LCOV - code coverage report
Current view: top level - mm - percpu.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 510 822 62.0 %
Date: 2023-08-24 13:40:31 Functions: 27 43 62.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm/percpu.c - percpu memory allocator
       4             :  *
       5             :  * Copyright (C) 2009           SUSE Linux Products GmbH
       6             :  * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
       7             :  *
       8             :  * Copyright (C) 2017           Facebook Inc.
       9             :  * Copyright (C) 2017           Dennis Zhou <dennis@kernel.org>
      10             :  *
      11             :  * The percpu allocator handles both static and dynamic areas.  Percpu
      12             :  * areas are allocated in chunks which are divided into units.  There is
      13             :  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
      14             :  * based on NUMA properties of the machine.
      15             :  *
      16             :  *  c0                           c1                         c2
      17             :  *  -------------------          -------------------        ------------
      18             :  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
      19             :  *  -------------------  ......  -------------------  ....  ------------
      20             :  *
      21             :  * Allocation is done by offsets into a unit's address space.  Ie., an
      22             :  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
      23             :  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
      24             :  * and even sparse.  Access is handled by configuring percpu base
      25             :  * registers according to the cpu to unit mappings and offsetting the
      26             :  * base address using pcpu_unit_size.
      27             :  *
      28             :  * There is special consideration for the first chunk which must handle
      29             :  * the static percpu variables in the kernel image as allocation services
      30             :  * are not online yet.  In short, the first chunk is structured like so:
      31             :  *
      32             :  *                  <Static | [Reserved] | Dynamic>
      33             :  *
      34             :  * The static data is copied from the original section managed by the
      35             :  * linker.  The reserved section, if non-zero, primarily manages static
      36             :  * percpu variables from kernel modules.  Finally, the dynamic section
      37             :  * takes care of normal allocations.
      38             :  *
      39             :  * The allocator organizes chunks into lists according to free size and
      40             :  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
      41             :  * flag should be passed.  All memcg-aware allocations are sharing one set
      42             :  * of chunks and all unaccounted allocations and allocations performed
      43             :  * by processes belonging to the root memory cgroup are using the second set.
      44             :  *
      45             :  * The allocator tries to allocate from the fullest chunk first. Each chunk
      46             :  * is managed by a bitmap with metadata blocks.  The allocation map is updated
      47             :  * on every allocation and free to reflect the current state while the boundary
      48             :  * map is only updated on allocation.  Each metadata block contains
      49             :  * information to help mitigate the need to iterate over large portions
      50             :  * of the bitmap.  The reverse mapping from page to chunk is stored in
      51             :  * the page's index.  Lastly, units are lazily backed and grow in unison.
      52             :  *
      53             :  * There is a unique conversion that goes on here between bytes and bits.
      54             :  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
      55             :  * tracks the number of pages it is responsible for in nr_pages.  Helper
      56             :  * functions are used to convert from between the bytes, bits, and blocks.
      57             :  * All hints are managed in bits unless explicitly stated.
      58             :  *
      59             :  * To use this allocator, arch code should do the following:
      60             :  *
      61             :  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
      62             :  *   regular address to percpu pointer and back if they need to be
      63             :  *   different from the default
      64             :  *
      65             :  * - use pcpu_setup_first_chunk() during percpu area initialization to
      66             :  *   setup the first chunk containing the kernel static percpu area
      67             :  */
      68             : 
      69             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      70             : 
      71             : #include <linux/bitmap.h>
      72             : #include <linux/cpumask.h>
      73             : #include <linux/memblock.h>
      74             : #include <linux/err.h>
      75             : #include <linux/list.h>
      76             : #include <linux/log2.h>
      77             : #include <linux/mm.h>
      78             : #include <linux/module.h>
      79             : #include <linux/mutex.h>
      80             : #include <linux/percpu.h>
      81             : #include <linux/pfn.h>
      82             : #include <linux/slab.h>
      83             : #include <linux/spinlock.h>
      84             : #include <linux/vmalloc.h>
      85             : #include <linux/workqueue.h>
      86             : #include <linux/kmemleak.h>
      87             : #include <linux/sched.h>
      88             : #include <linux/sched/mm.h>
      89             : #include <linux/memcontrol.h>
      90             : 
      91             : #include <asm/cacheflush.h>
      92             : #include <asm/sections.h>
      93             : #include <asm/tlbflush.h>
      94             : #include <asm/io.h>
      95             : 
      96             : #define CREATE_TRACE_POINTS
      97             : #include <trace/events/percpu.h>
      98             : 
      99             : #include "percpu-internal.h"
     100             : 
     101             : /*
     102             :  * The slots are sorted by the size of the biggest continuous free area.
     103             :  * 1-31 bytes share the same slot.
     104             :  */
     105             : #define PCPU_SLOT_BASE_SHIFT            5
     106             : /* chunks in slots below this are subject to being sidelined on failed alloc */
     107             : #define PCPU_SLOT_FAIL_THRESHOLD        3
     108             : 
     109             : #define PCPU_EMPTY_POP_PAGES_LOW        2
     110             : #define PCPU_EMPTY_POP_PAGES_HIGH       4
     111             : 
     112             : #ifdef CONFIG_SMP
     113             : /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
     114             : #ifndef __addr_to_pcpu_ptr
     115             : #define __addr_to_pcpu_ptr(addr)                                        \
     116             :         (void __percpu *)((unsigned long)(addr) -                       \
     117             :                           (unsigned long)pcpu_base_addr +               \
     118             :                           (unsigned long)__per_cpu_start)
     119             : #endif
     120             : #ifndef __pcpu_ptr_to_addr
     121             : #define __pcpu_ptr_to_addr(ptr)                                         \
     122             :         (void __force *)((unsigned long)(ptr) +                         \
     123             :                          (unsigned long)pcpu_base_addr -                \
     124             :                          (unsigned long)__per_cpu_start)
     125             : #endif
     126             : #else   /* CONFIG_SMP */
     127             : /* on UP, it's always identity mapped */
     128             : #define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
     129             : #define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
     130             : #endif  /* CONFIG_SMP */
     131             : 
     132             : static int pcpu_unit_pages __ro_after_init;
     133             : static int pcpu_unit_size __ro_after_init;
     134             : static int pcpu_nr_units __ro_after_init;
     135             : static int pcpu_atom_size __ro_after_init;
     136             : int pcpu_nr_slots __ro_after_init;
     137             : static int pcpu_free_slot __ro_after_init;
     138             : int pcpu_sidelined_slot __ro_after_init;
     139             : int pcpu_to_depopulate_slot __ro_after_init;
     140             : static size_t pcpu_chunk_struct_size __ro_after_init;
     141             : 
     142             : /* cpus with the lowest and highest unit addresses */
     143             : static unsigned int pcpu_low_unit_cpu __ro_after_init;
     144             : static unsigned int pcpu_high_unit_cpu __ro_after_init;
     145             : 
     146             : /* the address of the first chunk which starts with the kernel static area */
     147             : void *pcpu_base_addr __ro_after_init;
     148             : 
     149             : static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
     150             : const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
     151             : 
     152             : /* group information, used for vm allocation */
     153             : static int pcpu_nr_groups __ro_after_init;
     154             : static const unsigned long *pcpu_group_offsets __ro_after_init;
     155             : static const size_t *pcpu_group_sizes __ro_after_init;
     156             : 
     157             : /*
     158             :  * The first chunk which always exists.  Note that unlike other
     159             :  * chunks, this one can be allocated and mapped in several different
     160             :  * ways and thus often doesn't live in the vmalloc area.
     161             :  */
     162             : struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
     163             : 
     164             : /*
     165             :  * Optional reserved chunk.  This chunk reserves part of the first
     166             :  * chunk and serves it for reserved allocations.  When the reserved
     167             :  * region doesn't exist, the following variable is NULL.
     168             :  */
     169             : struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
     170             : 
     171             : DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
     172             : static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
     173             : 
     174             : struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
     175             : 
     176             : /*
     177             :  * The number of empty populated pages, protected by pcpu_lock.
     178             :  * The reserved chunk doesn't contribute to the count.
     179             :  */
     180             : int pcpu_nr_empty_pop_pages;
     181             : 
     182             : /*
     183             :  * The number of populated pages in use by the allocator, protected by
     184             :  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
     185             :  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
     186             :  * and increments/decrements this count by 1).
     187             :  */
     188             : static unsigned long pcpu_nr_populated;
     189             : 
     190             : /*
     191             :  * Balance work is used to populate or destroy chunks asynchronously.  We
     192             :  * try to keep the number of populated free pages between
     193             :  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
     194             :  * empty chunk.
     195             :  */
     196             : static void pcpu_balance_workfn(struct work_struct *work);
     197             : static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
     198             : static bool pcpu_async_enabled __read_mostly;
     199             : static bool pcpu_atomic_alloc_failed;
     200             : 
     201             : static void pcpu_schedule_balance_work(void)
     202             : {
     203           0 :         if (pcpu_async_enabled)
     204             :                 schedule_work(&pcpu_balance_work);
     205             : }
     206             : 
     207             : /**
     208             :  * pcpu_addr_in_chunk - check if the address is served from this chunk
     209             :  * @chunk: chunk of interest
     210             :  * @addr: percpu address
     211             :  *
     212             :  * RETURNS:
     213             :  * True if the address is served from this chunk.
     214             :  */
     215             : static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
     216             : {
     217             :         void *start_addr, *end_addr;
     218             : 
     219          15 :         if (!chunk)
     220             :                 return false;
     221             : 
     222          15 :         start_addr = chunk->base_addr + chunk->start_offset;
     223          30 :         end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
     224          15 :                    chunk->end_offset;
     225             : 
     226          15 :         return addr >= start_addr && addr < end_addr;
     227             : }
     228             : 
     229             : static int __pcpu_size_to_slot(int size)
     230             : {
     231        1512 :         int highbit = fls(size);        /* size is in bytes */
     232         756 :         return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
     233             : }
     234             : 
     235             : static int pcpu_size_to_slot(int size)
     236             : {
     237         757 :         if (size == pcpu_unit_size)
     238           2 :                 return pcpu_free_slot;
     239         755 :         return __pcpu_size_to_slot(size);
     240             : }
     241             : 
     242             : static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
     243             : {
     244         515 :         const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     245             : 
     246        1030 :         if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
     247         515 :             chunk_md->contig_hint == 0)
     248             :                 return 0;
     249             : 
     250         515 :         return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
     251             : }
     252             : 
     253             : /* set the pointer to a chunk in a page struct */
     254             : static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
     255             : {
     256           0 :         page->index = (unsigned long)pcpu;
     257             : }
     258             : 
     259             : /* obtain pointer to a chunk from a page struct */
     260             : static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
     261             : {
     262           0 :         return (struct pcpu_chunk *)page->index;
     263             : }
     264             : 
     265             : static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
     266             : {
     267             :         return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
     268             : }
     269             : 
     270             : static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
     271             : {
     272         242 :         return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
     273             : }
     274             : 
     275             : static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
     276             :                                      unsigned int cpu, int page_idx)
     277             : {
     278         484 :         return (unsigned long)chunk->base_addr +
     279         242 :                pcpu_unit_page_offset(cpu, page_idx);
     280             : }
     281             : 
     282             : /*
     283             :  * The following are helper functions to help access bitmaps and convert
     284             :  * between bitmap offsets to address offsets.
     285             :  */
     286             : static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
     287             : {
     288         856 :         return chunk->alloc_map +
     289         428 :                (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
     290             : }
     291             : 
     292             : static unsigned long pcpu_off_to_block_index(int off)
     293             : {
     294        1123 :         return off / PCPU_BITMAP_BLOCK_BITS;
     295             : }
     296             : 
     297             : static unsigned long pcpu_off_to_block_off(int off)
     298             : {
     299         273 :         return off & (PCPU_BITMAP_BLOCK_BITS - 1);
     300             : }
     301             : 
     302             : static unsigned long pcpu_block_off_to_off(int index, int off)
     303             : {
     304         266 :         return index * PCPU_BITMAP_BLOCK_BITS + off;
     305             : }
     306             : 
     307             : /**
     308             :  * pcpu_check_block_hint - check against the contig hint
     309             :  * @block: block of interest
     310             :  * @bits: size of allocation
     311             :  * @align: alignment of area (max PAGE_SIZE)
     312             :  *
     313             :  * Check to see if the allocation can fit in the block's contig hint.
     314             :  * Note, a chunk uses the same hints as a block so this can also check against
     315             :  * the chunk's contig hint.
     316             :  */
     317             : static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
     318             :                                   size_t align)
     319             : {
     320         242 :         int bit_off = ALIGN(block->contig_hint_start, align) -
     321             :                 block->contig_hint_start;
     322             : 
     323         242 :         return bit_off + bits <= block->contig_hint;
     324             : }
     325             : 
     326             : /*
     327             :  * pcpu_next_hint - determine which hint to use
     328             :  * @block: block of interest
     329             :  * @alloc_bits: size of allocation
     330             :  *
     331             :  * This determines if we should scan based on the scan_hint or first_free.
     332             :  * In general, we want to scan from first_free to fulfill allocations by
     333             :  * first fit.  However, if we know a scan_hint at position scan_hint_start
     334             :  * cannot fulfill an allocation, we can begin scanning from there knowing
     335             :  * the contig_hint will be our fallback.
     336             :  */
     337             : static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
     338             : {
     339             :         /*
     340             :          * The three conditions below determine if we can skip past the
     341             :          * scan_hint.  First, does the scan hint exist.  Second, is the
     342             :          * contig_hint after the scan_hint (possibly not true iff
     343             :          * contig_hint == scan_hint).  Third, is the allocation request
     344             :          * larger than the scan_hint.
     345             :          */
     346         534 :         if (block->scan_hint &&
     347         100 :             block->contig_hint_start > block->scan_hint_start &&
     348             :             alloc_bits > block->scan_hint)
     349          27 :                 return block->scan_hint_start + block->scan_hint;
     350             : 
     351         457 :         return block->first_free;
     352             : }
     353             : 
     354             : /**
     355             :  * pcpu_next_md_free_region - finds the next hint free area
     356             :  * @chunk: chunk of interest
     357             :  * @bit_off: chunk offset
     358             :  * @bits: size of free area
     359             :  *
     360             :  * Helper function for pcpu_for_each_md_free_region.  It checks
     361             :  * block->contig_hint and performs aggregation across blocks to find the
     362             :  * next hint.  It modifies bit_off and bits in-place to be consumed in the
     363             :  * loop.
     364             :  */
     365         366 : static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
     366             :                                      int *bits)
     367             : {
     368         732 :         int i = pcpu_off_to_block_index(*bit_off);
     369         366 :         int block_off = pcpu_off_to_block_off(*bit_off);
     370             :         struct pcpu_block_md *block;
     371             : 
     372         366 :         *bits = 0;
     373        2184 :         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
     374        1452 :              block++, i++) {
     375             :                 /* handles contig area across blocks */
     376        1454 :                 if (*bits) {
     377        1264 :                         *bits += block->left_free;
     378        1264 :                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
     379        1263 :                                 continue;
     380             :                         return;
     381             :                 }
     382             : 
     383             :                 /*
     384             :                  * This checks three things.  First is there a contig_hint to
     385             :                  * check.  Second, have we checked this hint before by
     386             :                  * comparing the block_off.  Third, is this the same as the
     387             :                  * right contig hint.  In the last case, it spills over into
     388             :                  * the next block and should be handled by the contig area
     389             :                  * across blocks code.
     390             :                  */
     391         190 :                 *bits = block->contig_hint;
     392         374 :                 if (*bits && block->contig_hint_start >= block_off &&
     393         184 :                     *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
     394           2 :                         *bit_off = pcpu_block_off_to_off(i,
     395             :                                         block->contig_hint_start);
     396           1 :                         return;
     397             :                 }
     398             :                 /* reset to satisfy the second predicate above */
     399         189 :                 block_off = 0;
     400             : 
     401         189 :                 *bits = block->right_free;
     402         189 :                 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
     403             :         }
     404             : }
     405             : 
     406             : /**
     407             :  * pcpu_next_fit_region - finds fit areas for a given allocation request
     408             :  * @chunk: chunk of interest
     409             :  * @alloc_bits: size of allocation
     410             :  * @align: alignment of area (max PAGE_SIZE)
     411             :  * @bit_off: chunk offset
     412             :  * @bits: size of free area
     413             :  *
     414             :  * Finds the next free region that is viable for use with a given size and
     415             :  * alignment.  This only returns if there is a valid area to be used for this
     416             :  * allocation.  block->first_free is returned if the allocation request fits
     417             :  * within the block to see if the request can be fulfilled prior to the contig
     418             :  * hint.
     419             :  */
     420         242 : static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
     421             :                                  int align, int *bit_off, int *bits)
     422             : {
     423         484 :         int i = pcpu_off_to_block_index(*bit_off);
     424         242 :         int block_off = pcpu_off_to_block_off(*bit_off);
     425             :         struct pcpu_block_md *block;
     426             : 
     427         242 :         *bits = 0;
     428         492 :         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
     429           8 :              block++, i++) {
     430             :                 /* handles contig area across blocks */
     431         250 :                 if (*bits) {
     432           0 :                         *bits += block->left_free;
     433           0 :                         if (*bits >= alloc_bits)
     434             :                                 return;
     435           0 :                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
     436           0 :                                 continue;
     437             :                 }
     438             : 
     439             :                 /* check block->contig_hint */
     440         250 :                 *bits = ALIGN(block->contig_hint_start, align) -
     441             :                         block->contig_hint_start;
     442             :                 /*
     443             :                  * This uses the block offset to determine if this has been
     444             :                  * checked in the prior iteration.
     445             :                  */
     446         500 :                 if (block->contig_hint &&
     447         494 :                     block->contig_hint_start >= block_off &&
     448         244 :                     block->contig_hint >= *bits + alloc_bits) {
     449         242 :                         int start = pcpu_next_hint(block, alloc_bits);
     450             : 
     451         242 :                         *bits += alloc_bits + block->contig_hint_start -
     452             :                                  start;
     453         242 :                         *bit_off = pcpu_block_off_to_off(i, start);
     454         242 :                         return;
     455             :                 }
     456             :                 /* reset to satisfy the second predicate above */
     457           8 :                 block_off = 0;
     458             : 
     459           8 :                 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
     460             :                                  align);
     461           8 :                 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
     462          16 :                 *bit_off = pcpu_block_off_to_off(i, *bit_off);
     463           8 :                 if (*bits >= alloc_bits)
     464             :                         return;
     465             :         }
     466             : 
     467             :         /* no valid offsets were found - fail condition */
     468           0 :         *bit_off = pcpu_chunk_map_bits(chunk);
     469             : }
     470             : 
     471             : /*
     472             :  * Metadata free area iterators.  These perform aggregation of free areas
     473             :  * based on the metadata blocks and return the offset @bit_off and size in
     474             :  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
     475             :  * a fit is found for the allocation request.
     476             :  */
     477             : #define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
     478             :         for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
     479             :              (bit_off) < pcpu_chunk_map_bits((chunk));                       \
     480             :              (bit_off) += (bits) + 1,                                   \
     481             :              pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
     482             : 
     483             : #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
     484             :         for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
     485             :                                   &(bits));                               \
     486             :              (bit_off) < pcpu_chunk_map_bits((chunk));                             \
     487             :              (bit_off) += (bits),                                             \
     488             :              pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
     489             :                                   &(bits)))
     490             : 
     491             : /**
     492             :  * pcpu_mem_zalloc - allocate memory
     493             :  * @size: bytes to allocate
     494             :  * @gfp: allocation flags
     495             :  *
     496             :  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
     497             :  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
     498             :  * This is to facilitate passing through whitelisted flags.  The
     499             :  * returned memory is always zeroed.
     500             :  *
     501             :  * RETURNS:
     502             :  * Pointer to the allocated area on success, NULL on failure.
     503             :  */
     504           0 : static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
     505             : {
     506           0 :         if (WARN_ON_ONCE(!slab_is_available()))
     507             :                 return NULL;
     508             : 
     509           0 :         if (size <= PAGE_SIZE)
     510           0 :                 return kzalloc(size, gfp);
     511             :         else
     512           0 :                 return __vmalloc(size, gfp | __GFP_ZERO);
     513             : }
     514             : 
     515             : /**
     516             :  * pcpu_mem_free - free memory
     517             :  * @ptr: memory to free
     518             :  *
     519             :  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
     520             :  */
     521             : static void pcpu_mem_free(void *ptr)
     522             : {
     523           0 :         kvfree(ptr);
     524             : }
     525             : 
     526           2 : static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
     527             :                               bool move_front)
     528             : {
     529           2 :         if (chunk != pcpu_reserved_chunk) {
     530           2 :                 if (move_front)
     531           1 :                         list_move(&chunk->list, &pcpu_chunk_lists[slot]);
     532             :                 else
     533           1 :                         list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
     534             :         }
     535           2 : }
     536             : 
     537             : static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
     538             : {
     539           0 :         __pcpu_chunk_move(chunk, slot, true);
     540             : }
     541             : 
     542             : /**
     543             :  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
     544             :  * @chunk: chunk of interest
     545             :  * @oslot: the previous slot it was on
     546             :  *
     547             :  * This function is called after an allocation or free changed @chunk.
     548             :  * New slot according to the changed state is determined and @chunk is
     549             :  * moved to the slot.  Note that the reserved chunk is never put on
     550             :  * chunk slots.
     551             :  *
     552             :  * CONTEXT:
     553             :  * pcpu_lock.
     554             :  */
     555         258 : static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
     556             : {
     557         258 :         int nslot = pcpu_chunk_slot(chunk);
     558             : 
     559             :         /* leave isolated chunks in-place */
     560         258 :         if (chunk->isolated)
     561             :                 return;
     562             : 
     563         258 :         if (oslot != nslot)
     564           2 :                 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
     565             : }
     566             : 
     567             : static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
     568             : {
     569             :         lockdep_assert_held(&pcpu_lock);
     570             : 
     571             :         if (!chunk->isolated) {
     572             :                 chunk->isolated = true;
     573             :                 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
     574             :         }
     575             :         list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
     576             : }
     577             : 
     578         242 : static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
     579             : {
     580             :         lockdep_assert_held(&pcpu_lock);
     581             : 
     582         242 :         if (chunk->isolated) {
     583           0 :                 chunk->isolated = false;
     584           0 :                 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
     585           0 :                 pcpu_chunk_relocate(chunk, -1);
     586             :         }
     587         242 : }
     588             : 
     589             : /*
     590             :  * pcpu_update_empty_pages - update empty page counters
     591             :  * @chunk: chunk of interest
     592             :  * @nr: nr of empty pages
     593             :  *
     594             :  * This is used to keep track of the empty pages now based on the premise
     595             :  * a md_block covers a page.  The hint update functions recognize if a block
     596             :  * is made full or broken to calculate deltas for keeping track of free pages.
     597             :  */
     598             : static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
     599             : {
     600           2 :         chunk->nr_empty_pop_pages += nr;
     601           2 :         if (chunk != pcpu_reserved_chunk && !chunk->isolated)
     602           2 :                 pcpu_nr_empty_pop_pages += nr;
     603             : }
     604             : 
     605             : /*
     606             :  * pcpu_region_overlap - determines if two regions overlap
     607             :  * @a: start of first region, inclusive
     608             :  * @b: end of first region, exclusive
     609             :  * @x: start of second region, inclusive
     610             :  * @y: end of second region, exclusive
     611             :  *
     612             :  * This is used to determine if the hint region [a, b) overlaps with the
     613             :  * allocated region [x, y).
     614             :  */
     615             : static inline bool pcpu_region_overlap(int a, int b, int x, int y)
     616             : {
     617         968 :         return (a < y) && (x < b);
     618             : }
     619             : 
     620             : /**
     621             :  * pcpu_block_update - updates a block given a free area
     622             :  * @block: block of interest
     623             :  * @start: start offset in block
     624             :  * @end: end offset in block
     625             :  *
     626             :  * Updates a block given a known free area.  The region [start, end) is
     627             :  * expected to be the entirety of the free area within a block.  Chooses
     628             :  * the best starting offset if the contig hints are equal.
     629             :  */
     630         409 : static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
     631             : {
     632         409 :         int contig = end - start;
     633             : 
     634         409 :         block->first_free = min(block->first_free, start);
     635         409 :         if (start == 0)
     636           0 :                 block->left_free = contig;
     637             : 
     638         409 :         if (end == block->nr_bits)
     639         364 :                 block->right_free = contig;
     640             : 
     641         409 :         if (contig > block->contig_hint) {
     642             :                 /* promote the old contig_hint to be the new scan_hint */
     643         376 :                 if (start > block->contig_hint_start) {
     644         367 :                         if (block->contig_hint > block->scan_hint) {
     645          36 :                                 block->scan_hint_start =
     646             :                                         block->contig_hint_start;
     647          36 :                                 block->scan_hint = block->contig_hint;
     648         331 :                         } else if (start < block->scan_hint_start) {
     649             :                                 /*
     650             :                                  * The old contig_hint == scan_hint.  But, the
     651             :                                  * new contig is larger so hold the invariant
     652             :                                  * scan_hint_start < contig_hint_start.
     653             :                                  */
     654           0 :                                 block->scan_hint = 0;
     655             :                         }
     656             :                 } else {
     657           9 :                         block->scan_hint = 0;
     658             :                 }
     659         376 :                 block->contig_hint_start = start;
     660         376 :                 block->contig_hint = contig;
     661          33 :         } else if (contig == block->contig_hint) {
     662           0 :                 if (block->contig_hint_start &&
     663           0 :                     (!start ||
     664           0 :                      __ffs(start) > __ffs(block->contig_hint_start))) {
     665             :                         /* start has a better alignment so use it */
     666           0 :                         block->contig_hint_start = start;
     667           0 :                         if (start < block->scan_hint_start &&
     668           0 :                             block->contig_hint > block->scan_hint)
     669           0 :                                 block->scan_hint = 0;
     670           0 :                 } else if (start > block->scan_hint_start ||
     671           0 :                            block->contig_hint > block->scan_hint) {
     672             :                         /*
     673             :                          * Knowing contig == contig_hint, update the scan_hint
     674             :                          * if it is farther than or larger than the current
     675             :                          * scan_hint.
     676             :                          */
     677           0 :                         block->scan_hint_start = start;
     678           0 :                         block->scan_hint = contig;
     679             :                 }
     680             :         } else {
     681             :                 /*
     682             :                  * The region is smaller than the contig_hint.  So only update
     683             :                  * the scan_hint if it is larger than or equal and farther than
     684             :                  * the current scan_hint.
     685             :                  */
     686          64 :                 if ((start < block->contig_hint_start &&
     687          61 :                      (contig > block->scan_hint ||
     688           0 :                       (contig == block->scan_hint &&
     689           0 :                        start > block->scan_hint_start)))) {
     690           1 :                         block->scan_hint_start = start;
     691           1 :                         block->scan_hint = contig;
     692             :                 }
     693             :         }
     694         409 : }
     695             : 
     696             : /*
     697             :  * pcpu_block_update_scan - update a block given a free area from a scan
     698             :  * @chunk: chunk of interest
     699             :  * @bit_off: chunk offset
     700             :  * @bits: size of free area
     701             :  *
     702             :  * Finding the final allocation spot first goes through pcpu_find_block_fit()
     703             :  * to find a block that can hold the allocation and then pcpu_alloc_area()
     704             :  * where a scan is used.  When allocations require specific alignments,
     705             :  * we can inadvertently create holes which will not be seen in the alloc
     706             :  * or free paths.
     707             :  *
     708             :  * This takes a given free area hole and updates a block as it may change the
     709             :  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
     710             :  * from alignment.
     711             :  */
     712           1 : static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
     713             :                                    int bits)
     714             : {
     715           1 :         int s_off = pcpu_off_to_block_off(bit_off);
     716           1 :         int e_off = s_off + bits;
     717             :         int s_index, l_bit;
     718             :         struct pcpu_block_md *block;
     719             : 
     720           1 :         if (e_off > PCPU_BITMAP_BLOCK_BITS)
     721             :                 return;
     722             : 
     723           1 :         s_index = pcpu_off_to_block_index(bit_off);
     724           1 :         block = chunk->md_blocks + s_index;
     725             : 
     726             :         /* scan backwards in case of alignment skipping free bits */
     727           2 :         l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
     728           1 :         s_off = (s_off == l_bit) ? 0 : l_bit + 1;
     729             : 
     730           1 :         pcpu_block_update(block, s_off, e_off);
     731             : }
     732             : 
     733             : /**
     734             :  * pcpu_chunk_refresh_hint - updates metadata about a chunk
     735             :  * @chunk: chunk of interest
     736             :  * @full_scan: if we should scan from the beginning
     737             :  *
     738             :  * Iterates over the metadata blocks to find the largest contig area.
     739             :  * A full scan can be avoided on the allocation path as this is triggered
     740             :  * if we broke the contig_hint.  In doing so, the scan_hint will be before
     741             :  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
     742             :  * be prevented on freeing as we want to find the largest area possibly
     743             :  * spanning blocks.
     744             :  */
     745         182 : static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
     746             : {
     747         182 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     748             :         int bit_off, bits;
     749             : 
     750             :         /* promote scan_hint to contig_hint */
     751         182 :         if (!full_scan && chunk_md->scan_hint) {
     752           5 :                 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
     753           5 :                 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
     754           5 :                 chunk_md->contig_hint = chunk_md->scan_hint;
     755           5 :                 chunk_md->scan_hint = 0;
     756             :         } else {
     757         177 :                 bit_off = chunk_md->first_free;
     758         177 :                 chunk_md->contig_hint = 0;
     759             :         }
     760             : 
     761         182 :         bits = 0;
     762         732 :         pcpu_for_each_md_free_region(chunk, bit_off, bits)
     763         184 :                 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
     764         182 : }
     765             : 
     766             : /**
     767             :  * pcpu_block_refresh_hint
     768             :  * @chunk: chunk of interest
     769             :  * @index: index of the metadata block
     770             :  *
     771             :  * Scans over the block beginning at first_free and updates the block
     772             :  * metadata accordingly.
     773             :  */
     774         186 : static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
     775             : {
     776         186 :         struct pcpu_block_md *block = chunk->md_blocks + index;
     777         186 :         unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
     778             :         unsigned int start, end;        /* region start, region end */
     779             : 
     780             :         /* promote scan_hint to contig_hint */
     781         186 :         if (block->scan_hint) {
     782          22 :                 start = block->scan_hint_start + block->scan_hint;
     783          22 :                 block->contig_hint_start = block->scan_hint_start;
     784          22 :                 block->contig_hint = block->scan_hint;
     785          22 :                 block->scan_hint = 0;
     786             :         } else {
     787         164 :                 start = block->first_free;
     788         164 :                 block->contig_hint = 0;
     789             :         }
     790             : 
     791         186 :         block->right_free = 0;
     792             : 
     793             :         /* iterate over free areas and update the contig hints */
     794         380 :         for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
     795         194 :                 pcpu_block_update(block, start, end);
     796         186 : }
     797             : 
     798             : /**
     799             :  * pcpu_block_update_hint_alloc - update hint on allocation path
     800             :  * @chunk: chunk of interest
     801             :  * @bit_off: chunk offset
     802             :  * @bits: size of request
     803             :  *
     804             :  * Updates metadata for the allocation path.  The metadata only has to be
     805             :  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
     806             :  * scans are required if the block's contig hint is broken.
     807             :  */
     808         242 : static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
     809             :                                          int bits)
     810             : {
     811         242 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     812         242 :         int nr_empty_pages = 0;
     813             :         struct pcpu_block_md *s_block, *e_block, *block;
     814             :         int s_index, e_index;   /* block indexes of the freed allocation */
     815             :         int s_off, e_off;       /* block offsets of the freed allocation */
     816             : 
     817             :         /*
     818             :          * Calculate per block offsets.
     819             :          * The calculation uses an inclusive range, but the resulting offsets
     820             :          * are [start, end).  e_index always points to the last block in the
     821             :          * range.
     822             :          */
     823         242 :         s_index = pcpu_off_to_block_index(bit_off);
     824         484 :         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
     825         242 :         s_off = pcpu_off_to_block_off(bit_off);
     826         484 :         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
     827             : 
     828         242 :         s_block = chunk->md_blocks + s_index;
     829         242 :         e_block = chunk->md_blocks + e_index;
     830             : 
     831             :         /*
     832             :          * Update s_block.
     833             :          */
     834         242 :         if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
     835           2 :                 nr_empty_pages++;
     836             : 
     837             :         /*
     838             :          * block->first_free must be updated if the allocation takes its place.
     839             :          * If the allocation breaks the contig_hint, a scan is required to
     840             :          * restore this hint.
     841             :          */
     842         242 :         if (s_off == s_block->first_free)
     843         422 :                 s_block->first_free = find_next_zero_bit(
     844         211 :                                         pcpu_index_alloc_map(chunk, s_index),
     845             :                                         PCPU_BITMAP_BLOCK_BITS,
     846         211 :                                         s_off + bits);
     847             : 
     848         726 :         if (pcpu_region_overlap(s_block->scan_hint_start,
     849         242 :                                 s_block->scan_hint_start + s_block->scan_hint,
     850             :                                 s_off,
     851             :                                 s_off + bits))
     852           6 :                 s_block->scan_hint = 0;
     853             : 
     854         484 :         if (pcpu_region_overlap(s_block->contig_hint_start,
     855         242 :                                 s_block->contig_hint_start +
     856         242 :                                 s_block->contig_hint,
     857             :                                 s_off,
     858             :                                 s_off + bits)) {
     859             :                 /* block contig hint is broken - scan to fix it */
     860         186 :                 if (!s_off)
     861           2 :                         s_block->left_free = 0;
     862         186 :                 pcpu_block_refresh_hint(chunk, s_index);
     863             :         } else {
     864             :                 /* update left and right contig manually */
     865          56 :                 s_block->left_free = min(s_block->left_free, s_off);
     866          56 :                 if (s_index == e_index)
     867          56 :                         s_block->right_free = min_t(int, s_block->right_free,
     868             :                                         PCPU_BITMAP_BLOCK_BITS - e_off);
     869             :                 else
     870           0 :                         s_block->right_free = 0;
     871             :         }
     872             : 
     873             :         /*
     874             :          * Update e_block.
     875             :          */
     876         242 :         if (s_index != e_index) {
     877           0 :                 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
     878           0 :                         nr_empty_pages++;
     879             : 
     880             :                 /*
     881             :                  * When the allocation is across blocks, the end is along
     882             :                  * the left part of the e_block.
     883             :                  */
     884           0 :                 e_block->first_free = find_next_zero_bit(
     885           0 :                                 pcpu_index_alloc_map(chunk, e_index),
     886             :                                 PCPU_BITMAP_BLOCK_BITS, e_off);
     887             : 
     888           0 :                 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
     889             :                         /* reset the block */
     890           0 :                         e_block++;
     891             :                 } else {
     892           0 :                         if (e_off > e_block->scan_hint_start)
     893           0 :                                 e_block->scan_hint = 0;
     894             : 
     895           0 :                         e_block->left_free = 0;
     896           0 :                         if (e_off > e_block->contig_hint_start) {
     897             :                                 /* contig hint is broken - scan to fix it */
     898           0 :                                 pcpu_block_refresh_hint(chunk, e_index);
     899             :                         } else {
     900           0 :                                 e_block->right_free =
     901           0 :                                         min_t(int, e_block->right_free,
     902             :                                               PCPU_BITMAP_BLOCK_BITS - e_off);
     903             :                         }
     904             :                 }
     905             : 
     906             :                 /* update in-between md_blocks */
     907           0 :                 nr_empty_pages += (e_index - s_index - 1);
     908           0 :                 for (block = s_block + 1; block < e_block; block++) {
     909           0 :                         block->scan_hint = 0;
     910           0 :                         block->contig_hint = 0;
     911           0 :                         block->left_free = 0;
     912           0 :                         block->right_free = 0;
     913             :                 }
     914             :         }
     915             : 
     916             :         /*
     917             :          * If the allocation is not atomic, some blocks may not be
     918             :          * populated with pages, while we account it here.  The number
     919             :          * of pages will be added back with pcpu_chunk_populated()
     920             :          * when populating pages.
     921             :          */
     922         242 :         if (nr_empty_pages)
     923           2 :                 pcpu_update_empty_pages(chunk, -nr_empty_pages);
     924             : 
     925         484 :         if (pcpu_region_overlap(chunk_md->scan_hint_start,
     926         242 :                                 chunk_md->scan_hint_start +
     927         242 :                                 chunk_md->scan_hint,
     928             :                                 bit_off,
     929             :                                 bit_off + bits))
     930           2 :                 chunk_md->scan_hint = 0;
     931             : 
     932             :         /*
     933             :          * The only time a full chunk scan is required is if the chunk
     934             :          * contig hint is broken.  Otherwise, it means a smaller space
     935             :          * was used and therefore the chunk contig hint is still correct.
     936             :          */
     937         484 :         if (pcpu_region_overlap(chunk_md->contig_hint_start,
     938         242 :                                 chunk_md->contig_hint_start +
     939         242 :                                 chunk_md->contig_hint,
     940             :                                 bit_off,
     941             :                                 bit_off + bits))
     942         182 :                 pcpu_chunk_refresh_hint(chunk, false);
     943         242 : }
     944             : 
     945             : /**
     946             :  * pcpu_block_update_hint_free - updates the block hints on the free path
     947             :  * @chunk: chunk of interest
     948             :  * @bit_off: chunk offset
     949             :  * @bits: size of request
     950             :  *
     951             :  * Updates metadata for the allocation path.  This avoids a blind block
     952             :  * refresh by making use of the block contig hints.  If this fails, it scans
     953             :  * forward and backward to determine the extent of the free area.  This is
     954             :  * capped at the boundary of blocks.
     955             :  *
     956             :  * A chunk update is triggered if a page becomes free, a block becomes free,
     957             :  * or the free spans across blocks.  This tradeoff is to minimize iterating
     958             :  * over the block metadata to update chunk_md->contig_hint.
     959             :  * chunk_md->contig_hint may be off by up to a page, but it will never be more
     960             :  * than the available space.  If the contig hint is contained in one block, it
     961             :  * will be accurate.
     962             :  */
     963          15 : static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
     964             :                                         int bits)
     965             : {
     966          15 :         int nr_empty_pages = 0;
     967             :         struct pcpu_block_md *s_block, *e_block, *block;
     968             :         int s_index, e_index;   /* block indexes of the freed allocation */
     969             :         int s_off, e_off;       /* block offsets of the freed allocation */
     970             :         int start, end;         /* start and end of the whole free area */
     971             : 
     972             :         /*
     973             :          * Calculate per block offsets.
     974             :          * The calculation uses an inclusive range, but the resulting offsets
     975             :          * are [start, end).  e_index always points to the last block in the
     976             :          * range.
     977             :          */
     978          15 :         s_index = pcpu_off_to_block_index(bit_off);
     979          30 :         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
     980          15 :         s_off = pcpu_off_to_block_off(bit_off);
     981          30 :         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
     982             : 
     983          15 :         s_block = chunk->md_blocks + s_index;
     984          15 :         e_block = chunk->md_blocks + e_index;
     985             : 
     986             :         /*
     987             :          * Check if the freed area aligns with the block->contig_hint.
     988             :          * If it does, then the scan to find the beginning/end of the
     989             :          * larger free area can be avoided.
     990             :          *
     991             :          * start and end refer to beginning and end of the free area
     992             :          * within each their respective blocks.  This is not necessarily
     993             :          * the entire free area as it may span blocks past the beginning
     994             :          * or end of the block.
     995             :          */
     996          15 :         start = s_off;
     997          15 :         if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
     998             :                 start = s_block->contig_hint_start;
     999             :         } else {
    1000             :                 /*
    1001             :                  * Scan backwards to find the extent of the free area.
    1002             :                  * find_last_bit returns the starting bit, so if the start bit
    1003             :                  * is returned, that means there was no last bit and the
    1004             :                  * remainder of the chunk is free.
    1005             :                  */
    1006          30 :                 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
    1007             :                                           start);
    1008          15 :                 start = (start == l_bit) ? 0 : l_bit + 1;
    1009             :         }
    1010             : 
    1011          15 :         end = e_off;
    1012          15 :         if (e_off == e_block->contig_hint_start)
    1013           0 :                 end = e_block->contig_hint_start + e_block->contig_hint;
    1014             :         else
    1015          30 :                 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
    1016             :                                     PCPU_BITMAP_BLOCK_BITS, end);
    1017             : 
    1018             :         /* update s_block */
    1019          15 :         e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
    1020          15 :         if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
    1021           0 :                 nr_empty_pages++;
    1022          15 :         pcpu_block_update(s_block, start, e_off);
    1023             : 
    1024             :         /* freeing in the same block */
    1025          15 :         if (s_index != e_index) {
    1026             :                 /* update e_block */
    1027           0 :                 if (end == PCPU_BITMAP_BLOCK_BITS)
    1028           0 :                         nr_empty_pages++;
    1029           0 :                 pcpu_block_update(e_block, 0, end);
    1030             : 
    1031             :                 /* reset md_blocks in the middle */
    1032           0 :                 nr_empty_pages += (e_index - s_index - 1);
    1033           0 :                 for (block = s_block + 1; block < e_block; block++) {
    1034           0 :                         block->first_free = 0;
    1035           0 :                         block->scan_hint = 0;
    1036           0 :                         block->contig_hint_start = 0;
    1037           0 :                         block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
    1038           0 :                         block->left_free = PCPU_BITMAP_BLOCK_BITS;
    1039           0 :                         block->right_free = PCPU_BITMAP_BLOCK_BITS;
    1040             :                 }
    1041             :         }
    1042             : 
    1043          15 :         if (nr_empty_pages)
    1044             :                 pcpu_update_empty_pages(chunk, nr_empty_pages);
    1045             : 
    1046             :         /*
    1047             :          * Refresh chunk metadata when the free makes a block free or spans
    1048             :          * across blocks.  The contig_hint may be off by up to a page, but if
    1049             :          * the contig_hint is contained in a block, it will be accurate with
    1050             :          * the else condition below.
    1051             :          */
    1052          15 :         if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
    1053           0 :                 pcpu_chunk_refresh_hint(chunk, true);
    1054             :         else
    1055          15 :                 pcpu_block_update(&chunk->chunk_md,
    1056          15 :                                   pcpu_block_off_to_off(s_index, start),
    1057             :                                   end);
    1058          15 : }
    1059             : 
    1060             : /**
    1061             :  * pcpu_is_populated - determines if the region is populated
    1062             :  * @chunk: chunk of interest
    1063             :  * @bit_off: chunk offset
    1064             :  * @bits: size of area
    1065             :  * @next_off: return value for the next offset to start searching
    1066             :  *
    1067             :  * For atomic allocations, check if the backing pages are populated.
    1068             :  *
    1069             :  * RETURNS:
    1070             :  * Bool if the backing pages are populated.
    1071             :  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
    1072             :  */
    1073           0 : static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
    1074             :                               int *next_off)
    1075             : {
    1076             :         unsigned int start, end;
    1077             : 
    1078           0 :         start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
    1079           0 :         end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
    1080             : 
    1081           0 :         start = find_next_zero_bit(chunk->populated, end, start);
    1082           0 :         if (start >= end)
    1083             :                 return true;
    1084             : 
    1085           0 :         end = find_next_bit(chunk->populated, end, start + 1);
    1086             : 
    1087           0 :         *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
    1088           0 :         return false;
    1089             : }
    1090             : 
    1091             : /**
    1092             :  * pcpu_find_block_fit - finds the block index to start searching
    1093             :  * @chunk: chunk of interest
    1094             :  * @alloc_bits: size of request in allocation units
    1095             :  * @align: alignment of area (max PAGE_SIZE bytes)
    1096             :  * @pop_only: use populated regions only
    1097             :  *
    1098             :  * Given a chunk and an allocation spec, find the offset to begin searching
    1099             :  * for a free region.  This iterates over the bitmap metadata blocks to
    1100             :  * find an offset that will be guaranteed to fit the requirements.  It is
    1101             :  * not quite first fit as if the allocation does not fit in the contig hint
    1102             :  * of a block or chunk, it is skipped.  This errs on the side of caution
    1103             :  * to prevent excess iteration.  Poor alignment can cause the allocator to
    1104             :  * skip over blocks and chunks that have valid free areas.
    1105             :  *
    1106             :  * RETURNS:
    1107             :  * The offset in the bitmap to begin searching.
    1108             :  * -1 if no offset is found.
    1109             :  */
    1110         242 : static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
    1111             :                                size_t align, bool pop_only)
    1112             : {
    1113         242 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1114             :         int bit_off, bits, next_off;
    1115             : 
    1116             :         /*
    1117             :          * This is an optimization to prevent scanning by assuming if the
    1118             :          * allocation cannot fit in the global hint, there is memory pressure
    1119             :          * and creating a new chunk would happen soon.
    1120             :          */
    1121         484 :         if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
    1122             :                 return -1;
    1123             : 
    1124         242 :         bit_off = pcpu_next_hint(chunk_md, alloc_bits);
    1125         242 :         bits = 0;
    1126         484 :         pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
    1127         242 :                 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
    1128             :                                                    &next_off))
    1129             :                         break;
    1130             : 
    1131           0 :                 bit_off = next_off;
    1132           0 :                 bits = 0;
    1133             :         }
    1134             : 
    1135         242 :         if (bit_off == pcpu_chunk_map_bits(chunk))
    1136             :                 return -1;
    1137             : 
    1138         242 :         return bit_off;
    1139             : }
    1140             : 
    1141             : /*
    1142             :  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
    1143             :  * @map: the address to base the search on
    1144             :  * @size: the bitmap size in bits
    1145             :  * @start: the bitnumber to start searching at
    1146             :  * @nr: the number of zeroed bits we're looking for
    1147             :  * @align_mask: alignment mask for zero area
    1148             :  * @largest_off: offset of the largest area skipped
    1149             :  * @largest_bits: size of the largest area skipped
    1150             :  *
    1151             :  * The @align_mask should be one less than a power of 2.
    1152             :  *
    1153             :  * This is a modified version of bitmap_find_next_zero_area_off() to remember
    1154             :  * the largest area that was skipped.  This is imperfect, but in general is
    1155             :  * good enough.  The largest remembered region is the largest failed region
    1156             :  * seen.  This does not include anything we possibly skipped due to alignment.
    1157             :  * pcpu_block_update_scan() does scan backwards to try and recover what was
    1158             :  * lost to alignment.  While this can cause scanning to miss earlier possible
    1159             :  * free areas, smaller allocations will eventually fill those holes.
    1160             :  */
    1161         242 : static unsigned long pcpu_find_zero_area(unsigned long *map,
    1162             :                                          unsigned long size,
    1163             :                                          unsigned long start,
    1164             :                                          unsigned long nr,
    1165             :                                          unsigned long align_mask,
    1166             :                                          unsigned long *largest_off,
    1167             :                                          unsigned long *largest_bits)
    1168             : {
    1169             :         unsigned long index, end, i, area_off, area_bits;
    1170             : again:
    1171         244 :         index = find_next_zero_bit(map, size, start);
    1172             : 
    1173             :         /* Align allocation */
    1174         244 :         index = __ALIGN_MASK(index, align_mask);
    1175         244 :         area_off = index;
    1176             : 
    1177         244 :         end = index + nr;
    1178         244 :         if (end > size)
    1179             :                 return end;
    1180         244 :         i = find_next_bit(map, end, index);
    1181         244 :         if (i < end) {
    1182           2 :                 area_bits = i - area_off;
    1183             :                 /* remember largest unused area with best alignment */
    1184           2 :                 if (area_bits > *largest_bits ||
    1185           1 :                     (area_bits == *largest_bits && *largest_off &&
    1186           0 :                      (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
    1187           1 :                         *largest_off = area_off;
    1188           1 :                         *largest_bits = area_bits;
    1189             :                 }
    1190             : 
    1191           2 :                 start = i + 1;
    1192           2 :                 goto again;
    1193             :         }
    1194             :         return index;
    1195             : }
    1196             : 
    1197             : /**
    1198             :  * pcpu_alloc_area - allocates an area from a pcpu_chunk
    1199             :  * @chunk: chunk of interest
    1200             :  * @alloc_bits: size of request in allocation units
    1201             :  * @align: alignment of area (max PAGE_SIZE)
    1202             :  * @start: bit_off to start searching
    1203             :  *
    1204             :  * This function takes in a @start offset to begin searching to fit an
    1205             :  * allocation of @alloc_bits with alignment @align.  It needs to scan
    1206             :  * the allocation map because if it fits within the block's contig hint,
    1207             :  * @start will be block->first_free. This is an attempt to fill the
    1208             :  * allocation prior to breaking the contig hint.  The allocation and
    1209             :  * boundary maps are updated accordingly if it confirms a valid
    1210             :  * free area.
    1211             :  *
    1212             :  * RETURNS:
    1213             :  * Allocated addr offset in @chunk on success.
    1214             :  * -1 if no matching area is found.
    1215             :  */
    1216         242 : static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
    1217             :                            size_t align, int start)
    1218             : {
    1219         242 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1220         242 :         size_t align_mask = (align) ? (align - 1) : 0;
    1221         242 :         unsigned long area_off = 0, area_bits = 0;
    1222             :         int bit_off, end, oslot;
    1223             : 
    1224             :         lockdep_assert_held(&pcpu_lock);
    1225             : 
    1226         242 :         oslot = pcpu_chunk_slot(chunk);
    1227             : 
    1228             :         /*
    1229             :          * Search to find a fit.
    1230             :          */
    1231         484 :         end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
    1232             :                     pcpu_chunk_map_bits(chunk));
    1233         242 :         bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
    1234             :                                       align_mask, &area_off, &area_bits);
    1235         242 :         if (bit_off >= end)
    1236             :                 return -1;
    1237             : 
    1238         242 :         if (area_bits)
    1239           1 :                 pcpu_block_update_scan(chunk, area_off, area_bits);
    1240             : 
    1241             :         /* update alloc map */
    1242         484 :         bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
    1243             : 
    1244             :         /* update boundary map */
    1245         484 :         set_bit(bit_off, chunk->bound_map);
    1246         484 :         bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
    1247         484 :         set_bit(bit_off + alloc_bits, chunk->bound_map);
    1248             : 
    1249         242 :         chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
    1250             : 
    1251             :         /* update first free bit */
    1252         242 :         if (bit_off == chunk_md->first_free)
    1253         615 :                 chunk_md->first_free = find_next_zero_bit(
    1254         205 :                                         chunk->alloc_map,
    1255         205 :                                         pcpu_chunk_map_bits(chunk),
    1256             :                                         bit_off + alloc_bits);
    1257             : 
    1258         242 :         pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
    1259             : 
    1260         242 :         pcpu_chunk_relocate(chunk, oslot);
    1261             : 
    1262         242 :         return bit_off * PCPU_MIN_ALLOC_SIZE;
    1263             : }
    1264             : 
    1265             : /**
    1266             :  * pcpu_free_area - frees the corresponding offset
    1267             :  * @chunk: chunk of interest
    1268             :  * @off: addr offset into chunk
    1269             :  *
    1270             :  * This function determines the size of an allocation to free using
    1271             :  * the boundary bitmap and clears the allocation map.
    1272             :  *
    1273             :  * RETURNS:
    1274             :  * Number of freed bytes.
    1275             :  */
    1276          15 : static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
    1277             : {
    1278          15 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1279             :         int bit_off, bits, end, oslot, freed;
    1280             : 
    1281             :         lockdep_assert_held(&pcpu_lock);
    1282          15 :         pcpu_stats_area_dealloc(chunk);
    1283             : 
    1284          15 :         oslot = pcpu_chunk_slot(chunk);
    1285             : 
    1286          15 :         bit_off = off / PCPU_MIN_ALLOC_SIZE;
    1287             : 
    1288             :         /* find end index */
    1289          30 :         end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
    1290          15 :                             bit_off + 1);
    1291          15 :         bits = end - bit_off;
    1292          30 :         bitmap_clear(chunk->alloc_map, bit_off, bits);
    1293             : 
    1294          15 :         freed = bits * PCPU_MIN_ALLOC_SIZE;
    1295             : 
    1296             :         /* update metadata */
    1297          15 :         chunk->free_bytes += freed;
    1298             : 
    1299             :         /* update first free bit */
    1300          15 :         chunk_md->first_free = min(chunk_md->first_free, bit_off);
    1301             : 
    1302          15 :         pcpu_block_update_hint_free(chunk, bit_off, bits);
    1303             : 
    1304          15 :         pcpu_chunk_relocate(chunk, oslot);
    1305             : 
    1306          15 :         return freed;
    1307             : }
    1308             : 
    1309             : static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
    1310             : {
    1311           9 :         block->scan_hint = 0;
    1312           9 :         block->contig_hint = nr_bits;
    1313           9 :         block->left_free = nr_bits;
    1314           9 :         block->right_free = nr_bits;
    1315           9 :         block->first_free = 0;
    1316           9 :         block->nr_bits = nr_bits;
    1317             : }
    1318             : 
    1319           1 : static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
    1320             : {
    1321             :         struct pcpu_block_md *md_block;
    1322             : 
    1323             :         /* init the chunk's block */
    1324           2 :         pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
    1325             : 
    1326          10 :         for (md_block = chunk->md_blocks;
    1327          18 :              md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
    1328           8 :              md_block++)
    1329           8 :                 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
    1330           1 : }
    1331             : 
    1332             : /**
    1333             :  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
    1334             :  * @tmp_addr: the start of the region served
    1335             :  * @map_size: size of the region served
    1336             :  *
    1337             :  * This is responsible for creating the chunks that serve the first chunk.  The
    1338             :  * base_addr is page aligned down of @tmp_addr while the region end is page
    1339             :  * aligned up.  Offsets are kept track of to determine the region served. All
    1340             :  * this is done to appease the bitmap allocator in avoiding partial blocks.
    1341             :  *
    1342             :  * RETURNS:
    1343             :  * Chunk serving the region at @tmp_addr of @map_size.
    1344             :  */
    1345           1 : static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
    1346             :                                                          int map_size)
    1347             : {
    1348             :         struct pcpu_chunk *chunk;
    1349             :         unsigned long aligned_addr;
    1350             :         int start_offset, offset_bits, region_size, region_bits;
    1351             :         size_t alloc_size;
    1352             : 
    1353             :         /* region calculations */
    1354           1 :         aligned_addr = tmp_addr & PAGE_MASK;
    1355             : 
    1356           1 :         start_offset = tmp_addr - aligned_addr;
    1357           1 :         region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
    1358             : 
    1359             :         /* allocate chunk */
    1360           3 :         alloc_size = struct_size(chunk, populated,
    1361             :                                  BITS_TO_LONGS(region_size >> PAGE_SHIFT));
    1362           1 :         chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1363           1 :         if (!chunk)
    1364           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1365             :                       alloc_size);
    1366             : 
    1367           2 :         INIT_LIST_HEAD(&chunk->list);
    1368             : 
    1369           1 :         chunk->base_addr = (void *)aligned_addr;
    1370           1 :         chunk->start_offset = start_offset;
    1371           1 :         chunk->end_offset = region_size - chunk->start_offset - map_size;
    1372             : 
    1373           1 :         chunk->nr_pages = region_size >> PAGE_SHIFT;
    1374           1 :         region_bits = pcpu_chunk_map_bits(chunk);
    1375             : 
    1376           1 :         alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
    1377           1 :         chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1378           1 :         if (!chunk->alloc_map)
    1379           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1380             :                       alloc_size);
    1381             : 
    1382           1 :         alloc_size =
    1383           1 :                 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
    1384           1 :         chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1385           1 :         if (!chunk->bound_map)
    1386           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1387             :                       alloc_size);
    1388             : 
    1389           1 :         alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
    1390           1 :         chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1391           1 :         if (!chunk->md_blocks)
    1392           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1393             :                       alloc_size);
    1394             : 
    1395             : #ifdef CONFIG_MEMCG_KMEM
    1396             :         /* first chunk is free to use */
    1397             :         chunk->obj_cgroups = NULL;
    1398             : #endif
    1399           1 :         pcpu_init_md_blocks(chunk);
    1400             : 
    1401             :         /* manage populated page bitmap */
    1402           1 :         chunk->immutable = true;
    1403           1 :         bitmap_fill(chunk->populated, chunk->nr_pages);
    1404           1 :         chunk->nr_populated = chunk->nr_pages;
    1405           1 :         chunk->nr_empty_pop_pages = chunk->nr_pages;
    1406             : 
    1407           1 :         chunk->free_bytes = map_size;
    1408             : 
    1409           1 :         if (chunk->start_offset) {
    1410             :                 /* hide the beginning of the bitmap */
    1411           0 :                 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
    1412           0 :                 bitmap_set(chunk->alloc_map, 0, offset_bits);
    1413           0 :                 set_bit(0, chunk->bound_map);
    1414           0 :                 set_bit(offset_bits, chunk->bound_map);
    1415             : 
    1416           0 :                 chunk->chunk_md.first_free = offset_bits;
    1417             : 
    1418           0 :                 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
    1419             :         }
    1420             : 
    1421           1 :         if (chunk->end_offset) {
    1422             :                 /* hide the end of the bitmap */
    1423           0 :                 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
    1424           0 :                 bitmap_set(chunk->alloc_map,
    1425           0 :                            pcpu_chunk_map_bits(chunk) - offset_bits,
    1426             :                            offset_bits);
    1427           0 :                 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
    1428           0 :                         chunk->bound_map);
    1429           0 :                 set_bit(region_bits, chunk->bound_map);
    1430             : 
    1431           0 :                 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
    1432             :                                              - offset_bits, offset_bits);
    1433             :         }
    1434             : 
    1435           1 :         return chunk;
    1436             : }
    1437             : 
    1438           0 : static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
    1439             : {
    1440             :         struct pcpu_chunk *chunk;
    1441             :         int region_bits;
    1442             : 
    1443           0 :         chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
    1444           0 :         if (!chunk)
    1445             :                 return NULL;
    1446             : 
    1447           0 :         INIT_LIST_HEAD(&chunk->list);
    1448           0 :         chunk->nr_pages = pcpu_unit_pages;
    1449           0 :         region_bits = pcpu_chunk_map_bits(chunk);
    1450             : 
    1451           0 :         chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
    1452             :                                            sizeof(chunk->alloc_map[0]), gfp);
    1453           0 :         if (!chunk->alloc_map)
    1454             :                 goto alloc_map_fail;
    1455             : 
    1456           0 :         chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
    1457             :                                            sizeof(chunk->bound_map[0]), gfp);
    1458           0 :         if (!chunk->bound_map)
    1459             :                 goto bound_map_fail;
    1460             : 
    1461           0 :         chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
    1462             :                                            sizeof(chunk->md_blocks[0]), gfp);
    1463           0 :         if (!chunk->md_blocks)
    1464             :                 goto md_blocks_fail;
    1465             : 
    1466             : #ifdef CONFIG_MEMCG_KMEM
    1467             :         if (!mem_cgroup_kmem_disabled()) {
    1468             :                 chunk->obj_cgroups =
    1469             :                         pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
    1470             :                                         sizeof(struct obj_cgroup *), gfp);
    1471             :                 if (!chunk->obj_cgroups)
    1472             :                         goto objcg_fail;
    1473             :         }
    1474             : #endif
    1475             : 
    1476           0 :         pcpu_init_md_blocks(chunk);
    1477             : 
    1478             :         /* init metadata */
    1479           0 :         chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
    1480             : 
    1481           0 :         return chunk;
    1482             : 
    1483             : #ifdef CONFIG_MEMCG_KMEM
    1484             : objcg_fail:
    1485             :         pcpu_mem_free(chunk->md_blocks);
    1486             : #endif
    1487             : md_blocks_fail:
    1488           0 :         pcpu_mem_free(chunk->bound_map);
    1489             : bound_map_fail:
    1490           0 :         pcpu_mem_free(chunk->alloc_map);
    1491             : alloc_map_fail:
    1492           0 :         pcpu_mem_free(chunk);
    1493             : 
    1494           0 :         return NULL;
    1495             : }
    1496             : 
    1497           0 : static void pcpu_free_chunk(struct pcpu_chunk *chunk)
    1498             : {
    1499           0 :         if (!chunk)
    1500             :                 return;
    1501             : #ifdef CONFIG_MEMCG_KMEM
    1502             :         pcpu_mem_free(chunk->obj_cgroups);
    1503             : #endif
    1504           0 :         pcpu_mem_free(chunk->md_blocks);
    1505           0 :         pcpu_mem_free(chunk->bound_map);
    1506           0 :         pcpu_mem_free(chunk->alloc_map);
    1507             :         pcpu_mem_free(chunk);
    1508             : }
    1509             : 
    1510             : /**
    1511             :  * pcpu_chunk_populated - post-population bookkeeping
    1512             :  * @chunk: pcpu_chunk which got populated
    1513             :  * @page_start: the start page
    1514             :  * @page_end: the end page
    1515             :  *
    1516             :  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
    1517             :  * the bookkeeping information accordingly.  Must be called after each
    1518             :  * successful population.
    1519             :  */
    1520           0 : static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
    1521             :                                  int page_end)
    1522             : {
    1523           0 :         int nr = page_end - page_start;
    1524             : 
    1525             :         lockdep_assert_held(&pcpu_lock);
    1526             : 
    1527           0 :         bitmap_set(chunk->populated, page_start, nr);
    1528           0 :         chunk->nr_populated += nr;
    1529           0 :         pcpu_nr_populated += nr;
    1530             : 
    1531           0 :         pcpu_update_empty_pages(chunk, nr);
    1532           0 : }
    1533             : 
    1534             : /**
    1535             :  * pcpu_chunk_depopulated - post-depopulation bookkeeping
    1536             :  * @chunk: pcpu_chunk which got depopulated
    1537             :  * @page_start: the start page
    1538             :  * @page_end: the end page
    1539             :  *
    1540             :  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
    1541             :  * Update the bookkeeping information accordingly.  Must be called after
    1542             :  * each successful depopulation.
    1543             :  */
    1544           0 : static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
    1545             :                                    int page_start, int page_end)
    1546             : {
    1547           0 :         int nr = page_end - page_start;
    1548             : 
    1549             :         lockdep_assert_held(&pcpu_lock);
    1550             : 
    1551           0 :         bitmap_clear(chunk->populated, page_start, nr);
    1552           0 :         chunk->nr_populated -= nr;
    1553           0 :         pcpu_nr_populated -= nr;
    1554             : 
    1555           0 :         pcpu_update_empty_pages(chunk, -nr);
    1556           0 : }
    1557             : 
    1558             : /*
    1559             :  * Chunk management implementation.
    1560             :  *
    1561             :  * To allow different implementations, chunk alloc/free and
    1562             :  * [de]population are implemented in a separate file which is pulled
    1563             :  * into this file and compiled together.  The following functions
    1564             :  * should be implemented.
    1565             :  *
    1566             :  * pcpu_populate_chunk          - populate the specified range of a chunk
    1567             :  * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
    1568             :  * pcpu_post_unmap_tlb_flush    - flush tlb for the specified range of a chunk
    1569             :  * pcpu_create_chunk            - create a new chunk
    1570             :  * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
    1571             :  * pcpu_addr_to_page            - translate address to physical address
    1572             :  * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
    1573             :  */
    1574             : static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
    1575             :                                int page_start, int page_end, gfp_t gfp);
    1576             : static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
    1577             :                                   int page_start, int page_end);
    1578             : static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
    1579             :                                       int page_start, int page_end);
    1580             : static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
    1581             : static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
    1582             : static struct page *pcpu_addr_to_page(void *addr);
    1583             : static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
    1584             : 
    1585             : #ifdef CONFIG_NEED_PER_CPU_KM
    1586             : #include "percpu-km.c"
    1587             : #else
    1588             : #include "percpu-vm.c"
    1589             : #endif
    1590             : 
    1591             : /**
    1592             :  * pcpu_chunk_addr_search - determine chunk containing specified address
    1593             :  * @addr: address for which the chunk needs to be determined.
    1594             :  *
    1595             :  * This is an internal function that handles all but static allocations.
    1596             :  * Static percpu address values should never be passed into the allocator.
    1597             :  *
    1598             :  * RETURNS:
    1599             :  * The address of the found chunk.
    1600             :  */
    1601          15 : static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
    1602             : {
    1603             :         /* is it in the dynamic region (first chunk)? */
    1604          30 :         if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
    1605             :                 return pcpu_first_chunk;
    1606             : 
    1607             :         /* is it in the reserved region? */
    1608           0 :         if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
    1609             :                 return pcpu_reserved_chunk;
    1610             : 
    1611             :         /*
    1612             :          * The address is relative to unit0 which might be unused and
    1613             :          * thus unmapped.  Offset the address to the unit space of the
    1614             :          * current processor before looking it up in the vmalloc
    1615             :          * space.  Note that any possible cpu id can be used here, so
    1616             :          * there's no need to worry about preemption or cpu hotplug.
    1617             :          */
    1618           0 :         addr += pcpu_unit_offsets[raw_smp_processor_id()];
    1619           0 :         return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
    1620             : }
    1621             : 
    1622             : #ifdef CONFIG_MEMCG_KMEM
    1623             : static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
    1624             :                                       struct obj_cgroup **objcgp)
    1625             : {
    1626             :         struct obj_cgroup *objcg;
    1627             : 
    1628             :         if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
    1629             :                 return true;
    1630             : 
    1631             :         objcg = get_obj_cgroup_from_current();
    1632             :         if (!objcg)
    1633             :                 return true;
    1634             : 
    1635             :         if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
    1636             :                 obj_cgroup_put(objcg);
    1637             :                 return false;
    1638             :         }
    1639             : 
    1640             :         *objcgp = objcg;
    1641             :         return true;
    1642             : }
    1643             : 
    1644             : static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
    1645             :                                        struct pcpu_chunk *chunk, int off,
    1646             :                                        size_t size)
    1647             : {
    1648             :         if (!objcg)
    1649             :                 return;
    1650             : 
    1651             :         if (likely(chunk && chunk->obj_cgroups)) {
    1652             :                 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
    1653             : 
    1654             :                 rcu_read_lock();
    1655             :                 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
    1656             :                                 pcpu_obj_full_size(size));
    1657             :                 rcu_read_unlock();
    1658             :         } else {
    1659             :                 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
    1660             :                 obj_cgroup_put(objcg);
    1661             :         }
    1662             : }
    1663             : 
    1664             : static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
    1665             : {
    1666             :         struct obj_cgroup *objcg;
    1667             : 
    1668             :         if (unlikely(!chunk->obj_cgroups))
    1669             :                 return;
    1670             : 
    1671             :         objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
    1672             :         if (!objcg)
    1673             :                 return;
    1674             :         chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
    1675             : 
    1676             :         obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
    1677             : 
    1678             :         rcu_read_lock();
    1679             :         mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
    1680             :                         -pcpu_obj_full_size(size));
    1681             :         rcu_read_unlock();
    1682             : 
    1683             :         obj_cgroup_put(objcg);
    1684             : }
    1685             : 
    1686             : #else /* CONFIG_MEMCG_KMEM */
    1687             : static bool
    1688             : pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
    1689             : {
    1690             :         return true;
    1691             : }
    1692             : 
    1693             : static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
    1694             :                                        struct pcpu_chunk *chunk, int off,
    1695             :                                        size_t size)
    1696             : {
    1697             : }
    1698             : 
    1699             : static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
    1700             : {
    1701             : }
    1702             : #endif /* CONFIG_MEMCG_KMEM */
    1703             : 
    1704             : /**
    1705             :  * pcpu_alloc - the percpu allocator
    1706             :  * @size: size of area to allocate in bytes
    1707             :  * @align: alignment of area (max PAGE_SIZE)
    1708             :  * @reserved: allocate from the reserved chunk if available
    1709             :  * @gfp: allocation flags
    1710             :  *
    1711             :  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
    1712             :  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
    1713             :  * then no warning will be triggered on invalid or failed allocation
    1714             :  * requests.
    1715             :  *
    1716             :  * RETURNS:
    1717             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1718             :  */
    1719         242 : static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
    1720             :                                  gfp_t gfp)
    1721             : {
    1722             :         gfp_t pcpu_gfp;
    1723             :         bool is_atomic;
    1724             :         bool do_warn;
    1725         242 :         struct obj_cgroup *objcg = NULL;
    1726             :         static int warn_limit = 10;
    1727             :         struct pcpu_chunk *chunk, *next;
    1728             :         const char *err;
    1729             :         int slot, off, cpu, ret;
    1730             :         unsigned long flags;
    1731             :         void __percpu *ptr;
    1732             :         size_t bits, bit_align;
    1733             : 
    1734         242 :         gfp = current_gfp_context(gfp);
    1735             :         /* whitelisted flags that can be passed to the backing allocators */
    1736         242 :         pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
    1737         242 :         is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
    1738         242 :         do_warn = !(gfp & __GFP_NOWARN);
    1739             : 
    1740             :         /*
    1741             :          * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
    1742             :          * therefore alignment must be a minimum of that many bytes.
    1743             :          * An allocation may have internal fragmentation from rounding up
    1744             :          * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
    1745             :          */
    1746         242 :         if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
    1747           1 :                 align = PCPU_MIN_ALLOC_SIZE;
    1748             : 
    1749         242 :         size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
    1750         242 :         bits = size >> PCPU_MIN_ALLOC_SHIFT;
    1751         242 :         bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
    1752             : 
    1753         484 :         if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
    1754             :                      !is_power_of_2(align))) {
    1755           0 :                 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
    1756             :                      size, align);
    1757             :                 return NULL;
    1758             :         }
    1759             : 
    1760         242 :         if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
    1761             :                 return NULL;
    1762             : 
    1763         242 :         if (!is_atomic) {
    1764             :                 /*
    1765             :                  * pcpu_balance_workfn() allocates memory under this mutex,
    1766             :                  * and it may wait for memory reclaim. Allow current task
    1767             :                  * to become OOM victim, in case of memory pressure.
    1768             :                  */
    1769         242 :                 if (gfp & __GFP_NOFAIL) {
    1770           0 :                         mutex_lock(&pcpu_alloc_mutex);
    1771         242 :                 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
    1772             :                         pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
    1773             :                         return NULL;
    1774             :                 }
    1775             :         }
    1776             : 
    1777         242 :         spin_lock_irqsave(&pcpu_lock, flags);
    1778             : 
    1779             :         /* serve reserved allocations from the reserved chunk if available */
    1780         242 :         if (reserved && pcpu_reserved_chunk) {
    1781           0 :                 chunk = pcpu_reserved_chunk;
    1782             : 
    1783           0 :                 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
    1784           0 :                 if (off < 0) {
    1785             :                         err = "alloc from reserved chunk failed";
    1786             :                         goto fail_unlock;
    1787             :                 }
    1788             : 
    1789           0 :                 off = pcpu_alloc_area(chunk, bits, bit_align, off);
    1790           0 :                 if (off >= 0)
    1791             :                         goto area_found;
    1792             : 
    1793             :                 err = "alloc from reserved chunk failed";
    1794             :                 goto fail_unlock;
    1795             :         }
    1796             : 
    1797             : restart:
    1798             :         /* search through normal chunks */
    1799        2738 :         for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
    1800        2738 :                 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
    1801             :                                          list) {
    1802         242 :                         off = pcpu_find_block_fit(chunk, bits, bit_align,
    1803             :                                                   is_atomic);
    1804         242 :                         if (off < 0) {
    1805           0 :                                 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
    1806             :                                         pcpu_chunk_move(chunk, 0);
    1807           0 :                                 continue;
    1808             :                         }
    1809             : 
    1810         242 :                         off = pcpu_alloc_area(chunk, bits, bit_align, off);
    1811         242 :                         if (off >= 0) {
    1812         242 :                                 pcpu_reintegrate_chunk(chunk);
    1813         242 :                                 goto area_found;
    1814             :                         }
    1815             :                 }
    1816             :         }
    1817             : 
    1818           0 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1819             : 
    1820           0 :         if (is_atomic) {
    1821             :                 err = "atomic alloc failed, no space left";
    1822             :                 goto fail;
    1823             :         }
    1824             : 
    1825             :         /* No space left.  Create a new chunk. */
    1826           0 :         if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
    1827           0 :                 chunk = pcpu_create_chunk(pcpu_gfp);
    1828           0 :                 if (!chunk) {
    1829             :                         err = "failed to allocate new chunk";
    1830             :                         goto fail;
    1831             :                 }
    1832             : 
    1833           0 :                 spin_lock_irqsave(&pcpu_lock, flags);
    1834           0 :                 pcpu_chunk_relocate(chunk, -1);
    1835             :         } else {
    1836           0 :                 spin_lock_irqsave(&pcpu_lock, flags);
    1837             :         }
    1838             : 
    1839             :         goto restart;
    1840             : 
    1841             : area_found:
    1842         242 :         pcpu_stats_area_alloc(chunk, size);
    1843         242 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1844             : 
    1845             :         /* populate if not all pages are already there */
    1846         242 :         if (!is_atomic) {
    1847             :                 unsigned int page_end, rs, re;
    1848             : 
    1849         242 :                 rs = PFN_DOWN(off);
    1850         242 :                 page_end = PFN_UP(off + size);
    1851             : 
    1852         242 :                 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
    1853           0 :                         WARN_ON(chunk->immutable);
    1854             : 
    1855           0 :                         ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
    1856             : 
    1857           0 :                         spin_lock_irqsave(&pcpu_lock, flags);
    1858             :                         if (ret) {
    1859             :                                 pcpu_free_area(chunk, off);
    1860             :                                 err = "failed to populate";
    1861             :                                 goto fail_unlock;
    1862             :                         }
    1863           0 :                         pcpu_chunk_populated(chunk, rs, re);
    1864           0 :                         spin_unlock_irqrestore(&pcpu_lock, flags);
    1865             :                 }
    1866             : 
    1867         242 :                 mutex_unlock(&pcpu_alloc_mutex);
    1868             :         }
    1869             : 
    1870         242 :         if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
    1871             :                 pcpu_schedule_balance_work();
    1872             : 
    1873             :         /* clear the areas and return address relative to base address */
    1874         242 :         for_each_possible_cpu(cpu)
    1875         484 :                 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
    1876             : 
    1877         242 :         ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
    1878         242 :         kmemleak_alloc_percpu(ptr, size, gfp);
    1879             : 
    1880         242 :         trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
    1881             :                                   chunk->base_addr, off, ptr,
    1882             :                                   pcpu_obj_full_size(size), gfp);
    1883             : 
    1884         242 :         pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
    1885             : 
    1886         242 :         return ptr;
    1887             : 
    1888             : fail_unlock:
    1889             :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1890             : fail:
    1891           0 :         trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
    1892             : 
    1893           0 :         if (!is_atomic && do_warn && warn_limit) {
    1894           0 :                 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
    1895             :                         size, align, is_atomic, err);
    1896           0 :                 dump_stack();
    1897           0 :                 if (!--warn_limit)
    1898           0 :                         pr_info("limit reached, disable warning\n");
    1899             :         }
    1900           0 :         if (is_atomic) {
    1901             :                 /* see the flag handling in pcpu_balance_workfn() */
    1902           0 :                 pcpu_atomic_alloc_failed = true;
    1903             :                 pcpu_schedule_balance_work();
    1904             :         } else {
    1905           0 :                 mutex_unlock(&pcpu_alloc_mutex);
    1906             :         }
    1907             : 
    1908             :         pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
    1909             : 
    1910             :         return NULL;
    1911             : }
    1912             : 
    1913             : /**
    1914             :  * __alloc_percpu_gfp - allocate dynamic percpu area
    1915             :  * @size: size of area to allocate in bytes
    1916             :  * @align: alignment of area (max PAGE_SIZE)
    1917             :  * @gfp: allocation flags
    1918             :  *
    1919             :  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
    1920             :  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
    1921             :  * be called from any context but is a lot more likely to fail. If @gfp
    1922             :  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
    1923             :  * allocation requests.
    1924             :  *
    1925             :  * RETURNS:
    1926             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1927             :  */
    1928           0 : void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
    1929             : {
    1930           0 :         return pcpu_alloc(size, align, false, gfp);
    1931             : }
    1932             : EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
    1933             : 
    1934             : /**
    1935             :  * __alloc_percpu - allocate dynamic percpu area
    1936             :  * @size: size of area to allocate in bytes
    1937             :  * @align: alignment of area (max PAGE_SIZE)
    1938             :  *
    1939             :  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
    1940             :  */
    1941         242 : void __percpu *__alloc_percpu(size_t size, size_t align)
    1942             : {
    1943         242 :         return pcpu_alloc(size, align, false, GFP_KERNEL);
    1944             : }
    1945             : EXPORT_SYMBOL_GPL(__alloc_percpu);
    1946             : 
    1947             : /**
    1948             :  * __alloc_reserved_percpu - allocate reserved percpu area
    1949             :  * @size: size of area to allocate in bytes
    1950             :  * @align: alignment of area (max PAGE_SIZE)
    1951             :  *
    1952             :  * Allocate zero-filled percpu area of @size bytes aligned at @align
    1953             :  * from reserved percpu area if arch has set it up; otherwise,
    1954             :  * allocation is served from the same dynamic area.  Might sleep.
    1955             :  * Might trigger writeouts.
    1956             :  *
    1957             :  * CONTEXT:
    1958             :  * Does GFP_KERNEL allocation.
    1959             :  *
    1960             :  * RETURNS:
    1961             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1962             :  */
    1963           0 : void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
    1964             : {
    1965           0 :         return pcpu_alloc(size, align, true, GFP_KERNEL);
    1966             : }
    1967             : 
    1968             : /**
    1969             :  * pcpu_balance_free - manage the amount of free chunks
    1970             :  * @empty_only: free chunks only if there are no populated pages
    1971             :  *
    1972             :  * If empty_only is %false, reclaim all fully free chunks regardless of the
    1973             :  * number of populated pages.  Otherwise, only reclaim chunks that have no
    1974             :  * populated pages.
    1975             :  *
    1976             :  * CONTEXT:
    1977             :  * pcpu_lock (can be dropped temporarily)
    1978             :  */
    1979           0 : static void pcpu_balance_free(bool empty_only)
    1980             : {
    1981           0 :         LIST_HEAD(to_free);
    1982           0 :         struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
    1983             :         struct pcpu_chunk *chunk, *next;
    1984             : 
    1985             :         lockdep_assert_held(&pcpu_lock);
    1986             : 
    1987             :         /*
    1988             :          * There's no reason to keep around multiple unused chunks and VM
    1989             :          * areas can be scarce.  Destroy all free chunks except for one.
    1990             :          */
    1991           0 :         list_for_each_entry_safe(chunk, next, free_head, list) {
    1992           0 :                 WARN_ON(chunk->immutable);
    1993             : 
    1994             :                 /* spare the first one */
    1995           0 :                 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
    1996           0 :                         continue;
    1997             : 
    1998           0 :                 if (!empty_only || chunk->nr_empty_pop_pages == 0)
    1999           0 :                         list_move(&chunk->list, &to_free);
    2000             :         }
    2001             : 
    2002           0 :         if (list_empty(&to_free))
    2003           0 :                 return;
    2004             : 
    2005           0 :         spin_unlock_irq(&pcpu_lock);
    2006           0 :         list_for_each_entry_safe(chunk, next, &to_free, list) {
    2007             :                 unsigned int rs, re;
    2008             : 
    2009           0 :                 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
    2010           0 :                         pcpu_depopulate_chunk(chunk, rs, re);
    2011           0 :                         spin_lock_irq(&pcpu_lock);
    2012           0 :                         pcpu_chunk_depopulated(chunk, rs, re);
    2013           0 :                         spin_unlock_irq(&pcpu_lock);
    2014             :                 }
    2015           0 :                 pcpu_destroy_chunk(chunk);
    2016           0 :                 cond_resched();
    2017             :         }
    2018           0 :         spin_lock_irq(&pcpu_lock);
    2019             : }
    2020             : 
    2021             : /**
    2022             :  * pcpu_balance_populated - manage the amount of populated pages
    2023             :  *
    2024             :  * Maintain a certain amount of populated pages to satisfy atomic allocations.
    2025             :  * It is possible that this is called when physical memory is scarce causing
    2026             :  * OOM killer to be triggered.  We should avoid doing so until an actual
    2027             :  * allocation causes the failure as it is possible that requests can be
    2028             :  * serviced from already backed regions.
    2029             :  *
    2030             :  * CONTEXT:
    2031             :  * pcpu_lock (can be dropped temporarily)
    2032             :  */
    2033           0 : static void pcpu_balance_populated(void)
    2034             : {
    2035             :         /* gfp flags passed to underlying allocators */
    2036           0 :         const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
    2037             :         struct pcpu_chunk *chunk;
    2038             :         int slot, nr_to_pop, ret;
    2039             : 
    2040             :         lockdep_assert_held(&pcpu_lock);
    2041             : 
    2042             :         /*
    2043             :          * Ensure there are certain number of free populated pages for
    2044             :          * atomic allocs.  Fill up from the most packed so that atomic
    2045             :          * allocs don't increase fragmentation.  If atomic allocation
    2046             :          * failed previously, always populate the maximum amount.  This
    2047             :          * should prevent atomic allocs larger than PAGE_SIZE from keeping
    2048             :          * failing indefinitely; however, large atomic allocs are not
    2049             :          * something we support properly and can be highly unreliable and
    2050             :          * inefficient.
    2051             :          */
    2052             : retry_pop:
    2053           0 :         if (pcpu_atomic_alloc_failed) {
    2054           0 :                 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
    2055             :                 /* best effort anyway, don't worry about synchronization */
    2056           0 :                 pcpu_atomic_alloc_failed = false;
    2057             :         } else {
    2058           0 :                 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
    2059             :                                   pcpu_nr_empty_pop_pages,
    2060             :                                   0, PCPU_EMPTY_POP_PAGES_HIGH);
    2061             :         }
    2062             : 
    2063           0 :         for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
    2064           0 :                 unsigned int nr_unpop = 0, rs, re;
    2065             : 
    2066           0 :                 if (!nr_to_pop)
    2067             :                         break;
    2068             : 
    2069           0 :                 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
    2070           0 :                         nr_unpop = chunk->nr_pages - chunk->nr_populated;
    2071           0 :                         if (nr_unpop)
    2072             :                                 break;
    2073             :                 }
    2074             : 
    2075           0 :                 if (!nr_unpop)
    2076           0 :                         continue;
    2077             : 
    2078             :                 /* @chunk can't go away while pcpu_alloc_mutex is held */
    2079           0 :                 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
    2080           0 :                         int nr = min_t(int, re - rs, nr_to_pop);
    2081             : 
    2082           0 :                         spin_unlock_irq(&pcpu_lock);
    2083           0 :                         ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
    2084           0 :                         cond_resched();
    2085           0 :                         spin_lock_irq(&pcpu_lock);
    2086             :                         if (!ret) {
    2087           0 :                                 nr_to_pop -= nr;
    2088           0 :                                 pcpu_chunk_populated(chunk, rs, rs + nr);
    2089             :                         } else {
    2090             :                                 nr_to_pop = 0;
    2091             :                         }
    2092             : 
    2093           0 :                         if (!nr_to_pop)
    2094             :                                 break;
    2095             :                 }
    2096             :         }
    2097             : 
    2098           0 :         if (nr_to_pop) {
    2099             :                 /* ran out of chunks to populate, create a new one and retry */
    2100           0 :                 spin_unlock_irq(&pcpu_lock);
    2101           0 :                 chunk = pcpu_create_chunk(gfp);
    2102           0 :                 cond_resched();
    2103           0 :                 spin_lock_irq(&pcpu_lock);
    2104           0 :                 if (chunk) {
    2105           0 :                         pcpu_chunk_relocate(chunk, -1);
    2106           0 :                         goto retry_pop;
    2107             :                 }
    2108             :         }
    2109           0 : }
    2110             : 
    2111             : /**
    2112             :  * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
    2113             :  *
    2114             :  * Scan over chunks in the depopulate list and try to release unused populated
    2115             :  * pages back to the system.  Depopulated chunks are sidelined to prevent
    2116             :  * repopulating these pages unless required.  Fully free chunks are reintegrated
    2117             :  * and freed accordingly (1 is kept around).  If we drop below the empty
    2118             :  * populated pages threshold, reintegrate the chunk if it has empty free pages.
    2119             :  * Each chunk is scanned in the reverse order to keep populated pages close to
    2120             :  * the beginning of the chunk.
    2121             :  *
    2122             :  * CONTEXT:
    2123             :  * pcpu_lock (can be dropped temporarily)
    2124             :  *
    2125             :  */
    2126           0 : static void pcpu_reclaim_populated(void)
    2127             : {
    2128             :         struct pcpu_chunk *chunk;
    2129             :         struct pcpu_block_md *block;
    2130             :         int freed_page_start, freed_page_end;
    2131             :         int i, end;
    2132             :         bool reintegrate;
    2133             : 
    2134             :         lockdep_assert_held(&pcpu_lock);
    2135             : 
    2136             :         /*
    2137             :          * Once a chunk is isolated to the to_depopulate list, the chunk is no
    2138             :          * longer discoverable to allocations whom may populate pages.  The only
    2139             :          * other accessor is the free path which only returns area back to the
    2140             :          * allocator not touching the populated bitmap.
    2141             :          */
    2142           0 :         while ((chunk = list_first_entry_or_null(
    2143             :                         &pcpu_chunk_lists[pcpu_to_depopulate_slot],
    2144             :                         struct pcpu_chunk, list))) {
    2145           0 :                 WARN_ON(chunk->immutable);
    2146             : 
    2147             :                 /*
    2148             :                  * Scan chunk's pages in the reverse order to keep populated
    2149             :                  * pages close to the beginning of the chunk.
    2150             :                  */
    2151           0 :                 freed_page_start = chunk->nr_pages;
    2152           0 :                 freed_page_end = 0;
    2153           0 :                 reintegrate = false;
    2154           0 :                 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
    2155             :                         /* no more work to do */
    2156           0 :                         if (chunk->nr_empty_pop_pages == 0)
    2157             :                                 break;
    2158             : 
    2159             :                         /* reintegrate chunk to prevent atomic alloc failures */
    2160           0 :                         if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
    2161             :                                 reintegrate = true;
    2162             :                                 break;
    2163             :                         }
    2164             : 
    2165             :                         /*
    2166             :                          * If the page is empty and populated, start or
    2167             :                          * extend the (i, end) range.  If i == 0, decrease
    2168             :                          * i and perform the depopulation to cover the last
    2169             :                          * (first) page in the chunk.
    2170             :                          */
    2171           0 :                         block = chunk->md_blocks + i;
    2172           0 :                         if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
    2173           0 :                             test_bit(i, chunk->populated)) {
    2174           0 :                                 if (end == -1)
    2175           0 :                                         end = i;
    2176           0 :                                 if (i > 0)
    2177           0 :                                         continue;
    2178           0 :                                 i--;
    2179             :                         }
    2180             : 
    2181             :                         /* depopulate if there is an active range */
    2182           0 :                         if (end == -1)
    2183           0 :                                 continue;
    2184             : 
    2185           0 :                         spin_unlock_irq(&pcpu_lock);
    2186           0 :                         pcpu_depopulate_chunk(chunk, i + 1, end + 1);
    2187           0 :                         cond_resched();
    2188           0 :                         spin_lock_irq(&pcpu_lock);
    2189             : 
    2190           0 :                         pcpu_chunk_depopulated(chunk, i + 1, end + 1);
    2191           0 :                         freed_page_start = min(freed_page_start, i + 1);
    2192           0 :                         freed_page_end = max(freed_page_end, end + 1);
    2193             : 
    2194             :                         /* reset the range and continue */
    2195           0 :                         end = -1;
    2196             :                 }
    2197             : 
    2198             :                 /* batch tlb flush per chunk to amortize cost */
    2199           0 :                 if (freed_page_start < freed_page_end) {
    2200           0 :                         spin_unlock_irq(&pcpu_lock);
    2201           0 :                         pcpu_post_unmap_tlb_flush(chunk,
    2202             :                                                   freed_page_start,
    2203             :                                                   freed_page_end);
    2204           0 :                         cond_resched();
    2205             :                         spin_lock_irq(&pcpu_lock);
    2206             :                 }
    2207             : 
    2208           0 :                 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
    2209           0 :                         pcpu_reintegrate_chunk(chunk);
    2210             :                 else
    2211           0 :                         list_move_tail(&chunk->list,
    2212           0 :                                        &pcpu_chunk_lists[pcpu_sidelined_slot]);
    2213             :         }
    2214           0 : }
    2215             : 
    2216             : /**
    2217             :  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
    2218             :  * @work: unused
    2219             :  *
    2220             :  * For each chunk type, manage the number of fully free chunks and the number of
    2221             :  * populated pages.  An important thing to consider is when pages are freed and
    2222             :  * how they contribute to the global counts.
    2223             :  */
    2224           0 : static void pcpu_balance_workfn(struct work_struct *work)
    2225             : {
    2226             :         /*
    2227             :          * pcpu_balance_free() is called twice because the first time we may
    2228             :          * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
    2229             :          * to grow other chunks.  This then gives pcpu_reclaim_populated() time
    2230             :          * to move fully free chunks to the active list to be freed if
    2231             :          * appropriate.
    2232             :          */
    2233           0 :         mutex_lock(&pcpu_alloc_mutex);
    2234           0 :         spin_lock_irq(&pcpu_lock);
    2235             : 
    2236           0 :         pcpu_balance_free(false);
    2237           0 :         pcpu_reclaim_populated();
    2238           0 :         pcpu_balance_populated();
    2239           0 :         pcpu_balance_free(true);
    2240             : 
    2241           0 :         spin_unlock_irq(&pcpu_lock);
    2242           0 :         mutex_unlock(&pcpu_alloc_mutex);
    2243           0 : }
    2244             : 
    2245             : /**
    2246             :  * free_percpu - free percpu area
    2247             :  * @ptr: pointer to area to free
    2248             :  *
    2249             :  * Free percpu area @ptr.
    2250             :  *
    2251             :  * CONTEXT:
    2252             :  * Can be called from atomic context.
    2253             :  */
    2254          15 : void free_percpu(void __percpu *ptr)
    2255             : {
    2256             :         void *addr;
    2257             :         struct pcpu_chunk *chunk;
    2258             :         unsigned long flags;
    2259             :         int size, off;
    2260          15 :         bool need_balance = false;
    2261             : 
    2262          15 :         if (!ptr)
    2263             :                 return;
    2264             : 
    2265          15 :         kmemleak_free_percpu(ptr);
    2266             : 
    2267          15 :         addr = __pcpu_ptr_to_addr(ptr);
    2268             : 
    2269          15 :         spin_lock_irqsave(&pcpu_lock, flags);
    2270             : 
    2271          15 :         chunk = pcpu_chunk_addr_search(addr);
    2272          15 :         off = addr - chunk->base_addr;
    2273             : 
    2274          15 :         size = pcpu_free_area(chunk, off);
    2275             : 
    2276          15 :         pcpu_memcg_free_hook(chunk, off, size);
    2277             : 
    2278             :         /*
    2279             :          * If there are more than one fully free chunks, wake up grim reaper.
    2280             :          * If the chunk is isolated, it may be in the process of being
    2281             :          * reclaimed.  Let reclaim manage cleaning up of that chunk.
    2282             :          */
    2283          15 :         if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
    2284             :                 struct pcpu_chunk *pos;
    2285             : 
    2286           0 :                 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
    2287           0 :                         if (pos != chunk) {
    2288             :                                 need_balance = true;
    2289             :                                 break;
    2290             :                         }
    2291             :         } else if (pcpu_should_reclaim_chunk(chunk)) {
    2292             :                 pcpu_isolate_chunk(chunk);
    2293             :                 need_balance = true;
    2294             :         }
    2295             : 
    2296          15 :         trace_percpu_free_percpu(chunk->base_addr, off, ptr);
    2297             : 
    2298          15 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    2299             : 
    2300          15 :         if (need_balance)
    2301             :                 pcpu_schedule_balance_work();
    2302             : }
    2303             : EXPORT_SYMBOL_GPL(free_percpu);
    2304             : 
    2305           0 : bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
    2306             : {
    2307             : #ifdef CONFIG_SMP
    2308             :         const size_t static_size = __per_cpu_end - __per_cpu_start;
    2309             :         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
    2310             :         unsigned int cpu;
    2311             : 
    2312             :         for_each_possible_cpu(cpu) {
    2313             :                 void *start = per_cpu_ptr(base, cpu);
    2314             :                 void *va = (void *)addr;
    2315             : 
    2316             :                 if (va >= start && va < start + static_size) {
    2317             :                         if (can_addr) {
    2318             :                                 *can_addr = (unsigned long) (va - start);
    2319             :                                 *can_addr += (unsigned long)
    2320             :                                         per_cpu_ptr(base, get_boot_cpu_id());
    2321             :                         }
    2322             :                         return true;
    2323             :                 }
    2324             :         }
    2325             : #endif
    2326             :         /* on UP, can't distinguish from other static vars, always false */
    2327           0 :         return false;
    2328             : }
    2329             : 
    2330             : /**
    2331             :  * is_kernel_percpu_address - test whether address is from static percpu area
    2332             :  * @addr: address to test
    2333             :  *
    2334             :  * Test whether @addr belongs to in-kernel static percpu area.  Module
    2335             :  * static percpu areas are not considered.  For those, use
    2336             :  * is_module_percpu_address().
    2337             :  *
    2338             :  * RETURNS:
    2339             :  * %true if @addr is from in-kernel static percpu area, %false otherwise.
    2340             :  */
    2341           0 : bool is_kernel_percpu_address(unsigned long addr)
    2342             : {
    2343           0 :         return __is_kernel_percpu_address(addr, NULL);
    2344             : }
    2345             : 
    2346             : /**
    2347             :  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
    2348             :  * @addr: the address to be converted to physical address
    2349             :  *
    2350             :  * Given @addr which is dereferenceable address obtained via one of
    2351             :  * percpu access macros, this function translates it into its physical
    2352             :  * address.  The caller is responsible for ensuring @addr stays valid
    2353             :  * until this function finishes.
    2354             :  *
    2355             :  * percpu allocator has special setup for the first chunk, which currently
    2356             :  * supports either embedding in linear address space or vmalloc mapping,
    2357             :  * and, from the second one, the backing allocator (currently either vm or
    2358             :  * km) provides translation.
    2359             :  *
    2360             :  * The addr can be translated simply without checking if it falls into the
    2361             :  * first chunk. But the current code reflects better how percpu allocator
    2362             :  * actually works, and the verification can discover both bugs in percpu
    2363             :  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
    2364             :  * code.
    2365             :  *
    2366             :  * RETURNS:
    2367             :  * The physical address for @addr.
    2368             :  */
    2369           0 : phys_addr_t per_cpu_ptr_to_phys(void *addr)
    2370             : {
    2371           0 :         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
    2372           0 :         bool in_first_chunk = false;
    2373             :         unsigned long first_low, first_high;
    2374             :         unsigned int cpu;
    2375             : 
    2376             :         /*
    2377             :          * The following test on unit_low/high isn't strictly
    2378             :          * necessary but will speed up lookups of addresses which
    2379             :          * aren't in the first chunk.
    2380             :          *
    2381             :          * The address check is against full chunk sizes.  pcpu_base_addr
    2382             :          * points to the beginning of the first chunk including the
    2383             :          * static region.  Assumes good intent as the first chunk may
    2384             :          * not be full (ie. < pcpu_unit_pages in size).
    2385             :          */
    2386           0 :         first_low = (unsigned long)pcpu_base_addr +
    2387           0 :                     pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
    2388           0 :         first_high = (unsigned long)pcpu_base_addr +
    2389           0 :                      pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
    2390           0 :         if ((unsigned long)addr >= first_low &&
    2391           0 :             (unsigned long)addr < first_high) {
    2392           0 :                 for_each_possible_cpu(cpu) {
    2393           0 :                         void *start = per_cpu_ptr(base, cpu);
    2394             : 
    2395           0 :                         if (addr >= start && addr < start + pcpu_unit_size) {
    2396             :                                 in_first_chunk = true;
    2397             :                                 break;
    2398             :                         }
    2399             :                 }
    2400             :         }
    2401             : 
    2402           0 :         if (in_first_chunk) {
    2403           0 :                 if (!is_vmalloc_addr(addr))
    2404           0 :                         return __pa(addr);
    2405             :                 else
    2406           0 :                         return page_to_phys(vmalloc_to_page(addr)) +
    2407           0 :                                offset_in_page(addr);
    2408             :         } else
    2409           0 :                 return page_to_phys(pcpu_addr_to_page(addr)) +
    2410           0 :                        offset_in_page(addr);
    2411             : }
    2412             : 
    2413             : /**
    2414             :  * pcpu_alloc_alloc_info - allocate percpu allocation info
    2415             :  * @nr_groups: the number of groups
    2416             :  * @nr_units: the number of units
    2417             :  *
    2418             :  * Allocate ai which is large enough for @nr_groups groups containing
    2419             :  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
    2420             :  * cpu_map array which is long enough for @nr_units and filled with
    2421             :  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
    2422             :  * pointer of other groups.
    2423             :  *
    2424             :  * RETURNS:
    2425             :  * Pointer to the allocated pcpu_alloc_info on success, NULL on
    2426             :  * failure.
    2427             :  */
    2428           1 : struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
    2429             :                                                       int nr_units)
    2430             : {
    2431             :         struct pcpu_alloc_info *ai;
    2432             :         size_t base_size, ai_size;
    2433             :         void *ptr;
    2434             :         int unit;
    2435             : 
    2436           3 :         base_size = ALIGN(struct_size(ai, groups, nr_groups),
    2437             :                           __alignof__(ai->groups[0].cpu_map[0]));
    2438           1 :         ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
    2439             : 
    2440           2 :         ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
    2441           1 :         if (!ptr)
    2442             :                 return NULL;
    2443           1 :         ai = ptr;
    2444           1 :         ptr += base_size;
    2445             : 
    2446           1 :         ai->groups[0].cpu_map = ptr;
    2447             : 
    2448           2 :         for (unit = 0; unit < nr_units; unit++)
    2449           1 :                 ai->groups[0].cpu_map[unit] = NR_CPUS;
    2450             : 
    2451           1 :         ai->nr_groups = nr_groups;
    2452           1 :         ai->__ai_size = PFN_ALIGN(ai_size);
    2453             : 
    2454           1 :         return ai;
    2455             : }
    2456             : 
    2457             : /**
    2458             :  * pcpu_free_alloc_info - free percpu allocation info
    2459             :  * @ai: pcpu_alloc_info to free
    2460             :  *
    2461             :  * Free @ai which was allocated by pcpu_alloc_alloc_info().
    2462             :  */
    2463           1 : void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
    2464             : {
    2465           1 :         memblock_free(ai, ai->__ai_size);
    2466           1 : }
    2467             : 
    2468             : /**
    2469             :  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
    2470             :  * @lvl: loglevel
    2471             :  * @ai: allocation info to dump
    2472             :  *
    2473             :  * Print out information about @ai using loglevel @lvl.
    2474             :  */
    2475           1 : static void pcpu_dump_alloc_info(const char *lvl,
    2476             :                                  const struct pcpu_alloc_info *ai)
    2477             : {
    2478           1 :         int group_width = 1, cpu_width = 1, width;
    2479           1 :         char empty_str[] = "--------";
    2480           1 :         int alloc = 0, alloc_end = 0;
    2481             :         int group, v;
    2482             :         int upa, apl;   /* units per alloc, allocs per line */
    2483             : 
    2484           1 :         v = ai->nr_groups;
    2485           2 :         while (v /= 10)
    2486           0 :                 group_width++;
    2487             : 
    2488           1 :         v = num_possible_cpus();
    2489           1 :         while (v /= 10)
    2490             :                 cpu_width++;
    2491           1 :         empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
    2492             : 
    2493           1 :         upa = ai->alloc_size / ai->unit_size;
    2494           1 :         width = upa * (cpu_width + 1) + group_width + 3;
    2495           2 :         apl = rounddown_pow_of_two(max(60 / width, 1));
    2496             : 
    2497           1 :         printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
    2498             :                lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
    2499             :                ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
    2500             : 
    2501           2 :         for (group = 0; group < ai->nr_groups; group++) {
    2502           1 :                 const struct pcpu_group_info *gi = &ai->groups[group];
    2503           1 :                 int unit = 0, unit_end = 0;
    2504             : 
    2505           1 :                 BUG_ON(gi->nr_units % upa);
    2506           3 :                 for (alloc_end += gi->nr_units / upa;
    2507           1 :                      alloc < alloc_end; alloc++) {
    2508           1 :                         if (!(alloc % apl)) {
    2509           1 :                                 pr_cont("\n");
    2510           1 :                                 printk("%spcpu-alloc: ", lvl);
    2511             :                         }
    2512           1 :                         pr_cont("[%0*d] ", group_width, group);
    2513             : 
    2514           2 :                         for (unit_end += upa; unit < unit_end; unit++)
    2515           1 :                                 if (gi->cpu_map[unit] != NR_CPUS)
    2516           1 :                                         pr_cont("%0*d ",
    2517             :                                                 cpu_width, gi->cpu_map[unit]);
    2518             :                                 else
    2519           0 :                                         pr_cont("%s ", empty_str);
    2520             :                 }
    2521             :         }
    2522           1 :         pr_cont("\n");
    2523           1 : }
    2524             : 
    2525             : /**
    2526             :  * pcpu_setup_first_chunk - initialize the first percpu chunk
    2527             :  * @ai: pcpu_alloc_info describing how to percpu area is shaped
    2528             :  * @base_addr: mapped address
    2529             :  *
    2530             :  * Initialize the first percpu chunk which contains the kernel static
    2531             :  * percpu area.  This function is to be called from arch percpu area
    2532             :  * setup path.
    2533             :  *
    2534             :  * @ai contains all information necessary to initialize the first
    2535             :  * chunk and prime the dynamic percpu allocator.
    2536             :  *
    2537             :  * @ai->static_size is the size of static percpu area.
    2538             :  *
    2539             :  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
    2540             :  * reserve after the static area in the first chunk.  This reserves
    2541             :  * the first chunk such that it's available only through reserved
    2542             :  * percpu allocation.  This is primarily used to serve module percpu
    2543             :  * static areas on architectures where the addressing model has
    2544             :  * limited offset range for symbol relocations to guarantee module
    2545             :  * percpu symbols fall inside the relocatable range.
    2546             :  *
    2547             :  * @ai->dyn_size determines the number of bytes available for dynamic
    2548             :  * allocation in the first chunk.  The area between @ai->static_size +
    2549             :  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
    2550             :  *
    2551             :  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
    2552             :  * and equal to or larger than @ai->static_size + @ai->reserved_size +
    2553             :  * @ai->dyn_size.
    2554             :  *
    2555             :  * @ai->atom_size is the allocation atom size and used as alignment
    2556             :  * for vm areas.
    2557             :  *
    2558             :  * @ai->alloc_size is the allocation size and always multiple of
    2559             :  * @ai->atom_size.  This is larger than @ai->atom_size if
    2560             :  * @ai->unit_size is larger than @ai->atom_size.
    2561             :  *
    2562             :  * @ai->nr_groups and @ai->groups describe virtual memory layout of
    2563             :  * percpu areas.  Units which should be colocated are put into the
    2564             :  * same group.  Dynamic VM areas will be allocated according to these
    2565             :  * groupings.  If @ai->nr_groups is zero, a single group containing
    2566             :  * all units is assumed.
    2567             :  *
    2568             :  * The caller should have mapped the first chunk at @base_addr and
    2569             :  * copied static data to each unit.
    2570             :  *
    2571             :  * The first chunk will always contain a static and a dynamic region.
    2572             :  * However, the static region is not managed by any chunk.  If the first
    2573             :  * chunk also contains a reserved region, it is served by two chunks -
    2574             :  * one for the reserved region and one for the dynamic region.  They
    2575             :  * share the same vm, but use offset regions in the area allocation map.
    2576             :  * The chunk serving the dynamic region is circulated in the chunk slots
    2577             :  * and available for dynamic allocation like any other chunk.
    2578             :  */
    2579           1 : void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
    2580             :                                    void *base_addr)
    2581             : {
    2582           1 :         size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
    2583             :         size_t static_size, dyn_size;
    2584             :         struct pcpu_chunk *chunk;
    2585             :         unsigned long *group_offsets;
    2586             :         size_t *group_sizes;
    2587             :         unsigned long *unit_off;
    2588             :         unsigned int cpu;
    2589             :         int *unit_map;
    2590             :         int group, unit, i;
    2591             :         int map_size;
    2592             :         unsigned long tmp_addr;
    2593             :         size_t alloc_size;
    2594             : 
    2595             : #define PCPU_SETUP_BUG_ON(cond) do {                                    \
    2596             :         if (unlikely(cond)) {                                           \
    2597             :                 pr_emerg("failed to initialize, %s\n", #cond);                \
    2598             :                 pr_emerg("cpu_possible_mask=%*pb\n",                  \
    2599             :                          cpumask_pr_args(cpu_possible_mask));           \
    2600             :                 pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
    2601             :                 BUG();                                                  \
    2602             :         }                                                               \
    2603             : } while (0)
    2604             : 
    2605             :         /* sanity checks */
    2606           1 :         PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
    2607             : #ifdef CONFIG_SMP
    2608             :         PCPU_SETUP_BUG_ON(!ai->static_size);
    2609             :         PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
    2610             : #endif
    2611           1 :         PCPU_SETUP_BUG_ON(!base_addr);
    2612           1 :         PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
    2613           1 :         PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
    2614           1 :         PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
    2615           1 :         PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
    2616             :         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
    2617           1 :         PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
    2618           1 :         PCPU_SETUP_BUG_ON(!ai->dyn_size);
    2619           1 :         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
    2620             :         PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
    2621             :                             IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
    2622           1 :         PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
    2623             : 
    2624             :         /* process group information and build config tables accordingly */
    2625           1 :         alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
    2626           1 :         group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2627           1 :         if (!group_offsets)
    2628           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2629             :                       alloc_size);
    2630             : 
    2631           1 :         alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
    2632           1 :         group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2633           1 :         if (!group_sizes)
    2634           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2635             :                       alloc_size);
    2636             : 
    2637           1 :         alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
    2638           1 :         unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2639           1 :         if (!unit_map)
    2640           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2641             :                       alloc_size);
    2642             : 
    2643           1 :         alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
    2644           1 :         unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2645           1 :         if (!unit_off)
    2646           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2647             :                       alloc_size);
    2648             : 
    2649           1 :         for (cpu = 0; cpu < nr_cpu_ids; cpu++)
    2650           1 :                 unit_map[cpu] = UINT_MAX;
    2651             : 
    2652           1 :         pcpu_low_unit_cpu = NR_CPUS;
    2653           1 :         pcpu_high_unit_cpu = NR_CPUS;
    2654             : 
    2655           2 :         for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
    2656           1 :                 const struct pcpu_group_info *gi = &ai->groups[group];
    2657             : 
    2658           1 :                 group_offsets[group] = gi->base_offset;
    2659           1 :                 group_sizes[group] = gi->nr_units * ai->unit_size;
    2660             : 
    2661           2 :                 for (i = 0; i < gi->nr_units; i++) {
    2662           1 :                         cpu = gi->cpu_map[i];
    2663           1 :                         if (cpu == NR_CPUS)
    2664           0 :                                 continue;
    2665             : 
    2666           1 :                         PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
    2667           1 :                         PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
    2668           1 :                         PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
    2669             : 
    2670           1 :                         unit_map[cpu] = unit + i;
    2671           1 :                         unit_off[cpu] = gi->base_offset + i * ai->unit_size;
    2672             : 
    2673             :                         /* determine low/high unit_cpu */
    2674           1 :                         if (pcpu_low_unit_cpu == NR_CPUS ||
    2675           0 :                             unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
    2676           1 :                                 pcpu_low_unit_cpu = cpu;
    2677           1 :                         if (pcpu_high_unit_cpu == NR_CPUS ||
    2678           0 :                             unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
    2679           1 :                                 pcpu_high_unit_cpu = cpu;
    2680             :                 }
    2681             :         }
    2682           1 :         pcpu_nr_units = unit;
    2683             : 
    2684           2 :         for_each_possible_cpu(cpu)
    2685           1 :                 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
    2686             : 
    2687             :         /* we're done parsing the input, undefine BUG macro and dump config */
    2688             : #undef PCPU_SETUP_BUG_ON
    2689           1 :         pcpu_dump_alloc_info(KERN_DEBUG, ai);
    2690             : 
    2691           1 :         pcpu_nr_groups = ai->nr_groups;
    2692           1 :         pcpu_group_offsets = group_offsets;
    2693           1 :         pcpu_group_sizes = group_sizes;
    2694           1 :         pcpu_unit_map = unit_map;
    2695           1 :         pcpu_unit_offsets = unit_off;
    2696             : 
    2697             :         /* determine basic parameters */
    2698           1 :         pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
    2699           1 :         pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
    2700           1 :         pcpu_atom_size = ai->atom_size;
    2701           3 :         pcpu_chunk_struct_size = struct_size(chunk, populated,
    2702             :                                              BITS_TO_LONGS(pcpu_unit_pages));
    2703             : 
    2704           1 :         pcpu_stats_save_ai(ai);
    2705             : 
    2706             :         /*
    2707             :          * Allocate chunk slots.  The slots after the active slots are:
    2708             :          *   sidelined_slot - isolated, depopulated chunks
    2709             :          *   free_slot - fully free chunks
    2710             :          *   to_depopulate_slot - isolated, chunks to depopulate
    2711             :          */
    2712           2 :         pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
    2713           1 :         pcpu_free_slot = pcpu_sidelined_slot + 1;
    2714           1 :         pcpu_to_depopulate_slot = pcpu_free_slot + 1;
    2715           1 :         pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
    2716           2 :         pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
    2717             :                                           sizeof(pcpu_chunk_lists[0]),
    2718             :                                           SMP_CACHE_BYTES);
    2719           1 :         if (!pcpu_chunk_lists)
    2720           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2721             :                       pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
    2722             : 
    2723          17 :         for (i = 0; i < pcpu_nr_slots; i++)
    2724          34 :                 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
    2725             : 
    2726             :         /*
    2727             :          * The end of the static region needs to be aligned with the
    2728             :          * minimum allocation size as this offsets the reserved and
    2729             :          * dynamic region.  The first chunk ends page aligned by
    2730             :          * expanding the dynamic region, therefore the dynamic region
    2731             :          * can be shrunk to compensate while still staying above the
    2732             :          * configured sizes.
    2733             :          */
    2734           1 :         static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
    2735           1 :         dyn_size = ai->dyn_size - (static_size - ai->static_size);
    2736             : 
    2737             :         /*
    2738             :          * Initialize first chunk.
    2739             :          * If the reserved_size is non-zero, this initializes the reserved
    2740             :          * chunk.  If the reserved_size is zero, the reserved chunk is NULL
    2741             :          * and the dynamic region is initialized here.  The first chunk,
    2742             :          * pcpu_first_chunk, will always point to the chunk that serves
    2743             :          * the dynamic region.
    2744             :          */
    2745           1 :         tmp_addr = (unsigned long)base_addr + static_size;
    2746           1 :         map_size = ai->reserved_size ?: dyn_size;
    2747           1 :         chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
    2748             : 
    2749             :         /* init dynamic chunk if necessary */
    2750           1 :         if (ai->reserved_size) {
    2751           0 :                 pcpu_reserved_chunk = chunk;
    2752             : 
    2753           0 :                 tmp_addr = (unsigned long)base_addr + static_size +
    2754             :                            ai->reserved_size;
    2755           0 :                 map_size = dyn_size;
    2756           0 :                 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
    2757             :         }
    2758             : 
    2759             :         /* link the first chunk in */
    2760           1 :         pcpu_first_chunk = chunk;
    2761           1 :         pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
    2762           1 :         pcpu_chunk_relocate(pcpu_first_chunk, -1);
    2763             : 
    2764             :         /* include all regions of the first chunk */
    2765           1 :         pcpu_nr_populated += PFN_DOWN(size_sum);
    2766             : 
    2767             :         pcpu_stats_chunk_alloc();
    2768           1 :         trace_percpu_create_chunk(base_addr);
    2769             : 
    2770             :         /* we're done */
    2771           1 :         pcpu_base_addr = base_addr;
    2772           1 : }
    2773             : 
    2774             : #ifdef CONFIG_SMP
    2775             : 
    2776             : const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
    2777             :         [PCPU_FC_AUTO]  = "auto",
    2778             :         [PCPU_FC_EMBED] = "embed",
    2779             :         [PCPU_FC_PAGE]  = "page",
    2780             : };
    2781             : 
    2782             : enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
    2783             : 
    2784             : static int __init percpu_alloc_setup(char *str)
    2785             : {
    2786             :         if (!str)
    2787             :                 return -EINVAL;
    2788             : 
    2789             :         if (0)
    2790             :                 /* nada */;
    2791             : #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
    2792             :         else if (!strcmp(str, "embed"))
    2793             :                 pcpu_chosen_fc = PCPU_FC_EMBED;
    2794             : #endif
    2795             : #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
    2796             :         else if (!strcmp(str, "page"))
    2797             :                 pcpu_chosen_fc = PCPU_FC_PAGE;
    2798             : #endif
    2799             :         else
    2800             :                 pr_warn("unknown allocator %s specified\n", str);
    2801             : 
    2802             :         return 0;
    2803             : }
    2804             : early_param("percpu_alloc", percpu_alloc_setup);
    2805             : 
    2806             : /*
    2807             :  * pcpu_embed_first_chunk() is used by the generic percpu setup.
    2808             :  * Build it if needed by the arch config or the generic setup is going
    2809             :  * to be used.
    2810             :  */
    2811             : #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
    2812             :         !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
    2813             : #define BUILD_EMBED_FIRST_CHUNK
    2814             : #endif
    2815             : 
    2816             : /* build pcpu_page_first_chunk() iff needed by the arch config */
    2817             : #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
    2818             : #define BUILD_PAGE_FIRST_CHUNK
    2819             : #endif
    2820             : 
    2821             : /* pcpu_build_alloc_info() is used by both embed and page first chunk */
    2822             : #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
    2823             : /**
    2824             :  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
    2825             :  * @reserved_size: the size of reserved percpu area in bytes
    2826             :  * @dyn_size: minimum free size for dynamic allocation in bytes
    2827             :  * @atom_size: allocation atom size
    2828             :  * @cpu_distance_fn: callback to determine distance between cpus, optional
    2829             :  *
    2830             :  * This function determines grouping of units, their mappings to cpus
    2831             :  * and other parameters considering needed percpu size, allocation
    2832             :  * atom size and distances between CPUs.
    2833             :  *
    2834             :  * Groups are always multiples of atom size and CPUs which are of
    2835             :  * LOCAL_DISTANCE both ways are grouped together and share space for
    2836             :  * units in the same group.  The returned configuration is guaranteed
    2837             :  * to have CPUs on different nodes on different groups and >=75% usage
    2838             :  * of allocated virtual address space.
    2839             :  *
    2840             :  * RETURNS:
    2841             :  * On success, pointer to the new allocation_info is returned.  On
    2842             :  * failure, ERR_PTR value is returned.
    2843             :  */
    2844             : static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
    2845             :                                 size_t reserved_size, size_t dyn_size,
    2846             :                                 size_t atom_size,
    2847             :                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
    2848             : {
    2849             :         static int group_map[NR_CPUS] __initdata;
    2850             :         static int group_cnt[NR_CPUS] __initdata;
    2851             :         static struct cpumask mask __initdata;
    2852             :         const size_t static_size = __per_cpu_end - __per_cpu_start;
    2853             :         int nr_groups = 1, nr_units = 0;
    2854             :         size_t size_sum, min_unit_size, alloc_size;
    2855             :         int upa, max_upa, best_upa;     /* units_per_alloc */
    2856             :         int last_allocs, group, unit;
    2857             :         unsigned int cpu, tcpu;
    2858             :         struct pcpu_alloc_info *ai;
    2859             :         unsigned int *cpu_map;
    2860             : 
    2861             :         /* this function may be called multiple times */
    2862             :         memset(group_map, 0, sizeof(group_map));
    2863             :         memset(group_cnt, 0, sizeof(group_cnt));
    2864             :         cpumask_clear(&mask);
    2865             : 
    2866             :         /* calculate size_sum and ensure dyn_size is enough for early alloc */
    2867             :         size_sum = PFN_ALIGN(static_size + reserved_size +
    2868             :                             max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
    2869             :         dyn_size = size_sum - static_size - reserved_size;
    2870             : 
    2871             :         /*
    2872             :          * Determine min_unit_size, alloc_size and max_upa such that
    2873             :          * alloc_size is multiple of atom_size and is the smallest
    2874             :          * which can accommodate 4k aligned segments which are equal to
    2875             :          * or larger than min_unit_size.
    2876             :          */
    2877             :         min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
    2878             : 
    2879             :         /* determine the maximum # of units that can fit in an allocation */
    2880             :         alloc_size = roundup(min_unit_size, atom_size);
    2881             :         upa = alloc_size / min_unit_size;
    2882             :         while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
    2883             :                 upa--;
    2884             :         max_upa = upa;
    2885             : 
    2886             :         cpumask_copy(&mask, cpu_possible_mask);
    2887             : 
    2888             :         /* group cpus according to their proximity */
    2889             :         for (group = 0; !cpumask_empty(&mask); group++) {
    2890             :                 /* pop the group's first cpu */
    2891             :                 cpu = cpumask_first(&mask);
    2892             :                 group_map[cpu] = group;
    2893             :                 group_cnt[group]++;
    2894             :                 cpumask_clear_cpu(cpu, &mask);
    2895             : 
    2896             :                 for_each_cpu(tcpu, &mask) {
    2897             :                         if (!cpu_distance_fn ||
    2898             :                             (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
    2899             :                              cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
    2900             :                                 group_map[tcpu] = group;
    2901             :                                 group_cnt[group]++;
    2902             :                                 cpumask_clear_cpu(tcpu, &mask);
    2903             :                         }
    2904             :                 }
    2905             :         }
    2906             :         nr_groups = group;
    2907             : 
    2908             :         /*
    2909             :          * Wasted space is caused by a ratio imbalance of upa to group_cnt.
    2910             :          * Expand the unit_size until we use >= 75% of the units allocated.
    2911             :          * Related to atom_size, which could be much larger than the unit_size.
    2912             :          */
    2913             :         last_allocs = INT_MAX;
    2914             :         best_upa = 0;
    2915             :         for (upa = max_upa; upa; upa--) {
    2916             :                 int allocs = 0, wasted = 0;
    2917             : 
    2918             :                 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
    2919             :                         continue;
    2920             : 
    2921             :                 for (group = 0; group < nr_groups; group++) {
    2922             :                         int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
    2923             :                         allocs += this_allocs;
    2924             :                         wasted += this_allocs * upa - group_cnt[group];
    2925             :                 }
    2926             : 
    2927             :                 /*
    2928             :                  * Don't accept if wastage is over 1/3.  The
    2929             :                  * greater-than comparison ensures upa==1 always
    2930             :                  * passes the following check.
    2931             :                  */
    2932             :                 if (wasted > num_possible_cpus() / 3)
    2933             :                         continue;
    2934             : 
    2935             :                 /* and then don't consume more memory */
    2936             :                 if (allocs > last_allocs)
    2937             :                         break;
    2938             :                 last_allocs = allocs;
    2939             :                 best_upa = upa;
    2940             :         }
    2941             :         BUG_ON(!best_upa);
    2942             :         upa = best_upa;
    2943             : 
    2944             :         /* allocate and fill alloc_info */
    2945             :         for (group = 0; group < nr_groups; group++)
    2946             :                 nr_units += roundup(group_cnt[group], upa);
    2947             : 
    2948             :         ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
    2949             :         if (!ai)
    2950             :                 return ERR_PTR(-ENOMEM);
    2951             :         cpu_map = ai->groups[0].cpu_map;
    2952             : 
    2953             :         for (group = 0; group < nr_groups; group++) {
    2954             :                 ai->groups[group].cpu_map = cpu_map;
    2955             :                 cpu_map += roundup(group_cnt[group], upa);
    2956             :         }
    2957             : 
    2958             :         ai->static_size = static_size;
    2959             :         ai->reserved_size = reserved_size;
    2960             :         ai->dyn_size = dyn_size;
    2961             :         ai->unit_size = alloc_size / upa;
    2962             :         ai->atom_size = atom_size;
    2963             :         ai->alloc_size = alloc_size;
    2964             : 
    2965             :         for (group = 0, unit = 0; group < nr_groups; group++) {
    2966             :                 struct pcpu_group_info *gi = &ai->groups[group];
    2967             : 
    2968             :                 /*
    2969             :                  * Initialize base_offset as if all groups are located
    2970             :                  * back-to-back.  The caller should update this to
    2971             :                  * reflect actual allocation.
    2972             :                  */
    2973             :                 gi->base_offset = unit * ai->unit_size;
    2974             : 
    2975             :                 for_each_possible_cpu(cpu)
    2976             :                         if (group_map[cpu] == group)
    2977             :                                 gi->cpu_map[gi->nr_units++] = cpu;
    2978             :                 gi->nr_units = roundup(gi->nr_units, upa);
    2979             :                 unit += gi->nr_units;
    2980             :         }
    2981             :         BUG_ON(unit != nr_units);
    2982             : 
    2983             :         return ai;
    2984             : }
    2985             : 
    2986             : static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
    2987             :                                    pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    2988             : {
    2989             :         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
    2990             : #ifdef CONFIG_NUMA
    2991             :         int node = NUMA_NO_NODE;
    2992             :         void *ptr;
    2993             : 
    2994             :         if (cpu_to_nd_fn)
    2995             :                 node = cpu_to_nd_fn(cpu);
    2996             : 
    2997             :         if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
    2998             :                 ptr = memblock_alloc_from(size, align, goal);
    2999             :                 pr_info("cpu %d has no node %d or node-local memory\n",
    3000             :                         cpu, node);
    3001             :                 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
    3002             :                          cpu, size, (u64)__pa(ptr));
    3003             :         } else {
    3004             :                 ptr = memblock_alloc_try_nid(size, align, goal,
    3005             :                                              MEMBLOCK_ALLOC_ACCESSIBLE,
    3006             :                                              node);
    3007             : 
    3008             :                 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
    3009             :                          cpu, size, node, (u64)__pa(ptr));
    3010             :         }
    3011             :         return ptr;
    3012             : #else
    3013             :         return memblock_alloc_from(size, align, goal);
    3014             : #endif
    3015             : }
    3016             : 
    3017             : static void __init pcpu_fc_free(void *ptr, size_t size)
    3018             : {
    3019             :         memblock_free(ptr, size);
    3020             : }
    3021             : #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
    3022             : 
    3023             : #if defined(BUILD_EMBED_FIRST_CHUNK)
    3024             : /**
    3025             :  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
    3026             :  * @reserved_size: the size of reserved percpu area in bytes
    3027             :  * @dyn_size: minimum free size for dynamic allocation in bytes
    3028             :  * @atom_size: allocation atom size
    3029             :  * @cpu_distance_fn: callback to determine distance between cpus, optional
    3030             :  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
    3031             :  *
    3032             :  * This is a helper to ease setting up embedded first percpu chunk and
    3033             :  * can be called where pcpu_setup_first_chunk() is expected.
    3034             :  *
    3035             :  * If this function is used to setup the first chunk, it is allocated
    3036             :  * by calling pcpu_fc_alloc and used as-is without being mapped into
    3037             :  * vmalloc area.  Allocations are always whole multiples of @atom_size
    3038             :  * aligned to @atom_size.
    3039             :  *
    3040             :  * This enables the first chunk to piggy back on the linear physical
    3041             :  * mapping which often uses larger page size.  Please note that this
    3042             :  * can result in very sparse cpu->unit mapping on NUMA machines thus
    3043             :  * requiring large vmalloc address space.  Don't use this allocator if
    3044             :  * vmalloc space is not orders of magnitude larger than distances
    3045             :  * between node memory addresses (ie. 32bit NUMA machines).
    3046             :  *
    3047             :  * @dyn_size specifies the minimum dynamic area size.
    3048             :  *
    3049             :  * If the needed size is smaller than the minimum or specified unit
    3050             :  * size, the leftover is returned using pcpu_fc_free.
    3051             :  *
    3052             :  * RETURNS:
    3053             :  * 0 on success, -errno on failure.
    3054             :  */
    3055             : int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
    3056             :                                   size_t atom_size,
    3057             :                                   pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
    3058             :                                   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    3059             : {
    3060             :         void *base = (void *)ULONG_MAX;
    3061             :         void **areas = NULL;
    3062             :         struct pcpu_alloc_info *ai;
    3063             :         size_t size_sum, areas_size;
    3064             :         unsigned long max_distance;
    3065             :         int group, i, highest_group, rc = 0;
    3066             : 
    3067             :         ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
    3068             :                                    cpu_distance_fn);
    3069             :         if (IS_ERR(ai))
    3070             :                 return PTR_ERR(ai);
    3071             : 
    3072             :         size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
    3073             :         areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
    3074             : 
    3075             :         areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
    3076             :         if (!areas) {
    3077             :                 rc = -ENOMEM;
    3078             :                 goto out_free;
    3079             :         }
    3080             : 
    3081             :         /* allocate, copy and determine base address & max_distance */
    3082             :         highest_group = 0;
    3083             :         for (group = 0; group < ai->nr_groups; group++) {
    3084             :                 struct pcpu_group_info *gi = &ai->groups[group];
    3085             :                 unsigned int cpu = NR_CPUS;
    3086             :                 void *ptr;
    3087             : 
    3088             :                 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
    3089             :                         cpu = gi->cpu_map[i];
    3090             :                 BUG_ON(cpu == NR_CPUS);
    3091             : 
    3092             :                 /* allocate space for the whole group */
    3093             :                 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
    3094             :                 if (!ptr) {
    3095             :                         rc = -ENOMEM;
    3096             :                         goto out_free_areas;
    3097             :                 }
    3098             :                 /* kmemleak tracks the percpu allocations separately */
    3099             :                 kmemleak_ignore_phys(__pa(ptr));
    3100             :                 areas[group] = ptr;
    3101             : 
    3102             :                 base = min(ptr, base);
    3103             :                 if (ptr > areas[highest_group])
    3104             :                         highest_group = group;
    3105             :         }
    3106             :         max_distance = areas[highest_group] - base;
    3107             :         max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
    3108             : 
    3109             :         /* warn if maximum distance is further than 75% of vmalloc space */
    3110             :         if (max_distance > VMALLOC_TOTAL * 3 / 4) {
    3111             :                 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
    3112             :                                 max_distance, VMALLOC_TOTAL);
    3113             : #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
    3114             :                 /* and fail if we have fallback */
    3115             :                 rc = -EINVAL;
    3116             :                 goto out_free_areas;
    3117             : #endif
    3118             :         }
    3119             : 
    3120             :         /*
    3121             :          * Copy data and free unused parts.  This should happen after all
    3122             :          * allocations are complete; otherwise, we may end up with
    3123             :          * overlapping groups.
    3124             :          */
    3125             :         for (group = 0; group < ai->nr_groups; group++) {
    3126             :                 struct pcpu_group_info *gi = &ai->groups[group];
    3127             :                 void *ptr = areas[group];
    3128             : 
    3129             :                 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
    3130             :                         if (gi->cpu_map[i] == NR_CPUS) {
    3131             :                                 /* unused unit, free whole */
    3132             :                                 pcpu_fc_free(ptr, ai->unit_size);
    3133             :                                 continue;
    3134             :                         }
    3135             :                         /* copy and return the unused part */
    3136             :                         memcpy(ptr, __per_cpu_load, ai->static_size);
    3137             :                         pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
    3138             :                 }
    3139             :         }
    3140             : 
    3141             :         /* base address is now known, determine group base offsets */
    3142             :         for (group = 0; group < ai->nr_groups; group++) {
    3143             :                 ai->groups[group].base_offset = areas[group] - base;
    3144             :         }
    3145             : 
    3146             :         pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
    3147             :                 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
    3148             :                 ai->dyn_size, ai->unit_size);
    3149             : 
    3150             :         pcpu_setup_first_chunk(ai, base);
    3151             :         goto out_free;
    3152             : 
    3153             : out_free_areas:
    3154             :         for (group = 0; group < ai->nr_groups; group++)
    3155             :                 if (areas[group])
    3156             :                         pcpu_fc_free(areas[group],
    3157             :                                 ai->groups[group].nr_units * ai->unit_size);
    3158             : out_free:
    3159             :         pcpu_free_alloc_info(ai);
    3160             :         if (areas)
    3161             :                 memblock_free(areas, areas_size);
    3162             :         return rc;
    3163             : }
    3164             : #endif /* BUILD_EMBED_FIRST_CHUNK */
    3165             : 
    3166             : #ifdef BUILD_PAGE_FIRST_CHUNK
    3167             : #include <asm/pgalloc.h>
    3168             : 
    3169             : #ifndef P4D_TABLE_SIZE
    3170             : #define P4D_TABLE_SIZE PAGE_SIZE
    3171             : #endif
    3172             : 
    3173             : #ifndef PUD_TABLE_SIZE
    3174             : #define PUD_TABLE_SIZE PAGE_SIZE
    3175             : #endif
    3176             : 
    3177             : #ifndef PMD_TABLE_SIZE
    3178             : #define PMD_TABLE_SIZE PAGE_SIZE
    3179             : #endif
    3180             : 
    3181             : #ifndef PTE_TABLE_SIZE
    3182             : #define PTE_TABLE_SIZE PAGE_SIZE
    3183             : #endif
    3184             : void __init __weak pcpu_populate_pte(unsigned long addr)
    3185             : {
    3186             :         pgd_t *pgd = pgd_offset_k(addr);
    3187             :         p4d_t *p4d;
    3188             :         pud_t *pud;
    3189             :         pmd_t *pmd;
    3190             : 
    3191             :         if (pgd_none(*pgd)) {
    3192             :                 p4d_t *new;
    3193             : 
    3194             :                 new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
    3195             :                 if (!new)
    3196             :                         goto err_alloc;
    3197             :                 pgd_populate(&init_mm, pgd, new);
    3198             :         }
    3199             : 
    3200             :         p4d = p4d_offset(pgd, addr);
    3201             :         if (p4d_none(*p4d)) {
    3202             :                 pud_t *new;
    3203             : 
    3204             :                 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
    3205             :                 if (!new)
    3206             :                         goto err_alloc;
    3207             :                 p4d_populate(&init_mm, p4d, new);
    3208             :         }
    3209             : 
    3210             :         pud = pud_offset(p4d, addr);
    3211             :         if (pud_none(*pud)) {
    3212             :                 pmd_t *new;
    3213             : 
    3214             :                 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
    3215             :                 if (!new)
    3216             :                         goto err_alloc;
    3217             :                 pud_populate(&init_mm, pud, new);
    3218             :         }
    3219             : 
    3220             :         pmd = pmd_offset(pud, addr);
    3221             :         if (!pmd_present(*pmd)) {
    3222             :                 pte_t *new;
    3223             : 
    3224             :                 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
    3225             :                 if (!new)
    3226             :                         goto err_alloc;
    3227             :                 pmd_populate_kernel(&init_mm, pmd, new);
    3228             :         }
    3229             : 
    3230             :         return;
    3231             : 
    3232             : err_alloc:
    3233             :         panic("%s: Failed to allocate memory\n", __func__);
    3234             : }
    3235             : 
    3236             : /**
    3237             :  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
    3238             :  * @reserved_size: the size of reserved percpu area in bytes
    3239             :  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
    3240             :  *
    3241             :  * This is a helper to ease setting up page-remapped first percpu
    3242             :  * chunk and can be called where pcpu_setup_first_chunk() is expected.
    3243             :  *
    3244             :  * This is the basic allocator.  Static percpu area is allocated
    3245             :  * page-by-page into vmalloc area.
    3246             :  *
    3247             :  * RETURNS:
    3248             :  * 0 on success, -errno on failure.
    3249             :  */
    3250             : int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    3251             : {
    3252             :         static struct vm_struct vm;
    3253             :         struct pcpu_alloc_info *ai;
    3254             :         char psize_str[16];
    3255             :         int unit_pages;
    3256             :         size_t pages_size;
    3257             :         struct page **pages;
    3258             :         int unit, i, j, rc = 0;
    3259             :         int upa;
    3260             :         int nr_g0_units;
    3261             : 
    3262             :         snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
    3263             : 
    3264             :         ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
    3265             :         if (IS_ERR(ai))
    3266             :                 return PTR_ERR(ai);
    3267             :         BUG_ON(ai->nr_groups != 1);
    3268             :         upa = ai->alloc_size/ai->unit_size;
    3269             :         nr_g0_units = roundup(num_possible_cpus(), upa);
    3270             :         if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
    3271             :                 pcpu_free_alloc_info(ai);
    3272             :                 return -EINVAL;
    3273             :         }
    3274             : 
    3275             :         unit_pages = ai->unit_size >> PAGE_SHIFT;
    3276             : 
    3277             :         /* unaligned allocations can't be freed, round up to page size */
    3278             :         pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
    3279             :                                sizeof(pages[0]));
    3280             :         pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
    3281             :         if (!pages)
    3282             :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    3283             :                       pages_size);
    3284             : 
    3285             :         /* allocate pages */
    3286             :         j = 0;
    3287             :         for (unit = 0; unit < num_possible_cpus(); unit++) {
    3288             :                 unsigned int cpu = ai->groups[0].cpu_map[unit];
    3289             :                 for (i = 0; i < unit_pages; i++) {
    3290             :                         void *ptr;
    3291             : 
    3292             :                         ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
    3293             :                         if (!ptr) {
    3294             :                                 pr_warn("failed to allocate %s page for cpu%u\n",
    3295             :                                                 psize_str, cpu);
    3296             :                                 goto enomem;
    3297             :                         }
    3298             :                         /* kmemleak tracks the percpu allocations separately */
    3299             :                         kmemleak_ignore_phys(__pa(ptr));
    3300             :                         pages[j++] = virt_to_page(ptr);
    3301             :                 }
    3302             :         }
    3303             : 
    3304             :         /* allocate vm area, map the pages and copy static data */
    3305             :         vm.flags = VM_ALLOC;
    3306             :         vm.size = num_possible_cpus() * ai->unit_size;
    3307             :         vm_area_register_early(&vm, PAGE_SIZE);
    3308             : 
    3309             :         for (unit = 0; unit < num_possible_cpus(); unit++) {
    3310             :                 unsigned long unit_addr =
    3311             :                         (unsigned long)vm.addr + unit * ai->unit_size;
    3312             : 
    3313             :                 for (i = 0; i < unit_pages; i++)
    3314             :                         pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
    3315             : 
    3316             :                 /* pte already populated, the following shouldn't fail */
    3317             :                 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
    3318             :                                       unit_pages);
    3319             :                 if (rc < 0)
    3320             :                         panic("failed to map percpu area, err=%d\n", rc);
    3321             : 
    3322             :                 /*
    3323             :                  * FIXME: Archs with virtual cache should flush local
    3324             :                  * cache for the linear mapping here - something
    3325             :                  * equivalent to flush_cache_vmap() on the local cpu.
    3326             :                  * flush_cache_vmap() can't be used as most supporting
    3327             :                  * data structures are not set up yet.
    3328             :                  */
    3329             : 
    3330             :                 /* copy static data */
    3331             :                 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
    3332             :         }
    3333             : 
    3334             :         /* we're ready, commit */
    3335             :         pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
    3336             :                 unit_pages, psize_str, ai->static_size,
    3337             :                 ai->reserved_size, ai->dyn_size);
    3338             : 
    3339             :         pcpu_setup_first_chunk(ai, vm.addr);
    3340             :         goto out_free_ar;
    3341             : 
    3342             : enomem:
    3343             :         while (--j >= 0)
    3344             :                 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
    3345             :         rc = -ENOMEM;
    3346             : out_free_ar:
    3347             :         memblock_free(pages, pages_size);
    3348             :         pcpu_free_alloc_info(ai);
    3349             :         return rc;
    3350             : }
    3351             : #endif /* BUILD_PAGE_FIRST_CHUNK */
    3352             : 
    3353             : #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
    3354             : /*
    3355             :  * Generic SMP percpu area setup.
    3356             :  *
    3357             :  * The embedding helper is used because its behavior closely resembles
    3358             :  * the original non-dynamic generic percpu area setup.  This is
    3359             :  * important because many archs have addressing restrictions and might
    3360             :  * fail if the percpu area is located far away from the previous
    3361             :  * location.  As an added bonus, in non-NUMA cases, embedding is
    3362             :  * generally a good idea TLB-wise because percpu area can piggy back
    3363             :  * on the physical linear memory mapping which uses large page
    3364             :  * mappings on applicable archs.
    3365             :  */
    3366             : unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
    3367             : EXPORT_SYMBOL(__per_cpu_offset);
    3368             : 
    3369             : void __init setup_per_cpu_areas(void)
    3370             : {
    3371             :         unsigned long delta;
    3372             :         unsigned int cpu;
    3373             :         int rc;
    3374             : 
    3375             :         /*
    3376             :          * Always reserve area for module percpu variables.  That's
    3377             :          * what the legacy allocator did.
    3378             :          */
    3379             :         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
    3380             :                                     PAGE_SIZE, NULL, NULL);
    3381             :         if (rc < 0)
    3382             :                 panic("Failed to initialize percpu areas.");
    3383             : 
    3384             :         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
    3385             :         for_each_possible_cpu(cpu)
    3386             :                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
    3387             : }
    3388             : #endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
    3389             : 
    3390             : #else   /* CONFIG_SMP */
    3391             : 
    3392             : /*
    3393             :  * UP percpu area setup.
    3394             :  *
    3395             :  * UP always uses km-based percpu allocator with identity mapping.
    3396             :  * Static percpu variables are indistinguishable from the usual static
    3397             :  * variables and don't require any special preparation.
    3398             :  */
    3399           1 : void __init setup_per_cpu_areas(void)
    3400             : {
    3401           1 :         const size_t unit_size =
    3402             :                 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
    3403             :                                          PERCPU_DYNAMIC_RESERVE));
    3404             :         struct pcpu_alloc_info *ai;
    3405             :         void *fc;
    3406             : 
    3407           1 :         ai = pcpu_alloc_alloc_info(1, 1);
    3408           2 :         fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
    3409           1 :         if (!ai || !fc)
    3410           0 :                 panic("Failed to allocate memory for percpu areas.");
    3411             :         /* kmemleak tracks the percpu allocations separately */
    3412           1 :         kmemleak_ignore_phys(__pa(fc));
    3413             : 
    3414           1 :         ai->dyn_size = unit_size;
    3415           1 :         ai->unit_size = unit_size;
    3416           1 :         ai->atom_size = unit_size;
    3417           1 :         ai->alloc_size = unit_size;
    3418           1 :         ai->groups[0].nr_units = 1;
    3419           1 :         ai->groups[0].cpu_map[0] = 0;
    3420             : 
    3421           1 :         pcpu_setup_first_chunk(ai, fc);
    3422           1 :         pcpu_free_alloc_info(ai);
    3423           1 : }
    3424             : 
    3425             : #endif  /* CONFIG_SMP */
    3426             : 
    3427             : /*
    3428             :  * pcpu_nr_pages - calculate total number of populated backing pages
    3429             :  *
    3430             :  * This reflects the number of pages populated to back chunks.  Metadata is
    3431             :  * excluded in the number exposed in meminfo as the number of backing pages
    3432             :  * scales with the number of cpus and can quickly outweigh the memory used for
    3433             :  * metadata.  It also keeps this calculation nice and simple.
    3434             :  *
    3435             :  * RETURNS:
    3436             :  * Total number of populated backing pages in use by the allocator.
    3437             :  */
    3438           0 : unsigned long pcpu_nr_pages(void)
    3439             : {
    3440           0 :         return pcpu_nr_populated * pcpu_nr_units;
    3441             : }
    3442             : 
    3443             : /*
    3444             :  * Percpu allocator is initialized early during boot when neither slab or
    3445             :  * workqueue is available.  Plug async management until everything is up
    3446             :  * and running.
    3447             :  */
    3448           1 : static int __init percpu_enable_async(void)
    3449             : {
    3450           1 :         pcpu_async_enabled = true;
    3451           1 :         return 0;
    3452             : }
    3453             : subsys_initcall(percpu_enable_async);

Generated by: LCOV version 1.14