LCOV - code coverage report
Current view: top level - mm - mm_init.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 408 587 69.5 %
Date: 2023-08-24 13:40:31 Functions: 38 49 77.6 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm_init.c - Memory initialisation verification and debugging
       4             :  *
       5             :  * Copyright 2008 IBM Corporation, 2008
       6             :  * Author Mel Gorman <mel@csn.ul.ie>
       7             :  *
       8             :  */
       9             : #include <linux/kernel.h>
      10             : #include <linux/init.h>
      11             : #include <linux/kobject.h>
      12             : #include <linux/export.h>
      13             : #include <linux/memory.h>
      14             : #include <linux/notifier.h>
      15             : #include <linux/sched.h>
      16             : #include <linux/mman.h>
      17             : #include <linux/memblock.h>
      18             : #include <linux/page-isolation.h>
      19             : #include <linux/padata.h>
      20             : #include <linux/nmi.h>
      21             : #include <linux/buffer_head.h>
      22             : #include <linux/kmemleak.h>
      23             : #include <linux/kfence.h>
      24             : #include <linux/page_ext.h>
      25             : #include <linux/pti.h>
      26             : #include <linux/pgtable.h>
      27             : #include <linux/swap.h>
      28             : #include <linux/cma.h>
      29             : #include "internal.h"
      30             : #include "slab.h"
      31             : #include "shuffle.h"
      32             : 
      33             : #include <asm/setup.h>
      34             : 
      35             : #ifdef CONFIG_DEBUG_MEMORY_INIT
      36             : int __meminitdata mminit_loglevel;
      37             : 
      38             : /* The zonelists are simply reported, validation is manual. */
      39           1 : void __init mminit_verify_zonelist(void)
      40             : {
      41             :         int nid;
      42             : 
      43           1 :         if (mminit_loglevel < MMINIT_VERIFY)
      44             :                 return;
      45             : 
      46           0 :         for_each_online_node(nid) {
      47             :                 pg_data_t *pgdat = NODE_DATA(nid);
      48             :                 struct zone *zone;
      49             :                 struct zoneref *z;
      50             :                 struct zonelist *zonelist;
      51             :                 int i, listid, zoneid;
      52             : 
      53             :                 BUILD_BUG_ON(MAX_ZONELISTS > 2);
      54           0 :                 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
      55             : 
      56             :                         /* Identify the zone and nodelist */
      57           0 :                         zoneid = i % MAX_NR_ZONES;
      58           0 :                         listid = i / MAX_NR_ZONES;
      59           0 :                         zonelist = &pgdat->node_zonelists[listid];
      60           0 :                         zone = &pgdat->node_zones[zoneid];
      61           0 :                         if (!populated_zone(zone))
      62           0 :                                 continue;
      63             : 
      64             :                         /* Print information about the zonelist */
      65           0 :                         printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
      66             :                                 listid > 0 ? "thisnode" : "general", nid,
      67             :                                 zone->name);
      68             : 
      69             :                         /* Iterate the zonelist */
      70           0 :                         for_each_zone_zonelist(zone, z, zonelist, zoneid)
      71           0 :                                 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
      72           0 :                         pr_cont("\n");
      73             :                 }
      74             :         }
      75             : }
      76             : 
      77           1 : void __init mminit_verify_pageflags_layout(void)
      78             : {
      79             :         int shift, width;
      80             :         unsigned long or_mask, add_mask;
      81             : 
      82           1 :         shift = 8 * sizeof(unsigned long);
      83           1 :         width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
      84             :                 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
      85           1 :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
      86             :                 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
      87             :                 SECTIONS_WIDTH,
      88             :                 NODES_WIDTH,
      89             :                 ZONES_WIDTH,
      90             :                 LAST_CPUPID_WIDTH,
      91             :                 KASAN_TAG_WIDTH,
      92             :                 LRU_GEN_WIDTH,
      93             :                 LRU_REFS_WIDTH,
      94             :                 NR_PAGEFLAGS);
      95           1 :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
      96             :                 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
      97             :                 SECTIONS_SHIFT,
      98             :                 NODES_SHIFT,
      99             :                 ZONES_SHIFT,
     100             :                 LAST_CPUPID_SHIFT,
     101             :                 KASAN_TAG_WIDTH);
     102           1 :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
     103             :                 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
     104             :                 (unsigned long)SECTIONS_PGSHIFT,
     105             :                 (unsigned long)NODES_PGSHIFT,
     106             :                 (unsigned long)ZONES_PGSHIFT,
     107             :                 (unsigned long)LAST_CPUPID_PGSHIFT,
     108             :                 (unsigned long)KASAN_TAG_PGSHIFT);
     109           1 :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
     110             :                 "Node/Zone ID: %lu -> %lu\n",
     111             :                 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
     112             :                 (unsigned long)ZONEID_PGOFF);
     113           1 :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
     114             :                 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
     115             :                 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
     116             : #ifdef NODE_NOT_IN_PAGE_FLAGS
     117             :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
     118             :                 "Node not in page flags");
     119             : #endif
     120             : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
     121             :         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
     122             :                 "Last cpupid not in page flags");
     123             : #endif
     124             : 
     125             :         if (SECTIONS_WIDTH) {
     126             :                 shift -= SECTIONS_WIDTH;
     127             :                 BUG_ON(shift != SECTIONS_PGSHIFT);
     128             :         }
     129             :         if (NODES_WIDTH) {
     130             :                 shift -= NODES_WIDTH;
     131             :                 BUG_ON(shift != NODES_PGSHIFT);
     132             :         }
     133             :         if (ZONES_WIDTH) {
     134           1 :                 shift -= ZONES_WIDTH;
     135             :                 BUG_ON(shift != ZONES_PGSHIFT);
     136             :         }
     137             : 
     138             :         /* Check for bitmask overlaps */
     139           1 :         or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
     140             :                         (NODES_MASK << NODES_PGSHIFT) |
     141             :                         (SECTIONS_MASK << SECTIONS_PGSHIFT);
     142           1 :         add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
     143             :                         (NODES_MASK << NODES_PGSHIFT) +
     144             :                         (SECTIONS_MASK << SECTIONS_PGSHIFT);
     145             :         BUG_ON(or_mask != add_mask);
     146           1 : }
     147             : 
     148           0 : static __init int set_mminit_loglevel(char *str)
     149             : {
     150           0 :         get_option(&str, &mminit_loglevel);
     151           0 :         return 0;
     152             : }
     153             : early_param("mminit_loglevel", set_mminit_loglevel);
     154             : #endif /* CONFIG_DEBUG_MEMORY_INIT */
     155             : 
     156             : struct kobject *mm_kobj;
     157             : EXPORT_SYMBOL_GPL(mm_kobj);
     158             : 
     159             : #ifdef CONFIG_SMP
     160             : s32 vm_committed_as_batch = 32;
     161             : 
     162             : void mm_compute_batch(int overcommit_policy)
     163             : {
     164             :         u64 memsized_batch;
     165             :         s32 nr = num_present_cpus();
     166             :         s32 batch = max_t(s32, nr*2, 32);
     167             :         unsigned long ram_pages = totalram_pages();
     168             : 
     169             :         /*
     170             :          * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
     171             :          * (total memory/#cpus), and lift it to 25% for other policies
     172             :          * to easy the possible lock contention for percpu_counter
     173             :          * vm_committed_as, while the max limit is INT_MAX
     174             :          */
     175             :         if (overcommit_policy == OVERCOMMIT_NEVER)
     176             :                 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
     177             :         else
     178             :                 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
     179             : 
     180             :         vm_committed_as_batch = max_t(s32, memsized_batch, batch);
     181             : }
     182             : 
     183             : static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
     184             :                                         unsigned long action, void *arg)
     185             : {
     186             :         switch (action) {
     187             :         case MEM_ONLINE:
     188             :         case MEM_OFFLINE:
     189             :                 mm_compute_batch(sysctl_overcommit_memory);
     190             :                 break;
     191             :         default:
     192             :                 break;
     193             :         }
     194             :         return NOTIFY_OK;
     195             : }
     196             : 
     197             : static int __init mm_compute_batch_init(void)
     198             : {
     199             :         mm_compute_batch(sysctl_overcommit_memory);
     200             :         hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
     201             :         return 0;
     202             : }
     203             : 
     204             : __initcall(mm_compute_batch_init);
     205             : 
     206             : #endif
     207             : 
     208           1 : static int __init mm_sysfs_init(void)
     209             : {
     210           1 :         mm_kobj = kobject_create_and_add("mm", kernel_kobj);
     211           1 :         if (!mm_kobj)
     212             :                 return -ENOMEM;
     213             : 
     214           1 :         return 0;
     215             : }
     216             : postcore_initcall(mm_sysfs_init);
     217             : 
     218             : static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
     219             : static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
     220             : static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
     221             : 
     222             : static unsigned long required_kernelcore __initdata;
     223             : static unsigned long required_kernelcore_percent __initdata;
     224             : static unsigned long required_movablecore __initdata;
     225             : static unsigned long required_movablecore_percent __initdata;
     226             : 
     227             : static unsigned long nr_kernel_pages __initdata;
     228             : static unsigned long nr_all_pages __initdata;
     229             : static unsigned long dma_reserve __initdata;
     230             : 
     231             : static bool deferred_struct_pages __meminitdata;
     232             : 
     233             : static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
     234             : 
     235           0 : static int __init cmdline_parse_core(char *p, unsigned long *core,
     236             :                                      unsigned long *percent)
     237             : {
     238             :         unsigned long long coremem;
     239             :         char *endptr;
     240             : 
     241           0 :         if (!p)
     242             :                 return -EINVAL;
     243             : 
     244             :         /* Value may be a percentage of total memory, otherwise bytes */
     245           0 :         coremem = simple_strtoull(p, &endptr, 0);
     246           0 :         if (*endptr == '%') {
     247             :                 /* Paranoid check for percent values greater than 100 */
     248           0 :                 WARN_ON(coremem > 100);
     249             : 
     250           0 :                 *percent = coremem;
     251             :         } else {
     252           0 :                 coremem = memparse(p, &p);
     253             :                 /* Paranoid check that UL is enough for the coremem value */
     254           0 :                 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
     255             : 
     256           0 :                 *core = coremem >> PAGE_SHIFT;
     257           0 :                 *percent = 0UL;
     258             :         }
     259             :         return 0;
     260             : }
     261             : 
     262             : bool mirrored_kernelcore __initdata_memblock;
     263             : 
     264             : /*
     265             :  * kernelcore=size sets the amount of memory for use for allocations that
     266             :  * cannot be reclaimed or migrated.
     267             :  */
     268           0 : static int __init cmdline_parse_kernelcore(char *p)
     269             : {
     270             :         /* parse kernelcore=mirror */
     271           0 :         if (parse_option_str(p, "mirror")) {
     272           0 :                 mirrored_kernelcore = true;
     273           0 :                 return 0;
     274             :         }
     275             : 
     276           0 :         return cmdline_parse_core(p, &required_kernelcore,
     277             :                                   &required_kernelcore_percent);
     278             : }
     279             : early_param("kernelcore", cmdline_parse_kernelcore);
     280             : 
     281             : /*
     282             :  * movablecore=size sets the amount of memory for use for allocations that
     283             :  * can be reclaimed or migrated.
     284             :  */
     285           0 : static int __init cmdline_parse_movablecore(char *p)
     286             : {
     287           0 :         return cmdline_parse_core(p, &required_movablecore,
     288             :                                   &required_movablecore_percent);
     289             : }
     290             : early_param("movablecore", cmdline_parse_movablecore);
     291             : 
     292             : /*
     293             :  * early_calculate_totalpages()
     294             :  * Sum pages in active regions for movable zone.
     295             :  * Populate N_MEMORY for calculating usable_nodes.
     296             :  */
     297           1 : static unsigned long __init early_calculate_totalpages(void)
     298             : {
     299           1 :         unsigned long totalpages = 0;
     300             :         unsigned long start_pfn, end_pfn;
     301             :         int i, nid;
     302             : 
     303           2 :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
     304           1 :                 unsigned long pages = end_pfn - start_pfn;
     305             : 
     306           1 :                 totalpages += pages;
     307             :                 if (pages)
     308             :                         node_set_state(nid, N_MEMORY);
     309             :         }
     310           1 :         return totalpages;
     311             : }
     312             : 
     313             : /*
     314             :  * This finds a zone that can be used for ZONE_MOVABLE pages. The
     315             :  * assumption is made that zones within a node are ordered in monotonic
     316             :  * increasing memory addresses so that the "highest" populated zone is used
     317             :  */
     318           1 : static void __init find_usable_zone_for_movable(void)
     319             : {
     320             :         int zone_index;
     321           2 :         for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
     322           2 :                 if (zone_index == ZONE_MOVABLE)
     323           1 :                         continue;
     324             : 
     325           2 :                 if (arch_zone_highest_possible_pfn[zone_index] >
     326           1 :                                 arch_zone_lowest_possible_pfn[zone_index])
     327             :                         break;
     328             :         }
     329             : 
     330             :         VM_BUG_ON(zone_index == -1);
     331           1 :         movable_zone = zone_index;
     332           1 : }
     333             : 
     334             : /*
     335             :  * Find the PFN the Movable zone begins in each node. Kernel memory
     336             :  * is spread evenly between nodes as long as the nodes have enough
     337             :  * memory. When they don't, some nodes will have more kernelcore than
     338             :  * others
     339             :  */
     340           1 : static void __init find_zone_movable_pfns_for_nodes(void)
     341             : {
     342             :         int i, nid;
     343             :         unsigned long usable_startpfn;
     344             :         unsigned long kernelcore_node, kernelcore_remaining;
     345             :         /* save the state before borrow the nodemask */
     346           1 :         nodemask_t saved_node_state = node_states[N_MEMORY];
     347           1 :         unsigned long totalpages = early_calculate_totalpages();
     348           1 :         int usable_nodes = nodes_weight(node_states[N_MEMORY]);
     349             :         struct memblock_region *r;
     350             : 
     351             :         /* Need to find movable_zone earlier when movable_node is specified. */
     352           1 :         find_usable_zone_for_movable();
     353             : 
     354             :         /*
     355             :          * If movable_node is specified, ignore kernelcore and movablecore
     356             :          * options.
     357             :          */
     358             :         if (movable_node_is_enabled()) {
     359             :                 for_each_mem_region(r) {
     360             :                         if (!memblock_is_hotpluggable(r))
     361             :                                 continue;
     362             : 
     363             :                         nid = memblock_get_region_node(r);
     364             : 
     365             :                         usable_startpfn = PFN_DOWN(r->base);
     366             :                         zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
     367             :                                 min(usable_startpfn, zone_movable_pfn[nid]) :
     368             :                                 usable_startpfn;
     369             :                 }
     370             : 
     371             :                 goto out2;
     372             :         }
     373             : 
     374             :         /*
     375             :          * If kernelcore=mirror is specified, ignore movablecore option
     376             :          */
     377           1 :         if (mirrored_kernelcore) {
     378           0 :                 bool mem_below_4gb_not_mirrored = false;
     379             : 
     380           0 :                 for_each_mem_region(r) {
     381           0 :                         if (memblock_is_mirror(r))
     382           0 :                                 continue;
     383             : 
     384           0 :                         nid = memblock_get_region_node(r);
     385             : 
     386           0 :                         usable_startpfn = memblock_region_memory_base_pfn(r);
     387             : 
     388           0 :                         if (usable_startpfn < PHYS_PFN(SZ_4G)) {
     389           0 :                                 mem_below_4gb_not_mirrored = true;
     390           0 :                                 continue;
     391             :                         }
     392             : 
     393           0 :                         zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
     394           0 :                                 min(usable_startpfn, zone_movable_pfn[nid]) :
     395             :                                 usable_startpfn;
     396             :                 }
     397             : 
     398           0 :                 if (mem_below_4gb_not_mirrored)
     399           0 :                         pr_warn("This configuration results in unmirrored kernel memory.\n");
     400             : 
     401             :                 goto out2;
     402             :         }
     403             : 
     404             :         /*
     405             :          * If kernelcore=nn% or movablecore=nn% was specified, calculate the
     406             :          * amount of necessary memory.
     407             :          */
     408           1 :         if (required_kernelcore_percent)
     409           0 :                 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
     410             :                                        10000UL;
     411           1 :         if (required_movablecore_percent)
     412           0 :                 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
     413             :                                         10000UL;
     414             : 
     415             :         /*
     416             :          * If movablecore= was specified, calculate what size of
     417             :          * kernelcore that corresponds so that memory usable for
     418             :          * any allocation type is evenly spread. If both kernelcore
     419             :          * and movablecore are specified, then the value of kernelcore
     420             :          * will be used for required_kernelcore if it's greater than
     421             :          * what movablecore would have allowed.
     422             :          */
     423           1 :         if (required_movablecore) {
     424             :                 unsigned long corepages;
     425             : 
     426             :                 /*
     427             :                  * Round-up so that ZONE_MOVABLE is at least as large as what
     428             :                  * was requested by the user
     429             :                  */
     430             :                 required_movablecore =
     431           0 :                         roundup(required_movablecore, MAX_ORDER_NR_PAGES);
     432           0 :                 required_movablecore = min(totalpages, required_movablecore);
     433           0 :                 corepages = totalpages - required_movablecore;
     434             : 
     435           0 :                 required_kernelcore = max(required_kernelcore, corepages);
     436             :         }
     437             : 
     438             :         /*
     439             :          * If kernelcore was not specified or kernelcore size is larger
     440             :          * than totalpages, there is no ZONE_MOVABLE.
     441             :          */
     442           1 :         if (!required_kernelcore || required_kernelcore >= totalpages)
     443             :                 goto out;
     444             : 
     445             :         /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
     446           0 :         usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
     447             : 
     448             : restart:
     449             :         /* Spread kernelcore memory as evenly as possible throughout nodes */
     450           0 :         kernelcore_node = required_kernelcore / usable_nodes;
     451           0 :         for_each_node_state(nid, N_MEMORY) {
     452             :                 unsigned long start_pfn, end_pfn;
     453             : 
     454             :                 /*
     455             :                  * Recalculate kernelcore_node if the division per node
     456             :                  * now exceeds what is necessary to satisfy the requested
     457             :                  * amount of memory for the kernel
     458             :                  */
     459           0 :                 if (required_kernelcore < kernelcore_node)
     460           0 :                         kernelcore_node = required_kernelcore / usable_nodes;
     461             : 
     462             :                 /*
     463             :                  * As the map is walked, we track how much memory is usable
     464             :                  * by the kernel using kernelcore_remaining. When it is
     465             :                  * 0, the rest of the node is usable by ZONE_MOVABLE
     466             :                  */
     467           0 :                 kernelcore_remaining = kernelcore_node;
     468             : 
     469             :                 /* Go through each range of PFNs within this node */
     470           0 :                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
     471             :                         unsigned long size_pages;
     472             : 
     473           0 :                         start_pfn = max(start_pfn, zone_movable_pfn[nid]);
     474           0 :                         if (start_pfn >= end_pfn)
     475           0 :                                 continue;
     476             : 
     477             :                         /* Account for what is only usable for kernelcore */
     478           0 :                         if (start_pfn < usable_startpfn) {
     479             :                                 unsigned long kernel_pages;
     480           0 :                                 kernel_pages = min(end_pfn, usable_startpfn)
     481             :                                                                 - start_pfn;
     482             : 
     483           0 :                                 kernelcore_remaining -= min(kernel_pages,
     484             :                                                         kernelcore_remaining);
     485           0 :                                 required_kernelcore -= min(kernel_pages,
     486             :                                                         required_kernelcore);
     487             : 
     488             :                                 /* Continue if range is now fully accounted */
     489           0 :                                 if (end_pfn <= usable_startpfn) {
     490             : 
     491             :                                         /*
     492             :                                          * Push zone_movable_pfn to the end so
     493             :                                          * that if we have to rebalance
     494             :                                          * kernelcore across nodes, we will
     495             :                                          * not double account here
     496             :                                          */
     497           0 :                                         zone_movable_pfn[nid] = end_pfn;
     498           0 :                                         continue;
     499             :                                 }
     500           0 :                                 start_pfn = usable_startpfn;
     501             :                         }
     502             : 
     503             :                         /*
     504             :                          * The usable PFN range for ZONE_MOVABLE is from
     505             :                          * start_pfn->end_pfn. Calculate size_pages as the
     506             :                          * number of pages used as kernelcore
     507             :                          */
     508           0 :                         size_pages = end_pfn - start_pfn;
     509           0 :                         if (size_pages > kernelcore_remaining)
     510           0 :                                 size_pages = kernelcore_remaining;
     511           0 :                         zone_movable_pfn[nid] = start_pfn + size_pages;
     512             : 
     513             :                         /*
     514             :                          * Some kernelcore has been met, update counts and
     515             :                          * break if the kernelcore for this node has been
     516             :                          * satisfied
     517             :                          */
     518           0 :                         required_kernelcore -= min(required_kernelcore,
     519             :                                                                 size_pages);
     520           0 :                         kernelcore_remaining -= size_pages;
     521           0 :                         if (!kernelcore_remaining)
     522             :                                 break;
     523             :                 }
     524             :         }
     525             : 
     526             :         /*
     527             :          * If there is still required_kernelcore, we do another pass with one
     528             :          * less node in the count. This will push zone_movable_pfn[nid] further
     529             :          * along on the nodes that still have memory until kernelcore is
     530             :          * satisfied
     531             :          */
     532           0 :         usable_nodes--;
     533           0 :         if (usable_nodes && required_kernelcore > usable_nodes)
     534             :                 goto restart;
     535             : 
     536             : out2:
     537             :         /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
     538           0 :         for (nid = 0; nid < MAX_NUMNODES; nid++) {
     539             :                 unsigned long start_pfn, end_pfn;
     540             : 
     541           0 :                 zone_movable_pfn[nid] =
     542           0 :                         roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
     543             : 
     544           0 :                 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
     545           0 :                 if (zone_movable_pfn[nid] >= end_pfn)
     546           0 :                         zone_movable_pfn[nid] = 0;
     547             :         }
     548             : 
     549             : out:
     550             :         /* restore the node_state */
     551           1 :         node_states[N_MEMORY] = saved_node_state;
     552           1 : }
     553             : 
     554      265447 : static void __meminit __init_single_page(struct page *page, unsigned long pfn,
     555             :                                 unsigned long zone, int nid)
     556             : {
     557      265447 :         mm_zero_struct_page(page);
     558      530894 :         set_page_links(page, zone, nid, pfn);
     559      265447 :         init_page_count(page);
     560      265447 :         page_mapcount_reset(page);
     561      265447 :         page_cpupid_reset_last(page);
     562      265447 :         page_kasan_tag_reset(page);
     563             : 
     564      530894 :         INIT_LIST_HEAD(&page->lru);
     565             : #ifdef WANT_PAGE_VIRTUAL
     566             :         /* The shift won't overflow because ZONE_NORMAL is below 4G. */
     567             :         if (!is_highmem_idx(zone))
     568             :                 set_page_address(page, __va(pfn << PAGE_SHIFT));
     569             : #endif
     570      265447 : }
     571             : 
     572             : #ifdef CONFIG_NUMA
     573             : /*
     574             :  * During memory init memblocks map pfns to nids. The search is expensive and
     575             :  * this caches recent lookups. The implementation of __early_pfn_to_nid
     576             :  * treats start/end as pfns.
     577             :  */
     578             : struct mminit_pfnnid_cache {
     579             :         unsigned long last_start;
     580             :         unsigned long last_end;
     581             :         int last_nid;
     582             : };
     583             : 
     584             : static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
     585             : 
     586             : /*
     587             :  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
     588             :  */
     589             : static int __meminit __early_pfn_to_nid(unsigned long pfn,
     590             :                                         struct mminit_pfnnid_cache *state)
     591             : {
     592             :         unsigned long start_pfn, end_pfn;
     593             :         int nid;
     594             : 
     595             :         if (state->last_start <= pfn && pfn < state->last_end)
     596             :                 return state->last_nid;
     597             : 
     598             :         nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
     599             :         if (nid != NUMA_NO_NODE) {
     600             :                 state->last_start = start_pfn;
     601             :                 state->last_end = end_pfn;
     602             :                 state->last_nid = nid;
     603             :         }
     604             : 
     605             :         return nid;
     606             : }
     607             : 
     608             : int __meminit early_pfn_to_nid(unsigned long pfn)
     609             : {
     610             :         static DEFINE_SPINLOCK(early_pfn_lock);
     611             :         int nid;
     612             : 
     613             :         spin_lock(&early_pfn_lock);
     614             :         nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
     615             :         if (nid < 0)
     616             :                 nid = first_online_node;
     617             :         spin_unlock(&early_pfn_lock);
     618             : 
     619             :         return nid;
     620             : }
     621             : 
     622             : int hashdist = HASHDIST_DEFAULT;
     623             : 
     624             : static int __init set_hashdist(char *str)
     625             : {
     626             :         if (!str)
     627             :                 return 0;
     628             :         hashdist = simple_strtoul(str, &str, 0);
     629             :         return 1;
     630             : }
     631             : __setup("hashdist=", set_hashdist);
     632             : 
     633             : static inline void fixup_hashdist(void)
     634             : {
     635             :         if (num_node_state(N_MEMORY) == 1)
     636             :                 hashdist = 0;
     637             : }
     638             : #else
     639             : static inline void fixup_hashdist(void) {}
     640             : #endif /* CONFIG_NUMA */
     641             : 
     642             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
     643             : static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
     644             : {
     645             :         pgdat->first_deferred_pfn = ULONG_MAX;
     646             : }
     647             : 
     648             : /* Returns true if the struct page for the pfn is initialised */
     649             : static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
     650             : {
     651             :         if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
     652             :                 return false;
     653             : 
     654             :         return true;
     655             : }
     656             : 
     657             : /*
     658             :  * Returns true when the remaining initialisation should be deferred until
     659             :  * later in the boot cycle when it can be parallelised.
     660             :  */
     661             : static bool __meminit
     662             : defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
     663             : {
     664             :         static unsigned long prev_end_pfn, nr_initialised;
     665             : 
     666             :         if (early_page_ext_enabled())
     667             :                 return false;
     668             :         /*
     669             :          * prev_end_pfn static that contains the end of previous zone
     670             :          * No need to protect because called very early in boot before smp_init.
     671             :          */
     672             :         if (prev_end_pfn != end_pfn) {
     673             :                 prev_end_pfn = end_pfn;
     674             :                 nr_initialised = 0;
     675             :         }
     676             : 
     677             :         /* Always populate low zones for address-constrained allocations */
     678             :         if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
     679             :                 return false;
     680             : 
     681             :         if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
     682             :                 return true;
     683             :         /*
     684             :          * We start only with one section of pages, more pages are added as
     685             :          * needed until the rest of deferred pages are initialized.
     686             :          */
     687             :         nr_initialised++;
     688             :         if ((nr_initialised > PAGES_PER_SECTION) &&
     689             :             (pfn & (PAGES_PER_SECTION - 1)) == 0) {
     690             :                 NODE_DATA(nid)->first_deferred_pfn = pfn;
     691             :                 return true;
     692             :         }
     693             :         return false;
     694             : }
     695             : 
     696             : static void __meminit init_reserved_page(unsigned long pfn, int nid)
     697             : {
     698             :         pg_data_t *pgdat;
     699             :         int zid;
     700             : 
     701             :         if (early_page_initialised(pfn, nid))
     702             :                 return;
     703             : 
     704             :         pgdat = NODE_DATA(nid);
     705             : 
     706             :         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
     707             :                 struct zone *zone = &pgdat->node_zones[zid];
     708             : 
     709             :                 if (zone_spans_pfn(zone, pfn))
     710             :                         break;
     711             :         }
     712             :         __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
     713             : }
     714             : #else
     715             : static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
     716             : 
     717             : static inline bool early_page_initialised(unsigned long pfn, int nid)
     718             : {
     719             :         return true;
     720             : }
     721             : 
     722             : static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
     723             : {
     724             :         return false;
     725             : }
     726             : 
     727             : static inline void init_reserved_page(unsigned long pfn, int nid)
     728             : {
     729             : }
     730             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
     731             : 
     732             : /*
     733             :  * Initialised pages do not have PageReserved set. This function is
     734             :  * called for each range allocated by the bootmem allocator and
     735             :  * marks the pages PageReserved. The remaining valid pages are later
     736             :  * sent to the buddy page allocator.
     737             :  */
     738          13 : void __meminit reserve_bootmem_region(phys_addr_t start,
     739             :                                       phys_addr_t end, int nid)
     740             : {
     741          13 :         unsigned long start_pfn = PFN_DOWN(start);
     742          13 :         unsigned long end_pfn = PFN_UP(end);
     743             : 
     744       10723 :         for (; start_pfn < end_pfn; start_pfn++) {
     745       10710 :                 if (pfn_valid(start_pfn)) {
     746       10710 :                         struct page *page = pfn_to_page(start_pfn);
     747             : 
     748       10710 :                         init_reserved_page(start_pfn, nid);
     749             : 
     750             :                         /* Avoid false-positive PageTail() */
     751       21420 :                         INIT_LIST_HEAD(&page->lru);
     752             : 
     753             :                         /*
     754             :                          * no need for atomic set_bit because the struct
     755             :                          * page is not visible yet so nobody should
     756             :                          * access it yet.
     757             :                          */
     758             :                         __SetPageReserved(page);
     759             :                 }
     760             :         }
     761          13 : }
     762             : 
     763             : /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
     764             : static bool __meminit
     765      265447 : overlap_memmap_init(unsigned long zone, unsigned long *pfn)
     766             : {
     767             :         static struct memblock_region *r;
     768             : 
     769      265447 :         if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
     770           0 :                 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
     771           0 :                         for_each_mem_region(r) {
     772           0 :                                 if (*pfn < memblock_region_memory_end_pfn(r))
     773             :                                         break;
     774             :                         }
     775             :                 }
     776           0 :                 if (*pfn >= memblock_region_memory_base_pfn(r) &&
     777           0 :                     memblock_is_mirror(r)) {
     778           0 :                         *pfn = memblock_region_memory_end_pfn(r);
     779           0 :                         return true;
     780             :                 }
     781             :         }
     782             :         return false;
     783             : }
     784             : 
     785             : /*
     786             :  * Only struct pages that correspond to ranges defined by memblock.memory
     787             :  * are zeroed and initialized by going through __init_single_page() during
     788             :  * memmap_init_zone_range().
     789             :  *
     790             :  * But, there could be struct pages that correspond to holes in
     791             :  * memblock.memory. This can happen because of the following reasons:
     792             :  * - physical memory bank size is not necessarily the exact multiple of the
     793             :  *   arbitrary section size
     794             :  * - early reserved memory may not be listed in memblock.memory
     795             :  * - memory layouts defined with memmap= kernel parameter may not align
     796             :  *   nicely with memmap sections
     797             :  *
     798             :  * Explicitly initialize those struct pages so that:
     799             :  * - PG_Reserved is set
     800             :  * - zone and node links point to zone and node that span the page if the
     801             :  *   hole is in the middle of a zone
     802             :  * - zone and node links point to adjacent zone/node if the hole falls on
     803             :  *   the zone boundary; the pages in such holes will be prepended to the
     804             :  *   zone/node above the hole except for the trailing pages in the last
     805             :  *   section that will be appended to the zone/node below.
     806             :  */
     807           1 : static void __init init_unavailable_range(unsigned long spfn,
     808             :                                           unsigned long epfn,
     809             :                                           int zone, int node)
     810             : {
     811             :         unsigned long pfn;
     812           1 :         u64 pgcnt = 0;
     813             : 
     814           1 :         for (pfn = spfn; pfn < epfn; pfn++) {
     815           0 :                 if (!pfn_valid(pageblock_start_pfn(pfn))) {
     816           0 :                         pfn = pageblock_end_pfn(pfn) - 1;
     817           0 :                         continue;
     818             :                 }
     819           0 :                 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
     820           0 :                 __SetPageReserved(pfn_to_page(pfn));
     821           0 :                 pgcnt++;
     822             :         }
     823             : 
     824           1 :         if (pgcnt)
     825           0 :                 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
     826             :                         node, zone_names[zone], pgcnt);
     827           1 : }
     828             : 
     829             : /*
     830             :  * Initially all pages are reserved - free ones are freed
     831             :  * up by memblock_free_all() once the early boot process is
     832             :  * done. Non-atomic initialization, single-pass.
     833             :  *
     834             :  * All aligned pageblocks are initialized to the specified migratetype
     835             :  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
     836             :  * zone stats (e.g., nr_isolate_pageblock) are touched.
     837             :  */
     838           1 : void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
     839             :                 unsigned long start_pfn, unsigned long zone_end_pfn,
     840             :                 enum meminit_context context,
     841             :                 struct vmem_altmap *altmap, int migratetype)
     842             : {
     843           1 :         unsigned long pfn, end_pfn = start_pfn + size;
     844             :         struct page *page;
     845             : 
     846           1 :         if (highest_memmap_pfn < end_pfn - 1)
     847           1 :                 highest_memmap_pfn = end_pfn - 1;
     848             : 
     849             : #ifdef CONFIG_ZONE_DEVICE
     850             :         /*
     851             :          * Honor reservation requested by the driver for this ZONE_DEVICE
     852             :          * memory. We limit the total number of pages to initialize to just
     853             :          * those that might contain the memory mapping. We will defer the
     854             :          * ZONE_DEVICE page initialization until after we have released
     855             :          * the hotplug lock.
     856             :          */
     857             :         if (zone == ZONE_DEVICE) {
     858             :                 if (!altmap)
     859             :                         return;
     860             : 
     861             :                 if (start_pfn == altmap->base_pfn)
     862             :                         start_pfn += altmap->reserve;
     863             :                 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
     864             :         }
     865             : #endif
     866             : 
     867      265449 :         for (pfn = start_pfn; pfn < end_pfn; ) {
     868             :                 /*
     869             :                  * There can be holes in boot-time mem_map[]s handed to this
     870             :                  * function.  They do not exist on hotplugged memory.
     871             :                  */
     872      265447 :                 if (context == MEMINIT_EARLY) {
     873      265447 :                         if (overlap_memmap_init(zone, &pfn))
     874           0 :                                 continue;
     875             :                         if (defer_init(nid, pfn, zone_end_pfn)) {
     876             :                                 deferred_struct_pages = true;
     877             :                                 break;
     878             :                         }
     879             :                 }
     880             : 
     881      265447 :                 page = pfn_to_page(pfn);
     882      265447 :                 __init_single_page(page, pfn, zone, nid);
     883      265447 :                 if (context == MEMINIT_HOTPLUG)
     884             :                         __SetPageReserved(page);
     885             : 
     886             :                 /*
     887             :                  * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
     888             :                  * such that unmovable allocations won't be scattered all
     889             :                  * over the place during system boot.
     890             :                  */
     891      265447 :                 if (pageblock_aligned(pfn)) {
     892         260 :                         set_pageblock_migratetype(page, migratetype);
     893         260 :                         cond_resched();
     894             :                 }
     895      265447 :                 pfn++;
     896             :         }
     897           1 : }
     898             : 
     899           1 : static void __init memmap_init_zone_range(struct zone *zone,
     900             :                                           unsigned long start_pfn,
     901             :                                           unsigned long end_pfn,
     902             :                                           unsigned long *hole_pfn)
     903             : {
     904           1 :         unsigned long zone_start_pfn = zone->zone_start_pfn;
     905           1 :         unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
     906           1 :         int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
     907             : 
     908           1 :         start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
     909           1 :         end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
     910             : 
     911           1 :         if (start_pfn >= end_pfn)
     912             :                 return;
     913             : 
     914           1 :         memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
     915             :                           zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
     916             : 
     917           1 :         if (*hole_pfn < start_pfn)
     918           0 :                 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
     919             : 
     920           1 :         *hole_pfn = end_pfn;
     921             : }
     922             : 
     923           1 : static void __init memmap_init(void)
     924             : {
     925             :         unsigned long start_pfn, end_pfn;
     926           1 :         unsigned long hole_pfn = 0;
     927           1 :         int i, j, zone_id = 0, nid;
     928             : 
     929           2 :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
     930             :                 struct pglist_data *node = NODE_DATA(nid);
     931             : 
     932           2 :                 for (j = 0; j < MAX_NR_ZONES; j++) {
     933           2 :                         struct zone *zone = node->node_zones + j;
     934             : 
     935           2 :                         if (!populated_zone(zone))
     936           1 :                                 continue;
     937             : 
     938           1 :                         memmap_init_zone_range(zone, start_pfn, end_pfn,
     939             :                                                &hole_pfn);
     940           1 :                         zone_id = j;
     941             :                 }
     942             :         }
     943             : 
     944             : #ifdef CONFIG_SPARSEMEM
     945             :         /*
     946             :          * Initialize the memory map for hole in the range [memory_end,
     947             :          * section_end].
     948             :          * Append the pages in this hole to the highest zone in the last
     949             :          * node.
     950             :          * The call to init_unavailable_range() is outside the ifdef to
     951             :          * silence the compiler warining about zone_id set but not used;
     952             :          * for FLATMEM it is a nop anyway
     953             :          */
     954             :         end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
     955             :         if (hole_pfn < end_pfn)
     956             : #endif
     957           1 :                 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
     958           1 : }
     959             : 
     960             : #ifdef CONFIG_ZONE_DEVICE
     961             : static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
     962             :                                           unsigned long zone_idx, int nid,
     963             :                                           struct dev_pagemap *pgmap)
     964             : {
     965             : 
     966             :         __init_single_page(page, pfn, zone_idx, nid);
     967             : 
     968             :         /*
     969             :          * Mark page reserved as it will need to wait for onlining
     970             :          * phase for it to be fully associated with a zone.
     971             :          *
     972             :          * We can use the non-atomic __set_bit operation for setting
     973             :          * the flag as we are still initializing the pages.
     974             :          */
     975             :         __SetPageReserved(page);
     976             : 
     977             :         /*
     978             :          * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
     979             :          * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
     980             :          * ever freed or placed on a driver-private list.
     981             :          */
     982             :         page->pgmap = pgmap;
     983             :         page->zone_device_data = NULL;
     984             : 
     985             :         /*
     986             :          * Mark the block movable so that blocks are reserved for
     987             :          * movable at startup. This will force kernel allocations
     988             :          * to reserve their blocks rather than leaking throughout
     989             :          * the address space during boot when many long-lived
     990             :          * kernel allocations are made.
     991             :          *
     992             :          * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
     993             :          * because this is done early in section_activate()
     994             :          */
     995             :         if (pageblock_aligned(pfn)) {
     996             :                 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
     997             :                 cond_resched();
     998             :         }
     999             : 
    1000             :         /*
    1001             :          * ZONE_DEVICE pages are released directly to the driver page allocator
    1002             :          * which will set the page count to 1 when allocating the page.
    1003             :          */
    1004             :         if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
    1005             :             pgmap->type == MEMORY_DEVICE_COHERENT)
    1006             :                 set_page_count(page, 0);
    1007             : }
    1008             : 
    1009             : /*
    1010             :  * With compound page geometry and when struct pages are stored in ram most
    1011             :  * tail pages are reused. Consequently, the amount of unique struct pages to
    1012             :  * initialize is a lot smaller that the total amount of struct pages being
    1013             :  * mapped. This is a paired / mild layering violation with explicit knowledge
    1014             :  * of how the sparse_vmemmap internals handle compound pages in the lack
    1015             :  * of an altmap. See vmemmap_populate_compound_pages().
    1016             :  */
    1017             : static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
    1018             :                                               struct dev_pagemap *pgmap)
    1019             : {
    1020             :         if (!vmemmap_can_optimize(altmap, pgmap))
    1021             :                 return pgmap_vmemmap_nr(pgmap);
    1022             : 
    1023             :         return 2 * (PAGE_SIZE / sizeof(struct page));
    1024             : }
    1025             : 
    1026             : static void __ref memmap_init_compound(struct page *head,
    1027             :                                        unsigned long head_pfn,
    1028             :                                        unsigned long zone_idx, int nid,
    1029             :                                        struct dev_pagemap *pgmap,
    1030             :                                        unsigned long nr_pages)
    1031             : {
    1032             :         unsigned long pfn, end_pfn = head_pfn + nr_pages;
    1033             :         unsigned int order = pgmap->vmemmap_shift;
    1034             : 
    1035             :         __SetPageHead(head);
    1036             :         for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
    1037             :                 struct page *page = pfn_to_page(pfn);
    1038             : 
    1039             :                 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
    1040             :                 prep_compound_tail(head, pfn - head_pfn);
    1041             :                 set_page_count(page, 0);
    1042             : 
    1043             :                 /*
    1044             :                  * The first tail page stores important compound page info.
    1045             :                  * Call prep_compound_head() after the first tail page has
    1046             :                  * been initialized, to not have the data overwritten.
    1047             :                  */
    1048             :                 if (pfn == head_pfn + 1)
    1049             :                         prep_compound_head(head, order);
    1050             :         }
    1051             : }
    1052             : 
    1053             : void __ref memmap_init_zone_device(struct zone *zone,
    1054             :                                    unsigned long start_pfn,
    1055             :                                    unsigned long nr_pages,
    1056             :                                    struct dev_pagemap *pgmap)
    1057             : {
    1058             :         unsigned long pfn, end_pfn = start_pfn + nr_pages;
    1059             :         struct pglist_data *pgdat = zone->zone_pgdat;
    1060             :         struct vmem_altmap *altmap = pgmap_altmap(pgmap);
    1061             :         unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
    1062             :         unsigned long zone_idx = zone_idx(zone);
    1063             :         unsigned long start = jiffies;
    1064             :         int nid = pgdat->node_id;
    1065             : 
    1066             :         if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
    1067             :                 return;
    1068             : 
    1069             :         /*
    1070             :          * The call to memmap_init should have already taken care
    1071             :          * of the pages reserved for the memmap, so we can just jump to
    1072             :          * the end of that region and start processing the device pages.
    1073             :          */
    1074             :         if (altmap) {
    1075             :                 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
    1076             :                 nr_pages = end_pfn - start_pfn;
    1077             :         }
    1078             : 
    1079             :         for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
    1080             :                 struct page *page = pfn_to_page(pfn);
    1081             : 
    1082             :                 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
    1083             : 
    1084             :                 if (pfns_per_compound == 1)
    1085             :                         continue;
    1086             : 
    1087             :                 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
    1088             :                                      compound_nr_pages(altmap, pgmap));
    1089             :         }
    1090             : 
    1091             :         pr_debug("%s initialised %lu pages in %ums\n", __func__,
    1092             :                 nr_pages, jiffies_to_msecs(jiffies - start));
    1093             : }
    1094             : #endif
    1095             : 
    1096             : /*
    1097             :  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
    1098             :  * because it is sized independent of architecture. Unlike the other zones,
    1099             :  * the starting point for ZONE_MOVABLE is not fixed. It may be different
    1100             :  * in each node depending on the size of each node and how evenly kernelcore
    1101             :  * is distributed. This helper function adjusts the zone ranges
    1102             :  * provided by the architecture for a given node by using the end of the
    1103             :  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
    1104             :  * zones within a node are in order of monotonic increases memory addresses
    1105             :  */
    1106           2 : static void __init adjust_zone_range_for_zone_movable(int nid,
    1107             :                                         unsigned long zone_type,
    1108             :                                         unsigned long node_start_pfn,
    1109             :                                         unsigned long node_end_pfn,
    1110             :                                         unsigned long *zone_start_pfn,
    1111             :                                         unsigned long *zone_end_pfn)
    1112             : {
    1113             :         /* Only adjust if ZONE_MOVABLE is on this node */
    1114           2 :         if (zone_movable_pfn[nid]) {
    1115             :                 /* Size ZONE_MOVABLE */
    1116           0 :                 if (zone_type == ZONE_MOVABLE) {
    1117           0 :                         *zone_start_pfn = zone_movable_pfn[nid];
    1118           0 :                         *zone_end_pfn = min(node_end_pfn,
    1119             :                                 arch_zone_highest_possible_pfn[movable_zone]);
    1120             : 
    1121             :                 /* Adjust for ZONE_MOVABLE starting within this range */
    1122           0 :                 } else if (!mirrored_kernelcore &&
    1123           0 :                         *zone_start_pfn < zone_movable_pfn[nid] &&
    1124           0 :                         *zone_end_pfn > zone_movable_pfn[nid]) {
    1125           0 :                         *zone_end_pfn = zone_movable_pfn[nid];
    1126             : 
    1127             :                 /* Check if this whole range is within ZONE_MOVABLE */
    1128           0 :                 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
    1129           0 :                         *zone_start_pfn = *zone_end_pfn;
    1130             :         }
    1131           2 : }
    1132             : 
    1133             : /*
    1134             :  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
    1135             :  * then all holes in the requested range will be accounted for.
    1136             :  */
    1137           1 : unsigned long __init __absent_pages_in_range(int nid,
    1138             :                                 unsigned long range_start_pfn,
    1139             :                                 unsigned long range_end_pfn)
    1140             : {
    1141           1 :         unsigned long nr_absent = range_end_pfn - range_start_pfn;
    1142             :         unsigned long start_pfn, end_pfn;
    1143             :         int i;
    1144             : 
    1145           2 :         for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
    1146           1 :                 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
    1147           1 :                 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
    1148           1 :                 nr_absent -= end_pfn - start_pfn;
    1149             :         }
    1150           1 :         return nr_absent;
    1151             : }
    1152             : 
    1153             : /**
    1154             :  * absent_pages_in_range - Return number of page frames in holes within a range
    1155             :  * @start_pfn: The start PFN to start searching for holes
    1156             :  * @end_pfn: The end PFN to stop searching for holes
    1157             :  *
    1158             :  * Return: the number of pages frames in memory holes within a range.
    1159             :  */
    1160           0 : unsigned long __init absent_pages_in_range(unsigned long start_pfn,
    1161             :                                                         unsigned long end_pfn)
    1162             : {
    1163           0 :         return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
    1164             : }
    1165             : 
    1166             : /* Return the number of page frames in holes in a zone on a node */
    1167           2 : static unsigned long __init zone_absent_pages_in_node(int nid,
    1168             :                                         unsigned long zone_type,
    1169             :                                         unsigned long zone_start_pfn,
    1170             :                                         unsigned long zone_end_pfn)
    1171             : {
    1172             :         unsigned long nr_absent;
    1173             : 
    1174             :         /* zone is empty, we don't have any absent pages */
    1175           2 :         if (zone_start_pfn == zone_end_pfn)
    1176             :                 return 0;
    1177             : 
    1178           1 :         nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
    1179             : 
    1180             :         /*
    1181             :          * ZONE_MOVABLE handling.
    1182             :          * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
    1183             :          * and vice versa.
    1184             :          */
    1185           1 :         if (mirrored_kernelcore && zone_movable_pfn[nid]) {
    1186             :                 unsigned long start_pfn, end_pfn;
    1187             :                 struct memblock_region *r;
    1188             : 
    1189           0 :                 for_each_mem_region(r) {
    1190           0 :                         start_pfn = clamp(memblock_region_memory_base_pfn(r),
    1191             :                                           zone_start_pfn, zone_end_pfn);
    1192           0 :                         end_pfn = clamp(memblock_region_memory_end_pfn(r),
    1193             :                                         zone_start_pfn, zone_end_pfn);
    1194             : 
    1195           0 :                         if (zone_type == ZONE_MOVABLE &&
    1196           0 :                             memblock_is_mirror(r))
    1197           0 :                                 nr_absent += end_pfn - start_pfn;
    1198             : 
    1199           0 :                         if (zone_type == ZONE_NORMAL &&
    1200           0 :                             !memblock_is_mirror(r))
    1201           0 :                                 nr_absent += end_pfn - start_pfn;
    1202             :                 }
    1203             :         }
    1204             : 
    1205             :         return nr_absent;
    1206             : }
    1207             : 
    1208             : /*
    1209             :  * Return the number of pages a zone spans in a node, including holes
    1210             :  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
    1211             :  */
    1212           2 : static unsigned long __init zone_spanned_pages_in_node(int nid,
    1213             :                                         unsigned long zone_type,
    1214             :                                         unsigned long node_start_pfn,
    1215             :                                         unsigned long node_end_pfn,
    1216             :                                         unsigned long *zone_start_pfn,
    1217             :                                         unsigned long *zone_end_pfn)
    1218             : {
    1219           2 :         unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
    1220           2 :         unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
    1221             : 
    1222             :         /* Get the start and end of the zone */
    1223           2 :         *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
    1224           2 :         *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
    1225           2 :         adjust_zone_range_for_zone_movable(nid, zone_type,
    1226             :                                 node_start_pfn, node_end_pfn,
    1227             :                                 zone_start_pfn, zone_end_pfn);
    1228             : 
    1229             :         /* Check that this node has pages within the zone's required range */
    1230           2 :         if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
    1231             :                 return 0;
    1232             : 
    1233             :         /* Move the zone boundaries inside the node if necessary */
    1234           2 :         *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
    1235           2 :         *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
    1236             : 
    1237             :         /* Return the spanned pages */
    1238           2 :         return *zone_end_pfn - *zone_start_pfn;
    1239             : }
    1240             : 
    1241           0 : static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
    1242             : {
    1243             :         struct zone *z;
    1244             : 
    1245           0 :         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
    1246           0 :                 z->zone_start_pfn = 0;
    1247           0 :                 z->spanned_pages = 0;
    1248           0 :                 z->present_pages = 0;
    1249             : #if defined(CONFIG_MEMORY_HOTPLUG)
    1250             :                 z->present_early_pages = 0;
    1251             : #endif
    1252             :         }
    1253             : 
    1254           0 :         pgdat->node_spanned_pages = 0;
    1255           0 :         pgdat->node_present_pages = 0;
    1256             :         pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
    1257           0 : }
    1258             : 
    1259           1 : static void __init calculate_node_totalpages(struct pglist_data *pgdat,
    1260             :                                                 unsigned long node_start_pfn,
    1261             :                                                 unsigned long node_end_pfn)
    1262             : {
    1263           1 :         unsigned long realtotalpages = 0, totalpages = 0;
    1264             :         enum zone_type i;
    1265             : 
    1266           3 :         for (i = 0; i < MAX_NR_ZONES; i++) {
    1267           2 :                 struct zone *zone = pgdat->node_zones + i;
    1268             :                 unsigned long zone_start_pfn, zone_end_pfn;
    1269             :                 unsigned long spanned, absent;
    1270             :                 unsigned long real_size;
    1271             : 
    1272           2 :                 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
    1273             :                                                      node_start_pfn,
    1274             :                                                      node_end_pfn,
    1275             :                                                      &zone_start_pfn,
    1276             :                                                      &zone_end_pfn);
    1277           2 :                 absent = zone_absent_pages_in_node(pgdat->node_id, i,
    1278             :                                                    zone_start_pfn,
    1279             :                                                    zone_end_pfn);
    1280             : 
    1281           2 :                 real_size = spanned - absent;
    1282             : 
    1283           2 :                 if (spanned)
    1284           1 :                         zone->zone_start_pfn = zone_start_pfn;
    1285             :                 else
    1286           1 :                         zone->zone_start_pfn = 0;
    1287           2 :                 zone->spanned_pages = spanned;
    1288           2 :                 zone->present_pages = real_size;
    1289             : #if defined(CONFIG_MEMORY_HOTPLUG)
    1290             :                 zone->present_early_pages = real_size;
    1291             : #endif
    1292             : 
    1293           2 :                 totalpages += spanned;
    1294           2 :                 realtotalpages += real_size;
    1295             :         }
    1296             : 
    1297           1 :         pgdat->node_spanned_pages = totalpages;
    1298           1 :         pgdat->node_present_pages = realtotalpages;
    1299             :         pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
    1300           1 : }
    1301             : 
    1302             : static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
    1303             :                                                 unsigned long present_pages)
    1304             : {
    1305           2 :         unsigned long pages = spanned_pages;
    1306             : 
    1307             :         /*
    1308             :          * Provide a more accurate estimation if there are holes within
    1309             :          * the zone and SPARSEMEM is in use. If there are holes within the
    1310             :          * zone, each populated memory region may cost us one or two extra
    1311             :          * memmap pages due to alignment because memmap pages for each
    1312             :          * populated regions may not be naturally aligned on page boundary.
    1313             :          * So the (present_pages >> 4) heuristic is a tradeoff for that.
    1314             :          */
    1315             :         if (spanned_pages > present_pages + (present_pages >> 4) &&
    1316             :             IS_ENABLED(CONFIG_SPARSEMEM))
    1317             :                 pages = present_pages;
    1318             : 
    1319           2 :         return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
    1320             : }
    1321             : 
    1322             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1323             : static void pgdat_init_split_queue(struct pglist_data *pgdat)
    1324             : {
    1325             :         struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
    1326             : 
    1327             :         spin_lock_init(&ds_queue->split_queue_lock);
    1328             :         INIT_LIST_HEAD(&ds_queue->split_queue);
    1329             :         ds_queue->split_queue_len = 0;
    1330             : }
    1331             : #else
    1332             : static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
    1333             : #endif
    1334             : 
    1335             : #ifdef CONFIG_COMPACTION
    1336             : static void pgdat_init_kcompactd(struct pglist_data *pgdat)
    1337             : {
    1338           1 :         init_waitqueue_head(&pgdat->kcompactd_wait);
    1339             : }
    1340             : #else
    1341             : static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
    1342             : #endif
    1343             : 
    1344           1 : static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
    1345             : {
    1346             :         int i;
    1347             : 
    1348           1 :         pgdat_resize_init(pgdat);
    1349           1 :         pgdat_kswapd_lock_init(pgdat);
    1350             : 
    1351           1 :         pgdat_init_split_queue(pgdat);
    1352           1 :         pgdat_init_kcompactd(pgdat);
    1353             : 
    1354           1 :         init_waitqueue_head(&pgdat->kswapd_wait);
    1355           1 :         init_waitqueue_head(&pgdat->pfmemalloc_wait);
    1356             : 
    1357           5 :         for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
    1358           4 :                 init_waitqueue_head(&pgdat->reclaim_wait[i]);
    1359             : 
    1360           1 :         pgdat_page_ext_init(pgdat);
    1361           1 :         lruvec_init(&pgdat->__lruvec);
    1362           1 : }
    1363             : 
    1364           2 : static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
    1365             :                                                         unsigned long remaining_pages)
    1366             : {
    1367           4 :         atomic_long_set(&zone->managed_pages, remaining_pages);
    1368           2 :         zone_set_nid(zone, nid);
    1369           2 :         zone->name = zone_names[idx];
    1370           2 :         zone->zone_pgdat = NODE_DATA(nid);
    1371           2 :         spin_lock_init(&zone->lock);
    1372           2 :         zone_seqlock_init(zone);
    1373           2 :         zone_pcp_init(zone);
    1374           2 : }
    1375             : 
    1376           1 : static void __meminit zone_init_free_lists(struct zone *zone)
    1377             : {
    1378             :         unsigned int order, t;
    1379          45 :         for_each_migratetype_order(order, t) {
    1380          88 :                 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
    1381          44 :                 zone->free_area[order].nr_free = 0;
    1382             :         }
    1383             : 
    1384             : #ifdef CONFIG_UNACCEPTED_MEMORY
    1385             :         INIT_LIST_HEAD(&zone->unaccepted_pages);
    1386             : #endif
    1387           1 : }
    1388             : 
    1389           1 : void __meminit init_currently_empty_zone(struct zone *zone,
    1390             :                                         unsigned long zone_start_pfn,
    1391             :                                         unsigned long size)
    1392             : {
    1393           1 :         struct pglist_data *pgdat = zone->zone_pgdat;
    1394           1 :         int zone_idx = zone_idx(zone) + 1;
    1395             : 
    1396           1 :         if (zone_idx > pgdat->nr_zones)
    1397           1 :                 pgdat->nr_zones = zone_idx;
    1398             : 
    1399           1 :         zone->zone_start_pfn = zone_start_pfn;
    1400             : 
    1401           1 :         mminit_dprintk(MMINIT_TRACE, "memmap_init",
    1402             :                         "Initialising map node %d zone %lu pfns %lu -> %lu\n",
    1403             :                         pgdat->node_id,
    1404             :                         (unsigned long)zone_idx(zone),
    1405             :                         zone_start_pfn, (zone_start_pfn + size));
    1406             : 
    1407           1 :         zone_init_free_lists(zone);
    1408           1 :         zone->initialized = 1;
    1409           1 : }
    1410             : 
    1411             : #ifndef CONFIG_SPARSEMEM
    1412             : /*
    1413             :  * Calculate the size of the zone->blockflags rounded to an unsigned long
    1414             :  * Start by making sure zonesize is a multiple of pageblock_order by rounding
    1415             :  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
    1416             :  * round what is now in bits to nearest long in bits, then return it in
    1417             :  * bytes.
    1418             :  */
    1419           1 : static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
    1420             : {
    1421             :         unsigned long usemapsize;
    1422             : 
    1423           1 :         zonesize += zone_start_pfn & (pageblock_nr_pages-1);
    1424           1 :         usemapsize = roundup(zonesize, pageblock_nr_pages);
    1425           1 :         usemapsize = usemapsize >> pageblock_order;
    1426           1 :         usemapsize *= NR_PAGEBLOCK_BITS;
    1427           1 :         usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
    1428             : 
    1429           1 :         return usemapsize / 8;
    1430             : }
    1431             : 
    1432           1 : static void __ref setup_usemap(struct zone *zone)
    1433             : {
    1434           1 :         unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
    1435             :                                                zone->spanned_pages);
    1436           1 :         zone->pageblock_flags = NULL;
    1437           1 :         if (usemapsize) {
    1438           1 :                 zone->pageblock_flags =
    1439           2 :                         memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
    1440             :                                             zone_to_nid(zone));
    1441           1 :                 if (!zone->pageblock_flags)
    1442           0 :                         panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
    1443             :                               usemapsize, zone->name, zone_to_nid(zone));
    1444             :         }
    1445           1 : }
    1446             : #else
    1447             : static inline void setup_usemap(struct zone *zone) {}
    1448             : #endif /* CONFIG_SPARSEMEM */
    1449             : 
    1450             : #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
    1451             : 
    1452             : /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
    1453             : void __init set_pageblock_order(void)
    1454             : {
    1455             :         unsigned int order = MAX_ORDER;
    1456             : 
    1457             :         /* Check that pageblock_nr_pages has not already been setup */
    1458             :         if (pageblock_order)
    1459             :                 return;
    1460             : 
    1461             :         /* Don't let pageblocks exceed the maximum allocation granularity. */
    1462             :         if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
    1463             :                 order = HUGETLB_PAGE_ORDER;
    1464             : 
    1465             :         /*
    1466             :          * Assume the largest contiguous order of interest is a huge page.
    1467             :          * This value may be variable depending on boot parameters on IA64 and
    1468             :          * powerpc.
    1469             :          */
    1470             :         pageblock_order = order;
    1471             : }
    1472             : #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
    1473             : 
    1474             : /*
    1475             :  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
    1476             :  * is unused as pageblock_order is set at compile-time. See
    1477             :  * include/linux/pageblock-flags.h for the values of pageblock_order based on
    1478             :  * the kernel config
    1479             :  */
    1480           0 : void __init set_pageblock_order(void)
    1481             : {
    1482           0 : }
    1483             : 
    1484             : #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
    1485             : 
    1486             : /*
    1487             :  * Set up the zone data structures
    1488             :  * - init pgdat internals
    1489             :  * - init all zones belonging to this node
    1490             :  *
    1491             :  * NOTE: this function is only called during memory hotplug
    1492             :  */
    1493             : #ifdef CONFIG_MEMORY_HOTPLUG
    1494             : void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
    1495             : {
    1496             :         int nid = pgdat->node_id;
    1497             :         enum zone_type z;
    1498             :         int cpu;
    1499             : 
    1500             :         pgdat_init_internals(pgdat);
    1501             : 
    1502             :         if (pgdat->per_cpu_nodestats == &boot_nodestats)
    1503             :                 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
    1504             : 
    1505             :         /*
    1506             :          * Reset the nr_zones, order and highest_zoneidx before reuse.
    1507             :          * Note that kswapd will init kswapd_highest_zoneidx properly
    1508             :          * when it starts in the near future.
    1509             :          */
    1510             :         pgdat->nr_zones = 0;
    1511             :         pgdat->kswapd_order = 0;
    1512             :         pgdat->kswapd_highest_zoneidx = 0;
    1513             :         pgdat->node_start_pfn = 0;
    1514             :         pgdat->node_present_pages = 0;
    1515             : 
    1516             :         for_each_online_cpu(cpu) {
    1517             :                 struct per_cpu_nodestat *p;
    1518             : 
    1519             :                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
    1520             :                 memset(p, 0, sizeof(*p));
    1521             :         }
    1522             : 
    1523             :         /*
    1524             :          * When memory is hot-added, all the memory is in offline state. So
    1525             :          * clear all zones' present_pages and managed_pages because they will
    1526             :          * be updated in online_pages() and offline_pages().
    1527             :          */
    1528             :         for (z = 0; z < MAX_NR_ZONES; z++) {
    1529             :                 struct zone *zone = pgdat->node_zones + z;
    1530             : 
    1531             :                 zone->present_pages = 0;
    1532             :                 zone_init_internals(zone, z, nid, 0);
    1533             :         }
    1534             : }
    1535             : #endif
    1536             : 
    1537             : /*
    1538             :  * Set up the zone data structures:
    1539             :  *   - mark all pages reserved
    1540             :  *   - mark all memory queues empty
    1541             :  *   - clear the memory bitmaps
    1542             :  *
    1543             :  * NOTE: pgdat should get zeroed by caller.
    1544             :  * NOTE: this function is only called during early init.
    1545             :  */
    1546           1 : static void __init free_area_init_core(struct pglist_data *pgdat)
    1547             : {
    1548             :         enum zone_type j;
    1549           1 :         int nid = pgdat->node_id;
    1550             : 
    1551           1 :         pgdat_init_internals(pgdat);
    1552           1 :         pgdat->per_cpu_nodestats = &boot_nodestats;
    1553             : 
    1554           3 :         for (j = 0; j < MAX_NR_ZONES; j++) {
    1555           2 :                 struct zone *zone = pgdat->node_zones + j;
    1556             :                 unsigned long size, freesize, memmap_pages;
    1557             : 
    1558           2 :                 size = zone->spanned_pages;
    1559           2 :                 freesize = zone->present_pages;
    1560             : 
    1561             :                 /*
    1562             :                  * Adjust freesize so that it accounts for how much memory
    1563             :                  * is used by this zone for memmap. This affects the watermark
    1564             :                  * and per-cpu initialisations
    1565             :                  */
    1566           4 :                 memmap_pages = calc_memmap_size(size, freesize);
    1567           2 :                 if (!is_highmem_idx(j)) {
    1568           2 :                         if (freesize >= memmap_pages) {
    1569           2 :                                 freesize -= memmap_pages;
    1570             :                                 if (memmap_pages)
    1571             :                                         pr_debug("  %s zone: %lu pages used for memmap\n",
    1572             :                                                  zone_names[j], memmap_pages);
    1573             :                         } else
    1574           0 :                                 pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
    1575             :                                         zone_names[j], memmap_pages, freesize);
    1576             :                 }
    1577             : 
    1578             :                 /* Account for reserved pages */
    1579           2 :                 if (j == 0 && freesize > dma_reserve) {
    1580           1 :                         freesize -= dma_reserve;
    1581             :                         pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
    1582             :                 }
    1583             : 
    1584           2 :                 if (!is_highmem_idx(j))
    1585           2 :                         nr_kernel_pages += freesize;
    1586             :                 /* Charge for highmem memmap if there are enough kernel pages */
    1587             :                 else if (nr_kernel_pages > memmap_pages * 2)
    1588             :                         nr_kernel_pages -= memmap_pages;
    1589           2 :                 nr_all_pages += freesize;
    1590             : 
    1591             :                 /*
    1592             :                  * Set an approximate value for lowmem here, it will be adjusted
    1593             :                  * when the bootmem allocator frees pages into the buddy system.
    1594             :                  * And all highmem pages will be managed by the buddy system.
    1595             :                  */
    1596           2 :                 zone_init_internals(zone, j, nid, freesize);
    1597             : 
    1598           2 :                 if (!size)
    1599           1 :                         continue;
    1600             : 
    1601           1 :                 setup_usemap(zone);
    1602           1 :                 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
    1603             :         }
    1604           1 : }
    1605             : 
    1606           1 : void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
    1607             :                           phys_addr_t min_addr, int nid, bool exact_nid)
    1608             : {
    1609             :         void *ptr;
    1610             : 
    1611           1 :         if (exact_nid)
    1612           0 :                 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
    1613             :                                                    MEMBLOCK_ALLOC_ACCESSIBLE,
    1614             :                                                    nid);
    1615             :         else
    1616           1 :                 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
    1617             :                                                  MEMBLOCK_ALLOC_ACCESSIBLE,
    1618             :                                                  nid);
    1619             : 
    1620             :         if (ptr && size > 0)
    1621             :                 page_init_poison(ptr, size);
    1622             : 
    1623           1 :         return ptr;
    1624             : }
    1625             : 
    1626             : #ifdef CONFIG_FLATMEM
    1627           1 : static void __init alloc_node_mem_map(struct pglist_data *pgdat)
    1628             : {
    1629           1 :         unsigned long __maybe_unused start = 0;
    1630           1 :         unsigned long __maybe_unused offset = 0;
    1631             : 
    1632             :         /* Skip empty nodes */
    1633           1 :         if (!pgdat->node_spanned_pages)
    1634             :                 return;
    1635             : 
    1636           1 :         start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
    1637           1 :         offset = pgdat->node_start_pfn - start;
    1638             :         /* ia64 gets its own node_mem_map, before this, without bootmem */
    1639           1 :         if (!pgdat->node_mem_map) {
    1640             :                 unsigned long size, end;
    1641             :                 struct page *map;
    1642             : 
    1643             :                 /*
    1644             :                  * The zone's endpoints aren't required to be MAX_ORDER
    1645             :                  * aligned but the node_mem_map endpoints must be in order
    1646             :                  * for the buddy allocator to function correctly.
    1647             :                  */
    1648           2 :                 end = pgdat_end_pfn(pgdat);
    1649           1 :                 end = ALIGN(end, MAX_ORDER_NR_PAGES);
    1650           1 :                 size =  (end - start) * sizeof(struct page);
    1651           1 :                 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
    1652             :                                    pgdat->node_id, false);
    1653           1 :                 if (!map)
    1654           0 :                         panic("Failed to allocate %ld bytes for node %d memory map\n",
    1655             :                               size, pgdat->node_id);
    1656           1 :                 pgdat->node_mem_map = map + offset;
    1657             :         }
    1658             :         pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
    1659             :                                 __func__, pgdat->node_id, (unsigned long)pgdat,
    1660             :                                 (unsigned long)pgdat->node_mem_map);
    1661             : #ifndef CONFIG_NUMA
    1662             :         /*
    1663             :          * With no DISCONTIG, the global mem_map is just set as node 0's
    1664             :          */
    1665           1 :         if (pgdat == NODE_DATA(0)) {
    1666           1 :                 mem_map = NODE_DATA(0)->node_mem_map;
    1667           1 :                 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
    1668           0 :                         mem_map -= offset;
    1669             :         }
    1670             : #endif
    1671             : }
    1672             : #else
    1673             : static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
    1674             : #endif /* CONFIG_FLATMEM */
    1675             : 
    1676             : /**
    1677             :  * get_pfn_range_for_nid - Return the start and end page frames for a node
    1678             :  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
    1679             :  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
    1680             :  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
    1681             :  *
    1682             :  * It returns the start and end page frame of a node based on information
    1683             :  * provided by memblock_set_node(). If called for a node
    1684             :  * with no available memory, a warning is printed and the start and end
    1685             :  * PFNs will be 0.
    1686             :  */
    1687           1 : void __init get_pfn_range_for_nid(unsigned int nid,
    1688             :                         unsigned long *start_pfn, unsigned long *end_pfn)
    1689             : {
    1690             :         unsigned long this_start_pfn, this_end_pfn;
    1691             :         int i;
    1692             : 
    1693           1 :         *start_pfn = -1UL;
    1694           1 :         *end_pfn = 0;
    1695             : 
    1696           2 :         for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
    1697           1 :                 *start_pfn = min(*start_pfn, this_start_pfn);
    1698           1 :                 *end_pfn = max(*end_pfn, this_end_pfn);
    1699             :         }
    1700             : 
    1701           1 :         if (*start_pfn == -1UL)
    1702           0 :                 *start_pfn = 0;
    1703           1 : }
    1704             : 
    1705           1 : static void __init free_area_init_node(int nid)
    1706             : {
    1707           1 :         pg_data_t *pgdat = NODE_DATA(nid);
    1708           1 :         unsigned long start_pfn = 0;
    1709           1 :         unsigned long end_pfn = 0;
    1710             : 
    1711             :         /* pg_data_t should be reset to zero when it's allocated */
    1712           1 :         WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
    1713             : 
    1714           1 :         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
    1715             : 
    1716           1 :         pgdat->node_id = nid;
    1717           1 :         pgdat->node_start_pfn = start_pfn;
    1718           1 :         pgdat->per_cpu_nodestats = NULL;
    1719             : 
    1720           1 :         if (start_pfn != end_pfn) {
    1721           1 :                 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
    1722             :                         (u64)start_pfn << PAGE_SHIFT,
    1723             :                         end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
    1724             : 
    1725           1 :                 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
    1726             :         } else {
    1727           0 :                 pr_info("Initmem setup node %d as memoryless\n", nid);
    1728             : 
    1729           0 :                 reset_memoryless_node_totalpages(pgdat);
    1730             :         }
    1731             : 
    1732           1 :         alloc_node_mem_map(pgdat);
    1733             :         pgdat_set_deferred_range(pgdat);
    1734             : 
    1735           1 :         free_area_init_core(pgdat);
    1736             :         lru_gen_init_pgdat(pgdat);
    1737           1 : }
    1738             : 
    1739             : /* Any regular or high memory on that node ? */
    1740             : static void check_for_memory(pg_data_t *pgdat)
    1741             : {
    1742             :         enum zone_type zone_type;
    1743             : 
    1744           1 :         for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
    1745           1 :                 struct zone *zone = &pgdat->node_zones[zone_type];
    1746           1 :                 if (populated_zone(zone)) {
    1747             :                         if (IS_ENABLED(CONFIG_HIGHMEM))
    1748             :                                 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
    1749             :                         if (zone_type <= ZONE_NORMAL)
    1750             :                                 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
    1751             :                         break;
    1752             :                 }
    1753             :         }
    1754             : }
    1755             : 
    1756             : #if MAX_NUMNODES > 1
    1757             : /*
    1758             :  * Figure out the number of possible node ids.
    1759             :  */
    1760             : void __init setup_nr_node_ids(void)
    1761             : {
    1762             :         unsigned int highest;
    1763             : 
    1764             :         highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
    1765             :         nr_node_ids = highest + 1;
    1766             : }
    1767             : #endif
    1768             : 
    1769             : /*
    1770             :  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
    1771             :  * such cases we allow max_zone_pfn sorted in the descending order
    1772             :  */
    1773             : static bool arch_has_descending_max_zone_pfns(void)
    1774             : {
    1775             :         return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
    1776             : }
    1777             : 
    1778             : /**
    1779             :  * free_area_init - Initialise all pg_data_t and zone data
    1780             :  * @max_zone_pfn: an array of max PFNs for each zone
    1781             :  *
    1782             :  * This will call free_area_init_node() for each active node in the system.
    1783             :  * Using the page ranges provided by memblock_set_node(), the size of each
    1784             :  * zone in each node and their holes is calculated. If the maximum PFN
    1785             :  * between two adjacent zones match, it is assumed that the zone is empty.
    1786             :  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
    1787             :  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
    1788             :  * starts where the previous one ended. For example, ZONE_DMA32 starts
    1789             :  * at arch_max_dma_pfn.
    1790             :  */
    1791           1 : void __init free_area_init(unsigned long *max_zone_pfn)
    1792             : {
    1793             :         unsigned long start_pfn, end_pfn;
    1794             :         int i, nid, zone;
    1795             :         bool descending;
    1796             : 
    1797             :         /* Record where the zone boundaries are */
    1798           1 :         memset(arch_zone_lowest_possible_pfn, 0,
    1799             :                                 sizeof(arch_zone_lowest_possible_pfn));
    1800           1 :         memset(arch_zone_highest_possible_pfn, 0,
    1801             :                                 sizeof(arch_zone_highest_possible_pfn));
    1802             : 
    1803           1 :         start_pfn = PHYS_PFN(memblock_start_of_DRAM());
    1804           1 :         descending = arch_has_descending_max_zone_pfns();
    1805             : 
    1806           3 :         for (i = 0; i < MAX_NR_ZONES; i++) {
    1807             :                 if (descending)
    1808             :                         zone = MAX_NR_ZONES - i - 1;
    1809             :                 else
    1810           2 :                         zone = i;
    1811             : 
    1812           2 :                 if (zone == ZONE_MOVABLE)
    1813           1 :                         continue;
    1814             : 
    1815           1 :                 end_pfn = max(max_zone_pfn[zone], start_pfn);
    1816           1 :                 arch_zone_lowest_possible_pfn[zone] = start_pfn;
    1817           1 :                 arch_zone_highest_possible_pfn[zone] = end_pfn;
    1818             : 
    1819           1 :                 start_pfn = end_pfn;
    1820             :         }
    1821             : 
    1822             :         /* Find the PFNs that ZONE_MOVABLE begins at in each node */
    1823           1 :         memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
    1824           1 :         find_zone_movable_pfns_for_nodes();
    1825             : 
    1826             :         /* Print out the zone ranges */
    1827           1 :         pr_info("Zone ranges:\n");
    1828           3 :         for (i = 0; i < MAX_NR_ZONES; i++) {
    1829           2 :                 if (i == ZONE_MOVABLE)
    1830           1 :                         continue;
    1831           1 :                 pr_info("  %-8s ", zone_names[i]);
    1832           2 :                 if (arch_zone_lowest_possible_pfn[i] ==
    1833           1 :                                 arch_zone_highest_possible_pfn[i])
    1834           0 :                         pr_cont("empty\n");
    1835             :                 else
    1836           1 :                         pr_cont("[mem %#018Lx-%#018Lx]\n",
    1837             :                                 (u64)arch_zone_lowest_possible_pfn[i]
    1838             :                                         << PAGE_SHIFT,
    1839             :                                 ((u64)arch_zone_highest_possible_pfn[i]
    1840             :                                         << PAGE_SHIFT) - 1);
    1841             :         }
    1842             : 
    1843             :         /* Print out the PFNs ZONE_MOVABLE begins at in each node */
    1844           1 :         pr_info("Movable zone start for each node\n");
    1845           2 :         for (i = 0; i < MAX_NUMNODES; i++) {
    1846           1 :                 if (zone_movable_pfn[i])
    1847           0 :                         pr_info("  Node %d: %#018Lx\n", i,
    1848             :                                (u64)zone_movable_pfn[i] << PAGE_SHIFT);
    1849             :         }
    1850             : 
    1851             :         /*
    1852             :          * Print out the early node map, and initialize the
    1853             :          * subsection-map relative to active online memory ranges to
    1854             :          * enable future "sub-section" extensions of the memory map.
    1855             :          */
    1856           1 :         pr_info("Early memory node ranges\n");
    1857           2 :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
    1858           1 :                 pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
    1859             :                         (u64)start_pfn << PAGE_SHIFT,
    1860             :                         ((u64)end_pfn << PAGE_SHIFT) - 1);
    1861             :                 subsection_map_init(start_pfn, end_pfn - start_pfn);
    1862             :         }
    1863             : 
    1864             :         /* Initialise every node */
    1865           1 :         mminit_verify_pageflags_layout();
    1866             :         setup_nr_node_ids();
    1867             :         set_pageblock_order();
    1868             : 
    1869           2 :         for_each_node(nid) {
    1870             :                 pg_data_t *pgdat;
    1871             : 
    1872           1 :                 if (!node_online(nid)) {
    1873             :                         pr_info("Initializing node %d as memoryless\n", nid);
    1874             : 
    1875             :                         /* Allocator not initialized yet */
    1876             :                         pgdat = arch_alloc_nodedata(nid);
    1877             :                         if (!pgdat)
    1878             :                                 panic("Cannot allocate %zuB for node %d.\n",
    1879             :                                        sizeof(*pgdat), nid);
    1880             :                         arch_refresh_nodedata(nid, pgdat);
    1881             :                         free_area_init_node(nid);
    1882             : 
    1883             :                         /*
    1884             :                          * We do not want to confuse userspace by sysfs
    1885             :                          * files/directories for node without any memory
    1886             :                          * attached to it, so this node is not marked as
    1887             :                          * N_MEMORY and not marked online so that no sysfs
    1888             :                          * hierarchy will be created via register_one_node for
    1889             :                          * it. The pgdat will get fully initialized by
    1890             :                          * hotadd_init_pgdat() when memory is hotplugged into
    1891             :                          * this node.
    1892             :                          */
    1893             :                         continue;
    1894             :                 }
    1895             : 
    1896           1 :                 pgdat = NODE_DATA(nid);
    1897           1 :                 free_area_init_node(nid);
    1898             : 
    1899             :                 /* Any memory on that node */
    1900             :                 if (pgdat->node_present_pages)
    1901             :                         node_set_state(nid, N_MEMORY);
    1902           1 :                 check_for_memory(pgdat);
    1903             :         }
    1904             : 
    1905           1 :         memmap_init();
    1906             : 
    1907             :         /* disable hash distribution for systems with a single node */
    1908             :         fixup_hashdist();
    1909           1 : }
    1910             : 
    1911             : /**
    1912             :  * node_map_pfn_alignment - determine the maximum internode alignment
    1913             :  *
    1914             :  * This function should be called after node map is populated and sorted.
    1915             :  * It calculates the maximum power of two alignment which can distinguish
    1916             :  * all the nodes.
    1917             :  *
    1918             :  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
    1919             :  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
    1920             :  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
    1921             :  * shifted, 1GiB is enough and this function will indicate so.
    1922             :  *
    1923             :  * This is used to test whether pfn -> nid mapping of the chosen memory
    1924             :  * model has fine enough granularity to avoid incorrect mapping for the
    1925             :  * populated node map.
    1926             :  *
    1927             :  * Return: the determined alignment in pfn's.  0 if there is no alignment
    1928             :  * requirement (single node).
    1929             :  */
    1930           0 : unsigned long __init node_map_pfn_alignment(void)
    1931             : {
    1932           0 :         unsigned long accl_mask = 0, last_end = 0;
    1933             :         unsigned long start, end, mask;
    1934           0 :         int last_nid = NUMA_NO_NODE;
    1935             :         int i, nid;
    1936             : 
    1937           0 :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
    1938           0 :                 if (!start || last_nid < 0 || last_nid == nid) {
    1939           0 :                         last_nid = nid;
    1940           0 :                         last_end = end;
    1941           0 :                         continue;
    1942             :                 }
    1943             : 
    1944             :                 /*
    1945             :                  * Start with a mask granular enough to pin-point to the
    1946             :                  * start pfn and tick off bits one-by-one until it becomes
    1947             :                  * too coarse to separate the current node from the last.
    1948             :                  */
    1949           0 :                 mask = ~((1 << __ffs(start)) - 1);
    1950           0 :                 while (mask && last_end <= (start & (mask << 1)))
    1951             :                         mask <<= 1;
    1952             : 
    1953             :                 /* accumulate all internode masks */
    1954           0 :                 accl_mask |= mask;
    1955             :         }
    1956             : 
    1957             :         /* convert mask to number of pages */
    1958           0 :         return ~accl_mask + 1;
    1959             : }
    1960             : 
    1961             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1962             : static void __init deferred_free_range(unsigned long pfn,
    1963             :                                        unsigned long nr_pages)
    1964             : {
    1965             :         struct page *page;
    1966             :         unsigned long i;
    1967             : 
    1968             :         if (!nr_pages)
    1969             :                 return;
    1970             : 
    1971             :         page = pfn_to_page(pfn);
    1972             : 
    1973             :         /* Free a large naturally-aligned chunk if possible */
    1974             :         if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
    1975             :                 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
    1976             :                         set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
    1977             :                 __free_pages_core(page, MAX_ORDER);
    1978             :                 return;
    1979             :         }
    1980             : 
    1981             :         /* Accept chunks smaller than MAX_ORDER upfront */
    1982             :         accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
    1983             : 
    1984             :         for (i = 0; i < nr_pages; i++, page++, pfn++) {
    1985             :                 if (pageblock_aligned(pfn))
    1986             :                         set_pageblock_migratetype(page, MIGRATE_MOVABLE);
    1987             :                 __free_pages_core(page, 0);
    1988             :         }
    1989             : }
    1990             : 
    1991             : /* Completion tracking for deferred_init_memmap() threads */
    1992             : static atomic_t pgdat_init_n_undone __initdata;
    1993             : static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
    1994             : 
    1995             : static inline void __init pgdat_init_report_one_done(void)
    1996             : {
    1997             :         if (atomic_dec_and_test(&pgdat_init_n_undone))
    1998             :                 complete(&pgdat_init_all_done_comp);
    1999             : }
    2000             : 
    2001             : /*
    2002             :  * Returns true if page needs to be initialized or freed to buddy allocator.
    2003             :  *
    2004             :  * We check if a current MAX_ORDER block is valid by only checking the validity
    2005             :  * of the head pfn.
    2006             :  */
    2007             : static inline bool __init deferred_pfn_valid(unsigned long pfn)
    2008             : {
    2009             :         if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
    2010             :                 return false;
    2011             :         return true;
    2012             : }
    2013             : 
    2014             : /*
    2015             :  * Free pages to buddy allocator. Try to free aligned pages in
    2016             :  * MAX_ORDER_NR_PAGES sizes.
    2017             :  */
    2018             : static void __init deferred_free_pages(unsigned long pfn,
    2019             :                                        unsigned long end_pfn)
    2020             : {
    2021             :         unsigned long nr_free = 0;
    2022             : 
    2023             :         for (; pfn < end_pfn; pfn++) {
    2024             :                 if (!deferred_pfn_valid(pfn)) {
    2025             :                         deferred_free_range(pfn - nr_free, nr_free);
    2026             :                         nr_free = 0;
    2027             :                 } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
    2028             :                         deferred_free_range(pfn - nr_free, nr_free);
    2029             :                         nr_free = 1;
    2030             :                 } else {
    2031             :                         nr_free++;
    2032             :                 }
    2033             :         }
    2034             :         /* Free the last block of pages to allocator */
    2035             :         deferred_free_range(pfn - nr_free, nr_free);
    2036             : }
    2037             : 
    2038             : /*
    2039             :  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
    2040             :  * by performing it only once every MAX_ORDER_NR_PAGES.
    2041             :  * Return number of pages initialized.
    2042             :  */
    2043             : static unsigned long  __init deferred_init_pages(struct zone *zone,
    2044             :                                                  unsigned long pfn,
    2045             :                                                  unsigned long end_pfn)
    2046             : {
    2047             :         int nid = zone_to_nid(zone);
    2048             :         unsigned long nr_pages = 0;
    2049             :         int zid = zone_idx(zone);
    2050             :         struct page *page = NULL;
    2051             : 
    2052             :         for (; pfn < end_pfn; pfn++) {
    2053             :                 if (!deferred_pfn_valid(pfn)) {
    2054             :                         page = NULL;
    2055             :                         continue;
    2056             :                 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
    2057             :                         page = pfn_to_page(pfn);
    2058             :                 } else {
    2059             :                         page++;
    2060             :                 }
    2061             :                 __init_single_page(page, pfn, zid, nid);
    2062             :                 nr_pages++;
    2063             :         }
    2064             :         return (nr_pages);
    2065             : }
    2066             : 
    2067             : /*
    2068             :  * This function is meant to pre-load the iterator for the zone init.
    2069             :  * Specifically it walks through the ranges until we are caught up to the
    2070             :  * first_init_pfn value and exits there. If we never encounter the value we
    2071             :  * return false indicating there are no valid ranges left.
    2072             :  */
    2073             : static bool __init
    2074             : deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
    2075             :                                     unsigned long *spfn, unsigned long *epfn,
    2076             :                                     unsigned long first_init_pfn)
    2077             : {
    2078             :         u64 j;
    2079             : 
    2080             :         /*
    2081             :          * Start out by walking through the ranges in this zone that have
    2082             :          * already been initialized. We don't need to do anything with them
    2083             :          * so we just need to flush them out of the system.
    2084             :          */
    2085             :         for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
    2086             :                 if (*epfn <= first_init_pfn)
    2087             :                         continue;
    2088             :                 if (*spfn < first_init_pfn)
    2089             :                         *spfn = first_init_pfn;
    2090             :                 *i = j;
    2091             :                 return true;
    2092             :         }
    2093             : 
    2094             :         return false;
    2095             : }
    2096             : 
    2097             : /*
    2098             :  * Initialize and free pages. We do it in two loops: first we initialize
    2099             :  * struct page, then free to buddy allocator, because while we are
    2100             :  * freeing pages we can access pages that are ahead (computing buddy
    2101             :  * page in __free_one_page()).
    2102             :  *
    2103             :  * In order to try and keep some memory in the cache we have the loop
    2104             :  * broken along max page order boundaries. This way we will not cause
    2105             :  * any issues with the buddy page computation.
    2106             :  */
    2107             : static unsigned long __init
    2108             : deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
    2109             :                        unsigned long *end_pfn)
    2110             : {
    2111             :         unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
    2112             :         unsigned long spfn = *start_pfn, epfn = *end_pfn;
    2113             :         unsigned long nr_pages = 0;
    2114             :         u64 j = *i;
    2115             : 
    2116             :         /* First we loop through and initialize the page values */
    2117             :         for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
    2118             :                 unsigned long t;
    2119             : 
    2120             :                 if (mo_pfn <= *start_pfn)
    2121             :                         break;
    2122             : 
    2123             :                 t = min(mo_pfn, *end_pfn);
    2124             :                 nr_pages += deferred_init_pages(zone, *start_pfn, t);
    2125             : 
    2126             :                 if (mo_pfn < *end_pfn) {
    2127             :                         *start_pfn = mo_pfn;
    2128             :                         break;
    2129             :                 }
    2130             :         }
    2131             : 
    2132             :         /* Reset values and now loop through freeing pages as needed */
    2133             :         swap(j, *i);
    2134             : 
    2135             :         for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
    2136             :                 unsigned long t;
    2137             : 
    2138             :                 if (mo_pfn <= spfn)
    2139             :                         break;
    2140             : 
    2141             :                 t = min(mo_pfn, epfn);
    2142             :                 deferred_free_pages(spfn, t);
    2143             : 
    2144             :                 if (mo_pfn <= epfn)
    2145             :                         break;
    2146             :         }
    2147             : 
    2148             :         return nr_pages;
    2149             : }
    2150             : 
    2151             : static void __init
    2152             : deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
    2153             :                            void *arg)
    2154             : {
    2155             :         unsigned long spfn, epfn;
    2156             :         struct zone *zone = arg;
    2157             :         u64 i;
    2158             : 
    2159             :         deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
    2160             : 
    2161             :         /*
    2162             :          * Initialize and free pages in MAX_ORDER sized increments so that we
    2163             :          * can avoid introducing any issues with the buddy allocator.
    2164             :          */
    2165             :         while (spfn < end_pfn) {
    2166             :                 deferred_init_maxorder(&i, zone, &spfn, &epfn);
    2167             :                 cond_resched();
    2168             :         }
    2169             : }
    2170             : 
    2171             : /* An arch may override for more concurrency. */
    2172             : __weak int __init
    2173             : deferred_page_init_max_threads(const struct cpumask *node_cpumask)
    2174             : {
    2175             :         return 1;
    2176             : }
    2177             : 
    2178             : /* Initialise remaining memory on a node */
    2179             : static int __init deferred_init_memmap(void *data)
    2180             : {
    2181             :         pg_data_t *pgdat = data;
    2182             :         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    2183             :         unsigned long spfn = 0, epfn = 0;
    2184             :         unsigned long first_init_pfn, flags;
    2185             :         unsigned long start = jiffies;
    2186             :         struct zone *zone;
    2187             :         int zid, max_threads;
    2188             :         u64 i;
    2189             : 
    2190             :         /* Bind memory initialisation thread to a local node if possible */
    2191             :         if (!cpumask_empty(cpumask))
    2192             :                 set_cpus_allowed_ptr(current, cpumask);
    2193             : 
    2194             :         pgdat_resize_lock(pgdat, &flags);
    2195             :         first_init_pfn = pgdat->first_deferred_pfn;
    2196             :         if (first_init_pfn == ULONG_MAX) {
    2197             :                 pgdat_resize_unlock(pgdat, &flags);
    2198             :                 pgdat_init_report_one_done();
    2199             :                 return 0;
    2200             :         }
    2201             : 
    2202             :         /* Sanity check boundaries */
    2203             :         BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
    2204             :         BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
    2205             :         pgdat->first_deferred_pfn = ULONG_MAX;
    2206             : 
    2207             :         /*
    2208             :          * Once we unlock here, the zone cannot be grown anymore, thus if an
    2209             :          * interrupt thread must allocate this early in boot, zone must be
    2210             :          * pre-grown prior to start of deferred page initialization.
    2211             :          */
    2212             :         pgdat_resize_unlock(pgdat, &flags);
    2213             : 
    2214             :         /* Only the highest zone is deferred so find it */
    2215             :         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    2216             :                 zone = pgdat->node_zones + zid;
    2217             :                 if (first_init_pfn < zone_end_pfn(zone))
    2218             :                         break;
    2219             :         }
    2220             : 
    2221             :         /* If the zone is empty somebody else may have cleared out the zone */
    2222             :         if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
    2223             :                                                  first_init_pfn))
    2224             :                 goto zone_empty;
    2225             : 
    2226             :         max_threads = deferred_page_init_max_threads(cpumask);
    2227             : 
    2228             :         while (spfn < epfn) {
    2229             :                 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
    2230             :                 struct padata_mt_job job = {
    2231             :                         .thread_fn   = deferred_init_memmap_chunk,
    2232             :                         .fn_arg      = zone,
    2233             :                         .start       = spfn,
    2234             :                         .size        = epfn_align - spfn,
    2235             :                         .align       = PAGES_PER_SECTION,
    2236             :                         .min_chunk   = PAGES_PER_SECTION,
    2237             :                         .max_threads = max_threads,
    2238             :                 };
    2239             : 
    2240             :                 padata_do_multithreaded(&job);
    2241             :                 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
    2242             :                                                     epfn_align);
    2243             :         }
    2244             : zone_empty:
    2245             :         /* Sanity check that the next zone really is unpopulated */
    2246             :         WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
    2247             : 
    2248             :         pr_info("node %d deferred pages initialised in %ums\n",
    2249             :                 pgdat->node_id, jiffies_to_msecs(jiffies - start));
    2250             : 
    2251             :         pgdat_init_report_one_done();
    2252             :         return 0;
    2253             : }
    2254             : 
    2255             : /*
    2256             :  * If this zone has deferred pages, try to grow it by initializing enough
    2257             :  * deferred pages to satisfy the allocation specified by order, rounded up to
    2258             :  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
    2259             :  * of SECTION_SIZE bytes by initializing struct pages in increments of
    2260             :  * PAGES_PER_SECTION * sizeof(struct page) bytes.
    2261             :  *
    2262             :  * Return true when zone was grown, otherwise return false. We return true even
    2263             :  * when we grow less than requested, to let the caller decide if there are
    2264             :  * enough pages to satisfy the allocation.
    2265             :  *
    2266             :  * Note: We use noinline because this function is needed only during boot, and
    2267             :  * it is called from a __ref function _deferred_grow_zone. This way we are
    2268             :  * making sure that it is not inlined into permanent text section.
    2269             :  */
    2270             : bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
    2271             : {
    2272             :         unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
    2273             :         pg_data_t *pgdat = zone->zone_pgdat;
    2274             :         unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
    2275             :         unsigned long spfn, epfn, flags;
    2276             :         unsigned long nr_pages = 0;
    2277             :         u64 i;
    2278             : 
    2279             :         /* Only the last zone may have deferred pages */
    2280             :         if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
    2281             :                 return false;
    2282             : 
    2283             :         pgdat_resize_lock(pgdat, &flags);
    2284             : 
    2285             :         /*
    2286             :          * If someone grew this zone while we were waiting for spinlock, return
    2287             :          * true, as there might be enough pages already.
    2288             :          */
    2289             :         if (first_deferred_pfn != pgdat->first_deferred_pfn) {
    2290             :                 pgdat_resize_unlock(pgdat, &flags);
    2291             :                 return true;
    2292             :         }
    2293             : 
    2294             :         /* If the zone is empty somebody else may have cleared out the zone */
    2295             :         if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
    2296             :                                                  first_deferred_pfn)) {
    2297             :                 pgdat->first_deferred_pfn = ULONG_MAX;
    2298             :                 pgdat_resize_unlock(pgdat, &flags);
    2299             :                 /* Retry only once. */
    2300             :                 return first_deferred_pfn != ULONG_MAX;
    2301             :         }
    2302             : 
    2303             :         /*
    2304             :          * Initialize and free pages in MAX_ORDER sized increments so
    2305             :          * that we can avoid introducing any issues with the buddy
    2306             :          * allocator.
    2307             :          */
    2308             :         while (spfn < epfn) {
    2309             :                 /* update our first deferred PFN for this section */
    2310             :                 first_deferred_pfn = spfn;
    2311             : 
    2312             :                 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
    2313             :                 touch_nmi_watchdog();
    2314             : 
    2315             :                 /* We should only stop along section boundaries */
    2316             :                 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
    2317             :                         continue;
    2318             : 
    2319             :                 /* If our quota has been met we can stop here */
    2320             :                 if (nr_pages >= nr_pages_needed)
    2321             :                         break;
    2322             :         }
    2323             : 
    2324             :         pgdat->first_deferred_pfn = spfn;
    2325             :         pgdat_resize_unlock(pgdat, &flags);
    2326             : 
    2327             :         return nr_pages > 0;
    2328             : }
    2329             : 
    2330             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    2331             : 
    2332             : #ifdef CONFIG_CMA
    2333             : void __init init_cma_reserved_pageblock(struct page *page)
    2334             : {
    2335             :         unsigned i = pageblock_nr_pages;
    2336             :         struct page *p = page;
    2337             : 
    2338             :         do {
    2339             :                 __ClearPageReserved(p);
    2340             :                 set_page_count(p, 0);
    2341             :         } while (++p, --i);
    2342             : 
    2343             :         set_pageblock_migratetype(page, MIGRATE_CMA);
    2344             :         set_page_refcounted(page);
    2345             :         __free_pages(page, pageblock_order);
    2346             : 
    2347             :         adjust_managed_page_count(page, pageblock_nr_pages);
    2348             :         page_zone(page)->cma_pages += pageblock_nr_pages;
    2349             : }
    2350             : #endif
    2351             : 
    2352           1 : void set_zone_contiguous(struct zone *zone)
    2353             : {
    2354           1 :         unsigned long block_start_pfn = zone->zone_start_pfn;
    2355             :         unsigned long block_end_pfn;
    2356             : 
    2357           1 :         block_end_pfn = pageblock_end_pfn(block_start_pfn);
    2358         523 :         for (; block_start_pfn < zone_end_pfn(zone);
    2359         260 :                         block_start_pfn = block_end_pfn,
    2360         260 :                          block_end_pfn += pageblock_nr_pages) {
    2361             : 
    2362         260 :                 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
    2363             : 
    2364         260 :                 if (!__pageblock_pfn_to_page(block_start_pfn,
    2365             :                                              block_end_pfn, zone))
    2366             :                         return;
    2367         260 :                 cond_resched();
    2368             :         }
    2369             : 
    2370             :         /* We confirm that there is no hole */
    2371           1 :         zone->contiguous = true;
    2372             : }
    2373             : 
    2374           1 : void __init page_alloc_init_late(void)
    2375             : {
    2376             :         struct zone *zone;
    2377             :         int nid;
    2378             : 
    2379             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    2380             : 
    2381             :         /* There will be num_node_state(N_MEMORY) threads */
    2382             :         atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
    2383             :         for_each_node_state(nid, N_MEMORY) {
    2384             :                 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
    2385             :         }
    2386             : 
    2387             :         /* Block until all are initialised */
    2388             :         wait_for_completion(&pgdat_init_all_done_comp);
    2389             : 
    2390             :         /*
    2391             :          * We initialized the rest of the deferred pages.  Permanently disable
    2392             :          * on-demand struct page initialization.
    2393             :          */
    2394             :         static_branch_disable(&deferred_pages);
    2395             : 
    2396             :         /* Reinit limits that are based on free pages after the kernel is up */
    2397             :         files_maxfiles_init();
    2398             : #endif
    2399             : 
    2400           1 :         buffer_init();
    2401             : 
    2402             :         /* Discard memblock private memory */
    2403           1 :         memblock_discard();
    2404             : 
    2405           1 :         for_each_node_state(nid, N_MEMORY)
    2406             :                 shuffle_free_memory(NODE_DATA(nid));
    2407             : 
    2408           3 :         for_each_populated_zone(zone)
    2409           1 :                 set_zone_contiguous(zone);
    2410             : 
    2411             :         /* Initialize page ext after all struct pages are initialized. */
    2412             :         if (deferred_struct_pages)
    2413             :                 page_ext_init();
    2414             : 
    2415           1 :         page_alloc_sysctl_init();
    2416           1 : }
    2417             : 
    2418             : #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
    2419             : /*
    2420             :  * Returns the number of pages that arch has reserved but
    2421             :  * is not known to alloc_large_system_hash().
    2422             :  */
    2423             : static unsigned long __init arch_reserved_kernel_pages(void)
    2424             : {
    2425             :         return 0;
    2426             : }
    2427             : #endif
    2428             : 
    2429             : /*
    2430             :  * Adaptive scale is meant to reduce sizes of hash tables on large memory
    2431             :  * machines. As memory size is increased the scale is also increased but at
    2432             :  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
    2433             :  * quadruples the scale is increased by one, which means the size of hash table
    2434             :  * only doubles, instead of quadrupling as well.
    2435             :  * Because 32-bit systems cannot have large physical memory, where this scaling
    2436             :  * makes sense, it is disabled on such platforms.
    2437             :  */
    2438             : #if __BITS_PER_LONG > 32
    2439             : #define ADAPT_SCALE_BASE        (64ul << 30)
    2440             : #define ADAPT_SCALE_SHIFT       2
    2441             : #define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
    2442             : #endif
    2443             : 
    2444             : /*
    2445             :  * allocate a large system hash table from bootmem
    2446             :  * - it is assumed that the hash table must contain an exact power-of-2
    2447             :  *   quantity of entries
    2448             :  * - limit is the number of hash buckets, not the total allocation size
    2449             :  */
    2450           5 : void *__init alloc_large_system_hash(const char *tablename,
    2451             :                                      unsigned long bucketsize,
    2452             :                                      unsigned long numentries,
    2453             :                                      int scale,
    2454             :                                      int flags,
    2455             :                                      unsigned int *_hash_shift,
    2456             :                                      unsigned int *_hash_mask,
    2457             :                                      unsigned long low_limit,
    2458             :                                      unsigned long high_limit)
    2459             : {
    2460           5 :         unsigned long long max = high_limit;
    2461             :         unsigned long log2qty, size;
    2462             :         void *table;
    2463             :         gfp_t gfp_flags;
    2464             :         bool virt;
    2465             :         bool huge;
    2466             : 
    2467             :         /* allow the kernel cmdline to have a say */
    2468           5 :         if (!numentries) {
    2469             :                 /* round applicable memory size up to nearest megabyte */
    2470           4 :                 numentries = nr_kernel_pages;
    2471           4 :                 numentries -= arch_reserved_kernel_pages();
    2472             : 
    2473             :                 /* It isn't necessary when PAGE_SIZE >= 1MB */
    2474             :                 if (PAGE_SIZE < SZ_1M)
    2475           4 :                         numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
    2476             : 
    2477             : #if __BITS_PER_LONG > 32
    2478           4 :                 if (!high_limit) {
    2479             :                         unsigned long adapt;
    2480             : 
    2481           4 :                         for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
    2482           0 :                              adapt <<= ADAPT_SCALE_SHIFT)
    2483           0 :                                 scale++;
    2484             :                 }
    2485             : #endif
    2486             : 
    2487             :                 /* limit to 1 bucket per 2^scale bytes of low memory */
    2488           4 :                 if (scale > PAGE_SHIFT)
    2489           4 :                         numentries >>= (scale - PAGE_SHIFT);
    2490             :                 else
    2491           0 :                         numentries <<= (PAGE_SHIFT - scale);
    2492             : 
    2493             :                 /* Make sure we've got at least a 0-order allocation.. */
    2494           4 :                 if (unlikely(flags & HASH_SMALL)) {
    2495             :                         /* Makes no sense without HASH_EARLY */
    2496           0 :                         WARN_ON(!(flags & HASH_EARLY));
    2497           0 :                         if (!(numentries >> *_hash_shift)) {
    2498           0 :                                 numentries = 1UL << *_hash_shift;
    2499           0 :                                 BUG_ON(!numentries);
    2500             :                         }
    2501           4 :                 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
    2502           0 :                         numentries = PAGE_SIZE / bucketsize;
    2503             :         }
    2504          10 :         numentries = roundup_pow_of_two(numentries);
    2505             : 
    2506             :         /* limit allocation size to 1/16 total memory by default */
    2507           5 :         if (max == 0) {
    2508           4 :                 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
    2509           4 :                 do_div(max, bucketsize);
    2510             :         }
    2511           5 :         max = min(max, 0x80000000ULL);
    2512             : 
    2513           5 :         if (numentries < low_limit)
    2514           0 :                 numentries = low_limit;
    2515           5 :         if (numentries > max)
    2516           0 :                 numentries = max;
    2517             : 
    2518          10 :         log2qty = ilog2(numentries);
    2519             : 
    2520           5 :         gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
    2521             :         do {
    2522           5 :                 virt = false;
    2523           5 :                 size = bucketsize << log2qty;
    2524           5 :                 if (flags & HASH_EARLY) {
    2525           2 :                         if (flags & HASH_ZERO)
    2526           2 :                                 table = memblock_alloc(size, SMP_CACHE_BYTES);
    2527             :                         else
    2528           0 :                                 table = memblock_alloc_raw(size,
    2529             :                                                            SMP_CACHE_BYTES);
    2530           3 :                 } else if (get_order(size) > MAX_ORDER || hashdist) {
    2531           0 :                         table = vmalloc_huge(size, gfp_flags);
    2532           0 :                         virt = true;
    2533             :                         if (table)
    2534             :                                 huge = is_vm_area_hugepages(table);
    2535             :                 } else {
    2536             :                         /*
    2537             :                          * If bucketsize is not a power-of-two, we may free
    2538             :                          * some pages at the end of hash table which
    2539             :                          * alloc_pages_exact() automatically does
    2540             :                          */
    2541           3 :                         table = alloc_pages_exact(size, gfp_flags);
    2542           3 :                         kmemleak_alloc(table, size, 1, gfp_flags);
    2543             :                 }
    2544           5 :         } while (!table && size > PAGE_SIZE && --log2qty);
    2545             : 
    2546           5 :         if (!table)
    2547           0 :                 panic("Failed to allocate %s hash table\n", tablename);
    2548             : 
    2549          10 :         pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
    2550             :                 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
    2551             :                 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
    2552             : 
    2553           5 :         if (_hash_shift)
    2554           5 :                 *_hash_shift = log2qty;
    2555           5 :         if (_hash_mask)
    2556           3 :                 *_hash_mask = (1 << log2qty) - 1;
    2557             : 
    2558           5 :         return table;
    2559             : }
    2560             : 
    2561             : /**
    2562             :  * set_dma_reserve - set the specified number of pages reserved in the first zone
    2563             :  * @new_dma_reserve: The number of pages to mark reserved
    2564             :  *
    2565             :  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
    2566             :  * In the DMA zone, a significant percentage may be consumed by kernel image
    2567             :  * and other unfreeable allocations which can skew the watermarks badly. This
    2568             :  * function may optionally be used to account for unfreeable pages in the
    2569             :  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
    2570             :  * smaller per-cpu batchsize.
    2571             :  */
    2572           0 : void __init set_dma_reserve(unsigned long new_dma_reserve)
    2573             : {
    2574           0 :         dma_reserve = new_dma_reserve;
    2575           0 : }
    2576             : 
    2577         259 : void __init memblock_free_pages(struct page *page, unsigned long pfn,
    2578             :                                                         unsigned int order)
    2579             : {
    2580             : 
    2581             :         if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
    2582             :                 int nid = early_pfn_to_nid(pfn);
    2583             : 
    2584             :                 if (!early_page_initialised(pfn, nid))
    2585             :                         return;
    2586             :         }
    2587             : 
    2588         259 :         if (!kmsan_memblock_free_pages(page, order)) {
    2589             :                 /* KMSAN will take care of these pages. */
    2590             :                 return;
    2591             :         }
    2592         259 :         __free_pages_core(page, order);
    2593             : }
    2594             : 
    2595             : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
    2596             : EXPORT_SYMBOL(init_on_alloc);
    2597             : 
    2598             : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
    2599             : EXPORT_SYMBOL(init_on_free);
    2600             : 
    2601             : static bool _init_on_alloc_enabled_early __read_mostly
    2602             :                                 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
    2603           0 : static int __init early_init_on_alloc(char *buf)
    2604             : {
    2605             : 
    2606           0 :         return kstrtobool(buf, &_init_on_alloc_enabled_early);
    2607             : }
    2608             : early_param("init_on_alloc", early_init_on_alloc);
    2609             : 
    2610             : static bool _init_on_free_enabled_early __read_mostly
    2611             :                                 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
    2612           0 : static int __init early_init_on_free(char *buf)
    2613             : {
    2614           0 :         return kstrtobool(buf, &_init_on_free_enabled_early);
    2615             : }
    2616             : early_param("init_on_free", early_init_on_free);
    2617             : 
    2618             : DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
    2619             : 
    2620             : /*
    2621             :  * Enable static keys related to various memory debugging and hardening options.
    2622             :  * Some override others, and depend on early params that are evaluated in the
    2623             :  * order of appearance. So we need to first gather the full picture of what was
    2624             :  * enabled, and then make decisions.
    2625             :  */
    2626           1 : static void __init mem_debugging_and_hardening_init(void)
    2627             : {
    2628           1 :         bool page_poisoning_requested = false;
    2629           1 :         bool want_check_pages = false;
    2630             : 
    2631             : #ifdef CONFIG_PAGE_POISONING
    2632             :         /*
    2633             :          * Page poisoning is debug page alloc for some arches. If
    2634             :          * either of those options are enabled, enable poisoning.
    2635             :          */
    2636             :         if (page_poisoning_enabled() ||
    2637             :              (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
    2638             :               debug_pagealloc_enabled())) {
    2639             :                 static_branch_enable(&_page_poisoning_enabled);
    2640             :                 page_poisoning_requested = true;
    2641             :                 want_check_pages = true;
    2642             :         }
    2643             : #endif
    2644             : 
    2645           1 :         if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
    2646             :             page_poisoning_requested) {
    2647             :                 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
    2648             :                         "will take precedence over init_on_alloc and init_on_free\n");
    2649             :                 _init_on_alloc_enabled_early = false;
    2650             :                 _init_on_free_enabled_early = false;
    2651             :         }
    2652             : 
    2653           1 :         if (_init_on_alloc_enabled_early) {
    2654           0 :                 want_check_pages = true;
    2655           0 :                 static_branch_enable(&init_on_alloc);
    2656             :         } else {
    2657           1 :                 static_branch_disable(&init_on_alloc);
    2658             :         }
    2659             : 
    2660           1 :         if (_init_on_free_enabled_early) {
    2661           0 :                 want_check_pages = true;
    2662           0 :                 static_branch_enable(&init_on_free);
    2663             :         } else {
    2664           1 :                 static_branch_disable(&init_on_free);
    2665             :         }
    2666             : 
    2667             :         if (IS_ENABLED(CONFIG_KMSAN) &&
    2668             :             (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
    2669             :                 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
    2670             : 
    2671             : #ifdef CONFIG_DEBUG_PAGEALLOC
    2672             :         if (debug_pagealloc_enabled()) {
    2673             :                 want_check_pages = true;
    2674             :                 static_branch_enable(&_debug_pagealloc_enabled);
    2675             : 
    2676             :                 if (debug_guardpage_minorder())
    2677             :                         static_branch_enable(&_debug_guardpage_enabled);
    2678             :         }
    2679             : #endif
    2680             : 
    2681             :         /*
    2682             :          * Any page debugging or hardening option also enables sanity checking
    2683             :          * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
    2684             :          * enabled already.
    2685             :          */
    2686           1 :         if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
    2687           0 :                 static_branch_enable(&check_pages_enabled);
    2688           1 : }
    2689             : 
    2690             : /* Report memory auto-initialization states for this boot. */
    2691           1 : static void __init report_meminit(void)
    2692             : {
    2693             :         const char *stack;
    2694             : 
    2695             :         if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
    2696             :                 stack = "all(pattern)";
    2697             :         else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
    2698             :                 stack = "all(zero)";
    2699             :         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
    2700             :                 stack = "byref_all(zero)";
    2701             :         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
    2702             :                 stack = "byref(zero)";
    2703             :         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
    2704             :                 stack = "__user(zero)";
    2705             :         else
    2706           1 :                 stack = "off";
    2707             : 
    2708           2 :         pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
    2709             :                 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
    2710             :                 want_init_on_free() ? "on" : "off");
    2711           1 :         if (want_init_on_free())
    2712           0 :                 pr_info("mem auto-init: clearing system memory may take some time...\n");
    2713           1 : }
    2714             : 
    2715           1 : static void __init mem_init_print_info(void)
    2716             : {
    2717             :         unsigned long physpages, codesize, datasize, rosize, bss_size;
    2718             :         unsigned long init_code_size, init_data_size;
    2719             : 
    2720           1 :         physpages = get_num_physpages();
    2721           1 :         codesize = _etext - _stext;
    2722           1 :         datasize = _edata - _sdata;
    2723           1 :         rosize = __end_rodata - __start_rodata;
    2724           1 :         bss_size = __bss_stop - __bss_start;
    2725           1 :         init_data_size = __init_end - __init_begin;
    2726           1 :         init_code_size = _einittext - _sinittext;
    2727             : 
    2728             :         /*
    2729             :          * Detect special cases and adjust section sizes accordingly:
    2730             :          * 1) .init.* may be embedded into .data sections
    2731             :          * 2) .init.text.* may be out of [__init_begin, __init_end],
    2732             :          *    please refer to arch/tile/kernel/vmlinux.lds.S.
    2733             :          * 3) .rodata.* may be embedded into .text or .data sections.
    2734             :          */
    2735             : #define adj_init_size(start, end, size, pos, adj) \
    2736             :         do { \
    2737             :                 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
    2738             :                         size -= adj; \
    2739             :         } while (0)
    2740             : 
    2741           1 :         adj_init_size(__init_begin, __init_end, init_data_size,
    2742             :                      _sinittext, init_code_size);
    2743           1 :         adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
    2744           1 :         adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
    2745           1 :         adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
    2746           1 :         adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
    2747             : 
    2748             : #undef  adj_init_size
    2749             : 
    2750           3 :         pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
    2751             : #ifdef  CONFIG_HIGHMEM
    2752             :                 ", %luK highmem"
    2753             : #endif
    2754             :                 ")\n",
    2755             :                 K(nr_free_pages()), K(physpages),
    2756             :                 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
    2757             :                 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
    2758             :                 K(physpages - totalram_pages() - totalcma_pages),
    2759             :                 K(totalcma_pages)
    2760             : #ifdef  CONFIG_HIGHMEM
    2761             :                 , K(totalhigh_pages())
    2762             : #endif
    2763             :                 );
    2764           1 : }
    2765             : 
    2766             : /*
    2767             :  * Set up kernel memory allocators
    2768             :  */
    2769           1 : void __init mm_core_init(void)
    2770             : {
    2771             :         /* Initializations relying on SMP setup */
    2772           1 :         build_all_zonelists(NULL);
    2773           1 :         page_alloc_init_cpuhp();
    2774             : 
    2775             :         /*
    2776             :          * page_ext requires contiguous pages,
    2777             :          * bigger than MAX_ORDER unless SPARSEMEM.
    2778             :          */
    2779             :         page_ext_init_flatmem();
    2780           1 :         mem_debugging_and_hardening_init();
    2781             :         kfence_alloc_pool();
    2782           1 :         report_meminit();
    2783             :         kmsan_init_shadow();
    2784           1 :         stack_depot_early_init();
    2785           1 :         mem_init();
    2786           1 :         mem_init_print_info();
    2787           1 :         kmem_cache_init();
    2788             :         /*
    2789             :          * page_owner must be initialized after buddy is ready, and also after
    2790             :          * slab is ready so that stack_depot_init() works properly
    2791             :          */
    2792             :         page_ext_init_flatmem_late();
    2793             :         kmemleak_init();
    2794             :         ptlock_cache_init();
    2795           1 :         pgtable_cache_init();
    2796             :         debug_objects_mem_init();
    2797           1 :         vmalloc_init();
    2798             :         /* If no deferred init page_ext now, as vmap is fully initialized */
    2799             :         if (!deferred_struct_pages)
    2800             :                 page_ext_init();
    2801             :         /* Should be run before the first non-init thread is created */
    2802             :         init_espfix_bsp();
    2803             :         /* Should be run after espfix64 is set up. */
    2804             :         pti_init();
    2805             :         kmsan_init_runtime();
    2806           1 :         mm_cache_init();
    2807           1 : }

Generated by: LCOV version 1.14