LCOV - code coverage report
Current view: top level - mm - slab_common.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 178 378 47.1 %
Date: 2023-08-24 13:40:31 Functions: 24 48 50.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Slab allocator functions that are independent of the allocator strategy
       4             :  *
       5             :  * (C) 2012 Christoph Lameter <cl@linux.com>
       6             :  */
       7             : #include <linux/slab.h>
       8             : 
       9             : #include <linux/mm.h>
      10             : #include <linux/poison.h>
      11             : #include <linux/interrupt.h>
      12             : #include <linux/memory.h>
      13             : #include <linux/cache.h>
      14             : #include <linux/compiler.h>
      15             : #include <linux/kfence.h>
      16             : #include <linux/module.h>
      17             : #include <linux/cpu.h>
      18             : #include <linux/uaccess.h>
      19             : #include <linux/seq_file.h>
      20             : #include <linux/dma-mapping.h>
      21             : #include <linux/swiotlb.h>
      22             : #include <linux/proc_fs.h>
      23             : #include <linux/debugfs.h>
      24             : #include <linux/kasan.h>
      25             : #include <asm/cacheflush.h>
      26             : #include <asm/tlbflush.h>
      27             : #include <asm/page.h>
      28             : #include <linux/memcontrol.h>
      29             : #include <linux/stackdepot.h>
      30             : 
      31             : #include "internal.h"
      32             : #include "slab.h"
      33             : 
      34             : #define CREATE_TRACE_POINTS
      35             : #include <trace/events/kmem.h>
      36             : 
      37             : enum slab_state slab_state;
      38             : LIST_HEAD(slab_caches);
      39             : DEFINE_MUTEX(slab_mutex);
      40             : struct kmem_cache *kmem_cache;
      41             : 
      42             : static LIST_HEAD(slab_caches_to_rcu_destroy);
      43             : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
      44             : static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
      45             :                     slab_caches_to_rcu_destroy_workfn);
      46             : 
      47             : /*
      48             :  * Set of flags that will prevent slab merging
      49             :  */
      50             : #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
      51             :                 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
      52             :                 SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
      53             : 
      54             : #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
      55             :                          SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
      56             : 
      57             : /*
      58             :  * Merge control. If this is set then no merging of slab caches will occur.
      59             :  */
      60             : static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
      61             : 
      62           0 : static int __init setup_slab_nomerge(char *str)
      63             : {
      64           0 :         slab_nomerge = true;
      65           0 :         return 1;
      66             : }
      67             : 
      68           0 : static int __init setup_slab_merge(char *str)
      69             : {
      70           0 :         slab_nomerge = false;
      71           0 :         return 1;
      72             : }
      73             : 
      74             : #ifdef CONFIG_SLUB
      75             : __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
      76             : __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
      77             : #endif
      78             : 
      79             : __setup("slab_nomerge", setup_slab_nomerge);
      80             : __setup("slab_merge", setup_slab_merge);
      81             : 
      82             : /*
      83             :  * Determine the size of a slab object
      84             :  */
      85           0 : unsigned int kmem_cache_size(struct kmem_cache *s)
      86             : {
      87           0 :         return s->object_size;
      88             : }
      89             : EXPORT_SYMBOL(kmem_cache_size);
      90             : 
      91             : #ifdef CONFIG_DEBUG_VM
      92             : static int kmem_cache_sanity_check(const char *name, unsigned int size)
      93             : {
      94             :         if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
      95             :                 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
      96             :                 return -EINVAL;
      97             :         }
      98             : 
      99             :         WARN_ON(strchr(name, ' '));     /* It confuses parsers */
     100             :         return 0;
     101             : }
     102             : #else
     103             : static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
     104             : {
     105             :         return 0;
     106             : }
     107             : #endif
     108             : 
     109             : /*
     110             :  * Figure out what the alignment of the objects will be given a set of
     111             :  * flags, a user specified alignment and the size of the objects.
     112             :  */
     113             : static unsigned int calculate_alignment(slab_flags_t flags,
     114             :                 unsigned int align, unsigned int size)
     115             : {
     116             :         /*
     117             :          * If the user wants hardware cache aligned objects then follow that
     118             :          * suggestion if the object is sufficiently large.
     119             :          *
     120             :          * The hardware cache alignment cannot override the specified
     121             :          * alignment though. If that is greater then use it.
     122             :          */
     123         103 :         if (flags & SLAB_HWCACHE_ALIGN) {
     124             :                 unsigned int ralign;
     125             : 
     126          30 :                 ralign = cache_line_size();
     127          30 :                 while (size <= ralign / 2)
     128             :                         ralign /= 2;
     129          30 :                 align = max(align, ralign);
     130             :         }
     131             : 
     132         103 :         align = max(align, arch_slab_minalign());
     133             : 
     134         103 :         return ALIGN(align, sizeof(void *));
     135             : }
     136             : 
     137             : /*
     138             :  * Find a mergeable slab cache
     139             :  */
     140          53 : int slab_unmergeable(struct kmem_cache *s)
     141             : {
     142        1110 :         if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
     143             :                 return 1;
     144             : 
     145        1072 :         if (s->ctor)
     146             :                 return 1;
     147             : 
     148             : #ifdef CONFIG_HARDENED_USERCOPY
     149             :         if (s->usersize)
     150             :                 return 1;
     151             : #endif
     152             : 
     153             :         /*
     154             :          * We may have set a slab to be unmergeable during bootstrap.
     155             :          */
     156        1015 :         if (s->refcount < 0)
     157             :                 return 1;
     158             : 
     159          41 :         return 0;
     160             : }
     161             : 
     162          57 : struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
     163             :                 slab_flags_t flags, const char *name, void (*ctor)(void *))
     164             : {
     165             :         struct kmem_cache *s;
     166             : 
     167          57 :         if (slab_nomerge)
     168             :                 return NULL;
     169             : 
     170          57 :         if (ctor)
     171             :                 return NULL;
     172             : 
     173          50 :         size = ALIGN(size, sizeof(void *));
     174          50 :         align = calculate_alignment(flags, align, size);
     175          50 :         size = ALIGN(size, align);
     176          50 :         flags = kmem_cache_flags(size, flags, name);
     177             : 
     178          50 :         if (flags & SLAB_NEVER_MERGE)
     179             :                 return NULL;
     180             : 
     181        1072 :         list_for_each_entry_reverse(s, &slab_caches, list) {
     182        1057 :                 if (slab_unmergeable(s))
     183         179 :                         continue;
     184             : 
     185         878 :                 if (size > s->size)
     186         450 :                         continue;
     187             : 
     188         428 :                 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
     189         171 :                         continue;
     190             :                 /*
     191             :                  * Check if alignment is compatible.
     192             :                  * Courtesy of Adrian Drzewiecki
     193             :                  */
     194         257 :                 if ((s->size & ~(align - 1)) != s->size)
     195           2 :                         continue;
     196             : 
     197         255 :                 if (s->size - size >= sizeof(void *))
     198         223 :                         continue;
     199             : 
     200             :                 if (IS_ENABLED(CONFIG_SLAB) && align &&
     201             :                         (align > s->align || s->align % align))
     202             :                         continue;
     203             : 
     204             :                 return s;
     205             :         }
     206             :         return NULL;
     207             : }
     208             : 
     209          25 : static struct kmem_cache *create_cache(const char *name,
     210             :                 unsigned int object_size, unsigned int align,
     211             :                 slab_flags_t flags, unsigned int useroffset,
     212             :                 unsigned int usersize, void (*ctor)(void *),
     213             :                 struct kmem_cache *root_cache)
     214             : {
     215             :         struct kmem_cache *s;
     216             :         int err;
     217             : 
     218          25 :         if (WARN_ON(useroffset + usersize > object_size))
     219             :                 useroffset = usersize = 0;
     220             : 
     221          25 :         err = -ENOMEM;
     222          50 :         s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
     223          25 :         if (!s)
     224             :                 goto out;
     225             : 
     226          25 :         s->name = name;
     227          25 :         s->size = s->object_size = object_size;
     228          25 :         s->align = align;
     229          25 :         s->ctor = ctor;
     230             : #ifdef CONFIG_HARDENED_USERCOPY
     231             :         s->useroffset = useroffset;
     232             :         s->usersize = usersize;
     233             : #endif
     234             : 
     235          25 :         err = __kmem_cache_create(s, flags);
     236          25 :         if (err)
     237             :                 goto out_free_cache;
     238             : 
     239          25 :         s->refcount = 1;
     240          50 :         list_add(&s->list, &slab_caches);
     241             :         return s;
     242             : 
     243             : out_free_cache:
     244           0 :         kmem_cache_free(kmem_cache, s);
     245             : out:
     246           0 :         return ERR_PTR(err);
     247             : }
     248             : 
     249             : /**
     250             :  * kmem_cache_create_usercopy - Create a cache with a region suitable
     251             :  * for copying to userspace
     252             :  * @name: A string which is used in /proc/slabinfo to identify this cache.
     253             :  * @size: The size of objects to be created in this cache.
     254             :  * @align: The required alignment for the objects.
     255             :  * @flags: SLAB flags
     256             :  * @useroffset: Usercopy region offset
     257             :  * @usersize: Usercopy region size
     258             :  * @ctor: A constructor for the objects.
     259             :  *
     260             :  * Cannot be called within a interrupt, but can be interrupted.
     261             :  * The @ctor is run when new pages are allocated by the cache.
     262             :  *
     263             :  * The flags are
     264             :  *
     265             :  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
     266             :  * to catch references to uninitialised memory.
     267             :  *
     268             :  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
     269             :  * for buffer overruns.
     270             :  *
     271             :  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
     272             :  * cacheline.  This can be beneficial if you're counting cycles as closely
     273             :  * as davem.
     274             :  *
     275             :  * Return: a pointer to the cache on success, NULL on failure.
     276             :  */
     277             : struct kmem_cache *
     278          57 : kmem_cache_create_usercopy(const char *name,
     279             :                   unsigned int size, unsigned int align,
     280             :                   slab_flags_t flags,
     281             :                   unsigned int useroffset, unsigned int usersize,
     282             :                   void (*ctor)(void *))
     283             : {
     284          57 :         struct kmem_cache *s = NULL;
     285             :         const char *cache_name;
     286             :         int err;
     287             : 
     288             : #ifdef CONFIG_SLUB_DEBUG
     289             :         /*
     290             :          * If no slub_debug was enabled globally, the static key is not yet
     291             :          * enabled by setup_slub_debug(). Enable it if the cache is being
     292             :          * created with any of the debugging flags passed explicitly.
     293             :          * It's also possible that this is the first cache created with
     294             :          * SLAB_STORE_USER and we should init stack_depot for it.
     295             :          */
     296          57 :         if (flags & SLAB_DEBUG_FLAGS)
     297           0 :                 static_branch_enable(&slub_debug_enabled);
     298          57 :         if (flags & SLAB_STORE_USER)
     299           0 :                 stack_depot_init();
     300             : #endif
     301             : 
     302          57 :         mutex_lock(&slab_mutex);
     303             : 
     304          57 :         err = kmem_cache_sanity_check(name, size);
     305             :         if (err) {
     306             :                 goto out_unlock;
     307             :         }
     308             : 
     309             :         /* Refuse requests with allocator specific flags */
     310          57 :         if (flags & ~SLAB_FLAGS_PERMITTED) {
     311             :                 err = -EINVAL;
     312             :                 goto out_unlock;
     313             :         }
     314             : 
     315             :         /*
     316             :          * Some allocators will constraint the set of valid flags to a subset
     317             :          * of all flags. We expect them to define CACHE_CREATE_MASK in this
     318             :          * case, and we'll just provide them with a sanitized version of the
     319             :          * passed flags.
     320             :          */
     321          57 :         flags &= CACHE_CREATE_MASK;
     322             : 
     323             :         /* Fail closed on bad usersize of useroffset values. */
     324             :         if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
     325             :             WARN_ON(!usersize && useroffset) ||
     326             :             WARN_ON(size < usersize || size - usersize < useroffset))
     327          57 :                 usersize = useroffset = 0;
     328             : 
     329             :         if (!usersize)
     330          57 :                 s = __kmem_cache_alias(name, size, align, flags, ctor);
     331          57 :         if (s)
     332             :                 goto out_unlock;
     333             : 
     334          25 :         cache_name = kstrdup_const(name, GFP_KERNEL);
     335          25 :         if (!cache_name) {
     336             :                 err = -ENOMEM;
     337             :                 goto out_unlock;
     338             :         }
     339             : 
     340          25 :         s = create_cache(cache_name, size,
     341             :                          calculate_alignment(flags, align, size),
     342             :                          flags, useroffset, usersize, ctor, NULL);
     343          25 :         if (IS_ERR(s)) {
     344           0 :                 err = PTR_ERR(s);
     345           0 :                 kfree_const(cache_name);
     346             :         }
     347             : 
     348             : out_unlock:
     349          57 :         mutex_unlock(&slab_mutex);
     350             : 
     351          57 :         if (err) {
     352           0 :                 if (flags & SLAB_PANIC)
     353           0 :                         panic("%s: Failed to create slab '%s'. Error %d\n",
     354             :                                 __func__, name, err);
     355             :                 else {
     356           0 :                         pr_warn("%s(%s) failed with error %d\n",
     357             :                                 __func__, name, err);
     358           0 :                         dump_stack();
     359             :                 }
     360           0 :                 return NULL;
     361             :         }
     362             :         return s;
     363             : }
     364             : EXPORT_SYMBOL(kmem_cache_create_usercopy);
     365             : 
     366             : /**
     367             :  * kmem_cache_create - Create a cache.
     368             :  * @name: A string which is used in /proc/slabinfo to identify this cache.
     369             :  * @size: The size of objects to be created in this cache.
     370             :  * @align: The required alignment for the objects.
     371             :  * @flags: SLAB flags
     372             :  * @ctor: A constructor for the objects.
     373             :  *
     374             :  * Cannot be called within a interrupt, but can be interrupted.
     375             :  * The @ctor is run when new pages are allocated by the cache.
     376             :  *
     377             :  * The flags are
     378             :  *
     379             :  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
     380             :  * to catch references to uninitialised memory.
     381             :  *
     382             :  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
     383             :  * for buffer overruns.
     384             :  *
     385             :  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
     386             :  * cacheline.  This can be beneficial if you're counting cycles as closely
     387             :  * as davem.
     388             :  *
     389             :  * Return: a pointer to the cache on success, NULL on failure.
     390             :  */
     391             : struct kmem_cache *
     392          51 : kmem_cache_create(const char *name, unsigned int size, unsigned int align,
     393             :                 slab_flags_t flags, void (*ctor)(void *))
     394             : {
     395          51 :         return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
     396             :                                           ctor);
     397             : }
     398             : EXPORT_SYMBOL(kmem_cache_create);
     399             : 
     400             : #ifdef SLAB_SUPPORTS_SYSFS
     401             : /*
     402             :  * For a given kmem_cache, kmem_cache_destroy() should only be called
     403             :  * once or there will be a use-after-free problem. The actual deletion
     404             :  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
     405             :  * protection. So they are now done without holding those locks.
     406             :  *
     407             :  * Note that there will be a slight delay in the deletion of sysfs files
     408             :  * if kmem_cache_release() is called indrectly from a work function.
     409             :  */
     410             : static void kmem_cache_release(struct kmem_cache *s)
     411             : {
     412           0 :         sysfs_slab_unlink(s);
     413           0 :         sysfs_slab_release(s);
     414             : }
     415             : #else
     416             : static void kmem_cache_release(struct kmem_cache *s)
     417             : {
     418             :         slab_kmem_cache_release(s);
     419             : }
     420             : #endif
     421             : 
     422           0 : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
     423             : {
     424           0 :         LIST_HEAD(to_destroy);
     425             :         struct kmem_cache *s, *s2;
     426             : 
     427             :         /*
     428             :          * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
     429             :          * @slab_caches_to_rcu_destroy list.  The slab pages are freed
     430             :          * through RCU and the associated kmem_cache are dereferenced
     431             :          * while freeing the pages, so the kmem_caches should be freed only
     432             :          * after the pending RCU operations are finished.  As rcu_barrier()
     433             :          * is a pretty slow operation, we batch all pending destructions
     434             :          * asynchronously.
     435             :          */
     436           0 :         mutex_lock(&slab_mutex);
     437           0 :         list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
     438           0 :         mutex_unlock(&slab_mutex);
     439             : 
     440           0 :         if (list_empty(&to_destroy))
     441           0 :                 return;
     442             : 
     443           0 :         rcu_barrier();
     444             : 
     445           0 :         list_for_each_entry_safe(s, s2, &to_destroy, list) {
     446           0 :                 debugfs_slab_release(s);
     447           0 :                 kfence_shutdown_cache(s);
     448           0 :                 kmem_cache_release(s);
     449             :         }
     450             : }
     451             : 
     452           0 : static int shutdown_cache(struct kmem_cache *s)
     453             : {
     454             :         /* free asan quarantined objects */
     455           0 :         kasan_cache_shutdown(s);
     456             : 
     457           0 :         if (__kmem_cache_shutdown(s) != 0)
     458             :                 return -EBUSY;
     459             : 
     460           0 :         list_del(&s->list);
     461             : 
     462           0 :         if (s->flags & SLAB_TYPESAFE_BY_RCU) {
     463           0 :                 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
     464             :                 schedule_work(&slab_caches_to_rcu_destroy_work);
     465             :         } else {
     466             :                 kfence_shutdown_cache(s);
     467             :                 debugfs_slab_release(s);
     468             :         }
     469             : 
     470             :         return 0;
     471             : }
     472             : 
     473           0 : void slab_kmem_cache_release(struct kmem_cache *s)
     474             : {
     475           0 :         __kmem_cache_release(s);
     476           0 :         kfree_const(s->name);
     477           0 :         kmem_cache_free(kmem_cache, s);
     478           0 : }
     479             : 
     480           0 : void kmem_cache_destroy(struct kmem_cache *s)
     481             : {
     482             :         int refcnt;
     483             :         bool rcu_set;
     484             : 
     485           0 :         if (unlikely(!s) || !kasan_check_byte(s))
     486             :                 return;
     487             : 
     488             :         cpus_read_lock();
     489           0 :         mutex_lock(&slab_mutex);
     490             : 
     491           0 :         rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
     492             : 
     493           0 :         refcnt = --s->refcount;
     494           0 :         if (refcnt)
     495             :                 goto out_unlock;
     496             : 
     497           0 :         WARN(shutdown_cache(s),
     498             :              "%s %s: Slab cache still has objects when called from %pS",
     499             :              __func__, s->name, (void *)_RET_IP_);
     500             : out_unlock:
     501           0 :         mutex_unlock(&slab_mutex);
     502             :         cpus_read_unlock();
     503           0 :         if (!refcnt && !rcu_set)
     504             :                 kmem_cache_release(s);
     505             : }
     506             : EXPORT_SYMBOL(kmem_cache_destroy);
     507             : 
     508             : /**
     509             :  * kmem_cache_shrink - Shrink a cache.
     510             :  * @cachep: The cache to shrink.
     511             :  *
     512             :  * Releases as many slabs as possible for a cache.
     513             :  * To help debugging, a zero exit status indicates all slabs were released.
     514             :  *
     515             :  * Return: %0 if all slabs were released, non-zero otherwise
     516             :  */
     517           0 : int kmem_cache_shrink(struct kmem_cache *cachep)
     518             : {
     519           0 :         kasan_cache_shrink(cachep);
     520             : 
     521           0 :         return __kmem_cache_shrink(cachep);
     522             : }
     523             : EXPORT_SYMBOL(kmem_cache_shrink);
     524             : 
     525          23 : bool slab_is_available(void)
     526             : {
     527          23 :         return slab_state >= UP;
     528             : }
     529             : 
     530             : #ifdef CONFIG_PRINTK
     531             : /**
     532             :  * kmem_valid_obj - does the pointer reference a valid slab object?
     533             :  * @object: pointer to query.
     534             :  *
     535             :  * Return: %true if the pointer is to a not-yet-freed object from
     536             :  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
     537             :  * is to an already-freed object, and %false otherwise.
     538             :  */
     539           0 : bool kmem_valid_obj(void *object)
     540             : {
     541             :         struct folio *folio;
     542             : 
     543             :         /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
     544           0 :         if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
     545             :                 return false;
     546           0 :         folio = virt_to_folio(object);
     547           0 :         return folio_test_slab(folio);
     548             : }
     549             : EXPORT_SYMBOL_GPL(kmem_valid_obj);
     550             : 
     551             : static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
     552             : {
     553           0 :         if (__kfence_obj_info(kpp, object, slab))
     554             :                 return;
     555           0 :         __kmem_obj_info(kpp, object, slab);
     556             : }
     557             : 
     558             : /**
     559             :  * kmem_dump_obj - Print available slab provenance information
     560             :  * @object: slab object for which to find provenance information.
     561             :  *
     562             :  * This function uses pr_cont(), so that the caller is expected to have
     563             :  * printed out whatever preamble is appropriate.  The provenance information
     564             :  * depends on the type of object and on how much debugging is enabled.
     565             :  * For a slab-cache object, the fact that it is a slab object is printed,
     566             :  * and, if available, the slab name, return address, and stack trace from
     567             :  * the allocation and last free path of that object.
     568             :  *
     569             :  * This function will splat if passed a pointer to a non-slab object.
     570             :  * If you are not sure what type of object you have, you should instead
     571             :  * use mem_dump_obj().
     572             :  */
     573           0 : void kmem_dump_obj(void *object)
     574             : {
     575           0 :         char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
     576             :         int i;
     577             :         struct slab *slab;
     578             :         unsigned long ptroffset;
     579           0 :         struct kmem_obj_info kp = { };
     580             : 
     581           0 :         if (WARN_ON_ONCE(!virt_addr_valid(object)))
     582           0 :                 return;
     583           0 :         slab = virt_to_slab(object);
     584           0 :         if (WARN_ON_ONCE(!slab)) {
     585           0 :                 pr_cont(" non-slab memory.\n");
     586           0 :                 return;
     587             :         }
     588           0 :         kmem_obj_info(&kp, object, slab);
     589           0 :         if (kp.kp_slab_cache)
     590           0 :                 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
     591             :         else
     592           0 :                 pr_cont(" slab%s", cp);
     593           0 :         if (is_kfence_address(object))
     594             :                 pr_cont(" (kfence)");
     595           0 :         if (kp.kp_objp)
     596           0 :                 pr_cont(" start %px", kp.kp_objp);
     597           0 :         if (kp.kp_data_offset)
     598           0 :                 pr_cont(" data offset %lu", kp.kp_data_offset);
     599           0 :         if (kp.kp_objp) {
     600           0 :                 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
     601           0 :                 pr_cont(" pointer offset %lu", ptroffset);
     602             :         }
     603           0 :         if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
     604           0 :                 pr_cont(" size %u", kp.kp_slab_cache->object_size);
     605           0 :         if (kp.kp_ret)
     606           0 :                 pr_cont(" allocated at %pS\n", kp.kp_ret);
     607             :         else
     608           0 :                 pr_cont("\n");
     609           0 :         for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
     610           0 :                 if (!kp.kp_stack[i])
     611             :                         break;
     612           0 :                 pr_info("    %pS\n", kp.kp_stack[i]);
     613             :         }
     614             : 
     615           0 :         if (kp.kp_free_stack[0])
     616           0 :                 pr_cont(" Free path:\n");
     617             : 
     618           0 :         for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
     619           0 :                 if (!kp.kp_free_stack[i])
     620             :                         break;
     621           0 :                 pr_info("    %pS\n", kp.kp_free_stack[i]);
     622             :         }
     623             : 
     624             : }
     625             : EXPORT_SYMBOL_GPL(kmem_dump_obj);
     626             : #endif
     627             : 
     628             : /* Create a cache during boot when no slab services are available yet */
     629          28 : void __init create_boot_cache(struct kmem_cache *s, const char *name,
     630             :                 unsigned int size, slab_flags_t flags,
     631             :                 unsigned int useroffset, unsigned int usersize)
     632             : {
     633             :         int err;
     634          28 :         unsigned int align = ARCH_KMALLOC_MINALIGN;
     635             : 
     636          28 :         s->name = name;
     637          28 :         s->size = s->object_size = size;
     638             : 
     639             :         /*
     640             :          * For power of two sizes, guarantee natural alignment for kmalloc
     641             :          * caches, regardless of SL*B debugging options.
     642             :          */
     643          56 :         if (is_power_of_2(size))
     644          22 :                 align = max(align, size);
     645          28 :         s->align = calculate_alignment(flags, align, size);
     646             : 
     647             : #ifdef CONFIG_HARDENED_USERCOPY
     648             :         s->useroffset = useroffset;
     649             :         s->usersize = usersize;
     650             : #endif
     651             : 
     652          28 :         err = __kmem_cache_create(s, flags);
     653             : 
     654          28 :         if (err)
     655           0 :                 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
     656             :                                         name, size, err);
     657             : 
     658          28 :         s->refcount = -1;    /* Exempt from merging for now */
     659          28 : }
     660             : 
     661          26 : static struct kmem_cache *__init create_kmalloc_cache(const char *name,
     662             :                                                       unsigned int size,
     663             :                                                       slab_flags_t flags)
     664             : {
     665          52 :         struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
     666             : 
     667          26 :         if (!s)
     668           0 :                 panic("Out of memory when creating slab %s\n", name);
     669             : 
     670          26 :         create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
     671          52 :         list_add(&s->list, &slab_caches);
     672          26 :         s->refcount = 1;
     673          26 :         return s;
     674             : }
     675             : 
     676             : struct kmem_cache *
     677             : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
     678             : { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
     679             : EXPORT_SYMBOL(kmalloc_caches);
     680             : 
     681             : /*
     682             :  * Conversion table for small slabs sizes / 8 to the index in the
     683             :  * kmalloc array. This is necessary for slabs < 192 since we have non power
     684             :  * of two cache sizes there. The size of larger slabs can be determined using
     685             :  * fls.
     686             :  */
     687             : static u8 size_index[24] __ro_after_init = {
     688             :         3,      /* 8 */
     689             :         4,      /* 16 */
     690             :         5,      /* 24 */
     691             :         5,      /* 32 */
     692             :         6,      /* 40 */
     693             :         6,      /* 48 */
     694             :         6,      /* 56 */
     695             :         6,      /* 64 */
     696             :         1,      /* 72 */
     697             :         1,      /* 80 */
     698             :         1,      /* 88 */
     699             :         1,      /* 96 */
     700             :         7,      /* 104 */
     701             :         7,      /* 112 */
     702             :         7,      /* 120 */
     703             :         7,      /* 128 */
     704             :         2,      /* 136 */
     705             :         2,      /* 144 */
     706             :         2,      /* 152 */
     707             :         2,      /* 160 */
     708             :         2,      /* 168 */
     709             :         2,      /* 176 */
     710             :         2,      /* 184 */
     711             :         2       /* 192 */
     712             : };
     713             : 
     714             : static inline unsigned int size_index_elem(unsigned int bytes)
     715             : {
     716        3641 :         return (bytes - 1) / 8;
     717             : }
     718             : 
     719             : /*
     720             :  * Find the kmem_cache structure that serves a given size of
     721             :  * allocation
     722             :  */
     723        3844 : struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
     724             : {
     725             :         unsigned int index;
     726             : 
     727        3844 :         if (size <= 192) {
     728        3641 :                 if (!size)
     729             :                         return ZERO_SIZE_PTR;
     730             : 
     731        7282 :                 index = size_index[size_index_elem(size)];
     732             :         } else {
     733         203 :                 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
     734             :                         return NULL;
     735         406 :                 index = fls(size - 1);
     736             :         }
     737             : 
     738        3844 :         return kmalloc_caches[kmalloc_type(flags)][index];
     739             : }
     740             : 
     741           5 : size_t kmalloc_size_roundup(size_t size)
     742             : {
     743             :         struct kmem_cache *c;
     744             : 
     745             :         /* Short-circuit the 0 size case. */
     746           5 :         if (unlikely(size == 0))
     747             :                 return 0;
     748             :         /* Short-circuit saturated "too-large" case. */
     749           5 :         if (unlikely(size == SIZE_MAX))
     750             :                 return SIZE_MAX;
     751             :         /* Above the smaller buckets, size is a multiple of page size. */
     752           5 :         if (size > KMALLOC_MAX_CACHE_SIZE)
     753           0 :                 return PAGE_SIZE << get_order(size);
     754             : 
     755             :         /* The flags don't matter since size_index is common to all. */
     756           5 :         c = kmalloc_slab(size, GFP_KERNEL);
     757           5 :         return c ? c->object_size : 0;
     758             : }
     759             : EXPORT_SYMBOL(kmalloc_size_roundup);
     760             : 
     761             : #ifdef CONFIG_ZONE_DMA
     762             : #define KMALLOC_DMA_NAME(sz)    .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
     763             : #else
     764             : #define KMALLOC_DMA_NAME(sz)
     765             : #endif
     766             : 
     767             : #ifdef CONFIG_MEMCG_KMEM
     768             : #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
     769             : #else
     770             : #define KMALLOC_CGROUP_NAME(sz)
     771             : #endif
     772             : 
     773             : #ifndef CONFIG_SLUB_TINY
     774             : #define KMALLOC_RCL_NAME(sz)    .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
     775             : #else
     776             : #define KMALLOC_RCL_NAME(sz)
     777             : #endif
     778             : 
     779             : #define INIT_KMALLOC_INFO(__size, __short_size)                 \
     780             : {                                                               \
     781             :         .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,    \
     782             :         KMALLOC_RCL_NAME(__short_size)                          \
     783             :         KMALLOC_CGROUP_NAME(__short_size)                       \
     784             :         KMALLOC_DMA_NAME(__short_size)                          \
     785             :         .size = __size,                                         \
     786             : }
     787             : 
     788             : /*
     789             :  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
     790             :  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
     791             :  * kmalloc-2M.
     792             :  */
     793             : const struct kmalloc_info_struct kmalloc_info[] __initconst = {
     794             :         INIT_KMALLOC_INFO(0, 0),
     795             :         INIT_KMALLOC_INFO(96, 96),
     796             :         INIT_KMALLOC_INFO(192, 192),
     797             :         INIT_KMALLOC_INFO(8, 8),
     798             :         INIT_KMALLOC_INFO(16, 16),
     799             :         INIT_KMALLOC_INFO(32, 32),
     800             :         INIT_KMALLOC_INFO(64, 64),
     801             :         INIT_KMALLOC_INFO(128, 128),
     802             :         INIT_KMALLOC_INFO(256, 256),
     803             :         INIT_KMALLOC_INFO(512, 512),
     804             :         INIT_KMALLOC_INFO(1024, 1k),
     805             :         INIT_KMALLOC_INFO(2048, 2k),
     806             :         INIT_KMALLOC_INFO(4096, 4k),
     807             :         INIT_KMALLOC_INFO(8192, 8k),
     808             :         INIT_KMALLOC_INFO(16384, 16k),
     809             :         INIT_KMALLOC_INFO(32768, 32k),
     810             :         INIT_KMALLOC_INFO(65536, 64k),
     811             :         INIT_KMALLOC_INFO(131072, 128k),
     812             :         INIT_KMALLOC_INFO(262144, 256k),
     813             :         INIT_KMALLOC_INFO(524288, 512k),
     814             :         INIT_KMALLOC_INFO(1048576, 1M),
     815             :         INIT_KMALLOC_INFO(2097152, 2M)
     816             : };
     817             : 
     818             : /*
     819             :  * Patch up the size_index table if we have strange large alignment
     820             :  * requirements for the kmalloc array. This is only the case for
     821             :  * MIPS it seems. The standard arches will not generate any code here.
     822             :  *
     823             :  * Largest permitted alignment is 256 bytes due to the way we
     824             :  * handle the index determination for the smaller caches.
     825             :  *
     826             :  * Make sure that nothing crazy happens if someone starts tinkering
     827             :  * around with ARCH_KMALLOC_MINALIGN
     828             :  */
     829           1 : void __init setup_kmalloc_cache_index_table(void)
     830             : {
     831             :         unsigned int i;
     832             : 
     833           1 :         BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
     834             :                 !is_power_of_2(KMALLOC_MIN_SIZE));
     835             : 
     836           1 :         for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
     837             :                 unsigned int elem = size_index_elem(i);
     838             : 
     839             :                 if (elem >= ARRAY_SIZE(size_index))
     840             :                         break;
     841             :                 size_index[elem] = KMALLOC_SHIFT_LOW;
     842             :         }
     843             : 
     844             :         if (KMALLOC_MIN_SIZE >= 64) {
     845             :                 /*
     846             :                  * The 96 byte sized cache is not used if the alignment
     847             :                  * is 64 byte.
     848             :                  */
     849             :                 for (i = 64 + 8; i <= 96; i += 8)
     850             :                         size_index[size_index_elem(i)] = 7;
     851             : 
     852             :         }
     853             : 
     854             :         if (KMALLOC_MIN_SIZE >= 128) {
     855             :                 /*
     856             :                  * The 192 byte sized cache is not used if the alignment
     857             :                  * is 128 byte. Redirect kmalloc to use the 256 byte cache
     858             :                  * instead.
     859             :                  */
     860             :                 for (i = 128 + 8; i <= 192; i += 8)
     861             :                         size_index[size_index_elem(i)] = 8;
     862             :         }
     863           1 : }
     864             : 
     865             : static unsigned int __kmalloc_minalign(void)
     866             : {
     867             : #ifdef CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC
     868             :         if (io_tlb_default_mem.nslabs)
     869             :                 return ARCH_KMALLOC_MINALIGN;
     870             : #endif
     871             :         return dma_get_cache_alignment();
     872             : }
     873             : 
     874             : void __init
     875          26 : new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
     876             : {
     877          26 :         unsigned int minalign = __kmalloc_minalign();
     878          26 :         unsigned int aligned_size = kmalloc_info[idx].size;
     879          26 :         int aligned_idx = idx;
     880             : 
     881          26 :         if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
     882          13 :                 flags |= SLAB_RECLAIM_ACCOUNT;
     883             :         } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
     884             :                 if (mem_cgroup_kmem_disabled()) {
     885             :                         kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
     886             :                         return;
     887             :                 }
     888             :                 flags |= SLAB_ACCOUNT;
     889             :         } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
     890             :                 flags |= SLAB_CACHE_DMA;
     891             :         }
     892             : 
     893             :         /*
     894             :          * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
     895             :          * KMALLOC_NORMAL caches.
     896             :          */
     897             :         if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
     898             :                 flags |= SLAB_NO_MERGE;
     899             : 
     900             :         if (minalign > ARCH_KMALLOC_MINALIGN) {
     901             :                 aligned_size = ALIGN(aligned_size, minalign);
     902             :                 aligned_idx = __kmalloc_index(aligned_size, false);
     903             :         }
     904             : 
     905          26 :         if (!kmalloc_caches[type][aligned_idx])
     906          26 :                 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
     907             :                                         kmalloc_info[aligned_idx].name[type],
     908             :                                         aligned_size, flags);
     909             :         if (idx != aligned_idx)
     910             :                 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
     911             : }
     912             : 
     913             : /*
     914             :  * Create the kmalloc array. Some of the regular kmalloc arrays
     915             :  * may already have been created because they were needed to
     916             :  * enable allocations for slab creation.
     917             :  */
     918           1 : void __init create_kmalloc_caches(slab_flags_t flags)
     919             : {
     920             :         int i;
     921             :         enum kmalloc_cache_type type;
     922             : 
     923             :         /*
     924             :          * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
     925             :          */
     926           3 :         for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
     927          22 :                 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
     928          22 :                         if (!kmalloc_caches[type][i])
     929          22 :                                 new_kmalloc_cache(i, type, flags);
     930             : 
     931             :                         /*
     932             :                          * Caches that are not of the two-to-the-power-of size.
     933             :                          * These have to be created immediately after the
     934             :                          * earlier power of two caches
     935             :                          */
     936          24 :                         if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
     937           2 :                                         !kmalloc_caches[type][1])
     938           2 :                                 new_kmalloc_cache(1, type, flags);
     939          24 :                         if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
     940           2 :                                         !kmalloc_caches[type][2])
     941           2 :                                 new_kmalloc_cache(2, type, flags);
     942             :                 }
     943             :         }
     944             : 
     945             :         /* Kmalloc array is now usable */
     946           1 :         slab_state = UP;
     947           1 : }
     948             : 
     949           0 : void free_large_kmalloc(struct folio *folio, void *object)
     950             : {
     951           0 :         unsigned int order = folio_order(folio);
     952             : 
     953           0 :         if (WARN_ON_ONCE(order == 0))
     954           0 :                 pr_warn_once("object pointer: 0x%p\n", object);
     955             : 
     956           0 :         kmemleak_free(object);
     957           0 :         kasan_kfree_large(object);
     958           0 :         kmsan_kfree_large(object);
     959             : 
     960           0 :         mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
     961           0 :                               -(PAGE_SIZE << order));
     962           0 :         __free_pages(folio_page(folio, 0), order);
     963           0 : }
     964             : 
     965             : static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
     966             : static __always_inline
     967             : void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
     968             : {
     969             :         struct kmem_cache *s;
     970             :         void *ret;
     971             : 
     972        3839 :         if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
     973           0 :                 ret = __kmalloc_large_node(size, flags, node);
     974             :                 trace_kmalloc(caller, ret, size,
     975             :                               PAGE_SIZE << get_order(size), flags, node);
     976             :                 return ret;
     977             :         }
     978             : 
     979        3839 :         s = kmalloc_slab(size, flags);
     980             : 
     981        3839 :         if (unlikely(ZERO_OR_NULL_PTR(s)))
     982             :                 return s;
     983             : 
     984        3839 :         ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
     985        3839 :         ret = kasan_kmalloc(s, ret, size, flags);
     986        3839 :         trace_kmalloc(caller, ret, size, s->size, flags, node);
     987             :         return ret;
     988             : }
     989             : 
     990          20 : void *__kmalloc_node(size_t size, gfp_t flags, int node)
     991             : {
     992          40 :         return __do_kmalloc_node(size, flags, node, _RET_IP_);
     993             : }
     994             : EXPORT_SYMBOL(__kmalloc_node);
     995             : 
     996        1257 : void *__kmalloc(size_t size, gfp_t flags)
     997             : {
     998        2514 :         return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
     999             : }
    1000             : EXPORT_SYMBOL(__kmalloc);
    1001             : 
    1002        2562 : void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
    1003             :                                   int node, unsigned long caller)
    1004             : {
    1005        2562 :         return __do_kmalloc_node(size, flags, node, caller);
    1006             : }
    1007             : EXPORT_SYMBOL(__kmalloc_node_track_caller);
    1008             : 
    1009             : /**
    1010             :  * kfree - free previously allocated memory
    1011             :  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
    1012             :  *
    1013             :  * If @object is NULL, no operation is performed.
    1014             :  */
    1015        4644 : void kfree(const void *object)
    1016             : {
    1017             :         struct folio *folio;
    1018             :         struct slab *slab;
    1019             :         struct kmem_cache *s;
    1020             : 
    1021        4644 :         trace_kfree(_RET_IP_, object);
    1022             : 
    1023        4644 :         if (unlikely(ZERO_OR_NULL_PTR(object)))
    1024             :                 return;
    1025             : 
    1026        3127 :         folio = virt_to_folio(object);
    1027        3127 :         if (unlikely(!folio_test_slab(folio))) {
    1028           0 :                 free_large_kmalloc(folio, (void *)object);
    1029           0 :                 return;
    1030             :         }
    1031             : 
    1032        3127 :         slab = folio_slab(folio);
    1033        3127 :         s = slab->slab_cache;
    1034        3127 :         __kmem_cache_free(s, (void *)object, _RET_IP_);
    1035             : }
    1036             : EXPORT_SYMBOL(kfree);
    1037             : 
    1038             : /**
    1039             :  * __ksize -- Report full size of underlying allocation
    1040             :  * @object: pointer to the object
    1041             :  *
    1042             :  * This should only be used internally to query the true size of allocations.
    1043             :  * It is not meant to be a way to discover the usable size of an allocation
    1044             :  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
    1045             :  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
    1046             :  * and/or FORTIFY_SOURCE.
    1047             :  *
    1048             :  * Return: size of the actual memory used by @object in bytes
    1049             :  */
    1050         107 : size_t __ksize(const void *object)
    1051             : {
    1052             :         struct folio *folio;
    1053             : 
    1054         107 :         if (unlikely(object == ZERO_SIZE_PTR))
    1055             :                 return 0;
    1056             : 
    1057         107 :         folio = virt_to_folio(object);
    1058             : 
    1059         107 :         if (unlikely(!folio_test_slab(folio))) {
    1060           0 :                 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
    1061             :                         return 0;
    1062           0 :                 if (WARN_ON(object != folio_address(folio)))
    1063             :                         return 0;
    1064           0 :                 return folio_size(folio);
    1065             :         }
    1066             : 
    1067             : #ifdef CONFIG_SLUB_DEBUG
    1068         107 :         skip_orig_size_check(folio_slab(folio)->slab_cache, object);
    1069             : #endif
    1070             : 
    1071         107 :         return slab_ksize(folio_slab(folio)->slab_cache);
    1072             : }
    1073             : 
    1074        2972 : void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
    1075             : {
    1076        2972 :         void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
    1077        2972 :                                             size, _RET_IP_);
    1078             : 
    1079        2972 :         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
    1080             : 
    1081        2972 :         ret = kasan_kmalloc(s, ret, size, gfpflags);
    1082        2972 :         return ret;
    1083             : }
    1084             : EXPORT_SYMBOL(kmalloc_trace);
    1085             : 
    1086          27 : void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
    1087             :                          int node, size_t size)
    1088             : {
    1089          27 :         void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
    1090             : 
    1091          27 :         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
    1092             : 
    1093          27 :         ret = kasan_kmalloc(s, ret, size, gfpflags);
    1094          27 :         return ret;
    1095             : }
    1096             : EXPORT_SYMBOL(kmalloc_node_trace);
    1097             : 
    1098           0 : gfp_t kmalloc_fix_flags(gfp_t flags)
    1099             : {
    1100           0 :         gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
    1101             : 
    1102           0 :         flags &= ~GFP_SLAB_BUG_MASK;
    1103           0 :         pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
    1104             :                         invalid_mask, &invalid_mask, flags, &flags);
    1105           0 :         dump_stack();
    1106             : 
    1107           0 :         return flags;
    1108             : }
    1109             : 
    1110             : /*
    1111             :  * To avoid unnecessary overhead, we pass through large allocation requests
    1112             :  * directly to the page allocator. We use __GFP_COMP, because we will need to
    1113             :  * know the allocation order to free the pages properly in kfree.
    1114             :  */
    1115             : 
    1116           0 : static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
    1117             : {
    1118             :         struct page *page;
    1119           0 :         void *ptr = NULL;
    1120           0 :         unsigned int order = get_order(size);
    1121             : 
    1122           0 :         if (unlikely(flags & GFP_SLAB_BUG_MASK))
    1123           0 :                 flags = kmalloc_fix_flags(flags);
    1124             : 
    1125           0 :         flags |= __GFP_COMP;
    1126           0 :         page = alloc_pages_node(node, flags, order);
    1127           0 :         if (page) {
    1128           0 :                 ptr = page_address(page);
    1129           0 :                 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
    1130           0 :                                       PAGE_SIZE << order);
    1131             :         }
    1132             : 
    1133           0 :         ptr = kasan_kmalloc_large(ptr, size, flags);
    1134             :         /* As ptr might get tagged, call kmemleak hook after KASAN. */
    1135           0 :         kmemleak_alloc(ptr, size, 1, flags);
    1136           0 :         kmsan_kmalloc_large(ptr, size, flags);
    1137             : 
    1138           0 :         return ptr;
    1139             : }
    1140             : 
    1141           0 : void *kmalloc_large(size_t size, gfp_t flags)
    1142             : {
    1143           0 :         void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
    1144             : 
    1145           0 :         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
    1146             :                       flags, NUMA_NO_NODE);
    1147           0 :         return ret;
    1148             : }
    1149             : EXPORT_SYMBOL(kmalloc_large);
    1150             : 
    1151           0 : void *kmalloc_large_node(size_t size, gfp_t flags, int node)
    1152             : {
    1153           0 :         void *ret = __kmalloc_large_node(size, flags, node);
    1154             : 
    1155           0 :         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
    1156             :                       flags, node);
    1157           0 :         return ret;
    1158             : }
    1159             : EXPORT_SYMBOL(kmalloc_large_node);
    1160             : 
    1161             : #ifdef CONFIG_SLAB_FREELIST_RANDOM
    1162             : /* Randomize a generic freelist */
    1163             : static void freelist_randomize(unsigned int *list,
    1164             :                                unsigned int count)
    1165             : {
    1166             :         unsigned int rand;
    1167             :         unsigned int i;
    1168             : 
    1169             :         for (i = 0; i < count; i++)
    1170             :                 list[i] = i;
    1171             : 
    1172             :         /* Fisher-Yates shuffle */
    1173             :         for (i = count - 1; i > 0; i--) {
    1174             :                 rand = get_random_u32_below(i + 1);
    1175             :                 swap(list[i], list[rand]);
    1176             :         }
    1177             : }
    1178             : 
    1179             : /* Create a random sequence per cache */
    1180             : int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
    1181             :                                     gfp_t gfp)
    1182             : {
    1183             : 
    1184             :         if (count < 2 || cachep->random_seq)
    1185             :                 return 0;
    1186             : 
    1187             :         cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
    1188             :         if (!cachep->random_seq)
    1189             :                 return -ENOMEM;
    1190             : 
    1191             :         freelist_randomize(cachep->random_seq, count);
    1192             :         return 0;
    1193             : }
    1194             : 
    1195             : /* Destroy the per-cache random freelist sequence */
    1196             : void cache_random_seq_destroy(struct kmem_cache *cachep)
    1197             : {
    1198             :         kfree(cachep->random_seq);
    1199             :         cachep->random_seq = NULL;
    1200             : }
    1201             : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
    1202             : 
    1203             : #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
    1204             : #ifdef CONFIG_SLAB
    1205             : #define SLABINFO_RIGHTS (0600)
    1206             : #else
    1207             : #define SLABINFO_RIGHTS (0400)
    1208             : #endif
    1209             : 
    1210           0 : static void print_slabinfo_header(struct seq_file *m)
    1211             : {
    1212             :         /*
    1213             :          * Output format version, so at least we can change it
    1214             :          * without _too_ many complaints.
    1215             :          */
    1216             : #ifdef CONFIG_DEBUG_SLAB
    1217             :         seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
    1218             : #else
    1219           0 :         seq_puts(m, "slabinfo - version: 2.1\n");
    1220             : #endif
    1221           0 :         seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
    1222           0 :         seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
    1223           0 :         seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
    1224             : #ifdef CONFIG_DEBUG_SLAB
    1225             :         seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
    1226             :         seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
    1227             : #endif
    1228           0 :         seq_putc(m, '\n');
    1229           0 : }
    1230             : 
    1231           0 : static void *slab_start(struct seq_file *m, loff_t *pos)
    1232             : {
    1233           0 :         mutex_lock(&slab_mutex);
    1234           0 :         return seq_list_start(&slab_caches, *pos);
    1235             : }
    1236             : 
    1237           0 : static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
    1238             : {
    1239           0 :         return seq_list_next(p, &slab_caches, pos);
    1240             : }
    1241             : 
    1242           0 : static void slab_stop(struct seq_file *m, void *p)
    1243             : {
    1244           0 :         mutex_unlock(&slab_mutex);
    1245           0 : }
    1246             : 
    1247           0 : static void cache_show(struct kmem_cache *s, struct seq_file *m)
    1248             : {
    1249             :         struct slabinfo sinfo;
    1250             : 
    1251           0 :         memset(&sinfo, 0, sizeof(sinfo));
    1252           0 :         get_slabinfo(s, &sinfo);
    1253             : 
    1254           0 :         seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
    1255             :                    s->name, sinfo.active_objs, sinfo.num_objs, s->size,
    1256           0 :                    sinfo.objects_per_slab, (1 << sinfo.cache_order));
    1257             : 
    1258           0 :         seq_printf(m, " : tunables %4u %4u %4u",
    1259             :                    sinfo.limit, sinfo.batchcount, sinfo.shared);
    1260           0 :         seq_printf(m, " : slabdata %6lu %6lu %6lu",
    1261             :                    sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
    1262           0 :         slabinfo_show_stats(m, s);
    1263           0 :         seq_putc(m, '\n');
    1264           0 : }
    1265             : 
    1266           0 : static int slab_show(struct seq_file *m, void *p)
    1267             : {
    1268           0 :         struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
    1269             : 
    1270           0 :         if (p == slab_caches.next)
    1271           0 :                 print_slabinfo_header(m);
    1272           0 :         cache_show(s, m);
    1273           0 :         return 0;
    1274             : }
    1275             : 
    1276           0 : void dump_unreclaimable_slab(void)
    1277             : {
    1278             :         struct kmem_cache *s;
    1279             :         struct slabinfo sinfo;
    1280             : 
    1281             :         /*
    1282             :          * Here acquiring slab_mutex is risky since we don't prefer to get
    1283             :          * sleep in oom path. But, without mutex hold, it may introduce a
    1284             :          * risk of crash.
    1285             :          * Use mutex_trylock to protect the list traverse, dump nothing
    1286             :          * without acquiring the mutex.
    1287             :          */
    1288           0 :         if (!mutex_trylock(&slab_mutex)) {
    1289           0 :                 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
    1290           0 :                 return;
    1291             :         }
    1292             : 
    1293           0 :         pr_info("Unreclaimable slab info:\n");
    1294           0 :         pr_info("Name                      Used          Total\n");
    1295             : 
    1296           0 :         list_for_each_entry(s, &slab_caches, list) {
    1297           0 :                 if (s->flags & SLAB_RECLAIM_ACCOUNT)
    1298           0 :                         continue;
    1299             : 
    1300           0 :                 get_slabinfo(s, &sinfo);
    1301             : 
    1302           0 :                 if (sinfo.num_objs > 0)
    1303           0 :                         pr_info("%-17s %10luKB %10luKB\n", s->name,
    1304             :                                 (sinfo.active_objs * s->size) / 1024,
    1305             :                                 (sinfo.num_objs * s->size) / 1024);
    1306             :         }
    1307           0 :         mutex_unlock(&slab_mutex);
    1308             : }
    1309             : 
    1310             : /*
    1311             :  * slabinfo_op - iterator that generates /proc/slabinfo
    1312             :  *
    1313             :  * Output layout:
    1314             :  * cache-name
    1315             :  * num-active-objs
    1316             :  * total-objs
    1317             :  * object size
    1318             :  * num-active-slabs
    1319             :  * total-slabs
    1320             :  * num-pages-per-slab
    1321             :  * + further values on SMP and with statistics enabled
    1322             :  */
    1323             : static const struct seq_operations slabinfo_op = {
    1324             :         .start = slab_start,
    1325             :         .next = slab_next,
    1326             :         .stop = slab_stop,
    1327             :         .show = slab_show,
    1328             : };
    1329             : 
    1330           0 : static int slabinfo_open(struct inode *inode, struct file *file)
    1331             : {
    1332           0 :         return seq_open(file, &slabinfo_op);
    1333             : }
    1334             : 
    1335             : static const struct proc_ops slabinfo_proc_ops = {
    1336             :         .proc_flags     = PROC_ENTRY_PERMANENT,
    1337             :         .proc_open      = slabinfo_open,
    1338             :         .proc_read      = seq_read,
    1339             :         .proc_write     = slabinfo_write,
    1340             :         .proc_lseek     = seq_lseek,
    1341             :         .proc_release   = seq_release,
    1342             : };
    1343             : 
    1344           1 : static int __init slab_proc_init(void)
    1345             : {
    1346           1 :         proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
    1347           1 :         return 0;
    1348             : }
    1349             : module_init(slab_proc_init);
    1350             : 
    1351             : #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
    1352             : 
    1353             : static __always_inline __realloc_size(2) void *
    1354             : __do_krealloc(const void *p, size_t new_size, gfp_t flags)
    1355             : {
    1356             :         void *ret;
    1357             :         size_t ks;
    1358             : 
    1359             :         /* Check for double-free before calling ksize. */
    1360         102 :         if (likely(!ZERO_OR_NULL_PTR(p))) {
    1361         102 :                 if (!kasan_check_byte(p))
    1362             :                         return NULL;
    1363         102 :                 ks = ksize(p);
    1364             :         } else
    1365             :                 ks = 0;
    1366             : 
    1367             :         /* If the object still fits, repoison it precisely. */
    1368         102 :         if (ks >= new_size) {
    1369             :                 p = kasan_krealloc((void *)p, new_size, flags);
    1370             :                 return (void *)p;
    1371             :         }
    1372             : 
    1373          81 :         ret = kmalloc_track_caller(new_size, flags);
    1374          81 :         if (ret && p) {
    1375             :                 /* Disable KASAN checks as the object's redzone is accessed. */
    1376             :                 kasan_disable_current();
    1377         162 :                 memcpy(ret, kasan_reset_tag(p), ks);
    1378             :                 kasan_enable_current();
    1379             :         }
    1380             : 
    1381             :         return ret;
    1382             : }
    1383             : 
    1384             : /**
    1385             :  * krealloc - reallocate memory. The contents will remain unchanged.
    1386             :  * @p: object to reallocate memory for.
    1387             :  * @new_size: how many bytes of memory are required.
    1388             :  * @flags: the type of memory to allocate.
    1389             :  *
    1390             :  * The contents of the object pointed to are preserved up to the
    1391             :  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
    1392             :  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
    1393             :  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
    1394             :  *
    1395             :  * Return: pointer to the allocated memory or %NULL in case of error
    1396             :  */
    1397         102 : void *krealloc(const void *p, size_t new_size, gfp_t flags)
    1398             : {
    1399             :         void *ret;
    1400             : 
    1401         102 :         if (unlikely(!new_size)) {
    1402           0 :                 kfree(p);
    1403           0 :                 return ZERO_SIZE_PTR;
    1404             :         }
    1405             : 
    1406         102 :         ret = __do_krealloc(p, new_size, flags);
    1407         102 :         if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
    1408          81 :                 kfree(p);
    1409             : 
    1410             :         return ret;
    1411             : }
    1412             : EXPORT_SYMBOL(krealloc);
    1413             : 
    1414             : /**
    1415             :  * kfree_sensitive - Clear sensitive information in memory before freeing
    1416             :  * @p: object to free memory of
    1417             :  *
    1418             :  * The memory of the object @p points to is zeroed before freed.
    1419             :  * If @p is %NULL, kfree_sensitive() does nothing.
    1420             :  *
    1421             :  * Note: this function zeroes the whole allocated buffer which can be a good
    1422             :  * deal bigger than the requested buffer size passed to kmalloc(). So be
    1423             :  * careful when using this function in performance sensitive code.
    1424             :  */
    1425           0 : void kfree_sensitive(const void *p)
    1426             : {
    1427             :         size_t ks;
    1428           0 :         void *mem = (void *)p;
    1429             : 
    1430           0 :         ks = ksize(mem);
    1431           0 :         if (ks) {
    1432           0 :                 kasan_unpoison_range(mem, ks);
    1433             :                 memzero_explicit(mem, ks);
    1434             :         }
    1435           0 :         kfree(mem);
    1436           0 : }
    1437             : EXPORT_SYMBOL(kfree_sensitive);
    1438             : 
    1439         107 : size_t ksize(const void *objp)
    1440             : {
    1441             :         /*
    1442             :          * We need to first check that the pointer to the object is valid.
    1443             :          * The KASAN report printed from ksize() is more useful, then when
    1444             :          * it's printed later when the behaviour could be undefined due to
    1445             :          * a potential use-after-free or double-free.
    1446             :          *
    1447             :          * We use kasan_check_byte(), which is supported for the hardware
    1448             :          * tag-based KASAN mode, unlike kasan_check_read/write().
    1449             :          *
    1450             :          * If the pointed to memory is invalid, we return 0 to avoid users of
    1451             :          * ksize() writing to and potentially corrupting the memory region.
    1452             :          *
    1453             :          * We want to perform the check before __ksize(), to avoid potentially
    1454             :          * crashing in __ksize() due to accessing invalid metadata.
    1455             :          */
    1456         107 :         if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
    1457             :                 return 0;
    1458             : 
    1459         107 :         return kfence_ksize(objp) ?: __ksize(objp);
    1460             : }
    1461             : EXPORT_SYMBOL(ksize);
    1462             : 
    1463             : /* Tracepoints definitions. */
    1464             : EXPORT_TRACEPOINT_SYMBOL(kmalloc);
    1465             : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
    1466             : EXPORT_TRACEPOINT_SYMBOL(kfree);
    1467             : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
    1468             : 
    1469       16956 : int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
    1470             : {
    1471       16956 :         if (__should_failslab(s, gfpflags))
    1472             :                 return -ENOMEM;
    1473             :         return 0;
    1474             : }
    1475             : ALLOW_ERROR_INJECTION(should_failslab, ERRNO);

Generated by: LCOV version 1.14