Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/mm/swap_state.c
4 : *
5 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 : * Swap reorganised 29.12.95, Stephen Tweedie
7 : *
8 : * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 : */
10 : #include <linux/mm.h>
11 : #include <linux/gfp.h>
12 : #include <linux/kernel_stat.h>
13 : #include <linux/swap.h>
14 : #include <linux/swapops.h>
15 : #include <linux/init.h>
16 : #include <linux/pagemap.h>
17 : #include <linux/backing-dev.h>
18 : #include <linux/blkdev.h>
19 : #include <linux/migrate.h>
20 : #include <linux/vmalloc.h>
21 : #include <linux/swap_slots.h>
22 : #include <linux/huge_mm.h>
23 : #include <linux/shmem_fs.h>
24 : #include "internal.h"
25 : #include "swap.h"
26 :
27 : /*
28 : * swapper_space is a fiction, retained to simplify the path through
29 : * vmscan's shrink_page_list.
30 : */
31 : static const struct address_space_operations swap_aops = {
32 : .writepage = swap_writepage,
33 : .dirty_folio = noop_dirty_folio,
34 : #ifdef CONFIG_MIGRATION
35 : .migrate_folio = migrate_folio,
36 : #endif
37 : };
38 :
39 : struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 : static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 : static bool enable_vma_readahead __read_mostly = true;
42 :
43 : #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 : #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 : #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 : #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 :
48 : #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 : #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 : #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51 :
52 : #define SWAP_RA_VAL(addr, win, hits) \
53 : (((addr) & PAGE_MASK) | \
54 : (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 : ((hits) & SWAP_RA_HITS_MASK))
56 :
57 : /* Initial readahead hits is 4 to start up with a small window */
58 : #define GET_SWAP_RA_VAL(vma) \
59 : (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 :
61 : static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
62 :
63 0 : void show_swap_cache_info(void)
64 : {
65 0 : printk("%lu pages in swap cache\n", total_swapcache_pages());
66 0 : printk("Free swap = %ldkB\n",
67 : get_nr_swap_pages() << (PAGE_SHIFT - 10));
68 0 : printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
69 0 : }
70 :
71 0 : void *get_shadow_from_swap_cache(swp_entry_t entry)
72 : {
73 0 : struct address_space *address_space = swap_address_space(entry);
74 0 : pgoff_t idx = swp_offset(entry);
75 : struct page *page;
76 :
77 0 : page = xa_load(&address_space->i_pages, idx);
78 0 : if (xa_is_value(page))
79 : return page;
80 0 : return NULL;
81 : }
82 :
83 : /*
84 : * add_to_swap_cache resembles filemap_add_folio on swapper_space,
85 : * but sets SwapCache flag and private instead of mapping and index.
86 : */
87 0 : int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
88 : gfp_t gfp, void **shadowp)
89 : {
90 0 : struct address_space *address_space = swap_address_space(entry);
91 0 : pgoff_t idx = swp_offset(entry);
92 0 : XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
93 0 : unsigned long i, nr = folio_nr_pages(folio);
94 : void *old;
95 :
96 0 : xas_set_update(&xas, workingset_update_node);
97 :
98 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
99 : VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
100 : VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
101 :
102 0 : folio_ref_add(folio, nr);
103 : folio_set_swapcache(folio);
104 :
105 : do {
106 0 : xas_lock_irq(&xas);
107 0 : xas_create_range(&xas);
108 0 : if (xas_error(&xas))
109 : goto unlock;
110 0 : for (i = 0; i < nr; i++) {
111 : VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
112 0 : old = xas_load(&xas);
113 0 : if (xa_is_value(old)) {
114 0 : if (shadowp)
115 0 : *shadowp = old;
116 : }
117 0 : set_page_private(folio_page(folio, i), entry.val + i);
118 0 : xas_store(&xas, folio);
119 0 : xas_next(&xas);
120 : }
121 0 : address_space->nrpages += nr;
122 0 : __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
123 0 : __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
124 : unlock:
125 0 : xas_unlock_irq(&xas);
126 0 : } while (xas_nomem(&xas, gfp));
127 :
128 0 : if (!xas_error(&xas))
129 : return 0;
130 :
131 0 : folio_clear_swapcache(folio);
132 0 : folio_ref_sub(folio, nr);
133 0 : return xas_error(&xas);
134 : }
135 :
136 : /*
137 : * This must be called only on folios that have
138 : * been verified to be in the swap cache.
139 : */
140 0 : void __delete_from_swap_cache(struct folio *folio,
141 : swp_entry_t entry, void *shadow)
142 : {
143 0 : struct address_space *address_space = swap_address_space(entry);
144 : int i;
145 0 : long nr = folio_nr_pages(folio);
146 0 : pgoff_t idx = swp_offset(entry);
147 0 : XA_STATE(xas, &address_space->i_pages, idx);
148 :
149 0 : xas_set_update(&xas, workingset_update_node);
150 :
151 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
152 : VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
153 : VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
154 :
155 0 : for (i = 0; i < nr; i++) {
156 0 : void *entry = xas_store(&xas, shadow);
157 : VM_BUG_ON_PAGE(entry != folio, entry);
158 0 : set_page_private(folio_page(folio, i), 0);
159 0 : xas_next(&xas);
160 : }
161 0 : folio_clear_swapcache(folio);
162 0 : address_space->nrpages -= nr;
163 0 : __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
164 0 : __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165 0 : }
166 :
167 : /**
168 : * add_to_swap - allocate swap space for a folio
169 : * @folio: folio we want to move to swap
170 : *
171 : * Allocate swap space for the folio and add the folio to the
172 : * swap cache.
173 : *
174 : * Context: Caller needs to hold the folio lock.
175 : * Return: Whether the folio was added to the swap cache.
176 : */
177 0 : bool add_to_swap(struct folio *folio)
178 : {
179 : swp_entry_t entry;
180 : int err;
181 :
182 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
183 : VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
184 :
185 0 : entry = folio_alloc_swap(folio);
186 0 : if (!entry.val)
187 : return false;
188 :
189 : /*
190 : * XArray node allocations from PF_MEMALLOC contexts could
191 : * completely exhaust the page allocator. __GFP_NOMEMALLOC
192 : * stops emergency reserves from being allocated.
193 : *
194 : * TODO: this could cause a theoretical memory reclaim
195 : * deadlock in the swap out path.
196 : */
197 : /*
198 : * Add it to the swap cache.
199 : */
200 0 : err = add_to_swap_cache(folio, entry,
201 : __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
202 0 : if (err)
203 : /*
204 : * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 : * clear SWAP_HAS_CACHE flag.
206 : */
207 : goto fail;
208 : /*
209 : * Normally the folio will be dirtied in unmap because its
210 : * pte should be dirty. A special case is MADV_FREE page. The
211 : * page's pte could have dirty bit cleared but the folio's
212 : * SwapBacked flag is still set because clearing the dirty bit
213 : * and SwapBacked flag has no lock protected. For such folio,
214 : * unmap will not set dirty bit for it, so folio reclaim will
215 : * not write the folio out. This can cause data corruption when
216 : * the folio is swapped in later. Always setting the dirty flag
217 : * for the folio solves the problem.
218 : */
219 0 : folio_mark_dirty(folio);
220 :
221 0 : return true;
222 :
223 : fail:
224 0 : put_swap_folio(folio, entry);
225 0 : return false;
226 : }
227 :
228 : /*
229 : * This must be called only on folios that have
230 : * been verified to be in the swap cache and locked.
231 : * It will never put the folio into the free list,
232 : * the caller has a reference on the folio.
233 : */
234 0 : void delete_from_swap_cache(struct folio *folio)
235 : {
236 0 : swp_entry_t entry = folio_swap_entry(folio);
237 0 : struct address_space *address_space = swap_address_space(entry);
238 :
239 0 : xa_lock_irq(&address_space->i_pages);
240 0 : __delete_from_swap_cache(folio, entry, NULL);
241 0 : xa_unlock_irq(&address_space->i_pages);
242 :
243 0 : put_swap_folio(folio, entry);
244 0 : folio_ref_sub(folio, folio_nr_pages(folio));
245 0 : }
246 :
247 0 : void clear_shadow_from_swap_cache(int type, unsigned long begin,
248 : unsigned long end)
249 : {
250 0 : unsigned long curr = begin;
251 : void *old;
252 :
253 0 : for (;;) {
254 0 : swp_entry_t entry = swp_entry(type, curr);
255 0 : struct address_space *address_space = swap_address_space(entry);
256 0 : XA_STATE(xas, &address_space->i_pages, curr);
257 :
258 0 : xas_set_update(&xas, workingset_update_node);
259 :
260 0 : xa_lock_irq(&address_space->i_pages);
261 0 : xas_for_each(&xas, old, end) {
262 0 : if (!xa_is_value(old))
263 0 : continue;
264 0 : xas_store(&xas, NULL);
265 : }
266 0 : xa_unlock_irq(&address_space->i_pages);
267 :
268 : /* search the next swapcache until we meet end */
269 0 : curr >>= SWAP_ADDRESS_SPACE_SHIFT;
270 0 : curr++;
271 0 : curr <<= SWAP_ADDRESS_SPACE_SHIFT;
272 0 : if (curr > end)
273 : break;
274 : }
275 0 : }
276 :
277 : /*
278 : * If we are the only user, then try to free up the swap cache.
279 : *
280 : * Its ok to check the swapcache flag without the folio lock
281 : * here because we are going to recheck again inside
282 : * folio_free_swap() _with_ the lock.
283 : * - Marcelo
284 : */
285 0 : void free_swap_cache(struct page *page)
286 : {
287 0 : struct folio *folio = page_folio(page);
288 :
289 0 : if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
290 0 : folio_trylock(folio)) {
291 0 : folio_free_swap(folio);
292 0 : folio_unlock(folio);
293 : }
294 0 : }
295 :
296 : /*
297 : * Perform a free_page(), also freeing any swap cache associated with
298 : * this page if it is the last user of the page.
299 : */
300 0 : void free_page_and_swap_cache(struct page *page)
301 : {
302 0 : free_swap_cache(page);
303 0 : if (!is_huge_zero_page(page))
304 0 : put_page(page);
305 0 : }
306 :
307 : /*
308 : * Passed an array of pages, drop them all from swapcache and then release
309 : * them. They are removed from the LRU and freed if this is their last use.
310 : */
311 0 : void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
312 : {
313 0 : lru_add_drain();
314 0 : for (int i = 0; i < nr; i++)
315 0 : free_swap_cache(encoded_page_ptr(pages[i]));
316 0 : release_pages(pages, nr);
317 0 : }
318 :
319 : static inline bool swap_use_vma_readahead(void)
320 : {
321 0 : return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
322 : }
323 :
324 : /*
325 : * Lookup a swap entry in the swap cache. A found folio will be returned
326 : * unlocked and with its refcount incremented - we rely on the kernel
327 : * lock getting page table operations atomic even if we drop the folio
328 : * lock before returning.
329 : *
330 : * Caller must lock the swap device or hold a reference to keep it valid.
331 : */
332 0 : struct folio *swap_cache_get_folio(swp_entry_t entry,
333 : struct vm_area_struct *vma, unsigned long addr)
334 : {
335 : struct folio *folio;
336 :
337 0 : folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
338 0 : if (!IS_ERR(folio)) {
339 0 : bool vma_ra = swap_use_vma_readahead();
340 : bool readahead;
341 :
342 : /*
343 : * At the moment, we don't support PG_readahead for anon THP
344 : * so let's bail out rather than confusing the readahead stat.
345 : */
346 0 : if (unlikely(folio_test_large(folio)))
347 : return folio;
348 :
349 0 : readahead = folio_test_clear_readahead(folio);
350 0 : if (vma && vma_ra) {
351 : unsigned long ra_val;
352 : int win, hits;
353 :
354 0 : ra_val = GET_SWAP_RA_VAL(vma);
355 0 : win = SWAP_RA_WIN(ra_val);
356 0 : hits = SWAP_RA_HITS(ra_val);
357 0 : if (readahead)
358 0 : hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
359 0 : atomic_long_set(&vma->swap_readahead_info,
360 0 : SWAP_RA_VAL(addr, win, hits));
361 : }
362 :
363 0 : if (readahead) {
364 0 : count_vm_event(SWAP_RA_HIT);
365 0 : if (!vma || !vma_ra)
366 : atomic_inc(&swapin_readahead_hits);
367 : }
368 : } else {
369 : folio = NULL;
370 : }
371 :
372 : return folio;
373 : }
374 :
375 : /**
376 : * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
377 : * @mapping: The address_space to search.
378 : * @index: The page cache index.
379 : *
380 : * This differs from filemap_get_folio() in that it will also look for the
381 : * folio in the swap cache.
382 : *
383 : * Return: The found folio or %NULL.
384 : */
385 0 : struct folio *filemap_get_incore_folio(struct address_space *mapping,
386 : pgoff_t index)
387 : {
388 : swp_entry_t swp;
389 : struct swap_info_struct *si;
390 0 : struct folio *folio = filemap_get_entry(mapping, index);
391 :
392 0 : if (!folio)
393 : return ERR_PTR(-ENOENT);
394 0 : if (!xa_is_value(folio))
395 : return folio;
396 0 : if (!shmem_mapping(mapping))
397 : return ERR_PTR(-ENOENT);
398 :
399 0 : swp = radix_to_swp_entry(folio);
400 : /* There might be swapin error entries in shmem mapping. */
401 0 : if (non_swap_entry(swp))
402 : return ERR_PTR(-ENOENT);
403 : /* Prevent swapoff from happening to us */
404 0 : si = get_swap_device(swp);
405 0 : if (!si)
406 : return ERR_PTR(-ENOENT);
407 0 : index = swp_offset(swp);
408 0 : folio = filemap_get_folio(swap_address_space(swp), index);
409 0 : put_swap_device(si);
410 0 : return folio;
411 : }
412 :
413 0 : struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
414 : struct vm_area_struct *vma, unsigned long addr,
415 : bool *new_page_allocated)
416 : {
417 : struct swap_info_struct *si;
418 : struct folio *folio;
419 : struct page *page;
420 0 : void *shadow = NULL;
421 :
422 0 : *new_page_allocated = false;
423 0 : si = get_swap_device(entry);
424 0 : if (!si)
425 : return NULL;
426 :
427 0 : for (;;) {
428 : int err;
429 : /*
430 : * First check the swap cache. Since this is normally
431 : * called after swap_cache_get_folio() failed, re-calling
432 : * that would confuse statistics.
433 : */
434 0 : folio = filemap_get_folio(swap_address_space(entry),
435 : swp_offset(entry));
436 0 : if (!IS_ERR(folio)) {
437 0 : page = folio_file_page(folio, swp_offset(entry));
438 0 : goto got_page;
439 : }
440 :
441 : /*
442 : * Just skip read ahead for unused swap slot.
443 : * During swap_off when swap_slot_cache is disabled,
444 : * we have to handle the race between putting
445 : * swap entry in swap cache and marking swap slot
446 : * as SWAP_HAS_CACHE. That's done in later part of code or
447 : * else swap_off will be aborted if we return NULL.
448 : */
449 0 : if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
450 : goto fail_put_swap;
451 :
452 : /*
453 : * Get a new page to read into from swap. Allocate it now,
454 : * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
455 : * cause any racers to loop around until we add it to cache.
456 : */
457 0 : folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
458 0 : if (!folio)
459 : goto fail_put_swap;
460 :
461 : /*
462 : * Swap entry may have been freed since our caller observed it.
463 : */
464 0 : err = swapcache_prepare(entry);
465 0 : if (!err)
466 : break;
467 :
468 0 : folio_put(folio);
469 0 : if (err != -EEXIST)
470 : goto fail_put_swap;
471 :
472 : /*
473 : * We might race against __delete_from_swap_cache(), and
474 : * stumble across a swap_map entry whose SWAP_HAS_CACHE
475 : * has not yet been cleared. Or race against another
476 : * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
477 : * in swap_map, but not yet added its page to swap cache.
478 : */
479 0 : schedule_timeout_uninterruptible(1);
480 : }
481 :
482 : /*
483 : * The swap entry is ours to swap in. Prepare the new page.
484 : */
485 :
486 0 : __folio_set_locked(folio);
487 0 : __folio_set_swapbacked(folio);
488 :
489 0 : if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
490 : goto fail_unlock;
491 :
492 : /* May fail (-ENOMEM) if XArray node allocation failed. */
493 0 : if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
494 : goto fail_unlock;
495 :
496 0 : mem_cgroup_swapin_uncharge_swap(entry);
497 :
498 0 : if (shadow)
499 0 : workingset_refault(folio, shadow);
500 :
501 : /* Caller will initiate read into locked folio */
502 0 : folio_add_lru(folio);
503 0 : *new_page_allocated = true;
504 0 : page = &folio->page;
505 : got_page:
506 0 : put_swap_device(si);
507 0 : return page;
508 :
509 : fail_unlock:
510 0 : put_swap_folio(folio, entry);
511 0 : folio_unlock(folio);
512 : folio_put(folio);
513 : fail_put_swap:
514 0 : put_swap_device(si);
515 0 : return NULL;
516 : }
517 :
518 : /*
519 : * Locate a page of swap in physical memory, reserving swap cache space
520 : * and reading the disk if it is not already cached.
521 : * A failure return means that either the page allocation failed or that
522 : * the swap entry is no longer in use.
523 : *
524 : * get/put_swap_device() aren't needed to call this function, because
525 : * __read_swap_cache_async() call them and swap_readpage() holds the
526 : * swap cache folio lock.
527 : */
528 0 : struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
529 : struct vm_area_struct *vma,
530 : unsigned long addr, bool do_poll,
531 : struct swap_iocb **plug)
532 : {
533 : bool page_was_allocated;
534 0 : struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
535 : vma, addr, &page_was_allocated);
536 :
537 0 : if (page_was_allocated)
538 0 : swap_readpage(retpage, do_poll, plug);
539 :
540 0 : return retpage;
541 : }
542 :
543 : static unsigned int __swapin_nr_pages(unsigned long prev_offset,
544 : unsigned long offset,
545 : int hits,
546 : int max_pages,
547 : int prev_win)
548 : {
549 : unsigned int pages, last_ra;
550 :
551 : /*
552 : * This heuristic has been found to work well on both sequential and
553 : * random loads, swapping to hard disk or to SSD: please don't ask
554 : * what the "+ 2" means, it just happens to work well, that's all.
555 : */
556 0 : pages = hits + 2;
557 0 : if (pages == 2) {
558 : /*
559 : * We can have no readahead hits to judge by: but must not get
560 : * stuck here forever, so check for an adjacent offset instead
561 : * (and don't even bother to check whether swap type is same).
562 : */
563 0 : if (offset != prev_offset + 1 && offset != prev_offset - 1)
564 0 : pages = 1;
565 : } else {
566 : unsigned int roundup = 4;
567 0 : while (roundup < pages)
568 0 : roundup <<= 1;
569 : pages = roundup;
570 : }
571 :
572 0 : if (pages > max_pages)
573 0 : pages = max_pages;
574 :
575 : /* Don't shrink readahead too fast */
576 0 : last_ra = prev_win / 2;
577 0 : if (pages < last_ra)
578 0 : pages = last_ra;
579 :
580 : return pages;
581 : }
582 :
583 0 : static unsigned long swapin_nr_pages(unsigned long offset)
584 : {
585 : static unsigned long prev_offset;
586 : unsigned int hits, pages, max_pages;
587 : static atomic_t last_readahead_pages;
588 :
589 0 : max_pages = 1 << READ_ONCE(page_cluster);
590 0 : if (max_pages <= 1)
591 : return 1;
592 :
593 0 : hits = atomic_xchg(&swapin_readahead_hits, 0);
594 0 : pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
595 : max_pages,
596 : atomic_read(&last_readahead_pages));
597 0 : if (!hits)
598 0 : WRITE_ONCE(prev_offset, offset);
599 0 : atomic_set(&last_readahead_pages, pages);
600 :
601 0 : return pages;
602 : }
603 :
604 : /**
605 : * swap_cluster_readahead - swap in pages in hope we need them soon
606 : * @entry: swap entry of this memory
607 : * @gfp_mask: memory allocation flags
608 : * @vmf: fault information
609 : *
610 : * Returns the struct page for entry and addr, after queueing swapin.
611 : *
612 : * Primitive swap readahead code. We simply read an aligned block of
613 : * (1 << page_cluster) entries in the swap area. This method is chosen
614 : * because it doesn't cost us any seek time. We also make sure to queue
615 : * the 'original' request together with the readahead ones...
616 : *
617 : * This has been extended to use the NUMA policies from the mm triggering
618 : * the readahead.
619 : *
620 : * Caller must hold read mmap_lock if vmf->vma is not NULL.
621 : */
622 0 : struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
623 : struct vm_fault *vmf)
624 : {
625 : struct page *page;
626 0 : unsigned long entry_offset = swp_offset(entry);
627 0 : unsigned long offset = entry_offset;
628 : unsigned long start_offset, end_offset;
629 : unsigned long mask;
630 0 : struct swap_info_struct *si = swp_swap_info(entry);
631 : struct blk_plug plug;
632 0 : struct swap_iocb *splug = NULL;
633 0 : bool do_poll = true, page_allocated;
634 0 : struct vm_area_struct *vma = vmf->vma;
635 0 : unsigned long addr = vmf->address;
636 :
637 0 : mask = swapin_nr_pages(offset) - 1;
638 0 : if (!mask)
639 : goto skip;
640 :
641 0 : do_poll = false;
642 : /* Read a page_cluster sized and aligned cluster around offset. */
643 0 : start_offset = offset & ~mask;
644 0 : end_offset = offset | mask;
645 0 : if (!start_offset) /* First page is swap header. */
646 0 : start_offset++;
647 0 : if (end_offset >= si->max)
648 0 : end_offset = si->max - 1;
649 :
650 0 : blk_start_plug(&plug);
651 0 : for (offset = start_offset; offset <= end_offset ; offset++) {
652 : /* Ok, do the async read-ahead now */
653 0 : page = __read_swap_cache_async(
654 : swp_entry(swp_type(entry), offset),
655 : gfp_mask, vma, addr, &page_allocated);
656 0 : if (!page)
657 0 : continue;
658 0 : if (page_allocated) {
659 0 : swap_readpage(page, false, &splug);
660 0 : if (offset != entry_offset) {
661 0 : SetPageReadahead(page);
662 0 : count_vm_event(SWAP_RA);
663 : }
664 : }
665 0 : put_page(page);
666 : }
667 0 : blk_finish_plug(&plug);
668 0 : swap_read_unplug(splug);
669 :
670 0 : lru_add_drain(); /* Push any new pages onto the LRU now */
671 : skip:
672 : /* The page was likely read above, so no need for plugging here */
673 0 : return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
674 : }
675 :
676 0 : int init_swap_address_space(unsigned int type, unsigned long nr_pages)
677 : {
678 : struct address_space *spaces, *space;
679 : unsigned int i, nr;
680 :
681 0 : nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
682 0 : spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
683 0 : if (!spaces)
684 : return -ENOMEM;
685 0 : for (i = 0; i < nr; i++) {
686 0 : space = spaces + i;
687 0 : xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
688 0 : atomic_set(&space->i_mmap_writable, 0);
689 0 : space->a_ops = &swap_aops;
690 : /* swap cache doesn't use writeback related tags */
691 0 : mapping_set_no_writeback_tags(space);
692 : }
693 0 : nr_swapper_spaces[type] = nr;
694 0 : swapper_spaces[type] = spaces;
695 :
696 0 : return 0;
697 : }
698 :
699 0 : void exit_swap_address_space(unsigned int type)
700 : {
701 : int i;
702 0 : struct address_space *spaces = swapper_spaces[type];
703 :
704 0 : for (i = 0; i < nr_swapper_spaces[type]; i++)
705 : VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
706 0 : kvfree(spaces);
707 0 : nr_swapper_spaces[type] = 0;
708 0 : swapper_spaces[type] = NULL;
709 0 : }
710 :
711 : #define SWAP_RA_ORDER_CEILING 5
712 :
713 : struct vma_swap_readahead {
714 : unsigned short win;
715 : unsigned short offset;
716 : unsigned short nr_pte;
717 : };
718 :
719 0 : static void swap_ra_info(struct vm_fault *vmf,
720 : struct vma_swap_readahead *ra_info)
721 : {
722 0 : struct vm_area_struct *vma = vmf->vma;
723 : unsigned long ra_val;
724 : unsigned long faddr, pfn, fpfn, lpfn, rpfn;
725 : unsigned long start, end;
726 : unsigned int max_win, hits, prev_win, win;
727 :
728 0 : max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
729 : SWAP_RA_ORDER_CEILING);
730 0 : if (max_win == 1) {
731 0 : ra_info->win = 1;
732 : return;
733 : }
734 :
735 0 : faddr = vmf->address;
736 0 : fpfn = PFN_DOWN(faddr);
737 0 : ra_val = GET_SWAP_RA_VAL(vma);
738 0 : pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
739 0 : prev_win = SWAP_RA_WIN(ra_val);
740 0 : hits = SWAP_RA_HITS(ra_val);
741 0 : ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
742 : max_win, prev_win);
743 0 : atomic_long_set(&vma->swap_readahead_info,
744 0 : SWAP_RA_VAL(faddr, win, 0));
745 0 : if (win == 1)
746 : return;
747 :
748 0 : if (fpfn == pfn + 1) {
749 0 : lpfn = fpfn;
750 0 : rpfn = fpfn + win;
751 0 : } else if (pfn == fpfn + 1) {
752 0 : lpfn = fpfn - win + 1;
753 0 : rpfn = fpfn + 1;
754 : } else {
755 0 : unsigned int left = (win - 1) / 2;
756 :
757 0 : lpfn = fpfn - left;
758 0 : rpfn = fpfn + win - left;
759 : }
760 0 : start = max3(lpfn, PFN_DOWN(vma->vm_start),
761 : PFN_DOWN(faddr & PMD_MASK));
762 0 : end = min3(rpfn, PFN_DOWN(vma->vm_end),
763 : PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
764 :
765 0 : ra_info->nr_pte = end - start;
766 0 : ra_info->offset = fpfn - start;
767 : }
768 :
769 : /**
770 : * swap_vma_readahead - swap in pages in hope we need them soon
771 : * @fentry: swap entry of this memory
772 : * @gfp_mask: memory allocation flags
773 : * @vmf: fault information
774 : *
775 : * Returns the struct page for entry and addr, after queueing swapin.
776 : *
777 : * Primitive swap readahead code. We simply read in a few pages whose
778 : * virtual addresses are around the fault address in the same vma.
779 : *
780 : * Caller must hold read mmap_lock if vmf->vma is not NULL.
781 : *
782 : */
783 0 : static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
784 : struct vm_fault *vmf)
785 : {
786 : struct blk_plug plug;
787 0 : struct swap_iocb *splug = NULL;
788 0 : struct vm_area_struct *vma = vmf->vma;
789 : struct page *page;
790 0 : pte_t *pte = NULL, pentry;
791 : unsigned long addr;
792 : swp_entry_t entry;
793 : unsigned int i;
794 : bool page_allocated;
795 0 : struct vma_swap_readahead ra_info = {
796 : .win = 1,
797 : };
798 :
799 0 : swap_ra_info(vmf, &ra_info);
800 0 : if (ra_info.win == 1)
801 : goto skip;
802 :
803 0 : addr = vmf->address - (ra_info.offset * PAGE_SIZE);
804 :
805 0 : blk_start_plug(&plug);
806 0 : for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) {
807 0 : if (!pte++) {
808 0 : pte = pte_offset_map(vmf->pmd, addr);
809 0 : if (!pte)
810 : break;
811 : }
812 0 : pentry = ptep_get_lockless(pte);
813 0 : if (!is_swap_pte(pentry))
814 0 : continue;
815 0 : entry = pte_to_swp_entry(pentry);
816 0 : if (unlikely(non_swap_entry(entry)))
817 0 : continue;
818 0 : pte_unmap(pte);
819 0 : pte = NULL;
820 0 : page = __read_swap_cache_async(entry, gfp_mask, vma,
821 : addr, &page_allocated);
822 0 : if (!page)
823 0 : continue;
824 0 : if (page_allocated) {
825 0 : swap_readpage(page, false, &splug);
826 0 : if (i != ra_info.offset) {
827 0 : SetPageReadahead(page);
828 0 : count_vm_event(SWAP_RA);
829 : }
830 : }
831 0 : put_page(page);
832 : }
833 : if (pte)
834 : pte_unmap(pte);
835 0 : blk_finish_plug(&plug);
836 0 : swap_read_unplug(splug);
837 0 : lru_add_drain();
838 : skip:
839 : /* The page was likely read above, so no need for plugging here */
840 0 : return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
841 0 : ra_info.win == 1, NULL);
842 : }
843 :
844 : /**
845 : * swapin_readahead - swap in pages in hope we need them soon
846 : * @entry: swap entry of this memory
847 : * @gfp_mask: memory allocation flags
848 : * @vmf: fault information
849 : *
850 : * Returns the struct page for entry and addr, after queueing swapin.
851 : *
852 : * It's a main entry function for swap readahead. By the configuration,
853 : * it will read ahead blocks by cluster-based(ie, physical disk based)
854 : * or vma-based(ie, virtual address based on faulty address) readahead.
855 : */
856 0 : struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
857 : struct vm_fault *vmf)
858 : {
859 : return swap_use_vma_readahead() ?
860 0 : swap_vma_readahead(entry, gfp_mask, vmf) :
861 : swap_cluster_readahead(entry, gfp_mask, vmf);
862 : }
863 :
864 : #ifdef CONFIG_SYSFS
865 0 : static ssize_t vma_ra_enabled_show(struct kobject *kobj,
866 : struct kobj_attribute *attr, char *buf)
867 : {
868 0 : return sysfs_emit(buf, "%s\n",
869 0 : enable_vma_readahead ? "true" : "false");
870 : }
871 0 : static ssize_t vma_ra_enabled_store(struct kobject *kobj,
872 : struct kobj_attribute *attr,
873 : const char *buf, size_t count)
874 : {
875 : ssize_t ret;
876 :
877 0 : ret = kstrtobool(buf, &enable_vma_readahead);
878 0 : if (ret)
879 : return ret;
880 :
881 0 : return count;
882 : }
883 : static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
884 :
885 : static struct attribute *swap_attrs[] = {
886 : &vma_ra_enabled_attr.attr,
887 : NULL,
888 : };
889 :
890 : static const struct attribute_group swap_attr_group = {
891 : .attrs = swap_attrs,
892 : };
893 :
894 1 : static int __init swap_init_sysfs(void)
895 : {
896 : int err;
897 : struct kobject *swap_kobj;
898 :
899 1 : swap_kobj = kobject_create_and_add("swap", mm_kobj);
900 1 : if (!swap_kobj) {
901 0 : pr_err("failed to create swap kobject\n");
902 0 : return -ENOMEM;
903 : }
904 1 : err = sysfs_create_group(swap_kobj, &swap_attr_group);
905 1 : if (err) {
906 0 : pr_err("failed to register swap group\n");
907 : goto delete_obj;
908 : }
909 : return 0;
910 :
911 : delete_obj:
912 0 : kobject_put(swap_kobj);
913 0 : return err;
914 : }
915 : subsys_initcall(swap_init_sysfs);
916 : #endif
|