LCOV - code coverage report
Current view: top level - mm - memblock.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 308 597 51.6 %
Date: 2023-08-24 13:40:31 Functions: 32 69 46.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /*
       3             :  * Procedures for maintaining information about logical memory blocks.
       4             :  *
       5             :  * Peter Bergner, IBM Corp.     June 2001.
       6             :  * Copyright (C) 2001 Peter Bergner.
       7             :  */
       8             : 
       9             : #include <linux/kernel.h>
      10             : #include <linux/slab.h>
      11             : #include <linux/init.h>
      12             : #include <linux/bitops.h>
      13             : #include <linux/poison.h>
      14             : #include <linux/pfn.h>
      15             : #include <linux/debugfs.h>
      16             : #include <linux/kmemleak.h>
      17             : #include <linux/seq_file.h>
      18             : #include <linux/memblock.h>
      19             : 
      20             : #include <asm/sections.h>
      21             : #include <linux/io.h>
      22             : 
      23             : #include "internal.h"
      24             : 
      25             : #define INIT_MEMBLOCK_REGIONS                   128
      26             : #define INIT_PHYSMEM_REGIONS                    4
      27             : 
      28             : #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
      29             : # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
      30             : #endif
      31             : 
      32             : #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
      33             : #define INIT_MEMBLOCK_MEMORY_REGIONS            INIT_MEMBLOCK_REGIONS
      34             : #endif
      35             : 
      36             : /**
      37             :  * DOC: memblock overview
      38             :  *
      39             :  * Memblock is a method of managing memory regions during the early
      40             :  * boot period when the usual kernel memory allocators are not up and
      41             :  * running.
      42             :  *
      43             :  * Memblock views the system memory as collections of contiguous
      44             :  * regions. There are several types of these collections:
      45             :  *
      46             :  * * ``memory`` - describes the physical memory available to the
      47             :  *   kernel; this may differ from the actual physical memory installed
      48             :  *   in the system, for instance when the memory is restricted with
      49             :  *   ``mem=`` command line parameter
      50             :  * * ``reserved`` - describes the regions that were allocated
      51             :  * * ``physmem`` - describes the actual physical memory available during
      52             :  *   boot regardless of the possible restrictions and memory hot(un)plug;
      53             :  *   the ``physmem`` type is only available on some architectures.
      54             :  *
      55             :  * Each region is represented by struct memblock_region that
      56             :  * defines the region extents, its attributes and NUMA node id on NUMA
      57             :  * systems. Every memory type is described by the struct memblock_type
      58             :  * which contains an array of memory regions along with
      59             :  * the allocator metadata. The "memory" and "reserved" types are nicely
      60             :  * wrapped with struct memblock. This structure is statically
      61             :  * initialized at build time. The region arrays are initially sized to
      62             :  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
      63             :  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
      64             :  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
      65             :  * The memblock_allow_resize() enables automatic resizing of the region
      66             :  * arrays during addition of new regions. This feature should be used
      67             :  * with care so that memory allocated for the region array will not
      68             :  * overlap with areas that should be reserved, for example initrd.
      69             :  *
      70             :  * The early architecture setup should tell memblock what the physical
      71             :  * memory layout is by using memblock_add() or memblock_add_node()
      72             :  * functions. The first function does not assign the region to a NUMA
      73             :  * node and it is appropriate for UMA systems. Yet, it is possible to
      74             :  * use it on NUMA systems as well and assign the region to a NUMA node
      75             :  * later in the setup process using memblock_set_node(). The
      76             :  * memblock_add_node() performs such an assignment directly.
      77             :  *
      78             :  * Once memblock is setup the memory can be allocated using one of the
      79             :  * API variants:
      80             :  *
      81             :  * * memblock_phys_alloc*() - these functions return the **physical**
      82             :  *   address of the allocated memory
      83             :  * * memblock_alloc*() - these functions return the **virtual** address
      84             :  *   of the allocated memory.
      85             :  *
      86             :  * Note, that both API variants use implicit assumptions about allowed
      87             :  * memory ranges and the fallback methods. Consult the documentation
      88             :  * of memblock_alloc_internal() and memblock_alloc_range_nid()
      89             :  * functions for more elaborate description.
      90             :  *
      91             :  * As the system boot progresses, the architecture specific mem_init()
      92             :  * function frees all the memory to the buddy page allocator.
      93             :  *
      94             :  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
      95             :  * memblock data structures (except "physmem") will be discarded after the
      96             :  * system initialization completes.
      97             :  */
      98             : 
      99             : #ifndef CONFIG_NUMA
     100             : struct pglist_data __refdata contig_page_data;
     101             : EXPORT_SYMBOL(contig_page_data);
     102             : #endif
     103             : 
     104             : unsigned long max_low_pfn;
     105             : unsigned long min_low_pfn;
     106             : unsigned long max_pfn;
     107             : unsigned long long max_possible_pfn;
     108             : 
     109             : static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
     110             : static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
     111             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     112             : static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
     113             : #endif
     114             : 
     115             : struct memblock memblock __initdata_memblock = {
     116             :         .memory.regions         = memblock_memory_init_regions,
     117             :         .memory.cnt             = 1,    /* empty dummy entry */
     118             :         .memory.max             = INIT_MEMBLOCK_MEMORY_REGIONS,
     119             :         .memory.name            = "memory",
     120             : 
     121             :         .reserved.regions       = memblock_reserved_init_regions,
     122             :         .reserved.cnt           = 1,    /* empty dummy entry */
     123             :         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
     124             :         .reserved.name          = "reserved",
     125             : 
     126             :         .bottom_up              = false,
     127             :         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
     128             : };
     129             : 
     130             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     131             : struct memblock_type physmem = {
     132             :         .regions                = memblock_physmem_init_regions,
     133             :         .cnt                    = 1,    /* empty dummy entry */
     134             :         .max                    = INIT_PHYSMEM_REGIONS,
     135             :         .name                   = "physmem",
     136             : };
     137             : #endif
     138             : 
     139             : /*
     140             :  * keep a pointer to &memblock.memory in the text section to use it in
     141             :  * __next_mem_range() and its helpers.
     142             :  *  For architectures that do not keep memblock data after init, this
     143             :  * pointer will be reset to NULL at memblock_discard()
     144             :  */
     145             : static __refdata struct memblock_type *memblock_memory = &memblock.memory;
     146             : 
     147             : #define for_each_memblock_type(i, memblock_type, rgn)                   \
     148             :         for (i = 0, rgn = &memblock_type->regions[0];                    \
     149             :              i < memblock_type->cnt;                                      \
     150             :              i++, rgn = &memblock_type->regions[i])
     151             : 
     152             : #define memblock_dbg(fmt, ...)                                          \
     153             :         do {                                                            \
     154             :                 if (memblock_debug)                                     \
     155             :                         pr_info(fmt, ##__VA_ARGS__);                    \
     156             :         } while (0)
     157             : 
     158             : static int memblock_debug __initdata_memblock;
     159             : static bool system_has_some_mirror __initdata_memblock;
     160             : static int memblock_can_resize __initdata_memblock;
     161             : static int memblock_memory_in_slab __initdata_memblock;
     162             : static int memblock_reserved_in_slab __initdata_memblock;
     163             : 
     164          21 : static enum memblock_flags __init_memblock choose_memblock_flags(void)
     165             : {
     166          21 :         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
     167             : }
     168             : 
     169             : /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
     170             : static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
     171             : {
     172          27 :         return *size = min(*size, PHYS_ADDR_MAX - base);
     173             : }
     174             : 
     175             : /*
     176             :  * Address comparison utilities
     177             :  */
     178             : static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
     179             :                                        phys_addr_t base2, phys_addr_t size2)
     180             : {
     181           0 :         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
     182             : }
     183             : 
     184           0 : bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
     185             :                                         phys_addr_t base, phys_addr_t size)
     186             : {
     187             :         unsigned long i;
     188             : 
     189           0 :         memblock_cap_size(base, &size);
     190             : 
     191           0 :         for (i = 0; i < type->cnt; i++)
     192           0 :                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
     193           0 :                                            type->regions[i].size))
     194             :                         break;
     195           0 :         return i < type->cnt;
     196             : }
     197             : 
     198             : /**
     199             :  * __memblock_find_range_bottom_up - find free area utility in bottom-up
     200             :  * @start: start of candidate range
     201             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     202             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     203             :  * @size: size of free area to find
     204             :  * @align: alignment of free area to find
     205             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     206             :  * @flags: pick from blocks based on memory attributes
     207             :  *
     208             :  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
     209             :  *
     210             :  * Return:
     211             :  * Found address on success, 0 on failure.
     212             :  */
     213             : static phys_addr_t __init_memblock
     214           0 : __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
     215             :                                 phys_addr_t size, phys_addr_t align, int nid,
     216             :                                 enum memblock_flags flags)
     217             : {
     218             :         phys_addr_t this_start, this_end, cand;
     219             :         u64 i;
     220             : 
     221           0 :         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
     222           0 :                 this_start = clamp(this_start, start, end);
     223           0 :                 this_end = clamp(this_end, start, end);
     224             : 
     225           0 :                 cand = round_up(this_start, align);
     226           0 :                 if (cand < this_end && this_end - cand >= size)
     227             :                         return cand;
     228             :         }
     229             : 
     230             :         return 0;
     231             : }
     232             : 
     233             : /**
     234             :  * __memblock_find_range_top_down - find free area utility, in top-down
     235             :  * @start: start of candidate range
     236             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     237             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     238             :  * @size: size of free area to find
     239             :  * @align: alignment of free area to find
     240             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     241             :  * @flags: pick from blocks based on memory attributes
     242             :  *
     243             :  * Utility called from memblock_find_in_range_node(), find free area top-down.
     244             :  *
     245             :  * Return:
     246             :  * Found address on success, 0 on failure.
     247             :  */
     248             : static phys_addr_t __init_memblock
     249          21 : __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
     250             :                                phys_addr_t size, phys_addr_t align, int nid,
     251             :                                enum memblock_flags flags)
     252             : {
     253             :         phys_addr_t this_start, this_end, cand;
     254             :         u64 i;
     255             : 
     256         124 :         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
     257             :                                         NULL) {
     258         124 :                 this_start = clamp(this_start, start, end);
     259         124 :                 this_end = clamp(this_end, start, end);
     260             : 
     261         124 :                 if (this_end < size)
     262           0 :                         continue;
     263             : 
     264         124 :                 cand = round_down(this_end - size, align);
     265         124 :                 if (cand >= this_start)
     266             :                         return cand;
     267             :         }
     268             : 
     269             :         return 0;
     270             : }
     271             : 
     272             : /**
     273             :  * memblock_find_in_range_node - find free area in given range and node
     274             :  * @size: size of free area to find
     275             :  * @align: alignment of free area to find
     276             :  * @start: start of candidate range
     277             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     278             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     279             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     280             :  * @flags: pick from blocks based on memory attributes
     281             :  *
     282             :  * Find @size free area aligned to @align in the specified range and node.
     283             :  *
     284             :  * Return:
     285             :  * Found address on success, 0 on failure.
     286             :  */
     287          21 : static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
     288             :                                         phys_addr_t align, phys_addr_t start,
     289             :                                         phys_addr_t end, int nid,
     290             :                                         enum memblock_flags flags)
     291             : {
     292             :         /* pump up @end */
     293          21 :         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
     294             :             end == MEMBLOCK_ALLOC_NOLEAKTRACE)
     295          18 :                 end = memblock.current_limit;
     296             : 
     297             :         /* avoid allocating the first page */
     298          21 :         start = max_t(phys_addr_t, start, PAGE_SIZE);
     299          21 :         end = max(start, end);
     300             : 
     301          21 :         if (memblock_bottom_up())
     302           0 :                 return __memblock_find_range_bottom_up(start, end, size, align,
     303             :                                                        nid, flags);
     304             :         else
     305          21 :                 return __memblock_find_range_top_down(start, end, size, align,
     306             :                                                       nid, flags);
     307             : }
     308             : 
     309             : /**
     310             :  * memblock_find_in_range - find free area in given range
     311             :  * @start: start of candidate range
     312             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     313             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     314             :  * @size: size of free area to find
     315             :  * @align: alignment of free area to find
     316             :  *
     317             :  * Find @size free area aligned to @align in the specified range.
     318             :  *
     319             :  * Return:
     320             :  * Found address on success, 0 on failure.
     321             :  */
     322           0 : static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
     323             :                                         phys_addr_t end, phys_addr_t size,
     324             :                                         phys_addr_t align)
     325             : {
     326             :         phys_addr_t ret;
     327           0 :         enum memblock_flags flags = choose_memblock_flags();
     328             : 
     329             : again:
     330           0 :         ret = memblock_find_in_range_node(size, align, start, end,
     331             :                                             NUMA_NO_NODE, flags);
     332             : 
     333           0 :         if (!ret && (flags & MEMBLOCK_MIRROR)) {
     334           0 :                 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
     335             :                         &size);
     336           0 :                 flags &= ~MEMBLOCK_MIRROR;
     337           0 :                 goto again;
     338             :         }
     339             : 
     340           0 :         return ret;
     341             : }
     342             : 
     343           3 : static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
     344             : {
     345           3 :         type->total_size -= type->regions[r].size;
     346           6 :         memmove(&type->regions[r], &type->regions[r + 1],
     347             :                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
     348           3 :         type->cnt--;
     349             : 
     350             :         /* Special case for empty arrays */
     351           3 :         if (type->cnt == 0) {
     352           0 :                 WARN_ON(type->total_size != 0);
     353           0 :                 type->cnt = 1;
     354           0 :                 type->regions[0].base = 0;
     355           0 :                 type->regions[0].size = 0;
     356           0 :                 type->regions[0].flags = 0;
     357           0 :                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
     358             :         }
     359           3 : }
     360             : 
     361             : #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
     362             : /**
     363             :  * memblock_discard - discard memory and reserved arrays if they were allocated
     364             :  */
     365           1 : void __init memblock_discard(void)
     366             : {
     367             :         phys_addr_t addr, size;
     368             : 
     369           1 :         if (memblock.reserved.regions != memblock_reserved_init_regions) {
     370           0 :                 addr = __pa(memblock.reserved.regions);
     371           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     372             :                                   memblock.reserved.max);
     373           0 :                 if (memblock_reserved_in_slab)
     374           0 :                         kfree(memblock.reserved.regions);
     375             :                 else
     376           0 :                         memblock_free_late(addr, size);
     377             :         }
     378             : 
     379           1 :         if (memblock.memory.regions != memblock_memory_init_regions) {
     380           0 :                 addr = __pa(memblock.memory.regions);
     381           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     382             :                                   memblock.memory.max);
     383           0 :                 if (memblock_memory_in_slab)
     384           0 :                         kfree(memblock.memory.regions);
     385             :                 else
     386           0 :                         memblock_free_late(addr, size);
     387             :         }
     388             : 
     389           1 :         memblock_memory = NULL;
     390           1 : }
     391             : #endif
     392             : 
     393             : /**
     394             :  * memblock_double_array - double the size of the memblock regions array
     395             :  * @type: memblock type of the regions array being doubled
     396             :  * @new_area_start: starting address of memory range to avoid overlap with
     397             :  * @new_area_size: size of memory range to avoid overlap with
     398             :  *
     399             :  * Double the size of the @type regions array. If memblock is being used to
     400             :  * allocate memory for a new reserved regions array and there is a previously
     401             :  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
     402             :  * waiting to be reserved, ensure the memory used by the new array does
     403             :  * not overlap.
     404             :  *
     405             :  * Return:
     406             :  * 0 on success, -1 on failure.
     407             :  */
     408           0 : static int __init_memblock memblock_double_array(struct memblock_type *type,
     409             :                                                 phys_addr_t new_area_start,
     410             :                                                 phys_addr_t new_area_size)
     411             : {
     412             :         struct memblock_region *new_array, *old_array;
     413             :         phys_addr_t old_alloc_size, new_alloc_size;
     414             :         phys_addr_t old_size, new_size, addr, new_end;
     415           0 :         int use_slab = slab_is_available();
     416             :         int *in_slab;
     417             : 
     418             :         /* We don't allow resizing until we know about the reserved regions
     419             :          * of memory that aren't suitable for allocation
     420             :          */
     421           0 :         if (!memblock_can_resize)
     422             :                 return -1;
     423             : 
     424             :         /* Calculate new doubled size */
     425           0 :         old_size = type->max * sizeof(struct memblock_region);
     426           0 :         new_size = old_size << 1;
     427             :         /*
     428             :          * We need to allocated new one align to PAGE_SIZE,
     429             :          *   so we can free them completely later.
     430             :          */
     431           0 :         old_alloc_size = PAGE_ALIGN(old_size);
     432           0 :         new_alloc_size = PAGE_ALIGN(new_size);
     433             : 
     434             :         /* Retrieve the slab flag */
     435           0 :         if (type == &memblock.memory)
     436             :                 in_slab = &memblock_memory_in_slab;
     437             :         else
     438           0 :                 in_slab = &memblock_reserved_in_slab;
     439             : 
     440             :         /* Try to find some space for it */
     441           0 :         if (use_slab) {
     442           0 :                 new_array = kmalloc(new_size, GFP_KERNEL);
     443           0 :                 addr = new_array ? __pa(new_array) : 0;
     444             :         } else {
     445             :                 /* only exclude range when trying to double reserved.regions */
     446           0 :                 if (type != &memblock.reserved)
     447           0 :                         new_area_start = new_area_size = 0;
     448             : 
     449           0 :                 addr = memblock_find_in_range(new_area_start + new_area_size,
     450             :                                                 memblock.current_limit,
     451             :                                                 new_alloc_size, PAGE_SIZE);
     452           0 :                 if (!addr && new_area_size)
     453           0 :                         addr = memblock_find_in_range(0,
     454           0 :                                 min(new_area_start, memblock.current_limit),
     455             :                                 new_alloc_size, PAGE_SIZE);
     456             : 
     457           0 :                 new_array = addr ? __va(addr) : NULL;
     458             :         }
     459           0 :         if (!addr) {
     460           0 :                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
     461             :                        type->name, type->max, type->max * 2);
     462           0 :                 return -1;
     463             :         }
     464             : 
     465           0 :         new_end = addr + new_size - 1;
     466           0 :         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
     467             :                         type->name, type->max * 2, &addr, &new_end);
     468             : 
     469             :         /*
     470             :          * Found space, we now need to move the array over before we add the
     471             :          * reserved region since it may be our reserved array itself that is
     472             :          * full.
     473             :          */
     474           0 :         memcpy(new_array, type->regions, old_size);
     475           0 :         memset(new_array + type->max, 0, old_size);
     476           0 :         old_array = type->regions;
     477           0 :         type->regions = new_array;
     478           0 :         type->max <<= 1;
     479             : 
     480             :         /* Free old array. We needn't free it if the array is the static one */
     481           0 :         if (*in_slab)
     482           0 :                 kfree(old_array);
     483           0 :         else if (old_array != memblock_memory_init_regions &&
     484             :                  old_array != memblock_reserved_init_regions)
     485           0 :                 memblock_free(old_array, old_alloc_size);
     486             : 
     487             :         /*
     488             :          * Reserve the new array if that comes from the memblock.  Otherwise, we
     489             :          * needn't do it
     490             :          */
     491           0 :         if (!use_slab)
     492           0 :                 BUG_ON(memblock_reserve(addr, new_alloc_size));
     493             : 
     494             :         /* Update slab flag */
     495           0 :         *in_slab = use_slab;
     496             : 
     497           0 :         return 0;
     498             : }
     499             : 
     500             : /**
     501             :  * memblock_merge_regions - merge neighboring compatible regions
     502             :  * @type: memblock type to scan
     503             :  * @start_rgn: start scanning from (@start_rgn - 1)
     504             :  * @end_rgn: end scanning at (@end_rgn - 1)
     505             :  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
     506             :  */
     507          22 : static void __init_memblock memblock_merge_regions(struct memblock_type *type,
     508             :                                                    unsigned long start_rgn,
     509             :                                                    unsigned long end_rgn)
     510             : {
     511          22 :         int i = 0;
     512          22 :         if (start_rgn)
     513          21 :                 i = start_rgn - 1;
     514          22 :         end_rgn = min(end_rgn, type->cnt - 1);
     515          63 :         while (i < end_rgn) {
     516          41 :                 struct memblock_region *this = &type->regions[i];
     517          41 :                 struct memblock_region *next = &type->regions[i + 1];
     518             : 
     519          41 :                 if (this->base + this->size != next->base ||
     520           9 :                     memblock_get_region_node(this) !=
     521          18 :                     memblock_get_region_node(next) ||
     522           9 :                     this->flags != next->flags) {
     523          32 :                         BUG_ON(this->base + this->size > next->base);
     524          32 :                         i++;
     525          32 :                         continue;
     526             :                 }
     527             : 
     528           9 :                 this->size += next->size;
     529             :                 /* move forward from next + 1, index of which is i + 2 */
     530          18 :                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
     531           9 :                 type->cnt--;
     532           9 :                 end_rgn--;
     533             :         }
     534          22 : }
     535             : 
     536             : /**
     537             :  * memblock_insert_region - insert new memblock region
     538             :  * @type:       memblock type to insert into
     539             :  * @idx:        index for the insertion point
     540             :  * @base:       base address of the new region
     541             :  * @size:       size of the new region
     542             :  * @nid:        node id of the new region
     543             :  * @flags:      flags of the new region
     544             :  *
     545             :  * Insert new memblock region [@base, @base + @size) into @type at @idx.
     546             :  * @type must already have extra room to accommodate the new region.
     547             :  */
     548          24 : static void __init_memblock memblock_insert_region(struct memblock_type *type,
     549             :                                                    int idx, phys_addr_t base,
     550             :                                                    phys_addr_t size,
     551             :                                                    int nid,
     552             :                                                    enum memblock_flags flags)
     553             : {
     554          24 :         struct memblock_region *rgn = &type->regions[idx];
     555             : 
     556          24 :         BUG_ON(type->cnt >= type->max);
     557          48 :         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
     558          24 :         rgn->base = base;
     559          24 :         rgn->size = size;
     560          24 :         rgn->flags = flags;
     561          24 :         memblock_set_region_node(rgn, nid);
     562          24 :         type->cnt++;
     563          24 :         type->total_size += size;
     564          24 : }
     565             : 
     566             : /**
     567             :  * memblock_add_range - add new memblock region
     568             :  * @type: memblock type to add new region into
     569             :  * @base: base address of the new region
     570             :  * @size: size of the new region
     571             :  * @nid: nid of the new region
     572             :  * @flags: flags of the new region
     573             :  *
     574             :  * Add new memblock region [@base, @base + @size) into @type.  The new region
     575             :  * is allowed to overlap with existing ones - overlaps don't affect already
     576             :  * existing regions.  @type is guaranteed to be minimal (all neighbouring
     577             :  * compatible regions are merged) after the addition.
     578             :  *
     579             :  * Return:
     580             :  * 0 on success, -errno on failure.
     581             :  */
     582          23 : static int __init_memblock memblock_add_range(struct memblock_type *type,
     583             :                                 phys_addr_t base, phys_addr_t size,
     584             :                                 int nid, enum memblock_flags flags)
     585             : {
     586          23 :         bool insert = false;
     587          23 :         phys_addr_t obase = base;
     588          23 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     589          23 :         int idx, nr_new, start_rgn = -1, end_rgn;
     590             :         struct memblock_region *rgn;
     591             : 
     592          23 :         if (!size)
     593             :                 return 0;
     594             : 
     595             :         /* special case for empty array */
     596          23 :         if (type->regions[0].size == 0) {
     597           2 :                 WARN_ON(type->cnt != 1 || type->total_size);
     598           2 :                 type->regions[0].base = base;
     599           2 :                 type->regions[0].size = size;
     600           2 :                 type->regions[0].flags = flags;
     601           2 :                 memblock_set_region_node(&type->regions[0], nid);
     602           2 :                 type->total_size = size;
     603             :                 return 0;
     604             :         }
     605             : 
     606             :         /*
     607             :          * The worst case is when new range overlaps all existing regions,
     608             :          * then we'll need type->cnt + 1 empty regions in @type. So if
     609             :          * type->cnt * 2 + 1 is less than or equal to type->max, we know
     610             :          * that there is enough empty regions in @type, and we can insert
     611             :          * regions directly.
     612             :          */
     613          21 :         if (type->cnt * 2 + 1 <= type->max)
     614          21 :                 insert = true;
     615             : 
     616             : repeat:
     617             :         /*
     618             :          * The following is executed twice.  Once with %false @insert and
     619             :          * then with %true.  The first counts the number of regions needed
     620             :          * to accommodate the new area.  The second actually inserts them.
     621             :          */
     622          21 :         base = obase;
     623          21 :         nr_new = 0;
     624             : 
     625          55 :         for_each_memblock_type(idx, type, rgn) {
     626          54 :                 phys_addr_t rbase = rgn->base;
     627          54 :                 phys_addr_t rend = rbase + rgn->size;
     628             : 
     629          54 :                 if (rbase >= end)
     630             :                         break;
     631          34 :                 if (rend <= base)
     632          34 :                         continue;
     633             :                 /*
     634             :                  * @rgn overlaps.  If it separates the lower part of new
     635             :                  * area, insert that portion.
     636             :                  */
     637           0 :                 if (rbase > base) {
     638             : #ifdef CONFIG_NUMA
     639             :                         WARN_ON(nid != memblock_get_region_node(rgn));
     640             : #endif
     641           0 :                         WARN_ON(flags != rgn->flags);
     642           0 :                         nr_new++;
     643           0 :                         if (insert) {
     644           0 :                                 if (start_rgn == -1)
     645           0 :                                         start_rgn = idx;
     646           0 :                                 end_rgn = idx + 1;
     647           0 :                                 memblock_insert_region(type, idx++, base,
     648             :                                                        rbase - base, nid,
     649             :                                                        flags);
     650             :                         }
     651             :                 }
     652             :                 /* area below @rend is dealt with, forget about it */
     653           0 :                 base = min(rend, end);
     654             :         }
     655             : 
     656             :         /* insert the remaining portion */
     657          21 :         if (base < end) {
     658          21 :                 nr_new++;
     659          21 :                 if (insert) {
     660          21 :                         if (start_rgn == -1)
     661          21 :                                 start_rgn = idx;
     662          21 :                         end_rgn = idx + 1;
     663          21 :                         memblock_insert_region(type, idx, base, end - base,
     664             :                                                nid, flags);
     665             :                 }
     666             :         }
     667             : 
     668          21 :         if (!nr_new)
     669             :                 return 0;
     670             : 
     671             :         /*
     672             :          * If this was the first round, resize array and repeat for actual
     673             :          * insertions; otherwise, merge and return.
     674             :          */
     675          21 :         if (!insert) {
     676           0 :                 while (type->cnt + nr_new > type->max)
     677           0 :                         if (memblock_double_array(type, obase, size) < 0)
     678             :                                 return -ENOMEM;
     679             :                 insert = true;
     680             :                 goto repeat;
     681             :         } else {
     682          21 :                 memblock_merge_regions(type, start_rgn, end_rgn);
     683             :                 return 0;
     684             :         }
     685             : }
     686             : 
     687             : /**
     688             :  * memblock_add_node - add new memblock region within a NUMA node
     689             :  * @base: base address of the new region
     690             :  * @size: size of the new region
     691             :  * @nid: nid of the new region
     692             :  * @flags: flags of the new region
     693             :  *
     694             :  * Add new memblock region [@base, @base + @size) to the "memory"
     695             :  * type. See memblock_add_range() description for mode details
     696             :  *
     697             :  * Return:
     698             :  * 0 on success, -errno on failure.
     699             :  */
     700           0 : int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
     701             :                                       int nid, enum memblock_flags flags)
     702             : {
     703           0 :         phys_addr_t end = base + size - 1;
     704             : 
     705           0 :         memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
     706             :                      &base, &end, nid, flags, (void *)_RET_IP_);
     707             : 
     708           0 :         return memblock_add_range(&memblock.memory, base, size, nid, flags);
     709             : }
     710             : 
     711             : /**
     712             :  * memblock_add - add new memblock region
     713             :  * @base: base address of the new region
     714             :  * @size: size of the new region
     715             :  *
     716             :  * Add new memblock region [@base, @base + @size) to the "memory"
     717             :  * type. See memblock_add_range() description for mode details
     718             :  *
     719             :  * Return:
     720             :  * 0 on success, -errno on failure.
     721             :  */
     722           1 : int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
     723             : {
     724           1 :         phys_addr_t end = base + size - 1;
     725             : 
     726           1 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     727             :                      &base, &end, (void *)_RET_IP_);
     728             : 
     729           1 :         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
     730             : }
     731             : 
     732             : /**
     733             :  * memblock_isolate_range - isolate given range into disjoint memblocks
     734             :  * @type: memblock type to isolate range for
     735             :  * @base: base of range to isolate
     736             :  * @size: size of range to isolate
     737             :  * @start_rgn: out parameter for the start of isolated region
     738             :  * @end_rgn: out parameter for the end of isolated region
     739             :  *
     740             :  * Walk @type and ensure that regions don't cross the boundaries defined by
     741             :  * [@base, @base + @size).  Crossing regions are split at the boundaries,
     742             :  * which may create at most two more regions.  The index of the first
     743             :  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
     744             :  *
     745             :  * Return:
     746             :  * 0 on success, -errno on failure.
     747             :  */
     748           4 : static int __init_memblock memblock_isolate_range(struct memblock_type *type,
     749             :                                         phys_addr_t base, phys_addr_t size,
     750             :                                         int *start_rgn, int *end_rgn)
     751             : {
     752           4 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     753             :         int idx;
     754             :         struct memblock_region *rgn;
     755             : 
     756           4 :         *start_rgn = *end_rgn = 0;
     757             : 
     758           4 :         if (!size)
     759             :                 return 0;
     760             : 
     761             :         /* we'll create at most two more regions */
     762           4 :         while (type->cnt + 2 > type->max)
     763           0 :                 if (memblock_double_array(type, base, size) < 0)
     764             :                         return -ENOMEM;
     765             : 
     766          15 :         for_each_memblock_type(idx, type, rgn) {
     767          14 :                 phys_addr_t rbase = rgn->base;
     768          14 :                 phys_addr_t rend = rbase + rgn->size;
     769             : 
     770          14 :                 if (rbase >= end)
     771             :                         break;
     772          11 :                 if (rend <= base)
     773           4 :                         continue;
     774             : 
     775           7 :                 if (rbase < base) {
     776             :                         /*
     777             :                          * @rgn intersects from below.  Split and continue
     778             :                          * to process the next region - the new top half.
     779             :                          */
     780           2 :                         rgn->base = base;
     781           2 :                         rgn->size -= base - rbase;
     782           2 :                         type->total_size -= base - rbase;
     783           2 :                         memblock_insert_region(type, idx, rbase, base - rbase,
     784             :                                                memblock_get_region_node(rgn),
     785             :                                                rgn->flags);
     786           5 :                 } else if (rend > end) {
     787             :                         /*
     788             :                          * @rgn intersects from above.  Split and redo the
     789             :                          * current region - the new bottom half.
     790             :                          */
     791           1 :                         rgn->base = end;
     792           1 :                         rgn->size -= end - rbase;
     793           1 :                         type->total_size -= end - rbase;
     794           1 :                         memblock_insert_region(type, idx--, rbase, end - rbase,
     795             :                                                memblock_get_region_node(rgn),
     796             :                                                rgn->flags);
     797             :                 } else {
     798             :                         /* @rgn is fully contained, record it */
     799           4 :                         if (!*end_rgn)
     800           4 :                                 *start_rgn = idx;
     801           4 :                         *end_rgn = idx + 1;
     802             :                 }
     803             :         }
     804             : 
     805             :         return 0;
     806             : }
     807             : 
     808           3 : static int __init_memblock memblock_remove_range(struct memblock_type *type,
     809             :                                           phys_addr_t base, phys_addr_t size)
     810             : {
     811             :         int start_rgn, end_rgn;
     812             :         int i, ret;
     813             : 
     814           3 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     815           3 :         if (ret)
     816             :                 return ret;
     817             : 
     818           6 :         for (i = end_rgn - 1; i >= start_rgn; i--)
     819           3 :                 memblock_remove_region(type, i);
     820             :         return 0;
     821             : }
     822             : 
     823           0 : int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
     824             : {
     825           0 :         phys_addr_t end = base + size - 1;
     826             : 
     827           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     828             :                      &base, &end, (void *)_RET_IP_);
     829             : 
     830           0 :         return memblock_remove_range(&memblock.memory, base, size);
     831             : }
     832             : 
     833             : /**
     834             :  * memblock_free - free boot memory allocation
     835             :  * @ptr: starting address of the  boot memory allocation
     836             :  * @size: size of the boot memory block in bytes
     837             :  *
     838             :  * Free boot memory block previously allocated by memblock_alloc_xx() API.
     839             :  * The freeing memory will not be released to the buddy allocator.
     840             :  */
     841           3 : void __init_memblock memblock_free(void *ptr, size_t size)
     842             : {
     843           3 :         if (ptr)
     844           3 :                 memblock_phys_free(__pa(ptr), size);
     845           3 : }
     846             : 
     847             : /**
     848             :  * memblock_phys_free - free boot memory block
     849             :  * @base: phys starting address of the  boot memory block
     850             :  * @size: size of the boot memory block in bytes
     851             :  *
     852             :  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
     853             :  * The freeing memory will not be released to the buddy allocator.
     854             :  */
     855           3 : int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
     856             : {
     857           3 :         phys_addr_t end = base + size - 1;
     858             : 
     859           3 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     860             :                      &base, &end, (void *)_RET_IP_);
     861             : 
     862           3 :         kmemleak_free_part_phys(base, size);
     863           3 :         return memblock_remove_range(&memblock.reserved, base, size);
     864             : }
     865             : 
     866          22 : int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
     867             : {
     868          22 :         phys_addr_t end = base + size - 1;
     869             : 
     870          22 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     871             :                      &base, &end, (void *)_RET_IP_);
     872             : 
     873          22 :         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
     874             : }
     875             : 
     876             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     877             : int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
     878             : {
     879             :         phys_addr_t end = base + size - 1;
     880             : 
     881             :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     882             :                      &base, &end, (void *)_RET_IP_);
     883             : 
     884             :         return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
     885             : }
     886             : #endif
     887             : 
     888             : /**
     889             :  * memblock_setclr_flag - set or clear flag for a memory region
     890             :  * @base: base address of the region
     891             :  * @size: size of the region
     892             :  * @set: set or clear the flag
     893             :  * @flag: the flag to update
     894             :  *
     895             :  * This function isolates region [@base, @base + @size), and sets/clears flag
     896             :  *
     897             :  * Return: 0 on success, -errno on failure.
     898             :  */
     899           1 : static int __init_memblock memblock_setclr_flag(phys_addr_t base,
     900             :                                 phys_addr_t size, int set, int flag)
     901             : {
     902           1 :         struct memblock_type *type = &memblock.memory;
     903             :         int i, ret, start_rgn, end_rgn;
     904             : 
     905           1 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     906           1 :         if (ret)
     907             :                 return ret;
     908             : 
     909           2 :         for (i = start_rgn; i < end_rgn; i++) {
     910           1 :                 struct memblock_region *r = &type->regions[i];
     911             : 
     912           1 :                 if (set)
     913           0 :                         r->flags |= flag;
     914             :                 else
     915           1 :                         r->flags &= ~flag;
     916             :         }
     917             : 
     918           1 :         memblock_merge_regions(type, start_rgn, end_rgn);
     919           1 :         return 0;
     920             : }
     921             : 
     922             : /**
     923             :  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
     924             :  * @base: the base phys addr of the region
     925             :  * @size: the size of the region
     926             :  *
     927             :  * Return: 0 on success, -errno on failure.
     928             :  */
     929           0 : int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
     930             : {
     931           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
     932             : }
     933             : 
     934             : /**
     935             :  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
     936             :  * @base: the base phys addr of the region
     937             :  * @size: the size of the region
     938             :  *
     939             :  * Return: 0 on success, -errno on failure.
     940             :  */
     941           1 : int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
     942             : {
     943           1 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
     944             : }
     945             : 
     946             : /**
     947             :  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
     948             :  * @base: the base phys addr of the region
     949             :  * @size: the size of the region
     950             :  *
     951             :  * Return: 0 on success, -errno on failure.
     952             :  */
     953           0 : int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
     954             : {
     955           0 :         if (!mirrored_kernelcore)
     956             :                 return 0;
     957             : 
     958           0 :         system_has_some_mirror = true;
     959             : 
     960           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
     961             : }
     962             : 
     963             : /**
     964             :  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
     965             :  * @base: the base phys addr of the region
     966             :  * @size: the size of the region
     967             :  *
     968             :  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
     969             :  * direct mapping of the physical memory. These regions will still be
     970             :  * covered by the memory map. The struct page representing NOMAP memory
     971             :  * frames in the memory map will be PageReserved()
     972             :  *
     973             :  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
     974             :  * memblock, the caller must inform kmemleak to ignore that memory
     975             :  *
     976             :  * Return: 0 on success, -errno on failure.
     977             :  */
     978           0 : int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
     979             : {
     980           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
     981             : }
     982             : 
     983             : /**
     984             :  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
     985             :  * @base: the base phys addr of the region
     986             :  * @size: the size of the region
     987             :  *
     988             :  * Return: 0 on success, -errno on failure.
     989             :  */
     990           0 : int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
     991             : {
     992           0 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
     993             : }
     994             : 
     995         137 : static bool should_skip_region(struct memblock_type *type,
     996             :                                struct memblock_region *m,
     997             :                                int nid, int flags)
     998             : {
     999         137 :         int m_nid = memblock_get_region_node(m);
    1000             : 
    1001             :         /* we never skip regions when iterating memblock.reserved or physmem */
    1002         137 :         if (type != memblock_memory)
    1003             :                 return false;
    1004             : 
    1005             :         /* only memory regions are associated with nodes, check it */
    1006         137 :         if (nid != NUMA_NO_NODE && nid != m_nid)
    1007             :                 return true;
    1008             : 
    1009             :         /* skip hotpluggable memory regions if needed */
    1010             :         if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
    1011             :             !(flags & MEMBLOCK_HOTPLUG))
    1012             :                 return true;
    1013             : 
    1014             :         /* if we want mirror memory skip non-mirror memory regions */
    1015         137 :         if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
    1016             :                 return true;
    1017             : 
    1018             :         /* skip nomap memory unless we were asked for it explicitly */
    1019         274 :         if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
    1020             :                 return true;
    1021             : 
    1022             :         /* skip driver-managed memory unless we were asked for it explicitly */
    1023         274 :         if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
    1024             :                 return true;
    1025             : 
    1026             :         return false;
    1027             : }
    1028             : 
    1029             : /**
    1030             :  * __next_mem_range - next function for for_each_free_mem_range() etc.
    1031             :  * @idx: pointer to u64 loop variable
    1032             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
    1033             :  * @flags: pick from blocks based on memory attributes
    1034             :  * @type_a: pointer to memblock_type from where the range is taken
    1035             :  * @type_b: pointer to memblock_type which excludes memory from being taken
    1036             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
    1037             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
    1038             :  * @out_nid: ptr to int for nid of the range, can be %NULL
    1039             :  *
    1040             :  * Find the first area from *@idx which matches @nid, fill the out
    1041             :  * parameters, and update *@idx for the next iteration.  The lower 32bit of
    1042             :  * *@idx contains index into type_a and the upper 32bit indexes the
    1043             :  * areas before each region in type_b.  For example, if type_b regions
    1044             :  * look like the following,
    1045             :  *
    1046             :  *      0:[0-16), 1:[32-48), 2:[128-130)
    1047             :  *
    1048             :  * The upper 32bit indexes the following regions.
    1049             :  *
    1050             :  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
    1051             :  *
    1052             :  * As both region arrays are sorted, the function advances the two indices
    1053             :  * in lockstep and returns each intersection.
    1054             :  */
    1055          13 : void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
    1056             :                       struct memblock_type *type_a,
    1057             :                       struct memblock_type *type_b, phys_addr_t *out_start,
    1058             :                       phys_addr_t *out_end, int *out_nid)
    1059             : {
    1060          13 :         int idx_a = *idx & 0xffffffff;
    1061          13 :         int idx_b = *idx >> 32;
    1062             : 
    1063          13 :         if (WARN_ONCE(nid == MAX_NUMNODES,
    1064             :         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1065           0 :                 nid = NUMA_NO_NODE;
    1066             : 
    1067           1 :         for (; idx_a < type_a->cnt; idx_a++) {
    1068          13 :                 struct memblock_region *m = &type_a->regions[idx_a];
    1069             : 
    1070          13 :                 phys_addr_t m_start = m->base;
    1071          13 :                 phys_addr_t m_end = m->base + m->size;
    1072          13 :                 int         m_nid = memblock_get_region_node(m);
    1073             : 
    1074          13 :                 if (should_skip_region(type_a, m, nid, flags))
    1075           0 :                         continue;
    1076             : 
    1077          13 :                 if (!type_b) {
    1078           0 :                         if (out_start)
    1079           0 :                                 *out_start = m_start;
    1080           0 :                         if (out_end)
    1081           0 :                                 *out_end = m_end;
    1082           0 :                         if (out_nid)
    1083           0 :                                 *out_nid = m_nid;
    1084           0 :                         idx_a++;
    1085           0 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1086           0 :                         return;
    1087             :                 }
    1088             : 
    1089             :                 /* scan areas before each reservation */
    1090           1 :                 for (; idx_b < type_b->cnt + 1; idx_b++) {
    1091             :                         struct memblock_region *r;
    1092             :                         phys_addr_t r_start;
    1093             :                         phys_addr_t r_end;
    1094             : 
    1095          14 :                         r = &type_b->regions[idx_b];
    1096          14 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1097          14 :                         r_end = idx_b < type_b->cnt ?
    1098          14 :                                 r->base : PHYS_ADDR_MAX;
    1099             : 
    1100             :                         /*
    1101             :                          * if idx_b advanced past idx_a,
    1102             :                          * break out to advance idx_a
    1103             :                          */
    1104          14 :                         if (r_start >= m_end)
    1105             :                                 break;
    1106             :                         /* if the two regions intersect, we're done */
    1107          13 :                         if (m_start < r_end) {
    1108          12 :                                 if (out_start)
    1109          12 :                                         *out_start =
    1110          12 :                                                 max(m_start, r_start);
    1111          12 :                                 if (out_end)
    1112          12 :                                         *out_end = min(m_end, r_end);
    1113          12 :                                 if (out_nid)
    1114           0 :                                         *out_nid = m_nid;
    1115             :                                 /*
    1116             :                                  * The region which ends first is
    1117             :                                  * advanced for the next iteration.
    1118             :                                  */
    1119          12 :                                 if (m_end <= r_end)
    1120           0 :                                         idx_a++;
    1121             :                                 else
    1122          12 :                                         idx_b++;
    1123          12 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1124          12 :                                 return;
    1125             :                         }
    1126             :                 }
    1127             :         }
    1128             : 
    1129             :         /* signal end of iteration */
    1130           1 :         *idx = ULLONG_MAX;
    1131             : }
    1132             : 
    1133             : /**
    1134             :  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
    1135             :  *
    1136             :  * @idx: pointer to u64 loop variable
    1137             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
    1138             :  * @flags: pick from blocks based on memory attributes
    1139             :  * @type_a: pointer to memblock_type from where the range is taken
    1140             :  * @type_b: pointer to memblock_type which excludes memory from being taken
    1141             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
    1142             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
    1143             :  * @out_nid: ptr to int for nid of the range, can be %NULL
    1144             :  *
    1145             :  * Finds the next range from type_a which is not marked as unsuitable
    1146             :  * in type_b.
    1147             :  *
    1148             :  * Reverse of __next_mem_range().
    1149             :  */
    1150         124 : void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
    1151             :                                           enum memblock_flags flags,
    1152             :                                           struct memblock_type *type_a,
    1153             :                                           struct memblock_type *type_b,
    1154             :                                           phys_addr_t *out_start,
    1155             :                                           phys_addr_t *out_end, int *out_nid)
    1156             : {
    1157         124 :         int idx_a = *idx & 0xffffffff;
    1158         124 :         int idx_b = *idx >> 32;
    1159             : 
    1160         124 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1161           0 :                 nid = NUMA_NO_NODE;
    1162             : 
    1163         124 :         if (*idx == (u64)ULLONG_MAX) {
    1164          21 :                 idx_a = type_a->cnt - 1;
    1165          21 :                 if (type_b != NULL)
    1166          21 :                         idx_b = type_b->cnt;
    1167             :                 else
    1168             :                         idx_b = 0;
    1169             :         }
    1170             : 
    1171           0 :         for (; idx_a >= 0; idx_a--) {
    1172         124 :                 struct memblock_region *m = &type_a->regions[idx_a];
    1173             : 
    1174         124 :                 phys_addr_t m_start = m->base;
    1175         124 :                 phys_addr_t m_end = m->base + m->size;
    1176         124 :                 int m_nid = memblock_get_region_node(m);
    1177             : 
    1178         124 :                 if (should_skip_region(type_a, m, nid, flags))
    1179           0 :                         continue;
    1180             : 
    1181         124 :                 if (!type_b) {
    1182           0 :                         if (out_start)
    1183           0 :                                 *out_start = m_start;
    1184           0 :                         if (out_end)
    1185           0 :                                 *out_end = m_end;
    1186           0 :                         if (out_nid)
    1187           0 :                                 *out_nid = m_nid;
    1188           0 :                         idx_a--;
    1189           0 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1190           0 :                         return;
    1191             :                 }
    1192             : 
    1193             :                 /* scan areas before each reservation */
    1194          20 :                 for (; idx_b >= 0; idx_b--) {
    1195             :                         struct memblock_region *r;
    1196             :                         phys_addr_t r_start;
    1197             :                         phys_addr_t r_end;
    1198             : 
    1199         144 :                         r = &type_b->regions[idx_b];
    1200         144 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1201         288 :                         r_end = idx_b < type_b->cnt ?
    1202         144 :                                 r->base : PHYS_ADDR_MAX;
    1203             :                         /*
    1204             :                          * if idx_b advanced past idx_a,
    1205             :                          * break out to advance idx_a
    1206             :                          */
    1207             : 
    1208         144 :                         if (r_end <= m_start)
    1209             :                                 break;
    1210             :                         /* if the two regions intersect, we're done */
    1211         144 :                         if (m_end > r_start) {
    1212         124 :                                 if (out_start)
    1213         124 :                                         *out_start = max(m_start, r_start);
    1214         124 :                                 if (out_end)
    1215         124 :                                         *out_end = min(m_end, r_end);
    1216         124 :                                 if (out_nid)
    1217           0 :                                         *out_nid = m_nid;
    1218         124 :                                 if (m_start >= r_start)
    1219           0 :                                         idx_a--;
    1220             :                                 else
    1221         124 :                                         idx_b--;
    1222         124 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1223         124 :                                 return;
    1224             :                         }
    1225             :                 }
    1226             :         }
    1227             :         /* signal end of iteration */
    1228           0 :         *idx = ULLONG_MAX;
    1229             : }
    1230             : 
    1231             : /*
    1232             :  * Common iterator interface used to define for_each_mem_pfn_range().
    1233             :  */
    1234          10 : void __init_memblock __next_mem_pfn_range(int *idx, int nid,
    1235             :                                 unsigned long *out_start_pfn,
    1236             :                                 unsigned long *out_end_pfn, int *out_nid)
    1237             : {
    1238          10 :         struct memblock_type *type = &memblock.memory;
    1239             :         struct memblock_region *r;
    1240             :         int r_nid;
    1241             : 
    1242          20 :         while (++*idx < type->cnt) {
    1243           5 :                 r = &type->regions[*idx];
    1244           5 :                 r_nid = memblock_get_region_node(r);
    1245             : 
    1246           5 :                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
    1247           0 :                         continue;
    1248           5 :                 if (nid == MAX_NUMNODES || nid == r_nid)
    1249             :                         break;
    1250             :         }
    1251          10 :         if (*idx >= type->cnt) {
    1252           5 :                 *idx = -1;
    1253           5 :                 return;
    1254             :         }
    1255             : 
    1256           5 :         if (out_start_pfn)
    1257           5 :                 *out_start_pfn = PFN_UP(r->base);
    1258           5 :         if (out_end_pfn)
    1259           5 :                 *out_end_pfn = PFN_DOWN(r->base + r->size);
    1260           5 :         if (out_nid)
    1261           3 :                 *out_nid = r_nid;
    1262             : }
    1263             : 
    1264             : /**
    1265             :  * memblock_set_node - set node ID on memblock regions
    1266             :  * @base: base of area to set node ID for
    1267             :  * @size: size of area to set node ID for
    1268             :  * @type: memblock type to set node ID for
    1269             :  * @nid: node ID to set
    1270             :  *
    1271             :  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
    1272             :  * Regions which cross the area boundaries are split as necessary.
    1273             :  *
    1274             :  * Return:
    1275             :  * 0 on success, -errno on failure.
    1276             :  */
    1277           0 : int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
    1278             :                                       struct memblock_type *type, int nid)
    1279             : {
    1280             : #ifdef CONFIG_NUMA
    1281             :         int start_rgn, end_rgn;
    1282             :         int i, ret;
    1283             : 
    1284             :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    1285             :         if (ret)
    1286             :                 return ret;
    1287             : 
    1288             :         for (i = start_rgn; i < end_rgn; i++)
    1289             :                 memblock_set_region_node(&type->regions[i], nid);
    1290             : 
    1291             :         memblock_merge_regions(type, start_rgn, end_rgn);
    1292             : #endif
    1293           0 :         return 0;
    1294             : }
    1295             : 
    1296             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1297             : /**
    1298             :  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
    1299             :  *
    1300             :  * @idx: pointer to u64 loop variable
    1301             :  * @zone: zone in which all of the memory blocks reside
    1302             :  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
    1303             :  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
    1304             :  *
    1305             :  * This function is meant to be a zone/pfn specific wrapper for the
    1306             :  * for_each_mem_range type iterators. Specifically they are used in the
    1307             :  * deferred memory init routines and as such we were duplicating much of
    1308             :  * this logic throughout the code. So instead of having it in multiple
    1309             :  * locations it seemed like it would make more sense to centralize this to
    1310             :  * one new iterator that does everything they need.
    1311             :  */
    1312             : void __init_memblock
    1313             : __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
    1314             :                              unsigned long *out_spfn, unsigned long *out_epfn)
    1315             : {
    1316             :         int zone_nid = zone_to_nid(zone);
    1317             :         phys_addr_t spa, epa;
    1318             : 
    1319             :         __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1320             :                          &memblock.memory, &memblock.reserved,
    1321             :                          &spa, &epa, NULL);
    1322             : 
    1323             :         while (*idx != U64_MAX) {
    1324             :                 unsigned long epfn = PFN_DOWN(epa);
    1325             :                 unsigned long spfn = PFN_UP(spa);
    1326             : 
    1327             :                 /*
    1328             :                  * Verify the end is at least past the start of the zone and
    1329             :                  * that we have at least one PFN to initialize.
    1330             :                  */
    1331             :                 if (zone->zone_start_pfn < epfn && spfn < epfn) {
    1332             :                         /* if we went too far just stop searching */
    1333             :                         if (zone_end_pfn(zone) <= spfn) {
    1334             :                                 *idx = U64_MAX;
    1335             :                                 break;
    1336             :                         }
    1337             : 
    1338             :                         if (out_spfn)
    1339             :                                 *out_spfn = max(zone->zone_start_pfn, spfn);
    1340             :                         if (out_epfn)
    1341             :                                 *out_epfn = min(zone_end_pfn(zone), epfn);
    1342             : 
    1343             :                         return;
    1344             :                 }
    1345             : 
    1346             :                 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1347             :                                  &memblock.memory, &memblock.reserved,
    1348             :                                  &spa, &epa, NULL);
    1349             :         }
    1350             : 
    1351             :         /* signal end of iteration */
    1352             :         if (out_spfn)
    1353             :                 *out_spfn = ULONG_MAX;
    1354             :         if (out_epfn)
    1355             :                 *out_epfn = 0;
    1356             : }
    1357             : 
    1358             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    1359             : 
    1360             : /**
    1361             :  * memblock_alloc_range_nid - allocate boot memory block
    1362             :  * @size: size of memory block to be allocated in bytes
    1363             :  * @align: alignment of the region and block's size
    1364             :  * @start: the lower bound of the memory region to allocate (phys address)
    1365             :  * @end: the upper bound of the memory region to allocate (phys address)
    1366             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1367             :  * @exact_nid: control the allocation fall back to other nodes
    1368             :  *
    1369             :  * The allocation is performed from memory region limited by
    1370             :  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
    1371             :  *
    1372             :  * If the specified node can not hold the requested memory and @exact_nid
    1373             :  * is false, the allocation falls back to any node in the system.
    1374             :  *
    1375             :  * For systems with memory mirroring, the allocation is attempted first
    1376             :  * from the regions with mirroring enabled and then retried from any
    1377             :  * memory region.
    1378             :  *
    1379             :  * In addition, function using kmemleak_alloc_phys for allocated boot
    1380             :  * memory block, it is never reported as leaks.
    1381             :  *
    1382             :  * Return:
    1383             :  * Physical address of allocated memory block on success, %0 on failure.
    1384             :  */
    1385          21 : phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
    1386             :                                         phys_addr_t align, phys_addr_t start,
    1387             :                                         phys_addr_t end, int nid,
    1388             :                                         bool exact_nid)
    1389             : {
    1390          21 :         enum memblock_flags flags = choose_memblock_flags();
    1391             :         phys_addr_t found;
    1392             : 
    1393          21 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1394           0 :                 nid = NUMA_NO_NODE;
    1395             : 
    1396          21 :         if (!align) {
    1397             :                 /* Can't use WARNs this early in boot on powerpc */
    1398           0 :                 dump_stack();
    1399           0 :                 align = SMP_CACHE_BYTES;
    1400             :         }
    1401             : 
    1402             : again:
    1403          21 :         found = memblock_find_in_range_node(size, align, start, end, nid,
    1404             :                                             flags);
    1405          21 :         if (found && !memblock_reserve(found, size))
    1406             :                 goto done;
    1407             : 
    1408           0 :         if (nid != NUMA_NO_NODE && !exact_nid) {
    1409           0 :                 found = memblock_find_in_range_node(size, align, start,
    1410             :                                                     end, NUMA_NO_NODE,
    1411             :                                                     flags);
    1412           0 :                 if (found && !memblock_reserve(found, size))
    1413             :                         goto done;
    1414             :         }
    1415             : 
    1416           0 :         if (flags & MEMBLOCK_MIRROR) {
    1417           0 :                 flags &= ~MEMBLOCK_MIRROR;
    1418           0 :                 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
    1419             :                         &size);
    1420             :                 goto again;
    1421             :         }
    1422             : 
    1423             :         return 0;
    1424             : 
    1425             : done:
    1426             :         /*
    1427             :          * Skip kmemleak for those places like kasan_init() and
    1428             :          * early_pgtable_alloc() due to high volume.
    1429             :          */
    1430             :         if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
    1431             :                 /*
    1432             :                  * Memblock allocated blocks are never reported as
    1433             :                  * leaks. This is because many of these blocks are
    1434             :                  * only referred via the physical address which is
    1435             :                  * not looked up by kmemleak.
    1436             :                  */
    1437             :                 kmemleak_alloc_phys(found, size, 0);
    1438             : 
    1439             :         /*
    1440             :          * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
    1441             :          * require memory to be accepted before it can be used by the
    1442             :          * guest.
    1443             :          *
    1444             :          * Accept the memory of the allocated buffer.
    1445             :          */
    1446          21 :         accept_memory(found, found + size);
    1447             : 
    1448          21 :         return found;
    1449             : }
    1450             : 
    1451             : /**
    1452             :  * memblock_phys_alloc_range - allocate a memory block inside specified range
    1453             :  * @size: size of memory block to be allocated in bytes
    1454             :  * @align: alignment of the region and block's size
    1455             :  * @start: the lower bound of the memory region to allocate (physical address)
    1456             :  * @end: the upper bound of the memory region to allocate (physical address)
    1457             :  *
    1458             :  * Allocate @size bytes in the between @start and @end.
    1459             :  *
    1460             :  * Return: physical address of the allocated memory block on success,
    1461             :  * %0 on failure.
    1462             :  */
    1463           0 : phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
    1464             :                                              phys_addr_t align,
    1465             :                                              phys_addr_t start,
    1466             :                                              phys_addr_t end)
    1467             : {
    1468           0 :         memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
    1469             :                      __func__, (u64)size, (u64)align, &start, &end,
    1470             :                      (void *)_RET_IP_);
    1471           0 :         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
    1472             :                                         false);
    1473             : }
    1474             : 
    1475             : /**
    1476             :  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
    1477             :  * @size: size of memory block to be allocated in bytes
    1478             :  * @align: alignment of the region and block's size
    1479             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1480             :  *
    1481             :  * Allocates memory block from the specified NUMA node. If the node
    1482             :  * has no available memory, attempts to allocated from any node in the
    1483             :  * system.
    1484             :  *
    1485             :  * Return: physical address of the allocated memory block on success,
    1486             :  * %0 on failure.
    1487             :  */
    1488           0 : phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
    1489             : {
    1490           0 :         return memblock_alloc_range_nid(size, align, 0,
    1491             :                                         MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
    1492             : }
    1493             : 
    1494             : /**
    1495             :  * memblock_alloc_internal - allocate boot memory block
    1496             :  * @size: size of memory block to be allocated in bytes
    1497             :  * @align: alignment of the region and block's size
    1498             :  * @min_addr: the lower bound of the memory region to allocate (phys address)
    1499             :  * @max_addr: the upper bound of the memory region to allocate (phys address)
    1500             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1501             :  * @exact_nid: control the allocation fall back to other nodes
    1502             :  *
    1503             :  * Allocates memory block using memblock_alloc_range_nid() and
    1504             :  * converts the returned physical address to virtual.
    1505             :  *
    1506             :  * The @min_addr limit is dropped if it can not be satisfied and the allocation
    1507             :  * will fall back to memory below @min_addr. Other constraints, such
    1508             :  * as node and mirrored memory will be handled again in
    1509             :  * memblock_alloc_range_nid().
    1510             :  *
    1511             :  * Return:
    1512             :  * Virtual address of allocated memory block on success, NULL on failure.
    1513             :  */
    1514          21 : static void * __init memblock_alloc_internal(
    1515             :                                 phys_addr_t size, phys_addr_t align,
    1516             :                                 phys_addr_t min_addr, phys_addr_t max_addr,
    1517             :                                 int nid, bool exact_nid)
    1518             : {
    1519             :         phys_addr_t alloc;
    1520             : 
    1521             :         /*
    1522             :          * Detect any accidental use of these APIs after slab is ready, as at
    1523             :          * this moment memblock may be deinitialized already and its
    1524             :          * internal data may be destroyed (after execution of memblock_free_all)
    1525             :          */
    1526          21 :         if (WARN_ON_ONCE(slab_is_available()))
    1527           0 :                 return kzalloc_node(size, GFP_NOWAIT, nid);
    1528             : 
    1529          21 :         if (max_addr > memblock.current_limit)
    1530           0 :                 max_addr = memblock.current_limit;
    1531             : 
    1532          21 :         alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
    1533             :                                         exact_nid);
    1534             : 
    1535             :         /* retry allocation without lower limit */
    1536          21 :         if (!alloc && min_addr)
    1537           0 :                 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
    1538             :                                                 exact_nid);
    1539             : 
    1540          21 :         if (!alloc)
    1541             :                 return NULL;
    1542             : 
    1543          21 :         return phys_to_virt(alloc);
    1544             : }
    1545             : 
    1546             : /**
    1547             :  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
    1548             :  * without zeroing memory
    1549             :  * @size: size of memory block to be allocated in bytes
    1550             :  * @align: alignment of the region and block's size
    1551             :  * @min_addr: the lower bound of the memory region from where the allocation
    1552             :  *        is preferred (phys address)
    1553             :  * @max_addr: the upper bound of the memory region from where the allocation
    1554             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1555             :  *            allocate only from memory limited by memblock.current_limit value
    1556             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1557             :  *
    1558             :  * Public function, provides additional debug information (including caller
    1559             :  * info), if enabled. Does not zero allocated memory.
    1560             :  *
    1561             :  * Return:
    1562             :  * Virtual address of allocated memory block on success, NULL on failure.
    1563             :  */
    1564           0 : void * __init memblock_alloc_exact_nid_raw(
    1565             :                         phys_addr_t size, phys_addr_t align,
    1566             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1567             :                         int nid)
    1568             : {
    1569           0 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1570             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1571             :                      &max_addr, (void *)_RET_IP_);
    1572             : 
    1573           0 :         return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
    1574             :                                        true);
    1575             : }
    1576             : 
    1577             : /**
    1578             :  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
    1579             :  * memory and without panicking
    1580             :  * @size: size of memory block to be allocated in bytes
    1581             :  * @align: alignment of the region and block's size
    1582             :  * @min_addr: the lower bound of the memory region from where the allocation
    1583             :  *        is preferred (phys address)
    1584             :  * @max_addr: the upper bound of the memory region from where the allocation
    1585             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1586             :  *            allocate only from memory limited by memblock.current_limit value
    1587             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1588             :  *
    1589             :  * Public function, provides additional debug information (including caller
    1590             :  * info), if enabled. Does not zero allocated memory, does not panic if request
    1591             :  * cannot be satisfied.
    1592             :  *
    1593             :  * Return:
    1594             :  * Virtual address of allocated memory block on success, NULL on failure.
    1595             :  */
    1596           1 : void * __init memblock_alloc_try_nid_raw(
    1597             :                         phys_addr_t size, phys_addr_t align,
    1598             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1599             :                         int nid)
    1600             : {
    1601           1 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1602             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1603             :                      &max_addr, (void *)_RET_IP_);
    1604             : 
    1605           1 :         return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
    1606             :                                        false);
    1607             : }
    1608             : 
    1609             : /**
    1610             :  * memblock_alloc_try_nid - allocate boot memory block
    1611             :  * @size: size of memory block to be allocated in bytes
    1612             :  * @align: alignment of the region and block's size
    1613             :  * @min_addr: the lower bound of the memory region from where the allocation
    1614             :  *        is preferred (phys address)
    1615             :  * @max_addr: the upper bound of the memory region from where the allocation
    1616             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1617             :  *            allocate only from memory limited by memblock.current_limit value
    1618             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1619             :  *
    1620             :  * Public function, provides additional debug information (including caller
    1621             :  * info), if enabled. This function zeroes the allocated memory.
    1622             :  *
    1623             :  * Return:
    1624             :  * Virtual address of allocated memory block on success, NULL on failure.
    1625             :  */
    1626          20 : void * __init memblock_alloc_try_nid(
    1627             :                         phys_addr_t size, phys_addr_t align,
    1628             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1629             :                         int nid)
    1630             : {
    1631             :         void *ptr;
    1632             : 
    1633          20 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1634             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1635             :                      &max_addr, (void *)_RET_IP_);
    1636          20 :         ptr = memblock_alloc_internal(size, align,
    1637             :                                            min_addr, max_addr, nid, false);
    1638          20 :         if (ptr)
    1639          40 :                 memset(ptr, 0, size);
    1640             : 
    1641          20 :         return ptr;
    1642             : }
    1643             : 
    1644             : /**
    1645             :  * memblock_free_late - free pages directly to buddy allocator
    1646             :  * @base: phys starting address of the  boot memory block
    1647             :  * @size: size of the boot memory block in bytes
    1648             :  *
    1649             :  * This is only useful when the memblock allocator has already been torn
    1650             :  * down, but we are still initializing the system.  Pages are released directly
    1651             :  * to the buddy allocator.
    1652             :  */
    1653           0 : void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
    1654             : {
    1655             :         phys_addr_t cursor, end;
    1656             : 
    1657           0 :         end = base + size - 1;
    1658           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n",
    1659             :                      __func__, &base, &end, (void *)_RET_IP_);
    1660           0 :         kmemleak_free_part_phys(base, size);
    1661           0 :         cursor = PFN_UP(base);
    1662           0 :         end = PFN_DOWN(base + size);
    1663             : 
    1664           0 :         for (; cursor < end; cursor++) {
    1665           0 :                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
    1666             :                 totalram_pages_inc();
    1667             :         }
    1668           0 : }
    1669             : 
    1670             : /*
    1671             :  * Remaining API functions
    1672             :  */
    1673             : 
    1674           0 : phys_addr_t __init_memblock memblock_phys_mem_size(void)
    1675             : {
    1676           0 :         return memblock.memory.total_size;
    1677             : }
    1678             : 
    1679           0 : phys_addr_t __init_memblock memblock_reserved_size(void)
    1680             : {
    1681           0 :         return memblock.reserved.total_size;
    1682             : }
    1683             : 
    1684             : /* lowest address */
    1685           1 : phys_addr_t __init_memblock memblock_start_of_DRAM(void)
    1686             : {
    1687           1 :         return memblock.memory.regions[0].base;
    1688             : }
    1689             : 
    1690           0 : phys_addr_t __init_memblock memblock_end_of_DRAM(void)
    1691             : {
    1692           0 :         int idx = memblock.memory.cnt - 1;
    1693             : 
    1694           0 :         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
    1695             : }
    1696             : 
    1697           0 : static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
    1698             : {
    1699           0 :         phys_addr_t max_addr = PHYS_ADDR_MAX;
    1700             :         struct memblock_region *r;
    1701             : 
    1702             :         /*
    1703             :          * translate the memory @limit size into the max address within one of
    1704             :          * the memory memblock regions, if the @limit exceeds the total size
    1705             :          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
    1706             :          */
    1707           0 :         for_each_mem_region(r) {
    1708           0 :                 if (limit <= r->size) {
    1709           0 :                         max_addr = r->base + limit;
    1710           0 :                         break;
    1711             :                 }
    1712           0 :                 limit -= r->size;
    1713             :         }
    1714             : 
    1715           0 :         return max_addr;
    1716             : }
    1717             : 
    1718           0 : void __init memblock_enforce_memory_limit(phys_addr_t limit)
    1719             : {
    1720             :         phys_addr_t max_addr;
    1721             : 
    1722           0 :         if (!limit)
    1723             :                 return;
    1724             : 
    1725           0 :         max_addr = __find_max_addr(limit);
    1726             : 
    1727             :         /* @limit exceeds the total size of the memory, do nothing */
    1728           0 :         if (max_addr == PHYS_ADDR_MAX)
    1729             :                 return;
    1730             : 
    1731             :         /* truncate both memory and reserved regions */
    1732           0 :         memblock_remove_range(&memblock.memory, max_addr,
    1733             :                               PHYS_ADDR_MAX);
    1734           0 :         memblock_remove_range(&memblock.reserved, max_addr,
    1735             :                               PHYS_ADDR_MAX);
    1736             : }
    1737             : 
    1738           0 : void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
    1739             : {
    1740             :         int start_rgn, end_rgn;
    1741             :         int i, ret;
    1742             : 
    1743           0 :         if (!size)
    1744           0 :                 return;
    1745             : 
    1746           0 :         if (!memblock_memory->total_size) {
    1747           0 :                 pr_warn("%s: No memory registered yet\n", __func__);
    1748           0 :                 return;
    1749             :         }
    1750             : 
    1751           0 :         ret = memblock_isolate_range(&memblock.memory, base, size,
    1752             :                                                 &start_rgn, &end_rgn);
    1753           0 :         if (ret)
    1754             :                 return;
    1755             : 
    1756             :         /* remove all the MAP regions */
    1757           0 :         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
    1758           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1759           0 :                         memblock_remove_region(&memblock.memory, i);
    1760             : 
    1761           0 :         for (i = start_rgn - 1; i >= 0; i--)
    1762           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1763           0 :                         memblock_remove_region(&memblock.memory, i);
    1764             : 
    1765             :         /* truncate the reserved regions */
    1766           0 :         memblock_remove_range(&memblock.reserved, 0, base);
    1767           0 :         memblock_remove_range(&memblock.reserved,
    1768             :                         base + size, PHYS_ADDR_MAX);
    1769             : }
    1770             : 
    1771           0 : void __init memblock_mem_limit_remove_map(phys_addr_t limit)
    1772             : {
    1773             :         phys_addr_t max_addr;
    1774             : 
    1775           0 :         if (!limit)
    1776             :                 return;
    1777             : 
    1778           0 :         max_addr = __find_max_addr(limit);
    1779             : 
    1780             :         /* @limit exceeds the total size of the memory, do nothing */
    1781           0 :         if (max_addr == PHYS_ADDR_MAX)
    1782             :                 return;
    1783             : 
    1784           0 :         memblock_cap_memory_range(0, max_addr);
    1785             : }
    1786             : 
    1787           0 : static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
    1788             : {
    1789           0 :         unsigned int left = 0, right = type->cnt;
    1790             : 
    1791             :         do {
    1792           0 :                 unsigned int mid = (right + left) / 2;
    1793             : 
    1794           0 :                 if (addr < type->regions[mid].base)
    1795             :                         right = mid;
    1796           0 :                 else if (addr >= (type->regions[mid].base +
    1797           0 :                                   type->regions[mid].size))
    1798           0 :                         left = mid + 1;
    1799             :                 else
    1800           0 :                         return mid;
    1801           0 :         } while (left < right);
    1802             :         return -1;
    1803             : }
    1804             : 
    1805           0 : bool __init_memblock memblock_is_reserved(phys_addr_t addr)
    1806             : {
    1807           0 :         return memblock_search(&memblock.reserved, addr) != -1;
    1808             : }
    1809             : 
    1810           0 : bool __init_memblock memblock_is_memory(phys_addr_t addr)
    1811             : {
    1812           0 :         return memblock_search(&memblock.memory, addr) != -1;
    1813             : }
    1814             : 
    1815           0 : bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
    1816             : {
    1817           0 :         int i = memblock_search(&memblock.memory, addr);
    1818             : 
    1819           0 :         if (i == -1)
    1820             :                 return false;
    1821           0 :         return !memblock_is_nomap(&memblock.memory.regions[i]);
    1822             : }
    1823             : 
    1824           0 : int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
    1825             :                          unsigned long *start_pfn, unsigned long *end_pfn)
    1826             : {
    1827           0 :         struct memblock_type *type = &memblock.memory;
    1828           0 :         int mid = memblock_search(type, PFN_PHYS(pfn));
    1829             : 
    1830           0 :         if (mid == -1)
    1831             :                 return -1;
    1832             : 
    1833           0 :         *start_pfn = PFN_DOWN(type->regions[mid].base);
    1834           0 :         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
    1835             : 
    1836           0 :         return memblock_get_region_node(&type->regions[mid]);
    1837             : }
    1838             : 
    1839             : /**
    1840             :  * memblock_is_region_memory - check if a region is a subset of memory
    1841             :  * @base: base of region to check
    1842             :  * @size: size of region to check
    1843             :  *
    1844             :  * Check if the region [@base, @base + @size) is a subset of a memory block.
    1845             :  *
    1846             :  * Return:
    1847             :  * 0 if false, non-zero if true
    1848             :  */
    1849           0 : bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
    1850             : {
    1851           0 :         int idx = memblock_search(&memblock.memory, base);
    1852           0 :         phys_addr_t end = base + memblock_cap_size(base, &size);
    1853             : 
    1854           0 :         if (idx == -1)
    1855             :                 return false;
    1856           0 :         return (memblock.memory.regions[idx].base +
    1857           0 :                  memblock.memory.regions[idx].size) >= end;
    1858             : }
    1859             : 
    1860             : /**
    1861             :  * memblock_is_region_reserved - check if a region intersects reserved memory
    1862             :  * @base: base of region to check
    1863             :  * @size: size of region to check
    1864             :  *
    1865             :  * Check if the region [@base, @base + @size) intersects a reserved
    1866             :  * memory block.
    1867             :  *
    1868             :  * Return:
    1869             :  * True if they intersect, false if not.
    1870             :  */
    1871           0 : bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
    1872             : {
    1873           0 :         return memblock_overlaps_region(&memblock.reserved, base, size);
    1874             : }
    1875             : 
    1876           0 : void __init_memblock memblock_trim_memory(phys_addr_t align)
    1877             : {
    1878             :         phys_addr_t start, end, orig_start, orig_end;
    1879             :         struct memblock_region *r;
    1880             : 
    1881           0 :         for_each_mem_region(r) {
    1882           0 :                 orig_start = r->base;
    1883           0 :                 orig_end = r->base + r->size;
    1884           0 :                 start = round_up(orig_start, align);
    1885           0 :                 end = round_down(orig_end, align);
    1886             : 
    1887           0 :                 if (start == orig_start && end == orig_end)
    1888           0 :                         continue;
    1889             : 
    1890           0 :                 if (start < end) {
    1891           0 :                         r->base = start;
    1892           0 :                         r->size = end - start;
    1893             :                 } else {
    1894           0 :                         memblock_remove_region(&memblock.memory,
    1895           0 :                                                r - memblock.memory.regions);
    1896           0 :                         r--;
    1897             :                 }
    1898             :         }
    1899           0 : }
    1900             : 
    1901           0 : void __init_memblock memblock_set_current_limit(phys_addr_t limit)
    1902             : {
    1903           0 :         memblock.current_limit = limit;
    1904           0 : }
    1905             : 
    1906           0 : phys_addr_t __init_memblock memblock_get_current_limit(void)
    1907             : {
    1908           0 :         return memblock.current_limit;
    1909             : }
    1910             : 
    1911           0 : static void __init_memblock memblock_dump(struct memblock_type *type)
    1912             : {
    1913             :         phys_addr_t base, end, size;
    1914             :         enum memblock_flags flags;
    1915             :         int idx;
    1916             :         struct memblock_region *rgn;
    1917             : 
    1918           0 :         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
    1919             : 
    1920           0 :         for_each_memblock_type(idx, type, rgn) {
    1921           0 :                 char nid_buf[32] = "";
    1922             : 
    1923           0 :                 base = rgn->base;
    1924           0 :                 size = rgn->size;
    1925           0 :                 end = base + size - 1;
    1926           0 :                 flags = rgn->flags;
    1927             : #ifdef CONFIG_NUMA
    1928             :                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
    1929             :                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
    1930             :                                  memblock_get_region_node(rgn));
    1931             : #endif
    1932           0 :                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
    1933             :                         type->name, idx, &base, &end, &size, nid_buf, flags);
    1934             :         }
    1935           0 : }
    1936             : 
    1937           0 : static void __init_memblock __memblock_dump_all(void)
    1938             : {
    1939           0 :         pr_info("MEMBLOCK configuration:\n");
    1940           0 :         pr_info(" memory size = %pa reserved size = %pa\n",
    1941             :                 &memblock.memory.total_size,
    1942             :                 &memblock.reserved.total_size);
    1943             : 
    1944           0 :         memblock_dump(&memblock.memory);
    1945           0 :         memblock_dump(&memblock.reserved);
    1946             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    1947             :         memblock_dump(&physmem);
    1948             : #endif
    1949           0 : }
    1950             : 
    1951           0 : void __init_memblock memblock_dump_all(void)
    1952             : {
    1953           0 :         if (memblock_debug)
    1954           0 :                 __memblock_dump_all();
    1955           0 : }
    1956             : 
    1957           0 : void __init memblock_allow_resize(void)
    1958             : {
    1959           0 :         memblock_can_resize = 1;
    1960           0 : }
    1961             : 
    1962           0 : static int __init early_memblock(char *p)
    1963             : {
    1964           0 :         if (p && strstr(p, "debug"))
    1965           0 :                 memblock_debug = 1;
    1966           0 :         return 0;
    1967             : }
    1968             : early_param("memblock", early_memblock);
    1969             : 
    1970             : static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
    1971             : {
    1972             :         struct page *start_pg, *end_pg;
    1973             :         phys_addr_t pg, pgend;
    1974             : 
    1975             :         /*
    1976             :          * Convert start_pfn/end_pfn to a struct page pointer.
    1977             :          */
    1978             :         start_pg = pfn_to_page(start_pfn - 1) + 1;
    1979             :         end_pg = pfn_to_page(end_pfn - 1) + 1;
    1980             : 
    1981             :         /*
    1982             :          * Convert to physical addresses, and round start upwards and end
    1983             :          * downwards.
    1984             :          */
    1985             :         pg = PAGE_ALIGN(__pa(start_pg));
    1986             :         pgend = __pa(end_pg) & PAGE_MASK;
    1987             : 
    1988             :         /*
    1989             :          * If there are free pages between these, free the section of the
    1990             :          * memmap array.
    1991             :          */
    1992             :         if (pg < pgend)
    1993             :                 memblock_phys_free(pg, pgend - pg);
    1994             : }
    1995             : 
    1996             : /*
    1997             :  * The mem_map array can get very big.  Free the unused area of the memory map.
    1998             :  */
    1999             : static void __init free_unused_memmap(void)
    2000             : {
    2001           1 :         unsigned long start, end, prev_end = 0;
    2002             :         int i;
    2003             : 
    2004             :         if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
    2005             :             IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
    2006             :                 return;
    2007             : 
    2008             :         /*
    2009             :          * This relies on each bank being in address order.
    2010             :          * The banks are sorted previously in bootmem_init().
    2011             :          */
    2012             :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
    2013             : #ifdef CONFIG_SPARSEMEM
    2014             :                 /*
    2015             :                  * Take care not to free memmap entries that don't exist
    2016             :                  * due to SPARSEMEM sections which aren't present.
    2017             :                  */
    2018             :                 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
    2019             : #endif
    2020             :                 /*
    2021             :                  * Align down here since many operations in VM subsystem
    2022             :                  * presume that there are no holes in the memory map inside
    2023             :                  * a pageblock
    2024             :                  */
    2025             :                 start = pageblock_start_pfn(start);
    2026             : 
    2027             :                 /*
    2028             :                  * If we had a previous bank, and there is a space
    2029             :                  * between the current bank and the previous, free it.
    2030             :                  */
    2031             :                 if (prev_end && prev_end < start)
    2032             :                         free_memmap(prev_end, start);
    2033             : 
    2034             :                 /*
    2035             :                  * Align up here since many operations in VM subsystem
    2036             :                  * presume that there are no holes in the memory map inside
    2037             :                  * a pageblock
    2038             :                  */
    2039             :                 prev_end = pageblock_align(end);
    2040             :         }
    2041             : 
    2042             : #ifdef CONFIG_SPARSEMEM
    2043             :         if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
    2044             :                 prev_end = pageblock_align(end);
    2045             :                 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
    2046             :         }
    2047             : #endif
    2048             : }
    2049             : 
    2050           2 : static void __init __free_pages_memory(unsigned long start, unsigned long end)
    2051             : {
    2052             :         int order;
    2053             : 
    2054         263 :         while (start < end) {
    2055             :                 /*
    2056             :                  * Free the pages in the largest chunks alignment allows.
    2057             :                  *
    2058             :                  * __ffs() behaviour is undefined for 0. start == 0 is
    2059             :                  * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
    2060             :                  */
    2061         259 :                 if (start)
    2062         518 :                         order = min_t(int, MAX_ORDER, __ffs(start));
    2063             :                 else
    2064             :                         order = MAX_ORDER;
    2065             : 
    2066         269 :                 while (start + (1UL << order) > end)
    2067          10 :                         order--;
    2068             : 
    2069         259 :                 memblock_free_pages(pfn_to_page(start), start, order);
    2070             : 
    2071         259 :                 start += (1UL << order);
    2072             :         }
    2073           2 : }
    2074             : 
    2075          12 : static unsigned long __init __free_memory_core(phys_addr_t start,
    2076             :                                  phys_addr_t end)
    2077             : {
    2078          12 :         unsigned long start_pfn = PFN_UP(start);
    2079          12 :         unsigned long end_pfn = min_t(unsigned long,
    2080             :                                       PFN_DOWN(end), max_low_pfn);
    2081             : 
    2082          12 :         if (start_pfn >= end_pfn)
    2083             :                 return 0;
    2084             : 
    2085           2 :         __free_pages_memory(start_pfn, end_pfn);
    2086             : 
    2087           2 :         return end_pfn - start_pfn;
    2088             : }
    2089             : 
    2090           1 : static void __init memmap_init_reserved_pages(void)
    2091             : {
    2092             :         struct memblock_region *region;
    2093             :         phys_addr_t start, end;
    2094             :         int nid;
    2095             : 
    2096             :         /*
    2097             :          * set nid on all reserved pages and also treat struct
    2098             :          * pages for the NOMAP regions as PageReserved
    2099             :          */
    2100           2 :         for_each_mem_region(region) {
    2101           1 :                 nid = memblock_get_region_node(region);
    2102           1 :                 start = region->base;
    2103           1 :                 end = start + region->size;
    2104             : 
    2105           2 :                 if (memblock_is_nomap(region))
    2106           0 :                         reserve_bootmem_region(start, end, nid);
    2107             : 
    2108           1 :                 memblock_set_node(start, end, &memblock.reserved, nid);
    2109             :         }
    2110             : 
    2111             :         /* initialize struct pages for the reserved regions */
    2112          14 :         for_each_reserved_mem_region(region) {
    2113          13 :                 nid = memblock_get_region_node(region);
    2114          13 :                 start = region->base;
    2115          13 :                 end = start + region->size;
    2116             : 
    2117          13 :                 reserve_bootmem_region(start, end, nid);
    2118             :         }
    2119           1 : }
    2120             : 
    2121           1 : static unsigned long __init free_low_memory_core_early(void)
    2122             : {
    2123           1 :         unsigned long count = 0;
    2124             :         phys_addr_t start, end;
    2125             :         u64 i;
    2126             : 
    2127           1 :         memblock_clear_hotplug(0, -1);
    2128             : 
    2129           1 :         memmap_init_reserved_pages();
    2130             : 
    2131             :         /*
    2132             :          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
    2133             :          *  because in some case like Node0 doesn't have RAM installed
    2134             :          *  low ram will be on Node1
    2135             :          */
    2136          13 :         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
    2137             :                                 NULL)
    2138          12 :                 count += __free_memory_core(start, end);
    2139             : 
    2140           1 :         return count;
    2141             : }
    2142             : 
    2143             : static int reset_managed_pages_done __initdata;
    2144             : 
    2145           1 : static void __init reset_node_managed_pages(pg_data_t *pgdat)
    2146             : {
    2147             :         struct zone *z;
    2148             : 
    2149           3 :         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
    2150           4 :                 atomic_long_set(&z->managed_pages, 0);
    2151           1 : }
    2152             : 
    2153           1 : void __init reset_all_zones_managed_pages(void)
    2154             : {
    2155             :         struct pglist_data *pgdat;
    2156             : 
    2157           1 :         if (reset_managed_pages_done)
    2158             :                 return;
    2159             : 
    2160           2 :         for_each_online_pgdat(pgdat)
    2161           1 :                 reset_node_managed_pages(pgdat);
    2162             : 
    2163           1 :         reset_managed_pages_done = 1;
    2164             : }
    2165             : 
    2166             : /**
    2167             :  * memblock_free_all - release free pages to the buddy allocator
    2168             :  */
    2169           1 : void __init memblock_free_all(void)
    2170             : {
    2171             :         unsigned long pages;
    2172             : 
    2173             :         free_unused_memmap();
    2174           1 :         reset_all_zones_managed_pages();
    2175             : 
    2176           1 :         pages = free_low_memory_core_early();
    2177           2 :         totalram_pages_add(pages);
    2178           1 : }
    2179             : 
    2180             : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
    2181             : static const char * const flagname[] = {
    2182             :         [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
    2183             :         [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
    2184             :         [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
    2185             :         [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
    2186             : };
    2187             : 
    2188             : static int memblock_debug_show(struct seq_file *m, void *private)
    2189             : {
    2190             :         struct memblock_type *type = m->private;
    2191             :         struct memblock_region *reg;
    2192             :         int i, j, nid;
    2193             :         unsigned int count = ARRAY_SIZE(flagname);
    2194             :         phys_addr_t end;
    2195             : 
    2196             :         for (i = 0; i < type->cnt; i++) {
    2197             :                 reg = &type->regions[i];
    2198             :                 end = reg->base + reg->size - 1;
    2199             :                 nid = memblock_get_region_node(reg);
    2200             : 
    2201             :                 seq_printf(m, "%4d: ", i);
    2202             :                 seq_printf(m, "%pa..%pa ", &reg->base, &end);
    2203             :                 if (nid != MAX_NUMNODES)
    2204             :                         seq_printf(m, "%4d ", nid);
    2205             :                 else
    2206             :                         seq_printf(m, "%4c ", 'x');
    2207             :                 if (reg->flags) {
    2208             :                         for (j = 0; j < count; j++) {
    2209             :                                 if (reg->flags & (1U << j)) {
    2210             :                                         seq_printf(m, "%s\n", flagname[j]);
    2211             :                                         break;
    2212             :                                 }
    2213             :                         }
    2214             :                         if (j == count)
    2215             :                                 seq_printf(m, "%s\n", "UNKNOWN");
    2216             :                 } else {
    2217             :                         seq_printf(m, "%s\n", "NONE");
    2218             :                 }
    2219             :         }
    2220             :         return 0;
    2221             : }
    2222             : DEFINE_SHOW_ATTRIBUTE(memblock_debug);
    2223             : 
    2224             : static int __init memblock_init_debugfs(void)
    2225             : {
    2226             :         struct dentry *root = debugfs_create_dir("memblock", NULL);
    2227             : 
    2228             :         debugfs_create_file("memory", 0444, root,
    2229             :                             &memblock.memory, &memblock_debug_fops);
    2230             :         debugfs_create_file("reserved", 0444, root,
    2231             :                             &memblock.reserved, &memblock_debug_fops);
    2232             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    2233             :         debugfs_create_file("physmem", 0444, root, &physmem,
    2234             :                             &memblock_debug_fops);
    2235             : #endif
    2236             : 
    2237             :         return 0;
    2238             : }
    2239             : __initcall(memblock_init_debugfs);
    2240             : 
    2241             : #endif /* CONFIG_DEBUG_FS */

Generated by: LCOV version 1.14