Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/memory.c
4 : *
5 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 : */
7 :
8 : /*
9 : * demand-loading started 01.12.91 - seems it is high on the list of
10 : * things wanted, and it should be easy to implement. - Linus
11 : */
12 :
13 : /*
14 : * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 : * pages started 02.12.91, seems to work. - Linus.
16 : *
17 : * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 : * would have taken more than the 6M I have free, but it worked well as
19 : * far as I could see.
20 : *
21 : * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 : */
23 :
24 : /*
25 : * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 : * thought has to go into this. Oh, well..
27 : * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 : * Found it. Everything seems to work now.
29 : * 20.12.91 - Ok, making the swap-device changeable like the root.
30 : */
31 :
32 : /*
33 : * 05.04.94 - Multi-page memory management added for v1.1.
34 : * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 : *
36 : * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 : * (Gerhard.Wichert@pdb.siemens.de)
38 : *
39 : * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 : */
41 :
42 : #include <linux/kernel_stat.h>
43 : #include <linux/mm.h>
44 : #include <linux/mm_inline.h>
45 : #include <linux/sched/mm.h>
46 : #include <linux/sched/coredump.h>
47 : #include <linux/sched/numa_balancing.h>
48 : #include <linux/sched/task.h>
49 : #include <linux/hugetlb.h>
50 : #include <linux/mman.h>
51 : #include <linux/swap.h>
52 : #include <linux/highmem.h>
53 : #include <linux/pagemap.h>
54 : #include <linux/memremap.h>
55 : #include <linux/kmsan.h>
56 : #include <linux/ksm.h>
57 : #include <linux/rmap.h>
58 : #include <linux/export.h>
59 : #include <linux/delayacct.h>
60 : #include <linux/init.h>
61 : #include <linux/pfn_t.h>
62 : #include <linux/writeback.h>
63 : #include <linux/memcontrol.h>
64 : #include <linux/mmu_notifier.h>
65 : #include <linux/swapops.h>
66 : #include <linux/elf.h>
67 : #include <linux/gfp.h>
68 : #include <linux/migrate.h>
69 : #include <linux/string.h>
70 : #include <linux/memory-tiers.h>
71 : #include <linux/debugfs.h>
72 : #include <linux/userfaultfd_k.h>
73 : #include <linux/dax.h>
74 : #include <linux/oom.h>
75 : #include <linux/numa.h>
76 : #include <linux/perf_event.h>
77 : #include <linux/ptrace.h>
78 : #include <linux/vmalloc.h>
79 : #include <linux/sched/sysctl.h>
80 : #include <linux/net_mm.h>
81 :
82 : #include <trace/events/kmem.h>
83 :
84 : #include <asm/io.h>
85 : #include <asm/mmu_context.h>
86 : #include <asm/pgalloc.h>
87 : #include <linux/uaccess.h>
88 : #include <asm/tlb.h>
89 : #include <asm/tlbflush.h>
90 :
91 : #include "pgalloc-track.h"
92 : #include "internal.h"
93 : #include "swap.h"
94 :
95 : #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 : #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 : #endif
98 :
99 : #ifndef CONFIG_NUMA
100 : unsigned long max_mapnr;
101 : EXPORT_SYMBOL(max_mapnr);
102 :
103 : struct page *mem_map;
104 : EXPORT_SYMBOL(mem_map);
105 : #endif
106 :
107 : static vm_fault_t do_fault(struct vm_fault *vmf);
108 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 : static bool vmf_pte_changed(struct vm_fault *vmf);
110 :
111 : /*
112 : * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 : * wr-protected).
114 : */
115 : static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 : {
117 : if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 : return false;
119 :
120 : return pte_marker_uffd_wp(vmf->orig_pte);
121 : }
122 :
123 : /*
124 : * A number of key systems in x86 including ioremap() rely on the assumption
125 : * that high_memory defines the upper bound on direct map memory, then end
126 : * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 : * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128 : * and ZONE_HIGHMEM.
129 : */
130 : void *high_memory;
131 : EXPORT_SYMBOL(high_memory);
132 :
133 : /*
134 : * Randomize the address space (stacks, mmaps, brk, etc.).
135 : *
136 : * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 : * as ancient (libc5 based) binaries can segfault. )
138 : */
139 : int randomize_va_space __read_mostly =
140 : #ifdef CONFIG_COMPAT_BRK
141 : 1;
142 : #else
143 : 2;
144 : #endif
145 :
146 : #ifndef arch_wants_old_prefaulted_pte
147 : static inline bool arch_wants_old_prefaulted_pte(void)
148 : {
149 : /*
150 : * Transitioning a PTE from 'old' to 'young' can be expensive on
151 : * some architectures, even if it's performed in hardware. By
152 : * default, "false" means prefaulted entries will be 'young'.
153 : */
154 : return false;
155 : }
156 : #endif
157 :
158 0 : static int __init disable_randmaps(char *s)
159 : {
160 0 : randomize_va_space = 0;
161 0 : return 1;
162 : }
163 : __setup("norandmaps", disable_randmaps);
164 :
165 : unsigned long zero_pfn __read_mostly;
166 : EXPORT_SYMBOL(zero_pfn);
167 :
168 : unsigned long highest_memmap_pfn __read_mostly;
169 :
170 : /*
171 : * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 : */
173 1 : static int __init init_zero_pfn(void)
174 : {
175 2 : zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 1 : return 0;
177 : }
178 : early_initcall(init_zero_pfn);
179 :
180 0 : void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 : {
182 0 : trace_rss_stat(mm, member);
183 0 : }
184 :
185 : /*
186 : * Note: this doesn't free the actual pages themselves. That
187 : * has been handled earlier when unmapping all the memory regions.
188 : */
189 0 : static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 : unsigned long addr)
191 : {
192 0 : pgtable_t token = pmd_pgtable(*pmd);
193 0 : pmd_clear(pmd);
194 0 : pte_free_tlb(tlb, token, addr);
195 0 : mm_dec_nr_ptes(tlb->mm);
196 0 : }
197 :
198 0 : static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 : unsigned long addr, unsigned long end,
200 : unsigned long floor, unsigned long ceiling)
201 : {
202 : pmd_t *pmd;
203 : unsigned long next;
204 : unsigned long start;
205 :
206 0 : start = addr;
207 0 : pmd = pmd_offset(pud, addr);
208 : do {
209 0 : next = pmd_addr_end(addr, end);
210 0 : if (pmd_none_or_clear_bad(pmd))
211 0 : continue;
212 0 : free_pte_range(tlb, pmd, addr);
213 0 : } while (pmd++, addr = next, addr != end);
214 :
215 0 : start &= PUD_MASK;
216 0 : if (start < floor)
217 : return;
218 0 : if (ceiling) {
219 0 : ceiling &= PUD_MASK;
220 0 : if (!ceiling)
221 : return;
222 : }
223 0 : if (end - 1 > ceiling - 1)
224 : return;
225 :
226 0 : pmd = pmd_offset(pud, start);
227 0 : pud_clear(pud);
228 0 : pmd_free_tlb(tlb, pmd, start);
229 0 : mm_dec_nr_pmds(tlb->mm);
230 : }
231 :
232 0 : static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 : unsigned long addr, unsigned long end,
234 : unsigned long floor, unsigned long ceiling)
235 : {
236 : pud_t *pud;
237 : unsigned long next;
238 : unsigned long start;
239 :
240 0 : start = addr;
241 0 : pud = pud_offset(p4d, addr);
242 : do {
243 0 : next = pud_addr_end(addr, end);
244 0 : if (pud_none_or_clear_bad(pud))
245 0 : continue;
246 0 : free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 0 : } while (pud++, addr = next, addr != end);
248 :
249 0 : start &= P4D_MASK;
250 : if (start < floor)
251 : return;
252 : if (ceiling) {
253 : ceiling &= P4D_MASK;
254 : if (!ceiling)
255 : return;
256 : }
257 : if (end - 1 > ceiling - 1)
258 : return;
259 :
260 : pud = pud_offset(p4d, start);
261 : p4d_clear(p4d);
262 : pud_free_tlb(tlb, pud, start);
263 : mm_dec_nr_puds(tlb->mm);
264 : }
265 :
266 : static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 : unsigned long addr, unsigned long end,
268 : unsigned long floor, unsigned long ceiling)
269 : {
270 : p4d_t *p4d;
271 : unsigned long next;
272 : unsigned long start;
273 :
274 0 : start = addr;
275 0 : p4d = p4d_offset(pgd, addr);
276 : do {
277 0 : next = p4d_addr_end(addr, end);
278 0 : if (p4d_none_or_clear_bad(p4d))
279 : continue;
280 0 : free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 0 : } while (p4d++, addr = next, addr != end);
282 :
283 0 : start &= PGDIR_MASK;
284 : if (start < floor)
285 : return;
286 : if (ceiling) {
287 : ceiling &= PGDIR_MASK;
288 : if (!ceiling)
289 : return;
290 : }
291 : if (end - 1 > ceiling - 1)
292 : return;
293 :
294 : p4d = p4d_offset(pgd, start);
295 : pgd_clear(pgd);
296 : p4d_free_tlb(tlb, p4d, start);
297 : }
298 :
299 : /*
300 : * This function frees user-level page tables of a process.
301 : */
302 0 : void free_pgd_range(struct mmu_gather *tlb,
303 : unsigned long addr, unsigned long end,
304 : unsigned long floor, unsigned long ceiling)
305 : {
306 : pgd_t *pgd;
307 : unsigned long next;
308 :
309 : /*
310 : * The next few lines have given us lots of grief...
311 : *
312 : * Why are we testing PMD* at this top level? Because often
313 : * there will be no work to do at all, and we'd prefer not to
314 : * go all the way down to the bottom just to discover that.
315 : *
316 : * Why all these "- 1"s? Because 0 represents both the bottom
317 : * of the address space and the top of it (using -1 for the
318 : * top wouldn't help much: the masks would do the wrong thing).
319 : * The rule is that addr 0 and floor 0 refer to the bottom of
320 : * the address space, but end 0 and ceiling 0 refer to the top
321 : * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 : * that end 0 case should be mythical).
323 : *
324 : * Wherever addr is brought up or ceiling brought down, we must
325 : * be careful to reject "the opposite 0" before it confuses the
326 : * subsequent tests. But what about where end is brought down
327 : * by PMD_SIZE below? no, end can't go down to 0 there.
328 : *
329 : * Whereas we round start (addr) and ceiling down, by different
330 : * masks at different levels, in order to test whether a table
331 : * now has no other vmas using it, so can be freed, we don't
332 : * bother to round floor or end up - the tests don't need that.
333 : */
334 :
335 0 : addr &= PMD_MASK;
336 0 : if (addr < floor) {
337 0 : addr += PMD_SIZE;
338 0 : if (!addr)
339 : return;
340 : }
341 0 : if (ceiling) {
342 0 : ceiling &= PMD_MASK;
343 0 : if (!ceiling)
344 : return;
345 : }
346 0 : if (end - 1 > ceiling - 1)
347 0 : end -= PMD_SIZE;
348 0 : if (addr > end - 1)
349 : return;
350 : /*
351 : * We add page table cache pages with PAGE_SIZE,
352 : * (see pte_free_tlb()), flush the tlb if we need
353 : */
354 0 : tlb_change_page_size(tlb, PAGE_SIZE);
355 0 : pgd = pgd_offset(tlb->mm, addr);
356 : do {
357 0 : next = pgd_addr_end(addr, end);
358 0 : if (pgd_none_or_clear_bad(pgd))
359 : continue;
360 : free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 0 : } while (pgd++, addr = next, addr != end);
362 : }
363 :
364 0 : void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 : struct vm_area_struct *vma, unsigned long floor,
366 : unsigned long ceiling, bool mm_wr_locked)
367 : {
368 0 : MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369 :
370 : do {
371 0 : unsigned long addr = vma->vm_start;
372 : struct vm_area_struct *next;
373 :
374 : /*
375 : * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 : * be 0. This will underflow and is okay.
377 : */
378 0 : next = mas_find(&mas, ceiling - 1);
379 :
380 : /*
381 : * Hide vma from rmap and truncate_pagecache before freeing
382 : * pgtables
383 : */
384 : if (mm_wr_locked)
385 : vma_start_write(vma);
386 0 : unlink_anon_vmas(vma);
387 0 : unlink_file_vma(vma);
388 :
389 0 : if (is_vm_hugetlb_page(vma)) {
390 : hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 : floor, next ? next->vm_start : ceiling);
392 : } else {
393 : /*
394 : * Optimization: gather nearby vmas into one call down
395 : */
396 0 : while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 0 : && !is_vm_hugetlb_page(next)) {
398 0 : vma = next;
399 0 : next = mas_find(&mas, ceiling - 1);
400 : if (mm_wr_locked)
401 : vma_start_write(vma);
402 0 : unlink_anon_vmas(vma);
403 0 : unlink_file_vma(vma);
404 : }
405 0 : free_pgd_range(tlb, addr, vma->vm_end,
406 : floor, next ? next->vm_start : ceiling);
407 : }
408 0 : vma = next;
409 0 : } while (vma);
410 0 : }
411 :
412 0 : void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 : {
414 0 : spinlock_t *ptl = pmd_lock(mm, pmd);
415 :
416 0 : if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
417 0 : mm_inc_nr_ptes(mm);
418 : /*
419 : * Ensure all pte setup (eg. pte page lock and page clearing) are
420 : * visible before the pte is made visible to other CPUs by being
421 : * put into page tables.
422 : *
423 : * The other side of the story is the pointer chasing in the page
424 : * table walking code (when walking the page table without locking;
425 : * ie. most of the time). Fortunately, these data accesses consist
426 : * of a chain of data-dependent loads, meaning most CPUs (alpha
427 : * being the notable exception) will already guarantee loads are
428 : * seen in-order. See the alpha page table accessors for the
429 : * smp_rmb() barriers in page table walking code.
430 : */
431 0 : smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 0 : pmd_populate(mm, pmd, *pte);
433 0 : *pte = NULL;
434 : }
435 0 : spin_unlock(ptl);
436 0 : }
437 :
438 0 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 : {
440 0 : pgtable_t new = pte_alloc_one(mm);
441 0 : if (!new)
442 : return -ENOMEM;
443 :
444 0 : pmd_install(mm, pmd, &new);
445 0 : if (new)
446 0 : pte_free(mm, new);
447 : return 0;
448 : }
449 :
450 1 : int __pte_alloc_kernel(pmd_t *pmd)
451 : {
452 2 : pte_t *new = pte_alloc_one_kernel(&init_mm);
453 1 : if (!new)
454 : return -ENOMEM;
455 :
456 1 : spin_lock(&init_mm.page_table_lock);
457 1 : if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
458 1 : smp_wmb(); /* See comment in pmd_install() */
459 1 : pmd_populate_kernel(&init_mm, pmd, new);
460 1 : new = NULL;
461 : }
462 1 : spin_unlock(&init_mm.page_table_lock);
463 1 : if (new)
464 0 : pte_free_kernel(&init_mm, new);
465 : return 0;
466 : }
467 :
468 0 : static inline void init_rss_vec(int *rss)
469 : {
470 0 : memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 0 : }
472 :
473 0 : static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 : {
475 : int i;
476 :
477 0 : if (current->mm == mm)
478 : sync_mm_rss(mm);
479 0 : for (i = 0; i < NR_MM_COUNTERS; i++)
480 0 : if (rss[i])
481 0 : add_mm_counter(mm, i, rss[i]);
482 0 : }
483 :
484 : /*
485 : * This function is called to print an error when a bad pte
486 : * is found. For example, we might have a PFN-mapped pte in
487 : * a region that doesn't allow it.
488 : *
489 : * The calling function must still handle the error.
490 : */
491 0 : static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 : pte_t pte, struct page *page)
493 : {
494 0 : pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 0 : p4d_t *p4d = p4d_offset(pgd, addr);
496 0 : pud_t *pud = pud_offset(p4d, addr);
497 0 : pmd_t *pmd = pmd_offset(pud, addr);
498 : struct address_space *mapping;
499 : pgoff_t index;
500 : static unsigned long resume;
501 : static unsigned long nr_shown;
502 : static unsigned long nr_unshown;
503 :
504 : /*
505 : * Allow a burst of 60 reports, then keep quiet for that minute;
506 : * or allow a steady drip of one report per second.
507 : */
508 0 : if (nr_shown == 60) {
509 0 : if (time_before(jiffies, resume)) {
510 0 : nr_unshown++;
511 0 : return;
512 : }
513 0 : if (nr_unshown) {
514 0 : pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 : nr_unshown);
516 0 : nr_unshown = 0;
517 : }
518 0 : nr_shown = 0;
519 : }
520 0 : if (nr_shown++ == 0)
521 0 : resume = jiffies + 60 * HZ;
522 :
523 0 : mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 0 : index = linear_page_index(vma, addr);
525 :
526 0 : pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 : current->comm,
528 : (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 0 : if (page)
530 0 : dump_page(page, "bad pte");
531 0 : pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 : (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 0 : pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 : vma->vm_file,
535 : vma->vm_ops ? vma->vm_ops->fault : NULL,
536 : vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 : mapping ? mapping->a_ops->read_folio : NULL);
538 0 : dump_stack();
539 0 : add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 : }
541 :
542 : /*
543 : * vm_normal_page -- This function gets the "struct page" associated with a pte.
544 : *
545 : * "Special" mappings do not wish to be associated with a "struct page" (either
546 : * it doesn't exist, or it exists but they don't want to touch it). In this
547 : * case, NULL is returned here. "Normal" mappings do have a struct page.
548 : *
549 : * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 : * pte bit, in which case this function is trivial. Secondly, an architecture
551 : * may not have a spare pte bit, which requires a more complicated scheme,
552 : * described below.
553 : *
554 : * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 : * special mapping (even if there are underlying and valid "struct pages").
556 : * COWed pages of a VM_PFNMAP are always normal.
557 : *
558 : * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 : * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 : * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 : * mapping will always honor the rule
562 : *
563 : * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 : *
565 : * And for normal mappings this is false.
566 : *
567 : * This restricts such mappings to be a linear translation from virtual address
568 : * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 : * as the vma is not a COW mapping; in that case, we know that all ptes are
570 : * special (because none can have been COWed).
571 : *
572 : *
573 : * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574 : *
575 : * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 : * page" backing, however the difference is that _all_ pages with a struct
577 : * page (that is, those where pfn_valid is true) are refcounted and considered
578 : * normal pages by the VM. The disadvantage is that pages are refcounted
579 : * (which can be slower and simply not an option for some PFNMAP users). The
580 : * advantage is that we don't have to follow the strict linearity rule of
581 : * PFNMAP mappings in order to support COWable mappings.
582 : *
583 : */
584 0 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 : pte_t pte)
586 : {
587 0 : unsigned long pfn = pte_pfn(pte);
588 :
589 : if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 : if (likely(!pte_special(pte)))
591 : goto check_pfn;
592 : if (vma->vm_ops && vma->vm_ops->find_special_page)
593 : return vma->vm_ops->find_special_page(vma, addr);
594 : if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 : return NULL;
596 : if (is_zero_pfn(pfn))
597 : return NULL;
598 : if (pte_devmap(pte))
599 : /*
600 : * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 : * and will have refcounts incremented on their struct pages
602 : * when they are inserted into PTEs, thus they are safe to
603 : * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 : * do not have refcounts. Example of legacy ZONE_DEVICE is
605 : * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 : */
607 : return NULL;
608 :
609 : print_bad_pte(vma, addr, pte, NULL);
610 : return NULL;
611 : }
612 :
613 : /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 :
615 0 : if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 0 : if (vma->vm_flags & VM_MIXEDMAP) {
617 0 : if (!pfn_valid(pfn))
618 : return NULL;
619 : goto out;
620 : } else {
621 : unsigned long off;
622 0 : off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 0 : if (pfn == vma->vm_pgoff + off)
624 : return NULL;
625 0 : if (!is_cow_mapping(vma->vm_flags))
626 : return NULL;
627 : }
628 : }
629 :
630 0 : if (is_zero_pfn(pfn))
631 : return NULL;
632 :
633 : check_pfn:
634 0 : if (unlikely(pfn > highest_memmap_pfn)) {
635 0 : print_bad_pte(vma, addr, pte, NULL);
636 0 : return NULL;
637 : }
638 :
639 : /*
640 : * NOTE! We still have PageReserved() pages in the page tables.
641 : * eg. VDSO mappings can cause them to exist.
642 : */
643 : out:
644 0 : return pfn_to_page(pfn);
645 : }
646 :
647 0 : struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 : pte_t pte)
649 : {
650 0 : struct page *page = vm_normal_page(vma, addr, pte);
651 :
652 0 : if (page)
653 0 : return page_folio(page);
654 : return NULL;
655 : }
656 :
657 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 : pmd_t pmd)
660 : {
661 : unsigned long pfn = pmd_pfn(pmd);
662 :
663 : /*
664 : * There is no pmd_special() but there may be special pmds, e.g.
665 : * in a direct-access (dax) mapping, so let's just replicate the
666 : * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 : */
668 : if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 : if (vma->vm_flags & VM_MIXEDMAP) {
670 : if (!pfn_valid(pfn))
671 : return NULL;
672 : goto out;
673 : } else {
674 : unsigned long off;
675 : off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 : if (pfn == vma->vm_pgoff + off)
677 : return NULL;
678 : if (!is_cow_mapping(vma->vm_flags))
679 : return NULL;
680 : }
681 : }
682 :
683 : if (pmd_devmap(pmd))
684 : return NULL;
685 : if (is_huge_zero_pmd(pmd))
686 : return NULL;
687 : if (unlikely(pfn > highest_memmap_pfn))
688 : return NULL;
689 :
690 : /*
691 : * NOTE! We still have PageReserved() pages in the page tables.
692 : * eg. VDSO mappings can cause them to exist.
693 : */
694 : out:
695 : return pfn_to_page(pfn);
696 : }
697 : #endif
698 :
699 : static void restore_exclusive_pte(struct vm_area_struct *vma,
700 : struct page *page, unsigned long address,
701 : pte_t *ptep)
702 : {
703 : pte_t orig_pte;
704 : pte_t pte;
705 : swp_entry_t entry;
706 :
707 : orig_pte = ptep_get(ptep);
708 : pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 : if (pte_swp_soft_dirty(orig_pte))
710 : pte = pte_mksoft_dirty(pte);
711 :
712 : entry = pte_to_swp_entry(orig_pte);
713 : if (pte_swp_uffd_wp(orig_pte))
714 : pte = pte_mkuffd_wp(pte);
715 : else if (is_writable_device_exclusive_entry(entry))
716 : pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717 :
718 : VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719 :
720 : /*
721 : * No need to take a page reference as one was already
722 : * created when the swap entry was made.
723 : */
724 : if (PageAnon(page))
725 : page_add_anon_rmap(page, vma, address, RMAP_NONE);
726 : else
727 : /*
728 : * Currently device exclusive access only supports anonymous
729 : * memory so the entry shouldn't point to a filebacked page.
730 : */
731 : WARN_ON_ONCE(1);
732 :
733 : set_pte_at(vma->vm_mm, address, ptep, pte);
734 :
735 : /*
736 : * No need to invalidate - it was non-present before. However
737 : * secondary CPUs may have mappings that need invalidating.
738 : */
739 : update_mmu_cache(vma, address, ptep);
740 : }
741 :
742 : /*
743 : * Tries to restore an exclusive pte if the page lock can be acquired without
744 : * sleeping.
745 : */
746 : static int
747 : try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 : unsigned long addr)
749 : {
750 : swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 : struct page *page = pfn_swap_entry_to_page(entry);
752 :
753 : if (trylock_page(page)) {
754 : restore_exclusive_pte(vma, page, addr, src_pte);
755 : unlock_page(page);
756 : return 0;
757 : }
758 :
759 : return -EBUSY;
760 : }
761 :
762 : /*
763 : * copy one vm_area from one task to the other. Assumes the page tables
764 : * already present in the new task to be cleared in the whole range
765 : * covered by this vma.
766 : */
767 :
768 : static unsigned long
769 0 : copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 : pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 : struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 : {
773 0 : unsigned long vm_flags = dst_vma->vm_flags;
774 0 : pte_t orig_pte = ptep_get(src_pte);
775 0 : pte_t pte = orig_pte;
776 : struct page *page;
777 0 : swp_entry_t entry = pte_to_swp_entry(orig_pte);
778 :
779 0 : if (likely(!non_swap_entry(entry))) {
780 0 : if (swap_duplicate(entry) < 0)
781 : return -EIO;
782 :
783 : /* make sure dst_mm is on swapoff's mmlist. */
784 0 : if (unlikely(list_empty(&dst_mm->mmlist))) {
785 0 : spin_lock(&mmlist_lock);
786 0 : if (list_empty(&dst_mm->mmlist))
787 0 : list_add(&dst_mm->mmlist,
788 : &src_mm->mmlist);
789 : spin_unlock(&mmlist_lock);
790 : }
791 : /* Mark the swap entry as shared. */
792 0 : if (pte_swp_exclusive(orig_pte)) {
793 0 : pte = pte_swp_clear_exclusive(orig_pte);
794 0 : set_pte_at(src_mm, addr, src_pte, pte);
795 : }
796 0 : rss[MM_SWAPENTS]++;
797 0 : } else if (is_migration_entry(entry)) {
798 0 : page = pfn_swap_entry_to_page(entry);
799 :
800 0 : rss[mm_counter(page)]++;
801 :
802 0 : if (!is_readable_migration_entry(entry) &&
803 0 : is_cow_mapping(vm_flags)) {
804 : /*
805 : * COW mappings require pages in both parent and child
806 : * to be set to read. A previously exclusive entry is
807 : * now shared.
808 : */
809 0 : entry = make_readable_migration_entry(
810 : swp_offset(entry));
811 0 : pte = swp_entry_to_pte(entry);
812 0 : if (pte_swp_soft_dirty(orig_pte))
813 : pte = pte_swp_mksoft_dirty(pte);
814 : if (pte_swp_uffd_wp(orig_pte))
815 : pte = pte_swp_mkuffd_wp(pte);
816 0 : set_pte_at(src_mm, addr, src_pte, pte);
817 : }
818 0 : } else if (is_device_private_entry(entry)) {
819 : page = pfn_swap_entry_to_page(entry);
820 :
821 : /*
822 : * Update rss count even for unaddressable pages, as
823 : * they should treated just like normal pages in this
824 : * respect.
825 : *
826 : * We will likely want to have some new rss counters
827 : * for unaddressable pages, at some point. But for now
828 : * keep things as they are.
829 : */
830 : get_page(page);
831 : rss[mm_counter(page)]++;
832 : /* Cannot fail as these pages cannot get pinned. */
833 : BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834 :
835 : /*
836 : * We do not preserve soft-dirty information, because so
837 : * far, checkpoint/restore is the only feature that
838 : * requires that. And checkpoint/restore does not work
839 : * when a device driver is involved (you cannot easily
840 : * save and restore device driver state).
841 : */
842 : if (is_writable_device_private_entry(entry) &&
843 : is_cow_mapping(vm_flags)) {
844 : entry = make_readable_device_private_entry(
845 : swp_offset(entry));
846 : pte = swp_entry_to_pte(entry);
847 : if (pte_swp_uffd_wp(orig_pte))
848 : pte = pte_swp_mkuffd_wp(pte);
849 : set_pte_at(src_mm, addr, src_pte, pte);
850 : }
851 0 : } else if (is_device_exclusive_entry(entry)) {
852 : /*
853 : * Make device exclusive entries present by restoring the
854 : * original entry then copying as for a present pte. Device
855 : * exclusive entries currently only support private writable
856 : * (ie. COW) mappings.
857 : */
858 : VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 : if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 : return -EBUSY;
861 : return -ENOENT;
862 0 : } else if (is_pte_marker_entry(entry)) {
863 0 : if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864 0 : set_pte_at(dst_mm, addr, dst_pte, pte);
865 : return 0;
866 : }
867 0 : if (!userfaultfd_wp(dst_vma))
868 : pte = pte_swp_clear_uffd_wp(pte);
869 0 : set_pte_at(dst_mm, addr, dst_pte, pte);
870 : return 0;
871 : }
872 :
873 : /*
874 : * Copy a present and normal page.
875 : *
876 : * NOTE! The usual case is that this isn't required;
877 : * instead, the caller can just increase the page refcount
878 : * and re-use the pte the traditional way.
879 : *
880 : * And if we need a pre-allocated page but don't yet have
881 : * one, return a negative error to let the preallocation
882 : * code know so that it can do so outside the page table
883 : * lock.
884 : */
885 : static inline int
886 0 : copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 : pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 : struct folio **prealloc, struct page *page)
889 : {
890 : struct folio *new_folio;
891 : pte_t pte;
892 :
893 0 : new_folio = *prealloc;
894 0 : if (!new_folio)
895 : return -EAGAIN;
896 :
897 : /*
898 : * We have a prealloc page, all good! Take it
899 : * over and copy the page & arm it.
900 : */
901 0 : *prealloc = NULL;
902 0 : copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 0 : __folio_mark_uptodate(new_folio);
904 0 : folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 0 : folio_add_lru_vma(new_folio, dst_vma);
906 0 : rss[MM_ANONPAGES]++;
907 :
908 : /* All done, just insert the new page copy in the child */
909 0 : pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 0 : pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 0 : if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 : /* Uffd-wp needs to be delivered to dest pte as well */
913 : pte = pte_mkuffd_wp(pte);
914 0 : set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 : return 0;
916 : }
917 :
918 : /*
919 : * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 : * is required to copy this pte.
921 : */
922 : static inline int
923 0 : copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 : pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 : struct folio **prealloc)
926 : {
927 0 : struct mm_struct *src_mm = src_vma->vm_mm;
928 0 : unsigned long vm_flags = src_vma->vm_flags;
929 0 : pte_t pte = ptep_get(src_pte);
930 : struct page *page;
931 : struct folio *folio;
932 :
933 0 : page = vm_normal_page(src_vma, addr, pte);
934 0 : if (page)
935 0 : folio = page_folio(page);
936 0 : if (page && folio_test_anon(folio)) {
937 : /*
938 : * If this page may have been pinned by the parent process,
939 : * copy the page immediately for the child so that we'll always
940 : * guarantee the pinned page won't be randomly replaced in the
941 : * future.
942 : */
943 0 : folio_get(folio);
944 0 : if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 : /* Page may be pinned, we have to copy. */
946 0 : folio_put(folio);
947 0 : return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 : addr, rss, prealloc, page);
949 : }
950 0 : rss[MM_ANONPAGES]++;
951 0 : } else if (page) {
952 0 : folio_get(folio);
953 0 : page_dup_file_rmap(page, false);
954 0 : rss[mm_counter_file(page)]++;
955 : }
956 :
957 : /*
958 : * If it's a COW mapping, write protect it both
959 : * in the parent and the child
960 : */
961 0 : if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 0 : ptep_set_wrprotect(src_mm, addr, src_pte);
963 : pte = pte_wrprotect(pte);
964 : }
965 : VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966 :
967 : /*
968 : * If it's a shared mapping, mark it clean in
969 : * the child
970 : */
971 0 : if (vm_flags & VM_SHARED)
972 : pte = pte_mkclean(pte);
973 0 : pte = pte_mkold(pte);
974 :
975 0 : if (!userfaultfd_wp(dst_vma))
976 : pte = pte_clear_uffd_wp(pte);
977 :
978 0 : set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 : return 0;
980 : }
981 :
982 : static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 : struct vm_area_struct *vma, unsigned long addr)
984 : {
985 : struct folio *new_folio;
986 :
987 0 : new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 0 : if (!new_folio)
989 : return NULL;
990 :
991 0 : if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 : folio_put(new_folio);
993 : return NULL;
994 : }
995 0 : folio_throttle_swaprate(new_folio, GFP_KERNEL);
996 :
997 : return new_folio;
998 : }
999 :
1000 : static int
1001 0 : copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 : pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 : unsigned long end)
1004 : {
1005 0 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 0 : struct mm_struct *src_mm = src_vma->vm_mm;
1007 : pte_t *orig_src_pte, *orig_dst_pte;
1008 : pte_t *src_pte, *dst_pte;
1009 : pte_t ptent;
1010 : spinlock_t *src_ptl, *dst_ptl;
1011 0 : int progress, ret = 0;
1012 : int rss[NR_MM_COUNTERS];
1013 0 : swp_entry_t entry = (swp_entry_t){0};
1014 0 : struct folio *prealloc = NULL;
1015 :
1016 : again:
1017 0 : progress = 0;
1018 0 : init_rss_vec(rss);
1019 :
1020 : /*
1021 : * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 : * error handling here, assume that exclusive mmap_lock on dst and src
1023 : * protects anon from unexpected THP transitions; with shmem and file
1024 : * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 : * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 : * can remove such assumptions later, but this is good enough for now.
1027 : */
1028 0 : dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 0 : if (!dst_pte) {
1030 : ret = -ENOMEM;
1031 : goto out;
1032 : }
1033 0 : src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 0 : if (!src_pte) {
1035 0 : pte_unmap_unlock(dst_pte, dst_ptl);
1036 : /* ret == 0 */
1037 : goto out;
1038 : }
1039 0 : spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 0 : orig_src_pte = src_pte;
1041 0 : orig_dst_pte = dst_pte;
1042 : arch_enter_lazy_mmu_mode();
1043 :
1044 : do {
1045 : /*
1046 : * We are holding two locks at this point - either of them
1047 : * could generate latencies in another task on another CPU.
1048 : */
1049 0 : if (progress >= 32) {
1050 0 : progress = 0;
1051 0 : if (need_resched() ||
1052 : spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 : break;
1054 : }
1055 0 : ptent = ptep_get(src_pte);
1056 0 : if (pte_none(ptent)) {
1057 0 : progress++;
1058 0 : continue;
1059 : }
1060 0 : if (unlikely(!pte_present(ptent))) {
1061 0 : ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 : dst_pte, src_pte,
1063 : dst_vma, src_vma,
1064 : addr, rss);
1065 0 : if (ret == -EIO) {
1066 0 : entry = pte_to_swp_entry(ptep_get(src_pte));
1067 : break;
1068 0 : } else if (ret == -EBUSY) {
1069 : break;
1070 0 : } else if (!ret) {
1071 0 : progress += 8;
1072 0 : continue;
1073 : }
1074 :
1075 : /*
1076 : * Device exclusive entry restored, continue by copying
1077 : * the now present pte.
1078 : */
1079 0 : WARN_ON_ONCE(ret != -ENOENT);
1080 : }
1081 : /* copy_present_pte() will clear `*prealloc' if consumed */
1082 0 : ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 : addr, rss, &prealloc);
1084 : /*
1085 : * If we need a pre-allocated page for this pte, drop the
1086 : * locks, allocate, and try again.
1087 : */
1088 0 : if (unlikely(ret == -EAGAIN))
1089 : break;
1090 0 : if (unlikely(prealloc)) {
1091 : /*
1092 : * pre-alloc page cannot be reused by next time so as
1093 : * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 : * will allocate page according to address). This
1095 : * could only happen if one pinned pte changed.
1096 : */
1097 0 : folio_put(prealloc);
1098 0 : prealloc = NULL;
1099 : }
1100 0 : progress += 8;
1101 0 : } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 :
1103 : arch_leave_lazy_mmu_mode();
1104 0 : pte_unmap_unlock(orig_src_pte, src_ptl);
1105 0 : add_mm_rss_vec(dst_mm, rss);
1106 0 : pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 0 : cond_resched();
1108 :
1109 0 : if (ret == -EIO) {
1110 : VM_WARN_ON_ONCE(!entry.val);
1111 0 : if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 : ret = -ENOMEM;
1113 : goto out;
1114 : }
1115 0 : entry.val = 0;
1116 0 : } else if (ret == -EBUSY) {
1117 : goto out;
1118 0 : } else if (ret == -EAGAIN) {
1119 0 : prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 0 : if (!prealloc)
1121 : return -ENOMEM;
1122 : } else if (ret) {
1123 : VM_WARN_ON_ONCE(1);
1124 : }
1125 :
1126 : /* We've captured and resolved the error. Reset, try again. */
1127 0 : ret = 0;
1128 :
1129 0 : if (addr != end)
1130 : goto again;
1131 : out:
1132 0 : if (unlikely(prealloc))
1133 0 : folio_put(prealloc);
1134 : return ret;
1135 : }
1136 :
1137 : static inline int
1138 0 : copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 : pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 : unsigned long end)
1141 : {
1142 0 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 0 : struct mm_struct *src_mm = src_vma->vm_mm;
1144 : pmd_t *src_pmd, *dst_pmd;
1145 : unsigned long next;
1146 :
1147 0 : dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 0 : if (!dst_pmd)
1149 : return -ENOMEM;
1150 0 : src_pmd = pmd_offset(src_pud, addr);
1151 : do {
1152 0 : next = pmd_addr_end(addr, end);
1153 0 : if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 0 : || pmd_devmap(*src_pmd)) {
1155 : int err;
1156 : VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 : err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 : addr, dst_vma, src_vma);
1159 : if (err == -ENOMEM)
1160 : return -ENOMEM;
1161 : if (!err)
1162 : continue;
1163 : /* fall through */
1164 : }
1165 0 : if (pmd_none_or_clear_bad(src_pmd))
1166 0 : continue;
1167 0 : if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 : addr, next))
1169 : return -ENOMEM;
1170 0 : } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 : return 0;
1172 : }
1173 :
1174 : static inline int
1175 0 : copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 : p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 : unsigned long end)
1178 : {
1179 0 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 0 : struct mm_struct *src_mm = src_vma->vm_mm;
1181 : pud_t *src_pud, *dst_pud;
1182 : unsigned long next;
1183 :
1184 0 : dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 0 : if (!dst_pud)
1186 : return -ENOMEM;
1187 0 : src_pud = pud_offset(src_p4d, addr);
1188 : do {
1189 0 : next = pud_addr_end(addr, end);
1190 0 : if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 : int err;
1192 :
1193 : VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 : err = copy_huge_pud(dst_mm, src_mm,
1195 : dst_pud, src_pud, addr, src_vma);
1196 : if (err == -ENOMEM)
1197 : return -ENOMEM;
1198 : if (!err)
1199 : continue;
1200 : /* fall through */
1201 : }
1202 0 : if (pud_none_or_clear_bad(src_pud))
1203 0 : continue;
1204 0 : if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 : addr, next))
1206 : return -ENOMEM;
1207 0 : } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 0 : return 0;
1209 : }
1210 :
1211 : static inline int
1212 : copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 : pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 : unsigned long end)
1215 : {
1216 0 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 : p4d_t *src_p4d, *dst_p4d;
1218 : unsigned long next;
1219 :
1220 0 : dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 0 : if (!dst_p4d)
1222 : return -ENOMEM;
1223 0 : src_p4d = p4d_offset(src_pgd, addr);
1224 : do {
1225 0 : next = p4d_addr_end(addr, end);
1226 0 : if (p4d_none_or_clear_bad(src_p4d))
1227 : continue;
1228 0 : if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 : addr, next))
1230 : return -ENOMEM;
1231 0 : } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 : return 0;
1233 : }
1234 :
1235 : /*
1236 : * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 : * false when we can speed up fork() by allowing lazy page faults later until
1238 : * when the child accesses the memory range.
1239 : */
1240 : static bool
1241 : vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 : {
1243 : /*
1244 : * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 : * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 : * contains uffd-wp protection information, that's something we can't
1247 : * retrieve from page cache, and skip copying will lose those info.
1248 : */
1249 0 : if (userfaultfd_wp(dst_vma))
1250 : return true;
1251 :
1252 0 : if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 : return true;
1254 :
1255 0 : if (src_vma->anon_vma)
1256 : return true;
1257 :
1258 : /*
1259 : * Don't copy ptes where a page fault will fill them correctly. Fork
1260 : * becomes much lighter when there are big shared or private readonly
1261 : * mappings. The tradeoff is that copy_page_range is more efficient
1262 : * than faulting.
1263 : */
1264 : return false;
1265 : }
1266 :
1267 : int
1268 0 : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 : {
1270 : pgd_t *src_pgd, *dst_pgd;
1271 : unsigned long next;
1272 0 : unsigned long addr = src_vma->vm_start;
1273 0 : unsigned long end = src_vma->vm_end;
1274 0 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 0 : struct mm_struct *src_mm = src_vma->vm_mm;
1276 : struct mmu_notifier_range range;
1277 : bool is_cow;
1278 : int ret;
1279 :
1280 0 : if (!vma_needs_copy(dst_vma, src_vma))
1281 : return 0;
1282 :
1283 0 : if (is_vm_hugetlb_page(src_vma))
1284 : return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285 :
1286 : if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 : /*
1288 : * We do not free on error cases below as remove_vma
1289 : * gets called on error from higher level routine
1290 : */
1291 : ret = track_pfn_copy(src_vma);
1292 : if (ret)
1293 : return ret;
1294 : }
1295 :
1296 : /*
1297 : * We need to invalidate the secondary MMU mappings only when
1298 : * there could be a permission downgrade on the ptes of the
1299 : * parent mm. And a permission downgrade will only happen if
1300 : * is_cow_mapping() returns true.
1301 : */
1302 0 : is_cow = is_cow_mapping(src_vma->vm_flags);
1303 :
1304 0 : if (is_cow) {
1305 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 : 0, src_mm, addr, end);
1307 0 : mmu_notifier_invalidate_range_start(&range);
1308 : /*
1309 : * Disabling preemption is not needed for the write side, as
1310 : * the read side doesn't spin, but goes to the mmap_lock.
1311 : *
1312 : * Use the raw variant of the seqcount_t write API to avoid
1313 : * lockdep complaining about preemptibility.
1314 : */
1315 0 : mmap_assert_write_locked(src_mm);
1316 0 : raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 : }
1318 :
1319 0 : ret = 0;
1320 0 : dst_pgd = pgd_offset(dst_mm, addr);
1321 0 : src_pgd = pgd_offset(src_mm, addr);
1322 : do {
1323 0 : next = pgd_addr_end(addr, end);
1324 0 : if (pgd_none_or_clear_bad(src_pgd))
1325 : continue;
1326 0 : if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 : addr, next))) {
1328 : untrack_pfn_clear(dst_vma);
1329 : ret = -ENOMEM;
1330 : break;
1331 : }
1332 0 : } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333 :
1334 0 : if (is_cow) {
1335 0 : raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 0 : mmu_notifier_invalidate_range_end(&range);
1337 : }
1338 : return ret;
1339 : }
1340 :
1341 : /* Whether we should zap all COWed (private) pages too */
1342 : static inline bool should_zap_cows(struct zap_details *details)
1343 : {
1344 : /* By default, zap all pages */
1345 0 : if (!details)
1346 : return true;
1347 :
1348 : /* Or, we zap COWed pages only if the caller wants to */
1349 0 : return details->even_cows;
1350 : }
1351 :
1352 : /* Decides whether we should zap this page with the page pointer specified */
1353 0 : static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 : {
1355 : /* If we can make a decision without *page.. */
1356 0 : if (should_zap_cows(details))
1357 : return true;
1358 :
1359 : /* E.g. the caller passes NULL for the case of a zero page */
1360 0 : if (!page)
1361 : return true;
1362 :
1363 : /* Otherwise we should only zap non-anon pages */
1364 0 : return !PageAnon(page);
1365 : }
1366 :
1367 : static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 : {
1369 : if (!details)
1370 : return false;
1371 :
1372 : return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 : }
1374 :
1375 : /*
1376 : * This function makes sure that we'll replace the none pte with an uffd-wp
1377 : * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 : */
1379 : static inline void
1380 : zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 : unsigned long addr, pte_t *pte,
1382 : struct zap_details *details, pte_t pteval)
1383 : {
1384 : /* Zap on anonymous always means dropping everything */
1385 0 : if (vma_is_anonymous(vma))
1386 : return;
1387 :
1388 : if (zap_drop_file_uffd_wp(details))
1389 : return;
1390 :
1391 : pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 : }
1393 :
1394 0 : static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 : struct vm_area_struct *vma, pmd_t *pmd,
1396 : unsigned long addr, unsigned long end,
1397 : struct zap_details *details)
1398 : {
1399 0 : struct mm_struct *mm = tlb->mm;
1400 0 : int force_flush = 0;
1401 : int rss[NR_MM_COUNTERS];
1402 : spinlock_t *ptl;
1403 : pte_t *start_pte;
1404 : pte_t *pte;
1405 : swp_entry_t entry;
1406 :
1407 0 : tlb_change_page_size(tlb, PAGE_SIZE);
1408 0 : init_rss_vec(rss);
1409 0 : start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 0 : if (!pte)
1411 : return addr;
1412 :
1413 : flush_tlb_batched_pending(mm);
1414 : arch_enter_lazy_mmu_mode();
1415 : do {
1416 0 : pte_t ptent = ptep_get(pte);
1417 : struct page *page;
1418 :
1419 0 : if (pte_none(ptent))
1420 0 : continue;
1421 :
1422 0 : if (need_resched())
1423 : break;
1424 :
1425 0 : if (pte_present(ptent)) {
1426 : unsigned int delay_rmap;
1427 :
1428 0 : page = vm_normal_page(vma, addr, ptent);
1429 0 : if (unlikely(!should_zap_page(details, page)))
1430 0 : continue;
1431 0 : ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 0 : tlb->fullmm);
1433 0 : tlb_remove_tlb_entry(tlb, pte, addr);
1434 0 : zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 : ptent);
1436 0 : if (unlikely(!page))
1437 0 : continue;
1438 :
1439 0 : delay_rmap = 0;
1440 0 : if (!PageAnon(page)) {
1441 0 : if (pte_dirty(ptent)) {
1442 0 : set_page_dirty(page);
1443 : if (tlb_delay_rmap(tlb)) {
1444 : delay_rmap = 1;
1445 : force_flush = 1;
1446 : }
1447 : }
1448 0 : if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 0 : mark_page_accessed(page);
1450 : }
1451 0 : rss[mm_counter(page)]--;
1452 : if (!delay_rmap) {
1453 0 : page_remove_rmap(page, vma, false);
1454 0 : if (unlikely(page_mapcount(page) < 0))
1455 0 : print_bad_pte(vma, addr, ptent, page);
1456 : }
1457 0 : if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458 : force_flush = 1;
1459 : addr += PAGE_SIZE;
1460 : break;
1461 : }
1462 0 : continue;
1463 : }
1464 :
1465 0 : entry = pte_to_swp_entry(ptent);
1466 0 : if (is_device_private_entry(entry) ||
1467 0 : is_device_exclusive_entry(entry)) {
1468 : page = pfn_swap_entry_to_page(entry);
1469 : if (unlikely(!should_zap_page(details, page)))
1470 : continue;
1471 : /*
1472 : * Both device private/exclusive mappings should only
1473 : * work with anonymous page so far, so we don't need to
1474 : * consider uffd-wp bit when zap. For more information,
1475 : * see zap_install_uffd_wp_if_needed().
1476 : */
1477 : WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 : rss[mm_counter(page)]--;
1479 : if (is_device_private_entry(entry))
1480 : page_remove_rmap(page, vma, false);
1481 : put_page(page);
1482 0 : } else if (!non_swap_entry(entry)) {
1483 : /* Genuine swap entry, hence a private anon page */
1484 0 : if (!should_zap_cows(details))
1485 0 : continue;
1486 0 : rss[MM_SWAPENTS]--;
1487 0 : if (unlikely(!free_swap_and_cache(entry)))
1488 0 : print_bad_pte(vma, addr, ptent, NULL);
1489 0 : } else if (is_migration_entry(entry)) {
1490 0 : page = pfn_swap_entry_to_page(entry);
1491 0 : if (!should_zap_page(details, page))
1492 0 : continue;
1493 0 : rss[mm_counter(page)]--;
1494 0 : } else if (pte_marker_entry_uffd_wp(entry)) {
1495 : /*
1496 : * For anon: always drop the marker; for file: only
1497 : * drop the marker if explicitly requested.
1498 : */
1499 : if (!vma_is_anonymous(vma) &&
1500 : !zap_drop_file_uffd_wp(details))
1501 : continue;
1502 0 : } else if (is_hwpoison_entry(entry) ||
1503 0 : is_swapin_error_entry(entry)) {
1504 0 : if (!should_zap_cows(details))
1505 0 : continue;
1506 : } else {
1507 : /* We should have covered all the swap entry types */
1508 0 : WARN_ON_ONCE(1);
1509 : }
1510 0 : pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 0 : zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 0 : } while (pte++, addr += PAGE_SIZE, addr != end);
1513 :
1514 0 : add_mm_rss_vec(mm, rss);
1515 : arch_leave_lazy_mmu_mode();
1516 :
1517 : /* Do the actual TLB flush before dropping ptl */
1518 0 : if (force_flush) {
1519 0 : tlb_flush_mmu_tlbonly(tlb);
1520 0 : tlb_flush_rmaps(tlb, vma);
1521 : }
1522 0 : pte_unmap_unlock(start_pte, ptl);
1523 :
1524 : /*
1525 : * If we forced a TLB flush (either due to running out of
1526 : * batch buffers or because we needed to flush dirty TLB
1527 : * entries before releasing the ptl), free the batched
1528 : * memory too. Come back again if we didn't do everything.
1529 : */
1530 0 : if (force_flush)
1531 0 : tlb_flush_mmu(tlb);
1532 :
1533 : return addr;
1534 : }
1535 :
1536 0 : static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 : struct vm_area_struct *vma, pud_t *pud,
1538 : unsigned long addr, unsigned long end,
1539 : struct zap_details *details)
1540 : {
1541 : pmd_t *pmd;
1542 : unsigned long next;
1543 :
1544 0 : pmd = pmd_offset(pud, addr);
1545 : do {
1546 0 : next = pmd_addr_end(addr, end);
1547 0 : if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 : if (next - addr != HPAGE_PMD_SIZE)
1549 : __split_huge_pmd(vma, pmd, addr, false, NULL);
1550 : else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551 : addr = next;
1552 : continue;
1553 : }
1554 : /* fall through */
1555 : } else if (details && details->single_folio &&
1556 : folio_test_pmd_mappable(details->single_folio) &&
1557 : next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 : spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559 : /*
1560 : * Take and drop THP pmd lock so that we cannot return
1561 : * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 : * but not yet decremented compound_mapcount().
1563 : */
1564 : spin_unlock(ptl);
1565 : }
1566 0 : if (pmd_none(*pmd)) {
1567 0 : addr = next;
1568 0 : continue;
1569 : }
1570 0 : addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571 0 : if (addr != next)
1572 0 : pmd--;
1573 0 : } while (pmd++, cond_resched(), addr != end);
1574 :
1575 0 : return addr;
1576 : }
1577 :
1578 0 : static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 : struct vm_area_struct *vma, p4d_t *p4d,
1580 : unsigned long addr, unsigned long end,
1581 : struct zap_details *details)
1582 : {
1583 : pud_t *pud;
1584 : unsigned long next;
1585 :
1586 0 : pud = pud_offset(p4d, addr);
1587 : do {
1588 0 : next = pud_addr_end(addr, end);
1589 0 : if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 : if (next - addr != HPAGE_PUD_SIZE) {
1591 : mmap_assert_locked(tlb->mm);
1592 : split_huge_pud(vma, pud, addr);
1593 : } else if (zap_huge_pud(tlb, vma, pud, addr))
1594 : goto next;
1595 : /* fall through */
1596 : }
1597 0 : if (pud_none_or_clear_bad(pud))
1598 0 : continue;
1599 0 : next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600 : next:
1601 0 : cond_resched();
1602 0 : } while (pud++, addr = next, addr != end);
1603 :
1604 0 : return addr;
1605 : }
1606 :
1607 : static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 : struct vm_area_struct *vma, pgd_t *pgd,
1609 : unsigned long addr, unsigned long end,
1610 : struct zap_details *details)
1611 : {
1612 : p4d_t *p4d;
1613 : unsigned long next;
1614 :
1615 : p4d = p4d_offset(pgd, addr);
1616 : do {
1617 0 : next = p4d_addr_end(addr, end);
1618 0 : if (p4d_none_or_clear_bad(p4d))
1619 : continue;
1620 0 : next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 0 : } while (p4d++, addr = next, addr != end);
1622 :
1623 : return addr;
1624 : }
1625 :
1626 0 : void unmap_page_range(struct mmu_gather *tlb,
1627 : struct vm_area_struct *vma,
1628 : unsigned long addr, unsigned long end,
1629 : struct zap_details *details)
1630 : {
1631 : pgd_t *pgd;
1632 : unsigned long next;
1633 :
1634 0 : BUG_ON(addr >= end);
1635 0 : tlb_start_vma(tlb, vma);
1636 0 : pgd = pgd_offset(vma->vm_mm, addr);
1637 : do {
1638 0 : next = pgd_addr_end(addr, end);
1639 0 : if (pgd_none_or_clear_bad(pgd))
1640 : continue;
1641 0 : next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 0 : } while (pgd++, addr = next, addr != end);
1643 0 : tlb_end_vma(tlb, vma);
1644 0 : }
1645 :
1646 :
1647 0 : static void unmap_single_vma(struct mmu_gather *tlb,
1648 : struct vm_area_struct *vma, unsigned long start_addr,
1649 : unsigned long end_addr,
1650 : struct zap_details *details, bool mm_wr_locked)
1651 : {
1652 0 : unsigned long start = max(vma->vm_start, start_addr);
1653 : unsigned long end;
1654 :
1655 0 : if (start >= vma->vm_end)
1656 : return;
1657 0 : end = min(vma->vm_end, end_addr);
1658 0 : if (end <= vma->vm_start)
1659 : return;
1660 :
1661 : if (vma->vm_file)
1662 : uprobe_munmap(vma, start, end);
1663 :
1664 : if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 : untrack_pfn(vma, 0, 0, mm_wr_locked);
1666 :
1667 0 : if (start != end) {
1668 0 : if (unlikely(is_vm_hugetlb_page(vma))) {
1669 : /*
1670 : * It is undesirable to test vma->vm_file as it
1671 : * should be non-null for valid hugetlb area.
1672 : * However, vm_file will be NULL in the error
1673 : * cleanup path of mmap_region. When
1674 : * hugetlbfs ->mmap method fails,
1675 : * mmap_region() nullifies vma->vm_file
1676 : * before calling this function to clean up.
1677 : * Since no pte has actually been setup, it is
1678 : * safe to do nothing in this case.
1679 : */
1680 : if (vma->vm_file) {
1681 : zap_flags_t zap_flags = details ?
1682 : details->zap_flags : 0;
1683 : __unmap_hugepage_range_final(tlb, vma, start, end,
1684 : NULL, zap_flags);
1685 : }
1686 : } else
1687 0 : unmap_page_range(tlb, vma, start, end, details);
1688 : }
1689 : }
1690 :
1691 : /**
1692 : * unmap_vmas - unmap a range of memory covered by a list of vma's
1693 : * @tlb: address of the caller's struct mmu_gather
1694 : * @mt: the maple tree
1695 : * @vma: the starting vma
1696 : * @start_addr: virtual address at which to start unmapping
1697 : * @end_addr: virtual address at which to end unmapping
1698 : *
1699 : * Unmap all pages in the vma list.
1700 : *
1701 : * Only addresses between `start' and `end' will be unmapped.
1702 : *
1703 : * The VMA list must be sorted in ascending virtual address order.
1704 : *
1705 : * unmap_vmas() assumes that the caller will flush the whole unmapped address
1706 : * range after unmap_vmas() returns. So the only responsibility here is to
1707 : * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1708 : * drops the lock and schedules.
1709 : */
1710 0 : void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1711 : struct vm_area_struct *vma, unsigned long start_addr,
1712 : unsigned long end_addr, bool mm_wr_locked)
1713 : {
1714 : struct mmu_notifier_range range;
1715 0 : struct zap_details details = {
1716 : .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1717 : /* Careful - we need to zap private pages too! */
1718 : .even_cows = true,
1719 : };
1720 0 : MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1721 :
1722 : mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1723 : start_addr, end_addr);
1724 : mmu_notifier_invalidate_range_start(&range);
1725 : do {
1726 0 : unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1727 : mm_wr_locked);
1728 0 : } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1729 0 : mmu_notifier_invalidate_range_end(&range);
1730 0 : }
1731 :
1732 : /**
1733 : * zap_page_range_single - remove user pages in a given range
1734 : * @vma: vm_area_struct holding the applicable pages
1735 : * @address: starting address of pages to zap
1736 : * @size: number of bytes to zap
1737 : * @details: details of shared cache invalidation
1738 : *
1739 : * The range must fit into one VMA.
1740 : */
1741 0 : void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1742 : unsigned long size, struct zap_details *details)
1743 : {
1744 0 : const unsigned long end = address + size;
1745 : struct mmu_notifier_range range;
1746 : struct mmu_gather tlb;
1747 :
1748 0 : lru_add_drain();
1749 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1750 : address, end);
1751 0 : if (is_vm_hugetlb_page(vma))
1752 : adjust_range_if_pmd_sharing_possible(vma, &range.start,
1753 : &range.end);
1754 0 : tlb_gather_mmu(&tlb, vma->vm_mm);
1755 0 : update_hiwater_rss(vma->vm_mm);
1756 0 : mmu_notifier_invalidate_range_start(&range);
1757 : /*
1758 : * unmap 'address-end' not 'range.start-range.end' as range
1759 : * could have been expanded for hugetlb pmd sharing.
1760 : */
1761 0 : unmap_single_vma(&tlb, vma, address, end, details, false);
1762 0 : mmu_notifier_invalidate_range_end(&range);
1763 0 : tlb_finish_mmu(&tlb);
1764 0 : }
1765 :
1766 : /**
1767 : * zap_vma_ptes - remove ptes mapping the vma
1768 : * @vma: vm_area_struct holding ptes to be zapped
1769 : * @address: starting address of pages to zap
1770 : * @size: number of bytes to zap
1771 : *
1772 : * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1773 : *
1774 : * The entire address range must be fully contained within the vma.
1775 : *
1776 : */
1777 0 : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1778 : unsigned long size)
1779 : {
1780 0 : if (!range_in_vma(vma, address, address + size) ||
1781 0 : !(vma->vm_flags & VM_PFNMAP))
1782 : return;
1783 :
1784 0 : zap_page_range_single(vma, address, size, NULL);
1785 : }
1786 : EXPORT_SYMBOL_GPL(zap_vma_ptes);
1787 :
1788 0 : static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1789 : {
1790 : pgd_t *pgd;
1791 : p4d_t *p4d;
1792 : pud_t *pud;
1793 : pmd_t *pmd;
1794 :
1795 0 : pgd = pgd_offset(mm, addr);
1796 0 : p4d = p4d_alloc(mm, pgd, addr);
1797 0 : if (!p4d)
1798 : return NULL;
1799 0 : pud = pud_alloc(mm, p4d, addr);
1800 : if (!pud)
1801 : return NULL;
1802 0 : pmd = pmd_alloc(mm, pud, addr);
1803 0 : if (!pmd)
1804 : return NULL;
1805 :
1806 : VM_BUG_ON(pmd_trans_huge(*pmd));
1807 0 : return pmd;
1808 : }
1809 :
1810 0 : pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1811 : spinlock_t **ptl)
1812 : {
1813 0 : pmd_t *pmd = walk_to_pmd(mm, addr);
1814 :
1815 0 : if (!pmd)
1816 : return NULL;
1817 0 : return pte_alloc_map_lock(mm, pmd, addr, ptl);
1818 : }
1819 :
1820 0 : static int validate_page_before_insert(struct page *page)
1821 : {
1822 0 : if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1823 : return -EINVAL;
1824 : flush_dcache_page(page);
1825 : return 0;
1826 : }
1827 :
1828 0 : static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1829 : unsigned long addr, struct page *page, pgprot_t prot)
1830 : {
1831 0 : if (!pte_none(ptep_get(pte)))
1832 : return -EBUSY;
1833 : /* Ok, finally just insert the thing.. */
1834 0 : get_page(page);
1835 0 : inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1836 0 : page_add_file_rmap(page, vma, false);
1837 0 : set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1838 : return 0;
1839 : }
1840 :
1841 : /*
1842 : * This is the old fallback for page remapping.
1843 : *
1844 : * For historical reasons, it only allows reserved pages. Only
1845 : * old drivers should use this, and they needed to mark their
1846 : * pages reserved for the old functions anyway.
1847 : */
1848 0 : static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1849 : struct page *page, pgprot_t prot)
1850 : {
1851 : int retval;
1852 : pte_t *pte;
1853 : spinlock_t *ptl;
1854 :
1855 0 : retval = validate_page_before_insert(page);
1856 0 : if (retval)
1857 : goto out;
1858 0 : retval = -ENOMEM;
1859 0 : pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1860 0 : if (!pte)
1861 : goto out;
1862 0 : retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1863 0 : pte_unmap_unlock(pte, ptl);
1864 : out:
1865 0 : return retval;
1866 : }
1867 :
1868 : #ifdef pte_index
1869 0 : static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1870 : unsigned long addr, struct page *page, pgprot_t prot)
1871 : {
1872 : int err;
1873 :
1874 0 : if (!page_count(page))
1875 : return -EINVAL;
1876 0 : err = validate_page_before_insert(page);
1877 0 : if (err)
1878 : return err;
1879 0 : return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 : }
1881 :
1882 : /* insert_pages() amortizes the cost of spinlock operations
1883 : * when inserting pages in a loop. Arch *must* define pte_index.
1884 : */
1885 0 : static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886 : struct page **pages, unsigned long *num, pgprot_t prot)
1887 : {
1888 0 : pmd_t *pmd = NULL;
1889 : pte_t *start_pte, *pte;
1890 : spinlock_t *pte_lock;
1891 0 : struct mm_struct *const mm = vma->vm_mm;
1892 0 : unsigned long curr_page_idx = 0;
1893 0 : unsigned long remaining_pages_total = *num;
1894 : unsigned long pages_to_write_in_pmd;
1895 : int ret;
1896 : more:
1897 0 : ret = -EFAULT;
1898 0 : pmd = walk_to_pmd(mm, addr);
1899 0 : if (!pmd)
1900 : goto out;
1901 :
1902 0 : pages_to_write_in_pmd = min_t(unsigned long,
1903 : remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1904 :
1905 : /* Allocate the PTE if necessary; takes PMD lock once only. */
1906 0 : ret = -ENOMEM;
1907 0 : if (pte_alloc(mm, pmd))
1908 : goto out;
1909 :
1910 0 : while (pages_to_write_in_pmd) {
1911 0 : int pte_idx = 0;
1912 0 : const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1913 :
1914 0 : start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1915 0 : if (!start_pte) {
1916 : ret = -EFAULT;
1917 : goto out;
1918 : }
1919 0 : for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1920 0 : int err = insert_page_in_batch_locked(vma, pte,
1921 0 : addr, pages[curr_page_idx], prot);
1922 0 : if (unlikely(err)) {
1923 0 : pte_unmap_unlock(start_pte, pte_lock);
1924 0 : ret = err;
1925 0 : remaining_pages_total -= pte_idx;
1926 0 : goto out;
1927 : }
1928 0 : addr += PAGE_SIZE;
1929 0 : ++curr_page_idx;
1930 : }
1931 0 : pte_unmap_unlock(start_pte, pte_lock);
1932 0 : pages_to_write_in_pmd -= batch_size;
1933 0 : remaining_pages_total -= batch_size;
1934 : }
1935 0 : if (remaining_pages_total)
1936 : goto more;
1937 : ret = 0;
1938 : out:
1939 0 : *num = remaining_pages_total;
1940 0 : return ret;
1941 : }
1942 : #endif /* ifdef pte_index */
1943 :
1944 : /**
1945 : * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1946 : * @vma: user vma to map to
1947 : * @addr: target start user address of these pages
1948 : * @pages: source kernel pages
1949 : * @num: in: number of pages to map. out: number of pages that were *not*
1950 : * mapped. (0 means all pages were successfully mapped).
1951 : *
1952 : * Preferred over vm_insert_page() when inserting multiple pages.
1953 : *
1954 : * In case of error, we may have mapped a subset of the provided
1955 : * pages. It is the caller's responsibility to account for this case.
1956 : *
1957 : * The same restrictions apply as in vm_insert_page().
1958 : */
1959 0 : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1960 : struct page **pages, unsigned long *num)
1961 : {
1962 : #ifdef pte_index
1963 0 : const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1964 :
1965 0 : if (addr < vma->vm_start || end_addr >= vma->vm_end)
1966 : return -EFAULT;
1967 0 : if (!(vma->vm_flags & VM_MIXEDMAP)) {
1968 0 : BUG_ON(mmap_read_trylock(vma->vm_mm));
1969 0 : BUG_ON(vma->vm_flags & VM_PFNMAP);
1970 0 : vm_flags_set(vma, VM_MIXEDMAP);
1971 : }
1972 : /* Defer page refcount checking till we're about to map that page. */
1973 0 : return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1974 : #else
1975 : unsigned long idx = 0, pgcount = *num;
1976 : int err = -EINVAL;
1977 :
1978 : for (; idx < pgcount; ++idx) {
1979 : err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1980 : if (err)
1981 : break;
1982 : }
1983 : *num = pgcount - idx;
1984 : return err;
1985 : #endif /* ifdef pte_index */
1986 : }
1987 : EXPORT_SYMBOL(vm_insert_pages);
1988 :
1989 : /**
1990 : * vm_insert_page - insert single page into user vma
1991 : * @vma: user vma to map to
1992 : * @addr: target user address of this page
1993 : * @page: source kernel page
1994 : *
1995 : * This allows drivers to insert individual pages they've allocated
1996 : * into a user vma.
1997 : *
1998 : * The page has to be a nice clean _individual_ kernel allocation.
1999 : * If you allocate a compound page, you need to have marked it as
2000 : * such (__GFP_COMP), or manually just split the page up yourself
2001 : * (see split_page()).
2002 : *
2003 : * NOTE! Traditionally this was done with "remap_pfn_range()" which
2004 : * took an arbitrary page protection parameter. This doesn't allow
2005 : * that. Your vma protection will have to be set up correctly, which
2006 : * means that if you want a shared writable mapping, you'd better
2007 : * ask for a shared writable mapping!
2008 : *
2009 : * The page does not need to be reserved.
2010 : *
2011 : * Usually this function is called from f_op->mmap() handler
2012 : * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2013 : * Caller must set VM_MIXEDMAP on vma if it wants to call this
2014 : * function from other places, for example from page-fault handler.
2015 : *
2016 : * Return: %0 on success, negative error code otherwise.
2017 : */
2018 0 : int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2019 : struct page *page)
2020 : {
2021 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
2022 : return -EFAULT;
2023 0 : if (!page_count(page))
2024 : return -EINVAL;
2025 0 : if (!(vma->vm_flags & VM_MIXEDMAP)) {
2026 0 : BUG_ON(mmap_read_trylock(vma->vm_mm));
2027 0 : BUG_ON(vma->vm_flags & VM_PFNMAP);
2028 0 : vm_flags_set(vma, VM_MIXEDMAP);
2029 : }
2030 0 : return insert_page(vma, addr, page, vma->vm_page_prot);
2031 : }
2032 : EXPORT_SYMBOL(vm_insert_page);
2033 :
2034 : /*
2035 : * __vm_map_pages - maps range of kernel pages into user vma
2036 : * @vma: user vma to map to
2037 : * @pages: pointer to array of source kernel pages
2038 : * @num: number of pages in page array
2039 : * @offset: user's requested vm_pgoff
2040 : *
2041 : * This allows drivers to map range of kernel pages into a user vma.
2042 : *
2043 : * Return: 0 on success and error code otherwise.
2044 : */
2045 0 : static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2046 : unsigned long num, unsigned long offset)
2047 : {
2048 0 : unsigned long count = vma_pages(vma);
2049 0 : unsigned long uaddr = vma->vm_start;
2050 : int ret, i;
2051 :
2052 : /* Fail if the user requested offset is beyond the end of the object */
2053 0 : if (offset >= num)
2054 : return -ENXIO;
2055 :
2056 : /* Fail if the user requested size exceeds available object size */
2057 0 : if (count > num - offset)
2058 : return -ENXIO;
2059 :
2060 0 : for (i = 0; i < count; i++) {
2061 0 : ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2062 0 : if (ret < 0)
2063 : return ret;
2064 0 : uaddr += PAGE_SIZE;
2065 : }
2066 :
2067 : return 0;
2068 : }
2069 :
2070 : /**
2071 : * vm_map_pages - maps range of kernel pages starts with non zero offset
2072 : * @vma: user vma to map to
2073 : * @pages: pointer to array of source kernel pages
2074 : * @num: number of pages in page array
2075 : *
2076 : * Maps an object consisting of @num pages, catering for the user's
2077 : * requested vm_pgoff
2078 : *
2079 : * If we fail to insert any page into the vma, the function will return
2080 : * immediately leaving any previously inserted pages present. Callers
2081 : * from the mmap handler may immediately return the error as their caller
2082 : * will destroy the vma, removing any successfully inserted pages. Other
2083 : * callers should make their own arrangements for calling unmap_region().
2084 : *
2085 : * Context: Process context. Called by mmap handlers.
2086 : * Return: 0 on success and error code otherwise.
2087 : */
2088 0 : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2089 : unsigned long num)
2090 : {
2091 0 : return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2092 : }
2093 : EXPORT_SYMBOL(vm_map_pages);
2094 :
2095 : /**
2096 : * vm_map_pages_zero - map range of kernel pages starts with zero offset
2097 : * @vma: user vma to map to
2098 : * @pages: pointer to array of source kernel pages
2099 : * @num: number of pages in page array
2100 : *
2101 : * Similar to vm_map_pages(), except that it explicitly sets the offset
2102 : * to 0. This function is intended for the drivers that did not consider
2103 : * vm_pgoff.
2104 : *
2105 : * Context: Process context. Called by mmap handlers.
2106 : * Return: 0 on success and error code otherwise.
2107 : */
2108 0 : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2109 : unsigned long num)
2110 : {
2111 0 : return __vm_map_pages(vma, pages, num, 0);
2112 : }
2113 : EXPORT_SYMBOL(vm_map_pages_zero);
2114 :
2115 0 : static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2116 : pfn_t pfn, pgprot_t prot, bool mkwrite)
2117 : {
2118 0 : struct mm_struct *mm = vma->vm_mm;
2119 : pte_t *pte, entry;
2120 : spinlock_t *ptl;
2121 :
2122 0 : pte = get_locked_pte(mm, addr, &ptl);
2123 0 : if (!pte)
2124 : return VM_FAULT_OOM;
2125 0 : entry = ptep_get(pte);
2126 0 : if (!pte_none(entry)) {
2127 0 : if (mkwrite) {
2128 : /*
2129 : * For read faults on private mappings the PFN passed
2130 : * in may not match the PFN we have mapped if the
2131 : * mapped PFN is a writeable COW page. In the mkwrite
2132 : * case we are creating a writable PTE for a shared
2133 : * mapping and we expect the PFNs to match. If they
2134 : * don't match, we are likely racing with block
2135 : * allocation and mapping invalidation so just skip the
2136 : * update.
2137 : */
2138 0 : if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2139 0 : WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2140 : goto out_unlock;
2141 : }
2142 0 : entry = pte_mkyoung(entry);
2143 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144 0 : if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2145 : update_mmu_cache(vma, addr, pte);
2146 : }
2147 : goto out_unlock;
2148 : }
2149 :
2150 : /* Ok, finally just insert the thing.. */
2151 0 : if (pfn_t_devmap(pfn))
2152 : entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2153 : else
2154 0 : entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2155 :
2156 0 : if (mkwrite) {
2157 0 : entry = pte_mkyoung(entry);
2158 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159 : }
2160 :
2161 0 : set_pte_at(mm, addr, pte, entry);
2162 : update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2163 :
2164 : out_unlock:
2165 0 : pte_unmap_unlock(pte, ptl);
2166 0 : return VM_FAULT_NOPAGE;
2167 : }
2168 :
2169 : /**
2170 : * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2171 : * @vma: user vma to map to
2172 : * @addr: target user address of this page
2173 : * @pfn: source kernel pfn
2174 : * @pgprot: pgprot flags for the inserted page
2175 : *
2176 : * This is exactly like vmf_insert_pfn(), except that it allows drivers
2177 : * to override pgprot on a per-page basis.
2178 : *
2179 : * This only makes sense for IO mappings, and it makes no sense for
2180 : * COW mappings. In general, using multiple vmas is preferable;
2181 : * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2182 : * impractical.
2183 : *
2184 : * pgprot typically only differs from @vma->vm_page_prot when drivers set
2185 : * caching- and encryption bits different than those of @vma->vm_page_prot,
2186 : * because the caching- or encryption mode may not be known at mmap() time.
2187 : *
2188 : * This is ok as long as @vma->vm_page_prot is not used by the core vm
2189 : * to set caching and encryption bits for those vmas (except for COW pages).
2190 : * This is ensured by core vm only modifying these page table entries using
2191 : * functions that don't touch caching- or encryption bits, using pte_modify()
2192 : * if needed. (See for example mprotect()).
2193 : *
2194 : * Also when new page-table entries are created, this is only done using the
2195 : * fault() callback, and never using the value of vma->vm_page_prot,
2196 : * except for page-table entries that point to anonymous pages as the result
2197 : * of COW.
2198 : *
2199 : * Context: Process context. May allocate using %GFP_KERNEL.
2200 : * Return: vm_fault_t value.
2201 : */
2202 0 : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2203 : unsigned long pfn, pgprot_t pgprot)
2204 : {
2205 : /*
2206 : * Technically, architectures with pte_special can avoid all these
2207 : * restrictions (same for remap_pfn_range). However we would like
2208 : * consistency in testing and feature parity among all, so we should
2209 : * try to keep these invariants in place for everybody.
2210 : */
2211 0 : BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 0 : BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 : (VM_PFNMAP|VM_MIXEDMAP));
2214 0 : BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 0 : BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216 :
2217 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
2218 : return VM_FAULT_SIGBUS;
2219 :
2220 0 : if (!pfn_modify_allowed(pfn, pgprot))
2221 : return VM_FAULT_SIGBUS;
2222 :
2223 0 : track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2224 :
2225 0 : return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2226 : false);
2227 : }
2228 : EXPORT_SYMBOL(vmf_insert_pfn_prot);
2229 :
2230 : /**
2231 : * vmf_insert_pfn - insert single pfn into user vma
2232 : * @vma: user vma to map to
2233 : * @addr: target user address of this page
2234 : * @pfn: source kernel pfn
2235 : *
2236 : * Similar to vm_insert_page, this allows drivers to insert individual pages
2237 : * they've allocated into a user vma. Same comments apply.
2238 : *
2239 : * This function should only be called from a vm_ops->fault handler, and
2240 : * in that case the handler should return the result of this function.
2241 : *
2242 : * vma cannot be a COW mapping.
2243 : *
2244 : * As this is called only for pages that do not currently exist, we
2245 : * do not need to flush old virtual caches or the TLB.
2246 : *
2247 : * Context: Process context. May allocate using %GFP_KERNEL.
2248 : * Return: vm_fault_t value.
2249 : */
2250 0 : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2251 : unsigned long pfn)
2252 : {
2253 0 : return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2254 : }
2255 : EXPORT_SYMBOL(vmf_insert_pfn);
2256 :
2257 : static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2258 : {
2259 : /* these checks mirror the abort conditions in vm_normal_page */
2260 0 : if (vma->vm_flags & VM_MIXEDMAP)
2261 : return true;
2262 0 : if (pfn_t_devmap(pfn))
2263 : return true;
2264 0 : if (pfn_t_special(pfn))
2265 : return true;
2266 0 : if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2267 : return true;
2268 : return false;
2269 : }
2270 :
2271 0 : static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2272 : unsigned long addr, pfn_t pfn, bool mkwrite)
2273 : {
2274 0 : pgprot_t pgprot = vma->vm_page_prot;
2275 : int err;
2276 :
2277 0 : BUG_ON(!vm_mixed_ok(vma, pfn));
2278 :
2279 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
2280 : return VM_FAULT_SIGBUS;
2281 :
2282 0 : track_pfn_insert(vma, &pgprot, pfn);
2283 :
2284 0 : if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2285 : return VM_FAULT_SIGBUS;
2286 :
2287 : /*
2288 : * If we don't have pte special, then we have to use the pfn_valid()
2289 : * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2290 : * refcount the page if pfn_valid is true (hence insert_page rather
2291 : * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2292 : * without pte special, it would there be refcounted as a normal page.
2293 : */
2294 : if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2295 0 : !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2296 : struct page *page;
2297 :
2298 : /*
2299 : * At this point we are committed to insert_page()
2300 : * regardless of whether the caller specified flags that
2301 : * result in pfn_t_has_page() == false.
2302 : */
2303 0 : page = pfn_to_page(pfn_t_to_pfn(pfn));
2304 0 : err = insert_page(vma, addr, page, pgprot);
2305 : } else {
2306 0 : return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2307 : }
2308 :
2309 0 : if (err == -ENOMEM)
2310 : return VM_FAULT_OOM;
2311 0 : if (err < 0 && err != -EBUSY)
2312 : return VM_FAULT_SIGBUS;
2313 :
2314 0 : return VM_FAULT_NOPAGE;
2315 : }
2316 :
2317 0 : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318 : pfn_t pfn)
2319 : {
2320 0 : return __vm_insert_mixed(vma, addr, pfn, false);
2321 : }
2322 : EXPORT_SYMBOL(vmf_insert_mixed);
2323 :
2324 : /*
2325 : * If the insertion of PTE failed because someone else already added a
2326 : * different entry in the mean time, we treat that as success as we assume
2327 : * the same entry was actually inserted.
2328 : */
2329 0 : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330 : unsigned long addr, pfn_t pfn)
2331 : {
2332 0 : return __vm_insert_mixed(vma, addr, pfn, true);
2333 : }
2334 : EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335 :
2336 : /*
2337 : * maps a range of physical memory into the requested pages. the old
2338 : * mappings are removed. any references to nonexistent pages results
2339 : * in null mappings (currently treated as "copy-on-access")
2340 : */
2341 0 : static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 : unsigned long addr, unsigned long end,
2343 : unsigned long pfn, pgprot_t prot)
2344 : {
2345 : pte_t *pte, *mapped_pte;
2346 : spinlock_t *ptl;
2347 0 : int err = 0;
2348 :
2349 0 : mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350 0 : if (!pte)
2351 : return -ENOMEM;
2352 : arch_enter_lazy_mmu_mode();
2353 : do {
2354 0 : BUG_ON(!pte_none(ptep_get(pte)));
2355 0 : if (!pfn_modify_allowed(pfn, prot)) {
2356 : err = -EACCES;
2357 : break;
2358 : }
2359 0 : set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360 0 : pfn++;
2361 0 : } while (pte++, addr += PAGE_SIZE, addr != end);
2362 : arch_leave_lazy_mmu_mode();
2363 0 : pte_unmap_unlock(mapped_pte, ptl);
2364 0 : return err;
2365 : }
2366 :
2367 0 : static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368 : unsigned long addr, unsigned long end,
2369 : unsigned long pfn, pgprot_t prot)
2370 : {
2371 : pmd_t *pmd;
2372 : unsigned long next;
2373 : int err;
2374 :
2375 0 : pfn -= addr >> PAGE_SHIFT;
2376 0 : pmd = pmd_alloc(mm, pud, addr);
2377 0 : if (!pmd)
2378 : return -ENOMEM;
2379 : VM_BUG_ON(pmd_trans_huge(*pmd));
2380 : do {
2381 0 : next = pmd_addr_end(addr, end);
2382 0 : err = remap_pte_range(mm, pmd, addr, next,
2383 0 : pfn + (addr >> PAGE_SHIFT), prot);
2384 0 : if (err)
2385 : return err;
2386 0 : } while (pmd++, addr = next, addr != end);
2387 : return 0;
2388 : }
2389 :
2390 : static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391 : unsigned long addr, unsigned long end,
2392 : unsigned long pfn, pgprot_t prot)
2393 : {
2394 : pud_t *pud;
2395 : unsigned long next;
2396 : int err;
2397 :
2398 0 : pfn -= addr >> PAGE_SHIFT;
2399 0 : pud = pud_alloc(mm, p4d, addr);
2400 : if (!pud)
2401 : return -ENOMEM;
2402 : do {
2403 0 : next = pud_addr_end(addr, end);
2404 0 : err = remap_pmd_range(mm, pud, addr, next,
2405 : pfn + (addr >> PAGE_SHIFT), prot);
2406 0 : if (err)
2407 : return err;
2408 0 : } while (pud++, addr = next, addr != end);
2409 : return 0;
2410 : }
2411 :
2412 0 : static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413 : unsigned long addr, unsigned long end,
2414 : unsigned long pfn, pgprot_t prot)
2415 : {
2416 : p4d_t *p4d;
2417 : unsigned long next;
2418 : int err;
2419 :
2420 0 : pfn -= addr >> PAGE_SHIFT;
2421 0 : p4d = p4d_alloc(mm, pgd, addr);
2422 0 : if (!p4d)
2423 : return -ENOMEM;
2424 : do {
2425 0 : next = p4d_addr_end(addr, end);
2426 0 : err = remap_pud_range(mm, p4d, addr, next,
2427 : pfn + (addr >> PAGE_SHIFT), prot);
2428 0 : if (err)
2429 : return err;
2430 0 : } while (p4d++, addr = next, addr != end);
2431 0 : return 0;
2432 : }
2433 :
2434 : /*
2435 : * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2436 : * must have pre-validated the caching bits of the pgprot_t.
2437 : */
2438 0 : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439 : unsigned long pfn, unsigned long size, pgprot_t prot)
2440 : {
2441 : pgd_t *pgd;
2442 : unsigned long next;
2443 0 : unsigned long end = addr + PAGE_ALIGN(size);
2444 0 : struct mm_struct *mm = vma->vm_mm;
2445 : int err;
2446 :
2447 0 : if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448 : return -EINVAL;
2449 :
2450 : /*
2451 : * Physically remapped pages are special. Tell the
2452 : * rest of the world about it:
2453 : * VM_IO tells people not to look at these pages
2454 : * (accesses can have side effects).
2455 : * VM_PFNMAP tells the core MM that the base pages are just
2456 : * raw PFN mappings, and do not have a "struct page" associated
2457 : * with them.
2458 : * VM_DONTEXPAND
2459 : * Disable vma merging and expanding with mremap().
2460 : * VM_DONTDUMP
2461 : * Omit vma from core dump, even when VM_IO turned off.
2462 : *
2463 : * There's a horrible special case to handle copy-on-write
2464 : * behaviour that some programs depend on. We mark the "original"
2465 : * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466 : * See vm_normal_page() for details.
2467 : */
2468 0 : if (is_cow_mapping(vma->vm_flags)) {
2469 0 : if (addr != vma->vm_start || end != vma->vm_end)
2470 : return -EINVAL;
2471 0 : vma->vm_pgoff = pfn;
2472 : }
2473 :
2474 0 : vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2475 :
2476 0 : BUG_ON(addr >= end);
2477 0 : pfn -= addr >> PAGE_SHIFT;
2478 0 : pgd = pgd_offset(mm, addr);
2479 0 : flush_cache_range(vma, addr, end);
2480 : do {
2481 0 : next = pgd_addr_end(addr, end);
2482 0 : err = remap_p4d_range(mm, pgd, addr, next,
2483 0 : pfn + (addr >> PAGE_SHIFT), prot);
2484 0 : if (err)
2485 : return err;
2486 0 : } while (pgd++, addr = next, addr != end);
2487 :
2488 : return 0;
2489 : }
2490 :
2491 : /**
2492 : * remap_pfn_range - remap kernel memory to userspace
2493 : * @vma: user vma to map to
2494 : * @addr: target page aligned user address to start at
2495 : * @pfn: page frame number of kernel physical memory address
2496 : * @size: size of mapping area
2497 : * @prot: page protection flags for this mapping
2498 : *
2499 : * Note: this is only safe if the mm semaphore is held when called.
2500 : *
2501 : * Return: %0 on success, negative error code otherwise.
2502 : */
2503 0 : int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504 : unsigned long pfn, unsigned long size, pgprot_t prot)
2505 : {
2506 : int err;
2507 :
2508 0 : err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509 : if (err)
2510 : return -EINVAL;
2511 :
2512 0 : err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513 : if (err)
2514 : untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2515 : return err;
2516 : }
2517 : EXPORT_SYMBOL(remap_pfn_range);
2518 :
2519 : /**
2520 : * vm_iomap_memory - remap memory to userspace
2521 : * @vma: user vma to map to
2522 : * @start: start of the physical memory to be mapped
2523 : * @len: size of area
2524 : *
2525 : * This is a simplified io_remap_pfn_range() for common driver use. The
2526 : * driver just needs to give us the physical memory range to be mapped,
2527 : * we'll figure out the rest from the vma information.
2528 : *
2529 : * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530 : * whatever write-combining details or similar.
2531 : *
2532 : * Return: %0 on success, negative error code otherwise.
2533 : */
2534 0 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535 : {
2536 : unsigned long vm_len, pfn, pages;
2537 :
2538 : /* Check that the physical memory area passed in looks valid */
2539 0 : if (start + len < start)
2540 : return -EINVAL;
2541 : /*
2542 : * You *really* shouldn't map things that aren't page-aligned,
2543 : * but we've historically allowed it because IO memory might
2544 : * just have smaller alignment.
2545 : */
2546 0 : len += start & ~PAGE_MASK;
2547 0 : pfn = start >> PAGE_SHIFT;
2548 0 : pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549 0 : if (pfn + pages < pfn)
2550 : return -EINVAL;
2551 :
2552 : /* We start the mapping 'vm_pgoff' pages into the area */
2553 0 : if (vma->vm_pgoff > pages)
2554 : return -EINVAL;
2555 0 : pfn += vma->vm_pgoff;
2556 0 : pages -= vma->vm_pgoff;
2557 :
2558 : /* Can we fit all of the mapping? */
2559 0 : vm_len = vma->vm_end - vma->vm_start;
2560 0 : if (vm_len >> PAGE_SHIFT > pages)
2561 : return -EINVAL;
2562 :
2563 : /* Ok, let it rip */
2564 0 : return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565 : }
2566 : EXPORT_SYMBOL(vm_iomap_memory);
2567 :
2568 0 : static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569 : unsigned long addr, unsigned long end,
2570 : pte_fn_t fn, void *data, bool create,
2571 : pgtbl_mod_mask *mask)
2572 : {
2573 : pte_t *pte, *mapped_pte;
2574 0 : int err = 0;
2575 : spinlock_t *ptl;
2576 :
2577 0 : if (create) {
2578 0 : mapped_pte = pte = (mm == &init_mm) ?
2579 0 : pte_alloc_kernel_track(pmd, addr, mask) :
2580 0 : pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581 0 : if (!pte)
2582 : return -ENOMEM;
2583 : } else {
2584 0 : mapped_pte = pte = (mm == &init_mm) ?
2585 0 : pte_offset_kernel(pmd, addr) :
2586 : pte_offset_map_lock(mm, pmd, addr, &ptl);
2587 0 : if (!pte)
2588 : return -EINVAL;
2589 : }
2590 :
2591 : arch_enter_lazy_mmu_mode();
2592 :
2593 0 : if (fn) {
2594 : do {
2595 0 : if (create || !pte_none(ptep_get(pte))) {
2596 0 : err = fn(pte++, addr, data);
2597 0 : if (err)
2598 : break;
2599 : }
2600 0 : } while (addr += PAGE_SIZE, addr != end);
2601 : }
2602 0 : *mask |= PGTBL_PTE_MODIFIED;
2603 :
2604 : arch_leave_lazy_mmu_mode();
2605 :
2606 0 : if (mm != &init_mm)
2607 0 : pte_unmap_unlock(mapped_pte, ptl);
2608 : return err;
2609 : }
2610 :
2611 0 : static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612 : unsigned long addr, unsigned long end,
2613 : pte_fn_t fn, void *data, bool create,
2614 : pgtbl_mod_mask *mask)
2615 : {
2616 : pmd_t *pmd;
2617 : unsigned long next;
2618 0 : int err = 0;
2619 :
2620 0 : BUG_ON(pud_huge(*pud));
2621 :
2622 0 : if (create) {
2623 0 : pmd = pmd_alloc_track(mm, pud, addr, mask);
2624 0 : if (!pmd)
2625 : return -ENOMEM;
2626 : } else {
2627 0 : pmd = pmd_offset(pud, addr);
2628 : }
2629 : do {
2630 0 : next = pmd_addr_end(addr, end);
2631 0 : if (pmd_none(*pmd) && !create)
2632 0 : continue;
2633 0 : if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634 : return -EINVAL;
2635 0 : if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636 0 : if (!create)
2637 0 : continue;
2638 0 : pmd_clear_bad(pmd);
2639 : }
2640 0 : err = apply_to_pte_range(mm, pmd, addr, next,
2641 : fn, data, create, mask);
2642 0 : if (err)
2643 : break;
2644 0 : } while (pmd++, addr = next, addr != end);
2645 :
2646 : return err;
2647 : }
2648 :
2649 0 : static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650 : unsigned long addr, unsigned long end,
2651 : pte_fn_t fn, void *data, bool create,
2652 : pgtbl_mod_mask *mask)
2653 : {
2654 : pud_t *pud;
2655 : unsigned long next;
2656 0 : int err = 0;
2657 :
2658 0 : if (create) {
2659 0 : pud = pud_alloc_track(mm, p4d, addr, mask);
2660 0 : if (!pud)
2661 : return -ENOMEM;
2662 : } else {
2663 : pud = pud_offset(p4d, addr);
2664 : }
2665 : do {
2666 0 : next = pud_addr_end(addr, end);
2667 0 : if (pud_none(*pud) && !create)
2668 0 : continue;
2669 0 : if (WARN_ON_ONCE(pud_leaf(*pud)))
2670 : return -EINVAL;
2671 0 : if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672 0 : if (!create)
2673 0 : continue;
2674 : pud_clear_bad(pud);
2675 : }
2676 0 : err = apply_to_pmd_range(mm, pud, addr, next,
2677 : fn, data, create, mask);
2678 0 : if (err)
2679 : break;
2680 0 : } while (pud++, addr = next, addr != end);
2681 :
2682 : return err;
2683 : }
2684 :
2685 : static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686 : unsigned long addr, unsigned long end,
2687 : pte_fn_t fn, void *data, bool create,
2688 : pgtbl_mod_mask *mask)
2689 : {
2690 : p4d_t *p4d;
2691 : unsigned long next;
2692 0 : int err = 0;
2693 :
2694 0 : if (create) {
2695 0 : p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696 0 : if (!p4d)
2697 : return -ENOMEM;
2698 : } else {
2699 : p4d = p4d_offset(pgd, addr);
2700 : }
2701 : do {
2702 0 : next = p4d_addr_end(addr, end);
2703 0 : if (p4d_none(*p4d) && !create)
2704 : continue;
2705 0 : if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706 : return -EINVAL;
2707 0 : if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708 : if (!create)
2709 : continue;
2710 : p4d_clear_bad(p4d);
2711 : }
2712 0 : err = apply_to_pud_range(mm, p4d, addr, next,
2713 : fn, data, create, mask);
2714 : if (err)
2715 : break;
2716 : } while (p4d++, addr = next, addr != end);
2717 :
2718 : return err;
2719 : }
2720 :
2721 0 : static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722 : unsigned long size, pte_fn_t fn,
2723 : void *data, bool create)
2724 : {
2725 : pgd_t *pgd;
2726 0 : unsigned long start = addr, next;
2727 0 : unsigned long end = addr + size;
2728 0 : pgtbl_mod_mask mask = 0;
2729 0 : int err = 0;
2730 :
2731 0 : if (WARN_ON(addr >= end))
2732 : return -EINVAL;
2733 :
2734 0 : pgd = pgd_offset(mm, addr);
2735 : do {
2736 0 : next = pgd_addr_end(addr, end);
2737 0 : if (pgd_none(*pgd) && !create)
2738 : continue;
2739 0 : if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740 : return -EINVAL;
2741 0 : if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742 : if (!create)
2743 : continue;
2744 : pgd_clear_bad(pgd);
2745 : }
2746 0 : err = apply_to_p4d_range(mm, pgd, addr, next,
2747 : fn, data, create, &mask);
2748 0 : if (err)
2749 : break;
2750 0 : } while (pgd++, addr = next, addr != end);
2751 :
2752 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753 : arch_sync_kernel_mappings(start, start + size);
2754 :
2755 : return err;
2756 : }
2757 :
2758 : /*
2759 : * Scan a region of virtual memory, filling in page tables as necessary
2760 : * and calling a provided function on each leaf page table.
2761 : */
2762 0 : int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763 : unsigned long size, pte_fn_t fn, void *data)
2764 : {
2765 0 : return __apply_to_page_range(mm, addr, size, fn, data, true);
2766 : }
2767 : EXPORT_SYMBOL_GPL(apply_to_page_range);
2768 :
2769 : /*
2770 : * Scan a region of virtual memory, calling a provided function on
2771 : * each leaf page table where it exists.
2772 : *
2773 : * Unlike apply_to_page_range, this does _not_ fill in page tables
2774 : * where they are absent.
2775 : */
2776 0 : int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777 : unsigned long size, pte_fn_t fn, void *data)
2778 : {
2779 0 : return __apply_to_page_range(mm, addr, size, fn, data, false);
2780 : }
2781 : EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782 :
2783 : /*
2784 : * handle_pte_fault chooses page fault handler according to an entry which was
2785 : * read non-atomically. Before making any commitment, on those architectures
2786 : * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787 : * parts, do_swap_page must check under lock before unmapping the pte and
2788 : * proceeding (but do_wp_page is only called after already making such a check;
2789 : * and do_anonymous_page can safely check later on).
2790 : */
2791 : static inline int pte_unmap_same(struct vm_fault *vmf)
2792 : {
2793 0 : int same = 1;
2794 : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795 : if (sizeof(pte_t) > sizeof(unsigned long)) {
2796 : spin_lock(vmf->ptl);
2797 : same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2798 : spin_unlock(vmf->ptl);
2799 : }
2800 : #endif
2801 0 : pte_unmap(vmf->pte);
2802 0 : vmf->pte = NULL;
2803 : return same;
2804 : }
2805 :
2806 : /*
2807 : * Return:
2808 : * 0: copied succeeded
2809 : * -EHWPOISON: copy failed due to hwpoison in source page
2810 : * -EAGAIN: copied failed (some other reason)
2811 : */
2812 0 : static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2813 : struct vm_fault *vmf)
2814 : {
2815 : int ret;
2816 : void *kaddr;
2817 : void __user *uaddr;
2818 0 : struct vm_area_struct *vma = vmf->vma;
2819 0 : struct mm_struct *mm = vma->vm_mm;
2820 0 : unsigned long addr = vmf->address;
2821 :
2822 0 : if (likely(src)) {
2823 0 : if (copy_mc_user_highpage(dst, src, addr, vma)) {
2824 : memory_failure_queue(page_to_pfn(src), 0);
2825 : return -EHWPOISON;
2826 : }
2827 0 : return 0;
2828 : }
2829 :
2830 : /*
2831 : * If the source page was a PFN mapping, we don't have
2832 : * a "struct page" for it. We do a best-effort copy by
2833 : * just copying from the original user address. If that
2834 : * fails, we just zero-fill it. Live with it.
2835 : */
2836 0 : kaddr = kmap_atomic(dst);
2837 0 : uaddr = (void __user *)(addr & PAGE_MASK);
2838 :
2839 : /*
2840 : * On architectures with software "accessed" bits, we would
2841 : * take a double page fault, so mark it accessed here.
2842 : */
2843 0 : vmf->pte = NULL;
2844 0 : if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2845 : pte_t entry;
2846 :
2847 0 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2848 0 : if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2849 : /*
2850 : * Other thread has already handled the fault
2851 : * and update local tlb only
2852 : */
2853 : if (vmf->pte)
2854 : update_mmu_tlb(vma, addr, vmf->pte);
2855 0 : ret = -EAGAIN;
2856 0 : goto pte_unlock;
2857 : }
2858 :
2859 0 : entry = pte_mkyoung(vmf->orig_pte);
2860 0 : if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2861 : update_mmu_cache(vma, addr, vmf->pte);
2862 : }
2863 :
2864 : /*
2865 : * This really shouldn't fail, because the page is there
2866 : * in the page tables. But it might just be unreadable,
2867 : * in which case we just give up and fill the result with
2868 : * zeroes.
2869 : */
2870 0 : if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2871 0 : if (vmf->pte)
2872 : goto warn;
2873 :
2874 : /* Re-validate under PTL if the page is still mapped */
2875 0 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2876 0 : if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2877 : /* The PTE changed under us, update local tlb */
2878 : if (vmf->pte)
2879 : update_mmu_tlb(vma, addr, vmf->pte);
2880 : ret = -EAGAIN;
2881 : goto pte_unlock;
2882 : }
2883 :
2884 : /*
2885 : * The same page can be mapped back since last copy attempt.
2886 : * Try to copy again under PTL.
2887 : */
2888 0 : if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 : /*
2890 : * Give a warn in case there can be some obscure
2891 : * use-case
2892 : */
2893 : warn:
2894 0 : WARN_ON_ONCE(1);
2895 0 : clear_page(kaddr);
2896 : }
2897 : }
2898 :
2899 : ret = 0;
2900 :
2901 : pte_unlock:
2902 0 : if (vmf->pte)
2903 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
2904 0 : kunmap_atomic(kaddr);
2905 0 : flush_dcache_page(dst);
2906 :
2907 0 : return ret;
2908 : }
2909 :
2910 : static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2911 : {
2912 0 : struct file *vm_file = vma->vm_file;
2913 :
2914 0 : if (vm_file)
2915 0 : return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2916 :
2917 : /*
2918 : * Special mappings (e.g. VDSO) do not have any file so fake
2919 : * a default GFP_KERNEL for them.
2920 : */
2921 : return GFP_KERNEL;
2922 : }
2923 :
2924 : /*
2925 : * Notify the address space that the page is about to become writable so that
2926 : * it can prohibit this or wait for the page to get into an appropriate state.
2927 : *
2928 : * We do this without the lock held, so that it can sleep if it needs to.
2929 : */
2930 0 : static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2931 : {
2932 : vm_fault_t ret;
2933 0 : struct page *page = vmf->page;
2934 0 : unsigned int old_flags = vmf->flags;
2935 :
2936 0 : vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2937 :
2938 0 : if (vmf->vma->vm_file &&
2939 0 : IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2940 : return VM_FAULT_SIGBUS;
2941 :
2942 0 : ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2943 : /* Restore original flags so that caller is not surprised */
2944 0 : vmf->flags = old_flags;
2945 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2946 : return ret;
2947 0 : if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2948 0 : lock_page(page);
2949 0 : if (!page->mapping) {
2950 0 : unlock_page(page);
2951 0 : return 0; /* retry */
2952 : }
2953 0 : ret |= VM_FAULT_LOCKED;
2954 : } else
2955 : VM_BUG_ON_PAGE(!PageLocked(page), page);
2956 : return ret;
2957 : }
2958 :
2959 : /*
2960 : * Handle dirtying of a page in shared file mapping on a write fault.
2961 : *
2962 : * The function expects the page to be locked and unlocks it.
2963 : */
2964 0 : static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2965 : {
2966 0 : struct vm_area_struct *vma = vmf->vma;
2967 : struct address_space *mapping;
2968 0 : struct page *page = vmf->page;
2969 : bool dirtied;
2970 0 : bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2971 :
2972 0 : dirtied = set_page_dirty(page);
2973 : VM_BUG_ON_PAGE(PageAnon(page), page);
2974 : /*
2975 : * Take a local copy of the address_space - page.mapping may be zeroed
2976 : * by truncate after unlock_page(). The address_space itself remains
2977 : * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2978 : * release semantics to prevent the compiler from undoing this copying.
2979 : */
2980 0 : mapping = page_rmapping(page);
2981 0 : unlock_page(page);
2982 :
2983 0 : if (!page_mkwrite)
2984 0 : file_update_time(vma->vm_file);
2985 :
2986 : /*
2987 : * Throttle page dirtying rate down to writeback speed.
2988 : *
2989 : * mapping may be NULL here because some device drivers do not
2990 : * set page.mapping but still dirty their pages
2991 : *
2992 : * Drop the mmap_lock before waiting on IO, if we can. The file
2993 : * is pinning the mapping, as per above.
2994 : */
2995 0 : if ((dirtied || page_mkwrite) && mapping) {
2996 : struct file *fpin;
2997 :
2998 0 : fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2999 0 : balance_dirty_pages_ratelimited(mapping);
3000 0 : if (fpin) {
3001 0 : fput(fpin);
3002 0 : return VM_FAULT_COMPLETED;
3003 : }
3004 : }
3005 :
3006 : return 0;
3007 : }
3008 :
3009 : /*
3010 : * Handle write page faults for pages that can be reused in the current vma
3011 : *
3012 : * This can happen either due to the mapping being with the VM_SHARED flag,
3013 : * or due to us being the last reference standing to the page. In either
3014 : * case, all we need to do here is to mark the page as writable and update
3015 : * any related book-keeping.
3016 : */
3017 0 : static inline void wp_page_reuse(struct vm_fault *vmf)
3018 : __releases(vmf->ptl)
3019 : {
3020 0 : struct vm_area_struct *vma = vmf->vma;
3021 0 : struct page *page = vmf->page;
3022 : pte_t entry;
3023 :
3024 : VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025 : VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3026 :
3027 : /*
3028 : * Clear the pages cpupid information as the existing
3029 : * information potentially belongs to a now completely
3030 : * unrelated process.
3031 : */
3032 : if (page)
3033 : page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3034 :
3035 0 : flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3036 0 : entry = pte_mkyoung(vmf->orig_pte);
3037 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038 0 : if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3039 : update_mmu_cache(vma, vmf->address, vmf->pte);
3040 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 0 : count_vm_event(PGREUSE);
3042 0 : }
3043 :
3044 : /*
3045 : * Handle the case of a page which we actually need to copy to a new page,
3046 : * either due to COW or unsharing.
3047 : *
3048 : * Called with mmap_lock locked and the old page referenced, but
3049 : * without the ptl held.
3050 : *
3051 : * High level logic flow:
3052 : *
3053 : * - Allocate a page, copy the content of the old page to the new one.
3054 : * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3055 : * - Take the PTL. If the pte changed, bail out and release the allocated page
3056 : * - If the pte is still the way we remember it, update the page table and all
3057 : * relevant references. This includes dropping the reference the page-table
3058 : * held to the old page, as well as updating the rmap.
3059 : * - In any case, unlock the PTL and drop the reference we took to the old page.
3060 : */
3061 0 : static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3062 : {
3063 0 : const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3064 0 : struct vm_area_struct *vma = vmf->vma;
3065 0 : struct mm_struct *mm = vma->vm_mm;
3066 0 : struct folio *old_folio = NULL;
3067 0 : struct folio *new_folio = NULL;
3068 : pte_t entry;
3069 0 : int page_copied = 0;
3070 : struct mmu_notifier_range range;
3071 : int ret;
3072 :
3073 : delayacct_wpcopy_start();
3074 :
3075 0 : if (vmf->page)
3076 0 : old_folio = page_folio(vmf->page);
3077 0 : if (unlikely(anon_vma_prepare(vma)))
3078 : goto oom;
3079 :
3080 0 : if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3081 0 : new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3082 0 : if (!new_folio)
3083 : goto oom;
3084 : } else {
3085 0 : new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3086 : vmf->address, false);
3087 0 : if (!new_folio)
3088 : goto oom;
3089 :
3090 0 : ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3091 0 : if (ret) {
3092 : /*
3093 : * COW failed, if the fault was solved by other,
3094 : * it's fine. If not, userspace would re-fault on
3095 : * the same address and we will handle the fault
3096 : * from the second attempt.
3097 : * The -EHWPOISON case will not be retried.
3098 : */
3099 0 : folio_put(new_folio);
3100 0 : if (old_folio)
3101 : folio_put(old_folio);
3102 :
3103 : delayacct_wpcopy_end();
3104 0 : return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105 : }
3106 : kmsan_copy_page_meta(&new_folio->page, vmf->page);
3107 : }
3108 :
3109 0 : if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3110 : goto oom_free_new;
3111 0 : folio_throttle_swaprate(new_folio, GFP_KERNEL);
3112 :
3113 0 : __folio_mark_uptodate(new_folio);
3114 :
3115 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3116 : vmf->address & PAGE_MASK,
3117 : (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118 0 : mmu_notifier_invalidate_range_start(&range);
3119 :
3120 : /*
3121 : * Re-check the pte - we dropped the lock
3122 : */
3123 0 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124 0 : if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3125 0 : if (old_folio) {
3126 0 : if (!folio_test_anon(old_folio)) {
3127 0 : dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3128 : inc_mm_counter(mm, MM_ANONPAGES);
3129 : }
3130 : } else {
3131 : inc_mm_counter(mm, MM_ANONPAGES);
3132 : }
3133 0 : flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134 0 : entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3135 : entry = pte_sw_mkyoung(entry);
3136 0 : if (unlikely(unshare)) {
3137 : if (pte_soft_dirty(vmf->orig_pte))
3138 : entry = pte_mksoft_dirty(entry);
3139 : if (pte_uffd_wp(vmf->orig_pte))
3140 : entry = pte_mkuffd_wp(entry);
3141 : } else {
3142 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143 : }
3144 :
3145 : /*
3146 : * Clear the pte entry and flush it first, before updating the
3147 : * pte with the new entry, to keep TLBs on different CPUs in
3148 : * sync. This code used to set the new PTE then flush TLBs, but
3149 : * that left a window where the new PTE could be loaded into
3150 : * some TLBs while the old PTE remains in others.
3151 : */
3152 0 : ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153 0 : folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3154 0 : folio_add_lru_vma(new_folio, vma);
3155 : /*
3156 : * We call the notify macro here because, when using secondary
3157 : * mmu page tables (such as kvm shadow page tables), we want the
3158 : * new page to be mapped directly into the secondary page table.
3159 : */
3160 0 : BUG_ON(unshare && pte_write(entry));
3161 0 : set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162 : update_mmu_cache(vma, vmf->address, vmf->pte);
3163 0 : if (old_folio) {
3164 : /*
3165 : * Only after switching the pte to the new page may
3166 : * we remove the mapcount here. Otherwise another
3167 : * process may come and find the rmap count decremented
3168 : * before the pte is switched to the new page, and
3169 : * "reuse" the old page writing into it while our pte
3170 : * here still points into it and can be read by other
3171 : * threads.
3172 : *
3173 : * The critical issue is to order this
3174 : * page_remove_rmap with the ptp_clear_flush above.
3175 : * Those stores are ordered by (if nothing else,)
3176 : * the barrier present in the atomic_add_negative
3177 : * in page_remove_rmap.
3178 : *
3179 : * Then the TLB flush in ptep_clear_flush ensures that
3180 : * no process can access the old page before the
3181 : * decremented mapcount is visible. And the old page
3182 : * cannot be reused until after the decremented
3183 : * mapcount is visible. So transitively, TLBs to
3184 : * old page will be flushed before it can be reused.
3185 : */
3186 0 : page_remove_rmap(vmf->page, vma, false);
3187 : }
3188 :
3189 : /* Free the old page.. */
3190 0 : new_folio = old_folio;
3191 0 : page_copied = 1;
3192 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 0 : } else if (vmf->pte) {
3194 0 : update_mmu_tlb(vma, vmf->address, vmf->pte);
3195 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 : }
3197 :
3198 : /*
3199 : * No need to double call mmu_notifier->invalidate_range() callback as
3200 : * the above ptep_clear_flush_notify() did already call it.
3201 : */
3202 0 : mmu_notifier_invalidate_range_only_end(&range);
3203 :
3204 0 : if (new_folio)
3205 : folio_put(new_folio);
3206 0 : if (old_folio) {
3207 0 : if (page_copied)
3208 0 : free_swap_cache(&old_folio->page);
3209 : folio_put(old_folio);
3210 : }
3211 :
3212 : delayacct_wpcopy_end();
3213 : return 0;
3214 : oom_free_new:
3215 : folio_put(new_folio);
3216 : oom:
3217 0 : if (old_folio)
3218 : folio_put(old_folio);
3219 :
3220 : delayacct_wpcopy_end();
3221 : return VM_FAULT_OOM;
3222 : }
3223 :
3224 : /**
3225 : * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226 : * writeable once the page is prepared
3227 : *
3228 : * @vmf: structure describing the fault
3229 : *
3230 : * This function handles all that is needed to finish a write page fault in a
3231 : * shared mapping due to PTE being read-only once the mapped page is prepared.
3232 : * It handles locking of PTE and modifying it.
3233 : *
3234 : * The function expects the page to be locked or other protection against
3235 : * concurrent faults / writeback (such as DAX radix tree locks).
3236 : *
3237 : * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238 : * we acquired PTE lock.
3239 : */
3240 0 : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 : {
3242 0 : WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 0 : vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244 : &vmf->ptl);
3245 0 : if (!vmf->pte)
3246 : return VM_FAULT_NOPAGE;
3247 : /*
3248 : * We might have raced with another page fault while we released the
3249 : * pte_offset_map_lock.
3250 : */
3251 0 : if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252 0 : update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 0 : return VM_FAULT_NOPAGE;
3255 : }
3256 0 : wp_page_reuse(vmf);
3257 0 : return 0;
3258 : }
3259 :
3260 : /*
3261 : * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262 : * mapping
3263 : */
3264 0 : static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265 : {
3266 0 : struct vm_area_struct *vma = vmf->vma;
3267 :
3268 0 : if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269 : vm_fault_t ret;
3270 :
3271 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 0 : vmf->flags |= FAULT_FLAG_MKWRITE;
3273 0 : ret = vma->vm_ops->pfn_mkwrite(vmf);
3274 0 : if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3275 : return ret;
3276 0 : return finish_mkwrite_fault(vmf);
3277 : }
3278 0 : wp_page_reuse(vmf);
3279 0 : return 0;
3280 : }
3281 :
3282 0 : static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3283 : __releases(vmf->ptl)
3284 : {
3285 0 : struct vm_area_struct *vma = vmf->vma;
3286 0 : vm_fault_t ret = 0;
3287 :
3288 0 : get_page(vmf->page);
3289 :
3290 0 : if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3291 : vm_fault_t tmp;
3292 :
3293 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 0 : tmp = do_page_mkwrite(vmf);
3295 0 : if (unlikely(!tmp || (tmp &
3296 : (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297 0 : put_page(vmf->page);
3298 0 : return tmp;
3299 : }
3300 0 : tmp = finish_mkwrite_fault(vmf);
3301 0 : if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302 0 : unlock_page(vmf->page);
3303 0 : put_page(vmf->page);
3304 0 : return tmp;
3305 : }
3306 : } else {
3307 0 : wp_page_reuse(vmf);
3308 0 : lock_page(vmf->page);
3309 : }
3310 0 : ret |= fault_dirty_shared_page(vmf);
3311 0 : put_page(vmf->page);
3312 :
3313 0 : return ret;
3314 : }
3315 :
3316 : /*
3317 : * This routine handles present pages, when
3318 : * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319 : * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320 : * (FAULT_FLAG_UNSHARE)
3321 : *
3322 : * It is done by copying the page to a new address and decrementing the
3323 : * shared-page counter for the old page.
3324 : *
3325 : * Note that this routine assumes that the protection checks have been
3326 : * done by the caller (the low-level page fault routine in most cases).
3327 : * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328 : * done any necessary COW.
3329 : *
3330 : * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331 : * though the page will change only once the write actually happens. This
3332 : * avoids a few races, and potentially makes it more efficient.
3333 : *
3334 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335 : * but allow concurrent faults), with pte both mapped and locked.
3336 : * We return with mmap_lock still held, but pte unmapped and unlocked.
3337 : */
3338 0 : static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339 : __releases(vmf->ptl)
3340 : {
3341 0 : const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342 0 : struct vm_area_struct *vma = vmf->vma;
3343 0 : struct folio *folio = NULL;
3344 :
3345 0 : if (likely(!unshare)) {
3346 0 : if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3348 : return handle_userfault(vmf, VM_UFFD_WP);
3349 : }
3350 :
3351 : /*
3352 : * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353 : * is flushed in this case before copying.
3354 : */
3355 0 : if (unlikely(userfaultfd_wp(vmf->vma) &&
3356 : mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357 : flush_tlb_page(vmf->vma, vmf->address);
3358 : }
3359 :
3360 0 : vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3361 :
3362 : /*
3363 : * Shared mapping: we are guaranteed to have VM_WRITE and
3364 : * FAULT_FLAG_WRITE set at this point.
3365 : */
3366 0 : if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367 : /*
3368 : * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369 : * VM_PFNMAP VMA.
3370 : *
3371 : * We should not cow pages in a shared writeable mapping.
3372 : * Just mark the pages writable and/or call ops->pfn_mkwrite.
3373 : */
3374 0 : if (!vmf->page)
3375 0 : return wp_pfn_shared(vmf);
3376 0 : return wp_page_shared(vmf);
3377 : }
3378 :
3379 0 : if (vmf->page)
3380 0 : folio = page_folio(vmf->page);
3381 :
3382 : /*
3383 : * Private mapping: create an exclusive anonymous page copy if reuse
3384 : * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3385 : */
3386 0 : if (folio && folio_test_anon(folio)) {
3387 : /*
3388 : * If the page is exclusive to this process we must reuse the
3389 : * page without further checks.
3390 : */
3391 0 : if (PageAnonExclusive(vmf->page))
3392 : goto reuse;
3393 :
3394 : /*
3395 : * We have to verify under folio lock: these early checks are
3396 : * just an optimization to avoid locking the folio and freeing
3397 : * the swapcache if there is little hope that we can reuse.
3398 : *
3399 : * KSM doesn't necessarily raise the folio refcount.
3400 : */
3401 0 : if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3402 : goto copy;
3403 0 : if (!folio_test_lru(folio))
3404 : /*
3405 : * We cannot easily detect+handle references from
3406 : * remote LRU caches or references to LRU folios.
3407 : */
3408 0 : lru_add_drain();
3409 0 : if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3410 : goto copy;
3411 0 : if (!folio_trylock(folio))
3412 : goto copy;
3413 0 : if (folio_test_swapcache(folio))
3414 0 : folio_free_swap(folio);
3415 0 : if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416 0 : folio_unlock(folio);
3417 0 : goto copy;
3418 : }
3419 : /*
3420 : * Ok, we've got the only folio reference from our mapping
3421 : * and the folio is locked, it's dark out, and we're wearing
3422 : * sunglasses. Hit it.
3423 : */
3424 0 : page_move_anon_rmap(vmf->page, vma);
3425 0 : folio_unlock(folio);
3426 : reuse:
3427 0 : if (unlikely(unshare)) {
3428 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 0 : return 0;
3430 : }
3431 0 : wp_page_reuse(vmf);
3432 0 : return 0;
3433 : }
3434 : copy:
3435 : /*
3436 : * Ok, we need to copy. Oh, well..
3437 : */
3438 0 : if (folio)
3439 : folio_get(folio);
3440 :
3441 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 : #ifdef CONFIG_KSM
3443 : if (folio && folio_test_ksm(folio))
3444 : count_vm_event(COW_KSM);
3445 : #endif
3446 0 : return wp_page_copy(vmf);
3447 : }
3448 :
3449 : static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3450 : unsigned long start_addr, unsigned long end_addr,
3451 : struct zap_details *details)
3452 : {
3453 0 : zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3454 : }
3455 :
3456 0 : static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3457 : pgoff_t first_index,
3458 : pgoff_t last_index,
3459 : struct zap_details *details)
3460 : {
3461 : struct vm_area_struct *vma;
3462 : pgoff_t vba, vea, zba, zea;
3463 :
3464 0 : vma_interval_tree_foreach(vma, root, first_index, last_index) {
3465 0 : vba = vma->vm_pgoff;
3466 0 : vea = vba + vma_pages(vma) - 1;
3467 0 : zba = max(first_index, vba);
3468 0 : zea = min(last_index, vea);
3469 :
3470 0 : unmap_mapping_range_vma(vma,
3471 0 : ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3472 0 : ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3473 : details);
3474 : }
3475 0 : }
3476 :
3477 : /**
3478 : * unmap_mapping_folio() - Unmap single folio from processes.
3479 : * @folio: The locked folio to be unmapped.
3480 : *
3481 : * Unmap this folio from any userspace process which still has it mmaped.
3482 : * Typically, for efficiency, the range of nearby pages has already been
3483 : * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3484 : * truncation or invalidation holds the lock on a folio, it may find that
3485 : * the page has been remapped again: and then uses unmap_mapping_folio()
3486 : * to unmap it finally.
3487 : */
3488 0 : void unmap_mapping_folio(struct folio *folio)
3489 : {
3490 0 : struct address_space *mapping = folio->mapping;
3491 0 : struct zap_details details = { };
3492 : pgoff_t first_index;
3493 : pgoff_t last_index;
3494 :
3495 : VM_BUG_ON(!folio_test_locked(folio));
3496 :
3497 0 : first_index = folio->index;
3498 0 : last_index = folio->index + folio_nr_pages(folio) - 1;
3499 :
3500 : details.even_cows = false;
3501 0 : details.single_folio = folio;
3502 0 : details.zap_flags = ZAP_FLAG_DROP_MARKER;
3503 :
3504 0 : i_mmap_lock_read(mapping);
3505 0 : if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3506 0 : unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3507 : last_index, &details);
3508 0 : i_mmap_unlock_read(mapping);
3509 0 : }
3510 :
3511 : /**
3512 : * unmap_mapping_pages() - Unmap pages from processes.
3513 : * @mapping: The address space containing pages to be unmapped.
3514 : * @start: Index of first page to be unmapped.
3515 : * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3516 : * @even_cows: Whether to unmap even private COWed pages.
3517 : *
3518 : * Unmap the pages in this address space from any userspace process which
3519 : * has them mmaped. Generally, you want to remove COWed pages as well when
3520 : * a file is being truncated, but not when invalidating pages from the page
3521 : * cache.
3522 : */
3523 0 : void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3524 : pgoff_t nr, bool even_cows)
3525 : {
3526 0 : struct zap_details details = { };
3527 0 : pgoff_t first_index = start;
3528 0 : pgoff_t last_index = start + nr - 1;
3529 :
3530 0 : details.even_cows = even_cows;
3531 0 : if (last_index < first_index)
3532 0 : last_index = ULONG_MAX;
3533 :
3534 0 : i_mmap_lock_read(mapping);
3535 0 : if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3536 0 : unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3537 : last_index, &details);
3538 0 : i_mmap_unlock_read(mapping);
3539 0 : }
3540 : EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3541 :
3542 : /**
3543 : * unmap_mapping_range - unmap the portion of all mmaps in the specified
3544 : * address_space corresponding to the specified byte range in the underlying
3545 : * file.
3546 : *
3547 : * @mapping: the address space containing mmaps to be unmapped.
3548 : * @holebegin: byte in first page to unmap, relative to the start of
3549 : * the underlying file. This will be rounded down to a PAGE_SIZE
3550 : * boundary. Note that this is different from truncate_pagecache(), which
3551 : * must keep the partial page. In contrast, we must get rid of
3552 : * partial pages.
3553 : * @holelen: size of prospective hole in bytes. This will be rounded
3554 : * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3555 : * end of the file.
3556 : * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3557 : * but 0 when invalidating pagecache, don't throw away private data.
3558 : */
3559 0 : void unmap_mapping_range(struct address_space *mapping,
3560 : loff_t const holebegin, loff_t const holelen, int even_cows)
3561 : {
3562 0 : pgoff_t hba = holebegin >> PAGE_SHIFT;
3563 0 : pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3564 :
3565 : /* Check for overflow. */
3566 : if (sizeof(holelen) > sizeof(hlen)) {
3567 : long long holeend =
3568 : (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3569 : if (holeend & ~(long long)ULONG_MAX)
3570 : hlen = ULONG_MAX - hba + 1;
3571 : }
3572 :
3573 0 : unmap_mapping_pages(mapping, hba, hlen, even_cows);
3574 0 : }
3575 : EXPORT_SYMBOL(unmap_mapping_range);
3576 :
3577 : /*
3578 : * Restore a potential device exclusive pte to a working pte entry
3579 : */
3580 : static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3581 : {
3582 : struct folio *folio = page_folio(vmf->page);
3583 : struct vm_area_struct *vma = vmf->vma;
3584 : struct mmu_notifier_range range;
3585 :
3586 : /*
3587 : * We need a reference to lock the folio because we don't hold
3588 : * the PTL so a racing thread can remove the device-exclusive
3589 : * entry and unmap it. If the folio is free the entry must
3590 : * have been removed already. If it happens to have already
3591 : * been re-allocated after being freed all we do is lock and
3592 : * unlock it.
3593 : */
3594 : if (!folio_try_get(folio))
3595 : return 0;
3596 :
3597 : if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3598 : folio_put(folio);
3599 : return VM_FAULT_RETRY;
3600 : }
3601 : mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3602 : vma->vm_mm, vmf->address & PAGE_MASK,
3603 : (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3604 : mmu_notifier_invalidate_range_start(&range);
3605 :
3606 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607 : &vmf->ptl);
3608 : if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3609 : restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3610 :
3611 : if (vmf->pte)
3612 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3613 : folio_unlock(folio);
3614 : folio_put(folio);
3615 :
3616 : mmu_notifier_invalidate_range_end(&range);
3617 : return 0;
3618 : }
3619 :
3620 0 : static inline bool should_try_to_free_swap(struct folio *folio,
3621 : struct vm_area_struct *vma,
3622 : unsigned int fault_flags)
3623 : {
3624 0 : if (!folio_test_swapcache(folio))
3625 : return false;
3626 0 : if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3627 0 : folio_test_mlocked(folio))
3628 : return true;
3629 : /*
3630 : * If we want to map a page that's in the swapcache writable, we
3631 : * have to detect via the refcount if we're really the exclusive
3632 : * user. Try freeing the swapcache to get rid of the swapcache
3633 : * reference only in case it's likely that we'll be the exlusive user.
3634 : */
3635 0 : return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3636 0 : folio_ref_count(folio) == 2;
3637 : }
3638 :
3639 : static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3640 : {
3641 : vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3642 : vmf->address, &vmf->ptl);
3643 : if (!vmf->pte)
3644 : return 0;
3645 : /*
3646 : * Be careful so that we will only recover a special uffd-wp pte into a
3647 : * none pte. Otherwise it means the pte could have changed, so retry.
3648 : *
3649 : * This should also cover the case where e.g. the pte changed
3650 : * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3651 : * So is_pte_marker() check is not enough to safely drop the pte.
3652 : */
3653 : if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3654 : pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3655 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 : return 0;
3657 : }
3658 :
3659 0 : static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3660 : {
3661 0 : if (vma_is_anonymous(vmf->vma))
3662 0 : return do_anonymous_page(vmf);
3663 : else
3664 0 : return do_fault(vmf);
3665 : }
3666 :
3667 : /*
3668 : * This is actually a page-missing access, but with uffd-wp special pte
3669 : * installed. It means this pte was wr-protected before being unmapped.
3670 : */
3671 : static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3672 : {
3673 : /*
3674 : * Just in case there're leftover special ptes even after the region
3675 : * got unregistered - we can simply clear them.
3676 : */
3677 : if (unlikely(!userfaultfd_wp(vmf->vma)))
3678 : return pte_marker_clear(vmf);
3679 :
3680 : return do_pte_missing(vmf);
3681 : }
3682 :
3683 0 : static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3684 : {
3685 0 : swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3686 0 : unsigned long marker = pte_marker_get(entry);
3687 :
3688 : /*
3689 : * PTE markers should never be empty. If anything weird happened,
3690 : * the best thing to do is to kill the process along with its mm.
3691 : */
3692 0 : if (WARN_ON_ONCE(!marker))
3693 : return VM_FAULT_SIGBUS;
3694 :
3695 : /* Higher priority than uffd-wp when data corrupted */
3696 : if (marker & PTE_MARKER_SWAPIN_ERROR)
3697 : return VM_FAULT_SIGBUS;
3698 :
3699 : if (pte_marker_entry_uffd_wp(entry))
3700 : return pte_marker_handle_uffd_wp(vmf);
3701 :
3702 : /* This is an unknown pte marker */
3703 : return VM_FAULT_SIGBUS;
3704 : }
3705 :
3706 : /*
3707 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
3708 : * but allow concurrent faults), and pte mapped but not yet locked.
3709 : * We return with pte unmapped and unlocked.
3710 : *
3711 : * We return with the mmap_lock locked or unlocked in the same cases
3712 : * as does filemap_fault().
3713 : */
3714 0 : vm_fault_t do_swap_page(struct vm_fault *vmf)
3715 : {
3716 0 : struct vm_area_struct *vma = vmf->vma;
3717 0 : struct folio *swapcache, *folio = NULL;
3718 : struct page *page;
3719 0 : struct swap_info_struct *si = NULL;
3720 0 : rmap_t rmap_flags = RMAP_NONE;
3721 0 : bool exclusive = false;
3722 : swp_entry_t entry;
3723 : pte_t pte;
3724 : int locked;
3725 0 : vm_fault_t ret = 0;
3726 0 : void *shadow = NULL;
3727 :
3728 0 : if (!pte_unmap_same(vmf))
3729 : goto out;
3730 :
3731 0 : if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3732 : ret = VM_FAULT_RETRY;
3733 : goto out;
3734 : }
3735 :
3736 0 : entry = pte_to_swp_entry(vmf->orig_pte);
3737 0 : if (unlikely(non_swap_entry(entry))) {
3738 0 : if (is_migration_entry(entry)) {
3739 0 : migration_entry_wait(vma->vm_mm, vmf->pmd,
3740 : vmf->address);
3741 0 : } else if (is_device_exclusive_entry(entry)) {
3742 : vmf->page = pfn_swap_entry_to_page(entry);
3743 : ret = remove_device_exclusive_entry(vmf);
3744 0 : } else if (is_device_private_entry(entry)) {
3745 : vmf->page = pfn_swap_entry_to_page(entry);
3746 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3747 : vmf->address, &vmf->ptl);
3748 : if (unlikely(!vmf->pte ||
3749 : !pte_same(ptep_get(vmf->pte),
3750 : vmf->orig_pte)))
3751 : goto unlock;
3752 :
3753 : /*
3754 : * Get a page reference while we know the page can't be
3755 : * freed.
3756 : */
3757 : get_page(vmf->page);
3758 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 : ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3760 : put_page(vmf->page);
3761 0 : } else if (is_hwpoison_entry(entry)) {
3762 : ret = VM_FAULT_HWPOISON;
3763 0 : } else if (is_pte_marker_entry(entry)) {
3764 0 : ret = handle_pte_marker(vmf);
3765 : } else {
3766 0 : print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3767 0 : ret = VM_FAULT_SIGBUS;
3768 : }
3769 : goto out;
3770 : }
3771 :
3772 : /* Prevent swapoff from happening to us. */
3773 0 : si = get_swap_device(entry);
3774 0 : if (unlikely(!si))
3775 : goto out;
3776 :
3777 0 : folio = swap_cache_get_folio(entry, vma, vmf->address);
3778 0 : if (folio)
3779 0 : page = folio_file_page(folio, swp_offset(entry));
3780 0 : swapcache = folio;
3781 :
3782 0 : if (!folio) {
3783 0 : if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3784 0 : __swap_count(entry) == 1) {
3785 : /* skip swapcache */
3786 0 : folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3787 : vma, vmf->address, false);
3788 0 : page = &folio->page;
3789 0 : if (folio) {
3790 0 : __folio_set_locked(folio);
3791 0 : __folio_set_swapbacked(folio);
3792 :
3793 0 : if (mem_cgroup_swapin_charge_folio(folio,
3794 : vma->vm_mm, GFP_KERNEL,
3795 : entry)) {
3796 : ret = VM_FAULT_OOM;
3797 : goto out_page;
3798 : }
3799 0 : mem_cgroup_swapin_uncharge_swap(entry);
3800 :
3801 0 : shadow = get_shadow_from_swap_cache(entry);
3802 0 : if (shadow)
3803 0 : workingset_refault(folio, shadow);
3804 :
3805 0 : folio_add_lru(folio);
3806 :
3807 : /* To provide entry to swap_readpage() */
3808 0 : folio_set_swap_entry(folio, entry);
3809 0 : swap_readpage(page, true, NULL);
3810 0 : folio->private = NULL;
3811 : }
3812 : } else {
3813 0 : page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3814 : vmf);
3815 0 : if (page)
3816 0 : folio = page_folio(page);
3817 : swapcache = folio;
3818 : }
3819 :
3820 0 : if (!folio) {
3821 : /*
3822 : * Back out if somebody else faulted in this pte
3823 : * while we released the pte lock.
3824 : */
3825 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3826 : vmf->address, &vmf->ptl);
3827 0 : if (likely(vmf->pte &&
3828 : pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3829 0 : ret = VM_FAULT_OOM;
3830 : goto unlock;
3831 : }
3832 :
3833 : /* Had to read the page from swap area: Major fault */
3834 0 : ret = VM_FAULT_MAJOR;
3835 0 : count_vm_event(PGMAJFAULT);
3836 0 : count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3837 : } else if (PageHWPoison(page)) {
3838 : /*
3839 : * hwpoisoned dirty swapcache pages are kept for killing
3840 : * owner processes (which may be unknown at hwpoison time)
3841 : */
3842 : ret = VM_FAULT_HWPOISON;
3843 : goto out_release;
3844 : }
3845 :
3846 0 : locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3847 :
3848 0 : if (!locked) {
3849 0 : ret |= VM_FAULT_RETRY;
3850 0 : goto out_release;
3851 : }
3852 :
3853 0 : if (swapcache) {
3854 : /*
3855 : * Make sure folio_free_swap() or swapoff did not release the
3856 : * swapcache from under us. The page pin, and pte_same test
3857 : * below, are not enough to exclude that. Even if it is still
3858 : * swapcache, we need to check that the page's swap has not
3859 : * changed.
3860 : */
3861 0 : if (unlikely(!folio_test_swapcache(folio) ||
3862 : page_private(page) != entry.val))
3863 : goto out_page;
3864 :
3865 : /*
3866 : * KSM sometimes has to copy on read faults, for example, if
3867 : * page->index of !PageKSM() pages would be nonlinear inside the
3868 : * anon VMA -- PageKSM() is lost on actual swapout.
3869 : */
3870 0 : page = ksm_might_need_to_copy(page, vma, vmf->address);
3871 0 : if (unlikely(!page)) {
3872 : ret = VM_FAULT_OOM;
3873 : goto out_page;
3874 0 : } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3875 : ret = VM_FAULT_HWPOISON;
3876 : goto out_page;
3877 : }
3878 0 : folio = page_folio(page);
3879 :
3880 : /*
3881 : * If we want to map a page that's in the swapcache writable, we
3882 : * have to detect via the refcount if we're really the exclusive
3883 : * owner. Try removing the extra reference from the local LRU
3884 : * caches if required.
3885 : */
3886 0 : if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887 0 : !folio_test_ksm(folio) && !folio_test_lru(folio))
3888 0 : lru_add_drain();
3889 : }
3890 :
3891 0 : folio_throttle_swaprate(folio, GFP_KERNEL);
3892 :
3893 : /*
3894 : * Back out if somebody else already faulted in this pte.
3895 : */
3896 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3897 : &vmf->ptl);
3898 0 : if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3899 : goto out_nomap;
3900 :
3901 0 : if (unlikely(!folio_test_uptodate(folio))) {
3902 : ret = VM_FAULT_SIGBUS;
3903 : goto out_nomap;
3904 : }
3905 :
3906 : /*
3907 : * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908 : * must never point at an anonymous page in the swapcache that is
3909 : * PG_anon_exclusive. Sanity check that this holds and especially, that
3910 : * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911 : * check after taking the PT lock and making sure that nobody
3912 : * concurrently faulted in this page and set PG_anon_exclusive.
3913 : */
3914 0 : BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915 0 : BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3916 :
3917 : /*
3918 : * Check under PT lock (to protect against concurrent fork() sharing
3919 : * the swap entry concurrently) for certainly exclusive pages.
3920 : */
3921 0 : if (!folio_test_ksm(folio)) {
3922 0 : exclusive = pte_swp_exclusive(vmf->orig_pte);
3923 0 : if (folio != swapcache) {
3924 : /*
3925 : * We have a fresh page that is not exposed to the
3926 : * swapcache -> certainly exclusive.
3927 : */
3928 : exclusive = true;
3929 0 : } else if (exclusive && folio_test_writeback(folio) &&
3930 0 : data_race(si->flags & SWP_STABLE_WRITES)) {
3931 : /*
3932 : * This is tricky: not all swap backends support
3933 : * concurrent page modifications while under writeback.
3934 : *
3935 : * So if we stumble over such a page in the swapcache
3936 : * we must not set the page exclusive, otherwise we can
3937 : * map it writable without further checks and modify it
3938 : * while still under writeback.
3939 : *
3940 : * For these problematic swap backends, simply drop the
3941 : * exclusive marker: this is perfectly fine as we start
3942 : * writeback only if we fully unmapped the page and
3943 : * there are no unexpected references on the page after
3944 : * unmapping succeeded. After fully unmapped, no
3945 : * further GUP references (FOLL_GET and FOLL_PIN) can
3946 : * appear, so dropping the exclusive marker and mapping
3947 : * it only R/O is fine.
3948 : */
3949 0 : exclusive = false;
3950 : }
3951 : }
3952 :
3953 : /*
3954 : * Some architectures may have to restore extra metadata to the page
3955 : * when reading from swap. This metadata may be indexed by swap entry
3956 : * so this must be called before swap_free().
3957 : */
3958 0 : arch_swap_restore(entry, folio);
3959 :
3960 : /*
3961 : * Remove the swap entry and conditionally try to free up the swapcache.
3962 : * We're already holding a reference on the page but haven't mapped it
3963 : * yet.
3964 : */
3965 0 : swap_free(entry);
3966 0 : if (should_try_to_free_swap(folio, vma, vmf->flags))
3967 0 : folio_free_swap(folio);
3968 :
3969 0 : inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3970 0 : dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3971 0 : pte = mk_pte(page, vma->vm_page_prot);
3972 :
3973 : /*
3974 : * Same logic as in do_wp_page(); however, optimize for pages that are
3975 : * certainly not shared either because we just allocated them without
3976 : * exposing them to the swapcache or because the swap entry indicates
3977 : * exclusivity.
3978 : */
3979 0 : if (!folio_test_ksm(folio) &&
3980 0 : (exclusive || folio_ref_count(folio) == 1)) {
3981 0 : if (vmf->flags & FAULT_FLAG_WRITE) {
3982 0 : pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3983 0 : vmf->flags &= ~FAULT_FLAG_WRITE;
3984 : }
3985 : rmap_flags |= RMAP_EXCLUSIVE;
3986 : }
3987 0 : flush_icache_page(vma, page);
3988 0 : if (pte_swp_soft_dirty(vmf->orig_pte))
3989 : pte = pte_mksoft_dirty(pte);
3990 : if (pte_swp_uffd_wp(vmf->orig_pte))
3991 : pte = pte_mkuffd_wp(pte);
3992 0 : vmf->orig_pte = pte;
3993 :
3994 : /* ksm created a completely new copy */
3995 0 : if (unlikely(folio != swapcache && swapcache)) {
3996 0 : page_add_new_anon_rmap(page, vma, vmf->address);
3997 0 : folio_add_lru_vma(folio, vma);
3998 : } else {
3999 0 : page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4000 : }
4001 :
4002 : VM_BUG_ON(!folio_test_anon(folio) ||
4003 : (pte_write(pte) && !PageAnonExclusive(page)));
4004 0 : set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005 0 : arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4006 :
4007 0 : folio_unlock(folio);
4008 0 : if (folio != swapcache && swapcache) {
4009 : /*
4010 : * Hold the lock to avoid the swap entry to be reused
4011 : * until we take the PT lock for the pte_same() check
4012 : * (to avoid false positives from pte_same). For
4013 : * further safety release the lock after the swap_free
4014 : * so that the swap count won't change under a
4015 : * parallel locked swapcache.
4016 : */
4017 0 : folio_unlock(swapcache);
4018 : folio_put(swapcache);
4019 : }
4020 :
4021 0 : if (vmf->flags & FAULT_FLAG_WRITE) {
4022 0 : ret |= do_wp_page(vmf);
4023 0 : if (ret & VM_FAULT_ERROR)
4024 0 : ret &= VM_FAULT_ERROR;
4025 : goto out;
4026 : }
4027 :
4028 : /* No need to invalidate - it was non-present before */
4029 : update_mmu_cache(vma, vmf->address, vmf->pte);
4030 : unlock:
4031 0 : if (vmf->pte)
4032 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4033 : out:
4034 0 : if (si)
4035 : put_swap_device(si);
4036 : return ret;
4037 : out_nomap:
4038 0 : if (vmf->pte)
4039 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4040 : out_page:
4041 0 : folio_unlock(folio);
4042 : out_release:
4043 0 : folio_put(folio);
4044 0 : if (folio != swapcache && swapcache) {
4045 0 : folio_unlock(swapcache);
4046 : folio_put(swapcache);
4047 : }
4048 0 : if (si)
4049 : put_swap_device(si);
4050 : return ret;
4051 : }
4052 :
4053 : /*
4054 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
4055 : * but allow concurrent faults), and pte mapped but not yet locked.
4056 : * We return with mmap_lock still held, but pte unmapped and unlocked.
4057 : */
4058 0 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4059 : {
4060 0 : bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4061 0 : struct vm_area_struct *vma = vmf->vma;
4062 : struct folio *folio;
4063 0 : vm_fault_t ret = 0;
4064 : pte_t entry;
4065 :
4066 : /* File mapping without ->vm_ops ? */
4067 0 : if (vma->vm_flags & VM_SHARED)
4068 : return VM_FAULT_SIGBUS;
4069 :
4070 : /*
4071 : * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4072 : * be distinguished from a transient failure of pte_offset_map().
4073 : */
4074 0 : if (pte_alloc(vma->vm_mm, vmf->pmd))
4075 : return VM_FAULT_OOM;
4076 :
4077 : /* Use the zero-page for reads */
4078 0 : if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4079 : !mm_forbids_zeropage(vma->vm_mm)) {
4080 0 : entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4081 : vma->vm_page_prot));
4082 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4083 : vmf->address, &vmf->ptl);
4084 0 : if (!vmf->pte)
4085 : goto unlock;
4086 0 : if (vmf_pte_changed(vmf)) {
4087 : update_mmu_tlb(vma, vmf->address, vmf->pte);
4088 : goto unlock;
4089 : }
4090 0 : ret = check_stable_address_space(vma->vm_mm);
4091 0 : if (ret)
4092 : goto unlock;
4093 : /* Deliver the page fault to userland, check inside PT lock */
4094 : if (userfaultfd_missing(vma)) {
4095 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4096 : return handle_userfault(vmf, VM_UFFD_MISSING);
4097 : }
4098 : goto setpte;
4099 : }
4100 :
4101 : /* Allocate our own private page. */
4102 0 : if (unlikely(anon_vma_prepare(vma)))
4103 : goto oom;
4104 0 : folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4105 0 : if (!folio)
4106 : goto oom;
4107 :
4108 0 : if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4109 : goto oom_free_page;
4110 0 : folio_throttle_swaprate(folio, GFP_KERNEL);
4111 :
4112 : /*
4113 : * The memory barrier inside __folio_mark_uptodate makes sure that
4114 : * preceding stores to the page contents become visible before
4115 : * the set_pte_at() write.
4116 : */
4117 0 : __folio_mark_uptodate(folio);
4118 :
4119 0 : entry = mk_pte(&folio->page, vma->vm_page_prot);
4120 : entry = pte_sw_mkyoung(entry);
4121 0 : if (vma->vm_flags & VM_WRITE)
4122 0 : entry = pte_mkwrite(pte_mkdirty(entry));
4123 :
4124 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4125 : &vmf->ptl);
4126 0 : if (!vmf->pte)
4127 : goto release;
4128 0 : if (vmf_pte_changed(vmf)) {
4129 : update_mmu_tlb(vma, vmf->address, vmf->pte);
4130 : goto release;
4131 : }
4132 :
4133 0 : ret = check_stable_address_space(vma->vm_mm);
4134 0 : if (ret)
4135 : goto release;
4136 :
4137 : /* Deliver the page fault to userland, check inside PT lock */
4138 0 : if (userfaultfd_missing(vma)) {
4139 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4140 : folio_put(folio);
4141 : return handle_userfault(vmf, VM_UFFD_MISSING);
4142 : }
4143 :
4144 0 : inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4145 0 : folio_add_new_anon_rmap(folio, vma, vmf->address);
4146 0 : folio_add_lru_vma(folio, vma);
4147 : setpte:
4148 : if (uffd_wp)
4149 : entry = pte_mkuffd_wp(entry);
4150 0 : set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4151 :
4152 : /* No need to invalidate - it was non-present before */
4153 : update_mmu_cache(vma, vmf->address, vmf->pte);
4154 : unlock:
4155 0 : if (vmf->pte)
4156 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4157 : return ret;
4158 : release:
4159 : folio_put(folio);
4160 : goto unlock;
4161 : oom_free_page:
4162 : folio_put(folio);
4163 : oom:
4164 : return VM_FAULT_OOM;
4165 : }
4166 :
4167 : /*
4168 : * The mmap_lock must have been held on entry, and may have been
4169 : * released depending on flags and vma->vm_ops->fault() return value.
4170 : * See filemap_fault() and __lock_page_retry().
4171 : */
4172 0 : static vm_fault_t __do_fault(struct vm_fault *vmf)
4173 : {
4174 0 : struct vm_area_struct *vma = vmf->vma;
4175 : vm_fault_t ret;
4176 :
4177 : /*
4178 : * Preallocate pte before we take page_lock because this might lead to
4179 : * deadlocks for memcg reclaim which waits for pages under writeback:
4180 : * lock_page(A)
4181 : * SetPageWriteback(A)
4182 : * unlock_page(A)
4183 : * lock_page(B)
4184 : * lock_page(B)
4185 : * pte_alloc_one
4186 : * shrink_page_list
4187 : * wait_on_page_writeback(A)
4188 : * SetPageWriteback(B)
4189 : * unlock_page(B)
4190 : * # flush A, B to clear the writeback
4191 : */
4192 0 : if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193 0 : vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194 0 : if (!vmf->prealloc_pte)
4195 : return VM_FAULT_OOM;
4196 : }
4197 :
4198 0 : ret = vma->vm_ops->fault(vmf);
4199 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200 : VM_FAULT_DONE_COW)))
4201 : return ret;
4202 :
4203 0 : if (unlikely(PageHWPoison(vmf->page))) {
4204 : struct page *page = vmf->page;
4205 : vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206 : if (ret & VM_FAULT_LOCKED) {
4207 : if (page_mapped(page))
4208 : unmap_mapping_pages(page_mapping(page),
4209 : page->index, 1, false);
4210 : /* Retry if a clean page was removed from the cache. */
4211 : if (invalidate_inode_page(page))
4212 : poisonret = VM_FAULT_NOPAGE;
4213 : unlock_page(page);
4214 : }
4215 : put_page(page);
4216 : vmf->page = NULL;
4217 : return poisonret;
4218 : }
4219 :
4220 0 : if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221 0 : lock_page(vmf->page);
4222 : else
4223 : VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4224 :
4225 : return ret;
4226 : }
4227 :
4228 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 : static void deposit_prealloc_pte(struct vm_fault *vmf)
4230 : {
4231 : struct vm_area_struct *vma = vmf->vma;
4232 :
4233 : pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4234 : /*
4235 : * We are going to consume the prealloc table,
4236 : * count that as nr_ptes.
4237 : */
4238 : mm_inc_nr_ptes(vma->vm_mm);
4239 : vmf->prealloc_pte = NULL;
4240 : }
4241 :
4242 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4243 : {
4244 : struct vm_area_struct *vma = vmf->vma;
4245 : bool write = vmf->flags & FAULT_FLAG_WRITE;
4246 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4247 : pmd_t entry;
4248 : int i;
4249 : vm_fault_t ret = VM_FAULT_FALLBACK;
4250 :
4251 : if (!transhuge_vma_suitable(vma, haddr))
4252 : return ret;
4253 :
4254 : page = compound_head(page);
4255 : if (compound_order(page) != HPAGE_PMD_ORDER)
4256 : return ret;
4257 :
4258 : /*
4259 : * Just backoff if any subpage of a THP is corrupted otherwise
4260 : * the corrupted page may mapped by PMD silently to escape the
4261 : * check. This kind of THP just can be PTE mapped. Access to
4262 : * the corrupted subpage should trigger SIGBUS as expected.
4263 : */
4264 : if (unlikely(PageHasHWPoisoned(page)))
4265 : return ret;
4266 :
4267 : /*
4268 : * Archs like ppc64 need additional space to store information
4269 : * related to pte entry. Use the preallocated table for that.
4270 : */
4271 : if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272 : vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273 : if (!vmf->prealloc_pte)
4274 : return VM_FAULT_OOM;
4275 : }
4276 :
4277 : vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278 : if (unlikely(!pmd_none(*vmf->pmd)))
4279 : goto out;
4280 :
4281 : for (i = 0; i < HPAGE_PMD_NR; i++)
4282 : flush_icache_page(vma, page + i);
4283 :
4284 : entry = mk_huge_pmd(page, vma->vm_page_prot);
4285 : if (write)
4286 : entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4287 :
4288 : add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289 : page_add_file_rmap(page, vma, true);
4290 :
4291 : /*
4292 : * deposit and withdraw with pmd lock held
4293 : */
4294 : if (arch_needs_pgtable_deposit())
4295 : deposit_prealloc_pte(vmf);
4296 :
4297 : set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4298 :
4299 : update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4300 :
4301 : /* fault is handled */
4302 : ret = 0;
4303 : count_vm_event(THP_FILE_MAPPED);
4304 : out:
4305 : spin_unlock(vmf->ptl);
4306 : return ret;
4307 : }
4308 : #else
4309 0 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310 : {
4311 0 : return VM_FAULT_FALLBACK;
4312 : }
4313 : #endif
4314 :
4315 0 : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4316 : {
4317 0 : struct vm_area_struct *vma = vmf->vma;
4318 0 : bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4319 0 : bool write = vmf->flags & FAULT_FLAG_WRITE;
4320 0 : bool prefault = vmf->address != addr;
4321 : pte_t entry;
4322 :
4323 0 : flush_icache_page(vma, page);
4324 0 : entry = mk_pte(page, vma->vm_page_prot);
4325 :
4326 : if (prefault && arch_wants_old_prefaulted_pte())
4327 : entry = pte_mkold(entry);
4328 : else
4329 : entry = pte_sw_mkyoung(entry);
4330 :
4331 0 : if (write)
4332 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333 : if (unlikely(uffd_wp))
4334 : entry = pte_mkuffd_wp(entry);
4335 : /* copy-on-write page */
4336 0 : if (write && !(vma->vm_flags & VM_SHARED)) {
4337 0 : inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4338 0 : page_add_new_anon_rmap(page, vma, addr);
4339 0 : lru_cache_add_inactive_or_unevictable(page, vma);
4340 : } else {
4341 0 : inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4342 0 : page_add_file_rmap(page, vma, false);
4343 : }
4344 0 : set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4345 0 : }
4346 :
4347 : static bool vmf_pte_changed(struct vm_fault *vmf)
4348 : {
4349 0 : if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350 0 : return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4351 :
4352 0 : return !pte_none(ptep_get(vmf->pte));
4353 : }
4354 :
4355 : /**
4356 : * finish_fault - finish page fault once we have prepared the page to fault
4357 : *
4358 : * @vmf: structure describing the fault
4359 : *
4360 : * This function handles all that is needed to finish a page fault once the
4361 : * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362 : * given page, adds reverse page mapping, handles memcg charges and LRU
4363 : * addition.
4364 : *
4365 : * The function expects the page to be locked and on success it consumes a
4366 : * reference of a page being mapped (for the PTE which maps it).
4367 : *
4368 : * Return: %0 on success, %VM_FAULT_ code in case of error.
4369 : */
4370 0 : vm_fault_t finish_fault(struct vm_fault *vmf)
4371 : {
4372 0 : struct vm_area_struct *vma = vmf->vma;
4373 : struct page *page;
4374 : vm_fault_t ret;
4375 :
4376 : /* Did we COW the page? */
4377 0 : if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378 0 : page = vmf->cow_page;
4379 : else
4380 0 : page = vmf->page;
4381 :
4382 : /*
4383 : * check even for read faults because we might have lost our CoWed
4384 : * page
4385 : */
4386 0 : if (!(vma->vm_flags & VM_SHARED)) {
4387 0 : ret = check_stable_address_space(vma->vm_mm);
4388 0 : if (ret)
4389 : return ret;
4390 : }
4391 :
4392 0 : if (pmd_none(*vmf->pmd)) {
4393 0 : if (PageTransCompound(page)) {
4394 : ret = do_set_pmd(vmf, page);
4395 : if (ret != VM_FAULT_FALLBACK)
4396 : return ret;
4397 : }
4398 :
4399 0 : if (vmf->prealloc_pte)
4400 0 : pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401 0 : else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402 : return VM_FAULT_OOM;
4403 : }
4404 :
4405 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4406 : vmf->address, &vmf->ptl);
4407 0 : if (!vmf->pte)
4408 : return VM_FAULT_NOPAGE;
4409 :
4410 : /* Re-check under ptl */
4411 0 : if (likely(!vmf_pte_changed(vmf))) {
4412 0 : do_set_pte(vmf, page, vmf->address);
4413 :
4414 : /* no need to invalidate: a not-present page won't be cached */
4415 : update_mmu_cache(vma, vmf->address, vmf->pte);
4416 :
4417 0 : ret = 0;
4418 : } else {
4419 : update_mmu_tlb(vma, vmf->address, vmf->pte);
4420 : ret = VM_FAULT_NOPAGE;
4421 : }
4422 :
4423 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4424 0 : return ret;
4425 : }
4426 :
4427 : static unsigned long fault_around_pages __read_mostly =
4428 : 65536 >> PAGE_SHIFT;
4429 :
4430 : #ifdef CONFIG_DEBUG_FS
4431 : static int fault_around_bytes_get(void *data, u64 *val)
4432 : {
4433 : *val = fault_around_pages << PAGE_SHIFT;
4434 : return 0;
4435 : }
4436 :
4437 : /*
4438 : * fault_around_bytes must be rounded down to the nearest page order as it's
4439 : * what do_fault_around() expects to see.
4440 : */
4441 : static int fault_around_bytes_set(void *data, u64 val)
4442 : {
4443 : if (val / PAGE_SIZE > PTRS_PER_PTE)
4444 : return -EINVAL;
4445 :
4446 : /*
4447 : * The minimum value is 1 page, however this results in no fault-around
4448 : * at all. See should_fault_around().
4449 : */
4450 : fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4451 :
4452 : return 0;
4453 : }
4454 : DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4455 : fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4456 :
4457 : static int __init fault_around_debugfs(void)
4458 : {
4459 : debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4460 : &fault_around_bytes_fops);
4461 : return 0;
4462 : }
4463 : late_initcall(fault_around_debugfs);
4464 : #endif
4465 :
4466 : /*
4467 : * do_fault_around() tries to map few pages around the fault address. The hope
4468 : * is that the pages will be needed soon and this will lower the number of
4469 : * faults to handle.
4470 : *
4471 : * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4472 : * not ready to be mapped: not up-to-date, locked, etc.
4473 : *
4474 : * This function doesn't cross VMA or page table boundaries, in order to call
4475 : * map_pages() and acquire a PTE lock only once.
4476 : *
4477 : * fault_around_pages defines how many pages we'll try to map.
4478 : * do_fault_around() expects it to be set to a power of two less than or equal
4479 : * to PTRS_PER_PTE.
4480 : *
4481 : * The virtual address of the area that we map is naturally aligned to
4482 : * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4483 : * (and therefore to page order). This way it's easier to guarantee
4484 : * that we don't cross page table boundaries.
4485 : */
4486 0 : static vm_fault_t do_fault_around(struct vm_fault *vmf)
4487 : {
4488 0 : pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4489 0 : pgoff_t pte_off = pte_index(vmf->address);
4490 : /* The page offset of vmf->address within the VMA. */
4491 0 : pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4492 : pgoff_t from_pte, to_pte;
4493 : vm_fault_t ret;
4494 :
4495 : /* The PTE offset of the start address, clamped to the VMA. */
4496 0 : from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4497 : pte_off - min(pte_off, vma_off));
4498 :
4499 : /* The PTE offset of the end address, clamped to the VMA and PTE. */
4500 0 : to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4501 : pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4502 :
4503 0 : if (pmd_none(*vmf->pmd)) {
4504 0 : vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4505 0 : if (!vmf->prealloc_pte)
4506 : return VM_FAULT_OOM;
4507 : }
4508 :
4509 : rcu_read_lock();
4510 0 : ret = vmf->vma->vm_ops->map_pages(vmf,
4511 0 : vmf->pgoff + from_pte - pte_off,
4512 0 : vmf->pgoff + to_pte - pte_off);
4513 : rcu_read_unlock();
4514 :
4515 0 : return ret;
4516 : }
4517 :
4518 : /* Return true if we should do read fault-around, false otherwise */
4519 : static inline bool should_fault_around(struct vm_fault *vmf)
4520 : {
4521 : /* No ->map_pages? No way to fault around... */
4522 0 : if (!vmf->vma->vm_ops->map_pages)
4523 : return false;
4524 :
4525 0 : if (uffd_disable_fault_around(vmf->vma))
4526 : return false;
4527 :
4528 : /* A single page implies no faulting 'around' at all. */
4529 0 : return fault_around_pages > 1;
4530 : }
4531 :
4532 0 : static vm_fault_t do_read_fault(struct vm_fault *vmf)
4533 : {
4534 0 : vm_fault_t ret = 0;
4535 :
4536 : /*
4537 : * Let's call ->map_pages() first and use ->fault() as fallback
4538 : * if page by the offset is not ready to be mapped (cold cache or
4539 : * something).
4540 : */
4541 0 : if (should_fault_around(vmf)) {
4542 0 : ret = do_fault_around(vmf);
4543 0 : if (ret)
4544 : return ret;
4545 : }
4546 :
4547 0 : ret = __do_fault(vmf);
4548 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 : return ret;
4550 :
4551 0 : ret |= finish_fault(vmf);
4552 0 : unlock_page(vmf->page);
4553 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 0 : put_page(vmf->page);
4555 : return ret;
4556 : }
4557 :
4558 0 : static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4559 : {
4560 0 : struct vm_area_struct *vma = vmf->vma;
4561 : vm_fault_t ret;
4562 :
4563 0 : if (unlikely(anon_vma_prepare(vma)))
4564 : return VM_FAULT_OOM;
4565 :
4566 0 : vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4567 0 : if (!vmf->cow_page)
4568 : return VM_FAULT_OOM;
4569 :
4570 0 : if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4571 : GFP_KERNEL)) {
4572 : put_page(vmf->cow_page);
4573 : return VM_FAULT_OOM;
4574 : }
4575 0 : folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4576 :
4577 0 : ret = __do_fault(vmf);
4578 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579 : goto uncharge_out;
4580 0 : if (ret & VM_FAULT_DONE_COW)
4581 : return ret;
4582 :
4583 0 : copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4584 0 : __SetPageUptodate(vmf->cow_page);
4585 :
4586 0 : ret |= finish_fault(vmf);
4587 0 : unlock_page(vmf->page);
4588 0 : put_page(vmf->page);
4589 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590 : goto uncharge_out;
4591 : return ret;
4592 : uncharge_out:
4593 0 : put_page(vmf->cow_page);
4594 0 : return ret;
4595 : }
4596 :
4597 0 : static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4598 : {
4599 0 : struct vm_area_struct *vma = vmf->vma;
4600 : vm_fault_t ret, tmp;
4601 :
4602 0 : ret = __do_fault(vmf);
4603 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4604 : return ret;
4605 :
4606 : /*
4607 : * Check if the backing address space wants to know that the page is
4608 : * about to become writable
4609 : */
4610 0 : if (vma->vm_ops->page_mkwrite) {
4611 0 : unlock_page(vmf->page);
4612 0 : tmp = do_page_mkwrite(vmf);
4613 0 : if (unlikely(!tmp ||
4614 : (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4615 0 : put_page(vmf->page);
4616 0 : return tmp;
4617 : }
4618 : }
4619 :
4620 0 : ret |= finish_fault(vmf);
4621 0 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4622 : VM_FAULT_RETRY))) {
4623 0 : unlock_page(vmf->page);
4624 0 : put_page(vmf->page);
4625 0 : return ret;
4626 : }
4627 :
4628 0 : ret |= fault_dirty_shared_page(vmf);
4629 0 : return ret;
4630 : }
4631 :
4632 : /*
4633 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
4634 : * but allow concurrent faults).
4635 : * The mmap_lock may have been released depending on flags and our
4636 : * return value. See filemap_fault() and __folio_lock_or_retry().
4637 : * If mmap_lock is released, vma may become invalid (for example
4638 : * by other thread calling munmap()).
4639 : */
4640 0 : static vm_fault_t do_fault(struct vm_fault *vmf)
4641 : {
4642 0 : struct vm_area_struct *vma = vmf->vma;
4643 0 : struct mm_struct *vm_mm = vma->vm_mm;
4644 : vm_fault_t ret;
4645 :
4646 : /*
4647 : * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4648 : */
4649 0 : if (!vma->vm_ops->fault) {
4650 0 : vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4651 : vmf->address, &vmf->ptl);
4652 0 : if (unlikely(!vmf->pte))
4653 : ret = VM_FAULT_SIGBUS;
4654 : else {
4655 : /*
4656 : * Make sure this is not a temporary clearing of pte
4657 : * by holding ptl and checking again. A R/M/W update
4658 : * of pte involves: take ptl, clearing the pte so that
4659 : * we don't have concurrent modification by hardware
4660 : * followed by an update.
4661 : */
4662 0 : if (unlikely(pte_none(ptep_get(vmf->pte))))
4663 : ret = VM_FAULT_SIGBUS;
4664 : else
4665 0 : ret = VM_FAULT_NOPAGE;
4666 :
4667 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4668 : }
4669 0 : } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4670 0 : ret = do_read_fault(vmf);
4671 0 : else if (!(vma->vm_flags & VM_SHARED))
4672 0 : ret = do_cow_fault(vmf);
4673 : else
4674 0 : ret = do_shared_fault(vmf);
4675 :
4676 : /* preallocated pagetable is unused: free it */
4677 0 : if (vmf->prealloc_pte) {
4678 0 : pte_free(vm_mm, vmf->prealloc_pte);
4679 0 : vmf->prealloc_pte = NULL;
4680 : }
4681 0 : return ret;
4682 : }
4683 :
4684 0 : int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4685 : unsigned long addr, int page_nid, int *flags)
4686 : {
4687 0 : get_page(page);
4688 :
4689 : /* Record the current PID acceesing VMA */
4690 0 : vma_set_access_pid_bit(vma);
4691 :
4692 : count_vm_numa_event(NUMA_HINT_FAULTS);
4693 0 : if (page_nid == numa_node_id()) {
4694 : count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4695 0 : *flags |= TNF_FAULT_LOCAL;
4696 : }
4697 :
4698 0 : return mpol_misplaced(page, vma, addr);
4699 : }
4700 :
4701 : static vm_fault_t do_numa_page(struct vm_fault *vmf)
4702 : {
4703 : struct vm_area_struct *vma = vmf->vma;
4704 : struct page *page = NULL;
4705 : int page_nid = NUMA_NO_NODE;
4706 : bool writable = false;
4707 : int last_cpupid;
4708 : int target_nid;
4709 : pte_t pte, old_pte;
4710 : int flags = 0;
4711 :
4712 : /*
4713 : * The "pte" at this point cannot be used safely without
4714 : * validation through pte_unmap_same(). It's of NUMA type but
4715 : * the pfn may be screwed if the read is non atomic.
4716 : */
4717 : spin_lock(vmf->ptl);
4718 : if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4719 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4720 : goto out;
4721 : }
4722 :
4723 : /* Get the normal PTE */
4724 : old_pte = ptep_get(vmf->pte);
4725 : pte = pte_modify(old_pte, vma->vm_page_prot);
4726 :
4727 : /*
4728 : * Detect now whether the PTE could be writable; this information
4729 : * is only valid while holding the PT lock.
4730 : */
4731 : writable = pte_write(pte);
4732 : if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4733 : can_change_pte_writable(vma, vmf->address, pte))
4734 : writable = true;
4735 :
4736 : page = vm_normal_page(vma, vmf->address, pte);
4737 : if (!page || is_zone_device_page(page))
4738 : goto out_map;
4739 :
4740 : /* TODO: handle PTE-mapped THP */
4741 : if (PageCompound(page))
4742 : goto out_map;
4743 :
4744 : /*
4745 : * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4746 : * much anyway since they can be in shared cache state. This misses
4747 : * the case where a mapping is writable but the process never writes
4748 : * to it but pte_write gets cleared during protection updates and
4749 : * pte_dirty has unpredictable behaviour between PTE scan updates,
4750 : * background writeback, dirty balancing and application behaviour.
4751 : */
4752 : if (!writable)
4753 : flags |= TNF_NO_GROUP;
4754 :
4755 : /*
4756 : * Flag if the page is shared between multiple address spaces. This
4757 : * is later used when determining whether to group tasks together
4758 : */
4759 : if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4760 : flags |= TNF_SHARED;
4761 :
4762 : page_nid = page_to_nid(page);
4763 : /*
4764 : * For memory tiering mode, cpupid of slow memory page is used
4765 : * to record page access time. So use default value.
4766 : */
4767 : if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4768 : !node_is_toptier(page_nid))
4769 : last_cpupid = (-1 & LAST_CPUPID_MASK);
4770 : else
4771 : last_cpupid = page_cpupid_last(page);
4772 : target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4773 : &flags);
4774 : if (target_nid == NUMA_NO_NODE) {
4775 : put_page(page);
4776 : goto out_map;
4777 : }
4778 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4779 : writable = false;
4780 :
4781 : /* Migrate to the requested node */
4782 : if (migrate_misplaced_page(page, vma, target_nid)) {
4783 : page_nid = target_nid;
4784 : flags |= TNF_MIGRATED;
4785 : } else {
4786 : flags |= TNF_MIGRATE_FAIL;
4787 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 : vmf->address, &vmf->ptl);
4789 : if (unlikely(!vmf->pte))
4790 : goto out;
4791 : if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4792 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4793 : goto out;
4794 : }
4795 : goto out_map;
4796 : }
4797 :
4798 : out:
4799 : if (page_nid != NUMA_NO_NODE)
4800 : task_numa_fault(last_cpupid, page_nid, 1, flags);
4801 : return 0;
4802 : out_map:
4803 : /*
4804 : * Make it present again, depending on how arch implements
4805 : * non-accessible ptes, some can allow access by kernel mode.
4806 : */
4807 : old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4808 : pte = pte_modify(old_pte, vma->vm_page_prot);
4809 : pte = pte_mkyoung(pte);
4810 : if (writable)
4811 : pte = pte_mkwrite(pte);
4812 : ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4813 : update_mmu_cache(vma, vmf->address, vmf->pte);
4814 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4815 : goto out;
4816 : }
4817 :
4818 : static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4819 : {
4820 : if (vma_is_anonymous(vmf->vma))
4821 : return do_huge_pmd_anonymous_page(vmf);
4822 : if (vmf->vma->vm_ops->huge_fault)
4823 : return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824 : return VM_FAULT_FALLBACK;
4825 : }
4826 :
4827 : /* `inline' is required to avoid gcc 4.1.2 build error */
4828 : static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4829 : {
4830 : const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4831 : vm_fault_t ret;
4832 :
4833 : if (vma_is_anonymous(vmf->vma)) {
4834 : if (likely(!unshare) &&
4835 : userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4836 : return handle_userfault(vmf, VM_UFFD_WP);
4837 : return do_huge_pmd_wp_page(vmf);
4838 : }
4839 :
4840 : if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4841 : if (vmf->vma->vm_ops->huge_fault) {
4842 : ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4843 : if (!(ret & VM_FAULT_FALLBACK))
4844 : return ret;
4845 : }
4846 : }
4847 :
4848 : /* COW or write-notify handled on pte level: split pmd. */
4849 : __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4850 :
4851 : return VM_FAULT_FALLBACK;
4852 : }
4853 :
4854 : static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4855 : {
4856 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4857 : defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4858 : /* No support for anonymous transparent PUD pages yet */
4859 : if (vma_is_anonymous(vmf->vma))
4860 : return VM_FAULT_FALLBACK;
4861 : if (vmf->vma->vm_ops->huge_fault)
4862 : return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4863 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4864 : return VM_FAULT_FALLBACK;
4865 : }
4866 :
4867 : static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4868 : {
4869 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4870 : defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4871 : vm_fault_t ret;
4872 :
4873 : /* No support for anonymous transparent PUD pages yet */
4874 : if (vma_is_anonymous(vmf->vma))
4875 : goto split;
4876 : if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877 : if (vmf->vma->vm_ops->huge_fault) {
4878 : ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4879 : if (!(ret & VM_FAULT_FALLBACK))
4880 : return ret;
4881 : }
4882 : }
4883 : split:
4884 : /* COW or write-notify not handled on PUD level: split pud.*/
4885 : __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4886 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4887 : return VM_FAULT_FALLBACK;
4888 : }
4889 :
4890 : /*
4891 : * These routines also need to handle stuff like marking pages dirty
4892 : * and/or accessed for architectures that don't do it in hardware (most
4893 : * RISC architectures). The early dirtying is also good on the i386.
4894 : *
4895 : * There is also a hook called "update_mmu_cache()" that architectures
4896 : * with external mmu caches can use to update those (ie the Sparc or
4897 : * PowerPC hashed page tables that act as extended TLBs).
4898 : *
4899 : * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4900 : * concurrent faults).
4901 : *
4902 : * The mmap_lock may have been released depending on flags and our return value.
4903 : * See filemap_fault() and __folio_lock_or_retry().
4904 : */
4905 0 : static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4906 : {
4907 : pte_t entry;
4908 :
4909 0 : if (unlikely(pmd_none(*vmf->pmd))) {
4910 : /*
4911 : * Leave __pte_alloc() until later: because vm_ops->fault may
4912 : * want to allocate huge page, and if we expose page table
4913 : * for an instant, it will be difficult to retract from
4914 : * concurrent faults and from rmap lookups.
4915 : */
4916 0 : vmf->pte = NULL;
4917 0 : vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4918 : } else {
4919 : /*
4920 : * A regular pmd is established and it can't morph into a huge
4921 : * pmd by anon khugepaged, since that takes mmap_lock in write
4922 : * mode; but shmem or file collapse to THP could still morph
4923 : * it into a huge pmd: just retry later if so.
4924 : */
4925 0 : vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4926 : vmf->address, &vmf->ptl);
4927 0 : if (unlikely(!vmf->pte))
4928 : return 0;
4929 0 : vmf->orig_pte = ptep_get_lockless(vmf->pte);
4930 0 : vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4931 :
4932 0 : if (pte_none(vmf->orig_pte)) {
4933 0 : pte_unmap(vmf->pte);
4934 0 : vmf->pte = NULL;
4935 : }
4936 : }
4937 :
4938 0 : if (!vmf->pte)
4939 0 : return do_pte_missing(vmf);
4940 :
4941 0 : if (!pte_present(vmf->orig_pte))
4942 0 : return do_swap_page(vmf);
4943 :
4944 0 : if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4945 : return do_numa_page(vmf);
4946 :
4947 0 : spin_lock(vmf->ptl);
4948 0 : entry = vmf->orig_pte;
4949 0 : if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4950 : update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4951 : goto unlock;
4952 : }
4953 0 : if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954 0 : if (!pte_write(entry))
4955 0 : return do_wp_page(vmf);
4956 0 : else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957 : entry = pte_mkdirty(entry);
4958 : }
4959 0 : entry = pte_mkyoung(entry);
4960 0 : if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961 0 : vmf->flags & FAULT_FLAG_WRITE)) {
4962 : update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4963 : } else {
4964 : /* Skip spurious TLB flush for retried page fault */
4965 0 : if (vmf->flags & FAULT_FLAG_TRIED)
4966 : goto unlock;
4967 : /*
4968 : * This is needed only for protection faults but the arch code
4969 : * is not yet telling us if this is a protection fault or not.
4970 : * This still avoids useless tlb flushes for .text page faults
4971 : * with threads.
4972 : */
4973 0 : if (vmf->flags & FAULT_FLAG_WRITE)
4974 0 : flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4975 : vmf->pte);
4976 : }
4977 : unlock:
4978 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4979 0 : return 0;
4980 : }
4981 :
4982 : /*
4983 : * By the time we get here, we already hold the mm semaphore
4984 : *
4985 : * The mmap_lock may have been released depending on flags and our
4986 : * return value. See filemap_fault() and __folio_lock_or_retry().
4987 : */
4988 0 : static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4989 : unsigned long address, unsigned int flags)
4990 : {
4991 0 : struct vm_fault vmf = {
4992 : .vma = vma,
4993 0 : .address = address & PAGE_MASK,
4994 : .real_address = address,
4995 : .flags = flags,
4996 0 : .pgoff = linear_page_index(vma, address),
4997 0 : .gfp_mask = __get_fault_gfp_mask(vma),
4998 : };
4999 0 : struct mm_struct *mm = vma->vm_mm;
5000 0 : unsigned long vm_flags = vma->vm_flags;
5001 : pgd_t *pgd;
5002 : p4d_t *p4d;
5003 : vm_fault_t ret;
5004 :
5005 0 : pgd = pgd_offset(mm, address);
5006 0 : p4d = p4d_alloc(mm, pgd, address);
5007 0 : if (!p4d)
5008 : return VM_FAULT_OOM;
5009 :
5010 0 : vmf.pud = pud_alloc(mm, p4d, address);
5011 : if (!vmf.pud)
5012 : return VM_FAULT_OOM;
5013 : retry_pud:
5014 : if (pud_none(*vmf.pud) &&
5015 : hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016 : ret = create_huge_pud(&vmf);
5017 : if (!(ret & VM_FAULT_FALLBACK))
5018 : return ret;
5019 : } else {
5020 : pud_t orig_pud = *vmf.pud;
5021 :
5022 0 : barrier();
5023 0 : if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5024 :
5025 : /*
5026 : * TODO once we support anonymous PUDs: NUMA case and
5027 : * FAULT_FLAG_UNSHARE handling.
5028 : */
5029 : if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5030 : ret = wp_huge_pud(&vmf, orig_pud);
5031 : if (!(ret & VM_FAULT_FALLBACK))
5032 : return ret;
5033 : } else {
5034 : huge_pud_set_accessed(&vmf, orig_pud);
5035 : return 0;
5036 : }
5037 : }
5038 : }
5039 :
5040 0 : vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5041 0 : if (!vmf.pmd)
5042 : return VM_FAULT_OOM;
5043 :
5044 : /* Huge pud page fault raced with pmd_alloc? */
5045 0 : if (pud_trans_unstable(vmf.pud))
5046 : goto retry_pud;
5047 :
5048 : if (pmd_none(*vmf.pmd) &&
5049 : hugepage_vma_check(vma, vm_flags, false, true, true)) {
5050 : ret = create_huge_pmd(&vmf);
5051 : if (!(ret & VM_FAULT_FALLBACK))
5052 : return ret;
5053 : } else {
5054 0 : vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5055 :
5056 0 : if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057 : VM_BUG_ON(thp_migration_supported() &&
5058 : !is_pmd_migration_entry(vmf.orig_pmd));
5059 : if (is_pmd_migration_entry(vmf.orig_pmd))
5060 : pmd_migration_entry_wait(mm, vmf.pmd);
5061 : return 0;
5062 : }
5063 0 : if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064 : if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065 : return do_huge_pmd_numa_page(&vmf);
5066 :
5067 : if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068 : !pmd_write(vmf.orig_pmd)) {
5069 : ret = wp_huge_pmd(&vmf);
5070 : if (!(ret & VM_FAULT_FALLBACK))
5071 : return ret;
5072 : } else {
5073 : huge_pmd_set_accessed(&vmf);
5074 : return 0;
5075 : }
5076 : }
5077 : }
5078 :
5079 0 : return handle_pte_fault(&vmf);
5080 : }
5081 :
5082 : /**
5083 : * mm_account_fault - Do page fault accounting
5084 : *
5085 : * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5086 : * of perf event counters, but we'll still do the per-task accounting to
5087 : * the task who triggered this page fault.
5088 : * @address: the faulted address.
5089 : * @flags: the fault flags.
5090 : * @ret: the fault retcode.
5091 : *
5092 : * This will take care of most of the page fault accounting. Meanwhile, it
5093 : * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094 : * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095 : * still be in per-arch page fault handlers at the entry of page fault.
5096 : */
5097 0 : static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5098 : unsigned long address, unsigned int flags,
5099 : vm_fault_t ret)
5100 : {
5101 : bool major;
5102 :
5103 : /* Incomplete faults will be accounted upon completion. */
5104 0 : if (ret & VM_FAULT_RETRY)
5105 : return;
5106 :
5107 : /*
5108 : * To preserve the behavior of older kernels, PGFAULT counters record
5109 : * both successful and failed faults, as opposed to perf counters,
5110 : * which ignore failed cases.
5111 : */
5112 0 : count_vm_event(PGFAULT);
5113 0 : count_memcg_event_mm(mm, PGFAULT);
5114 :
5115 : /*
5116 : * Do not account for unsuccessful faults (e.g. when the address wasn't
5117 : * valid). That includes arch_vma_access_permitted() failing before
5118 : * reaching here. So this is not a "this many hardware page faults"
5119 : * counter. We should use the hw profiling for that.
5120 : */
5121 0 : if (ret & VM_FAULT_ERROR)
5122 : return;
5123 :
5124 : /*
5125 : * We define the fault as a major fault when the final successful fault
5126 : * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5127 : * handle it immediately previously).
5128 : */
5129 0 : major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5130 :
5131 0 : if (major)
5132 0 : current->maj_flt++;
5133 : else
5134 0 : current->min_flt++;
5135 :
5136 : /*
5137 : * If the fault is done for GUP, regs will be NULL. We only do the
5138 : * accounting for the per thread fault counters who triggered the
5139 : * fault, and we skip the perf event updates.
5140 : */
5141 : if (!regs)
5142 : return;
5143 :
5144 : if (major)
5145 : perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5146 : else
5147 : perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5148 : }
5149 :
5150 : #ifdef CONFIG_LRU_GEN
5151 : static void lru_gen_enter_fault(struct vm_area_struct *vma)
5152 : {
5153 : /* the LRU algorithm only applies to accesses with recency */
5154 : current->in_lru_fault = vma_has_recency(vma);
5155 : }
5156 :
5157 : static void lru_gen_exit_fault(void)
5158 : {
5159 : current->in_lru_fault = false;
5160 : }
5161 : #else
5162 : static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 : {
5164 : }
5165 :
5166 : static void lru_gen_exit_fault(void)
5167 : {
5168 : }
5169 : #endif /* CONFIG_LRU_GEN */
5170 :
5171 0 : static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5172 : unsigned int *flags)
5173 : {
5174 0 : if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5175 0 : if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5176 : return VM_FAULT_SIGSEGV;
5177 : /*
5178 : * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5179 : * just treat it like an ordinary read-fault otherwise.
5180 : */
5181 0 : if (!is_cow_mapping(vma->vm_flags))
5182 0 : *flags &= ~FAULT_FLAG_UNSHARE;
5183 0 : } else if (*flags & FAULT_FLAG_WRITE) {
5184 : /* Write faults on read-only mappings are impossible ... */
5185 0 : if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5186 : return VM_FAULT_SIGSEGV;
5187 : /* ... and FOLL_FORCE only applies to COW mappings. */
5188 0 : if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5189 : !is_cow_mapping(vma->vm_flags)))
5190 : return VM_FAULT_SIGSEGV;
5191 : }
5192 : return 0;
5193 : }
5194 :
5195 : /*
5196 : * By the time we get here, we already hold the mm semaphore
5197 : *
5198 : * The mmap_lock may have been released depending on flags and our
5199 : * return value. See filemap_fault() and __folio_lock_or_retry().
5200 : */
5201 0 : vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5202 : unsigned int flags, struct pt_regs *regs)
5203 : {
5204 : /* If the fault handler drops the mmap_lock, vma may be freed */
5205 0 : struct mm_struct *mm = vma->vm_mm;
5206 : vm_fault_t ret;
5207 :
5208 0 : __set_current_state(TASK_RUNNING);
5209 :
5210 0 : ret = sanitize_fault_flags(vma, &flags);
5211 0 : if (ret)
5212 : goto out;
5213 :
5214 0 : if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5215 0 : flags & FAULT_FLAG_INSTRUCTION,
5216 0 : flags & FAULT_FLAG_REMOTE)) {
5217 : ret = VM_FAULT_SIGSEGV;
5218 : goto out;
5219 : }
5220 :
5221 : /*
5222 : * Enable the memcg OOM handling for faults triggered in user
5223 : * space. Kernel faults are handled more gracefully.
5224 : */
5225 : if (flags & FAULT_FLAG_USER)
5226 : mem_cgroup_enter_user_fault();
5227 :
5228 0 : lru_gen_enter_fault(vma);
5229 :
5230 0 : if (unlikely(is_vm_hugetlb_page(vma)))
5231 : ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5232 : else
5233 0 : ret = __handle_mm_fault(vma, address, flags);
5234 :
5235 : lru_gen_exit_fault();
5236 :
5237 0 : if (flags & FAULT_FLAG_USER) {
5238 : mem_cgroup_exit_user_fault();
5239 : /*
5240 : * The task may have entered a memcg OOM situation but
5241 : * if the allocation error was handled gracefully (no
5242 : * VM_FAULT_OOM), there is no need to kill anything.
5243 : * Just clean up the OOM state peacefully.
5244 : */
5245 0 : if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5246 : mem_cgroup_oom_synchronize(false);
5247 : }
5248 : out:
5249 0 : mm_account_fault(mm, regs, address, flags, ret);
5250 :
5251 0 : return ret;
5252 : }
5253 : EXPORT_SYMBOL_GPL(handle_mm_fault);
5254 :
5255 : #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5256 : #include <linux/extable.h>
5257 :
5258 : static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5259 : {
5260 : /* Even if this succeeds, make it clear we *might* have slept */
5261 : if (likely(mmap_read_trylock(mm))) {
5262 : might_sleep();
5263 : return true;
5264 : }
5265 :
5266 : if (regs && !user_mode(regs)) {
5267 : unsigned long ip = instruction_pointer(regs);
5268 : if (!search_exception_tables(ip))
5269 : return false;
5270 : }
5271 :
5272 : return !mmap_read_lock_killable(mm);
5273 : }
5274 :
5275 : static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5276 : {
5277 : /*
5278 : * We don't have this operation yet.
5279 : *
5280 : * It should be easy enough to do: it's basically a
5281 : * atomic_long_try_cmpxchg_acquire()
5282 : * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5283 : * it also needs the proper lockdep magic etc.
5284 : */
5285 : return false;
5286 : }
5287 :
5288 : static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5289 : {
5290 : mmap_read_unlock(mm);
5291 : if (regs && !user_mode(regs)) {
5292 : unsigned long ip = instruction_pointer(regs);
5293 : if (!search_exception_tables(ip))
5294 : return false;
5295 : }
5296 : return !mmap_write_lock_killable(mm);
5297 : }
5298 :
5299 : /*
5300 : * Helper for page fault handling.
5301 : *
5302 : * This is kind of equivalend to "mmap_read_lock()" followed
5303 : * by "find_extend_vma()", except it's a lot more careful about
5304 : * the locking (and will drop the lock on failure).
5305 : *
5306 : * For example, if we have a kernel bug that causes a page
5307 : * fault, we don't want to just use mmap_read_lock() to get
5308 : * the mm lock, because that would deadlock if the bug were
5309 : * to happen while we're holding the mm lock for writing.
5310 : *
5311 : * So this checks the exception tables on kernel faults in
5312 : * order to only do this all for instructions that are actually
5313 : * expected to fault.
5314 : *
5315 : * We can also actually take the mm lock for writing if we
5316 : * need to extend the vma, which helps the VM layer a lot.
5317 : */
5318 : struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5319 : unsigned long addr, struct pt_regs *regs)
5320 : {
5321 : struct vm_area_struct *vma;
5322 :
5323 : if (!get_mmap_lock_carefully(mm, regs))
5324 : return NULL;
5325 :
5326 : vma = find_vma(mm, addr);
5327 : if (likely(vma && (vma->vm_start <= addr)))
5328 : return vma;
5329 :
5330 : /*
5331 : * Well, dang. We might still be successful, but only
5332 : * if we can extend a vma to do so.
5333 : */
5334 : if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5335 : mmap_read_unlock(mm);
5336 : return NULL;
5337 : }
5338 :
5339 : /*
5340 : * We can try to upgrade the mmap lock atomically,
5341 : * in which case we can continue to use the vma
5342 : * we already looked up.
5343 : *
5344 : * Otherwise we'll have to drop the mmap lock and
5345 : * re-take it, and also look up the vma again,
5346 : * re-checking it.
5347 : */
5348 : if (!mmap_upgrade_trylock(mm)) {
5349 : if (!upgrade_mmap_lock_carefully(mm, regs))
5350 : return NULL;
5351 :
5352 : vma = find_vma(mm, addr);
5353 : if (!vma)
5354 : goto fail;
5355 : if (vma->vm_start <= addr)
5356 : goto success;
5357 : if (!(vma->vm_flags & VM_GROWSDOWN))
5358 : goto fail;
5359 : }
5360 :
5361 : if (expand_stack_locked(vma, addr))
5362 : goto fail;
5363 :
5364 : success:
5365 : mmap_write_downgrade(mm);
5366 : return vma;
5367 :
5368 : fail:
5369 : mmap_write_unlock(mm);
5370 : return NULL;
5371 : }
5372 : #endif
5373 :
5374 : #ifdef CONFIG_PER_VMA_LOCK
5375 : /*
5376 : * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5377 : * stable and not isolated. If the VMA is not found or is being modified the
5378 : * function returns NULL.
5379 : */
5380 : struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5381 : unsigned long address)
5382 : {
5383 : MA_STATE(mas, &mm->mm_mt, address, address);
5384 : struct vm_area_struct *vma;
5385 :
5386 : rcu_read_lock();
5387 : retry:
5388 : vma = mas_walk(&mas);
5389 : if (!vma)
5390 : goto inval;
5391 :
5392 : /* Only anonymous and tcp vmas are supported for now */
5393 : if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5394 : goto inval;
5395 :
5396 : /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5397 : if (!vma->anon_vma && !vma_is_tcp(vma))
5398 : goto inval;
5399 :
5400 : if (!vma_start_read(vma))
5401 : goto inval;
5402 :
5403 : /*
5404 : * Due to the possibility of userfault handler dropping mmap_lock, avoid
5405 : * it for now and fall back to page fault handling under mmap_lock.
5406 : */
5407 : if (userfaultfd_armed(vma)) {
5408 : vma_end_read(vma);
5409 : goto inval;
5410 : }
5411 :
5412 : /* Check since vm_start/vm_end might change before we lock the VMA */
5413 : if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5414 : vma_end_read(vma);
5415 : goto inval;
5416 : }
5417 :
5418 : /* Check if the VMA got isolated after we found it */
5419 : if (vma->detached) {
5420 : vma_end_read(vma);
5421 : count_vm_vma_lock_event(VMA_LOCK_MISS);
5422 : /* The area was replaced with another one */
5423 : goto retry;
5424 : }
5425 :
5426 : rcu_read_unlock();
5427 : return vma;
5428 : inval:
5429 : rcu_read_unlock();
5430 : count_vm_vma_lock_event(VMA_LOCK_ABORT);
5431 : return NULL;
5432 : }
5433 : #endif /* CONFIG_PER_VMA_LOCK */
5434 :
5435 : #ifndef __PAGETABLE_P4D_FOLDED
5436 : /*
5437 : * Allocate p4d page table.
5438 : * We've already handled the fast-path in-line.
5439 : */
5440 : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5441 : {
5442 : p4d_t *new = p4d_alloc_one(mm, address);
5443 : if (!new)
5444 : return -ENOMEM;
5445 :
5446 : spin_lock(&mm->page_table_lock);
5447 : if (pgd_present(*pgd)) { /* Another has populated it */
5448 : p4d_free(mm, new);
5449 : } else {
5450 : smp_wmb(); /* See comment in pmd_install() */
5451 : pgd_populate(mm, pgd, new);
5452 : }
5453 : spin_unlock(&mm->page_table_lock);
5454 : return 0;
5455 : }
5456 : #endif /* __PAGETABLE_P4D_FOLDED */
5457 :
5458 : #ifndef __PAGETABLE_PUD_FOLDED
5459 : /*
5460 : * Allocate page upper directory.
5461 : * We've already handled the fast-path in-line.
5462 : */
5463 : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5464 : {
5465 : pud_t *new = pud_alloc_one(mm, address);
5466 : if (!new)
5467 : return -ENOMEM;
5468 :
5469 : spin_lock(&mm->page_table_lock);
5470 : if (!p4d_present(*p4d)) {
5471 : mm_inc_nr_puds(mm);
5472 : smp_wmb(); /* See comment in pmd_install() */
5473 : p4d_populate(mm, p4d, new);
5474 : } else /* Another has populated it */
5475 : pud_free(mm, new);
5476 : spin_unlock(&mm->page_table_lock);
5477 : return 0;
5478 : }
5479 : #endif /* __PAGETABLE_PUD_FOLDED */
5480 :
5481 : #ifndef __PAGETABLE_PMD_FOLDED
5482 : /*
5483 : * Allocate page middle directory.
5484 : * We've already handled the fast-path in-line.
5485 : */
5486 1 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5487 : {
5488 : spinlock_t *ptl;
5489 1 : pmd_t *new = pmd_alloc_one(mm, address);
5490 1 : if (!new)
5491 : return -ENOMEM;
5492 :
5493 2 : ptl = pud_lock(mm, pud);
5494 1 : if (!pud_present(*pud)) {
5495 1 : mm_inc_nr_pmds(mm);
5496 1 : smp_wmb(); /* See comment in pmd_install() */
5497 1 : pud_populate(mm, pud, new);
5498 : } else { /* Another has populated it */
5499 0 : pmd_free(mm, new);
5500 : }
5501 1 : spin_unlock(ptl);
5502 1 : return 0;
5503 : }
5504 : #endif /* __PAGETABLE_PMD_FOLDED */
5505 :
5506 : /**
5507 : * follow_pte - look up PTE at a user virtual address
5508 : * @mm: the mm_struct of the target address space
5509 : * @address: user virtual address
5510 : * @ptepp: location to store found PTE
5511 : * @ptlp: location to store the lock for the PTE
5512 : *
5513 : * On a successful return, the pointer to the PTE is stored in @ptepp;
5514 : * the corresponding lock is taken and its location is stored in @ptlp.
5515 : * The contents of the PTE are only stable until @ptlp is released;
5516 : * any further use, if any, must be protected against invalidation
5517 : * with MMU notifiers.
5518 : *
5519 : * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5520 : * should be taken for read.
5521 : *
5522 : * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5523 : * it is not a good general-purpose API.
5524 : *
5525 : * Return: zero on success, -ve otherwise.
5526 : */
5527 0 : int follow_pte(struct mm_struct *mm, unsigned long address,
5528 : pte_t **ptepp, spinlock_t **ptlp)
5529 : {
5530 : pgd_t *pgd;
5531 : p4d_t *p4d;
5532 : pud_t *pud;
5533 : pmd_t *pmd;
5534 : pte_t *ptep;
5535 :
5536 0 : pgd = pgd_offset(mm, address);
5537 : if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5538 : goto out;
5539 :
5540 0 : p4d = p4d_offset(pgd, address);
5541 : if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5542 : goto out;
5543 :
5544 0 : pud = pud_offset(p4d, address);
5545 0 : if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5546 : goto out;
5547 :
5548 0 : pmd = pmd_offset(pud, address);
5549 : VM_BUG_ON(pmd_trans_huge(*pmd));
5550 :
5551 0 : ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5552 0 : if (!ptep)
5553 : goto out;
5554 0 : if (!pte_present(ptep_get(ptep)))
5555 : goto unlock;
5556 0 : *ptepp = ptep;
5557 0 : return 0;
5558 : unlock:
5559 0 : pte_unmap_unlock(ptep, *ptlp);
5560 : out:
5561 : return -EINVAL;
5562 : }
5563 : EXPORT_SYMBOL_GPL(follow_pte);
5564 :
5565 : /**
5566 : * follow_pfn - look up PFN at a user virtual address
5567 : * @vma: memory mapping
5568 : * @address: user virtual address
5569 : * @pfn: location to store found PFN
5570 : *
5571 : * Only IO mappings and raw PFN mappings are allowed.
5572 : *
5573 : * This function does not allow the caller to read the permissions
5574 : * of the PTE. Do not use it.
5575 : *
5576 : * Return: zero and the pfn at @pfn on success, -ve otherwise.
5577 : */
5578 0 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5579 : unsigned long *pfn)
5580 : {
5581 0 : int ret = -EINVAL;
5582 : spinlock_t *ptl;
5583 : pte_t *ptep;
5584 :
5585 0 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5586 : return ret;
5587 :
5588 0 : ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5589 0 : if (ret)
5590 : return ret;
5591 0 : *pfn = pte_pfn(ptep_get(ptep));
5592 0 : pte_unmap_unlock(ptep, ptl);
5593 0 : return 0;
5594 : }
5595 : EXPORT_SYMBOL(follow_pfn);
5596 :
5597 : #ifdef CONFIG_HAVE_IOREMAP_PROT
5598 : int follow_phys(struct vm_area_struct *vma,
5599 : unsigned long address, unsigned int flags,
5600 : unsigned long *prot, resource_size_t *phys)
5601 : {
5602 : int ret = -EINVAL;
5603 : pte_t *ptep, pte;
5604 : spinlock_t *ptl;
5605 :
5606 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5607 : goto out;
5608 :
5609 : if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5610 : goto out;
5611 : pte = ptep_get(ptep);
5612 :
5613 : if ((flags & FOLL_WRITE) && !pte_write(pte))
5614 : goto unlock;
5615 :
5616 : *prot = pgprot_val(pte_pgprot(pte));
5617 : *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5618 :
5619 : ret = 0;
5620 : unlock:
5621 : pte_unmap_unlock(ptep, ptl);
5622 : out:
5623 : return ret;
5624 : }
5625 :
5626 : /**
5627 : * generic_access_phys - generic implementation for iomem mmap access
5628 : * @vma: the vma to access
5629 : * @addr: userspace address, not relative offset within @vma
5630 : * @buf: buffer to read/write
5631 : * @len: length of transfer
5632 : * @write: set to FOLL_WRITE when writing, otherwise reading
5633 : *
5634 : * This is a generic implementation for &vm_operations_struct.access for an
5635 : * iomem mapping. This callback is used by access_process_vm() when the @vma is
5636 : * not page based.
5637 : */
5638 : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5639 : void *buf, int len, int write)
5640 : {
5641 : resource_size_t phys_addr;
5642 : unsigned long prot = 0;
5643 : void __iomem *maddr;
5644 : pte_t *ptep, pte;
5645 : spinlock_t *ptl;
5646 : int offset = offset_in_page(addr);
5647 : int ret = -EINVAL;
5648 :
5649 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5650 : return -EINVAL;
5651 :
5652 : retry:
5653 : if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5654 : return -EINVAL;
5655 : pte = ptep_get(ptep);
5656 : pte_unmap_unlock(ptep, ptl);
5657 :
5658 : prot = pgprot_val(pte_pgprot(pte));
5659 : phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5660 :
5661 : if ((write & FOLL_WRITE) && !pte_write(pte))
5662 : return -EINVAL;
5663 :
5664 : maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5665 : if (!maddr)
5666 : return -ENOMEM;
5667 :
5668 : if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5669 : goto out_unmap;
5670 :
5671 : if (!pte_same(pte, ptep_get(ptep))) {
5672 : pte_unmap_unlock(ptep, ptl);
5673 : iounmap(maddr);
5674 :
5675 : goto retry;
5676 : }
5677 :
5678 : if (write)
5679 : memcpy_toio(maddr + offset, buf, len);
5680 : else
5681 : memcpy_fromio(buf, maddr + offset, len);
5682 : ret = len;
5683 : pte_unmap_unlock(ptep, ptl);
5684 : out_unmap:
5685 : iounmap(maddr);
5686 :
5687 : return ret;
5688 : }
5689 : EXPORT_SYMBOL_GPL(generic_access_phys);
5690 : #endif
5691 :
5692 : /*
5693 : * Access another process' address space as given in mm.
5694 : */
5695 0 : int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5696 : int len, unsigned int gup_flags)
5697 : {
5698 0 : void *old_buf = buf;
5699 0 : int write = gup_flags & FOLL_WRITE;
5700 :
5701 0 : if (mmap_read_lock_killable(mm))
5702 : return 0;
5703 :
5704 : /* Avoid triggering the temporary warning in __get_user_pages */
5705 0 : if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5706 : return 0;
5707 :
5708 : /* ignore errors, just check how much was successfully transferred */
5709 0 : while (len) {
5710 : int bytes, offset;
5711 : void *maddr;
5712 0 : struct vm_area_struct *vma = NULL;
5713 0 : struct page *page = get_user_page_vma_remote(mm, addr,
5714 : gup_flags, &vma);
5715 :
5716 0 : if (IS_ERR_OR_NULL(page)) {
5717 : /* We might need to expand the stack to access it */
5718 0 : vma = vma_lookup(mm, addr);
5719 0 : if (!vma) {
5720 0 : vma = expand_stack(mm, addr);
5721 :
5722 : /* mmap_lock was dropped on failure */
5723 0 : if (!vma)
5724 0 : return buf - old_buf;
5725 :
5726 : /* Try again if stack expansion worked */
5727 0 : continue;
5728 : }
5729 :
5730 :
5731 : /*
5732 : * Check if this is a VM_IO | VM_PFNMAP VMA, which
5733 : * we can access using slightly different code.
5734 : */
5735 0 : bytes = 0;
5736 : #ifdef CONFIG_HAVE_IOREMAP_PROT
5737 : if (vma->vm_ops && vma->vm_ops->access)
5738 : bytes = vma->vm_ops->access(vma, addr, buf,
5739 : len, write);
5740 : #endif
5741 : if (bytes <= 0)
5742 : break;
5743 : } else {
5744 0 : bytes = len;
5745 0 : offset = addr & (PAGE_SIZE-1);
5746 0 : if (bytes > PAGE_SIZE-offset)
5747 0 : bytes = PAGE_SIZE-offset;
5748 :
5749 0 : maddr = kmap(page);
5750 0 : if (write) {
5751 0 : copy_to_user_page(vma, page, addr,
5752 : maddr + offset, buf, bytes);
5753 0 : set_page_dirty_lock(page);
5754 : } else {
5755 0 : copy_from_user_page(vma, page, addr,
5756 : buf, maddr + offset, bytes);
5757 : }
5758 0 : kunmap(page);
5759 0 : put_page(page);
5760 : }
5761 0 : len -= bytes;
5762 0 : buf += bytes;
5763 0 : addr += bytes;
5764 : }
5765 0 : mmap_read_unlock(mm);
5766 :
5767 0 : return buf - old_buf;
5768 : }
5769 :
5770 : /**
5771 : * access_remote_vm - access another process' address space
5772 : * @mm: the mm_struct of the target address space
5773 : * @addr: start address to access
5774 : * @buf: source or destination buffer
5775 : * @len: number of bytes to transfer
5776 : * @gup_flags: flags modifying lookup behaviour
5777 : *
5778 : * The caller must hold a reference on @mm.
5779 : *
5780 : * Return: number of bytes copied from source to destination.
5781 : */
5782 0 : int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5783 : void *buf, int len, unsigned int gup_flags)
5784 : {
5785 0 : return __access_remote_vm(mm, addr, buf, len, gup_flags);
5786 : }
5787 :
5788 : /*
5789 : * Access another process' address space.
5790 : * Source/target buffer must be kernel space,
5791 : * Do not walk the page table directly, use get_user_pages
5792 : */
5793 0 : int access_process_vm(struct task_struct *tsk, unsigned long addr,
5794 : void *buf, int len, unsigned int gup_flags)
5795 : {
5796 : struct mm_struct *mm;
5797 : int ret;
5798 :
5799 0 : mm = get_task_mm(tsk);
5800 0 : if (!mm)
5801 : return 0;
5802 :
5803 0 : ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5804 :
5805 0 : mmput(mm);
5806 :
5807 0 : return ret;
5808 : }
5809 : EXPORT_SYMBOL_GPL(access_process_vm);
5810 :
5811 : /*
5812 : * Print the name of a VMA.
5813 : */
5814 0 : void print_vma_addr(char *prefix, unsigned long ip)
5815 : {
5816 0 : struct mm_struct *mm = current->mm;
5817 : struct vm_area_struct *vma;
5818 :
5819 : /*
5820 : * we might be running from an atomic context so we cannot sleep
5821 : */
5822 0 : if (!mmap_read_trylock(mm))
5823 : return;
5824 :
5825 0 : vma = find_vma(mm, ip);
5826 0 : if (vma && vma->vm_file) {
5827 0 : struct file *f = vma->vm_file;
5828 0 : char *buf = (char *)__get_free_page(GFP_NOWAIT);
5829 0 : if (buf) {
5830 : char *p;
5831 :
5832 0 : p = file_path(f, buf, PAGE_SIZE);
5833 0 : if (IS_ERR(p))
5834 0 : p = "?";
5835 0 : printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5836 : vma->vm_start,
5837 : vma->vm_end - vma->vm_start);
5838 0 : free_page((unsigned long)buf);
5839 : }
5840 : }
5841 : mmap_read_unlock(mm);
5842 : }
5843 :
5844 : #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5845 : void __might_fault(const char *file, int line)
5846 : {
5847 : if (pagefault_disabled())
5848 : return;
5849 : __might_sleep(file, line);
5850 : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5851 : if (current->mm)
5852 : might_lock_read(¤t->mm->mmap_lock);
5853 : #endif
5854 : }
5855 : EXPORT_SYMBOL(__might_fault);
5856 : #endif
5857 :
5858 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5859 : /*
5860 : * Process all subpages of the specified huge page with the specified
5861 : * operation. The target subpage will be processed last to keep its
5862 : * cache lines hot.
5863 : */
5864 : static inline int process_huge_page(
5865 : unsigned long addr_hint, unsigned int pages_per_huge_page,
5866 : int (*process_subpage)(unsigned long addr, int idx, void *arg),
5867 : void *arg)
5868 : {
5869 : int i, n, base, l, ret;
5870 : unsigned long addr = addr_hint &
5871 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5872 :
5873 : /* Process target subpage last to keep its cache lines hot */
5874 : might_sleep();
5875 : n = (addr_hint - addr) / PAGE_SIZE;
5876 : if (2 * n <= pages_per_huge_page) {
5877 : /* If target subpage in first half of huge page */
5878 : base = 0;
5879 : l = n;
5880 : /* Process subpages at the end of huge page */
5881 : for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5882 : cond_resched();
5883 : ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5884 : if (ret)
5885 : return ret;
5886 : }
5887 : } else {
5888 : /* If target subpage in second half of huge page */
5889 : base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5890 : l = pages_per_huge_page - n;
5891 : /* Process subpages at the begin of huge page */
5892 : for (i = 0; i < base; i++) {
5893 : cond_resched();
5894 : ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5895 : if (ret)
5896 : return ret;
5897 : }
5898 : }
5899 : /*
5900 : * Process remaining subpages in left-right-left-right pattern
5901 : * towards the target subpage
5902 : */
5903 : for (i = 0; i < l; i++) {
5904 : int left_idx = base + i;
5905 : int right_idx = base + 2 * l - 1 - i;
5906 :
5907 : cond_resched();
5908 : ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5909 : if (ret)
5910 : return ret;
5911 : cond_resched();
5912 : ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5913 : if (ret)
5914 : return ret;
5915 : }
5916 : return 0;
5917 : }
5918 :
5919 : static void clear_gigantic_page(struct page *page,
5920 : unsigned long addr,
5921 : unsigned int pages_per_huge_page)
5922 : {
5923 : int i;
5924 : struct page *p;
5925 :
5926 : might_sleep();
5927 : for (i = 0; i < pages_per_huge_page; i++) {
5928 : p = nth_page(page, i);
5929 : cond_resched();
5930 : clear_user_highpage(p, addr + i * PAGE_SIZE);
5931 : }
5932 : }
5933 :
5934 : static int clear_subpage(unsigned long addr, int idx, void *arg)
5935 : {
5936 : struct page *page = arg;
5937 :
5938 : clear_user_highpage(page + idx, addr);
5939 : return 0;
5940 : }
5941 :
5942 : void clear_huge_page(struct page *page,
5943 : unsigned long addr_hint, unsigned int pages_per_huge_page)
5944 : {
5945 : unsigned long addr = addr_hint &
5946 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5947 :
5948 : if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5949 : clear_gigantic_page(page, addr, pages_per_huge_page);
5950 : return;
5951 : }
5952 :
5953 : process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5954 : }
5955 :
5956 : static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5957 : unsigned long addr,
5958 : struct vm_area_struct *vma,
5959 : unsigned int pages_per_huge_page)
5960 : {
5961 : int i;
5962 : struct page *dst_page;
5963 : struct page *src_page;
5964 :
5965 : for (i = 0; i < pages_per_huge_page; i++) {
5966 : dst_page = folio_page(dst, i);
5967 : src_page = folio_page(src, i);
5968 :
5969 : cond_resched();
5970 : if (copy_mc_user_highpage(dst_page, src_page,
5971 : addr + i*PAGE_SIZE, vma)) {
5972 : memory_failure_queue(page_to_pfn(src_page), 0);
5973 : return -EHWPOISON;
5974 : }
5975 : }
5976 : return 0;
5977 : }
5978 :
5979 : struct copy_subpage_arg {
5980 : struct page *dst;
5981 : struct page *src;
5982 : struct vm_area_struct *vma;
5983 : };
5984 :
5985 : static int copy_subpage(unsigned long addr, int idx, void *arg)
5986 : {
5987 : struct copy_subpage_arg *copy_arg = arg;
5988 :
5989 : if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5990 : addr, copy_arg->vma)) {
5991 : memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5992 : return -EHWPOISON;
5993 : }
5994 : return 0;
5995 : }
5996 :
5997 : int copy_user_large_folio(struct folio *dst, struct folio *src,
5998 : unsigned long addr_hint, struct vm_area_struct *vma)
5999 : {
6000 : unsigned int pages_per_huge_page = folio_nr_pages(dst);
6001 : unsigned long addr = addr_hint &
6002 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6003 : struct copy_subpage_arg arg = {
6004 : .dst = &dst->page,
6005 : .src = &src->page,
6006 : .vma = vma,
6007 : };
6008 :
6009 : if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6010 : return copy_user_gigantic_page(dst, src, addr, vma,
6011 : pages_per_huge_page);
6012 :
6013 : return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6014 : }
6015 :
6016 : long copy_folio_from_user(struct folio *dst_folio,
6017 : const void __user *usr_src,
6018 : bool allow_pagefault)
6019 : {
6020 : void *kaddr;
6021 : unsigned long i, rc = 0;
6022 : unsigned int nr_pages = folio_nr_pages(dst_folio);
6023 : unsigned long ret_val = nr_pages * PAGE_SIZE;
6024 : struct page *subpage;
6025 :
6026 : for (i = 0; i < nr_pages; i++) {
6027 : subpage = folio_page(dst_folio, i);
6028 : kaddr = kmap_local_page(subpage);
6029 : if (!allow_pagefault)
6030 : pagefault_disable();
6031 : rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6032 : if (!allow_pagefault)
6033 : pagefault_enable();
6034 : kunmap_local(kaddr);
6035 :
6036 : ret_val -= (PAGE_SIZE - rc);
6037 : if (rc)
6038 : break;
6039 :
6040 : flush_dcache_page(subpage);
6041 :
6042 : cond_resched();
6043 : }
6044 : return ret_val;
6045 : }
6046 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6047 :
6048 : #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6049 :
6050 : static struct kmem_cache *page_ptl_cachep;
6051 :
6052 : void __init ptlock_cache_init(void)
6053 : {
6054 : page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6055 : SLAB_PANIC, NULL);
6056 : }
6057 :
6058 : bool ptlock_alloc(struct page *page)
6059 : {
6060 : spinlock_t *ptl;
6061 :
6062 : ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6063 : if (!ptl)
6064 : return false;
6065 : page->ptl = ptl;
6066 : return true;
6067 : }
6068 :
6069 : void ptlock_free(struct page *page)
6070 : {
6071 : kmem_cache_free(page_ptl_cachep, page->ptl);
6072 : }
6073 : #endif
|