Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
4 : * Authors: David Chinner and Glauber Costa
5 : *
6 : * Generic LRU infrastructure
7 : */
8 : #include <linux/kernel.h>
9 : #include <linux/module.h>
10 : #include <linux/mm.h>
11 : #include <linux/list_lru.h>
12 : #include <linux/slab.h>
13 : #include <linux/mutex.h>
14 : #include <linux/memcontrol.h>
15 : #include "slab.h"
16 : #include "internal.h"
17 :
18 : #ifdef CONFIG_MEMCG_KMEM
19 : static LIST_HEAD(memcg_list_lrus);
20 : static DEFINE_MUTEX(list_lrus_mutex);
21 :
22 : static inline bool list_lru_memcg_aware(struct list_lru *lru)
23 : {
24 : return lru->memcg_aware;
25 : }
26 :
27 : static void list_lru_register(struct list_lru *lru)
28 : {
29 : if (!list_lru_memcg_aware(lru))
30 : return;
31 :
32 : mutex_lock(&list_lrus_mutex);
33 : list_add(&lru->list, &memcg_list_lrus);
34 : mutex_unlock(&list_lrus_mutex);
35 : }
36 :
37 : static void list_lru_unregister(struct list_lru *lru)
38 : {
39 : if (!list_lru_memcg_aware(lru))
40 : return;
41 :
42 : mutex_lock(&list_lrus_mutex);
43 : list_del(&lru->list);
44 : mutex_unlock(&list_lrus_mutex);
45 : }
46 :
47 : static int lru_shrinker_id(struct list_lru *lru)
48 : {
49 : return lru->shrinker_id;
50 : }
51 :
52 : static inline struct list_lru_one *
53 : list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
54 : {
55 : if (list_lru_memcg_aware(lru) && idx >= 0) {
56 : struct list_lru_memcg *mlru = xa_load(&lru->xa, idx);
57 :
58 : return mlru ? &mlru->node[nid] : NULL;
59 : }
60 : return &lru->node[nid].lru;
61 : }
62 :
63 : static inline struct list_lru_one *
64 : list_lru_from_kmem(struct list_lru *lru, int nid, void *ptr,
65 : struct mem_cgroup **memcg_ptr)
66 : {
67 : struct list_lru_node *nlru = &lru->node[nid];
68 : struct list_lru_one *l = &nlru->lru;
69 : struct mem_cgroup *memcg = NULL;
70 :
71 : if (!list_lru_memcg_aware(lru))
72 : goto out;
73 :
74 : memcg = mem_cgroup_from_slab_obj(ptr);
75 : if (!memcg)
76 : goto out;
77 :
78 : l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
79 : out:
80 : if (memcg_ptr)
81 : *memcg_ptr = memcg;
82 : return l;
83 : }
84 : #else
85 : static void list_lru_register(struct list_lru *lru)
86 : {
87 : }
88 :
89 : static void list_lru_unregister(struct list_lru *lru)
90 : {
91 : }
92 :
93 : static int lru_shrinker_id(struct list_lru *lru)
94 : {
95 : return -1;
96 : }
97 :
98 : static inline bool list_lru_memcg_aware(struct list_lru *lru)
99 : {
100 : return false;
101 : }
102 :
103 : static inline struct list_lru_one *
104 : list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
105 : {
106 0 : return &lru->node[nid].lru;
107 : }
108 :
109 : static inline struct list_lru_one *
110 : list_lru_from_kmem(struct list_lru *lru, int nid, void *ptr,
111 : struct mem_cgroup **memcg_ptr)
112 : {
113 : if (memcg_ptr)
114 0 : *memcg_ptr = NULL;
115 0 : return &lru->node[nid].lru;
116 : }
117 : #endif /* CONFIG_MEMCG_KMEM */
118 :
119 0 : bool list_lru_add(struct list_lru *lru, struct list_head *item)
120 : {
121 0 : int nid = page_to_nid(virt_to_page(item));
122 0 : struct list_lru_node *nlru = &lru->node[nid];
123 : struct mem_cgroup *memcg;
124 : struct list_lru_one *l;
125 :
126 0 : spin_lock(&nlru->lock);
127 0 : if (list_empty(item)) {
128 0 : l = list_lru_from_kmem(lru, nid, item, &memcg);
129 0 : list_add_tail(item, &l->list);
130 : /* Set shrinker bit if the first element was added */
131 0 : if (!l->nr_items++)
132 : set_shrinker_bit(memcg, nid,
133 : lru_shrinker_id(lru));
134 0 : nlru->nr_items++;
135 0 : spin_unlock(&nlru->lock);
136 0 : return true;
137 : }
138 0 : spin_unlock(&nlru->lock);
139 0 : return false;
140 : }
141 : EXPORT_SYMBOL_GPL(list_lru_add);
142 :
143 0 : bool list_lru_del(struct list_lru *lru, struct list_head *item)
144 : {
145 0 : int nid = page_to_nid(virt_to_page(item));
146 0 : struct list_lru_node *nlru = &lru->node[nid];
147 : struct list_lru_one *l;
148 :
149 0 : spin_lock(&nlru->lock);
150 0 : if (!list_empty(item)) {
151 0 : l = list_lru_from_kmem(lru, nid, item, NULL);
152 0 : list_del_init(item);
153 0 : l->nr_items--;
154 0 : nlru->nr_items--;
155 0 : spin_unlock(&nlru->lock);
156 0 : return true;
157 : }
158 0 : spin_unlock(&nlru->lock);
159 0 : return false;
160 : }
161 : EXPORT_SYMBOL_GPL(list_lru_del);
162 :
163 0 : void list_lru_isolate(struct list_lru_one *list, struct list_head *item)
164 : {
165 0 : list_del_init(item);
166 0 : list->nr_items--;
167 0 : }
168 : EXPORT_SYMBOL_GPL(list_lru_isolate);
169 :
170 0 : void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item,
171 : struct list_head *head)
172 : {
173 0 : list_move(item, head);
174 0 : list->nr_items--;
175 0 : }
176 : EXPORT_SYMBOL_GPL(list_lru_isolate_move);
177 :
178 0 : unsigned long list_lru_count_one(struct list_lru *lru,
179 : int nid, struct mem_cgroup *memcg)
180 : {
181 : struct list_lru_one *l;
182 : long count;
183 :
184 : rcu_read_lock();
185 0 : l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
186 0 : count = l ? READ_ONCE(l->nr_items) : 0;
187 : rcu_read_unlock();
188 :
189 0 : if (unlikely(count < 0))
190 0 : count = 0;
191 :
192 0 : return count;
193 : }
194 : EXPORT_SYMBOL_GPL(list_lru_count_one);
195 :
196 0 : unsigned long list_lru_count_node(struct list_lru *lru, int nid)
197 : {
198 : struct list_lru_node *nlru;
199 :
200 0 : nlru = &lru->node[nid];
201 0 : return nlru->nr_items;
202 : }
203 : EXPORT_SYMBOL_GPL(list_lru_count_node);
204 :
205 : static unsigned long
206 0 : __list_lru_walk_one(struct list_lru *lru, int nid, int memcg_idx,
207 : list_lru_walk_cb isolate, void *cb_arg,
208 : unsigned long *nr_to_walk)
209 : {
210 0 : struct list_lru_node *nlru = &lru->node[nid];
211 : struct list_lru_one *l;
212 : struct list_head *item, *n;
213 0 : unsigned long isolated = 0;
214 :
215 : restart:
216 0 : l = list_lru_from_memcg_idx(lru, nid, memcg_idx);
217 0 : if (!l)
218 : goto out;
219 :
220 0 : list_for_each_safe(item, n, &l->list) {
221 : enum lru_status ret;
222 :
223 : /*
224 : * decrement nr_to_walk first so that we don't livelock if we
225 : * get stuck on large numbers of LRU_RETRY items
226 : */
227 0 : if (!*nr_to_walk)
228 : break;
229 0 : --*nr_to_walk;
230 :
231 0 : ret = isolate(item, l, &nlru->lock, cb_arg);
232 0 : switch (ret) {
233 : case LRU_REMOVED_RETRY:
234 : assert_spin_locked(&nlru->lock);
235 : fallthrough;
236 : case LRU_REMOVED:
237 0 : isolated++;
238 0 : nlru->nr_items--;
239 : /*
240 : * If the lru lock has been dropped, our list
241 : * traversal is now invalid and so we have to
242 : * restart from scratch.
243 : */
244 0 : if (ret == LRU_REMOVED_RETRY)
245 : goto restart;
246 : break;
247 : case LRU_ROTATE:
248 0 : list_move_tail(item, &l->list);
249 : break;
250 : case LRU_SKIP:
251 : break;
252 : case LRU_RETRY:
253 : /*
254 : * The lru lock has been dropped, our list traversal is
255 : * now invalid and so we have to restart from scratch.
256 : */
257 : assert_spin_locked(&nlru->lock);
258 : goto restart;
259 : default:
260 0 : BUG();
261 : }
262 : }
263 : out:
264 0 : return isolated;
265 : }
266 :
267 : unsigned long
268 0 : list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
269 : list_lru_walk_cb isolate, void *cb_arg,
270 : unsigned long *nr_to_walk)
271 : {
272 0 : struct list_lru_node *nlru = &lru->node[nid];
273 : unsigned long ret;
274 :
275 0 : spin_lock(&nlru->lock);
276 0 : ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate,
277 : cb_arg, nr_to_walk);
278 0 : spin_unlock(&nlru->lock);
279 0 : return ret;
280 : }
281 : EXPORT_SYMBOL_GPL(list_lru_walk_one);
282 :
283 : unsigned long
284 0 : list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
285 : list_lru_walk_cb isolate, void *cb_arg,
286 : unsigned long *nr_to_walk)
287 : {
288 0 : struct list_lru_node *nlru = &lru->node[nid];
289 : unsigned long ret;
290 :
291 0 : spin_lock_irq(&nlru->lock);
292 0 : ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate,
293 : cb_arg, nr_to_walk);
294 0 : spin_unlock_irq(&nlru->lock);
295 0 : return ret;
296 : }
297 :
298 0 : unsigned long list_lru_walk_node(struct list_lru *lru, int nid,
299 : list_lru_walk_cb isolate, void *cb_arg,
300 : unsigned long *nr_to_walk)
301 : {
302 0 : long isolated = 0;
303 :
304 0 : isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg,
305 : nr_to_walk);
306 :
307 : #ifdef CONFIG_MEMCG_KMEM
308 : if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) {
309 : struct list_lru_memcg *mlru;
310 : unsigned long index;
311 :
312 : xa_for_each(&lru->xa, index, mlru) {
313 : struct list_lru_node *nlru = &lru->node[nid];
314 :
315 : spin_lock(&nlru->lock);
316 : isolated += __list_lru_walk_one(lru, nid, index,
317 : isolate, cb_arg,
318 : nr_to_walk);
319 : spin_unlock(&nlru->lock);
320 :
321 : if (*nr_to_walk <= 0)
322 : break;
323 : }
324 : }
325 : #endif
326 :
327 0 : return isolated;
328 : }
329 : EXPORT_SYMBOL_GPL(list_lru_walk_node);
330 :
331 : static void init_one_lru(struct list_lru_one *l)
332 : {
333 62 : INIT_LIST_HEAD(&l->list);
334 31 : l->nr_items = 0;
335 : }
336 :
337 : #ifdef CONFIG_MEMCG_KMEM
338 : static struct list_lru_memcg *memcg_init_list_lru_one(gfp_t gfp)
339 : {
340 : int nid;
341 : struct list_lru_memcg *mlru;
342 :
343 : mlru = kmalloc(struct_size(mlru, node, nr_node_ids), gfp);
344 : if (!mlru)
345 : return NULL;
346 :
347 : for_each_node(nid)
348 : init_one_lru(&mlru->node[nid]);
349 :
350 : return mlru;
351 : }
352 :
353 : static void memcg_list_lru_free(struct list_lru *lru, int src_idx)
354 : {
355 : struct list_lru_memcg *mlru = xa_erase_irq(&lru->xa, src_idx);
356 :
357 : /*
358 : * The __list_lru_walk_one() can walk the list of this node.
359 : * We need kvfree_rcu() here. And the walking of the list
360 : * is under lru->node[nid]->lock, which can serve as a RCU
361 : * read-side critical section.
362 : */
363 : if (mlru)
364 : kvfree_rcu(mlru, rcu);
365 : }
366 :
367 : static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
368 : {
369 : if (memcg_aware)
370 : xa_init_flags(&lru->xa, XA_FLAGS_LOCK_IRQ);
371 : lru->memcg_aware = memcg_aware;
372 : }
373 :
374 : static void memcg_destroy_list_lru(struct list_lru *lru)
375 : {
376 : XA_STATE(xas, &lru->xa, 0);
377 : struct list_lru_memcg *mlru;
378 :
379 : if (!list_lru_memcg_aware(lru))
380 : return;
381 :
382 : xas_lock_irq(&xas);
383 : xas_for_each(&xas, mlru, ULONG_MAX) {
384 : kfree(mlru);
385 : xas_store(&xas, NULL);
386 : }
387 : xas_unlock_irq(&xas);
388 : }
389 :
390 : static void memcg_reparent_list_lru_node(struct list_lru *lru, int nid,
391 : int src_idx, struct mem_cgroup *dst_memcg)
392 : {
393 : struct list_lru_node *nlru = &lru->node[nid];
394 : int dst_idx = dst_memcg->kmemcg_id;
395 : struct list_lru_one *src, *dst;
396 :
397 : /*
398 : * Since list_lru_{add,del} may be called under an IRQ-safe lock,
399 : * we have to use IRQ-safe primitives here to avoid deadlock.
400 : */
401 : spin_lock_irq(&nlru->lock);
402 :
403 : src = list_lru_from_memcg_idx(lru, nid, src_idx);
404 : if (!src)
405 : goto out;
406 : dst = list_lru_from_memcg_idx(lru, nid, dst_idx);
407 :
408 : list_splice_init(&src->list, &dst->list);
409 :
410 : if (src->nr_items) {
411 : dst->nr_items += src->nr_items;
412 : set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru));
413 : src->nr_items = 0;
414 : }
415 : out:
416 : spin_unlock_irq(&nlru->lock);
417 : }
418 :
419 : static void memcg_reparent_list_lru(struct list_lru *lru,
420 : int src_idx, struct mem_cgroup *dst_memcg)
421 : {
422 : int i;
423 :
424 : for_each_node(i)
425 : memcg_reparent_list_lru_node(lru, i, src_idx, dst_memcg);
426 :
427 : memcg_list_lru_free(lru, src_idx);
428 : }
429 :
430 : void memcg_reparent_list_lrus(struct mem_cgroup *memcg, struct mem_cgroup *parent)
431 : {
432 : struct cgroup_subsys_state *css;
433 : struct list_lru *lru;
434 : int src_idx = memcg->kmemcg_id;
435 :
436 : /*
437 : * Change kmemcg_id of this cgroup and all its descendants to the
438 : * parent's id, and then move all entries from this cgroup's list_lrus
439 : * to ones of the parent.
440 : *
441 : * After we have finished, all list_lrus corresponding to this cgroup
442 : * are guaranteed to remain empty. So we can safely free this cgroup's
443 : * list lrus in memcg_list_lru_free().
444 : *
445 : * Changing ->kmemcg_id to the parent can prevent memcg_list_lru_alloc()
446 : * from allocating list lrus for this cgroup after memcg_list_lru_free()
447 : * call.
448 : */
449 : rcu_read_lock();
450 : css_for_each_descendant_pre(css, &memcg->css) {
451 : struct mem_cgroup *child;
452 :
453 : child = mem_cgroup_from_css(css);
454 : WRITE_ONCE(child->kmemcg_id, parent->kmemcg_id);
455 : }
456 : rcu_read_unlock();
457 :
458 : mutex_lock(&list_lrus_mutex);
459 : list_for_each_entry(lru, &memcg_list_lrus, list)
460 : memcg_reparent_list_lru(lru, src_idx, parent);
461 : mutex_unlock(&list_lrus_mutex);
462 : }
463 :
464 : static inline bool memcg_list_lru_allocated(struct mem_cgroup *memcg,
465 : struct list_lru *lru)
466 : {
467 : int idx = memcg->kmemcg_id;
468 :
469 : return idx < 0 || xa_load(&lru->xa, idx);
470 : }
471 :
472 : int memcg_list_lru_alloc(struct mem_cgroup *memcg, struct list_lru *lru,
473 : gfp_t gfp)
474 : {
475 : int i;
476 : unsigned long flags;
477 : struct list_lru_memcg_table {
478 : struct list_lru_memcg *mlru;
479 : struct mem_cgroup *memcg;
480 : } *table;
481 : XA_STATE(xas, &lru->xa, 0);
482 :
483 : if (!list_lru_memcg_aware(lru) || memcg_list_lru_allocated(memcg, lru))
484 : return 0;
485 :
486 : gfp &= GFP_RECLAIM_MASK;
487 : table = kmalloc_array(memcg->css.cgroup->level, sizeof(*table), gfp);
488 : if (!table)
489 : return -ENOMEM;
490 :
491 : /*
492 : * Because the list_lru can be reparented to the parent cgroup's
493 : * list_lru, we should make sure that this cgroup and all its
494 : * ancestors have allocated list_lru_memcg.
495 : */
496 : for (i = 0; memcg; memcg = parent_mem_cgroup(memcg), i++) {
497 : if (memcg_list_lru_allocated(memcg, lru))
498 : break;
499 :
500 : table[i].memcg = memcg;
501 : table[i].mlru = memcg_init_list_lru_one(gfp);
502 : if (!table[i].mlru) {
503 : while (i--)
504 : kfree(table[i].mlru);
505 : kfree(table);
506 : return -ENOMEM;
507 : }
508 : }
509 :
510 : xas_lock_irqsave(&xas, flags);
511 : while (i--) {
512 : int index = READ_ONCE(table[i].memcg->kmemcg_id);
513 : struct list_lru_memcg *mlru = table[i].mlru;
514 :
515 : xas_set(&xas, index);
516 : retry:
517 : if (unlikely(index < 0 || xas_error(&xas) || xas_load(&xas))) {
518 : kfree(mlru);
519 : } else {
520 : xas_store(&xas, mlru);
521 : if (xas_error(&xas) == -ENOMEM) {
522 : xas_unlock_irqrestore(&xas, flags);
523 : if (xas_nomem(&xas, gfp))
524 : xas_set_err(&xas, 0);
525 : xas_lock_irqsave(&xas, flags);
526 : /*
527 : * The xas lock has been released, this memcg
528 : * can be reparented before us. So reload
529 : * memcg id. More details see the comments
530 : * in memcg_reparent_list_lrus().
531 : */
532 : index = READ_ONCE(table[i].memcg->kmemcg_id);
533 : if (index < 0)
534 : xas_set_err(&xas, 0);
535 : else if (!xas_error(&xas) && index != xas.xa_index)
536 : xas_set(&xas, index);
537 : goto retry;
538 : }
539 : }
540 : }
541 : /* xas_nomem() is used to free memory instead of memory allocation. */
542 : if (xas.xa_alloc)
543 : xas_nomem(&xas, gfp);
544 : xas_unlock_irqrestore(&xas, flags);
545 : kfree(table);
546 :
547 : return xas_error(&xas);
548 : }
549 : #else
550 : static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
551 : {
552 : }
553 :
554 : static void memcg_destroy_list_lru(struct list_lru *lru)
555 : {
556 : }
557 : #endif /* CONFIG_MEMCG_KMEM */
558 :
559 31 : int __list_lru_init(struct list_lru *lru, bool memcg_aware,
560 : struct lock_class_key *key, struct shrinker *shrinker)
561 : {
562 : int i;
563 :
564 : #ifdef CONFIG_MEMCG_KMEM
565 : if (shrinker)
566 : lru->shrinker_id = shrinker->id;
567 : else
568 : lru->shrinker_id = -1;
569 : #endif
570 :
571 31 : lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL);
572 31 : if (!lru->node)
573 : return -ENOMEM;
574 :
575 31 : for_each_node(i) {
576 31 : spin_lock_init(&lru->node[i].lock);
577 : if (key)
578 : lockdep_set_class(&lru->node[i].lock, key);
579 62 : init_one_lru(&lru->node[i].lru);
580 : }
581 :
582 : memcg_init_list_lru(lru, memcg_aware);
583 : list_lru_register(lru);
584 :
585 : return 0;
586 : }
587 : EXPORT_SYMBOL_GPL(__list_lru_init);
588 :
589 10 : void list_lru_destroy(struct list_lru *lru)
590 : {
591 : /* Already destroyed or not yet initialized? */
592 10 : if (!lru->node)
593 : return;
594 :
595 10 : list_lru_unregister(lru);
596 :
597 10 : memcg_destroy_list_lru(lru);
598 10 : kfree(lru->node);
599 10 : lru->node = NULL;
600 :
601 : #ifdef CONFIG_MEMCG_KMEM
602 : lru->shrinker_id = -1;
603 : #endif
604 : }
605 : EXPORT_SYMBOL_GPL(list_lru_destroy);
|