             : }
    3591             : 
    3592             : /*
    3593             :  * mas_reuse_node() - Reuse the node to store the data.
    3594             :  * @wr_mas: The maple write state
    3595             :  * @bn: The maple big node
    3596             :  * @end: The end of the data.
    3597             :  *
    3598             :  * Will always return false in RCU mode.
    3599             :  *
    3600             :  * Return: True if node was reused, false otherwise.
    3601             :  */
    3602           0 : static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
    3603             :                           struct maple_big_node *bn, unsigned char end)
    3604             : {
    3605             :         /* Need to be rcu safe. */
    3606           0 :         if (mt_in_rcu(wr_mas->mas->tree))
    3607             :                 return false;
    3608             : 
    3609           0 :         if (end > bn->b_end) {
    3610           0 :                 int clear = mt_slots[wr_mas->type] - bn->b_end;
    3611             : 
    3612           0 :                 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
    3613           0 :                 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
    3614             :         }
    3615           0 :         mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
    3616           0 :         return true;
    3617             : }
    3618             : 
    3619             : /*
    3620             :  * mas_commit_b_node() - Commit the big node into the tree.
    3621             :  * @wr_mas: The maple write state
    3622             :  * @b_node: The maple big node
    3623             :  * @end: The end of the data.
    3624             :  */
    3625           7 : static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
    3626             :                             struct maple_big_node *b_node, unsigned char end)
    3627             : {
    3628             :         struct maple_node *node;
    3629           7 :         unsigned char b_end = b_node->b_end;
    3630           7 :         enum maple_type b_type = b_node->type;
    3631             : 
    3632           7 :         if ((b_end < mt_min_slots[b_type]) &&
    3633           0 :             (!mte_is_root(wr_mas->mas->node)) &&
    3634           0 :             (mas_mt_height(wr_mas->mas) > 1))
    3635           0 :                 return mas_rebalance(wr_mas->mas, b_node);
    3636             : 
    3637           7 :         if (b_end >= mt_slots[b_type])
    3638           7 :                 return mas_split(wr_mas->mas, b_node);
    3639             : 
    3640           0 :         if (mas_reuse_node(wr_mas, b_node, end))
    3641             :                 goto reuse_node;
    3642             : 
    3643           0 :         mas_node_count(wr_mas->mas, 1);
    3644           0 :         if (mas_is_err(wr_mas->mas))
    3645             :                 return 0;
    3646             : 
    3647           0 :         node = mas_pop_node(wr_mas->mas);
    3648           0 :         node->parent = mas_mn(wr_mas->mas)->parent;
    3649           0 :         wr_mas->mas->node = mt_mk_node(node, b_type);
    3650           0 :         mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
    3651           0 :         mas_replace(wr_mas->mas, false);
    3652             : reuse_node:
    3653           0 :         mas_update_gap(wr_mas->mas);
    3654           0 :         return 1;
    3655             : }
    3656             : 
    3657             : /*
    3658             :  * mas_root_expand() - Expand a root to a node
    3659             :  * @mas: The maple state
    3660             :  * @entry: The entry to store into the tree
    3661             :  */
    3662           1 : static inline int mas_root_expand(struct ma_state *mas, void *entry)
    3663             : {
    3664           2 :         void *contents = mas_root_locked(mas);
    3665           1 :         enum maple_type type = maple_leaf_64;
    3666             :         struct maple_node *node;
    3667             :         void __rcu **slots;
    3668             :         unsigned long *pivots;
    3669           1 :         int slot = 0;
    3670             : 
    3671           1 :         mas_node_count(mas, 1);
    3672           1 :         if (unlikely(mas_is_err(mas)))
    3673             :                 return 0;
    3674             : 
    3675           1 :         node = mas_pop_node(mas);
    3676           1 :         pivots = ma_pivots(node, type);
    3677           1 :         slots = ma_slots(node, type);
    3678           1 :         node->parent = ma_parent_ptr(
    3679             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3680           1 :         mas->node = mt_mk_node(node, type);
    3681             : 
    3682           1 :         if (mas->index) {
    3683           1 :                 if (contents) {
    3684           1 :                         rcu_assign_pointer(slots[slot], contents);
    3685           1 :                         if (likely(mas->index > 1))
    3686           0 :                                 slot++;
    3687             :                 }
    3688           1 :                 pivots[slot++] = mas->index - 1;
    3689             :         }
    3690             : 
    3691           1 :         rcu_assign_pointer(slots[slot], entry);
    3692           1 :         mas->offset = slot;
    3693           1 :         pivots[slot] = mas->last;
    3694           1 :         if (mas->last != ULONG_MAX)
    3695           1 :                 slot++;
    3696           1 :         mas->depth = 1;
    3697           1 :         mas_set_height(mas);
    3698           2 :         ma_set_meta(node, maple_leaf_64, 0, slot);
    3699             :         /* swap the new root into the tree */
    3700           2 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3701           1 :         return slot;
    3702             : }
    3703             : 
    3704           2 : static inline void mas_store_root(struct ma_state *mas, void *entry)
    3705             : {
    3706           2 :         if (likely((mas->last != 0) || (mas->index != 0)))
    3707           1 :                 mas_root_expand(mas, entry);
    3708           1 :         else if (((unsigned long) (entry) & 3) == 2)
    3709           0 :                 mas_root_expand(mas, entry);
    3710             :         else {
    3711           1 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3712           1 :                 mas->node = MAS_START;
    3713             :         }
    3714           2 : }
    3715             : 
    3716             : /*
    3717             :  * mas_is_span_wr() - Check if the write needs to be treated as a write that
    3718             :  * spans the node.
    3719             :  * @mas: The maple state
    3720             :  * @piv: The pivot value being written
    3721             :  * @type: The maple node type
    3722             :  * @entry: The data to write
    3723             :  *
    3724             :  * Spanning writes are writes that start in one node and end in another OR if
    3725             :  * the write of a %NULL will cause the node to end with a %NULL.
    3726             :  *
    3727             :  * Return: True if this is a spanning write, false otherwise.
    3728             :  */
    3729             : static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
    3730             : {
    3731         110 :         unsigned long max = wr_mas->r_max;
    3732         110 :         unsigned long last = wr_mas->mas->last;
    3733         110 :         enum maple_type type = wr_mas->type;
    3734         110 :         void *entry = wr_mas->entry;
    3735             : 
    3736             :         /* Contained in this pivot, fast path */
    3737         110 :         if (last < max)
    3738             :                 return false;
    3739             : 
    3740           0 :         if (ma_is_leaf(type)) {
    3741           0 :                 max = wr_mas->mas->max;
    3742           0 :                 if (last < max)
    3743             :                         return false;
    3744             :         }
    3745             : 
    3746           0 :         if (last == max) {
    3747             :                 /*
    3748             :                  * The last entry of leaf node cannot be NULL unless it is the
    3749             :                  * rightmost node (writing ULONG_MAX), otherwise it spans slots.
    3750             :                  */
    3751           0 :                 if (entry || last == ULONG_MAX)
    3752             :                         return false;
    3753             :         }
    3754             : 
    3755           0 :         trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
    3756             :         return true;
    3757             : }
    3758             : 
    3759         110 : static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
    3760             : {
    3761         220 :         wr_mas->type = mte_node_type(wr_mas->mas->node);
    3762         110 :         mas_wr_node_walk(wr_mas);
    3763         220 :         wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
    3764         110 : }
    3765             : 
    3766             : static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
    3767             : {
    3768          48 :         wr_mas->mas->max = wr_mas->r_max;
    3769          48 :         wr_mas->mas->min = wr_mas->r_min;
    3770          48 :         wr_mas->mas->node = wr_mas->content;
    3771          48 :         wr_mas->mas->offset = 0;
    3772          48 :         wr_mas->mas->depth++;
    3773             : }
    3774             : /*
    3775             :  * mas_wr_walk() - Walk the tree for a write.
    3776             :  * @wr_mas: The maple write state
    3777             :  *
    3778             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    3779             :  *
    3780             :  * Return: True if it's contained in a node, false on spanning write.
    3781             :  */
    3782          62 : static bool mas_wr_walk(struct ma_wr_state *wr_mas)
    3783             : {
    3784          62 :         struct ma_state *mas = wr_mas->mas;
    3785             : 
    3786             :         while (true) {
    3787         110 :                 mas_wr_walk_descend(wr_mas);
    3788         110 :                 if (unlikely(mas_is_span_wr(wr_mas)))
    3789             :                         return false;
    3790             : 
    3791         220 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3792         110 :                                                   mas->offset);
    3793         110 :                 if (ma_is_leaf(wr_mas->type))
    3794             :                         return true;
    3795             : 
    3796             :                 mas_wr_walk_traverse(wr_mas);
    3797             :         }
    3798             : 
    3799             :         return true;
    3800             : }
    3801             : 
    3802           0 : static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
    3803             : {
    3804           0 :         struct ma_state *mas = wr_mas->mas;
    3805             : 
    3806             :         while (true) {
    3807           0 :                 mas_wr_walk_descend(wr_mas);
    3808           0 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3809           0 :                                                   mas->offset);
    3810           0 :                 if (ma_is_leaf(wr_mas->type))
    3811             :                         return true;
    3812             :                 mas_wr_walk_traverse(wr_mas);
    3813             : 
    3814             :         }
    3815             :         return true;
    3816             : }
    3817             : /*
    3818             :  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
    3819             :  * @l_wr_mas: The left maple write state
    3820             :  * @r_wr_mas: The right maple write state
    3821             :  */
    3822           0 : static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
    3823             :                                             struct ma_wr_state *r_wr_mas)
    3824             : {
    3825           0 :         struct ma_state *r_mas = r_wr_mas->mas;
    3826           0 :         struct ma_state *l_mas = l_wr_mas->mas;
    3827             :         unsigned char l_slot;
    3828             : 
    3829           0 :         l_slot = l_mas->offset;
    3830           0 :         if (!l_wr_mas->content)
    3831           0 :                 l_mas->index = l_wr_mas->r_min;
    3832             : 
    3833           0 :         if ((l_mas->index == l_wr_mas->r_min) &&
    3834           0 :                  (l_slot &&
    3835           0 :                   !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
    3836           0 :                 if (l_slot > 1)
    3837           0 :                         l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
    3838             :                 else
    3839           0 :                         l_mas->index = l_mas->min;
    3840             : 
    3841           0 :                 l_mas->offset = l_slot - 1;
    3842             :         }
    3843             : 
    3844           0 :         if (!r_wr_mas->content) {
    3845           0 :                 if (r_mas->last < r_wr_mas->r_max)
    3846           0 :                         r_mas->last = r_wr_mas->r_max;
    3847           0 :                 r_mas->offset++;
    3848           0 :         } else if ((r_mas->last == r_wr_mas->r_max) &&
    3849           0 :             (r_mas->last < r_mas->max) &&
    3850           0 :             !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
    3851           0 :                 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
    3852           0 :                                              r_wr_mas->type, r_mas->offset + 1);
    3853           0 :                 r_mas->offset++;
    3854             :         }
    3855           0 : }
    3856             : 
    3857           0 : static inline void *mas_state_walk(struct ma_state *mas)
    3858             : {
    3859             :         void *entry;
    3860             : 
    3861           0 :         entry = mas_start(mas);
    3862           0 :         if (mas_is_none(mas))
    3863             :                 return NULL;
    3864             : 
    3865           0 :         if (mas_is_ptr(mas))
    3866             :                 return entry;
    3867             : 
    3868           0 :         return mtree_range_walk(mas);
    3869             : }
    3870             : 
    3871             : /*
    3872             :  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
    3873             :  * to date.
    3874             :  *
    3875             :  * @mas: The maple state.
    3876             :  *
    3877             :  * Note: Leaves mas in undesirable state.
    3878             :  * Return: The entry for @mas->index or %NULL on dead node.
    3879             :  */
    3880           0 : static inline void *mtree_lookup_walk(struct ma_state *mas)
    3881             : {
    3882             :         unsigned long *pivots;
    3883             :         unsigned char offset;
    3884             :         struct maple_node *node;
    3885             :         struct maple_enode *next;
    3886             :         enum maple_type type;
    3887             :         void __rcu **slots;
    3888             :         unsigned char end;
    3889             :         unsigned long max;
    3890             : 
    3891           0 :         next = mas->node;
    3892           0 :         max = ULONG_MAX;
    3893             :         do {
    3894           0 :                 offset = 0;
    3895           0 :                 node = mte_to_node(next);
    3896           0 :                 type = mte_node_type(next);
    3897           0 :                 pivots = ma_pivots(node, type);
    3898           0 :                 end = ma_data_end(node, type, pivots, max);
    3899           0 :                 if (unlikely(ma_dead_node(node)))
    3900             :                         goto dead_node;
    3901             :                 do {
    3902           0 :                         if (pivots[offset] >= mas->index) {
    3903             :                                 max = pivots[offset];
    3904             :                                 break;
    3905             :                         }
    3906           0 :                 } while (++offset < end);
    3907             : 
    3908           0 :                 slots = ma_slots(node, type);
    3909           0 :                 next = mt_slot(mas->tree, slots, offset);
    3910           0 :                 if (unlikely(ma_dead_node(node)))
    3911             :                         goto dead_node;
    3912           0 :         } while (!ma_is_leaf(type));
    3913             : 
    3914             :         return (void *)next;
    3915             : 
    3916             : dead_node:
    3917           0 :         mas_reset(mas);
    3918           0 :         return NULL;
    3919             : }
    3920             : 
    3921             : /*
    3922             :  * mas_new_root() - Create a new root node that only contains the entry passed
    3923             :  * in.
    3924             :  * @mas: The maple state
    3925             :  * @entry: The entry to store.
    3926             :  *
    3927             :  * Only valid when the index == 0 and the last == ULONG_MAX
    3928             :  *
    3929             :  * Return 0 on error, 1 on success.
    3930             :  */
    3931           0 : static inline int mas_new_root(struct ma_state *mas, void *entry)
    3932             : {
    3933           0 :         struct maple_enode *root = mas_root_locked(mas);
    3934           0 :         enum maple_type type = maple_leaf_64;
    3935             :         struct maple_node *node;
    3936             :         void __rcu **slots;
    3937             :         unsigned long *pivots;
    3938             : 
    3939           0 :         if (!entry && !mas->index && mas->last == ULONG_MAX) {
    3940           0 :                 mas->depth = 0;
    3941           0 :                 mas_set_height(mas);
    3942           0 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3943           0 :                 mas->node = MAS_START;
    3944           0 :                 goto done;
    3945             :         }
    3946             : 
    3947           0 :         mas_node_count(mas, 1);
    3948           0 :         if (mas_is_err(mas))
    3949             :                 return 0;
    3950             : 
    3951           0 :         node = mas_pop_node(mas);
    3952           0 :         pivots = ma_pivots(node, type);
    3953           0 :         slots = ma_slots(node, type);
    3954           0 :         node->parent = ma_parent_ptr(
    3955             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3956           0 :         mas->node = mt_mk_node(node, type);
    3957           0 :         rcu_assign_pointer(slots[0], entry);
    3958           0 :         pivots[0] = mas->last;
    3959           0 :         mas->depth = 1;
    3960           0 :         mas_set_height(mas);
    3961           0 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3962             : 
    3963             : done:
    3964           0 :         if (xa_is_node(root))
    3965           0 :                 mte_destroy_walk(root, mas->tree);
    3966             : 
    3967             :         return 1;
    3968             : }
    3969             : /*
    3970             :  * mas_wr_spanning_store() - Create a subtree with the store operation completed
    3971             :  * and new nodes where necessary, then place the sub-tree in the actual tree.
    3972             :  * Note that mas is expected to point to the node which caused the store to
    3973             :  * span.
    3974             :  * @wr_mas: The maple write state
    3975             :  *
    3976             :  * Return: 0 on error, positive on success.
    3977             :  */
    3978           0 : static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
    3979             : {
    3980             :         struct maple_subtree_state mast;
    3981             :         struct maple_big_node b_node;
    3982             :         struct ma_state *mas;
    3983             :         unsigned char height;
    3984             : 
    3985             :         /* Left and Right side of spanning store */
    3986           0 :         MA_STATE(l_mas, NULL, 0, 0);
    3987           0 :         MA_STATE(r_mas, NULL, 0, 0);
    3988             : 
    3989           0 :         MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
    3990           0 :         MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
    3991             : 
    3992             :         /*
    3993             :          * A store operation that spans multiple nodes is called a spanning
    3994             :          * store and is handled early in the store call stack by the function
    3995             :          * mas_is_span_wr().  When a spanning store is identified, the maple
    3996             :          * state is duplicated.  The first maple state walks the left tree path
    3997             :          * to ``index``, the duplicate walks the right tree path to ``last``.
    3998             :          * The data in the two nodes are combined into a single node, two nodes,
    3999             :          * or possibly three nodes (see the 3-way split above).  A ``NULL``
    4000             :          * written to the last entry of a node is considered a spanning store as
    4001             :          * a rebalance is required for the operation to complete and an overflow
    4002             :          * of data may happen.
    4003             :          */
    4004           0 :         mas = wr_mas->mas;
    4005           0 :         trace_ma_op(__func__, mas);
    4006             : 
    4007           0 :         if (unlikely(!mas->index && mas->last == ULONG_MAX))
    4008           0 :                 return mas_new_root(mas, wr_mas->entry);
    4009             :         /*
    4010             :          * Node rebalancing may occur due to this store, so there may be three new
    4011             :          * entries per level plus a new root.
    4012             :          */
    4013           0 :         height = mas_mt_height(mas);
    4014           0 :         mas_node_count(mas, 1 + height * 3);
    4015           0 :         if (mas_is_err(mas))
    4016             :                 return 0;
    4017             : 
    4018             :         /*
    4019             :          * Set up right side.  Need to get to the next offset after the spanning
    4020             :          * store to ensure it's not NULL and to combine both the next node and
    4021             :          * the node with the start together.
    4022             :          */
    4023           0 :         r_mas = *mas;
    4024             :         /* Avoid overflow, walk to next slot in the tree. */
    4025           0 :         if (r_mas.last + 1)
    4026           0 :                 r_mas.last++;
    4027             : 
    4028           0 :         r_mas.index = r_mas.last;
    4029           0 :         mas_wr_walk_index(&r_wr_mas);
    4030           0 :         r_mas.last = r_mas.index = mas->last;
    4031             : 
    4032             :         /* Set up left side. */
    4033           0 :         l_mas = *mas;
    4034           0 :         mas_wr_walk_index(&l_wr_mas);
    4035             : 
    4036           0 :         if (!wr_mas->entry) {
    4037           0 :                 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
    4038           0 :                 mas->offset = l_mas.offset;
    4039           0 :                 mas->index = l_mas.index;
    4040           0 :                 mas->last = l_mas.last = r_mas.last;
    4041             :         }
    4042             : 
    4043             :         /* expanding NULLs may make this cover the entire range */
    4044           0 :         if (!l_mas.index && r_mas.last == ULONG_MAX) {
    4045           0 :                 mas_set_range(mas, 0, ULONG_MAX);
    4046           0 :                 return mas_new_root(mas, wr_mas->entry);
    4047             :         }
    4048             : 
    4049           0 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4050             :         /* Copy l_mas and store the value in b_node. */
    4051           0 :         mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
    4052             :         /* Copy r_mas into b_node. */
    4053           0 :         if (r_mas.offset <= r_wr_mas.node_end)
    4054           0 :                 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
    4055           0 :                            &b_node, b_node.b_end + 1);
    4056             :         else
    4057           0 :                 b_node.b_end++;
    4058             : 
    4059             :         /* Stop spanning searches by searching for just index. */
    4060           0 :         l_mas.index = l_mas.last = mas->index;
    4061             : 
    4062           0 :         mast.bn = &b_node;
    4063           0 :         mast.orig_l = &l_mas;
    4064           0 :         mast.orig_r = &r_mas;
    4065             :         /* Combine l_mas and r_mas and split them up evenly again. */
    4066           0 :         return mas_spanning_rebalance(mas, &mast, height + 1);
    4067             : }
    4068             : 
    4069             : /*
    4070             :  * mas_wr_node_store() - Attempt to store the value in a node
    4071             :  * @wr_mas: The maple write state
    4072             :  *
    4073             :  * Attempts to reuse the node, but may allocate.
    4074             :  *
    4075             :  * Return: True if stored, false otherwise
    4076             :  */
    4077           0 : static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
    4078             :                                      unsigned char new_end)
    4079             : {
    4080           0 :         struct ma_state *mas = wr_mas->mas;
    4081             :         void __rcu **dst_slots;
    4082             :         unsigned long *dst_pivots;
    4083           0 :         unsigned char dst_offset, offset_end = wr_mas->offset_end;
    4084             :         struct maple_node reuse, *newnode;
    4085           0 :         unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
    4086           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    4087             : 
    4088             :         /* Check if there is enough data. The room is enough. */
    4089           0 :         if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
    4090           0 :             !(mas->mas_flags & MA_STATE_BULK))
    4091             :                 return false;
    4092             : 
    4093           0 :         if (mas->last == wr_mas->end_piv)
    4094           0 :                 offset_end++; /* don't copy this offset */
    4095           0 :         else if (unlikely(wr_mas->r_max == ULONG_MAX))
    4096           0 :                 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
    4097             : 
    4098             :         /* set up node. */
    4099           0 :         if (in_rcu) {
    4100           0 :                 mas_node_count(mas, 1);
    4101           0 :                 if (mas_is_err(mas))
    4102             :                         return false;
    4103             : 
    4104           0 :                 newnode = mas_pop_node(mas);
    4105             :         } else {
    4106           0 :                 memset(&reuse, 0, sizeof(struct maple_node));
    4107           0 :                 newnode = &reuse;
    4108             :         }
    4109             : 
    4110           0 :         newnode->parent = mas_mn(mas)->parent;
    4111           0 :         dst_pivots = ma_pivots(newnode, wr_mas->type);
    4112           0 :         dst_slots = ma_slots(newnode, wr_mas->type);
    4113             :         /* Copy from start to insert point */
    4114           0 :         memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
    4115           0 :         memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
    4116             : 
    4117             :         /* Handle insert of new range starting after old range */
    4118           0 :         if (wr_mas->r_min < mas->index) {
    4119           0 :                 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
    4120           0 :                 dst_pivots[mas->offset++] = mas->index - 1;
    4121             :         }
    4122             : 
    4123             :         /* Store the new entry and range end. */
    4124           0 :         if (mas->offset < node_pivots)
    4125           0 :                 dst_pivots[mas->offset] = mas->last;
    4126           0 :         rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
    4127             : 
    4128             :         /*
    4129             :          * this range wrote to the end of the node or it overwrote the rest of
    4130             :          * the data
    4131             :          */
    4132           0 :         if (offset_end > wr_mas->node_end)
    4133             :                 goto done;
    4134             : 
    4135           0 :         dst_offset = mas->offset + 1;
    4136             :         /* Copy to the end of node if necessary. */
    4137           0 :         copy_size = wr_mas->node_end - offset_end + 1;
    4138           0 :         memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
    4139             :                sizeof(void *) * copy_size);
    4140           0 :         memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
    4141             :                sizeof(unsigned long) * (copy_size - 1));
    4142             : 
    4143           0 :         if (new_end < node_pivots)
    4144           0 :                 dst_pivots[new_end] = mas->max;
    4145             : 
    4146             : done:
    4147           0 :         mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
    4148           0 :         if (in_rcu) {
    4149           0 :                 mte_set_node_dead(mas->node);
    4150           0 :                 mas->node = mt_mk_node(newnode, wr_mas->type);
    4151           0 :                 mas_replace(mas, false);
    4152             :         } else {
    4153           0 :                 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
    4154             :         }
    4155           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4156           0 :         mas_update_gap(mas);
    4157           0 :         return true;
    4158             : }
    4159             : 
    4160             : /*
    4161             :  * mas_wr_slot_store: Attempt to store a value in a slot.
    4162             :  * @wr_mas: the maple write state
    4163             :  *
    4164             :  * Return: True if stored, false otherwise
    4165             :  */
    4166           0 : static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
    4167             : {
    4168           0 :         struct ma_state *mas = wr_mas->mas;
    4169           0 :         unsigned char offset = mas->offset;
    4170           0 :         bool gap = false;
    4171             : 
    4172           0 :         if (wr_mas->offset_end - offset != 1)
    4173             :                 return false;
    4174             : 
    4175           0 :         gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset);
    4176           0 :         gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset + 1);
    4177             : 
    4178           0 :         if (mas->index == wr_mas->r_min) {
    4179             :                 /* Overwriting the range and over a part of the next range. */
    4180           0 :                 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
    4181           0 :                 wr_mas->pivots[offset] = mas->last;
    4182             :         } else {
    4183             :                 /* Overwriting a part of the range and over the next range */
    4184           0 :                 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
    4185           0 :                 wr_mas->pivots[offset] = mas->index - 1;
    4186           0 :                 mas->offset++; /* Keep mas accurate. */
    4187             :         }
    4188             : 
    4189           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4190             :         /*
    4191             :          * Only update gap when the new entry is empty or there is an empty
    4192             :          * entry in the original two ranges.
    4193             :          */
    4194           0 :         if (!wr_mas->entry || gap)
    4195           0 :                 mas_update_gap(mas);
    4196             : 
    4197             :         return true;
    4198             : }
    4199             : 
    4200          62 : static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
    4201             : {
    4202         124 :         while ((wr_mas->offset_end < wr_mas->node_end) &&
    4203           0 :                (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
    4204           0 :                 wr_mas->offset_end++;
    4205             : 
    4206          62 :         if (wr_mas->offset_end < wr_mas->node_end)
    4207           0 :                 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
    4208             :         else
    4209          62 :                 wr_mas->end_piv = wr_mas->mas->max;
    4210          62 : }
    4211             : 
    4212           0 : static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
    4213             : {
    4214           0 :         struct ma_state *mas = wr_mas->mas;
    4215             : 
    4216           0 :         if (!wr_mas->slots[wr_mas->offset_end]) {
    4217             :                 /* If this one is null, the next and prev are not */
    4218           0 :                 mas->last = wr_mas->end_piv;
    4219             :         } else {
    4220             :                 /* Check next slot(s) if we are overwriting the end */
    4221           0 :                 if ((mas->last == wr_mas->end_piv) &&
    4222           0 :                     (wr_mas->node_end != wr_mas->offset_end) &&
    4223           0 :                     !wr_mas->slots[wr_mas->offset_end + 1]) {
    4224           0 :                         wr_mas->offset_end++;
    4225           0 :                         if (wr_mas->offset_end == wr_mas->node_end)
    4226           0 :                                 mas->last = mas->max;
    4227             :                         else
    4228           0 :                                 mas->last = wr_mas->pivots[wr_mas->offset_end];
    4229           0 :                         wr_mas->end_piv = mas->last;
    4230             :                 }
    4231             :         }
    4232             : 
    4233           0 :         if (!wr_mas->content) {
    4234             :                 /* If this one is null, the next and prev are not */
    4235           0 :                 mas->index = wr_mas->r_min;
    4236             :         } else {
    4237             :                 /* Check prev slot if we are overwriting the start */
    4238           0 :                 if (mas->index == wr_mas->r_min && mas->offset &&
    4239           0 :                     !wr_mas->slots[mas->offset - 1]) {
    4240           0 :                         mas->offset--;
    4241           0 :                         wr_mas->r_min = mas->index =
    4242           0 :                                 mas_safe_min(mas, wr_mas->pivots, mas->offset);
    4243           0 :                         wr_mas->r_max = wr_mas->pivots[mas->offset];
    4244             :                 }
    4245             :         }
    4246           0 : }
    4247             : 
    4248             : static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
    4249             : {
    4250          62 :         struct ma_state *mas = wr_mas->mas;
    4251          62 :         unsigned char new_end = wr_mas->node_end + 2;
    4252             : 
    4253          62 :         new_end -= wr_mas->offset_end - mas->offset;
    4254          62 :         if (wr_mas->r_min == mas->index)
    4255          62 :                 new_end--;
    4256             : 
    4257          62 :         if (wr_mas->end_piv == mas->last)
    4258           0 :                 new_end--;
    4259             : 
    4260             :         return new_end;
    4261             : }
    4262             : 
    4263             : /*
    4264             :  * mas_wr_append: Attempt to append
    4265             :  * @wr_mas: the maple write state
    4266             :  *
    4267             :  * Return: True if appended, false otherwise
    4268             :  */
    4269          55 : static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
    4270             : {
    4271          55 :         unsigned char end = wr_mas->node_end;
    4272          55 :         unsigned char new_end = end + 1;
    4273          55 :         struct ma_state *mas = wr_mas->mas;
    4274          55 :         unsigned char node_pivots = mt_pivots[wr_mas->type];
    4275             : 
    4276          55 :         if (mas->offset != wr_mas->node_end)
    4277             :                 return false;
    4278             : 
    4279          55 :         if (new_end < node_pivots) {
    4280          48 :                 wr_mas->pivots[new_end] = wr_mas->pivots[end];
    4281          48 :                 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
    4282             :         }
    4283             : 
    4284          55 :         if (mas->last == wr_mas->r_max) {
    4285             :                 /* Append to end of range */
    4286           0 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
    4287           0 :                 wr_mas->pivots[end] = mas->index - 1;
    4288           0 :                 mas->offset = new_end;
    4289             :         } else {
    4290             :                 /* Append to start of range */
    4291          55 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
    4292          55 :                 wr_mas->pivots[end] = mas->last;
    4293          55 :                 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
    4294             :         }
    4295             : 
    4296          55 :         if (!wr_mas->content || !wr_mas->entry)
    4297          55 :                 mas_update_gap(mas);
    4298             : 
    4299             :         return  true;
    4300             : }
    4301             : 
    4302             : /*
    4303             :  * mas_wr_bnode() - Slow path for a modification.
    4304             :  * @wr_mas: The write maple state
    4305             :  *
    4306             :  * This is where split, rebalance end up.
    4307             :  */
    4308           7 : static void mas_wr_bnode(struct ma_wr_state *wr_mas)
    4309             : {
    4310             :         struct maple_big_node b_node;
    4311             : 
    4312           7 :         trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
    4313           7 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4314           7 :         mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
    4315           7 :         mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
    4316           7 : }
    4317             : 
    4318          62 : static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
    4319             : {
    4320          62 :         struct ma_state *mas = wr_mas->mas;
    4321             :         unsigned char new_end;
    4322             : 
    4323             :         /* Direct replacement */
    4324          62 :         if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
    4325           0 :                 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
    4326           0 :                 if (!!wr_mas->entry ^ !!wr_mas->content)
    4327           0 :                         mas_update_gap(mas);
    4328             :                 return;
    4329             :         }
    4330             : 
    4331             :         /*
    4332             :          * new_end exceeds the size of the maple node and cannot enter the fast
    4333             :          * path.
    4334             :          */
    4335          62 :         new_end = mas_wr_new_end(wr_mas);
    4336          62 :         if (new_end >= mt_slots[wr_mas->type])
    4337             :                 goto slow_path;
    4338             : 
    4339             :         /* Attempt to append */
    4340          55 :         if (new_end == wr_mas->node_end + 1 && mas_wr_append(wr_mas))
    4341             :                 return;
    4342             : 
    4343           0 :         if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
    4344             :                 return;
    4345             : 
    4346           0 :         if (mas_wr_node_store(wr_mas, new_end))
    4347             :                 return;
    4348             : 
    4349           0 :         if (mas_is_err(mas))
    4350             :                 return;
    4351             : 
    4352             : slow_path:
    4353           7 :         mas_wr_bnode(wr_mas);
    4354             : }
    4355             : 
    4356             : /*
    4357             :  * mas_wr_store_entry() - Internal call to store a value
    4358             :  * @mas: The maple state
    4359             :  * @entry: The entry to store.
    4360             :  *
    4361             :  * Return: The contents that was stored at the index.
    4362             :  */
    4363          64 : static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
    4364             : {
    4365          64 :         struct ma_state *mas = wr_mas->mas;
    4366             : 
    4367          64 :         wr_mas->content = mas_start(mas);
    4368          64 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4369           2 :                 mas_store_root(mas, wr_mas->entry);
    4370           2 :                 return wr_mas->content;
    4371             :         }
    4372             : 
    4373          62 :         if (unlikely(!mas_wr_walk(wr_mas))) {
    4374           0 :                 mas_wr_spanning_store(wr_mas);
    4375           0 :                 return wr_mas->content;
    4376             :         }
    4377             : 
    4378             :         /* At this point, we are at the leaf node that needs to be altered. */
    4379          62 :         mas_wr_end_piv(wr_mas);
    4380             : 
    4381          62 :         if (!wr_mas->entry)
    4382           0 :                 mas_wr_extend_null(wr_mas);
    4383             : 
    4384             :         /* New root for a single pointer */
    4385          62 :         if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
    4386           0 :                 mas_new_root(mas, wr_mas->entry);
    4387           0 :                 return wr_mas->content;
    4388             :         }
    4389             : 
    4390          62 :         mas_wr_modify(wr_mas);
    4391          62 :         return wr_mas->content;
    4392             : }
    4393             : 
    4394             : /**
    4395             :  * mas_insert() - Internal call to insert a value
    4396             :  * @mas: The maple state
    4397             :  * @entry: The entry to store
    4398             :  *
    4399             :  * Return: %NULL or the contents that already exists at the requested index
    4400             :  * otherwise.  The maple state needs to be checked for error conditions.
    4401             :  */
    4402           0 : static inline void *mas_insert(struct ma_state *mas, void *entry)
    4403             : {
    4404           0 :         MA_WR_STATE(wr_mas, mas, entry);
    4405             : 
    4406             :         /*
    4407             :          * Inserting a new range inserts either 0, 1, or 2 pivots within the
    4408             :          * tree.  If the insert fits exactly into an existing gap with a value
    4409             :          * of NULL, then the slot only needs to be written with the new value.
    4410             :          * If the range being inserted is adjacent to another range, then only a
    4411             :          * single pivot needs to be inserted (as well as writing the entry).  If
    4412             :          * the new range is within a gap but does not touch any other ranges,
    4413             :          * then two pivots need to be inserted: the start - 1, and the end.  As
    4414             :          * usual, the entry must be written.  Most operations require a new node
    4415             :          * to be allocated and replace an existing node to ensure RCU safety,
    4416             :          * when in RCU mode.  The exception to requiring a newly allocated node
    4417             :          * is when inserting at the end of a node (appending).  When done
    4418             :          * carefully, appending can reuse the node in place.
    4419             :          */
    4420           0 :         wr_mas.content = mas_start(mas);
    4421           0 :         if (wr_mas.content)
    4422             :                 goto exists;
    4423             : 
    4424           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4425           0 :                 mas_store_root(mas, entry);
    4426           0 :                 return NULL;
    4427             :         }
    4428             : 
    4429             :         /* spanning writes always overwrite something */
    4430           0 :         if (!mas_wr_walk(&wr_mas))
    4431             :                 goto exists;
    4432             : 
    4433             :         /* At this point, we are at the leaf node that needs to be altered. */
    4434           0 :         wr_mas.offset_end = mas->offset;
    4435           0 :         wr_mas.end_piv = wr_mas.r_max;
    4436             : 
    4437           0 :         if (wr_mas.content || (mas->last > wr_mas.r_max))
    4438             :                 goto exists;
    4439             : 
    4440           0 :         if (!entry)
    4441             :                 return NULL;
    4442             : 
    4443           0 :         mas_wr_modify(&wr_mas);
    4444           0 :         return wr_mas.content;
    4445             : 
    4446             : exists:
    4447           0 :         mas_set_err(mas, -EEXIST);
    4448           0 :         return wr_mas.content;
    4449             : 
    4450             : }
    4451             : 
    4452             : static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
    4453             : {
    4454             : retry:
    4455           0 :         mas_set(mas, index);
    4456           0 :         mas_state_walk(mas);
    4457           0 :         if (mas_is_start(mas))
    4458             :                 goto retry;
    4459             : }
    4460             : 
    4461             : static inline bool mas_rewalk_if_dead(struct ma_state *mas,
    4462             :                 struct maple_node *node, const unsigned long index)
    4463             : {
    4464           0 :         if (unlikely(ma_dead_node(node))) {
    4465             :                 mas_rewalk(mas, index);
    4466             :                 return true;
    4467             :         }
    4468             :         return false;
    4469             : }
    4470             : 
    4471             : /*
    4472             :  * mas_prev_node() - Find the prev non-null entry at the same level in the
    4473             :  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
    4474             :  * @mas: The maple state
    4475             :  * @min: The lower limit to search
    4476             :  *
    4477             :  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
    4478             :  * Return: 1 if the node is dead, 0 otherwise.
    4479             :  */
    4480           0 : static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
    4481             : {
    4482             :         enum maple_type mt;
    4483             :         int offset, level;
    4484             :         void __rcu **slots;
    4485             :         struct maple_node *node;
    4486             :         unsigned long *pivots;
    4487             :         unsigned long max;
    4488             : 
    4489           0 :         node = mas_mn(mas);
    4490           0 :         if (!mas->min)
    4491             :                 goto no_entry;
    4492             : 
    4493           0 :         max = mas->min - 1;
    4494           0 :         if (max < min)
    4495             :                 goto no_entry;
    4496             : 
    4497             :         level = 0;
    4498             :         do {
    4499           0 :                 if (ma_is_root(node))
    4500             :                         goto no_entry;
    4501             : 
    4502             :                 /* Walk up. */
    4503           0 :                 if (unlikely(mas_ascend(mas)))
    4504             :                         return 1;
    4505           0 :                 offset = mas->offset;
    4506           0 :                 level++;
    4507           0 :                 node = mas_mn(mas);
    4508           0 :         } while (!offset);
    4509             : 
    4510           0 :         offset--;
    4511           0 :         mt = mte_node_type(mas->node);
    4512           0 :         while (level > 1) {
    4513           0 :                 level--;
    4514           0 :                 slots = ma_slots(node, mt);
    4515           0 :                 mas->node = mas_slot(mas, slots, offset);
    4516           0 :                 if (unlikely(ma_dead_node(node)))
    4517             :                         return 1;
    4518             : 
    4519           0 :                 mt = mte_node_type(mas->node);
    4520           0 :                 node = mas_mn(mas);
    4521           0 :                 pivots = ma_pivots(node, mt);
    4522           0 :                 offset = ma_data_end(node, mt, pivots, max);
    4523           0 :                 if (unlikely(ma_dead_node(node)))
    4524             :                         return 1;
    4525             :         }
    4526             : 
    4527           0 :         slots = ma_slots(node, mt);
    4528           0 :         mas->node = mas_slot(mas, slots, offset);
    4529           0 :         pivots = ma_pivots(node, mt);
    4530           0 :         if (unlikely(ma_dead_node(node)))
    4531             :                 return 1;
    4532             : 
    4533           0 :         if (likely(offset))
    4534           0 :                 mas->min = pivots[offset - 1] + 1;
    4535           0 :         mas->max = max;
    4536           0 :         mas->offset = mas_data_end(mas);
    4537           0 :         if (unlikely(mte_dead_node(mas->node)))
    4538             :                 return 1;
    4539             : 
    4540           0 :         return 0;
    4541             : 
    4542             : no_entry:
    4543           0 :         if (unlikely(ma_dead_node(node)))
    4544             :                 return 1;
    4545             : 
    4546           0 :         mas->node = MAS_NONE;
    4547           0 :         return 0;
    4548             : }
    4549             : 
    4550             : /*
    4551             :  * mas_prev_slot() - Get the entry in the previous slot
    4552             :  *
    4553             :  * @mas: The maple state
    4554             :  * @max: The minimum starting range
    4555             :  *
    4556             :  * Return: The entry in the previous slot which is possibly NULL
    4557             :  */
    4558           0 : static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
    4559             : {
    4560             :         void *entry;
    4561             :         void __rcu **slots;
    4562             :         unsigned long pivot;
    4563             :         enum maple_type type;
    4564             :         unsigned long *pivots;
    4565             :         struct maple_node *node;
    4566           0 :         unsigned long save_point = mas->index;
    4567             : 
    4568             : retry:
    4569           0 :         node = mas_mn(mas);
    4570           0 :         type = mte_node_type(mas->node);
    4571           0 :         pivots = ma_pivots(node, type);
    4572           0 :         if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4573             :                 goto retry;
    4574             : 
    4575             : again:
    4576           0 :         if (mas->min <= min) {
    4577           0 :                 pivot = mas_safe_min(mas, pivots, mas->offset);
    4578             : 
    4579           0 :                 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4580             :                         goto retry;
    4581             : 
    4582           0 :                 if (pivot <= min)
    4583             :                         return NULL;
    4584             :         }
    4585             : 
    4586           0 :         if (likely(mas->offset)) {
    4587           0 :                 mas->offset--;
    4588           0 :                 mas->last = mas->index - 1;
    4589           0 :                 mas->index = mas_safe_min(mas, pivots, mas->offset);
    4590             :         } else  {
    4591           0 :                 if (mas_prev_node(mas, min)) {
    4592             :                         mas_rewalk(mas, save_point);
    4593             :                         goto retry;
    4594             :                 }
    4595             : 
    4596           0 :                 if (mas_is_none(mas))
    4597             :                         return NULL;
    4598             : 
    4599           0 :                 mas->last = mas->max;
    4600           0 :                 node = mas_mn(mas);
    4601           0 :                 type = mte_node_type(mas->node);
    4602           0 :                 pivots = ma_pivots(node, type);
    4603           0 :                 mas->index = pivots[mas->offset - 1] + 1;
    4604             :         }
    4605             : 
    4606           0 :         slots = ma_slots(node, type);
    4607           0 :         entry = mas_slot(mas, slots, mas->offset);
    4608           0 :         if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4609             :                 goto retry;
    4610             : 
    4611           0 :         if (likely(entry))
    4612             :                 return entry;
    4613             : 
    4614           0 :         if (!empty)
    4615             :                 goto again;
    4616             : 
    4617             :         return entry;
    4618             : }
    4619             : 
    4620             : /*
    4621             :  * mas_next_node() - Get the next node at the same level in the tree.
    4622             :  * @mas: The maple state
    4623             :  * @max: The maximum pivot value to check.
    4624             :  *
    4625             :  * The next value will be mas->node[mas->offset] or MAS_NONE.
    4626             :  * Return: 1 on dead node, 0 otherwise.
    4627             :  */
    4628           0 : static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
    4629             :                                 unsigned long max)
    4630             : {
    4631             :         unsigned long min;
    4632             :         unsigned long *pivots;
    4633             :         struct maple_enode *enode;
    4634           0 :         int level = 0;
    4635             :         unsigned char node_end;
    4636             :         enum maple_type mt;
    4637             :         void __rcu **slots;
    4638             : 
    4639           0 :         if (mas->max >= max)
    4640             :                 goto no_entry;
    4641             : 
    4642           0 :         min = mas->max + 1;
    4643           0 :         level = 0;
    4644             :         do {
    4645           0 :                 if (ma_is_root(node))
    4646             :                         goto no_entry;
    4647             : 
    4648             :                 /* Walk up. */
    4649           0 :                 if (unlikely(mas_ascend(mas)))
    4650             :                         return 1;
    4651             : 
    4652           0 :                 level++;
    4653           0 :                 node = mas_mn(mas);
    4654           0 :                 mt = mte_node_type(mas->node);
    4655           0 :                 pivots = ma_pivots(node, mt);
    4656           0 :                 node_end = ma_data_end(node, mt, pivots, mas->max);
    4657           0 :                 if (unlikely(ma_dead_node(node)))
    4658             :                         return 1;
    4659             : 
    4660           0 :         } while (unlikely(mas->offset == node_end));
    4661             : 
    4662           0 :         slots = ma_slots(node, mt);
    4663           0 :         mas->offset++;
    4664           0 :         enode = mas_slot(mas, slots, mas->offset);
    4665           0 :         if (unlikely(ma_dead_node(node)))
    4666             :                 return 1;
    4667             : 
    4668           0 :         if (level > 1)
    4669           0 :                 mas->offset = 0;
    4670             : 
    4671           0 :         while (unlikely(level > 1)) {
    4672           0 :                 level--;
    4673           0 :                 mas->node = enode;
    4674           0 :                 node = mas_mn(mas);
    4675           0 :                 mt = mte_node_type(mas->node);
    4676           0 :                 slots = ma_slots(node, mt);
    4677           0 :                 enode = mas_slot(mas, slots, 0);
    4678           0 :                 if (unlikely(ma_dead_node(node)))
    4679             :                         return 1;
    4680             :         }
    4681             : 
    4682           0 :         if (!mas->offset)
    4683             :                 pivots = ma_pivots(node, mt);
    4684             : 
    4685           0 :         mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
    4686           0 :         if (unlikely(ma_dead_node(node)))
    4687             :                 return 1;
    4688             : 
    4689           0 :         mas->node = enode;
    4690           0 :         mas->min = min;
    4691           0 :         return 0;
    4692             : 
    4693             : no_entry:
    4694           0 :         if (unlikely(ma_dead_node(node)))
    4695             :                 return 1;
    4696             : 
    4697           0 :         mas->node = MAS_NONE;
    4698           0 :         return 0;
    4699             : }
    4700             : 
    4701             : /*
    4702             :  * mas_next_slot() - Get the entry in the next slot
    4703             :  *
    4704             :  * @mas: The maple state
    4705             :  * @max: The maximum starting range
    4706             :  * @empty: Can be empty
    4707             :  *
    4708             :  * Return: The entry in the next slot which is possibly NULL
    4709             :  */
    4710           0 : static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
    4711             : {
    4712             :         void __rcu **slots;
    4713             :         unsigned long *pivots;
    4714             :         unsigned long pivot;
    4715             :         enum maple_type type;
    4716             :         struct maple_node *node;
    4717             :         unsigned char data_end;
    4718           0 :         unsigned long save_point = mas->last;
    4719             :         void *entry;
    4720             : 
    4721             : retry:
    4722           0 :         node = mas_mn(mas);
    4723           0 :         type = mte_node_type(mas->node);
    4724           0 :         pivots = ma_pivots(node, type);
    4725           0 :         data_end = ma_data_end(node, type, pivots, mas->max);
    4726           0 :         if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4727             :                 goto retry;
    4728             : 
    4729             : again:
    4730           0 :         if (mas->max >= max) {
    4731           0 :                 if (likely(mas->offset < data_end))
    4732           0 :                         pivot = pivots[mas->offset];
    4733             :                 else
    4734             :                         return NULL; /* must be mas->max */
    4735             : 
    4736           0 :                 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4737             :                         goto retry;
    4738             : 
    4739           0 :                 if (pivot >= max)
    4740             :                         return NULL;
    4741             :         }
    4742             : 
    4743           0 :         if (likely(mas->offset < data_end)) {
    4744           0 :                 mas->index = pivots[mas->offset] + 1;
    4745           0 :                 mas->offset++;
    4746           0 :                 if (likely(mas->offset < data_end))
    4747           0 :                         mas->last = pivots[mas->offset];
    4748             :                 else
    4749           0 :                         mas->last = mas->max;
    4750             :         } else  {
    4751           0 :                 if (mas_next_node(mas, node, max)) {
    4752             :                         mas_rewalk(mas, save_point);
    4753             :                         goto retry;
    4754             :                 }
    4755             : 
    4756           0 :                 if (mas_is_none(mas))
    4757             :                         return NULL;
    4758             : 
    4759           0 :                 mas->offset = 0;
    4760           0 :                 mas->index = mas->min;
    4761           0 :                 node = mas_mn(mas);
    4762           0 :                 type = mte_node_type(mas->node);
    4763           0 :                 pivots = ma_pivots(node, type);
    4764           0 :                 mas->last = pivots[0];
    4765             :         }
    4766             : 
    4767           0 :         slots = ma_slots(node, type);
    4768           0 :         entry = mt_slot(mas->tree, slots, mas->offset);
    4769           0 :         if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
    4770             :                 goto retry;
    4771             : 
    4772           0 :         if (entry)
    4773             :                 return entry;
    4774             : 
    4775           0 :         if (!empty) {
    4776           0 :                 if (!mas->offset)
    4777           0 :                         data_end = 2;
    4778             :                 goto again;
    4779             :         }
    4780             : 
    4781             :         return entry;
    4782             : }
    4783             : 
    4784             : /*
    4785             :  * mas_next_entry() - Internal function to get the next entry.
    4786             :  * @mas: The maple state
    4787             :  * @limit: The maximum range start.
    4788             :  *
    4789             :  * Set the @mas->node to the next entry and the range_start to
    4790             :  * the beginning value for the entry.  Does not check beyond @limit.
    4791             :  * Sets @mas->index and @mas->last to the limit if it is hit.
    4792             :  * Restarts on dead nodes.
    4793             :  *
    4794             :  * Return: the next entry or %NULL.
    4795             :  */
    4796             : static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
    4797             : {
    4798             :         if (mas->last >= limit)
    4799             :                 return NULL;
    4800             : 
    4801           0 :         return mas_next_slot(mas, limit, false);
    4802             : }
    4803             : 
    4804             : /*
    4805             :  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
    4806             :  * highest gap address of a given size in a given node and descend.
    4807             :  * @mas: The maple state
    4808             :  * @size: The needed size.
    4809             :  *
    4810             :  * Return: True if found in a leaf, false otherwise.
    4811             :  *
    4812             :  */
    4813           0 : static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
    4814             :                 unsigned long *gap_min, unsigned long *gap_max)
    4815             : {
    4816           0 :         enum maple_type type = mte_node_type(mas->node);
    4817           0 :         struct maple_node *node = mas_mn(mas);
    4818             :         unsigned long *pivots, *gaps;
    4819             :         void __rcu **slots;
    4820           0 :         unsigned long gap = 0;
    4821             :         unsigned long max, min;
    4822             :         unsigned char offset;
    4823             : 
    4824           0 :         if (unlikely(mas_is_err(mas)))
    4825             :                 return true;
    4826             : 
    4827           0 :         if (ma_is_dense(type)) {
    4828             :                 /* dense nodes. */
    4829           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    4830           0 :                 return true;
    4831             :         }
    4832             : 
    4833           0 :         pivots = ma_pivots(node, type);
    4834           0 :         slots = ma_slots(node, type);
    4835           0 :         gaps = ma_gaps(node, type);
    4836           0 :         offset = mas->offset;
    4837           0 :         min = mas_safe_min(mas, pivots, offset);
    4838             :         /* Skip out of bounds. */
    4839           0 :         while (mas->last < min)
    4840           0 :                 min = mas_safe_min(mas, pivots, --offset);
    4841             : 
    4842           0 :         max = mas_safe_pivot(mas, pivots, offset, type);
    4843           0 :         while (mas->index <= max) {
    4844           0 :                 gap = 0;
    4845           0 :                 if (gaps)
    4846           0 :                         gap = gaps[offset];
    4847           0 :                 else if (!mas_slot(mas, slots, offset))
    4848           0 :                         gap = max - min + 1;
    4849             : 
    4850           0 :                 if (gap) {
    4851           0 :                         if ((size <= gap) && (size <= mas->last - min + 1))
    4852             :                                 break;
    4853             : 
    4854           0 :                         if (!gaps) {
    4855             :                                 /* Skip the next slot, it cannot be a gap. */
    4856           0 :                                 if (offset < 2)
    4857             :                                         goto ascend;
    4858             : 
    4859           0 :                                 offset -= 2;
    4860           0 :                                 max = pivots[offset];
    4861           0 :                                 min = mas_safe_min(mas, pivots, offset);
    4862           0 :                                 continue;
    4863             :                         }
    4864             :                 }
    4865             : 
    4866           0 :                 if (!offset)
    4867             :                         goto ascend;
    4868             : 
    4869           0 :                 offset--;
    4870           0 :                 max = min - 1;
    4871           0 :                 min = mas_safe_min(mas, pivots, offset);
    4872             :         }
    4873             : 
    4874           0 :         if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
    4875             :                 goto no_space;
    4876             : 
    4877           0 :         if (unlikely(ma_is_leaf(type))) {
    4878           0 :                 mas->offset = offset;
    4879           0 :                 *gap_min = min;
    4880           0 :                 *gap_max = min + gap - 1;
    4881           0 :                 return true;
    4882             :         }
    4883             : 
    4884             :         /* descend, only happens under lock. */
    4885           0 :         mas->node = mas_slot(mas, slots, offset);
    4886           0 :         mas->min = min;
    4887           0 :         mas->max = max;
    4888           0 :         mas->offset = mas_data_end(mas);
    4889           0 :         return false;
    4890             : 
    4891             : ascend:
    4892           0 :         if (!mte_is_root(mas->node))
    4893             :                 return false;
    4894             : 
    4895             : no_space:
    4896           0 :         mas_set_err(mas, -EBUSY);
    4897           0 :         return false;
    4898             : }
    4899             : 
    4900           0 : static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
    4901             : {
    4902           0 :         enum maple_type type = mte_node_type(mas->node);
    4903           0 :         unsigned long pivot, min, gap = 0;
    4904             :         unsigned char offset, data_end;
    4905             :         unsigned long *gaps, *pivots;
    4906             :         void __rcu **slots;
    4907             :         struct maple_node *node;
    4908           0 :         bool found = false;
    4909             : 
    4910           0 :         if (ma_is_dense(type)) {
    4911           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    4912           0 :                 return true;
    4913             :         }
    4914             : 
    4915           0 :         node = mas_mn(mas);
    4916           0 :         pivots = ma_pivots(node, type);
    4917           0 :         slots = ma_slots(node, type);
    4918           0 :         gaps = ma_gaps(node, type);
    4919           0 :         offset = mas->offset;
    4920           0 :         min = mas_safe_min(mas, pivots, offset);
    4921           0 :         data_end = ma_data_end(node, type, pivots, mas->max);
    4922           0 :         for (; offset <= data_end; offset++) {
    4923           0 :                 pivot = mas_logical_pivot(mas, pivots, offset, type);
    4924             : 
    4925             :                 /* Not within lower bounds */
    4926           0 :                 if (mas->index > pivot)
    4927             :                         goto next_slot;
    4928             : 
    4929           0 :                 if (gaps)
    4930           0 :                         gap = gaps[offset];
    4931           0 :                 else if (!mas_slot(mas, slots, offset))
    4932           0 :                         gap = min(pivot, mas->last) - max(mas->index, min) + 1;
    4933             :                 else
    4934             :                         goto next_slot;
    4935             : 
    4936           0 :                 if (gap >= size) {
    4937           0 :                         if (ma_is_leaf(type)) {
    4938             :                                 found = true;
    4939             :                                 goto done;
    4940             :                         }
    4941             :                         if (mas->index <= pivot) {
    4942           0 :                                 mas->node = mas_slot(mas, slots, offset);
    4943           0 :                                 mas->min = min;
    4944           0 :                                 mas->max = pivot;
    4945           0 :                                 offset = 0;
    4946           0 :                                 break;
    4947             :                         }
    4948             :                 }
    4949             : next_slot:
    4950           0 :                 min = pivot + 1;
    4951           0 :                 if (mas->last <= pivot) {
    4952           0 :                         mas_set_err(mas, -EBUSY);
    4953           0 :                         return true;
    4954             :                 }
    4955             :         }
    4956             : 
    4957           0 :         if (mte_is_root(mas->node))
    4958           0 :                 found = true;
    4959             : done:
    4960           0 :         mas->offset = offset;
    4961           0 :         return found;
    4962             : }
    4963             : 
    4964             : /**
    4965             :  * mas_walk() - Search for @mas->index in the tree.
    4966             :  * @mas: The maple state.
    4967             :  *
    4968             :  * mas->index and mas->last will be set to the range if there is a value.  If
    4969             :  * mas->node is MAS_NONE, reset to MAS_START.
    4970             :  *
    4971             :  * Return: the entry at the location or %NULL.
    4972             :  */
    4973           0 : void *mas_walk(struct ma_state *mas)
    4974             : {
    4975             :         void *entry;
    4976             : 
    4977           0 :         if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas))
    4978           0 :                 mas->node = MAS_START;
    4979             : retry:
    4980           0 :         entry = mas_state_walk(mas);
    4981           0 :         if (mas_is_start(mas)) {
    4982             :                 goto retry;
    4983           0 :         } else if (mas_is_none(mas)) {
    4984           0 :                 mas->index = 0;
    4985           0 :                 mas->last = ULONG_MAX;
    4986           0 :         } else if (mas_is_ptr(mas)) {
    4987           0 :                 if (!mas->index) {
    4988           0 :                         mas->last = 0;
    4989           0 :                         return entry;
    4990             :                 }
    4991             : 
    4992           0 :                 mas->index = 1;
    4993           0 :                 mas->last = ULONG_MAX;
    4994           0 :                 mas->node = MAS_NONE;
    4995           0 :                 return NULL;
    4996             :         }
    4997             : 
    4998             :         return entry;
    4999             : }
    5000             : EXPORT_SYMBOL_GPL(mas_walk);
    5001             : 
    5002           0 : static inline bool mas_rewind_node(struct ma_state *mas)
    5003             : {
    5004             :         unsigned char slot;
    5005             : 
    5006             :         do {
    5007           0 :                 if (mte_is_root(mas->node)) {
    5008           0 :                         slot = mas->offset;
    5009           0 :                         if (!slot)
    5010             :                                 return false;
    5011             :                 } else {
    5012           0 :                         mas_ascend(mas);
    5013           0 :                         slot = mas->offset;
    5014             :                 }
    5015           0 :         } while (!slot);
    5016             : 
    5017           0 :         mas->offset = --slot;
    5018           0 :         return true;
    5019             : }
    5020             : 
    5021             : /*
    5022             :  * mas_skip_node() - Internal function.  Skip over a node.
    5023             :  * @mas: The maple state.
    5024             :  *
    5025             :  * Return: true if there is another node, false otherwise.
    5026             :  */
    5027           0 : static inline bool mas_skip_node(struct ma_state *mas)
    5028             : {
    5029           0 :         if (mas_is_err(mas))
    5030             :                 return false;
    5031             : 
    5032             :         do {
    5033           0 :                 if (mte_is_root(mas->node)) {
    5034           0 :                         if (mas->offset >= mas_data_end(mas)) {
    5035           0 :                                 mas_set_err(mas, -EBUSY);
    5036           0 :                                 return false;
    5037             :                         }
    5038             :                 } else {
    5039           0 :                         mas_ascend(mas);
    5040             :                 }
    5041           0 :         } while (mas->offset >= mas_data_end(mas));
    5042             : 
    5043           0 :         mas->offset++;
    5044           0 :         return true;
    5045             : }
    5046             : 
    5047             : /*
    5048             :  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
    5049             :  * @size
    5050             :  * @mas: The maple state
    5051             :  * @size: The size of the gap required
    5052             :  *
    5053             :  * Search between @mas->index and @mas->last for a gap of @size.
    5054             :  */
    5055           0 : static inline void mas_awalk(struct ma_state *mas, unsigned long size)
    5056             : {
    5057           0 :         struct maple_enode *last = NULL;
    5058             : 
    5059             :         /*
    5060             :          * There are 4 options:
    5061             :          * go to child (descend)
    5062             :          * go back to parent (ascend)
    5063             :          * no gap found. (return, slot == MAPLE_NODE_SLOTS)
    5064             :          * found the gap. (return, slot != MAPLE_NODE_SLOTS)
    5065             :          */
    5066           0 :         while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
    5067           0 :                 if (last == mas->node)
    5068           0 :                         mas_skip_node(mas);
    5069             :                 else
    5070             :                         last = mas->node;
    5071             :         }
    5072           0 : }
    5073             : 
    5074             : /*
    5075             :  * mas_sparse_area() - Internal function.  Return upper or lower limit when
    5076             :  * searching for a gap in an empty tree.
    5077             :  * @mas: The maple state
    5078             :  * @min: the minimum range
    5079             :  * @max: The maximum range
    5080             :  * @size: The size of the gap
    5081             :  * @fwd: Searching forward or back
    5082             :  */
    5083             : static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
    5084             :                                 unsigned long max, unsigned long size, bool fwd)
    5085             : {
    5086           0 :         if (!unlikely(mas_is_none(mas)) && min == 0) {
    5087           0 :                 min++;
    5088             :                 /*
    5089             :                  * At this time, min is increased, we need to recheck whether
    5090             :                  * the size is satisfied.
    5091             :                  */
    5092           0 :                 if (min > max || max - min + 1 < size)
    5093             :                         return -EBUSY;
    5094             :         }
    5095             :         /* mas_is_ptr */
    5096             : 
    5097             :         if (fwd) {
    5098           0 :                 mas->index = min;
    5099           0 :                 mas->last = min + size - 1;
    5100             :         } else {
    5101           0 :                 mas->last = max;
    5102           0 :                 mas->index = max - size + 1;
    5103             :         }
    5104             :         return 0;
    5105             : }
    5106             : 
    5107             : /*
    5108             :  * mas_empty_area() - Get the lowest address within the range that is
    5109             :  * sufficient for the size requested.
    5110             :  * @mas: The maple state
    5111             :  * @min: The lowest value of the range
    5112             :  * @max: The highest value of the range
    5113             :  * @size: The size needed
    5114             :  */
    5115           0 : int mas_empty_area(struct ma_state *mas, unsigned long min,
    5116             :                 unsigned long max, unsigned long size)
    5117             : {
    5118             :         unsigned char offset;
    5119             :         unsigned long *pivots;
    5120             :         enum maple_type mt;
    5121             : 
    5122           0 :         if (min > max)
    5123             :                 return -EINVAL;
    5124             : 
    5125           0 :         if (size == 0 || max - min < size - 1)
    5126             :                 return -EINVAL;
    5127             : 
    5128           0 :         if (mas_is_start(mas))
    5129           0 :                 mas_start(mas);
    5130           0 :         else if (mas->offset >= 2)
    5131           0 :                 mas->offset -= 2;
    5132           0 :         else if (!mas_skip_node(mas))
    5133             :                 return -EBUSY;
    5134             : 
    5135             :         /* Empty set */
    5136           0 :         if (mas_is_none(mas) || mas_is_ptr(mas))
    5137             :                 return mas_sparse_area(mas, min, max, size, true);
    5138             : 
    5139             :         /* The start of the window can only be within these values */
    5140           0 :         mas->index = min;
    5141           0 :         mas->last = max;
    5142           0 :         mas_awalk(mas, size);
    5143             : 
    5144           0 :         if (unlikely(mas_is_err(mas)))
    5145           0 :                 return xa_err(mas->node);
    5146             : 
    5147           0 :         offset = mas->offset;
    5148           0 :         if (unlikely(offset == MAPLE_NODE_SLOTS))
    5149             :                 return -EBUSY;
    5150             : 
    5151           0 :         mt = mte_node_type(mas->node);
    5152           0 :         pivots = ma_pivots(mas_mn(mas), mt);
    5153           0 :         min = mas_safe_min(mas, pivots, offset);
    5154           0 :         if (mas->index < min)
    5155           0 :                 mas->index = min;
    5156           0 :         mas->last = mas->index + size - 1;
    5157           0 :         return 0;
    5158             : }
    5159             : EXPORT_SYMBOL_GPL(mas_empty_area);
    5160             : 
    5161             : /*
    5162             :  * mas_empty_area_rev() - Get the highest address within the range that is
    5163             :  * sufficient for the size requested.
    5164             :  * @mas: The maple state
    5165             :  * @min: The lowest value of the range
    5166             :  * @max: The highest value of the range
    5167             :  * @size: The size needed
    5168             :  */
    5169           0 : int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
    5170             :                 unsigned long max, unsigned long size)
    5171             : {
    5172           0 :         struct maple_enode *last = mas->node;
    5173             : 
    5174           0 :         if (min > max)
    5175             :                 return -EINVAL;
    5176             : 
    5177           0 :         if (size == 0 || max - min < size - 1)
    5178             :                 return -EINVAL;
    5179             : 
    5180           0 :         if (mas_is_start(mas)) {
    5181           0 :                 mas_start(mas);
    5182           0 :                 mas->offset = mas_data_end(mas);
    5183           0 :         } else if (mas->offset >= 2) {
    5184           0 :                 mas->offset -= 2;
    5185           0 :         } else if (!mas_rewind_node(mas)) {
    5186             :                 return -EBUSY;
    5187             :         }
    5188             : 
    5189             :         /* Empty set. */
    5190           0 :         if (mas_is_none(mas) || mas_is_ptr(mas))
    5191           0 :                 return mas_sparse_area(mas, min, max, size, false);
    5192             : 
    5193             :         /* The start of the window can only be within these values. */
    5194           0 :         mas->index = min;
    5195           0 :         mas->last = max;
    5196             : 
    5197           0 :         while (!mas_rev_awalk(mas, size, &min, &max)) {
    5198           0 :                 if (last == mas->node) {
    5199           0 :                         if (!mas_rewind_node(mas))
    5200             :                                 return -EBUSY;
    5201             :                 } else {
    5202             :                         last = mas->node;
    5203             :                 }
    5204             :         }
    5205             : 
    5206           0 :         if (mas_is_err(mas))
    5207           0 :                 return xa_err(mas->node);
    5208             : 
    5209           0 :         if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
    5210             :                 return -EBUSY;
    5211             : 
    5212             :         /* Trim the upper limit to the max. */
    5213           0 :         if (max < mas->last)
    5214           0 :                 mas->last = max;
    5215             : 
    5216           0 :         mas->index = mas->last - size + 1;
    5217           0 :         return 0;
    5218             : }
    5219             : EXPORT_SYMBOL_GPL(mas_empty_area_rev);
    5220             : 
    5221             : /*
    5222             :  * mte_dead_leaves() - Mark all leaves of a node as dead.
    5223             :  * @mas: The maple state
    5224             :  * @slots: Pointer to the slot array
    5225             :  * @type: The maple node type
    5226             :  *
    5227             :  * Must hold the write lock.
    5228             :  *
    5229             :  * Return: The number of leaves marked as dead.
    5230             :  */
    5231             : static inline
    5232           0 : unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
    5233             :                               void __rcu **slots)
    5234             : {
    5235             :         struct maple_node *node;
    5236             :         enum maple_type type;
    5237             :         void *entry;
    5238             :         int offset;
    5239             : 
    5240           0 :         for (offset = 0; offset < mt_slot_count(enode); offset++) {
    5241           0 :                 entry = mt_slot(mt, slots, offset);
    5242           0 :                 type = mte_node_type(entry);
    5243           0 :                 node = mte_to_node(entry);
    5244             :                 /* Use both node and type to catch LE & BE metadata */
    5245           0 :                 if (!node || !type)
    5246             :                         break;
    5247             : 
    5248           0 :                 mte_set_node_dead(entry);
    5249           0 :                 node->type = type;
    5250           0 :                 rcu_assign_pointer(slots[offset], node);
    5251             :         }
    5252             : 
    5253           0 :         return offset;
    5254             : }
    5255             : 
    5256             : /**
    5257             :  * mte_dead_walk() - Walk down a dead tree to just before the leaves
    5258             :  * @enode: The maple encoded node
    5259             :  * @offset: The starting offset
    5260             :  *
    5261             :  * Note: This can only be used from the RCU callback context.
    5262             :  */
    5263             : static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
    5264             : {
    5265             :         struct maple_node *node, *next;
    5266           0 :         void __rcu **slots = NULL;
    5267             : 
    5268           0 :         next = mte_to_node(*enode);
    5269             :         do {
    5270           0 :                 *enode = ma_enode_ptr(next);
    5271           0 :                 node = mte_to_node(*enode);
    5272           0 :                 slots = ma_slots(node, node->type);
    5273           0 :                 next = rcu_dereference_protected(slots[offset],
    5274             :                                         lock_is_held(&rcu_callback_map));
    5275           0 :                 offset = 0;
    5276           0 :         } while (!ma_is_leaf(next->type));
    5277             : 
    5278             :         return slots;
    5279             : }
    5280             : 
    5281             : /**
    5282             :  * mt_free_walk() - Walk & free a tree in the RCU callback context
    5283             :  * @head: The RCU head that's within the node.
    5284             :  *
    5285             :  * Note: This can only be used from the RCU callback context.
    5286             :  */
    5287           0 : static void mt_free_walk(struct rcu_head *head)
    5288             : {
    5289             :         void __rcu **slots;
    5290             :         struct maple_node *node, *start;
    5291             :         struct maple_enode *enode;
    5292             :         unsigned char offset;
    5293             :         enum maple_type type;
    5294             : 
    5295           0 :         node = container_of(head, struct maple_node, rcu);
    5296             : 
    5297           0 :         if (ma_is_leaf(node->type))
    5298             :                 goto free_leaf;
    5299             : 
    5300           0 :         start = node;
    5301           0 :         enode = mt_mk_node(node, node->type);
    5302             :         slots = mte_dead_walk(&enode, 0);
    5303             :         node = mte_to_node(enode);
    5304             :         do {
    5305           0 :                 mt_free_bulk(node->slot_len, slots);
    5306           0 :                 offset = node->parent_slot + 1;
    5307           0 :                 enode = node->piv_parent;
    5308           0 :                 if (mte_to_node(enode) == node)
    5309             :                         goto free_leaf;
    5310             : 
    5311           0 :                 type = mte_node_type(enode);
    5312           0 :                 slots = ma_slots(mte_to_node(enode), type);
    5313           0 :                 if ((offset < mt_slots[type]) &&
    5314           0 :                     rcu_dereference_protected(slots[offset],
    5315             :                                               lock_is_held(&rcu_callback_map)))
    5316             :                         slots = mte_dead_walk(&enode, offset);
    5317           0 :                 node = mte_to_node(enode);
    5318           0 :         } while ((node != start) || (node->slot_len < offset));
    5319             : 
    5320           0 :         slots = ma_slots(node, node->type);
    5321           0 :         mt_free_bulk(node->slot_len, slots);
    5322             : 
    5323             : free_leaf:
    5324           0 :         mt_free_rcu(&node->rcu);
    5325           0 : }
    5326             : 
    5327           0 : static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
    5328             :         struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
    5329             : {
    5330             :         struct maple_node *node;
    5331           0 :         struct maple_enode *next = *enode;
    5332           0 :         void __rcu **slots = NULL;
    5333             :         enum maple_type type;
    5334           0 :         unsigned char next_offset = 0;
    5335             : 
    5336             :         do {
    5337           0 :                 *enode = next;
    5338           0 :                 node = mte_to_node(*enode);
    5339           0 :                 type = mte_node_type(*enode);
    5340           0 :                 slots = ma_slots(node, type);
    5341           0 :                 next = mt_slot_locked(mt, slots, next_offset);
    5342           0 :                 if ((mte_dead_node(next)))
    5343           0 :                         next = mt_slot_locked(mt, slots, ++next_offset);
    5344             : 
    5345           0 :                 mte_set_node_dead(*enode);
    5346           0 :                 node->type = type;
    5347           0 :                 node->piv_parent = prev;
    5348           0 :                 node->parent_slot = offset;
    5349           0 :                 offset = next_offset;
    5350           0 :                 next_offset = 0;
    5351           0 :                 prev = *enode;
    5352           0 :         } while (!mte_is_leaf(next));
    5353             : 
    5354           0 :         return slots;
    5355             : }
    5356             : 
    5357           0 : static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
    5358             :                             bool free)
    5359             : {
    5360             :         void __rcu **slots;
    5361           0 :         struct maple_node *node = mte_to_node(enode);
    5362             :         struct maple_enode *start;
    5363             : 
    5364           0 :         if (mte_is_leaf(enode)) {
    5365           0 :                 node->type = mte_node_type(enode);
    5366           0 :                 goto free_leaf;
    5367             :         }
    5368             : 
    5369           0 :         start = enode;
    5370           0 :         slots = mte_destroy_descend(&enode, mt, start, 0);
    5371           0 :         node = mte_to_node(enode); // Updated in the above call.
    5372             :         do {
    5373             :                 enum maple_type type;
    5374             :                 unsigned char offset;
    5375             :                 struct maple_enode *parent, *tmp;
    5376             : 
    5377           0 :                 node->slot_len = mte_dead_leaves(enode, mt, slots);
    5378           0 :                 if (free)
    5379           0 :                         mt_free_bulk(node->slot_len, slots);
    5380           0 :                 offset = node->parent_slot + 1;
    5381           0 :                 enode = node->piv_parent;
    5382           0 :                 if (mte_to_node(enode) == node)
    5383             :                         goto free_leaf;
    5384             : 
    5385           0 :                 type = mte_node_type(enode);
    5386           0 :                 slots = ma_slots(mte_to_node(enode), type);
    5387           0 :                 if (offset >= mt_slots[type])
    5388             :                         goto next;
    5389             : 
    5390           0 :                 tmp = mt_slot_locked(mt, slots, offset);
    5391           0 :                 if (mte_node_type(tmp) && mte_to_node(tmp)) {
    5392           0 :                         parent = enode;
    5393           0 :                         enode = tmp;
    5394           0 :                         slots = mte_destroy_descend(&enode, mt, parent, offset);
    5395             :                 }
    5396             : next:
    5397           0 :                 node = mte_to_node(enode);
    5398           0 :         } while (start != enode);
    5399             : 
    5400           0 :         node = mte_to_node(enode);
    5401           0 :         node->slot_len = mte_dead_leaves(enode, mt, slots);
    5402           0 :         if (free)
    5403           0 :                 mt_free_bulk(node->slot_len, slots);
    5404             : 
    5405             : free_leaf:
    5406           0 :         if (free)
    5407           0 :                 mt_free_rcu(&node->rcu);
    5408             :         else
    5409           0 :                 mt_clear_meta(mt, node, node->type);
    5410           0 : }
    5411             : 
    5412             : /*
    5413             :  * mte_destroy_walk() - Free a tree or sub-tree.
    5414             :  * @enode: the encoded maple node (maple_enode) to start
    5415             :  * @mt: the tree to free - needed for node types.
    5416             :  *
    5417             :  * Must hold the write lock.
    5418             :  */
    5419           0 : static inline void mte_destroy_walk(struct maple_enode *enode,
    5420             :                                     struct maple_tree *mt)
    5421             : {
    5422           0 :         struct maple_node *node = mte_to_node(enode);
    5423             : 
    5424           0 :         if (mt_in_rcu(mt)) {
    5425           0 :                 mt_destroy_walk(enode, mt, false);
    5426           0 :                 call_rcu(&node->rcu, mt_free_walk);
    5427             :         } else {
    5428           0 :                 mt_destroy_walk(enode, mt, true);
    5429             :         }
    5430           0 : }
    5431             : 
    5432          64 : static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
    5433             : {
    5434         128 :         if (unlikely(mas_is_paused(wr_mas->mas)))
    5435           0 :                 mas_reset(wr_mas->mas);
    5436             : 
    5437          64 :         if (!mas_is_start(wr_mas->mas)) {
    5438           0 :                 if (mas_is_none(wr_mas->mas)) {
    5439           0 :                         mas_reset(wr_mas->mas);
    5440             :                 } else {
    5441           0 :                         wr_mas->r_max = wr_mas->mas->max;
    5442           0 :                         wr_mas->type = mte_node_type(wr_mas->mas->node);
    5443           0 :                         if (mas_is_span_wr(wr_mas))
    5444           0 :                                 mas_reset(wr_mas->mas);
    5445             :                 }
    5446             :         }
    5447          64 : }
    5448             : 
    5449             : /* Interface */
    5450             : 
    5451             : /**
    5452             :  * mas_store() - Store an @entry.
    5453             :  * @mas: The maple state.
    5454             :  * @entry: The entry to store.
    5455             :  *
    5456             :  * The @mas->index and @mas->last is used to set the range for the @entry.
    5457             :  * Note: The @mas should have pre-allocated entries to ensure there is memory to
    5458             :  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
    5459             :  *
    5460             :  * Return: the first entry between mas->index and mas->last or %NULL.
    5461             :  */
    5462           0 : void *mas_store(struct ma_state *mas, void *entry)
    5463             : {
    5464           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5465             : 
    5466           0 :         trace_ma_write(__func__, mas, 0, entry);
    5467             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    5468             :         if (MAS_WARN_ON(mas, mas->index > mas->last))
    5469             :                 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
    5470             : 
    5471             :         if (mas->index > mas->last) {
    5472             :                 mas_set_err(mas, -EINVAL);
    5473             :                 return NULL;
    5474             :         }
    5475             : 
    5476             : #endif
    5477             : 
    5478             :         /*
    5479             :          * Storing is the same operation as insert with the added caveat that it
    5480             :          * can overwrite entries.  Although this seems simple enough, one may
    5481             :          * want to examine what happens if a single store operation was to
    5482             :          * overwrite multiple entries within a self-balancing B-Tree.
    5483             :          */
    5484           0 :         mas_wr_store_setup(&wr_mas);
    5485           0 :         mas_wr_store_entry(&wr_mas);
    5486           0 :         return wr_mas.content;
    5487             : }
    5488             : EXPORT_SYMBOL_GPL(mas_store);
    5489             : 
    5490             : /**
    5491             :  * mas_store_gfp() - Store a value into the tree.
    5492             :  * @mas: The maple state
    5493             :  * @entry: The entry to store
    5494             :  * @gfp: The GFP_FLAGS to use for allocations if necessary.
    5495             :  *
    5496             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    5497             :  * be allocated.
    5498             :  */
    5499          64 : int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
    5500             : {
    5501          64 :         MA_WR_STATE(wr_mas, mas, entry);
    5502             : 
    5503          64 :         mas_wr_store_setup(&wr_mas);
    5504          64 :         trace_ma_write(__func__, mas, 0, entry);
    5505             : retry:
    5506          64 :         mas_wr_store_entry(&wr_mas);
    5507          64 :         if (unlikely(mas_nomem(mas, gfp)))
    5508             :                 goto retry;
    5509             : 
    5510          64 :         if (unlikely(mas_is_err(mas)))
    5511           0 :                 return xa_err(mas->node);
    5512             : 
    5513             :         return 0;
    5514             : }
    5515             : EXPORT_SYMBOL_GPL(mas_store_gfp);
    5516             : 
    5517             : /**
    5518             :  * mas_store_prealloc() - Store a value into the tree using memory
    5519             :  * preallocated in the maple state.
    5520             :  * @mas: The maple state
    5521             :  * @entry: The entry to store.
    5522             :  */
    5523           0 : void mas_store_prealloc(struct ma_state *mas, void *entry)
    5524             : {
    5525           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5526             : 
    5527           0 :         mas_wr_store_setup(&wr_mas);
    5528           0 :         trace_ma_write(__func__, mas, 0, entry);
    5529           0 :         mas_wr_store_entry(&wr_mas);
    5530           0 :         MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
    5531           0 :         mas_destroy(mas);
    5532           0 : }
    5533             : EXPORT_SYMBOL_GPL(mas_store_prealloc);
    5534             : 
    5535             : /**
    5536             :  * mas_preallocate() - Preallocate enough nodes for a store operation
    5537             :  * @mas: The maple state
    5538             :  * @gfp: The GFP_FLAGS to use for allocations.
    5539             :  *
    5540             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5541             :  */
    5542           0 : int mas_preallocate(struct ma_state *mas, gfp_t gfp)
    5543             : {
    5544             :         int ret;
    5545             : 
    5546           0 :         mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
    5547           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5548           0 :         if (likely(!mas_is_err(mas)))
    5549             :                 return 0;
    5550             : 
    5551           0 :         mas_set_alloc_req(mas, 0);
    5552           0 :         ret = xa_err(mas->node);
    5553           0 :         mas_reset(mas);
    5554           0 :         mas_destroy(mas);
    5555           0 :         mas_reset(mas);
    5556           0 :         return ret;
    5557             : }
    5558             : EXPORT_SYMBOL_GPL(mas_preallocate);
    5559             : 
    5560             : /*
    5561             :  * mas_destroy() - destroy a maple state.
    5562             :  * @mas: The maple state
    5563             :  *
    5564             :  * Upon completion, check the left-most node and rebalance against the node to
    5565             :  * the right if necessary.  Frees any allocated nodes associated with this maple
    5566             :  * state.
    5567             :  */
    5568          64 : void mas_destroy(struct ma_state *mas)
    5569             : {
    5570             :         struct maple_alloc *node;
    5571             :         unsigned long total;
    5572             : 
    5573             :         /*
    5574             :          * When using mas_for_each() to insert an expected number of elements,
    5575             :          * it is possible that the number inserted is less than the expected
    5576             :          * number.  To fix an invalid final node, a check is performed here to
    5577             :          * rebalance the previous node with the final node.
    5578             :          */
    5579          64 :         if (mas->mas_flags & MA_STATE_REBALANCE) {
    5580             :                 unsigned char end;
    5581             : 
    5582           0 :                 mas_start(mas);
    5583           0 :                 mtree_range_walk(mas);
    5584           0 :                 end = mas_data_end(mas) + 1;
    5585           0 :                 if (end < mt_min_slot_count(mas->node) - 1)
    5586           0 :                         mas_destroy_rebalance(mas, end);
    5587             : 
    5588           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    5589             :         }
    5590          64 :         mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
    5591             : 
    5592          64 :         total = mas_allocated(mas);
    5593          76 :         while (total) {
    5594          12 :                 node = mas->alloc;
    5595          12 :                 mas->alloc = node->slot[0];
    5596          12 :                 if (node->node_count > 1) {
    5597           0 :                         size_t count = node->node_count - 1;
    5598             : 
    5599           0 :                         mt_free_bulk(count, (void __rcu **)&node->slot[1]);
    5600           0 :                         total -= count;
    5601             :                 }
    5602          12 :                 kmem_cache_free(maple_node_cache, node);
    5603          12 :                 total--;
    5604             :         }
    5605             : 
    5606          64 :         mas->alloc = NULL;
    5607          64 : }
    5608             : EXPORT_SYMBOL_GPL(mas_destroy);
    5609             : 
    5610             : /*
    5611             :  * mas_expected_entries() - Set the expected number of entries that will be inserted.
    5612             :  * @mas: The maple state
    5613             :  * @nr_entries: The number of expected entries.
    5614             :  *
    5615             :  * This will attempt to pre-allocate enough nodes to store the expected number
    5616             :  * of entries.  The allocations will occur using the bulk allocator interface
    5617             :  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
    5618             :  * to ensure any unused nodes are freed.
    5619             :  *
    5620             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5621             :  */
    5622           0 : int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
    5623             : {
    5624           0 :         int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
    5625           0 :         struct maple_enode *enode = mas->node;
    5626             :         int nr_nodes;
    5627             :         int ret;
    5628             : 
    5629             :         /*
    5630             :          * Sometimes it is necessary to duplicate a tree to a new tree, such as
    5631             :          * forking a process and duplicating the VMAs from one tree to a new
    5632             :          * tree.  When such a situation arises, it is known that the new tree is
    5633             :          * not going to be used until the entire tree is populated.  For
    5634             :          * performance reasons, it is best to use a bulk load with RCU disabled.
    5635             :          * This allows for optimistic splitting that favours the left and reuse
    5636             :          * of nodes during the operation.
    5637             :          */
    5638             : 
    5639             :         /* Optimize splitting for bulk insert in-order */
    5640           0 :         mas->mas_flags |= MA_STATE_BULK;
    5641             : 
    5642             :         /*
    5643             :          * Avoid overflow, assume a gap between each entry and a trailing null.
    5644             :          * If this is wrong, it just means allocation can happen during
    5645             :          * insertion of entries.
    5646             :          */
    5647           0 :         nr_nodes = max(nr_entries, nr_entries * 2 + 1);
    5648           0 :         if (!mt_is_alloc(mas->tree))
    5649           0 :                 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
    5650             : 
    5651             :         /* Leaves; reduce slots to keep space for expansion */
    5652           0 :         nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
    5653             :         /* Internal nodes */
    5654           0 :         nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
    5655             :         /* Add working room for split (2 nodes) + new parents */
    5656           0 :         mas_node_count(mas, nr_nodes + 3);
    5657             : 
    5658             :         /* Detect if allocations run out */
    5659           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5660             : 
    5661           0 :         if (!mas_is_err(mas))
    5662             :                 return 0;
    5663             : 
    5664           0 :         ret = xa_err(mas->node);
    5665           0 :         mas->node = enode;
    5666           0 :         mas_destroy(mas);
    5667           0 :         return ret;
    5668             : 
    5669             : }
    5670             : EXPORT_SYMBOL_GPL(mas_expected_entries);
    5671             : 
    5672           0 : static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
    5673             :                 void **entry)
    5674             : {
    5675           0 :         bool was_none = mas_is_none(mas);
    5676             : 
    5677           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5678           0 :                 mas->node = MAS_START;
    5679             : 
    5680           0 :         if (mas_is_start(mas))
    5681           0 :                 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
    5682             : 
    5683           0 :         if (mas_is_ptr(mas)) {
    5684           0 :                 *entry = NULL;
    5685           0 :                 if (was_none && mas->index == 0) {
    5686           0 :                         mas->index = mas->last = 0;
    5687             :                         return true;
    5688             :                 }
    5689           0 :                 mas->index = 1;
    5690           0 :                 mas->last = ULONG_MAX;
    5691           0 :                 mas->node = MAS_NONE;
    5692             :                 return true;
    5693             :         }
    5694             : 
    5695           0 :         if (mas_is_none(mas))
    5696             :                 return true;
    5697             :         return false;
    5698             : }
    5699             : 
    5700             : /**
    5701             :  * mas_next() - Get the next entry.
    5702             :  * @mas: The maple state
    5703             :  * @max: The maximum index to check.
    5704             :  *
    5705             :  * Returns the next entry after @mas->index.
    5706             :  * Must hold rcu_read_lock or the write lock.
    5707             :  * Can return the zero entry.
    5708             :  *
    5709             :  * Return: The next entry or %NULL
    5710             :  */
    5711           0 : void *mas_next(struct ma_state *mas, unsigned long max)
    5712             : {
    5713           0 :         void *entry = NULL;
    5714             : 
    5715           0 :         if (mas_next_setup(mas, max, &entry))
    5716           0 :                 return entry;
    5717             : 
    5718             :         /* Retries on dead nodes handled by mas_next_slot */
    5719           0 :         return mas_next_slot(mas, max, false);
    5720             : }
    5721             : EXPORT_SYMBOL_GPL(mas_next);
    5722             : 
    5723             : /**
    5724             :  * mas_next_range() - Advance the maple state to the next range
    5725             :  * @mas: The maple state
    5726             :  * @max: The maximum index to check.
    5727             :  *
    5728             :  * Sets @mas->index and @mas->last to the range.
    5729             :  * Must hold rcu_read_lock or the write lock.
    5730             :  * Can return the zero entry.
    5731             :  *
    5732             :  * Return: The next entry or %NULL
    5733             :  */
    5734           0 : void *mas_next_range(struct ma_state *mas, unsigned long max)
    5735             : {
    5736           0 :         void *entry = NULL;
    5737             : 
    5738           0 :         if (mas_next_setup(mas, max, &entry))
    5739           0 :                 return entry;
    5740             : 
    5741             :         /* Retries on dead nodes handled by mas_next_slot */
    5742           0 :         return mas_next_slot(mas, max, true);
    5743             : }
    5744             : EXPORT_SYMBOL_GPL(mas_next_range);
    5745             : 
    5746             : /**
    5747             :  * mt_next() - get the next value in the maple tree
    5748             :  * @mt: The maple tree
    5749             :  * @index: The start index
    5750             :  * @max: The maximum index to check
    5751             :  *
    5752             :  * Return: The entry at @index or higher, or %NULL if nothing is found.
    5753             :  */
    5754           0 : void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
    5755             : {
    5756           0 :         void *entry = NULL;
    5757           0 :         MA_STATE(mas, mt, index, index);
    5758             : 
    5759             :         rcu_read_lock();
    5760           0 :         entry = mas_next(&mas, max);
    5761             :         rcu_read_unlock();
    5762           0 :         return entry;
    5763             : }
    5764             : EXPORT_SYMBOL_GPL(mt_next);
    5765             : 
    5766           0 : static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
    5767             :                 void **entry)
    5768             : {
    5769           0 :         if (mas->index <= min)
    5770             :                 goto none;
    5771             : 
    5772           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5773           0 :                 mas->node = MAS_START;
    5774             : 
    5775           0 :         if (mas_is_start(mas)) {
    5776           0 :                 mas_walk(mas);
    5777           0 :                 if (!mas->index)
    5778             :                         goto none;
    5779             :         }
    5780             : 
    5781           0 :         if (unlikely(mas_is_ptr(mas))) {
    5782           0 :                 if (!mas->index)
    5783             :                         goto none;
    5784           0 :                 mas->index = mas->last = 0;
    5785           0 :                 *entry = mas_root(mas);
    5786           0 :                 return true;
    5787             :         }
    5788             : 
    5789           0 :         if (mas_is_none(mas)) {
    5790           0 :                 if (mas->index) {
    5791             :                         /* Walked to out-of-range pointer? */
    5792           0 :                         mas->index = mas->last = 0;
    5793           0 :                         mas->node = MAS_ROOT;
    5794           0 :                         *entry = mas_root(mas);
    5795           0 :                         return true;
    5796             :                 }
    5797             :                 return true;
    5798             :         }
    5799             : 
    5800             :         return false;
    5801             : 
    5802             : none:
    5803           0 :         mas->node = MAS_NONE;
    5804           0 :         return true;
    5805             : }
    5806             : 
    5807             : /**
    5808             :  * mas_prev() - Get the previous entry
    5809             :  * @mas: The maple state
    5810             :  * @min: The minimum value to check.
    5811             :  *
    5812             :  * Must hold rcu_read_lock or the write lock.
    5813             :  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
    5814             :  * searchable nodes.
    5815             :  *
    5816             :  * Return: the previous value or %NULL.
    5817             :  */
    5818           0 : void *mas_prev(struct ma_state *mas, unsigned long min)
    5819             : {
    5820           0 :         void *entry = NULL;
    5821             : 
    5822           0 :         if (mas_prev_setup(mas, min, &entry))
    5823           0 :                 return entry;
    5824             : 
    5825           0 :         return mas_prev_slot(mas, min, false);
    5826             : }
    5827             : EXPORT_SYMBOL_GPL(mas_prev);
    5828             : 
    5829             : /**
    5830             :  * mas_prev_range() - Advance to the previous range
    5831             :  * @mas: The maple state
    5832             :  * @min: The minimum value to check.
    5833             :  *
    5834             :  * Sets @mas->index and @mas->last to the range.
    5835             :  * Must hold rcu_read_lock or the write lock.
    5836             :  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
    5837             :  * searchable nodes.
    5838             :  *
    5839             :  * Return: the previous value or %NULL.
    5840             :  */
    5841           0 : void *mas_prev_range(struct ma_state *mas, unsigned long min)
    5842             : {
    5843           0 :         void *entry = NULL;
    5844             : 
    5845           0 :         if (mas_prev_setup(mas, min, &entry))
    5846           0 :                 return entry;
    5847             : 
    5848           0 :         return mas_prev_slot(mas, min, true);
    5849             : }
    5850             : EXPORT_SYMBOL_GPL(mas_prev_range);
    5851             : 
    5852             : /**
    5853             :  * mt_prev() - get the previous value in the maple tree
    5854             :  * @mt: The maple tree
    5855             :  * @index: The start index
    5856             :  * @min: The minimum index to check
    5857             :  *
    5858             :  * Return: The entry at @index or lower, or %NULL if nothing is found.
    5859             :  */
    5860           0 : void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
    5861             : {
    5862           0 :         void *entry = NULL;
    5863           0 :         MA_STATE(mas, mt, index, index);
    5864             : 
    5865             :         rcu_read_lock();
    5866           0 :         entry = mas_prev(&mas, min);
    5867             :         rcu_read_unlock();
    5868           0 :         return entry;
    5869             : }
    5870             : EXPORT_SYMBOL_GPL(mt_prev);
    5871             : 
    5872             : /**
    5873             :  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
    5874             :  * @mas: The maple state to pause
    5875             :  *
    5876             :  * Some users need to pause a walk and drop the lock they're holding in
    5877             :  * order to yield to a higher priority thread or carry out an operation
    5878             :  * on an entry.  Those users should call this function before they drop
    5879             :  * the lock.  It resets the @mas to be suitable for the next iteration
    5880             :  * of the loop after the user has reacquired the lock.  If most entries
    5881             :  * found during a walk require you to call mas_pause(), the mt_for_each()
    5882             :  * iterator may be more appropriate.
    5883             :  *
    5884             :  */
    5885           0 : void mas_pause(struct ma_state *mas)
    5886             : {
    5887           0 :         mas->node = MAS_PAUSE;
    5888           0 : }
    5889             : EXPORT_SYMBOL_GPL(mas_pause);
    5890             : 
    5891             : /**
    5892             :  * mas_find_setup() - Internal function to set up mas_find*().
    5893             :  * @mas: The maple state
    5894             :  * @max: The maximum index
    5895             :  * @entry: Pointer to the entry
    5896             :  *
    5897             :  * Returns: True if entry is the answer, false otherwise.
    5898             :  */
    5899           0 : static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
    5900             :                 void **entry)
    5901             : {
    5902           0 :         *entry = NULL;
    5903             : 
    5904           0 :         if (unlikely(mas_is_none(mas))) {
    5905           0 :                 if (unlikely(mas->last >= max))
    5906             :                         return true;
    5907             : 
    5908           0 :                 mas->index = mas->last;
    5909           0 :                 mas->node = MAS_START;
    5910           0 :         } else if (unlikely(mas_is_paused(mas))) {
    5911           0 :                 if (unlikely(mas->last >= max))
    5912             :                         return true;
    5913             : 
    5914           0 :                 mas->node = MAS_START;
    5915           0 :                 mas->index = ++mas->last;
    5916           0 :         } else if (unlikely(mas_is_ptr(mas)))
    5917             :                 goto ptr_out_of_range;
    5918             : 
    5919           0 :         if (unlikely(mas_is_start(mas))) {
    5920             :                 /* First run or continue */
    5921           0 :                 if (mas->index > max)
    5922             :                         return true;
    5923             : 
    5924           0 :                 *entry = mas_walk(mas);
    5925           0 :                 if (*entry)
    5926             :                         return true;
    5927             : 
    5928             :         }
    5929             : 
    5930           0 :         if (unlikely(!mas_searchable(mas))) {
    5931           0 :                 if (unlikely(mas_is_ptr(mas)))
    5932             :                         goto ptr_out_of_range;
    5933             : 
    5934             :                 return true;
    5935             :         }
    5936             : 
    5937           0 :         if (mas->index == max)
    5938             :                 return true;
    5939             : 
    5940           0 :         return false;
    5941             : 
    5942             : ptr_out_of_range:
    5943           0 :         mas->node = MAS_NONE;
    5944           0 :         mas->index = 1;
    5945           0 :         mas->last = ULONG_MAX;
    5946           0 :         return true;
    5947             : }
    5948             : 
    5949             : /**
    5950             :  * mas_find() - On the first call, find the entry at or after mas->index up to
    5951             :  * %max.  Otherwise, find the entry after mas->index.
    5952             :  * @mas: The maple state
    5953             :  * @max: The maximum value to check.
    5954             :  *
    5955             :  * Must hold rcu_read_lock or the write lock.
    5956             :  * If an entry exists, last and index are updated accordingly.
    5957             :  * May set @mas->node to MAS_NONE.
    5958             :  *
    5959             :  * Return: The entry or %NULL.
    5960             :  */
    5961           0 : void *mas_find(struct ma_state *mas, unsigned long max)
    5962             : {
    5963           0 :         void *entry = NULL;
    5964             : 
    5965           0 :         if (mas_find_setup(mas, max, &entry))
    5966           0 :                 return entry;
    5967             : 
    5968             :         /* Retries on dead nodes handled by mas_next_slot */
    5969           0 :         return mas_next_slot(mas, max, false);
    5970             : }
    5971             : EXPORT_SYMBOL_GPL(mas_find);
    5972             : 
    5973             : /**
    5974             :  * mas_find_range() - On the first call, find the entry at or after
    5975             :  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
    5976             :  * @mas: The maple state
    5977             :  * @max: The maximum value to check.
    5978             :  *
    5979             :  * Must hold rcu_read_lock or the write lock.
    5980             :  * If an entry exists, last and index are updated accordingly.
    5981             :  * May set @mas->node to MAS_NONE.
    5982             :  *
    5983             :  * Return: The entry or %NULL.
    5984             :  */
    5985           0 : void *mas_find_range(struct ma_state *mas, unsigned long max)
    5986             : {
    5987             :         void *entry;
    5988             : 
    5989           0 :         if (mas_find_setup(mas, max, &entry))
    5990           0 :                 return entry;
    5991             : 
    5992             :         /* Retries on dead nodes handled by mas_next_slot */
    5993           0 :         return mas_next_slot(mas, max, true);
    5994             : }
    5995             : EXPORT_SYMBOL_GPL(mas_find_range);
    5996             : 
    5997             : /**
    5998             :  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
    5999             :  * @mas: The maple state
    6000             :  * @min: The minimum index
    6001             :  * @entry: Pointer to the entry
    6002             :  *
    6003             :  * Returns: True if entry is the answer, false otherwise.
    6004             :  */
    6005           0 : static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
    6006             :                 void **entry)
    6007             : {
    6008           0 :         *entry = NULL;
    6009             : 
    6010           0 :         if (unlikely(mas_is_none(mas))) {
    6011           0 :                 if (mas->index <= min)
    6012             :                         goto none;
    6013             : 
    6014           0 :                 mas->last = mas->index;
    6015           0 :                 mas->node = MAS_START;
    6016             :         }
    6017             : 
    6018           0 :         if (unlikely(mas_is_paused(mas))) {
    6019           0 :                 if (unlikely(mas->index <= min)) {
    6020           0 :                         mas->node = MAS_NONE;
    6021           0 :                         return true;
    6022             :                 }
    6023           0 :                 mas->node = MAS_START;
    6024           0 :                 mas->last = --mas->index;
    6025             :         }
    6026             : 
    6027           0 :         if (unlikely(mas_is_start(mas))) {
    6028             :                 /* First run or continue */
    6029           0 :                 if (mas->index < min)
    6030             :                         return true;
    6031             : 
    6032           0 :                 *entry = mas_walk(mas);
    6033           0 :                 if (*entry)
    6034             :                         return true;
    6035             :         }
    6036             : 
    6037           0 :         if (unlikely(!mas_searchable(mas))) {
    6038           0 :                 if (mas_is_ptr(mas))
    6039             :                         goto none;
    6040             : 
    6041           0 :                 if (mas_is_none(mas)) {
    6042             :                         /*
    6043             :                          * Walked to the location, and there was nothing so the
    6044             :                          * previous location is 0.
    6045             :                          */
    6046           0 :                         mas->last = mas->index = 0;
    6047           0 :                         mas->node = MAS_ROOT;
    6048           0 :                         *entry = mas_root(mas);
    6049           0 :                         return true;
    6050             :                 }
    6051             :         }
    6052             : 
    6053           0 :         if (mas->index < min)
    6054             :                 return true;
    6055             : 
    6056           0 :         return false;
    6057             : 
    6058             : none:
    6059           0 :         mas->node = MAS_NONE;
    6060           0 :         return true;
    6061             : }
    6062             : 
    6063             : /**
    6064             :  * mas_find_rev: On the first call, find the first non-null entry at or below
    6065             :  * mas->index down to %min.  Otherwise find the first non-null entry below
    6066             :  * mas->index down to %min.
    6067             :  * @mas: The maple state
    6068             :  * @min: The minimum value to check.
    6069             :  *
    6070             :  * Must hold rcu_read_lock or the write lock.
    6071             :  * If an entry exists, last and index are updated accordingly.
    6072             :  * May set @mas->node to MAS_NONE.
    6073             :  *
    6074             :  * Return: The entry or %NULL.
    6075             :  */
    6076           0 : void *mas_find_rev(struct ma_state *mas, unsigned long min)
    6077             : {
    6078             :         void *entry;
    6079             : 
    6080           0 :         if (mas_find_rev_setup(mas, min, &entry))
    6081           0 :                 return entry;
    6082             : 
    6083             :         /* Retries on dead nodes handled by mas_prev_slot */
    6084           0 :         return mas_prev_slot(mas, min, false);
    6085             : 
    6086             : }
    6087             : EXPORT_SYMBOL_GPL(mas_find_rev);
    6088             : 
    6089             : /**
    6090             :  * mas_find_range_rev: On the first call, find the first non-null entry at or
    6091             :  * below mas->index down to %min.  Otherwise advance to the previous slot after
    6092             :  * mas->index down to %min.
    6093             :  * @mas: The maple state
    6094             :  * @min: The minimum value to check.
    6095             :  *
    6096             :  * Must hold rcu_read_lock or the write lock.
    6097             :  * If an entry exists, last and index are updated accordingly.
    6098             :  * May set @mas->node to MAS_NONE.
    6099             :  *
    6100             :  * Return: The entry or %NULL.
    6101             :  */
    6102           0 : void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
    6103             : {
    6104             :         void *entry;
    6105             : 
    6106           0 :         if (mas_find_rev_setup(mas, min, &entry))
    6107           0 :                 return entry;
    6108             : 
    6109             :         /* Retries on dead nodes handled by mas_prev_slot */
    6110           0 :         return mas_prev_slot(mas, min, true);
    6111             : }
    6112             : EXPORT_SYMBOL_GPL(mas_find_range_rev);
    6113             : 
    6114             : /**
    6115             :  * mas_erase() - Find the range in which index resides and erase the entire
    6116             :  * range.
    6117             :  * @mas: The maple state
    6118             :  *
    6119             :  * Must hold the write lock.
    6120             :  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
    6121             :  * erases that range.
    6122             :  *
    6123             :  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
    6124             :  */
    6125           0 : void *mas_erase(struct ma_state *mas)
    6126             : {
    6127             :         void *entry;
    6128           0 :         MA_WR_STATE(wr_mas, mas, NULL);
    6129             : 
    6130           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    6131           0 :                 mas->node = MAS_START;
    6132             : 
    6133             :         /* Retry unnecessary when holding the write lock. */
    6134           0 :         entry = mas_state_walk(mas);
    6135           0 :         if (!entry)
    6136             :                 return NULL;
    6137             : 
    6138             : write_retry:
    6139             :         /* Must reset to ensure spanning writes of last slot are detected */
    6140           0 :         mas_reset(mas);
    6141           0 :         mas_wr_store_setup(&wr_mas);
    6142           0 :         mas_wr_store_entry(&wr_mas);
    6143           0 :         if (mas_nomem(mas, GFP_KERNEL))
    6144             :                 goto write_retry;
    6145             : 
    6146             :         return entry;
    6147             : }
    6148             : EXPORT_SYMBOL_GPL(mas_erase);
    6149             : 
    6150             : /**
    6151             :  * mas_nomem() - Check if there was an error allocating and do the allocation
    6152             :  * if necessary If there are allocations, then free them.
    6153             :  * @mas: The maple state
    6154             :  * @gfp: The GFP_FLAGS to use for allocations
    6155             :  * Return: true on allocation, false otherwise.
    6156             :  */
    6157          64 : bool mas_nomem(struct ma_state *mas, gfp_t gfp)
    6158             :         __must_hold(mas->tree->ma_lock)
    6159             : {
    6160          64 :         if (likely(mas->node != MA_ERROR(-ENOMEM))) {
    6161          64 :                 mas_destroy(mas);
    6162          64 :                 return false;
    6163             :         }
    6164             : 
    6165           0 :         if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
    6166           0 :                 mtree_unlock(mas->tree);
    6167           0 :                 mas_alloc_nodes(mas, gfp);
    6168           0 :                 mtree_lock(mas->tree);
    6169             :         } else {
    6170           0 :                 mas_alloc_nodes(mas, gfp);
    6171             :         }
    6172             : 
    6173           0 :         if (!mas_allocated(mas))
    6174             :                 return false;
    6175             : 
    6176           0 :         mas->node = MAS_START;
    6177           0 :         return true;
    6178             : }
    6179             : 
    6180           1 : void __init maple_tree_init(void)
    6181             : {
    6182           1 :         maple_node_cache = kmem_cache_create("maple_node",
    6183             :                         sizeof(struct maple_node), sizeof(struct maple_node),
    6184             :                         SLAB_PANIC, NULL);
    6185           1 : }
    6186             : 
    6187             : /**
    6188             :  * mtree_load() - Load a value stored in a maple tree
    6189             :  * @mt: The maple tree
    6190             :  * @index: The index to load
    6191             :  *
    6192             :  * Return: the entry or %NULL
    6193             :  */
    6194           0 : void *mtree_load(struct maple_tree *mt, unsigned long index)
    6195             : {
    6196           0 :         MA_STATE(mas, mt, index, index);
    6197             :         void *entry;
    6198             : 
    6199           0 :         trace_ma_read(__func__, &mas);
    6200             :         rcu_read_lock();
    6201             : retry:
    6202           0 :         entry = mas_start(&mas);
    6203           0 :         if (unlikely(mas_is_none(&mas)))
    6204             :                 goto unlock;
    6205             : 
    6206           0 :         if (unlikely(mas_is_ptr(&mas))) {
    6207           0 :                 if (index)
    6208           0 :                         entry = NULL;
    6209             : 
    6210             :                 goto unlock;
    6211             :         }
    6212             : 
    6213           0 :         entry = mtree_lookup_walk(&mas);
    6214           0 :         if (!entry && unlikely(mas_is_start(&mas)))
    6215             :                 goto retry;
    6216             : unlock:
    6217           0 :         rcu_read_unlock();
    6218           0 :         if (xa_is_zero(entry))
    6219             :                 return NULL;
    6220             : 
    6221           0 :         return entry;
    6222             : }
    6223             : EXPORT_SYMBOL(mtree_load);
    6224             : 
    6225             : /**
    6226             :  * mtree_store_range() - Store an entry at a given range.
    6227             :  * @mt: The maple tree
    6228             :  * @index: The start of the range
    6229             :  * @last: The end of the range
    6230             :  * @entry: The entry to store
    6231             :  * @gfp: The GFP_FLAGS to use for allocations
    6232             :  *
    6233             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6234             :  * be allocated.
    6235             :  */
    6236           0 : int mtree_store_range(struct maple_tree *mt, unsigned long index,
    6237             :                 unsigned long last, void *entry, gfp_t gfp)
    6238             : {
    6239           0 :         MA_STATE(mas, mt, index, last);
    6240           0 :         MA_WR_STATE(wr_mas, &mas, entry);
    6241             : 
    6242           0 :         trace_ma_write(__func__, &mas, 0, entry);
    6243           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6244             :                 return -EINVAL;
    6245             : 
    6246           0 :         if (index > last)
    6247             :                 return -EINVAL;
    6248             : 
    6249           0 :         mtree_lock(mt);
    6250             : retry:
    6251           0 :         mas_wr_store_entry(&wr_mas);
    6252           0 :         if (mas_nomem(&mas, gfp))
    6253             :                 goto retry;
    6254             : 
    6255           0 :         mtree_unlock(mt);
    6256           0 :         if (mas_is_err(&mas))
    6257           0 :                 return xa_err(mas.node);
    6258             : 
    6259             :         return 0;
    6260             : }
    6261             : EXPORT_SYMBOL(mtree_store_range);
    6262             : 
    6263             : /**
    6264             :  * mtree_store() - Store an entry at a given index.
    6265             :  * @mt: The maple tree
    6266             :  * @index: The index to store the value
    6267             :  * @entry: The entry to store
    6268             :  * @gfp: The GFP_FLAGS to use for allocations
    6269             :  *
    6270             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6271             :  * be allocated.
    6272             :  */
    6273           0 : int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
    6274             :                  gfp_t gfp)
    6275             : {
    6276           0 :         return mtree_store_range(mt, index, index, entry, gfp);
    6277             : }
    6278             : EXPORT_SYMBOL(mtree_store);
    6279             : 
    6280             : /**
    6281             :  * mtree_insert_range() - Insert an entry at a give range if there is no value.
    6282             :  * @mt: The maple tree
    6283             :  * @first: The start of the range
    6284             :  * @last: The end of the range
    6285             :  * @entry: The entry to store
    6286             :  * @gfp: The GFP_FLAGS to use for allocations.
    6287             :  *
    6288             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6289             :  * request, -ENOMEM if memory could not be allocated.
    6290             :  */
    6291           0 : int mtree_insert_range(struct maple_tree *mt, unsigned long first,
    6292             :                 unsigned long last, void *entry, gfp_t gfp)
    6293             : {
    6294           0 :         MA_STATE(ms, mt, first, last);
    6295             : 
    6296           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6297             :                 return -EINVAL;
    6298             : 
    6299           0 :         if (first > last)
    6300             :                 return -EINVAL;
    6301             : 
    6302           0 :         mtree_lock(mt);
    6303             : retry:
    6304           0 :         mas_insert(&ms, entry);
    6305           0 :         if (mas_nomem(&ms, gfp))
    6306             :                 goto retry;
    6307             : 
    6308           0 :         mtree_unlock(mt);
    6309           0 :         if (mas_is_err(&ms))
    6310           0 :                 return xa_err(ms.node);
    6311             : 
    6312             :         return 0;
    6313             : }
    6314             : EXPORT_SYMBOL(mtree_insert_range);
    6315             : 
    6316             : /**
    6317             :  * mtree_insert() - Insert an entry at a give index if there is no value.
    6318             :  * @mt: The maple tree
    6319             :  * @index : The index to store the value
    6320             :  * @entry: The entry to store
    6321             :  * @gfp: The FGP_FLAGS to use for allocations.
    6322             :  *
    6323             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6324             :  * request, -ENOMEM if memory could not be allocated.
    6325             :  */
    6326           0 : int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
    6327             :                  gfp_t gfp)
    6328             : {
    6329           0 :         return mtree_insert_range(mt, index, index, entry, gfp);
    6330             : }
    6331             : EXPORT_SYMBOL(mtree_insert);
    6332             : 
    6333           0 : int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
    6334             :                 void *entry, unsigned long size, unsigned long min,
    6335             :                 unsigned long max, gfp_t gfp)
    6336             : {
    6337           0 :         int ret = 0;
    6338             : 
    6339           0 :         MA_STATE(mas, mt, 0, 0);
    6340           0 :         if (!mt_is_alloc(mt))
    6341             :                 return -EINVAL;
    6342             : 
    6343           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6344             :                 return -EINVAL;
    6345             : 
    6346           0 :         mtree_lock(mt);
    6347             : retry:
    6348           0 :         ret = mas_empty_area(&mas, min, max, size);
    6349           0 :         if (ret)
    6350             :                 goto unlock;
    6351             : 
    6352           0 :         mas_insert(&mas, entry);
    6353             :         /*
    6354             :          * mas_nomem() may release the lock, causing the allocated area
    6355             :          * to be unavailable, so try to allocate a free area again.
    6356             :          */
    6357           0 :         if (mas_nomem(&mas, gfp))
    6358             :                 goto retry;
    6359             : 
    6360           0 :         if (mas_is_err(&mas))
    6361           0 :                 ret = xa_err(mas.node);
    6362             :         else
    6363           0 :                 *startp = mas.index;
    6364             : 
    6365             : unlock:
    6366           0 :         mtree_unlock(mt);
    6367           0 :         return ret;
    6368             : }
    6369             : EXPORT_SYMBOL(mtree_alloc_range);
    6370             : 
    6371           0 : int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
    6372             :                 void *entry, unsigned long size, unsigned long min,
    6373             :                 unsigned long max, gfp_t gfp)
    6374             : {
    6375           0 :         int ret = 0;
    6376             : 
    6377           0 :         MA_STATE(mas, mt, 0, 0);
    6378           0 :         if (!mt_is_alloc(mt))
    6379             :                 return -EINVAL;
    6380             : 
    6381           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6382             :                 return -EINVAL;
    6383             : 
    6384           0 :         mtree_lock(mt);
    6385             : retry:
    6386           0 :         ret = mas_empty_area_rev(&mas, min, max, size);
    6387           0 :         if (ret)
    6388             :                 goto unlock;
    6389             : 
    6390           0 :         mas_insert(&mas, entry);
    6391             :         /*
    6392             :          * mas_nomem() may release the lock, causing the allocated area
    6393             :          * to be unavailable, so try to allocate a free area again.
    6394             :          */
    6395           0 :         if (mas_nomem(&mas, gfp))
    6396             :                 goto retry;
    6397             : 
    6398           0 :         if (mas_is_err(&mas))
    6399           0 :                 ret = xa_err(mas.node);
    6400             :         else
    6401           0 :                 *startp = mas.index;
    6402             : 
    6403             : unlock:
    6404           0 :         mtree_unlock(mt);
    6405           0 :         return ret;
    6406             : }
    6407             : EXPORT_SYMBOL(mtree_alloc_rrange);
    6408             : 
    6409             : /**
    6410             :  * mtree_erase() - Find an index and erase the entire range.
    6411             :  * @mt: The maple tree
    6412             :  * @index: The index to erase
    6413             :  *
    6414             :  * Erasing is the same as a walk to an entry then a store of a NULL to that
    6415             :  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
    6416             :  *
    6417             :  * Return: The entry stored at the @index or %NULL
    6418             :  */
    6419           0 : void *mtree_erase(struct maple_tree *mt, unsigned long index)
    6420             : {
    6421           0 :         void *entry = NULL;
    6422             : 
    6423           0 :         MA_STATE(mas, mt, index, index);
    6424           0 :         trace_ma_op(__func__, &mas);
    6425             : 
    6426           0 :         mtree_lock(mt);
    6427           0 :         entry = mas_erase(&mas);
    6428           0 :         mtree_unlock(mt);
    6429             : 
    6430           0 :         return entry;
    6431             : }
    6432             : EXPORT_SYMBOL(mtree_erase);
    6433             : 
    6434             : /**
    6435             :  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
    6436             :  * @mt: The maple tree
    6437             :  *
    6438             :  * Note: Does not handle locking.
    6439             :  */
    6440           0 : void __mt_destroy(struct maple_tree *mt)
    6441             : {
    6442           0 :         void *root = mt_root_locked(mt);
    6443             : 
    6444           0 :         rcu_assign_pointer(mt->ma_root, NULL);
    6445           0 :         if (xa_is_node(root))
    6446           0 :                 mte_destroy_walk(root, mt);
    6447             : 
    6448           0 :         mt->ma_flags = 0;
    6449           0 : }
    6450             : EXPORT_SYMBOL_GPL(__mt_destroy);
    6451             : 
    6452             : /**
    6453             :  * mtree_destroy() - Destroy a maple tree
    6454             :  * @mt: The maple tree
    6455             :  *
    6456             :  * Frees all resources used by the tree.  Handles locking.
    6457             :  */
    6458           0 : void mtree_destroy(struct maple_tree *mt)
    6459             : {
    6460           0 :         mtree_lock(mt);
    6461           0 :         __mt_destroy(mt);
    6462           0 :         mtree_unlock(mt);
    6463           0 : }
    6464             : EXPORT_SYMBOL(mtree_destroy);
    6465             : 
    6466             : /**
    6467             :  * mt_find() - Search from the start up until an entry is found.
    6468             :  * @mt: The maple tree
    6469             :  * @index: Pointer which contains the start location of the search
    6470             :  * @max: The maximum value to check
    6471             :  *
    6472             :  * Handles locking.  @index will be incremented to one beyond the range.
    6473             :  *
    6474             :  * Return: The entry at or after the @index or %NULL
    6475             :  */
    6476           0 : void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
    6477             : {
    6478           0 :         MA_STATE(mas, mt, *index, *index);
    6479             :         void *entry;
    6480             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6481             :         unsigned long copy = *index;
    6482             : #endif
    6483             : 
    6484           0 :         trace_ma_read(__func__, &mas);
    6485             : 
    6486           0 :         if ((*index) > max)
    6487             :                 return NULL;
    6488             : 
    6489             :         rcu_read_lock();
    6490             : retry:
    6491           0 :         entry = mas_state_walk(&mas);
    6492           0 :         if (mas_is_start(&mas))
    6493             :                 goto retry;
    6494             : 
    6495           0 :         if (unlikely(xa_is_zero(entry)))
    6496           0 :                 entry = NULL;
    6497             : 
    6498           0 :         if (entry)
    6499             :                 goto unlock;
    6500             : 
    6501           0 :         while (mas_searchable(&mas) && (mas.last < max)) {
    6502           0 :                 entry = mas_next_entry(&mas, max);
    6503           0 :                 if (likely(entry && !xa_is_zero(entry)))
    6504             :                         break;
    6505             :         }
    6506             : 
    6507           0 :         if (unlikely(xa_is_zero(entry)))
    6508           0 :                 entry = NULL;
    6509             : unlock:
    6510             :         rcu_read_unlock();
    6511           0 :         if (likely(entry)) {
    6512           0 :                 *index = mas.last + 1;
    6513             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6514             :                 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
    6515             :                         pr_err("index not increased! %lx <= %lx\n",
    6516             :                                *index, copy);
    6517             : #endif
    6518             :         }
    6519             : 
    6520             :         return entry;
    6521             : }
    6522             : EXPORT_SYMBOL(mt_find);
    6523             : 
    6524             : /**
    6525             :  * mt_find_after() - Search from the start up until an entry is found.
    6526             :  * @mt: The maple tree
    6527             :  * @index: Pointer which contains the start location of the search
    6528             :  * @max: The maximum value to check
    6529             :  *
    6530             :  * Handles locking, detects wrapping on index == 0
    6531             :  *
    6532             :  * Return: The entry at or after the @index or %NULL
    6533             :  */
    6534           0 : void *mt_find_after(struct maple_tree *mt, unsigned long *index,
    6535             :                     unsigned long max)
    6536             : {
    6537           0 :         if (!(*index))
    6538             :                 return NULL;
    6539             : 
    6540           0 :         return mt_find(mt, index, max);
    6541             : }
    6542             : EXPORT_SYMBOL(mt_find_after);
    6543             : 
    6544             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6545             : atomic_t maple_tree_tests_run;
    6546             : EXPORT_SYMBOL_GPL(maple_tree_tests_run);
    6547             : atomic_t maple_tree_tests_passed;
    6548             : EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
    6549             : 
    6550             : #ifndef __KERNEL__
    6551             : extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
    6552             : void mt_set_non_kernel(unsigned int val)
    6553             : {
    6554             :         kmem_cache_set_non_kernel(maple_node_cache, val);
    6555             : }
    6556             : 
    6557             : extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
    6558             : unsigned long mt_get_alloc_size(void)
    6559             : {
    6560             :         return kmem_cache_get_alloc(maple_node_cache);
    6561             : }
    6562             : 
    6563             : extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
    6564             : void mt_zero_nr_tallocated(void)
    6565             : {
    6566             :         kmem_cache_zero_nr_tallocated(maple_node_cache);
    6567             : }
    6568             : 
    6569             : extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
    6570             : unsigned int mt_nr_tallocated(void)
    6571             : {
    6572             :         return kmem_cache_nr_tallocated(maple_node_cache);
    6573             : }
    6574             : 
    6575             : extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
    6576             : unsigned int mt_nr_allocated(void)
    6577             : {
    6578             :         return kmem_cache_nr_allocated(maple_node_cache);
    6579             : }
    6580             : 
    6581             : /*
    6582             :  * mas_dead_node() - Check if the maple state is pointing to a dead node.
    6583             :  * @mas: The maple state
    6584             :  * @index: The index to restore in @mas.
    6585             :  *
    6586             :  * Used in test code.
    6587             :  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
    6588             :  */
    6589             : static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
    6590             : {
    6591             :         if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
    6592             :                 return 0;
    6593             : 
    6594             :         if (likely(!mte_dead_node(mas->node)))
    6595             :                 return 0;
    6596             : 
    6597             :         mas_rewalk(mas, index);
    6598             :         return 1;
    6599             : }
    6600             : 
    6601             : void mt_cache_shrink(void)
    6602             : {
    6603             : }
    6604             : #else
    6605             : /*
    6606             :  * mt_cache_shrink() - For testing, don't use this.
    6607             :  *
    6608             :  * Certain testcases can trigger an OOM when combined with other memory
    6609             :  * debugging configuration options.  This function is used to reduce the
    6610             :  * possibility of an out of memory even due to kmem_cache objects remaining
    6611             :  * around for longer than usual.
    6612             :  */
    6613             : void mt_cache_shrink(void)
    6614             : {
    6615             :         kmem_cache_shrink(maple_node_cache);
    6616             : 
    6617             : }
    6618             : EXPORT_SYMBOL_GPL(mt_cache_shrink);
    6619             : 
    6620             : #endif /* not defined __KERNEL__ */
    6621             : /*
    6622             :  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
    6623             :  * @mas: The maple state
    6624             :  * @offset: The offset into the slot array to fetch.
    6625             :  *
    6626             :  * Return: The entry stored at @offset.
    6627             :  */
    6628             : static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
    6629             :                 unsigned char offset)
    6630             : {
    6631             :         return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
    6632             :                         offset);
    6633             : }
    6634             : 
    6635             : 
    6636             : /*
    6637             :  * mas_first_entry() - Go the first leaf and find the first entry.
    6638             :  * @mas: the maple state.
    6639             :  * @limit: the maximum index to check.
    6640             :  * @*r_start: Pointer to set to the range start.
    6641             :  *
    6642             :  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
    6643             :  *
    6644             :  * Return: The first entry or MAS_NONE.
    6645             :  */
    6646             : static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
    6647             :                 unsigned long limit, enum maple_type mt)
    6648             : 
    6649             : {
    6650             :         unsigned long max;
    6651             :         unsigned long *pivots;
    6652             :         void __rcu **slots;
    6653             :         void *entry = NULL;
    6654             : 
    6655             :         mas->index = mas->min;
    6656             :         if (mas->index > limit)
    6657             :                 goto none;
    6658             : 
    6659             :         max = mas->max;
    6660             :         mas->offset = 0;
    6661             :         while (likely(!ma_is_leaf(mt))) {
    6662             :                 MAS_WARN_ON(mas, mte_dead_node(mas->node));
    6663             :                 slots = ma_slots(mn, mt);
    6664             :                 entry = mas_slot(mas, slots, 0);
    6665             :                 pivots = ma_pivots(mn, mt);
    6666             :                 if (unlikely(ma_dead_node(mn)))
    6667             :                         return NULL;
    6668             :                 max = pivots[0];
    6669             :                 mas->node = entry;
    6670             :                 mn = mas_mn(mas);
    6671             :                 mt = mte_node_type(mas->node);
    6672             :         }
    6673             :         MAS_WARN_ON(mas, mte_dead_node(mas->node));
    6674             : 
    6675             :         mas->max = max;
    6676             :         slots = ma_slots(mn, mt);
    6677             :         entry = mas_slot(mas, slots, 0);
    6678             :         if (unlikely(ma_dead_node(mn)))
    6679             :                 return NULL;
    6680             : 
    6681             :         /* Slot 0 or 1 must be set */
    6682             :         if (mas->index > limit)
    6683             :                 goto none;
    6684             : 
    6685             :         if (likely(entry))
    6686             :                 return entry;
    6687             : 
    6688             :         mas->offset = 1;
    6689             :         entry = mas_slot(mas, slots, 1);
    6690             :         pivots = ma_pivots(mn, mt);
    6691             :         if (unlikely(ma_dead_node(mn)))
    6692             :                 return NULL;
    6693             : 
    6694             :         mas->index = pivots[0] + 1;
    6695             :         if (mas->index > limit)
    6696             :                 goto none;
    6697             : 
    6698             :         if (likely(entry))
    6699             :                 return entry;
    6700             : 
    6701             : none:
    6702             :         if (likely(!ma_dead_node(mn)))
    6703             :                 mas->node = MAS_NONE;
    6704             :         return NULL;
    6705             : }
    6706             : 
    6707             : /* Depth first search, post-order */
    6708             : static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
    6709             : {
    6710             : 
    6711             :         struct maple_enode *p = MAS_NONE, *mn = mas->node;
    6712             :         unsigned long p_min, p_max;
    6713             : 
    6714             :         mas_next_node(mas, mas_mn(mas), max);
    6715             :         if (!mas_is_none(mas))
    6716             :                 return;
    6717             : 
    6718             :         if (mte_is_root(mn))
    6719             :                 return;
    6720             : 
    6721             :         mas->node = mn;
    6722             :         mas_ascend(mas);
    6723             :         do {
    6724             :                 p = mas->node;
    6725             :                 p_min = mas->min;
    6726             :                 p_max = mas->max;
    6727             :                 mas_prev_node(mas, 0);
    6728             :         } while (!mas_is_none(mas));
    6729             : 
    6730             :         mas->node = p;
    6731             :         mas->max = p_max;
    6732             :         mas->min = p_min;
    6733             : }
    6734             : 
    6735             : /* Tree validations */
    6736             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6737             :                 unsigned long min, unsigned long max, unsigned int depth,
    6738             :                 enum mt_dump_format format);
    6739             : static void mt_dump_range(unsigned long min, unsigned long max,
    6740             :                           unsigned int depth, enum mt_dump_format format)
    6741             : {
    6742             :         static const char spaces[] = "                                ";
    6743             : 
    6744             :         switch(format) {
    6745             :         case mt_dump_hex:
    6746             :                 if (min == max)
    6747             :                         pr_info("%.*s%lx: ", depth * 2, spaces, min);
    6748             :                 else
    6749             :                         pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
    6750             :                 break;
    6751             :         default:
    6752             :         case mt_dump_dec:
    6753             :                 if (min == max)
    6754             :                         pr_info("%.*s%lu: ", depth * 2, spaces, min);
    6755             :                 else
    6756             :                         pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
    6757             :         }
    6758             : }
    6759             : 
    6760             : static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
    6761             :                           unsigned int depth, enum mt_dump_format format)
    6762             : {
    6763             :         mt_dump_range(min, max, depth, format);
    6764             : 
    6765             :         if (xa_is_value(entry))
    6766             :                 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
    6767             :                                 xa_to_value(entry), entry);
    6768             :         else if (xa_is_zero(entry))
    6769             :                 pr_cont("zero (%ld)\n", xa_to_internal(entry));
    6770             :         else if (mt_is_reserved(entry))
    6771             :                 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
    6772             :         else
    6773             :                 pr_cont("%p\n", entry);
    6774             : }
    6775             : 
    6776             : static void mt_dump_range64(const struct maple_tree *mt, void *entry,
    6777             :                 unsigned long min, unsigned long max, unsigned int depth,
    6778             :                 enum mt_dump_format format)
    6779             : {
    6780             :         struct maple_range_64 *node = &mte_to_node(entry)->mr64;
    6781             :         bool leaf = mte_is_leaf(entry);
    6782             :         unsigned long first = min;
    6783             :         int i;
    6784             : 
    6785             :         pr_cont(" contents: ");
    6786             :         for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
    6787             :                 switch(format) {
    6788             :                 case mt_dump_hex:
    6789             :                         pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
    6790             :                         break;
    6791             :                 default:
    6792             :                 case mt_dump_dec:
    6793             :                         pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6794             :                 }
    6795             :         }
    6796             :         pr_cont("%p\n", node->slot[i]);
    6797             :         for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
    6798             :                 unsigned long last = max;
    6799             : 
    6800             :                 if (i < (MAPLE_RANGE64_SLOTS - 1))
    6801             :                         last = node->pivot[i];
    6802             :                 else if (!node->slot[i] && max != mt_node_max(entry))
    6803             :                         break;
    6804             :                 if (last == 0 && i > 0)
    6805             :                         break;
    6806             :                 if (leaf)
    6807             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6808             :                                         first, last, depth + 1, format);
    6809             :                 else if (node->slot[i])
    6810             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6811             :                                         first, last, depth + 1, format);
    6812             : 
    6813             :                 if (last == max)
    6814             :                         break;
    6815             :                 if (last > max) {
    6816             :                         switch(format) {
    6817             :                         case mt_dump_hex:
    6818             :                                 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
    6819             :                                         node, last, max, i);
    6820             :                                 break;
    6821             :                         default:
    6822             :                         case mt_dump_dec:
    6823             :                                 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6824             :                                         node, last, max, i);
    6825             :                         }
    6826             :                 }
    6827             :                 first = last + 1;
    6828             :         }
    6829             : }
    6830             : 
    6831             : static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
    6832             :         unsigned long min, unsigned long max, unsigned int depth,
    6833             :         enum mt_dump_format format)
    6834             : {
    6835             :         struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
    6836             :         bool leaf = mte_is_leaf(entry);
    6837             :         unsigned long first = min;
    6838             :         int i;
    6839             : 
    6840             :         pr_cont(" contents: ");
    6841             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
    6842             :                 pr_cont("%lu ", node->gap[i]);
    6843             :         pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
    6844             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
    6845             :                 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6846             :         pr_cont("%p\n", node->slot[i]);
    6847             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
    6848             :                 unsigned long last = max;
    6849             : 
    6850             :                 if (i < (MAPLE_ARANGE64_SLOTS - 1))
    6851             :                         last = node->pivot[i];
    6852             :                 else if (!node->slot[i])
    6853             :                         break;
    6854             :                 if (last == 0 && i > 0)
    6855             :                         break;
    6856             :                 if (leaf)
    6857             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6858             :                                         first, last, depth + 1, format);
    6859             :                 else if (node->slot[i])
    6860             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6861             :                                         first, last, depth + 1, format);
    6862             : 
    6863             :                 if (last == max)
    6864             :                         break;
    6865             :                 if (last > max) {
    6866             :                         pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6867             :                                         node, last, max, i);
    6868             :                         break;
    6869             :                 }
    6870             :                 first = last + 1;
    6871             :         }
    6872             : }
    6873             : 
    6874             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6875             :                 unsigned long min, unsigned long max, unsigned int depth,
    6876             :                 enum mt_dump_format format)
    6877             : {
    6878             :         struct maple_node *node = mte_to_node(entry);
    6879             :         unsigned int type = mte_node_type(entry);
    6880             :         unsigned int i;
    6881             : 
    6882             :         mt_dump_range(min, max, depth, format);
    6883             : 
    6884             :         pr_cont("node %p depth %d type %d parent %p", node, depth, type,
    6885             :                         node ? node->parent : NULL);
    6886             :         switch (type) {
    6887             :         case maple_dense:
    6888             :                 pr_cont("\n");
    6889             :                 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
    6890             :                         if (min + i > max)
    6891             :                                 pr_cont("OUT OF RANGE: ");
    6892             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6893             :                                         min + i, min + i, depth, format);
    6894             :                 }
    6895             :                 break;
    6896             :         case maple_leaf_64:
    6897             :         case maple_range_64:
    6898             :                 mt_dump_range64(mt, entry, min, max, depth, format);
    6899             :                 break;
    6900             :         case maple_arange_64:
    6901             :                 mt_dump_arange64(mt, entry, min, max, depth, format);
    6902             :                 break;
    6903             : 
    6904             :         default:
    6905             :                 pr_cont(" UNKNOWN TYPE\n");
    6906             :         }
    6907             : }
    6908             : 
    6909             : void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
    6910             : {
    6911             :         void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
    6912             : 
    6913             :         pr_info("maple_tree(%p) flags %X, height %u root %p\n",
    6914             :                  mt, mt->ma_flags, mt_height(mt), entry);
    6915             :         if (!xa_is_node(entry))
    6916             :                 mt_dump_entry(entry, 0, 0, 0, format);
    6917             :         else if (entry)
    6918             :                 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
    6919             : }
    6920             : EXPORT_SYMBOL_GPL(mt_dump);
    6921             : 
    6922             : /*
    6923             :  * Calculate the maximum gap in a node and check if that's what is reported in
    6924             :  * the parent (unless root).
    6925             :  */
    6926             : static void mas_validate_gaps(struct ma_state *mas)
    6927             : {
    6928             :         struct maple_enode *mte = mas->node;
    6929             :         struct maple_node *p_mn;
    6930             :         unsigned long gap = 0, max_gap = 0;
    6931             :         unsigned long p_end, p_start = mas->min;
    6932             :         unsigned char p_slot;
    6933             :         unsigned long *gaps = NULL;
    6934             :         unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
    6935             :         int i;
    6936             : 
    6937             :         if (ma_is_dense(mte_node_type(mte))) {
    6938             :                 for (i = 0; i < mt_slot_count(mte); i++) {
    6939             :                         if (mas_get_slot(mas, i)) {
    6940             :                                 if (gap > max_gap)
    6941             :                                         max_gap = gap;
    6942             :                                 gap = 0;
    6943             :                                 continue;
    6944             :                         }
    6945             :                         gap++;
    6946             :                 }
    6947             :                 goto counted;
    6948             :         }
    6949             : 
    6950             :         gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
    6951             :         for (i = 0; i < mt_slot_count(mte); i++) {
    6952             :                 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
    6953             : 
    6954             :                 if (!gaps) {
    6955             :                         if (mas_get_slot(mas, i)) {
    6956             :                                 gap = 0;
    6957             :                                 goto not_empty;
    6958             :                         }
    6959             : 
    6960             :                         gap += p_end - p_start + 1;
    6961             :                 } else {
    6962             :                         void *entry = mas_get_slot(mas, i);
    6963             : 
    6964             :                         gap = gaps[i];
    6965             :                         if (!entry) {
    6966             :                                 if (gap != p_end - p_start + 1) {
    6967             :                                         pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
    6968             :                                                 mas_mn(mas), i,
    6969             :                                                 mas_get_slot(mas, i), gap,
    6970             :                                                 p_end, p_start);
    6971             :                                         mt_dump(mas->tree, mt_dump_hex);
    6972             : 
    6973             :                                         MT_BUG_ON(mas->tree,
    6974             :                                                 gap != p_end - p_start + 1);
    6975             :                                 }
    6976             :                         } else {
    6977             :                                 if (gap > p_end - p_start + 1) {
    6978             :                                         pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
    6979             :                                         mas_mn(mas), i, gap, p_end, p_start,
    6980             :                                         p_end - p_start + 1);
    6981             :                                         MT_BUG_ON(mas->tree,
    6982             :                                                 gap > p_end - p_start + 1);
    6983             :                                 }
    6984             :                         }
    6985             :                 }
    6986             : 
    6987             :                 if (gap > max_gap)
    6988             :                         max_gap = gap;
    6989             : not_empty:
    6990             :                 p_start = p_end + 1;
    6991             :                 if (p_end >= mas->max)
    6992             :                         break;
    6993             :         }
    6994             : 
    6995             : counted:
    6996             :         if (mte_is_root(mte))
    6997             :                 return;
    6998             : 
    6999             :         p_slot = mte_parent_slot(mas->node);
    7000             :         p_mn = mte_parent(mte);
    7001             :         MT_BUG_ON(mas->tree, max_gap > mas->max);
    7002             :         if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
    7003             :                 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
    7004             :                 mt_dump(mas->tree, mt_dump_hex);
    7005             :         }
    7006             : 
    7007             :         MT_BUG_ON(mas->tree,
    7008             :                   ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap);
    7009             : }
    7010             : 
    7011             : static void mas_validate_parent_slot(struct ma_state *mas)
    7012             : {
    7013             :         struct maple_node *parent;
    7014             :         struct maple_enode *node;
    7015             :         enum maple_type p_type;
    7016             :         unsigned char p_slot;
    7017             :         void __rcu **slots;
    7018             :         int i;
    7019             : 
    7020             :         if (mte_is_root(mas->node))
    7021             :                 return;
    7022             : 
    7023             :         p_slot = mte_parent_slot(mas->node);
    7024             :         p_type = mas_parent_type(mas, mas->node);
    7025             :         parent = mte_parent(mas->node);
    7026             :         slots = ma_slots(parent, p_type);
    7027             :         MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
    7028             : 
    7029             :         /* Check prev/next parent slot for duplicate node entry */
    7030             : 
    7031             :         for (i = 0; i < mt_slots[p_type]; i++) {
    7032             :                 node = mas_slot(mas, slots, i);
    7033             :                 if (i == p_slot) {
    7034             :                         if (node != mas->node)
    7035             :                                 pr_err("parent %p[%u] does not have %p\n",
    7036             :                                         parent, i, mas_mn(mas));
    7037             :                         MT_BUG_ON(mas->tree, node != mas->node);
    7038             :                 } else if (node == mas->node) {
    7039             :                         pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
    7040             :                                mas_mn(mas), parent, i, p_slot);
    7041             :                         MT_BUG_ON(mas->tree, node == mas->node);
    7042             :                 }
    7043             :         }
    7044             : }
    7045             : 
    7046             : static void mas_validate_child_slot(struct ma_state *mas)
    7047             : {
    7048             :         enum maple_type type = mte_node_type(mas->node);
    7049             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    7050             :         unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
    7051             :         struct maple_enode *child;
    7052             :         unsigned char i;
    7053             : 
    7054             :         if (mte_is_leaf(mas->node))
    7055             :                 return;
    7056             : 
    7057             :         for (i = 0; i < mt_slots[type]; i++) {
    7058             :                 child = mas_slot(mas, slots, i);
    7059             :                 if (!pivots[i] || pivots[i] == mas->max)
    7060             :                         break;
    7061             : 
    7062             :                 if (!child)
    7063             :                         break;
    7064             : 
    7065             :                 if (mte_parent_slot(child) != i) {
    7066             :                         pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
    7067             :                                mas_mn(mas), i, mte_to_node(child),
    7068             :                                mte_parent_slot(child));
    7069             :                         MT_BUG_ON(mas->tree, 1);
    7070             :                 }
    7071             : 
    7072             :                 if (mte_parent(child) != mte_to_node(mas->node)) {
    7073             :                         pr_err("child %p has parent %p not %p\n",
    7074             :                                mte_to_node(child), mte_parent(child),
    7075             :                                mte_to_node(mas->node));
    7076             :                         MT_BUG_ON(mas->tree, 1);
    7077             :                 }
    7078             :         }
    7079             : }
    7080             : 
    7081             : /*
    7082             :  * Validate all pivots are within mas->min and mas->max.
    7083             :  */
    7084             : static void mas_validate_limits(struct ma_state *mas)
    7085             : {
    7086             :         int i;
    7087             :         unsigned long prev_piv = 0;
    7088             :         enum maple_type type = mte_node_type(mas->node);
    7089             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    7090             :         unsigned long *pivots = ma_pivots(mas_mn(mas), type);
    7091             : 
    7092             :         /* all limits are fine here. */
    7093             :         if (mte_is_root(mas->node))
    7094             :                 return;
    7095             : 
    7096             :         for (i = 0; i < mt_slots[type]; i++) {
    7097             :                 unsigned long piv;
    7098             : 
    7099             :                 piv = mas_safe_pivot(mas, pivots, i, type);
    7100             : 
    7101             :                 if (!piv && (i != 0))
    7102             :                         break;
    7103             : 
    7104             :                 if (!mte_is_leaf(mas->node)) {
    7105             :                         void *entry = mas_slot(mas, slots, i);
    7106             : 
    7107             :                         if (!entry)
    7108             :                                 pr_err("%p[%u] cannot be null\n",
    7109             :                                        mas_mn(mas), i);
    7110             : 
    7111             :                         MT_BUG_ON(mas->tree, !entry);
    7112             :                 }
    7113             : 
    7114             :                 if (prev_piv > piv) {
    7115             :                         pr_err("%p[%u] piv %lu < prev_piv %lu\n",
    7116             :                                 mas_mn(mas), i, piv, prev_piv);
    7117             :                         MAS_WARN_ON(mas, piv < prev_piv);
    7118             :                 }
    7119             : 
    7120             :                 if (piv < mas->min) {
    7121             :                         pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
    7122             :                                 piv, mas->min);
    7123             :                         MAS_WARN_ON(mas, piv < mas->min);
    7124             :                 }
    7125             :                 if (piv > mas->max) {
    7126             :                         pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
    7127             :                                 piv, mas->max);
    7128             :                         MAS_WARN_ON(mas, piv > mas->max);
    7129             :                 }
    7130             :                 prev_piv = piv;
    7131             :                 if (piv == mas->max)
    7132             :                         break;
    7133             :         }
    7134             :         for (i += 1; i < mt_slots[type]; i++) {
    7135             :                 void *entry = mas_slot(mas, slots, i);
    7136             : 
    7137             :                 if (entry && (i != mt_slots[type] - 1)) {
    7138             :                         pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
    7139             :                                i, entry);
    7140             :                         MT_BUG_ON(mas->tree, entry != NULL);
    7141             :                 }
    7142             : 
    7143             :                 if (i < mt_pivots[type]) {
    7144             :                         unsigned long piv = pivots[i];
    7145             : 
    7146             :                         if (!piv)
    7147             :                                 continue;
    7148             : 
    7149             :                         pr_err("%p[%u] should not have piv %lu\n",
    7150             :                                mas_mn(mas), i, piv);
    7151             :                         MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
    7152             :                 }
    7153             :         }
    7154             : }
    7155             : 
    7156             : static void mt_validate_nulls(struct maple_tree *mt)
    7157             : {
    7158             :         void *entry, *last = (void *)1;
    7159             :         unsigned char offset = 0;
    7160             :         void __rcu **slots;
    7161             :         MA_STATE(mas, mt, 0, 0);
    7162             : 
    7163             :         mas_start(&mas);
    7164             :         if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
    7165             :                 return;
    7166             : 
    7167             :         while (!mte_is_leaf(mas.node))
    7168             :                 mas_descend(&mas);
    7169             : 
    7170             :         slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
    7171             :         do {
    7172             :                 entry = mas_slot(&mas, slots, offset);
    7173             :                 if (!last && !entry) {
    7174             :                         pr_err("Sequential nulls end at %p[%u]\n",
    7175             :                                 mas_mn(&mas), offset);
    7176             :                 }
    7177             :                 MT_BUG_ON(mt, !last && !entry);
    7178             :                 last = entry;
    7179             :                 if (offset == mas_data_end(&mas)) {
    7180             :                         mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
    7181             :                         if (mas_is_none(&mas))
    7182             :                                 return;
    7183             :                         offset = 0;
    7184             :                         slots = ma_slots(mte_to_node(mas.node),
    7185             :                                          mte_node_type(mas.node));
    7186             :                 } else {
    7187             :                         offset++;
    7188             :                 }
    7189             : 
    7190             :         } while (!mas_is_none(&mas));
    7191             : }
    7192             : 
    7193             : /*
    7194             :  * validate a maple tree by checking:
    7195             :  * 1. The limits (pivots are within mas->min to mas->max)
    7196             :  * 2. The gap is correctly set in the parents
    7197             :  */
    7198             : void mt_validate(struct maple_tree *mt)
    7199             : {
    7200             :         unsigned char end;
    7201             : 
    7202             :         MA_STATE(mas, mt, 0, 0);
    7203             :         rcu_read_lock();
    7204             :         mas_start(&mas);
    7205             :         if (!mas_searchable(&mas))
    7206             :                 goto done;
    7207             : 
    7208             :         mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
    7209             :         while (!mas_is_none(&mas)) {
    7210             :                 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
    7211             :                 if (!mte_is_root(mas.node)) {
    7212             :                         end = mas_data_end(&mas);
    7213             :                         if (MAS_WARN_ON(&mas,
    7214             :                                         (end < mt_min_slot_count(mas.node)) &&
    7215             :                                         (mas.max != ULONG_MAX))) {
    7216             :                                 pr_err("Invalid size %u of %p\n", end,
    7217             :                                        mas_mn(&mas));
    7218             :                         }
    7219             :                 }
    7220             :                 mas_validate_parent_slot(&mas);
    7221             :                 mas_validate_child_slot(&mas);
    7222             :                 mas_validate_limits(&mas);
    7223             :                 if (mt_is_alloc(mt))
    7224             :                         mas_validate_gaps(&mas);
    7225             :                 mas_dfs_postorder(&mas, ULONG_MAX);
    7226             :         }
    7227             :         mt_validate_nulls(mt);
    7228             : done:
    7229             :         rcu_read_unlock();
    7230             : 
    7231             : }
    7232             : EXPORT_SYMBOL_GPL(mt_validate);
    7233             : 
    7234             : void mas_dump(const struct ma_state *mas)
    7235             : {
    7236             :         pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
    7237             :         if (mas_is_none(mas))
    7238             :                 pr_err("(MAS_NONE) ");
    7239             :         else if (mas_is_ptr(mas))
    7240             :                 pr_err("(MAS_ROOT) ");
    7241             :         else if (mas_is_start(mas))
    7242             :                  pr_err("(MAS_START) ");
    7243             :         else if (mas_is_paused(mas))
    7244             :                 pr_err("(MAS_PAUSED) ");
    7245             : 
    7246             :         pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
    7247             :         pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
    7248             :                mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
    7249             :         if (mas->index > mas->last)
    7250             :                 pr_err("Check index & last\n");
    7251             : }
    7252             : EXPORT_SYMBOL_GPL(mas_dump);
    7253             : 
    7254             : void mas_wr_dump(const struct ma_wr_state *wr_mas)
    7255             : {
    7256             :         pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
    7257             :                wr_mas->node, wr_mas->r_min, wr_mas->r_max);
    7258             :         pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
    7259             :                wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
    7260             :                wr_mas->end_piv);
    7261             : }
    7262             : EXPORT_SYMBOL_GPL(mas_wr_dump);
    7263             : 
    7264             : #endif /* CONFIG_DEBUG_MAPLE_TREE */

Generated by: LCOV version 1.14