Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Procedures for maintaining information about logical memory blocks.
4 : *
5 : * Peter Bergner, IBM Corp. June 2001.
6 : * Copyright (C) 2001 Peter Bergner.
7 : */
8 :
9 : #include <linux/kernel.h>
10 : #include <linux/slab.h>
11 : #include <linux/init.h>
12 : #include <linux/bitops.h>
13 : #include <linux/poison.h>
14 : #include <linux/pfn.h>
15 : #include <linux/debugfs.h>
16 : #include <linux/kmemleak.h>
17 : #include <linux/seq_file.h>
18 : #include <linux/memblock.h>
19 :
20 : #include <asm/sections.h>
21 : #include <linux/io.h>
22 :
23 : #include "internal.h"
24 :
25 : #define INIT_MEMBLOCK_REGIONS 128
26 : #define INIT_PHYSMEM_REGIONS 4
27 :
28 : #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 : # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 : #endif
31 :
32 : #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 : #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 : #endif
35 :
36 : /**
37 : * DOC: memblock overview
38 : *
39 : * Memblock is a method of managing memory regions during the early
40 : * boot period when the usual kernel memory allocators are not up and
41 : * running.
42 : *
43 : * Memblock views the system memory as collections of contiguous
44 : * regions. There are several types of these collections:
45 : *
46 : * * ``memory`` - describes the physical memory available to the
47 : * kernel; this may differ from the actual physical memory installed
48 : * in the system, for instance when the memory is restricted with
49 : * ``mem=`` command line parameter
50 : * * ``reserved`` - describes the regions that were allocated
51 : * * ``physmem`` - describes the actual physical memory available during
52 : * boot regardless of the possible restrictions and memory hot(un)plug;
53 : * the ``physmem`` type is only available on some architectures.
54 : *
55 : * Each region is represented by struct memblock_region that
56 : * defines the region extents, its attributes and NUMA node id on NUMA
57 : * systems. Every memory type is described by the struct memblock_type
58 : * which contains an array of memory regions along with
59 : * the allocator metadata. The "memory" and "reserved" types are nicely
60 : * wrapped with struct memblock. This structure is statically
61 : * initialized at build time. The region arrays are initially sized to
62 : * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 : * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 : * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 : * The memblock_allow_resize() enables automatic resizing of the region
66 : * arrays during addition of new regions. This feature should be used
67 : * with care so that memory allocated for the region array will not
68 : * overlap with areas that should be reserved, for example initrd.
69 : *
70 : * The early architecture setup should tell memblock what the physical
71 : * memory layout is by using memblock_add() or memblock_add_node()
72 : * functions. The first function does not assign the region to a NUMA
73 : * node and it is appropriate for UMA systems. Yet, it is possible to
74 : * use it on NUMA systems as well and assign the region to a NUMA node
75 : * later in the setup process using memblock_set_node(). The
76 : * memblock_add_node() performs such an assignment directly.
77 : *
78 : * Once memblock is setup the memory can be allocated using one of the
79 : * API variants:
80 : *
81 : * * memblock_phys_alloc*() - these functions return the **physical**
82 : * address of the allocated memory
83 : * * memblock_alloc*() - these functions return the **virtual** address
84 : * of the allocated memory.
85 : *
86 : * Note, that both API variants use implicit assumptions about allowed
87 : * memory ranges and the fallback methods. Consult the documentation
88 : * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 : * functions for more elaborate description.
90 : *
91 : * As the system boot progresses, the architecture specific mem_init()
92 : * function frees all the memory to the buddy page allocator.
93 : *
94 : * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 : * memblock data structures (except "physmem") will be discarded after the
96 : * system initialization completes.
97 : */
98 :
99 : #ifndef CONFIG_NUMA
100 : struct pglist_data __refdata contig_page_data;
101 : EXPORT_SYMBOL(contig_page_data);
102 : #endif
103 :
104 : unsigned long max_low_pfn;
105 : unsigned long min_low_pfn;
106 : unsigned long max_pfn;
107 : unsigned long long max_possible_pfn;
108 :
109 : static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 : static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 : static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 : #endif
114 :
115 : struct memblock memblock __initdata_memblock = {
116 : .memory.regions = memblock_memory_init_regions,
117 : .memory.cnt = 1, /* empty dummy entry */
118 : .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 : .memory.name = "memory",
120 :
121 : .reserved.regions = memblock_reserved_init_regions,
122 : .reserved.cnt = 1, /* empty dummy entry */
123 : .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 : .reserved.name = "reserved",
125 :
126 : .bottom_up = false,
127 : .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 : };
129 :
130 : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 : struct memblock_type physmem = {
132 : .regions = memblock_physmem_init_regions,
133 : .cnt = 1, /* empty dummy entry */
134 : .max = INIT_PHYSMEM_REGIONS,
135 : .name = "physmem",
136 : };
137 : #endif
138 :
139 : /*
140 : * keep a pointer to &memblock.memory in the text section to use it in
141 : * __next_mem_range() and its helpers.
142 : * For architectures that do not keep memblock data after init, this
143 : * pointer will be reset to NULL at memblock_discard()
144 : */
145 : static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 :
147 : #define for_each_memblock_type(i, memblock_type, rgn) \
148 : for (i = 0, rgn = &memblock_type->regions[0]; \
149 : i < memblock_type->cnt; \
150 : i++, rgn = &memblock_type->regions[i])
151 :
152 : #define memblock_dbg(fmt, ...) \
153 : do { \
154 : if (memblock_debug) \
155 : pr_info(fmt, ##__VA_ARGS__); \
156 : } while (0)
157 :
158 : static int memblock_debug __initdata_memblock;
159 : static bool system_has_some_mirror __initdata_memblock;
160 : static int memblock_can_resize __initdata_memblock;
161 : static int memblock_memory_in_slab __initdata_memblock;
162 : static int memblock_reserved_in_slab __initdata_memblock;
163 :
164 21 : static enum memblock_flags __init_memblock choose_memblock_flags(void)
165 : {
166 21 : return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167 : }
168 :
169 : /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170 : static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171 : {
172 27 : return *size = min(*size, PHYS_ADDR_MAX - base);
173 : }
174 :
175 : /*
176 : * Address comparison utilities
177 : */
178 : static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 : phys_addr_t base2, phys_addr_t size2)
180 : {
181 0 : return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182 : }
183 :
184 0 : bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 : phys_addr_t base, phys_addr_t size)
186 : {
187 : unsigned long i;
188 :
189 0 : memblock_cap_size(base, &size);
190 :
191 0 : for (i = 0; i < type->cnt; i++)
192 0 : if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 0 : type->regions[i].size))
194 : break;
195 0 : return i < type->cnt;
196 : }
197 :
198 : /**
199 : * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 : * @start: start of candidate range
201 : * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 : * %MEMBLOCK_ALLOC_ACCESSIBLE
203 : * @size: size of free area to find
204 : * @align: alignment of free area to find
205 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 : * @flags: pick from blocks based on memory attributes
207 : *
208 : * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 : *
210 : * Return:
211 : * Found address on success, 0 on failure.
212 : */
213 : static phys_addr_t __init_memblock
214 0 : __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 : phys_addr_t size, phys_addr_t align, int nid,
216 : enum memblock_flags flags)
217 : {
218 : phys_addr_t this_start, this_end, cand;
219 : u64 i;
220 :
221 0 : for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 0 : this_start = clamp(this_start, start, end);
223 0 : this_end = clamp(this_end, start, end);
224 :
225 0 : cand = round_up(this_start, align);
226 0 : if (cand < this_end && this_end - cand >= size)
227 : return cand;
228 : }
229 :
230 : return 0;
231 : }
232 :
233 : /**
234 : * __memblock_find_range_top_down - find free area utility, in top-down
235 : * @start: start of candidate range
236 : * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 : * %MEMBLOCK_ALLOC_ACCESSIBLE
238 : * @size: size of free area to find
239 : * @align: alignment of free area to find
240 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 : * @flags: pick from blocks based on memory attributes
242 : *
243 : * Utility called from memblock_find_in_range_node(), find free area top-down.
244 : *
245 : * Return:
246 : * Found address on success, 0 on failure.
247 : */
248 : static phys_addr_t __init_memblock
249 21 : __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 : phys_addr_t size, phys_addr_t align, int nid,
251 : enum memblock_flags flags)
252 : {
253 : phys_addr_t this_start, this_end, cand;
254 : u64 i;
255 :
256 124 : for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 : NULL) {
258 124 : this_start = clamp(this_start, start, end);
259 124 : this_end = clamp(this_end, start, end);
260 :
261 124 : if (this_end < size)
262 0 : continue;
263 :
264 124 : cand = round_down(this_end - size, align);
265 124 : if (cand >= this_start)
266 : return cand;
267 : }
268 :
269 : return 0;
270 : }
271 :
272 : /**
273 : * memblock_find_in_range_node - find free area in given range and node
274 : * @size: size of free area to find
275 : * @align: alignment of free area to find
276 : * @start: start of candidate range
277 : * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 : * %MEMBLOCK_ALLOC_ACCESSIBLE
279 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 : * @flags: pick from blocks based on memory attributes
281 : *
282 : * Find @size free area aligned to @align in the specified range and node.
283 : *
284 : * Return:
285 : * Found address on success, 0 on failure.
286 : */
287 21 : static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 : phys_addr_t align, phys_addr_t start,
289 : phys_addr_t end, int nid,
290 : enum memblock_flags flags)
291 : {
292 : /* pump up @end */
293 21 : if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 : end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 18 : end = memblock.current_limit;
296 :
297 : /* avoid allocating the first page */
298 21 : start = max_t(phys_addr_t, start, PAGE_SIZE);
299 21 : end = max(start, end);
300 :
301 21 : if (memblock_bottom_up())
302 0 : return __memblock_find_range_bottom_up(start, end, size, align,
303 : nid, flags);
304 : else
305 21 : return __memblock_find_range_top_down(start, end, size, align,
306 : nid, flags);
307 : }
308 :
309 : /**
310 : * memblock_find_in_range - find free area in given range
311 : * @start: start of candidate range
312 : * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 : * %MEMBLOCK_ALLOC_ACCESSIBLE
314 : * @size: size of free area to find
315 : * @align: alignment of free area to find
316 : *
317 : * Find @size free area aligned to @align in the specified range.
318 : *
319 : * Return:
320 : * Found address on success, 0 on failure.
321 : */
322 0 : static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 : phys_addr_t end, phys_addr_t size,
324 : phys_addr_t align)
325 : {
326 : phys_addr_t ret;
327 0 : enum memblock_flags flags = choose_memblock_flags();
328 :
329 : again:
330 0 : ret = memblock_find_in_range_node(size, align, start, end,
331 : NUMA_NO_NODE, flags);
332 :
333 0 : if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 0 : pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 : &size);
336 0 : flags &= ~MEMBLOCK_MIRROR;
337 0 : goto again;
338 : }
339 :
340 0 : return ret;
341 : }
342 :
343 3 : static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344 : {
345 3 : type->total_size -= type->regions[r].size;
346 6 : memmove(&type->regions[r], &type->regions[r + 1],
347 : (type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 3 : type->cnt--;
349 :
350 : /* Special case for empty arrays */
351 3 : if (type->cnt == 0) {
352 0 : WARN_ON(type->total_size != 0);
353 0 : type->cnt = 1;
354 0 : type->regions[0].base = 0;
355 0 : type->regions[0].size = 0;
356 0 : type->regions[0].flags = 0;
357 0 : memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 : }
359 3 : }
360 :
361 : #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362 : /**
363 : * memblock_discard - discard memory and reserved arrays if they were allocated
364 : */
365 1 : void __init memblock_discard(void)
366 : {
367 : phys_addr_t addr, size;
368 :
369 1 : if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 0 : addr = __pa(memblock.reserved.regions);
371 0 : size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 : memblock.reserved.max);
373 0 : if (memblock_reserved_in_slab)
374 0 : kfree(memblock.reserved.regions);
375 : else
376 0 : memblock_free_late(addr, size);
377 : }
378 :
379 1 : if (memblock.memory.regions != memblock_memory_init_regions) {
380 0 : addr = __pa(memblock.memory.regions);
381 0 : size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 : memblock.memory.max);
383 0 : if (memblock_memory_in_slab)
384 0 : kfree(memblock.memory.regions);
385 : else
386 0 : memblock_free_late(addr, size);
387 : }
388 :
389 1 : memblock_memory = NULL;
390 1 : }
391 : #endif
392 :
393 : /**
394 : * memblock_double_array - double the size of the memblock regions array
395 : * @type: memblock type of the regions array being doubled
396 : * @new_area_start: starting address of memory range to avoid overlap with
397 : * @new_area_size: size of memory range to avoid overlap with
398 : *
399 : * Double the size of the @type regions array. If memblock is being used to
400 : * allocate memory for a new reserved regions array and there is a previously
401 : * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
402 : * waiting to be reserved, ensure the memory used by the new array does
403 : * not overlap.
404 : *
405 : * Return:
406 : * 0 on success, -1 on failure.
407 : */
408 0 : static int __init_memblock memblock_double_array(struct memblock_type *type,
409 : phys_addr_t new_area_start,
410 : phys_addr_t new_area_size)
411 : {
412 : struct memblock_region *new_array, *old_array;
413 : phys_addr_t old_alloc_size, new_alloc_size;
414 : phys_addr_t old_size, new_size, addr, new_end;
415 0 : int use_slab = slab_is_available();
416 : int *in_slab;
417 :
418 : /* We don't allow resizing until we know about the reserved regions
419 : * of memory that aren't suitable for allocation
420 : */
421 0 : if (!memblock_can_resize)
422 : return -1;
423 :
424 : /* Calculate new doubled size */
425 0 : old_size = type->max * sizeof(struct memblock_region);
426 0 : new_size = old_size << 1;
427 : /*
428 : * We need to allocated new one align to PAGE_SIZE,
429 : * so we can free them completely later.
430 : */
431 0 : old_alloc_size = PAGE_ALIGN(old_size);
432 0 : new_alloc_size = PAGE_ALIGN(new_size);
433 :
434 : /* Retrieve the slab flag */
435 0 : if (type == &memblock.memory)
436 : in_slab = &memblock_memory_in_slab;
437 : else
438 0 : in_slab = &memblock_reserved_in_slab;
439 :
440 : /* Try to find some space for it */
441 0 : if (use_slab) {
442 0 : new_array = kmalloc(new_size, GFP_KERNEL);
443 0 : addr = new_array ? __pa(new_array) : 0;
444 : } else {
445 : /* only exclude range when trying to double reserved.regions */
446 0 : if (type != &memblock.reserved)
447 0 : new_area_start = new_area_size = 0;
448 :
449 0 : addr = memblock_find_in_range(new_area_start + new_area_size,
450 : memblock.current_limit,
451 : new_alloc_size, PAGE_SIZE);
452 0 : if (!addr && new_area_size)
453 0 : addr = memblock_find_in_range(0,
454 0 : min(new_area_start, memblock.current_limit),
455 : new_alloc_size, PAGE_SIZE);
456 :
457 0 : new_array = addr ? __va(addr) : NULL;
458 : }
459 0 : if (!addr) {
460 0 : pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 : type->name, type->max, type->max * 2);
462 0 : return -1;
463 : }
464 :
465 0 : new_end = addr + new_size - 1;
466 0 : memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 : type->name, type->max * 2, &addr, &new_end);
468 :
469 : /*
470 : * Found space, we now need to move the array over before we add the
471 : * reserved region since it may be our reserved array itself that is
472 : * full.
473 : */
474 0 : memcpy(new_array, type->regions, old_size);
475 0 : memset(new_array + type->max, 0, old_size);
476 0 : old_array = type->regions;
477 0 : type->regions = new_array;
478 0 : type->max <<= 1;
479 :
480 : /* Free old array. We needn't free it if the array is the static one */
481 0 : if (*in_slab)
482 0 : kfree(old_array);
483 0 : else if (old_array != memblock_memory_init_regions &&
484 : old_array != memblock_reserved_init_regions)
485 0 : memblock_free(old_array, old_alloc_size);
486 :
487 : /*
488 : * Reserve the new array if that comes from the memblock. Otherwise, we
489 : * needn't do it
490 : */
491 0 : if (!use_slab)
492 0 : BUG_ON(memblock_reserve(addr, new_alloc_size));
493 :
494 : /* Update slab flag */
495 0 : *in_slab = use_slab;
496 :
497 0 : return 0;
498 : }
499 :
500 : /**
501 : * memblock_merge_regions - merge neighboring compatible regions
502 : * @type: memblock type to scan
503 : * @start_rgn: start scanning from (@start_rgn - 1)
504 : * @end_rgn: end scanning at (@end_rgn - 1)
505 : * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
506 : */
507 22 : static void __init_memblock memblock_merge_regions(struct memblock_type *type,
508 : unsigned long start_rgn,
509 : unsigned long end_rgn)
510 : {
511 22 : int i = 0;
512 22 : if (start_rgn)
513 21 : i = start_rgn - 1;
514 22 : end_rgn = min(end_rgn, type->cnt - 1);
515 63 : while (i < end_rgn) {
516 41 : struct memblock_region *this = &type->regions[i];
517 41 : struct memblock_region *next = &type->regions[i + 1];
518 :
519 41 : if (this->base + this->size != next->base ||
520 9 : memblock_get_region_node(this) !=
521 18 : memblock_get_region_node(next) ||
522 9 : this->flags != next->flags) {
523 32 : BUG_ON(this->base + this->size > next->base);
524 32 : i++;
525 32 : continue;
526 : }
527 :
528 9 : this->size += next->size;
529 : /* move forward from next + 1, index of which is i + 2 */
530 18 : memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
531 9 : type->cnt--;
532 9 : end_rgn--;
533 : }
534 22 : }
535 :
536 : /**
537 : * memblock_insert_region - insert new memblock region
538 : * @type: memblock type to insert into
539 : * @idx: index for the insertion point
540 : * @base: base address of the new region
541 : * @size: size of the new region
542 : * @nid: node id of the new region
543 : * @flags: flags of the new region
544 : *
545 : * Insert new memblock region [@base, @base + @size) into @type at @idx.
546 : * @type must already have extra room to accommodate the new region.
547 : */
548 24 : static void __init_memblock memblock_insert_region(struct memblock_type *type,
549 : int idx, phys_addr_t base,
550 : phys_addr_t size,
551 : int nid,
552 : enum memblock_flags flags)
553 : {
554 24 : struct memblock_region *rgn = &type->regions[idx];
555 :
556 24 : BUG_ON(type->cnt >= type->max);
557 48 : memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558 24 : rgn->base = base;
559 24 : rgn->size = size;
560 24 : rgn->flags = flags;
561 24 : memblock_set_region_node(rgn, nid);
562 24 : type->cnt++;
563 24 : type->total_size += size;
564 24 : }
565 :
566 : /**
567 : * memblock_add_range - add new memblock region
568 : * @type: memblock type to add new region into
569 : * @base: base address of the new region
570 : * @size: size of the new region
571 : * @nid: nid of the new region
572 : * @flags: flags of the new region
573 : *
574 : * Add new memblock region [@base, @base + @size) into @type. The new region
575 : * is allowed to overlap with existing ones - overlaps don't affect already
576 : * existing regions. @type is guaranteed to be minimal (all neighbouring
577 : * compatible regions are merged) after the addition.
578 : *
579 : * Return:
580 : * 0 on success, -errno on failure.
581 : */
582 23 : static int __init_memblock memblock_add_range(struct memblock_type *type,
583 : phys_addr_t base, phys_addr_t size,
584 : int nid, enum memblock_flags flags)
585 : {
586 23 : bool insert = false;
587 23 : phys_addr_t obase = base;
588 23 : phys_addr_t end = base + memblock_cap_size(base, &size);
589 23 : int idx, nr_new, start_rgn = -1, end_rgn;
590 : struct memblock_region *rgn;
591 :
592 23 : if (!size)
593 : return 0;
594 :
595 : /* special case for empty array */
596 23 : if (type->regions[0].size == 0) {
597 2 : WARN_ON(type->cnt != 1 || type->total_size);
598 2 : type->regions[0].base = base;
599 2 : type->regions[0].size = size;
600 2 : type->regions[0].flags = flags;
601 2 : memblock_set_region_node(&type->regions[0], nid);
602 2 : type->total_size = size;
603 : return 0;
604 : }
605 :
606 : /*
607 : * The worst case is when new range overlaps all existing regions,
608 : * then we'll need type->cnt + 1 empty regions in @type. So if
609 : * type->cnt * 2 + 1 is less than or equal to type->max, we know
610 : * that there is enough empty regions in @type, and we can insert
611 : * regions directly.
612 : */
613 21 : if (type->cnt * 2 + 1 <= type->max)
614 21 : insert = true;
615 :
616 : repeat:
617 : /*
618 : * The following is executed twice. Once with %false @insert and
619 : * then with %true. The first counts the number of regions needed
620 : * to accommodate the new area. The second actually inserts them.
621 : */
622 21 : base = obase;
623 21 : nr_new = 0;
624 :
625 55 : for_each_memblock_type(idx, type, rgn) {
626 54 : phys_addr_t rbase = rgn->base;
627 54 : phys_addr_t rend = rbase + rgn->size;
628 :
629 54 : if (rbase >= end)
630 : break;
631 34 : if (rend <= base)
632 34 : continue;
633 : /*
634 : * @rgn overlaps. If it separates the lower part of new
635 : * area, insert that portion.
636 : */
637 0 : if (rbase > base) {
638 : #ifdef CONFIG_NUMA
639 : WARN_ON(nid != memblock_get_region_node(rgn));
640 : #endif
641 0 : WARN_ON(flags != rgn->flags);
642 0 : nr_new++;
643 0 : if (insert) {
644 0 : if (start_rgn == -1)
645 0 : start_rgn = idx;
646 0 : end_rgn = idx + 1;
647 0 : memblock_insert_region(type, idx++, base,
648 : rbase - base, nid,
649 : flags);
650 : }
651 : }
652 : /* area below @rend is dealt with, forget about it */
653 0 : base = min(rend, end);
654 : }
655 :
656 : /* insert the remaining portion */
657 21 : if (base < end) {
658 21 : nr_new++;
659 21 : if (insert) {
660 21 : if (start_rgn == -1)
661 21 : start_rgn = idx;
662 21 : end_rgn = idx + 1;
663 21 : memblock_insert_region(type, idx, base, end - base,
664 : nid, flags);
665 : }
666 : }
667 :
668 21 : if (!nr_new)
669 : return 0;
670 :
671 : /*
672 : * If this was the first round, resize array and repeat for actual
673 : * insertions; otherwise, merge and return.
674 : */
675 21 : if (!insert) {
676 0 : while (type->cnt + nr_new > type->max)
677 0 : if (memblock_double_array(type, obase, size) < 0)
678 : return -ENOMEM;
679 : insert = true;
680 : goto repeat;
681 : } else {
682 21 : memblock_merge_regions(type, start_rgn, end_rgn);
683 : return 0;
684 : }
685 : }
686 :
687 : /**
688 : * memblock_add_node - add new memblock region within a NUMA node
689 : * @base: base address of the new region
690 : * @size: size of the new region
691 : * @nid: nid of the new region
692 : * @flags: flags of the new region
693 : *
694 : * Add new memblock region [@base, @base + @size) to the "memory"
695 : * type. See memblock_add_range() description for mode details
696 : *
697 : * Return:
698 : * 0 on success, -errno on failure.
699 : */
700 0 : int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
701 : int nid, enum memblock_flags flags)
702 : {
703 0 : phys_addr_t end = base + size - 1;
704 :
705 0 : memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
706 : &base, &end, nid, flags, (void *)_RET_IP_);
707 :
708 0 : return memblock_add_range(&memblock.memory, base, size, nid, flags);
709 : }
710 :
711 : /**
712 : * memblock_add - add new memblock region
713 : * @base: base address of the new region
714 : * @size: size of the new region
715 : *
716 : * Add new memblock region [@base, @base + @size) to the "memory"
717 : * type. See memblock_add_range() description for mode details
718 : *
719 : * Return:
720 : * 0 on success, -errno on failure.
721 : */
722 1 : int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
723 : {
724 1 : phys_addr_t end = base + size - 1;
725 :
726 1 : memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
727 : &base, &end, (void *)_RET_IP_);
728 :
729 1 : return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
730 : }
731 :
732 : /**
733 : * memblock_isolate_range - isolate given range into disjoint memblocks
734 : * @type: memblock type to isolate range for
735 : * @base: base of range to isolate
736 : * @size: size of range to isolate
737 : * @start_rgn: out parameter for the start of isolated region
738 : * @end_rgn: out parameter for the end of isolated region
739 : *
740 : * Walk @type and ensure that regions don't cross the boundaries defined by
741 : * [@base, @base + @size). Crossing regions are split at the boundaries,
742 : * which may create at most two more regions. The index of the first
743 : * region inside the range is returned in *@start_rgn and end in *@end_rgn.
744 : *
745 : * Return:
746 : * 0 on success, -errno on failure.
747 : */
748 4 : static int __init_memblock memblock_isolate_range(struct memblock_type *type,
749 : phys_addr_t base, phys_addr_t size,
750 : int *start_rgn, int *end_rgn)
751 : {
752 4 : phys_addr_t end = base + memblock_cap_size(base, &size);
753 : int idx;
754 : struct memblock_region *rgn;
755 :
756 4 : *start_rgn = *end_rgn = 0;
757 :
758 4 : if (!size)
759 : return 0;
760 :
761 : /* we'll create at most two more regions */
762 4 : while (type->cnt + 2 > type->max)
763 0 : if (memblock_double_array(type, base, size) < 0)
764 : return -ENOMEM;
765 :
766 15 : for_each_memblock_type(idx, type, rgn) {
767 14 : phys_addr_t rbase = rgn->base;
768 14 : phys_addr_t rend = rbase + rgn->size;
769 :
770 14 : if (rbase >= end)
771 : break;
772 11 : if (rend <= base)
773 4 : continue;
774 :
775 7 : if (rbase < base) {
776 : /*
777 : * @rgn intersects from below. Split and continue
778 : * to process the next region - the new top half.
779 : */
780 2 : rgn->base = base;
781 2 : rgn->size -= base - rbase;
782 2 : type->total_size -= base - rbase;
783 2 : memblock_insert_region(type, idx, rbase, base - rbase,
784 : memblock_get_region_node(rgn),
785 : rgn->flags);
786 5 : } else if (rend > end) {
787 : /*
788 : * @rgn intersects from above. Split and redo the
789 : * current region - the new bottom half.
790 : */
791 1 : rgn->base = end;
792 1 : rgn->size -= end - rbase;
793 1 : type->total_size -= end - rbase;
794 1 : memblock_insert_region(type, idx--, rbase, end - rbase,
795 : memblock_get_region_node(rgn),
796 : rgn->flags);
797 : } else {
798 : /* @rgn is fully contained, record it */
799 4 : if (!*end_rgn)
800 4 : *start_rgn = idx;
801 4 : *end_rgn = idx + 1;
802 : }
803 : }
804 :
805 : return 0;
806 : }
807 :
808 3 : static int __init_memblock memblock_remove_range(struct memblock_type *type,
809 : phys_addr_t base, phys_addr_t size)
810 : {
811 : int start_rgn, end_rgn;
812 : int i, ret;
813 :
814 3 : ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
815 3 : if (ret)
816 : return ret;
817 :
818 6 : for (i = end_rgn - 1; i >= start_rgn; i--)
819 3 : memblock_remove_region(type, i);
820 : return 0;
821 : }
822 :
823 0 : int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
824 : {
825 0 : phys_addr_t end = base + size - 1;
826 :
827 0 : memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
828 : &base, &end, (void *)_RET_IP_);
829 :
830 0 : return memblock_remove_range(&memblock.memory, base, size);
831 : }
832 :
833 : /**
834 : * memblock_free - free boot memory allocation
835 : * @ptr: starting address of the boot memory allocation
836 : * @size: size of the boot memory block in bytes
837 : *
838 : * Free boot memory block previously allocated by memblock_alloc_xx() API.
839 : * The freeing memory will not be released to the buddy allocator.
840 : */
841 3 : void __init_memblock memblock_free(void *ptr, size_t size)
842 : {
843 3 : if (ptr)
844 3 : memblock_phys_free(__pa(ptr), size);
845 3 : }
846 :
847 : /**
848 : * memblock_phys_free - free boot memory block
849 : * @base: phys starting address of the boot memory block
850 : * @size: size of the boot memory block in bytes
851 : *
852 : * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
853 : * The freeing memory will not be released to the buddy allocator.
854 : */
855 3 : int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
856 : {
857 3 : phys_addr_t end = base + size - 1;
858 :
859 3 : memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
860 : &base, &end, (void *)_RET_IP_);
861 :
862 3 : kmemleak_free_part_phys(base, size);
863 3 : return memblock_remove_range(&memblock.reserved, base, size);
864 : }
865 :
866 22 : int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
867 : {
868 22 : phys_addr_t end = base + size - 1;
869 :
870 22 : memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
871 : &base, &end, (void *)_RET_IP_);
872 :
873 22 : return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
874 : }
875 :
876 : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
877 : int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
878 : {
879 : phys_addr_t end = base + size - 1;
880 :
881 : memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
882 : &base, &end, (void *)_RET_IP_);
883 :
884 : return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
885 : }
886 : #endif
887 :
888 : /**
889 : * memblock_setclr_flag - set or clear flag for a memory region
890 : * @base: base address of the region
891 : * @size: size of the region
892 : * @set: set or clear the flag
893 : * @flag: the flag to update
894 : *
895 : * This function isolates region [@base, @base + @size), and sets/clears flag
896 : *
897 : * Return: 0 on success, -errno on failure.
898 : */
899 1 : static int __init_memblock memblock_setclr_flag(phys_addr_t base,
900 : phys_addr_t size, int set, int flag)
901 : {
902 1 : struct memblock_type *type = &memblock.memory;
903 : int i, ret, start_rgn, end_rgn;
904 :
905 1 : ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
906 1 : if (ret)
907 : return ret;
908 :
909 2 : for (i = start_rgn; i < end_rgn; i++) {
910 1 : struct memblock_region *r = &type->regions[i];
911 :
912 1 : if (set)
913 0 : r->flags |= flag;
914 : else
915 1 : r->flags &= ~flag;
916 : }
917 :
918 1 : memblock_merge_regions(type, start_rgn, end_rgn);
919 1 : return 0;
920 : }
921 :
922 : /**
923 : * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
924 : * @base: the base phys addr of the region
925 : * @size: the size of the region
926 : *
927 : * Return: 0 on success, -errno on failure.
928 : */
929 0 : int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
930 : {
931 0 : return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
932 : }
933 :
934 : /**
935 : * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
936 : * @base: the base phys addr of the region
937 : * @size: the size of the region
938 : *
939 : * Return: 0 on success, -errno on failure.
940 : */
941 1 : int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
942 : {
943 1 : return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
944 : }
945 :
946 : /**
947 : * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
948 : * @base: the base phys addr of the region
949 : * @size: the size of the region
950 : *
951 : * Return: 0 on success, -errno on failure.
952 : */
953 0 : int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
954 : {
955 0 : if (!mirrored_kernelcore)
956 : return 0;
957 :
958 0 : system_has_some_mirror = true;
959 :
960 0 : return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
961 : }
962 :
963 : /**
964 : * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
965 : * @base: the base phys addr of the region
966 : * @size: the size of the region
967 : *
968 : * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
969 : * direct mapping of the physical memory. These regions will still be
970 : * covered by the memory map. The struct page representing NOMAP memory
971 : * frames in the memory map will be PageReserved()
972 : *
973 : * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
974 : * memblock, the caller must inform kmemleak to ignore that memory
975 : *
976 : * Return: 0 on success, -errno on failure.
977 : */
978 0 : int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
979 : {
980 0 : return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
981 : }
982 :
983 : /**
984 : * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
985 : * @base: the base phys addr of the region
986 : * @size: the size of the region
987 : *
988 : * Return: 0 on success, -errno on failure.
989 : */
990 0 : int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
991 : {
992 0 : return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
993 : }
994 :
995 137 : static bool should_skip_region(struct memblock_type *type,
996 : struct memblock_region *m,
997 : int nid, int flags)
998 : {
999 137 : int m_nid = memblock_get_region_node(m);
1000 :
1001 : /* we never skip regions when iterating memblock.reserved or physmem */
1002 137 : if (type != memblock_memory)
1003 : return false;
1004 :
1005 : /* only memory regions are associated with nodes, check it */
1006 137 : if (nid != NUMA_NO_NODE && nid != m_nid)
1007 : return true;
1008 :
1009 : /* skip hotpluggable memory regions if needed */
1010 : if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1011 : !(flags & MEMBLOCK_HOTPLUG))
1012 : return true;
1013 :
1014 : /* if we want mirror memory skip non-mirror memory regions */
1015 137 : if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 : return true;
1017 :
1018 : /* skip nomap memory unless we were asked for it explicitly */
1019 274 : if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 : return true;
1021 :
1022 : /* skip driver-managed memory unless we were asked for it explicitly */
1023 274 : if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1024 : return true;
1025 :
1026 : return false;
1027 : }
1028 :
1029 : /**
1030 : * __next_mem_range - next function for for_each_free_mem_range() etc.
1031 : * @idx: pointer to u64 loop variable
1032 : * @nid: node selector, %NUMA_NO_NODE for all nodes
1033 : * @flags: pick from blocks based on memory attributes
1034 : * @type_a: pointer to memblock_type from where the range is taken
1035 : * @type_b: pointer to memblock_type which excludes memory from being taken
1036 : * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1037 : * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1038 : * @out_nid: ptr to int for nid of the range, can be %NULL
1039 : *
1040 : * Find the first area from *@idx which matches @nid, fill the out
1041 : * parameters, and update *@idx for the next iteration. The lower 32bit of
1042 : * *@idx contains index into type_a and the upper 32bit indexes the
1043 : * areas before each region in type_b. For example, if type_b regions
1044 : * look like the following,
1045 : *
1046 : * 0:[0-16), 1:[32-48), 2:[128-130)
1047 : *
1048 : * The upper 32bit indexes the following regions.
1049 : *
1050 : * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1051 : *
1052 : * As both region arrays are sorted, the function advances the two indices
1053 : * in lockstep and returns each intersection.
1054 : */
1055 13 : void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1056 : struct memblock_type *type_a,
1057 : struct memblock_type *type_b, phys_addr_t *out_start,
1058 : phys_addr_t *out_end, int *out_nid)
1059 : {
1060 13 : int idx_a = *idx & 0xffffffff;
1061 13 : int idx_b = *idx >> 32;
1062 :
1063 13 : if (WARN_ONCE(nid == MAX_NUMNODES,
1064 : "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1065 0 : nid = NUMA_NO_NODE;
1066 :
1067 1 : for (; idx_a < type_a->cnt; idx_a++) {
1068 13 : struct memblock_region *m = &type_a->regions[idx_a];
1069 :
1070 13 : phys_addr_t m_start = m->base;
1071 13 : phys_addr_t m_end = m->base + m->size;
1072 13 : int m_nid = memblock_get_region_node(m);
1073 :
1074 13 : if (should_skip_region(type_a, m, nid, flags))
1075 0 : continue;
1076 :
1077 13 : if (!type_b) {
1078 0 : if (out_start)
1079 0 : *out_start = m_start;
1080 0 : if (out_end)
1081 0 : *out_end = m_end;
1082 0 : if (out_nid)
1083 0 : *out_nid = m_nid;
1084 0 : idx_a++;
1085 0 : *idx = (u32)idx_a | (u64)idx_b << 32;
1086 0 : return;
1087 : }
1088 :
1089 : /* scan areas before each reservation */
1090 1 : for (; idx_b < type_b->cnt + 1; idx_b++) {
1091 : struct memblock_region *r;
1092 : phys_addr_t r_start;
1093 : phys_addr_t r_end;
1094 :
1095 14 : r = &type_b->regions[idx_b];
1096 14 : r_start = idx_b ? r[-1].base + r[-1].size : 0;
1097 14 : r_end = idx_b < type_b->cnt ?
1098 14 : r->base : PHYS_ADDR_MAX;
1099 :
1100 : /*
1101 : * if idx_b advanced past idx_a,
1102 : * break out to advance idx_a
1103 : */
1104 14 : if (r_start >= m_end)
1105 : break;
1106 : /* if the two regions intersect, we're done */
1107 13 : if (m_start < r_end) {
1108 12 : if (out_start)
1109 12 : *out_start =
1110 12 : max(m_start, r_start);
1111 12 : if (out_end)
1112 12 : *out_end = min(m_end, r_end);
1113 12 : if (out_nid)
1114 0 : *out_nid = m_nid;
1115 : /*
1116 : * The region which ends first is
1117 : * advanced for the next iteration.
1118 : */
1119 12 : if (m_end <= r_end)
1120 0 : idx_a++;
1121 : else
1122 12 : idx_b++;
1123 12 : *idx = (u32)idx_a | (u64)idx_b << 32;
1124 12 : return;
1125 : }
1126 : }
1127 : }
1128 :
1129 : /* signal end of iteration */
1130 1 : *idx = ULLONG_MAX;
1131 : }
1132 :
1133 : /**
1134 : * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1135 : *
1136 : * @idx: pointer to u64 loop variable
1137 : * @nid: node selector, %NUMA_NO_NODE for all nodes
1138 : * @flags: pick from blocks based on memory attributes
1139 : * @type_a: pointer to memblock_type from where the range is taken
1140 : * @type_b: pointer to memblock_type which excludes memory from being taken
1141 : * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1142 : * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1143 : * @out_nid: ptr to int for nid of the range, can be %NULL
1144 : *
1145 : * Finds the next range from type_a which is not marked as unsuitable
1146 : * in type_b.
1147 : *
1148 : * Reverse of __next_mem_range().
1149 : */
1150 124 : void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1151 : enum memblock_flags flags,
1152 : struct memblock_type *type_a,
1153 : struct memblock_type *type_b,
1154 : phys_addr_t *out_start,
1155 : phys_addr_t *out_end, int *out_nid)
1156 : {
1157 124 : int idx_a = *idx & 0xffffffff;
1158 124 : int idx_b = *idx >> 32;
1159 :
1160 124 : if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1161 0 : nid = NUMA_NO_NODE;
1162 :
1163 124 : if (*idx == (u64)ULLONG_MAX) {
1164 21 : idx_a = type_a->cnt - 1;
1165 21 : if (type_b != NULL)
1166 21 : idx_b = type_b->cnt;
1167 : else
1168 : idx_b = 0;
1169 : }
1170 :
1171 0 : for (; idx_a >= 0; idx_a--) {
1172 124 : struct memblock_region *m = &type_a->regions[idx_a];
1173 :
1174 124 : phys_addr_t m_start = m->base;
1175 124 : phys_addr_t m_end = m->base + m->size;
1176 124 : int m_nid = memblock_get_region_node(m);
1177 :
1178 124 : if (should_skip_region(type_a, m, nid, flags))
1179 0 : continue;
1180 :
1181 124 : if (!type_b) {
1182 0 : if (out_start)
1183 0 : *out_start = m_start;
1184 0 : if (out_end)
1185 0 : *out_end = m_end;
1186 0 : if (out_nid)
1187 0 : *out_nid = m_nid;
1188 0 : idx_a--;
1189 0 : *idx = (u32)idx_a | (u64)idx_b << 32;
1190 0 : return;
1191 : }
1192 :
1193 : /* scan areas before each reservation */
1194 20 : for (; idx_b >= 0; idx_b--) {
1195 : struct memblock_region *r;
1196 : phys_addr_t r_start;
1197 : phys_addr_t r_end;
1198 :
1199 144 : r = &type_b->regions[idx_b];
1200 144 : r_start = idx_b ? r[-1].base + r[-1].size : 0;
1201 288 : r_end = idx_b < type_b->cnt ?
1202 144 : r->base : PHYS_ADDR_MAX;
1203 : /*
1204 : * if idx_b advanced past idx_a,
1205 : * break out to advance idx_a
1206 : */
1207 :
1208 144 : if (r_end <= m_start)
1209 : break;
1210 : /* if the two regions intersect, we're done */
1211 144 : if (m_end > r_start) {
1212 124 : if (out_start)
1213 124 : *out_start = max(m_start, r_start);
1214 124 : if (out_end)
1215 124 : *out_end = min(m_end, r_end);
1216 124 : if (out_nid)
1217 0 : *out_nid = m_nid;
1218 124 : if (m_start >= r_start)
1219 0 : idx_a--;
1220 : else
1221 124 : idx_b--;
1222 124 : *idx = (u32)idx_a | (u64)idx_b << 32;
1223 124 : return;
1224 : }
1225 : }
1226 : }
1227 : /* signal end of iteration */
1228 0 : *idx = ULLONG_MAX;
1229 : }
1230 :
1231 : /*
1232 : * Common iterator interface used to define for_each_mem_pfn_range().
1233 : */
1234 10 : void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1235 : unsigned long *out_start_pfn,
1236 : unsigned long *out_end_pfn, int *out_nid)
1237 : {
1238 10 : struct memblock_type *type = &memblock.memory;
1239 : struct memblock_region *r;
1240 : int r_nid;
1241 :
1242 20 : while (++*idx < type->cnt) {
1243 5 : r = &type->regions[*idx];
1244 5 : r_nid = memblock_get_region_node(r);
1245 :
1246 5 : if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1247 0 : continue;
1248 5 : if (nid == MAX_NUMNODES || nid == r_nid)
1249 : break;
1250 : }
1251 10 : if (*idx >= type->cnt) {
1252 5 : *idx = -1;
1253 5 : return;
1254 : }
1255 :
1256 5 : if (out_start_pfn)
1257 5 : *out_start_pfn = PFN_UP(r->base);
1258 5 : if (out_end_pfn)
1259 5 : *out_end_pfn = PFN_DOWN(r->base + r->size);
1260 5 : if (out_nid)
1261 3 : *out_nid = r_nid;
1262 : }
1263 :
1264 : /**
1265 : * memblock_set_node - set node ID on memblock regions
1266 : * @base: base of area to set node ID for
1267 : * @size: size of area to set node ID for
1268 : * @type: memblock type to set node ID for
1269 : * @nid: node ID to set
1270 : *
1271 : * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1272 : * Regions which cross the area boundaries are split as necessary.
1273 : *
1274 : * Return:
1275 : * 0 on success, -errno on failure.
1276 : */
1277 0 : int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1278 : struct memblock_type *type, int nid)
1279 : {
1280 : #ifdef CONFIG_NUMA
1281 : int start_rgn, end_rgn;
1282 : int i, ret;
1283 :
1284 : ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1285 : if (ret)
1286 : return ret;
1287 :
1288 : for (i = start_rgn; i < end_rgn; i++)
1289 : memblock_set_region_node(&type->regions[i], nid);
1290 :
1291 : memblock_merge_regions(type, start_rgn, end_rgn);
1292 : #endif
1293 0 : return 0;
1294 : }
1295 :
1296 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1297 : /**
1298 : * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1299 : *
1300 : * @idx: pointer to u64 loop variable
1301 : * @zone: zone in which all of the memory blocks reside
1302 : * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1303 : * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1304 : *
1305 : * This function is meant to be a zone/pfn specific wrapper for the
1306 : * for_each_mem_range type iterators. Specifically they are used in the
1307 : * deferred memory init routines and as such we were duplicating much of
1308 : * this logic throughout the code. So instead of having it in multiple
1309 : * locations it seemed like it would make more sense to centralize this to
1310 : * one new iterator that does everything they need.
1311 : */
1312 : void __init_memblock
1313 : __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1314 : unsigned long *out_spfn, unsigned long *out_epfn)
1315 : {
1316 : int zone_nid = zone_to_nid(zone);
1317 : phys_addr_t spa, epa;
1318 :
1319 : __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1320 : &memblock.memory, &memblock.reserved,
1321 : &spa, &epa, NULL);
1322 :
1323 : while (*idx != U64_MAX) {
1324 : unsigned long epfn = PFN_DOWN(epa);
1325 : unsigned long spfn = PFN_UP(spa);
1326 :
1327 : /*
1328 : * Verify the end is at least past the start of the zone and
1329 : * that we have at least one PFN to initialize.
1330 : */
1331 : if (zone->zone_start_pfn < epfn && spfn < epfn) {
1332 : /* if we went too far just stop searching */
1333 : if (zone_end_pfn(zone) <= spfn) {
1334 : *idx = U64_MAX;
1335 : break;
1336 : }
1337 :
1338 : if (out_spfn)
1339 : *out_spfn = max(zone->zone_start_pfn, spfn);
1340 : if (out_epfn)
1341 : *out_epfn = min(zone_end_pfn(zone), epfn);
1342 :
1343 : return;
1344 : }
1345 :
1346 : __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1347 : &memblock.memory, &memblock.reserved,
1348 : &spa, &epa, NULL);
1349 : }
1350 :
1351 : /* signal end of iteration */
1352 : if (out_spfn)
1353 : *out_spfn = ULONG_MAX;
1354 : if (out_epfn)
1355 : *out_epfn = 0;
1356 : }
1357 :
1358 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1359 :
1360 : /**
1361 : * memblock_alloc_range_nid - allocate boot memory block
1362 : * @size: size of memory block to be allocated in bytes
1363 : * @align: alignment of the region and block's size
1364 : * @start: the lower bound of the memory region to allocate (phys address)
1365 : * @end: the upper bound of the memory region to allocate (phys address)
1366 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1367 : * @exact_nid: control the allocation fall back to other nodes
1368 : *
1369 : * The allocation is performed from memory region limited by
1370 : * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1371 : *
1372 : * If the specified node can not hold the requested memory and @exact_nid
1373 : * is false, the allocation falls back to any node in the system.
1374 : *
1375 : * For systems with memory mirroring, the allocation is attempted first
1376 : * from the regions with mirroring enabled and then retried from any
1377 : * memory region.
1378 : *
1379 : * In addition, function using kmemleak_alloc_phys for allocated boot
1380 : * memory block, it is never reported as leaks.
1381 : *
1382 : * Return:
1383 : * Physical address of allocated memory block on success, %0 on failure.
1384 : */
1385 21 : phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1386 : phys_addr_t align, phys_addr_t start,
1387 : phys_addr_t end, int nid,
1388 : bool exact_nid)
1389 : {
1390 21 : enum memblock_flags flags = choose_memblock_flags();
1391 : phys_addr_t found;
1392 :
1393 21 : if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1394 0 : nid = NUMA_NO_NODE;
1395 :
1396 21 : if (!align) {
1397 : /* Can't use WARNs this early in boot on powerpc */
1398 0 : dump_stack();
1399 0 : align = SMP_CACHE_BYTES;
1400 : }
1401 :
1402 : again:
1403 21 : found = memblock_find_in_range_node(size, align, start, end, nid,
1404 : flags);
1405 21 : if (found && !memblock_reserve(found, size))
1406 : goto done;
1407 :
1408 0 : if (nid != NUMA_NO_NODE && !exact_nid) {
1409 0 : found = memblock_find_in_range_node(size, align, start,
1410 : end, NUMA_NO_NODE,
1411 : flags);
1412 0 : if (found && !memblock_reserve(found, size))
1413 : goto done;
1414 : }
1415 :
1416 0 : if (flags & MEMBLOCK_MIRROR) {
1417 0 : flags &= ~MEMBLOCK_MIRROR;
1418 0 : pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1419 : &size);
1420 : goto again;
1421 : }
1422 :
1423 : return 0;
1424 :
1425 : done:
1426 : /*
1427 : * Skip kmemleak for those places like kasan_init() and
1428 : * early_pgtable_alloc() due to high volume.
1429 : */
1430 : if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1431 : /*
1432 : * Memblock allocated blocks are never reported as
1433 : * leaks. This is because many of these blocks are
1434 : * only referred via the physical address which is
1435 : * not looked up by kmemleak.
1436 : */
1437 : kmemleak_alloc_phys(found, size, 0);
1438 :
1439 : /*
1440 : * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1441 : * require memory to be accepted before it can be used by the
1442 : * guest.
1443 : *
1444 : * Accept the memory of the allocated buffer.
1445 : */
1446 21 : accept_memory(found, found + size);
1447 :
1448 21 : return found;
1449 : }
1450 :
1451 : /**
1452 : * memblock_phys_alloc_range - allocate a memory block inside specified range
1453 : * @size: size of memory block to be allocated in bytes
1454 : * @align: alignment of the region and block's size
1455 : * @start: the lower bound of the memory region to allocate (physical address)
1456 : * @end: the upper bound of the memory region to allocate (physical address)
1457 : *
1458 : * Allocate @size bytes in the between @start and @end.
1459 : *
1460 : * Return: physical address of the allocated memory block on success,
1461 : * %0 on failure.
1462 : */
1463 0 : phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1464 : phys_addr_t align,
1465 : phys_addr_t start,
1466 : phys_addr_t end)
1467 : {
1468 0 : memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1469 : __func__, (u64)size, (u64)align, &start, &end,
1470 : (void *)_RET_IP_);
1471 0 : return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1472 : false);
1473 : }
1474 :
1475 : /**
1476 : * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1477 : * @size: size of memory block to be allocated in bytes
1478 : * @align: alignment of the region and block's size
1479 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1480 : *
1481 : * Allocates memory block from the specified NUMA node. If the node
1482 : * has no available memory, attempts to allocated from any node in the
1483 : * system.
1484 : *
1485 : * Return: physical address of the allocated memory block on success,
1486 : * %0 on failure.
1487 : */
1488 0 : phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1489 : {
1490 0 : return memblock_alloc_range_nid(size, align, 0,
1491 : MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1492 : }
1493 :
1494 : /**
1495 : * memblock_alloc_internal - allocate boot memory block
1496 : * @size: size of memory block to be allocated in bytes
1497 : * @align: alignment of the region and block's size
1498 : * @min_addr: the lower bound of the memory region to allocate (phys address)
1499 : * @max_addr: the upper bound of the memory region to allocate (phys address)
1500 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1501 : * @exact_nid: control the allocation fall back to other nodes
1502 : *
1503 : * Allocates memory block using memblock_alloc_range_nid() and
1504 : * converts the returned physical address to virtual.
1505 : *
1506 : * The @min_addr limit is dropped if it can not be satisfied and the allocation
1507 : * will fall back to memory below @min_addr. Other constraints, such
1508 : * as node and mirrored memory will be handled again in
1509 : * memblock_alloc_range_nid().
1510 : *
1511 : * Return:
1512 : * Virtual address of allocated memory block on success, NULL on failure.
1513 : */
1514 21 : static void * __init memblock_alloc_internal(
1515 : phys_addr_t size, phys_addr_t align,
1516 : phys_addr_t min_addr, phys_addr_t max_addr,
1517 : int nid, bool exact_nid)
1518 : {
1519 : phys_addr_t alloc;
1520 :
1521 : /*
1522 : * Detect any accidental use of these APIs after slab is ready, as at
1523 : * this moment memblock may be deinitialized already and its
1524 : * internal data may be destroyed (after execution of memblock_free_all)
1525 : */
1526 21 : if (WARN_ON_ONCE(slab_is_available()))
1527 0 : return kzalloc_node(size, GFP_NOWAIT, nid);
1528 :
1529 21 : if (max_addr > memblock.current_limit)
1530 0 : max_addr = memblock.current_limit;
1531 :
1532 21 : alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1533 : exact_nid);
1534 :
1535 : /* retry allocation without lower limit */
1536 21 : if (!alloc && min_addr)
1537 0 : alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1538 : exact_nid);
1539 :
1540 21 : if (!alloc)
1541 : return NULL;
1542 :
1543 21 : return phys_to_virt(alloc);
1544 : }
1545 :
1546 : /**
1547 : * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1548 : * without zeroing memory
1549 : * @size: size of memory block to be allocated in bytes
1550 : * @align: alignment of the region and block's size
1551 : * @min_addr: the lower bound of the memory region from where the allocation
1552 : * is preferred (phys address)
1553 : * @max_addr: the upper bound of the memory region from where the allocation
1554 : * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1555 : * allocate only from memory limited by memblock.current_limit value
1556 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1557 : *
1558 : * Public function, provides additional debug information (including caller
1559 : * info), if enabled. Does not zero allocated memory.
1560 : *
1561 : * Return:
1562 : * Virtual address of allocated memory block on success, NULL on failure.
1563 : */
1564 0 : void * __init memblock_alloc_exact_nid_raw(
1565 : phys_addr_t size, phys_addr_t align,
1566 : phys_addr_t min_addr, phys_addr_t max_addr,
1567 : int nid)
1568 : {
1569 0 : memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1570 : __func__, (u64)size, (u64)align, nid, &min_addr,
1571 : &max_addr, (void *)_RET_IP_);
1572 :
1573 0 : return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1574 : true);
1575 : }
1576 :
1577 : /**
1578 : * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1579 : * memory and without panicking
1580 : * @size: size of memory block to be allocated in bytes
1581 : * @align: alignment of the region and block's size
1582 : * @min_addr: the lower bound of the memory region from where the allocation
1583 : * is preferred (phys address)
1584 : * @max_addr: the upper bound of the memory region from where the allocation
1585 : * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1586 : * allocate only from memory limited by memblock.current_limit value
1587 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1588 : *
1589 : * Public function, provides additional debug information (including caller
1590 : * info), if enabled. Does not zero allocated memory, does not panic if request
1591 : * cannot be satisfied.
1592 : *
1593 : * Return:
1594 : * Virtual address of allocated memory block on success, NULL on failure.
1595 : */
1596 1 : void * __init memblock_alloc_try_nid_raw(
1597 : phys_addr_t size, phys_addr_t align,
1598 : phys_addr_t min_addr, phys_addr_t max_addr,
1599 : int nid)
1600 : {
1601 1 : memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 : __func__, (u64)size, (u64)align, nid, &min_addr,
1603 : &max_addr, (void *)_RET_IP_);
1604 :
1605 1 : return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1606 : false);
1607 : }
1608 :
1609 : /**
1610 : * memblock_alloc_try_nid - allocate boot memory block
1611 : * @size: size of memory block to be allocated in bytes
1612 : * @align: alignment of the region and block's size
1613 : * @min_addr: the lower bound of the memory region from where the allocation
1614 : * is preferred (phys address)
1615 : * @max_addr: the upper bound of the memory region from where the allocation
1616 : * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1617 : * allocate only from memory limited by memblock.current_limit value
1618 : * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1619 : *
1620 : * Public function, provides additional debug information (including caller
1621 : * info), if enabled. This function zeroes the allocated memory.
1622 : *
1623 : * Return:
1624 : * Virtual address of allocated memory block on success, NULL on failure.
1625 : */
1626 20 : void * __init memblock_alloc_try_nid(
1627 : phys_addr_t size, phys_addr_t align,
1628 : phys_addr_t min_addr, phys_addr_t max_addr,
1629 : int nid)
1630 : {
1631 : void *ptr;
1632 :
1633 20 : memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1634 : __func__, (u64)size, (u64)align, nid, &min_addr,
1635 : &max_addr, (void *)_RET_IP_);
1636 20 : ptr = memblock_alloc_internal(size, align,
1637 : min_addr, max_addr, nid, false);
1638 20 : if (ptr)
1639 40 : memset(ptr, 0, size);
1640 :
1641 20 : return ptr;
1642 : }
1643 :
1644 : /**
1645 : * memblock_free_late - free pages directly to buddy allocator
1646 : * @base: phys starting address of the boot memory block
1647 : * @size: size of the boot memory block in bytes
1648 : *
1649 : * This is only useful when the memblock allocator has already been torn
1650 : * down, but we are still initializing the system. Pages are released directly
1651 : * to the buddy allocator.
1652 : */
1653 0 : void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1654 : {
1655 : phys_addr_t cursor, end;
1656 :
1657 0 : end = base + size - 1;
1658 0 : memblock_dbg("%s: [%pa-%pa] %pS\n",
1659 : __func__, &base, &end, (void *)_RET_IP_);
1660 0 : kmemleak_free_part_phys(base, size);
1661 0 : cursor = PFN_UP(base);
1662 0 : end = PFN_DOWN(base + size);
1663 :
1664 0 : for (; cursor < end; cursor++) {
1665 0 : memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1666 : totalram_pages_inc();
1667 : }
1668 0 : }
1669 :
1670 : /*
1671 : * Remaining API functions
1672 : */
1673 :
1674 0 : phys_addr_t __init_memblock memblock_phys_mem_size(void)
1675 : {
1676 0 : return memblock.memory.total_size;
1677 : }
1678 :
1679 0 : phys_addr_t __init_memblock memblock_reserved_size(void)
1680 : {
1681 0 : return memblock.reserved.total_size;
1682 : }
1683 :
1684 : /* lowest address */
1685 1 : phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1686 : {
1687 1 : return memblock.memory.regions[0].base;
1688 : }
1689 :
1690 0 : phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1691 : {
1692 0 : int idx = memblock.memory.cnt - 1;
1693 :
1694 0 : return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1695 : }
1696 :
1697 0 : static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1698 : {
1699 0 : phys_addr_t max_addr = PHYS_ADDR_MAX;
1700 : struct memblock_region *r;
1701 :
1702 : /*
1703 : * translate the memory @limit size into the max address within one of
1704 : * the memory memblock regions, if the @limit exceeds the total size
1705 : * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1706 : */
1707 0 : for_each_mem_region(r) {
1708 0 : if (limit <= r->size) {
1709 0 : max_addr = r->base + limit;
1710 0 : break;
1711 : }
1712 0 : limit -= r->size;
1713 : }
1714 :
1715 0 : return max_addr;
1716 : }
1717 :
1718 0 : void __init memblock_enforce_memory_limit(phys_addr_t limit)
1719 : {
1720 : phys_addr_t max_addr;
1721 :
1722 0 : if (!limit)
1723 : return;
1724 :
1725 0 : max_addr = __find_max_addr(limit);
1726 :
1727 : /* @limit exceeds the total size of the memory, do nothing */
1728 0 : if (max_addr == PHYS_ADDR_MAX)
1729 : return;
1730 :
1731 : /* truncate both memory and reserved regions */
1732 0 : memblock_remove_range(&memblock.memory, max_addr,
1733 : PHYS_ADDR_MAX);
1734 0 : memblock_remove_range(&memblock.reserved, max_addr,
1735 : PHYS_ADDR_MAX);
1736 : }
1737 :
1738 0 : void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1739 : {
1740 : int start_rgn, end_rgn;
1741 : int i, ret;
1742 :
1743 0 : if (!size)
1744 0 : return;
1745 :
1746 0 : if (!memblock_memory->total_size) {
1747 0 : pr_warn("%s: No memory registered yet\n", __func__);
1748 0 : return;
1749 : }
1750 :
1751 0 : ret = memblock_isolate_range(&memblock.memory, base, size,
1752 : &start_rgn, &end_rgn);
1753 0 : if (ret)
1754 : return;
1755 :
1756 : /* remove all the MAP regions */
1757 0 : for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1758 0 : if (!memblock_is_nomap(&memblock.memory.regions[i]))
1759 0 : memblock_remove_region(&memblock.memory, i);
1760 :
1761 0 : for (i = start_rgn - 1; i >= 0; i--)
1762 0 : if (!memblock_is_nomap(&memblock.memory.regions[i]))
1763 0 : memblock_remove_region(&memblock.memory, i);
1764 :
1765 : /* truncate the reserved regions */
1766 0 : memblock_remove_range(&memblock.reserved, 0, base);
1767 0 : memblock_remove_range(&memblock.reserved,
1768 : base + size, PHYS_ADDR_MAX);
1769 : }
1770 :
1771 0 : void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1772 : {
1773 : phys_addr_t max_addr;
1774 :
1775 0 : if (!limit)
1776 : return;
1777 :
1778 0 : max_addr = __find_max_addr(limit);
1779 :
1780 : /* @limit exceeds the total size of the memory, do nothing */
1781 0 : if (max_addr == PHYS_ADDR_MAX)
1782 : return;
1783 :
1784 0 : memblock_cap_memory_range(0, max_addr);
1785 : }
1786 :
1787 0 : static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1788 : {
1789 0 : unsigned int left = 0, right = type->cnt;
1790 :
1791 : do {
1792 0 : unsigned int mid = (right + left) / 2;
1793 :
1794 0 : if (addr < type->regions[mid].base)
1795 : right = mid;
1796 0 : else if (addr >= (type->regions[mid].base +
1797 0 : type->regions[mid].size))
1798 0 : left = mid + 1;
1799 : else
1800 0 : return mid;
1801 0 : } while (left < right);
1802 : return -1;
1803 : }
1804 :
1805 0 : bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1806 : {
1807 0 : return memblock_search(&memblock.reserved, addr) != -1;
1808 : }
1809 :
1810 0 : bool __init_memblock memblock_is_memory(phys_addr_t addr)
1811 : {
1812 0 : return memblock_search(&memblock.memory, addr) != -1;
1813 : }
1814 :
1815 0 : bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1816 : {
1817 0 : int i = memblock_search(&memblock.memory, addr);
1818 :
1819 0 : if (i == -1)
1820 : return false;
1821 0 : return !memblock_is_nomap(&memblock.memory.regions[i]);
1822 : }
1823 :
1824 0 : int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1825 : unsigned long *start_pfn, unsigned long *end_pfn)
1826 : {
1827 0 : struct memblock_type *type = &memblock.memory;
1828 0 : int mid = memblock_search(type, PFN_PHYS(pfn));
1829 :
1830 0 : if (mid == -1)
1831 : return -1;
1832 :
1833 0 : *start_pfn = PFN_DOWN(type->regions[mid].base);
1834 0 : *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1835 :
1836 0 : return memblock_get_region_node(&type->regions[mid]);
1837 : }
1838 :
1839 : /**
1840 : * memblock_is_region_memory - check if a region is a subset of memory
1841 : * @base: base of region to check
1842 : * @size: size of region to check
1843 : *
1844 : * Check if the region [@base, @base + @size) is a subset of a memory block.
1845 : *
1846 : * Return:
1847 : * 0 if false, non-zero if true
1848 : */
1849 0 : bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1850 : {
1851 0 : int idx = memblock_search(&memblock.memory, base);
1852 0 : phys_addr_t end = base + memblock_cap_size(base, &size);
1853 :
1854 0 : if (idx == -1)
1855 : return false;
1856 0 : return (memblock.memory.regions[idx].base +
1857 0 : memblock.memory.regions[idx].size) >= end;
1858 : }
1859 :
1860 : /**
1861 : * memblock_is_region_reserved - check if a region intersects reserved memory
1862 : * @base: base of region to check
1863 : * @size: size of region to check
1864 : *
1865 : * Check if the region [@base, @base + @size) intersects a reserved
1866 : * memory block.
1867 : *
1868 : * Return:
1869 : * True if they intersect, false if not.
1870 : */
1871 0 : bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1872 : {
1873 0 : return memblock_overlaps_region(&memblock.reserved, base, size);
1874 : }
1875 :
1876 0 : void __init_memblock memblock_trim_memory(phys_addr_t align)
1877 : {
1878 : phys_addr_t start, end, orig_start, orig_end;
1879 : struct memblock_region *r;
1880 :
1881 0 : for_each_mem_region(r) {
1882 0 : orig_start = r->base;
1883 0 : orig_end = r->base + r->size;
1884 0 : start = round_up(orig_start, align);
1885 0 : end = round_down(orig_end, align);
1886 :
1887 0 : if (start == orig_start && end == orig_end)
1888 0 : continue;
1889 :
1890 0 : if (start < end) {
1891 0 : r->base = start;
1892 0 : r->size = end - start;
1893 : } else {
1894 0 : memblock_remove_region(&memblock.memory,
1895 0 : r - memblock.memory.regions);
1896 0 : r--;
1897 : }
1898 : }
1899 0 : }
1900 :
1901 0 : void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1902 : {
1903 0 : memblock.current_limit = limit;
1904 0 : }
1905 :
1906 0 : phys_addr_t __init_memblock memblock_get_current_limit(void)
1907 : {
1908 0 : return memblock.current_limit;
1909 : }
1910 :
1911 0 : static void __init_memblock memblock_dump(struct memblock_type *type)
1912 : {
1913 : phys_addr_t base, end, size;
1914 : enum memblock_flags flags;
1915 : int idx;
1916 : struct memblock_region *rgn;
1917 :
1918 0 : pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1919 :
1920 0 : for_each_memblock_type(idx, type, rgn) {
1921 0 : char nid_buf[32] = "";
1922 :
1923 0 : base = rgn->base;
1924 0 : size = rgn->size;
1925 0 : end = base + size - 1;
1926 0 : flags = rgn->flags;
1927 : #ifdef CONFIG_NUMA
1928 : if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1929 : snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1930 : memblock_get_region_node(rgn));
1931 : #endif
1932 0 : pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1933 : type->name, idx, &base, &end, &size, nid_buf, flags);
1934 : }
1935 0 : }
1936 :
1937 0 : static void __init_memblock __memblock_dump_all(void)
1938 : {
1939 0 : pr_info("MEMBLOCK configuration:\n");
1940 0 : pr_info(" memory size = %pa reserved size = %pa\n",
1941 : &memblock.memory.total_size,
1942 : &memblock.reserved.total_size);
1943 :
1944 0 : memblock_dump(&memblock.memory);
1945 0 : memblock_dump(&memblock.reserved);
1946 : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1947 : memblock_dump(&physmem);
1948 : #endif
1949 0 : }
1950 :
1951 0 : void __init_memblock memblock_dump_all(void)
1952 : {
1953 0 : if (memblock_debug)
1954 0 : __memblock_dump_all();
1955 0 : }
1956 :
1957 0 : void __init memblock_allow_resize(void)
1958 : {
1959 0 : memblock_can_resize = 1;
1960 0 : }
1961 :
1962 0 : static int __init early_memblock(char *p)
1963 : {
1964 0 : if (p && strstr(p, "debug"))
1965 0 : memblock_debug = 1;
1966 0 : return 0;
1967 : }
1968 : early_param("memblock", early_memblock);
1969 :
1970 : static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1971 : {
1972 : struct page *start_pg, *end_pg;
1973 : phys_addr_t pg, pgend;
1974 :
1975 : /*
1976 : * Convert start_pfn/end_pfn to a struct page pointer.
1977 : */
1978 : start_pg = pfn_to_page(start_pfn - 1) + 1;
1979 : end_pg = pfn_to_page(end_pfn - 1) + 1;
1980 :
1981 : /*
1982 : * Convert to physical addresses, and round start upwards and end
1983 : * downwards.
1984 : */
1985 : pg = PAGE_ALIGN(__pa(start_pg));
1986 : pgend = __pa(end_pg) & PAGE_MASK;
1987 :
1988 : /*
1989 : * If there are free pages between these, free the section of the
1990 : * memmap array.
1991 : */
1992 : if (pg < pgend)
1993 : memblock_phys_free(pg, pgend - pg);
1994 : }
1995 :
1996 : /*
1997 : * The mem_map array can get very big. Free the unused area of the memory map.
1998 : */
1999 : static void __init free_unused_memmap(void)
2000 : {
2001 1 : unsigned long start, end, prev_end = 0;
2002 : int i;
2003 :
2004 : if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2005 : IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2006 : return;
2007 :
2008 : /*
2009 : * This relies on each bank being in address order.
2010 : * The banks are sorted previously in bootmem_init().
2011 : */
2012 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2013 : #ifdef CONFIG_SPARSEMEM
2014 : /*
2015 : * Take care not to free memmap entries that don't exist
2016 : * due to SPARSEMEM sections which aren't present.
2017 : */
2018 : start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2019 : #endif
2020 : /*
2021 : * Align down here since many operations in VM subsystem
2022 : * presume that there are no holes in the memory map inside
2023 : * a pageblock
2024 : */
2025 : start = pageblock_start_pfn(start);
2026 :
2027 : /*
2028 : * If we had a previous bank, and there is a space
2029 : * between the current bank and the previous, free it.
2030 : */
2031 : if (prev_end && prev_end < start)
2032 : free_memmap(prev_end, start);
2033 :
2034 : /*
2035 : * Align up here since many operations in VM subsystem
2036 : * presume that there are no holes in the memory map inside
2037 : * a pageblock
2038 : */
2039 : prev_end = pageblock_align(end);
2040 : }
2041 :
2042 : #ifdef CONFIG_SPARSEMEM
2043 : if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2044 : prev_end = pageblock_align(end);
2045 : free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2046 : }
2047 : #endif
2048 : }
2049 :
2050 2 : static void __init __free_pages_memory(unsigned long start, unsigned long end)
2051 : {
2052 : int order;
2053 :
2054 263 : while (start < end) {
2055 : /*
2056 : * Free the pages in the largest chunks alignment allows.
2057 : *
2058 : * __ffs() behaviour is undefined for 0. start == 0 is
2059 : * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2060 : */
2061 259 : if (start)
2062 518 : order = min_t(int, MAX_ORDER, __ffs(start));
2063 : else
2064 : order = MAX_ORDER;
2065 :
2066 269 : while (start + (1UL << order) > end)
2067 10 : order--;
2068 :
2069 259 : memblock_free_pages(pfn_to_page(start), start, order);
2070 :
2071 259 : start += (1UL << order);
2072 : }
2073 2 : }
2074 :
2075 12 : static unsigned long __init __free_memory_core(phys_addr_t start,
2076 : phys_addr_t end)
2077 : {
2078 12 : unsigned long start_pfn = PFN_UP(start);
2079 12 : unsigned long end_pfn = min_t(unsigned long,
2080 : PFN_DOWN(end), max_low_pfn);
2081 :
2082 12 : if (start_pfn >= end_pfn)
2083 : return 0;
2084 :
2085 2 : __free_pages_memory(start_pfn, end_pfn);
2086 :
2087 2 : return end_pfn - start_pfn;
2088 : }
2089 :
2090 1 : static void __init memmap_init_reserved_pages(void)
2091 : {
2092 : struct memblock_region *region;
2093 : phys_addr_t start, end;
2094 : int nid;
2095 :
2096 : /*
2097 : * set nid on all reserved pages and also treat struct
2098 : * pages for the NOMAP regions as PageReserved
2099 : */
2100 2 : for_each_mem_region(region) {
2101 1 : nid = memblock_get_region_node(region);
2102 1 : start = region->base;
2103 1 : end = start + region->size;
2104 :
2105 2 : if (memblock_is_nomap(region))
2106 0 : reserve_bootmem_region(start, end, nid);
2107 :
2108 1 : memblock_set_node(start, end, &memblock.reserved, nid);
2109 : }
2110 :
2111 : /* initialize struct pages for the reserved regions */
2112 14 : for_each_reserved_mem_region(region) {
2113 13 : nid = memblock_get_region_node(region);
2114 13 : start = region->base;
2115 13 : end = start + region->size;
2116 :
2117 13 : reserve_bootmem_region(start, end, nid);
2118 : }
2119 1 : }
2120 :
2121 1 : static unsigned long __init free_low_memory_core_early(void)
2122 : {
2123 1 : unsigned long count = 0;
2124 : phys_addr_t start, end;
2125 : u64 i;
2126 :
2127 1 : memblock_clear_hotplug(0, -1);
2128 :
2129 1 : memmap_init_reserved_pages();
2130 :
2131 : /*
2132 : * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2133 : * because in some case like Node0 doesn't have RAM installed
2134 : * low ram will be on Node1
2135 : */
2136 13 : for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2137 : NULL)
2138 12 : count += __free_memory_core(start, end);
2139 :
2140 1 : return count;
2141 : }
2142 :
2143 : static int reset_managed_pages_done __initdata;
2144 :
2145 1 : static void __init reset_node_managed_pages(pg_data_t *pgdat)
2146 : {
2147 : struct zone *z;
2148 :
2149 3 : for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2150 4 : atomic_long_set(&z->managed_pages, 0);
2151 1 : }
2152 :
2153 1 : void __init reset_all_zones_managed_pages(void)
2154 : {
2155 : struct pglist_data *pgdat;
2156 :
2157 1 : if (reset_managed_pages_done)
2158 : return;
2159 :
2160 2 : for_each_online_pgdat(pgdat)
2161 1 : reset_node_managed_pages(pgdat);
2162 :
2163 1 : reset_managed_pages_done = 1;
2164 : }
2165 :
2166 : /**
2167 : * memblock_free_all - release free pages to the buddy allocator
2168 : */
2169 1 : void __init memblock_free_all(void)
2170 : {
2171 : unsigned long pages;
2172 :
2173 : free_unused_memmap();
2174 1 : reset_all_zones_managed_pages();
2175 :
2176 1 : pages = free_low_memory_core_early();
2177 2 : totalram_pages_add(pages);
2178 1 : }
2179 :
2180 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2181 : static const char * const flagname[] = {
2182 : [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2183 : [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2184 : [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2185 : [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2186 : };
2187 :
2188 : static int memblock_debug_show(struct seq_file *m, void *private)
2189 : {
2190 : struct memblock_type *type = m->private;
2191 : struct memblock_region *reg;
2192 : int i, j, nid;
2193 : unsigned int count = ARRAY_SIZE(flagname);
2194 : phys_addr_t end;
2195 :
2196 : for (i = 0; i < type->cnt; i++) {
2197 : reg = &type->regions[i];
2198 : end = reg->base + reg->size - 1;
2199 : nid = memblock_get_region_node(reg);
2200 :
2201 : seq_printf(m, "%4d: ", i);
2202 : seq_printf(m, "%pa..%pa ", ®->base, &end);
2203 : if (nid != MAX_NUMNODES)
2204 : seq_printf(m, "%4d ", nid);
2205 : else
2206 : seq_printf(m, "%4c ", 'x');
2207 : if (reg->flags) {
2208 : for (j = 0; j < count; j++) {
2209 : if (reg->flags & (1U << j)) {
2210 : seq_printf(m, "%s\n", flagname[j]);
2211 : break;
2212 : }
2213 : }
2214 : if (j == count)
2215 : seq_printf(m, "%s\n", "UNKNOWN");
2216 : } else {
2217 : seq_printf(m, "%s\n", "NONE");
2218 : }
2219 : }
2220 : return 0;
2221 : }
2222 : DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2223 :
2224 : static int __init memblock_init_debugfs(void)
2225 : {
2226 : struct dentry *root = debugfs_create_dir("memblock", NULL);
2227 :
2228 : debugfs_create_file("memory", 0444, root,
2229 : &memblock.memory, &memblock_debug_fops);
2230 : debugfs_create_file("reserved", 0444, root,
2231 : &memblock.reserved, &memblock_debug_fops);
2232 : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2233 : debugfs_create_file("physmem", 0444, root, &physmem,
2234 : &memblock_debug_fops);
2235 : #endif
2236 :
2237 : return 0;
2238 : }
2239 : __initcall(memblock_init_debugfs);
2240 :
2241 : #endif /* CONFIG_DEBUG_FS */
|