Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (C) 1993 Linus Torvalds
4 : * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 : * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 : * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 : * Numa awareness, Christoph Lameter, SGI, June 2005
8 : * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 : */
10 :
11 : #include <linux/vmalloc.h>
12 : #include <linux/mm.h>
13 : #include <linux/module.h>
14 : #include <linux/highmem.h>
15 : #include <linux/sched/signal.h>
16 : #include <linux/slab.h>
17 : #include <linux/spinlock.h>
18 : #include <linux/interrupt.h>
19 : #include <linux/proc_fs.h>
20 : #include <linux/seq_file.h>
21 : #include <linux/set_memory.h>
22 : #include <linux/debugobjects.h>
23 : #include <linux/kallsyms.h>
24 : #include <linux/list.h>
25 : #include <linux/notifier.h>
26 : #include <linux/rbtree.h>
27 : #include <linux/xarray.h>
28 : #include <linux/io.h>
29 : #include <linux/rcupdate.h>
30 : #include <linux/pfn.h>
31 : #include <linux/kmemleak.h>
32 : #include <linux/atomic.h>
33 : #include <linux/compiler.h>
34 : #include <linux/memcontrol.h>
35 : #include <linux/llist.h>
36 : #include <linux/uio.h>
37 : #include <linux/bitops.h>
38 : #include <linux/rbtree_augmented.h>
39 : #include <linux/overflow.h>
40 : #include <linux/pgtable.h>
41 : #include <linux/hugetlb.h>
42 : #include <linux/sched/mm.h>
43 : #include <asm/tlbflush.h>
44 : #include <asm/shmparam.h>
45 :
46 : #define CREATE_TRACE_POINTS
47 : #include <trace/events/vmalloc.h>
48 :
49 : #include "internal.h"
50 : #include "pgalloc-track.h"
51 :
52 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 : static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 :
55 : static int __init set_nohugeiomap(char *str)
56 : {
57 : ioremap_max_page_shift = PAGE_SHIFT;
58 : return 0;
59 : }
60 : early_param("nohugeiomap", set_nohugeiomap);
61 : #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 : static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 : #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 :
65 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 : static bool __ro_after_init vmap_allow_huge = true;
67 :
68 : static int __init set_nohugevmalloc(char *str)
69 : {
70 : vmap_allow_huge = false;
71 : return 0;
72 : }
73 : early_param("nohugevmalloc", set_nohugevmalloc);
74 : #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 : static const bool vmap_allow_huge = false;
76 : #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 :
78 0 : bool is_vmalloc_addr(const void *x)
79 : {
80 0 : unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 :
82 0 : return addr >= VMALLOC_START && addr < VMALLOC_END;
83 : }
84 : EXPORT_SYMBOL(is_vmalloc_addr);
85 :
86 : struct vfree_deferred {
87 : struct llist_head list;
88 : struct work_struct wq;
89 : };
90 : static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 :
92 : /*** Page table manipulation functions ***/
93 0 : static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 : phys_addr_t phys_addr, pgprot_t prot,
95 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 : {
97 : pte_t *pte;
98 : u64 pfn;
99 0 : unsigned long size = PAGE_SIZE;
100 :
101 0 : pfn = phys_addr >> PAGE_SHIFT;
102 0 : pte = pte_alloc_kernel_track(pmd, addr, mask);
103 0 : if (!pte)
104 : return -ENOMEM;
105 : do {
106 0 : BUG_ON(!pte_none(ptep_get(pte)));
107 :
108 : #ifdef CONFIG_HUGETLB_PAGE
109 : size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 : if (size != PAGE_SIZE) {
111 : pte_t entry = pfn_pte(pfn, prot);
112 :
113 : entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 : set_huge_pte_at(&init_mm, addr, pte, entry);
115 : pfn += PFN_DOWN(size);
116 : continue;
117 : }
118 : #endif
119 0 : set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 0 : pfn++;
121 0 : } while (pte += PFN_DOWN(size), addr += size, addr != end);
122 0 : *mask |= PGTBL_PTE_MODIFIED;
123 : return 0;
124 : }
125 :
126 : static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 : phys_addr_t phys_addr, pgprot_t prot,
128 : unsigned int max_page_shift)
129 : {
130 : if (max_page_shift < PMD_SHIFT)
131 : return 0;
132 :
133 : if (!arch_vmap_pmd_supported(prot))
134 : return 0;
135 :
136 : if ((end - addr) != PMD_SIZE)
137 : return 0;
138 :
139 : if (!IS_ALIGNED(addr, PMD_SIZE))
140 : return 0;
141 :
142 : if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 : return 0;
144 :
145 : if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 : return 0;
147 :
148 : return pmd_set_huge(pmd, phys_addr, prot);
149 : }
150 :
151 0 : static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 : phys_addr_t phys_addr, pgprot_t prot,
153 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 : {
155 : pmd_t *pmd;
156 : unsigned long next;
157 :
158 0 : pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 0 : if (!pmd)
160 : return -ENOMEM;
161 : do {
162 0 : next = pmd_addr_end(addr, end);
163 :
164 0 : if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 : max_page_shift)) {
166 : *mask |= PGTBL_PMD_MODIFIED;
167 : continue;
168 : }
169 :
170 0 : if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 : return -ENOMEM;
172 0 : } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 : return 0;
174 : }
175 :
176 : static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 : phys_addr_t phys_addr, pgprot_t prot,
178 : unsigned int max_page_shift)
179 : {
180 : if (max_page_shift < PUD_SHIFT)
181 : return 0;
182 :
183 : if (!arch_vmap_pud_supported(prot))
184 : return 0;
185 :
186 : if ((end - addr) != PUD_SIZE)
187 : return 0;
188 :
189 : if (!IS_ALIGNED(addr, PUD_SIZE))
190 : return 0;
191 :
192 : if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 : return 0;
194 :
195 : if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 : return 0;
197 :
198 : return pud_set_huge(pud, phys_addr, prot);
199 : }
200 :
201 : static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 : phys_addr_t phys_addr, pgprot_t prot,
203 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 : {
205 : pud_t *pud;
206 : unsigned long next;
207 :
208 0 : pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 : if (!pud)
210 : return -ENOMEM;
211 : do {
212 0 : next = pud_addr_end(addr, end);
213 :
214 0 : if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 : max_page_shift)) {
216 : *mask |= PGTBL_PUD_MODIFIED;
217 : continue;
218 : }
219 :
220 0 : if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 : max_page_shift, mask))
222 : return -ENOMEM;
223 0 : } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 : return 0;
225 : }
226 :
227 : static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 : phys_addr_t phys_addr, pgprot_t prot,
229 : unsigned int max_page_shift)
230 : {
231 : if (max_page_shift < P4D_SHIFT)
232 : return 0;
233 :
234 : if (!arch_vmap_p4d_supported(prot))
235 : return 0;
236 :
237 : if ((end - addr) != P4D_SIZE)
238 : return 0;
239 :
240 : if (!IS_ALIGNED(addr, P4D_SIZE))
241 : return 0;
242 :
243 : if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 : return 0;
245 :
246 : if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 : return 0;
248 :
249 : return p4d_set_huge(p4d, phys_addr, prot);
250 : }
251 :
252 0 : static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 : phys_addr_t phys_addr, pgprot_t prot,
254 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 : {
256 : p4d_t *p4d;
257 : unsigned long next;
258 :
259 0 : p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 0 : if (!p4d)
261 : return -ENOMEM;
262 : do {
263 0 : next = p4d_addr_end(addr, end);
264 :
265 0 : if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 : max_page_shift)) {
267 : *mask |= PGTBL_P4D_MODIFIED;
268 : continue;
269 : }
270 :
271 0 : if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 : max_page_shift, mask))
273 : return -ENOMEM;
274 0 : } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 : return 0;
276 : }
277 :
278 0 : static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 : phys_addr_t phys_addr, pgprot_t prot,
280 : unsigned int max_page_shift)
281 : {
282 : pgd_t *pgd;
283 : unsigned long start;
284 : unsigned long next;
285 : int err;
286 0 : pgtbl_mod_mask mask = 0;
287 :
288 : might_sleep();
289 0 : BUG_ON(addr >= end);
290 :
291 0 : start = addr;
292 0 : pgd = pgd_offset_k(addr);
293 : do {
294 0 : next = pgd_addr_end(addr, end);
295 0 : err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 : max_page_shift, &mask);
297 0 : if (err)
298 : break;
299 0 : } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 :
301 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 : arch_sync_kernel_mappings(start, end);
303 :
304 0 : return err;
305 : }
306 :
307 0 : int ioremap_page_range(unsigned long addr, unsigned long end,
308 : phys_addr_t phys_addr, pgprot_t prot)
309 : {
310 : int err;
311 :
312 0 : err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 : ioremap_max_page_shift);
314 0 : flush_cache_vmap(addr, end);
315 0 : if (!err)
316 0 : err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 : ioremap_max_page_shift);
318 0 : return err;
319 : }
320 :
321 0 : static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 : pgtbl_mod_mask *mask)
323 : {
324 : pte_t *pte;
325 :
326 0 : pte = pte_offset_kernel(pmd, addr);
327 : do {
328 0 : pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 0 : WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 0 : } while (pte++, addr += PAGE_SIZE, addr != end);
331 0 : *mask |= PGTBL_PTE_MODIFIED;
332 0 : }
333 :
334 0 : static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 : pgtbl_mod_mask *mask)
336 : {
337 : pmd_t *pmd;
338 : unsigned long next;
339 : int cleared;
340 :
341 0 : pmd = pmd_offset(pud, addr);
342 : do {
343 0 : next = pmd_addr_end(addr, end);
344 :
345 0 : cleared = pmd_clear_huge(pmd);
346 0 : if (cleared || pmd_bad(*pmd))
347 0 : *mask |= PGTBL_PMD_MODIFIED;
348 :
349 : if (cleared)
350 : continue;
351 0 : if (pmd_none_or_clear_bad(pmd))
352 0 : continue;
353 0 : vunmap_pte_range(pmd, addr, next, mask);
354 :
355 0 : cond_resched();
356 0 : } while (pmd++, addr = next, addr != end);
357 0 : }
358 :
359 0 : static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 : pgtbl_mod_mask *mask)
361 : {
362 : pud_t *pud;
363 : unsigned long next;
364 : int cleared;
365 :
366 0 : pud = pud_offset(p4d, addr);
367 : do {
368 0 : next = pud_addr_end(addr, end);
369 :
370 0 : cleared = pud_clear_huge(pud);
371 0 : if (cleared || pud_bad(*pud))
372 0 : *mask |= PGTBL_PUD_MODIFIED;
373 :
374 : if (cleared)
375 : continue;
376 0 : if (pud_none_or_clear_bad(pud))
377 0 : continue;
378 0 : vunmap_pmd_range(pud, addr, next, mask);
379 0 : } while (pud++, addr = next, addr != end);
380 0 : }
381 :
382 : static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 : pgtbl_mod_mask *mask)
384 : {
385 : p4d_t *p4d;
386 : unsigned long next;
387 :
388 0 : p4d = p4d_offset(pgd, addr);
389 : do {
390 0 : next = p4d_addr_end(addr, end);
391 :
392 0 : p4d_clear_huge(p4d);
393 0 : if (p4d_bad(*p4d))
394 : *mask |= PGTBL_P4D_MODIFIED;
395 :
396 0 : if (p4d_none_or_clear_bad(p4d))
397 : continue;
398 0 : vunmap_pud_range(p4d, addr, next, mask);
399 0 : } while (p4d++, addr = next, addr != end);
400 : }
401 :
402 : /*
403 : * vunmap_range_noflush is similar to vunmap_range, but does not
404 : * flush caches or TLBs.
405 : *
406 : * The caller is responsible for calling flush_cache_vmap() before calling
407 : * this function, and flush_tlb_kernel_range after it has returned
408 : * successfully (and before the addresses are expected to cause a page fault
409 : * or be re-mapped for something else, if TLB flushes are being delayed or
410 : * coalesced).
411 : *
412 : * This is an internal function only. Do not use outside mm/.
413 : */
414 0 : void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 : {
416 : unsigned long next;
417 : pgd_t *pgd;
418 0 : unsigned long addr = start;
419 0 : pgtbl_mod_mask mask = 0;
420 :
421 0 : BUG_ON(addr >= end);
422 0 : pgd = pgd_offset_k(addr);
423 : do {
424 0 : next = pgd_addr_end(addr, end);
425 0 : if (pgd_bad(*pgd))
426 : mask |= PGTBL_PGD_MODIFIED;
427 0 : if (pgd_none_or_clear_bad(pgd))
428 : continue;
429 : vunmap_p4d_range(pgd, addr, next, &mask);
430 0 : } while (pgd++, addr = next, addr != end);
431 :
432 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 : arch_sync_kernel_mappings(start, end);
434 0 : }
435 :
436 0 : void vunmap_range_noflush(unsigned long start, unsigned long end)
437 : {
438 0 : kmsan_vunmap_range_noflush(start, end);
439 0 : __vunmap_range_noflush(start, end);
440 0 : }
441 :
442 : /**
443 : * vunmap_range - unmap kernel virtual addresses
444 : * @addr: start of the VM area to unmap
445 : * @end: end of the VM area to unmap (non-inclusive)
446 : *
447 : * Clears any present PTEs in the virtual address range, flushes TLBs and
448 : * caches. Any subsequent access to the address before it has been re-mapped
449 : * is a kernel bug.
450 : */
451 0 : void vunmap_range(unsigned long addr, unsigned long end)
452 : {
453 0 : flush_cache_vunmap(addr, end);
454 0 : vunmap_range_noflush(addr, end);
455 0 : flush_tlb_kernel_range(addr, end);
456 0 : }
457 :
458 16 : static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 : pgtbl_mod_mask *mask)
461 : {
462 : pte_t *pte;
463 :
464 : /*
465 : * nr is a running index into the array which helps higher level
466 : * callers keep track of where we're up to.
467 : */
468 :
469 32 : pte = pte_alloc_kernel_track(pmd, addr, mask);
470 16 : if (!pte)
471 : return -ENOMEM;
472 : do {
473 64 : struct page *page = pages[*nr];
474 :
475 128 : if (WARN_ON(!pte_none(ptep_get(pte))))
476 : return -EBUSY;
477 64 : if (WARN_ON(!page))
478 : return -ENOMEM;
479 128 : if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 : return -EINVAL;
481 :
482 128 : set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 64 : (*nr)++;
484 64 : } while (pte++, addr += PAGE_SIZE, addr != end);
485 16 : *mask |= PGTBL_PTE_MODIFIED;
486 16 : return 0;
487 : }
488 :
489 16 : static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 : pgtbl_mod_mask *mask)
492 : {
493 : pmd_t *pmd;
494 : unsigned long next;
495 :
496 16 : pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 16 : if (!pmd)
498 : return -ENOMEM;
499 : do {
500 16 : next = pmd_addr_end(addr, end);
501 16 : if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 : return -ENOMEM;
503 16 : } while (pmd++, addr = next, addr != end);
504 : return 0;
505 : }
506 :
507 : static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 : pgtbl_mod_mask *mask)
510 : {
511 : pud_t *pud;
512 : unsigned long next;
513 :
514 32 : pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 : if (!pud)
516 : return -ENOMEM;
517 : do {
518 16 : next = pud_addr_end(addr, end);
519 16 : if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 : return -ENOMEM;
521 16 : } while (pud++, addr = next, addr != end);
522 : return 0;
523 : }
524 :
525 16 : static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 : pgtbl_mod_mask *mask)
528 : {
529 : p4d_t *p4d;
530 : unsigned long next;
531 :
532 32 : p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 16 : if (!p4d)
534 : return -ENOMEM;
535 : do {
536 16 : next = p4d_addr_end(addr, end);
537 16 : if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 : return -ENOMEM;
539 16 : } while (p4d++, addr = next, addr != end);
540 16 : return 0;
541 : }
542 :
543 16 : static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 : pgprot_t prot, struct page **pages)
545 : {
546 16 : unsigned long start = addr;
547 : pgd_t *pgd;
548 : unsigned long next;
549 16 : int err = 0;
550 16 : int nr = 0;
551 16 : pgtbl_mod_mask mask = 0;
552 :
553 16 : BUG_ON(addr >= end);
554 32 : pgd = pgd_offset_k(addr);
555 : do {
556 16 : next = pgd_addr_end(addr, end);
557 16 : if (pgd_bad(*pgd))
558 : mask |= PGTBL_PGD_MODIFIED;
559 16 : err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 16 : if (err)
561 : return err;
562 16 : } while (pgd++, addr = next, addr != end);
563 :
564 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 : arch_sync_kernel_mappings(start, end);
566 :
567 : return 0;
568 : }
569 :
570 : /*
571 : * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 : * flush caches.
573 : *
574 : * The caller is responsible for calling flush_cache_vmap() after this
575 : * function returns successfully and before the addresses are accessed.
576 : *
577 : * This is an internal function only. Do not use outside mm/.
578 : */
579 16 : int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 : pgprot_t prot, struct page **pages, unsigned int page_shift)
581 : {
582 16 : unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 :
584 16 : WARN_ON(page_shift < PAGE_SHIFT);
585 :
586 : if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 : page_shift == PAGE_SHIFT)
588 16 : return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 :
590 : for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 : int err;
592 :
593 : err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 : page_to_phys(pages[i]), prot,
595 : page_shift);
596 : if (err)
597 : return err;
598 :
599 : addr += 1UL << page_shift;
600 : }
601 :
602 : return 0;
603 : }
604 :
605 0 : int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 : pgprot_t prot, struct page **pages, unsigned int page_shift)
607 : {
608 16 : int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 : page_shift);
610 :
611 : if (ret)
612 : return ret;
613 16 : return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 : }
615 :
616 : /**
617 : * vmap_pages_range - map pages to a kernel virtual address
618 : * @addr: start of the VM area to map
619 : * @end: end of the VM area to map (non-inclusive)
620 : * @prot: page protection flags to use
621 : * @pages: pages to map (always PAGE_SIZE pages)
622 : * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 : * be aligned and contiguous up to at least this shift.
624 : *
625 : * RETURNS:
626 : * 0 on success, -errno on failure.
627 : */
628 16 : static int vmap_pages_range(unsigned long addr, unsigned long end,
629 : pgprot_t prot, struct page **pages, unsigned int page_shift)
630 : {
631 : int err;
632 :
633 16 : err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 16 : flush_cache_vmap(addr, end);
635 16 : return err;
636 : }
637 :
638 0 : int is_vmalloc_or_module_addr(const void *x)
639 : {
640 : /*
641 : * ARM, x86-64 and sparc64 put modules in a special place,
642 : * and fall back on vmalloc() if that fails. Others
643 : * just put it in the vmalloc space.
644 : */
645 : #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 : unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 : if (addr >= MODULES_VADDR && addr < MODULES_END)
648 : return 1;
649 : #endif
650 0 : return is_vmalloc_addr(x);
651 : }
652 : EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653 :
654 : /*
655 : * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 : * return the tail page that corresponds to the base page address, which
657 : * matches small vmap mappings.
658 : */
659 0 : struct page *vmalloc_to_page(const void *vmalloc_addr)
660 : {
661 0 : unsigned long addr = (unsigned long) vmalloc_addr;
662 0 : struct page *page = NULL;
663 0 : pgd_t *pgd = pgd_offset_k(addr);
664 : p4d_t *p4d;
665 : pud_t *pud;
666 : pmd_t *pmd;
667 : pte_t *ptep, pte;
668 :
669 : /*
670 : * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 : * architectures that do not vmalloc module space
672 : */
673 : VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674 :
675 : if (pgd_none(*pgd))
676 : return NULL;
677 0 : if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 : return NULL; /* XXX: no allowance for huge pgd */
679 0 : if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 : return NULL;
681 :
682 0 : p4d = p4d_offset(pgd, addr);
683 : if (p4d_none(*p4d))
684 : return NULL;
685 : if (p4d_leaf(*p4d))
686 : return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 0 : if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 : return NULL;
689 :
690 0 : pud = pud_offset(p4d, addr);
691 0 : if (pud_none(*pud))
692 : return NULL;
693 : if (pud_leaf(*pud))
694 : return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 0 : if (WARN_ON_ONCE(pud_bad(*pud)))
696 : return NULL;
697 :
698 0 : pmd = pmd_offset(pud, addr);
699 0 : if (pmd_none(*pmd))
700 : return NULL;
701 : if (pmd_leaf(*pmd))
702 : return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 0 : if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 : return NULL;
705 :
706 0 : ptep = pte_offset_kernel(pmd, addr);
707 0 : pte = ptep_get(ptep);
708 0 : if (pte_present(pte))
709 0 : page = pte_page(pte);
710 :
711 : return page;
712 : }
713 : EXPORT_SYMBOL(vmalloc_to_page);
714 :
715 : /*
716 : * Map a vmalloc()-space virtual address to the physical page frame number.
717 : */
718 0 : unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
719 : {
720 0 : return page_to_pfn(vmalloc_to_page(vmalloc_addr));
721 : }
722 : EXPORT_SYMBOL(vmalloc_to_pfn);
723 :
724 :
725 : /*** Global kva allocator ***/
726 :
727 : #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
728 : #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
729 :
730 :
731 : static DEFINE_SPINLOCK(vmap_area_lock);
732 : static DEFINE_SPINLOCK(free_vmap_area_lock);
733 : /* Export for kexec only */
734 : LIST_HEAD(vmap_area_list);
735 : static struct rb_root vmap_area_root = RB_ROOT;
736 : static bool vmap_initialized __read_mostly;
737 :
738 : static struct rb_root purge_vmap_area_root = RB_ROOT;
739 : static LIST_HEAD(purge_vmap_area_list);
740 : static DEFINE_SPINLOCK(purge_vmap_area_lock);
741 :
742 : /*
743 : * This kmem_cache is used for vmap_area objects. Instead of
744 : * allocating from slab we reuse an object from this cache to
745 : * make things faster. Especially in "no edge" splitting of
746 : * free block.
747 : */
748 : static struct kmem_cache *vmap_area_cachep;
749 :
750 : /*
751 : * This linked list is used in pair with free_vmap_area_root.
752 : * It gives O(1) access to prev/next to perform fast coalescing.
753 : */
754 : static LIST_HEAD(free_vmap_area_list);
755 :
756 : /*
757 : * This augment red-black tree represents the free vmap space.
758 : * All vmap_area objects in this tree are sorted by va->va_start
759 : * address. It is used for allocation and merging when a vmap
760 : * object is released.
761 : *
762 : * Each vmap_area node contains a maximum available free block
763 : * of its sub-tree, right or left. Therefore it is possible to
764 : * find a lowest match of free area.
765 : */
766 : static struct rb_root free_vmap_area_root = RB_ROOT;
767 :
768 : /*
769 : * Preload a CPU with one object for "no edge" split case. The
770 : * aim is to get rid of allocations from the atomic context, thus
771 : * to use more permissive allocation masks.
772 : */
773 : static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
774 :
775 : static __always_inline unsigned long
776 : va_size(struct vmap_area *va)
777 : {
778 108 : return (va->va_end - va->va_start);
779 : }
780 :
781 : static __always_inline unsigned long
782 : get_subtree_max_size(struct rb_node *node)
783 : {
784 : struct vmap_area *va;
785 :
786 146 : va = rb_entry_safe(node, struct vmap_area, rb_node);
787 146 : return va ? va->subtree_max_size : 0;
788 : }
789 :
790 160 : RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
791 : struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
792 :
793 : static void reclaim_and_purge_vmap_areas(void);
794 : static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
795 : static void drain_vmap_area_work(struct work_struct *work);
796 : static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
797 :
798 : static atomic_long_t nr_vmalloc_pages;
799 :
800 0 : unsigned long vmalloc_nr_pages(void)
801 : {
802 0 : return atomic_long_read(&nr_vmalloc_pages);
803 : }
804 :
805 : /* Look up the first VA which satisfies addr < va_end, NULL if none. */
806 : static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
807 : {
808 0 : struct vmap_area *va = NULL;
809 0 : struct rb_node *n = vmap_area_root.rb_node;
810 :
811 0 : addr = (unsigned long)kasan_reset_tag((void *)addr);
812 :
813 0 : while (n) {
814 : struct vmap_area *tmp;
815 :
816 0 : tmp = rb_entry(n, struct vmap_area, rb_node);
817 0 : if (tmp->va_end > addr) {
818 0 : va = tmp;
819 0 : if (tmp->va_start <= addr)
820 : break;
821 :
822 0 : n = n->rb_left;
823 : } else
824 0 : n = n->rb_right;
825 : }
826 :
827 : return va;
828 : }
829 :
830 : static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
831 : {
832 16 : struct rb_node *n = root->rb_node;
833 :
834 16 : addr = (unsigned long)kasan_reset_tag((void *)addr);
835 :
836 65 : while (n) {
837 : struct vmap_area *va;
838 :
839 65 : va = rb_entry(n, struct vmap_area, rb_node);
840 65 : if (addr < va->va_start)
841 0 : n = n->rb_left;
842 65 : else if (addr >= va->va_end)
843 49 : n = n->rb_right;
844 : else
845 : return va;
846 : }
847 :
848 : return NULL;
849 : }
850 :
851 : /*
852 : * This function returns back addresses of parent node
853 : * and its left or right link for further processing.
854 : *
855 : * Otherwise NULL is returned. In that case all further
856 : * steps regarding inserting of conflicting overlap range
857 : * have to be declined and actually considered as a bug.
858 : */
859 : static __always_inline struct rb_node **
860 : find_va_links(struct vmap_area *va,
861 : struct rb_root *root, struct rb_node *from,
862 : struct rb_node **parent)
863 : {
864 : struct vmap_area *tmp_va;
865 : struct rb_node **link;
866 :
867 17 : if (root) {
868 17 : link = &root->rb_node;
869 17 : if (unlikely(!*link)) {
870 : *parent = NULL;
871 : return link;
872 : }
873 : } else {
874 : link = &from;
875 : }
876 :
877 : /*
878 : * Go to the bottom of the tree. When we hit the last point
879 : * we end up with parent rb_node and correct direction, i name
880 : * it link, where the new va->rb_node will be attached to.
881 : */
882 : do {
883 83 : tmp_va = rb_entry(*link, struct vmap_area, rb_node);
884 :
885 : /*
886 : * During the traversal we also do some sanity check.
887 : * Trigger the BUG() if there are sides(left/right)
888 : * or full overlaps.
889 : */
890 83 : if (va->va_end <= tmp_va->va_start)
891 16 : link = &(*link)->rb_left;
892 67 : else if (va->va_start >= tmp_va->va_end)
893 67 : link = &(*link)->rb_right;
894 : else {
895 0 : WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
896 : va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
897 :
898 : return NULL;
899 : }
900 83 : } while (*link);
901 :
902 31 : *parent = &tmp_va->rb_node;
903 : return link;
904 : }
905 :
906 : static __always_inline struct list_head *
907 : get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
908 : {
909 : struct list_head *list;
910 :
911 0 : if (unlikely(!parent))
912 : /*
913 : * The red-black tree where we try to find VA neighbors
914 : * before merging or inserting is empty, i.e. it means
915 : * there is no free vmap space. Normally it does not
916 : * happen but we handle this case anyway.
917 : */
918 : return NULL;
919 :
920 0 : list = &rb_entry(parent, struct vmap_area, rb_node)->list;
921 0 : return (&parent->rb_right == link ? list->next : list);
922 : }
923 :
924 : static __always_inline void
925 : __link_va(struct vmap_area *va, struct rb_root *root,
926 : struct rb_node *parent, struct rb_node **link,
927 : struct list_head *head, bool augment)
928 : {
929 : /*
930 : * VA is still not in the list, but we can
931 : * identify its future previous list_head node.
932 : */
933 33 : if (likely(parent)) {
934 31 : head = &rb_entry(parent, struct vmap_area, rb_node)->list;
935 31 : if (&parent->rb_right != link)
936 8 : head = head->prev;
937 : }
938 :
939 : /* Insert to the rb-tree */
940 66 : rb_link_node(&va->rb_node, parent, link);
941 : if (augment) {
942 : /*
943 : * Some explanation here. Just perform simple insertion
944 : * to the tree. We do not set va->subtree_max_size to
945 : * its current size before calling rb_insert_augmented().
946 : * It is because we populate the tree from the bottom
947 : * to parent levels when the node _is_ in the tree.
948 : *
949 : * Therefore we set subtree_max_size to zero after insertion,
950 : * to let __augment_tree_propagate_from() puts everything to
951 : * the correct order later on.
952 : */
953 17 : rb_insert_augmented(&va->rb_node,
954 : root, &free_vmap_area_rb_augment_cb);
955 17 : va->subtree_max_size = 0;
956 : } else {
957 16 : rb_insert_color(&va->rb_node, root);
958 : }
959 :
960 : /* Address-sort this list */
961 50 : list_add(&va->list, head);
962 : }
963 :
964 : static __always_inline void
965 : link_va(struct vmap_area *va, struct rb_root *root,
966 : struct rb_node *parent, struct rb_node **link,
967 : struct list_head *head)
968 : {
969 : __link_va(va, root, parent, link, head, false);
970 : }
971 :
972 : static __always_inline void
973 : link_va_augment(struct vmap_area *va, struct rb_root *root,
974 : struct rb_node *parent, struct rb_node **link,
975 : struct list_head *head)
976 : {
977 17 : __link_va(va, root, parent, link, head, true);
978 : }
979 :
980 : static __always_inline void
981 : __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
982 : {
983 0 : if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
984 : return;
985 :
986 : if (augment)
987 0 : rb_erase_augmented(&va->rb_node,
988 : root, &free_vmap_area_rb_augment_cb);
989 : else
990 0 : rb_erase(&va->rb_node, root);
991 :
992 0 : list_del_init(&va->list);
993 0 : RB_CLEAR_NODE(&va->rb_node);
994 : }
995 :
996 : static __always_inline void
997 : unlink_va(struct vmap_area *va, struct rb_root *root)
998 : {
999 0 : __unlink_va(va, root, false);
1000 : }
1001 :
1002 : static __always_inline void
1003 : unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1004 : {
1005 0 : __unlink_va(va, root, true);
1006 : }
1007 :
1008 : #if DEBUG_AUGMENT_PROPAGATE_CHECK
1009 : /*
1010 : * Gets called when remove the node and rotate.
1011 : */
1012 : static __always_inline unsigned long
1013 : compute_subtree_max_size(struct vmap_area *va)
1014 : {
1015 : return max3(va_size(va),
1016 : get_subtree_max_size(va->rb_node.rb_left),
1017 : get_subtree_max_size(va->rb_node.rb_right));
1018 : }
1019 :
1020 : static void
1021 : augment_tree_propagate_check(void)
1022 : {
1023 : struct vmap_area *va;
1024 : unsigned long computed_size;
1025 :
1026 : list_for_each_entry(va, &free_vmap_area_list, list) {
1027 : computed_size = compute_subtree_max_size(va);
1028 : if (computed_size != va->subtree_max_size)
1029 : pr_emerg("tree is corrupted: %lu, %lu\n",
1030 : va_size(va), va->subtree_max_size);
1031 : }
1032 : }
1033 : #endif
1034 :
1035 : /*
1036 : * This function populates subtree_max_size from bottom to upper
1037 : * levels starting from VA point. The propagation must be done
1038 : * when VA size is modified by changing its va_start/va_end. Or
1039 : * in case of newly inserting of VA to the tree.
1040 : *
1041 : * It means that __augment_tree_propagate_from() must be called:
1042 : * - After VA has been inserted to the tree(free path);
1043 : * - After VA has been shrunk(allocation path);
1044 : * - After VA has been increased(merging path).
1045 : *
1046 : * Please note that, it does not mean that upper parent nodes
1047 : * and their subtree_max_size are recalculated all the time up
1048 : * to the root node.
1049 : *
1050 : * 4--8
1051 : * /\
1052 : * / \
1053 : * / \
1054 : * 2--2 8--8
1055 : *
1056 : * For example if we modify the node 4, shrinking it to 2, then
1057 : * no any modification is required. If we shrink the node 2 to 1
1058 : * its subtree_max_size is updated only, and set to 1. If we shrink
1059 : * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1060 : * node becomes 4--6.
1061 : */
1062 : static __always_inline void
1063 : augment_tree_propagate_from(struct vmap_area *va)
1064 : {
1065 : /*
1066 : * Populate the tree from bottom towards the root until
1067 : * the calculated maximum available size of checked node
1068 : * is equal to its current one.
1069 : */
1070 33 : free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1071 :
1072 : #if DEBUG_AUGMENT_PROPAGATE_CHECK
1073 : augment_tree_propagate_check();
1074 : #endif
1075 : }
1076 :
1077 : static void
1078 16 : insert_vmap_area(struct vmap_area *va,
1079 : struct rb_root *root, struct list_head *head)
1080 : {
1081 : struct rb_node **link;
1082 : struct rb_node *parent;
1083 :
1084 16 : link = find_va_links(va, root, NULL, &parent);
1085 16 : if (link)
1086 16 : link_va(va, root, parent, link, head);
1087 16 : }
1088 :
1089 : static void
1090 17 : insert_vmap_area_augment(struct vmap_area *va,
1091 : struct rb_node *from, struct rb_root *root,
1092 : struct list_head *head)
1093 : {
1094 : struct rb_node **link;
1095 : struct rb_node *parent;
1096 :
1097 17 : if (from)
1098 : link = find_va_links(va, NULL, from, &parent);
1099 : else
1100 : link = find_va_links(va, root, NULL, &parent);
1101 :
1102 17 : if (link) {
1103 34 : link_va_augment(va, root, parent, link, head);
1104 : augment_tree_propagate_from(va);
1105 : }
1106 17 : }
1107 :
1108 : /*
1109 : * Merge de-allocated chunk of VA memory with previous
1110 : * and next free blocks. If coalesce is not done a new
1111 : * free area is inserted. If VA has been merged, it is
1112 : * freed.
1113 : *
1114 : * Please note, it can return NULL in case of overlap
1115 : * ranges, followed by WARN() report. Despite it is a
1116 : * buggy behaviour, a system can be alive and keep
1117 : * ongoing.
1118 : */
1119 : static __always_inline struct vmap_area *
1120 : __merge_or_add_vmap_area(struct vmap_area *va,
1121 : struct rb_root *root, struct list_head *head, bool augment)
1122 : {
1123 : struct vmap_area *sibling;
1124 : struct list_head *next;
1125 : struct rb_node **link;
1126 : struct rb_node *parent;
1127 0 : bool merged = false;
1128 :
1129 : /*
1130 : * Find a place in the tree where VA potentially will be
1131 : * inserted, unless it is merged with its sibling/siblings.
1132 : */
1133 0 : link = find_va_links(va, root, NULL, &parent);
1134 0 : if (!link)
1135 : return NULL;
1136 :
1137 : /*
1138 : * Get next node of VA to check if merging can be done.
1139 : */
1140 0 : next = get_va_next_sibling(parent, link);
1141 0 : if (unlikely(next == NULL))
1142 : goto insert;
1143 :
1144 : /*
1145 : * start end
1146 : * | |
1147 : * |<------VA------>|<-----Next----->|
1148 : * | |
1149 : * start end
1150 : */
1151 0 : if (next != head) {
1152 0 : sibling = list_entry(next, struct vmap_area, list);
1153 0 : if (sibling->va_start == va->va_end) {
1154 0 : sibling->va_start = va->va_start;
1155 :
1156 : /* Free vmap_area object. */
1157 0 : kmem_cache_free(vmap_area_cachep, va);
1158 :
1159 : /* Point to the new merged area. */
1160 0 : va = sibling;
1161 0 : merged = true;
1162 : }
1163 : }
1164 :
1165 : /*
1166 : * start end
1167 : * | |
1168 : * |<-----Prev----->|<------VA------>|
1169 : * | |
1170 : * start end
1171 : */
1172 0 : if (next->prev != head) {
1173 0 : sibling = list_entry(next->prev, struct vmap_area, list);
1174 0 : if (sibling->va_end == va->va_start) {
1175 : /*
1176 : * If both neighbors are coalesced, it is important
1177 : * to unlink the "next" node first, followed by merging
1178 : * with "previous" one. Otherwise the tree might not be
1179 : * fully populated if a sibling's augmented value is
1180 : * "normalized" because of rotation operations.
1181 : */
1182 0 : if (merged)
1183 0 : __unlink_va(va, root, augment);
1184 :
1185 0 : sibling->va_end = va->va_end;
1186 :
1187 : /* Free vmap_area object. */
1188 0 : kmem_cache_free(vmap_area_cachep, va);
1189 :
1190 : /* Point to the new merged area. */
1191 0 : va = sibling;
1192 0 : merged = true;
1193 : }
1194 : }
1195 :
1196 : insert:
1197 0 : if (!merged)
1198 0 : __link_va(va, root, parent, link, head, augment);
1199 :
1200 : return va;
1201 : }
1202 :
1203 : static __always_inline struct vmap_area *
1204 : merge_or_add_vmap_area(struct vmap_area *va,
1205 : struct rb_root *root, struct list_head *head)
1206 : {
1207 0 : return __merge_or_add_vmap_area(va, root, head, false);
1208 : }
1209 :
1210 : static __always_inline struct vmap_area *
1211 : merge_or_add_vmap_area_augment(struct vmap_area *va,
1212 : struct rb_root *root, struct list_head *head)
1213 : {
1214 0 : va = __merge_or_add_vmap_area(va, root, head, true);
1215 0 : if (va)
1216 : augment_tree_propagate_from(va);
1217 :
1218 : return va;
1219 : }
1220 :
1221 : static __always_inline bool
1222 : is_within_this_va(struct vmap_area *va, unsigned long size,
1223 : unsigned long align, unsigned long vstart)
1224 : {
1225 : unsigned long nva_start_addr;
1226 :
1227 81 : if (va->va_start > vstart)
1228 65 : nva_start_addr = ALIGN(va->va_start, align);
1229 : else
1230 16 : nva_start_addr = ALIGN(vstart, align);
1231 :
1232 : /* Can be overflowed due to big size or alignment. */
1233 81 : if (nva_start_addr + size < nva_start_addr ||
1234 : nva_start_addr < vstart)
1235 : return false;
1236 :
1237 81 : return (nva_start_addr + size <= va->va_end);
1238 : }
1239 :
1240 : /*
1241 : * Find the first free block(lowest start address) in the tree,
1242 : * that will accomplish the request corresponding to passing
1243 : * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1244 : * a search length is adjusted to account for worst case alignment
1245 : * overhead.
1246 : */
1247 : static __always_inline struct vmap_area *
1248 : find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1249 : unsigned long align, unsigned long vstart, bool adjust_search_size)
1250 : {
1251 : struct vmap_area *va;
1252 : struct rb_node *node;
1253 : unsigned long length;
1254 :
1255 : /* Start from the root. */
1256 16 : node = root->rb_node;
1257 :
1258 : /* Adjust the search size for alignment overhead. */
1259 16 : length = adjust_search_size ? size + align - 1 : size;
1260 :
1261 81 : while (node) {
1262 81 : va = rb_entry(node, struct vmap_area, rb_node);
1263 :
1264 186 : if (get_subtree_max_size(node->rb_left) >= length &&
1265 24 : vstart < va->va_start) {
1266 : node = node->rb_left;
1267 : } else {
1268 57 : if (is_within_this_va(va, size, align, vstart))
1269 : return va;
1270 :
1271 : /*
1272 : * Does not make sense to go deeper towards the right
1273 : * sub-tree if it does not have a free block that is
1274 : * equal or bigger to the requested search length.
1275 : */
1276 84 : if (get_subtree_max_size(node->rb_right) >= length) {
1277 27 : node = node->rb_right;
1278 27 : continue;
1279 : }
1280 :
1281 : /*
1282 : * OK. We roll back and find the first right sub-tree,
1283 : * that will satisfy the search criteria. It can happen
1284 : * due to "vstart" restriction or an alignment overhead
1285 : * that is bigger then PAGE_SIZE.
1286 : */
1287 24 : while ((node = rb_parent(node))) {
1288 24 : va = rb_entry(node, struct vmap_area, rb_node);
1289 24 : if (is_within_this_va(va, size, align, vstart))
1290 : return va;
1291 :
1292 46 : if (get_subtree_max_size(node->rb_right) >= length &&
1293 : vstart <= va->va_start) {
1294 : /*
1295 : * Shift the vstart forward. Please note, we update it with
1296 : * parent's start address adding "1" because we do not want
1297 : * to enter same sub-tree after it has already been checked
1298 : * and no suitable free block found there.
1299 : */
1300 14 : vstart = va->va_start + 1;
1301 14 : node = node->rb_right;
1302 : break;
1303 : }
1304 : }
1305 : }
1306 : }
1307 :
1308 : return NULL;
1309 : }
1310 :
1311 : #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1312 : #include <linux/random.h>
1313 :
1314 : static struct vmap_area *
1315 : find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1316 : unsigned long align, unsigned long vstart)
1317 : {
1318 : struct vmap_area *va;
1319 :
1320 : list_for_each_entry(va, head, list) {
1321 : if (!is_within_this_va(va, size, align, vstart))
1322 : continue;
1323 :
1324 : return va;
1325 : }
1326 :
1327 : return NULL;
1328 : }
1329 :
1330 : static void
1331 : find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1332 : unsigned long size, unsigned long align)
1333 : {
1334 : struct vmap_area *va_1, *va_2;
1335 : unsigned long vstart;
1336 : unsigned int rnd;
1337 :
1338 : get_random_bytes(&rnd, sizeof(rnd));
1339 : vstart = VMALLOC_START + rnd;
1340 :
1341 : va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1342 : va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1343 :
1344 : if (va_1 != va_2)
1345 : pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1346 : va_1, va_2, vstart);
1347 : }
1348 : #endif
1349 :
1350 : enum fit_type {
1351 : NOTHING_FIT = 0,
1352 : FL_FIT_TYPE = 1, /* full fit */
1353 : LE_FIT_TYPE = 2, /* left edge fit */
1354 : RE_FIT_TYPE = 3, /* right edge fit */
1355 : NE_FIT_TYPE = 4 /* no edge fit */
1356 : };
1357 :
1358 : static __always_inline enum fit_type
1359 : classify_va_fit_type(struct vmap_area *va,
1360 : unsigned long nva_start_addr, unsigned long size)
1361 : {
1362 : enum fit_type type;
1363 :
1364 : /* Check if it is within VA. */
1365 32 : if (nva_start_addr < va->va_start ||
1366 16 : nva_start_addr + size > va->va_end)
1367 : return NOTHING_FIT;
1368 :
1369 : /* Now classify. */
1370 16 : if (va->va_start == nva_start_addr) {
1371 0 : if (va->va_end == nva_start_addr + size)
1372 : type = FL_FIT_TYPE;
1373 : else
1374 0 : type = LE_FIT_TYPE;
1375 16 : } else if (va->va_end == nva_start_addr + size) {
1376 : type = RE_FIT_TYPE;
1377 : } else {
1378 16 : type = NE_FIT_TYPE;
1379 : }
1380 :
1381 : return type;
1382 : }
1383 :
1384 : static __always_inline int
1385 : adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1386 : struct vmap_area *va, unsigned long nva_start_addr,
1387 : unsigned long size)
1388 : {
1389 16 : struct vmap_area *lva = NULL;
1390 16 : enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1391 :
1392 16 : if (type == FL_FIT_TYPE) {
1393 : /*
1394 : * No need to split VA, it fully fits.
1395 : *
1396 : * | |
1397 : * V NVA V
1398 : * |---------------|
1399 : */
1400 0 : unlink_va_augment(va, root);
1401 0 : kmem_cache_free(vmap_area_cachep, va);
1402 16 : } else if (type == LE_FIT_TYPE) {
1403 : /*
1404 : * Split left edge of fit VA.
1405 : *
1406 : * | |
1407 : * V NVA V R
1408 : * |-------|-------|
1409 : */
1410 0 : va->va_start += size;
1411 16 : } else if (type == RE_FIT_TYPE) {
1412 : /*
1413 : * Split right edge of fit VA.
1414 : *
1415 : * | |
1416 : * L V NVA V
1417 : * |-------|-------|
1418 : */
1419 0 : va->va_end = nva_start_addr;
1420 16 : } else if (type == NE_FIT_TYPE) {
1421 : /*
1422 : * Split no edge of fit VA.
1423 : *
1424 : * | |
1425 : * L V NVA V R
1426 : * |---|-------|---|
1427 : */
1428 16 : lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1429 16 : if (unlikely(!lva)) {
1430 : /*
1431 : * For percpu allocator we do not do any pre-allocation
1432 : * and leave it as it is. The reason is it most likely
1433 : * never ends up with NE_FIT_TYPE splitting. In case of
1434 : * percpu allocations offsets and sizes are aligned to
1435 : * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1436 : * are its main fitting cases.
1437 : *
1438 : * There are a few exceptions though, as an example it is
1439 : * a first allocation (early boot up) when we have "one"
1440 : * big free space that has to be split.
1441 : *
1442 : * Also we can hit this path in case of regular "vmap"
1443 : * allocations, if "this" current CPU was not preloaded.
1444 : * See the comment in alloc_vmap_area() why. If so, then
1445 : * GFP_NOWAIT is used instead to get an extra object for
1446 : * split purpose. That is rare and most time does not
1447 : * occur.
1448 : *
1449 : * What happens if an allocation gets failed. Basically,
1450 : * an "overflow" path is triggered to purge lazily freed
1451 : * areas to free some memory, then, the "retry" path is
1452 : * triggered to repeat one more time. See more details
1453 : * in alloc_vmap_area() function.
1454 : */
1455 0 : lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1456 0 : if (!lva)
1457 : return -1;
1458 : }
1459 :
1460 : /*
1461 : * Build the remainder.
1462 : */
1463 16 : lva->va_start = va->va_start;
1464 16 : lva->va_end = nva_start_addr;
1465 :
1466 : /*
1467 : * Shrink this VA to remaining size.
1468 : */
1469 16 : va->va_start = nva_start_addr + size;
1470 : } else {
1471 : return -1;
1472 : }
1473 :
1474 16 : if (type != FL_FIT_TYPE) {
1475 16 : augment_tree_propagate_from(va);
1476 :
1477 16 : if (lva) /* type == NE_FIT_TYPE */
1478 16 : insert_vmap_area_augment(lva, &va->rb_node, root, head);
1479 : }
1480 :
1481 : return 0;
1482 : }
1483 :
1484 : /*
1485 : * Returns a start address of the newly allocated area, if success.
1486 : * Otherwise a vend is returned that indicates failure.
1487 : */
1488 : static __always_inline unsigned long
1489 : __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1490 : unsigned long size, unsigned long align,
1491 : unsigned long vstart, unsigned long vend)
1492 : {
1493 16 : bool adjust_search_size = true;
1494 : unsigned long nva_start_addr;
1495 : struct vmap_area *va;
1496 : int ret;
1497 :
1498 : /*
1499 : * Do not adjust when:
1500 : * a) align <= PAGE_SIZE, because it does not make any sense.
1501 : * All blocks(their start addresses) are at least PAGE_SIZE
1502 : * aligned anyway;
1503 : * b) a short range where a requested size corresponds to exactly
1504 : * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1505 : * With adjusted search length an allocation would not succeed.
1506 : */
1507 16 : if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1508 0 : adjust_search_size = false;
1509 :
1510 32 : va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1511 16 : if (unlikely(!va))
1512 : return vend;
1513 :
1514 16 : if (va->va_start > vstart)
1515 15 : nva_start_addr = ALIGN(va->va_start, align);
1516 : else
1517 1 : nva_start_addr = ALIGN(vstart, align);
1518 :
1519 : /* Check the "vend" restriction. */
1520 16 : if (nva_start_addr + size > vend)
1521 : return vend;
1522 :
1523 : /* Update the free vmap_area. */
1524 16 : ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1525 16 : if (WARN_ON_ONCE(ret))
1526 : return vend;
1527 :
1528 : #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1529 : find_vmap_lowest_match_check(root, head, size, align);
1530 : #endif
1531 :
1532 : return nva_start_addr;
1533 : }
1534 :
1535 : /*
1536 : * Free a region of KVA allocated by alloc_vmap_area
1537 : */
1538 0 : static void free_vmap_area(struct vmap_area *va)
1539 : {
1540 : /*
1541 : * Remove from the busy tree/list.
1542 : */
1543 0 : spin_lock(&vmap_area_lock);
1544 0 : unlink_va(va, &vmap_area_root);
1545 0 : spin_unlock(&vmap_area_lock);
1546 :
1547 : /*
1548 : * Insert/Merge it back to the free tree/list.
1549 : */
1550 0 : spin_lock(&free_vmap_area_lock);
1551 0 : merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1552 0 : spin_unlock(&free_vmap_area_lock);
1553 0 : }
1554 :
1555 : static inline void
1556 16 : preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1557 : {
1558 16 : struct vmap_area *va = NULL;
1559 :
1560 : /*
1561 : * Preload this CPU with one extra vmap_area object. It is used
1562 : * when fit type of free area is NE_FIT_TYPE. It guarantees that
1563 : * a CPU that does an allocation is preloaded.
1564 : *
1565 : * We do it in non-atomic context, thus it allows us to use more
1566 : * permissive allocation masks to be more stable under low memory
1567 : * condition and high memory pressure.
1568 : */
1569 16 : if (!this_cpu_read(ne_fit_preload_node))
1570 16 : va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1571 :
1572 16 : spin_lock(lock);
1573 :
1574 16 : if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1575 0 : kmem_cache_free(vmap_area_cachep, va);
1576 16 : }
1577 :
1578 : /*
1579 : * Allocate a region of KVA of the specified size and alignment, within the
1580 : * vstart and vend.
1581 : */
1582 16 : static struct vmap_area *alloc_vmap_area(unsigned long size,
1583 : unsigned long align,
1584 : unsigned long vstart, unsigned long vend,
1585 : int node, gfp_t gfp_mask,
1586 : unsigned long va_flags)
1587 : {
1588 : struct vmap_area *va;
1589 : unsigned long freed;
1590 : unsigned long addr;
1591 16 : int purged = 0;
1592 : int ret;
1593 :
1594 32 : if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1595 : return ERR_PTR(-EINVAL);
1596 :
1597 16 : if (unlikely(!vmap_initialized))
1598 : return ERR_PTR(-EBUSY);
1599 :
1600 : might_sleep();
1601 16 : gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1602 :
1603 16 : va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1604 16 : if (unlikely(!va))
1605 : return ERR_PTR(-ENOMEM);
1606 :
1607 : /*
1608 : * Only scan the relevant parts containing pointers to other objects
1609 : * to avoid false negatives.
1610 : */
1611 : kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1612 :
1613 : retry:
1614 16 : preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1615 16 : addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1616 : size, align, vstart, vend);
1617 16 : spin_unlock(&free_vmap_area_lock);
1618 :
1619 16 : trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1620 :
1621 : /*
1622 : * If an allocation fails, the "vend" address is
1623 : * returned. Therefore trigger the overflow path.
1624 : */
1625 16 : if (unlikely(addr == vend))
1626 : goto overflow;
1627 :
1628 16 : va->va_start = addr;
1629 16 : va->va_end = addr + size;
1630 16 : va->vm = NULL;
1631 16 : va->flags = va_flags;
1632 :
1633 16 : spin_lock(&vmap_area_lock);
1634 16 : insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1635 16 : spin_unlock(&vmap_area_lock);
1636 :
1637 16 : BUG_ON(!IS_ALIGNED(va->va_start, align));
1638 16 : BUG_ON(va->va_start < vstart);
1639 16 : BUG_ON(va->va_end > vend);
1640 :
1641 : ret = kasan_populate_vmalloc(addr, size);
1642 : if (ret) {
1643 : free_vmap_area(va);
1644 : return ERR_PTR(ret);
1645 : }
1646 :
1647 : return va;
1648 :
1649 : overflow:
1650 0 : if (!purged) {
1651 0 : reclaim_and_purge_vmap_areas();
1652 0 : purged = 1;
1653 0 : goto retry;
1654 : }
1655 :
1656 0 : freed = 0;
1657 0 : blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1658 :
1659 0 : if (freed > 0) {
1660 : purged = 0;
1661 : goto retry;
1662 : }
1663 :
1664 0 : if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1665 0 : pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1666 : size);
1667 :
1668 0 : kmem_cache_free(vmap_area_cachep, va);
1669 0 : return ERR_PTR(-EBUSY);
1670 : }
1671 :
1672 0 : int register_vmap_purge_notifier(struct notifier_block *nb)
1673 : {
1674 0 : return blocking_notifier_chain_register(&vmap_notify_list, nb);
1675 : }
1676 : EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1677 :
1678 0 : int unregister_vmap_purge_notifier(struct notifier_block *nb)
1679 : {
1680 0 : return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1681 : }
1682 : EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1683 :
1684 : /*
1685 : * lazy_max_pages is the maximum amount of virtual address space we gather up
1686 : * before attempting to purge with a TLB flush.
1687 : *
1688 : * There is a tradeoff here: a larger number will cover more kernel page tables
1689 : * and take slightly longer to purge, but it will linearly reduce the number of
1690 : * global TLB flushes that must be performed. It would seem natural to scale
1691 : * this number up linearly with the number of CPUs (because vmapping activity
1692 : * could also scale linearly with the number of CPUs), however it is likely
1693 : * that in practice, workloads might be constrained in other ways that mean
1694 : * vmap activity will not scale linearly with CPUs. Also, I want to be
1695 : * conservative and not introduce a big latency on huge systems, so go with
1696 : * a less aggressive log scale. It will still be an improvement over the old
1697 : * code, and it will be simple to change the scale factor if we find that it
1698 : * becomes a problem on bigger systems.
1699 : */
1700 : static unsigned long lazy_max_pages(void)
1701 : {
1702 : unsigned int log;
1703 :
1704 0 : log = fls(num_online_cpus());
1705 :
1706 0 : return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1707 : }
1708 :
1709 : static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1710 :
1711 : /*
1712 : * Serialize vmap purging. There is no actual critical section protected
1713 : * by this lock, but we want to avoid concurrent calls for performance
1714 : * reasons and to make the pcpu_get_vm_areas more deterministic.
1715 : */
1716 : static DEFINE_MUTEX(vmap_purge_lock);
1717 :
1718 : /* for per-CPU blocks */
1719 : static void purge_fragmented_blocks_allcpus(void);
1720 :
1721 : /*
1722 : * Purges all lazily-freed vmap areas.
1723 : */
1724 0 : static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1725 : {
1726 : unsigned long resched_threshold;
1727 0 : unsigned int num_purged_areas = 0;
1728 : struct list_head local_purge_list;
1729 : struct vmap_area *va, *n_va;
1730 :
1731 : lockdep_assert_held(&vmap_purge_lock);
1732 :
1733 0 : spin_lock(&purge_vmap_area_lock);
1734 0 : purge_vmap_area_root = RB_ROOT;
1735 0 : list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736 0 : spin_unlock(&purge_vmap_area_lock);
1737 :
1738 0 : if (unlikely(list_empty(&local_purge_list)))
1739 : goto out;
1740 :
1741 0 : start = min(start,
1742 : list_first_entry(&local_purge_list,
1743 : struct vmap_area, list)->va_start);
1744 :
1745 0 : end = max(end,
1746 : list_last_entry(&local_purge_list,
1747 : struct vmap_area, list)->va_end);
1748 :
1749 0 : flush_tlb_kernel_range(start, end);
1750 0 : resched_threshold = lazy_max_pages() << 1;
1751 :
1752 0 : spin_lock(&free_vmap_area_lock);
1753 0 : list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754 0 : unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755 0 : unsigned long orig_start = va->va_start;
1756 0 : unsigned long orig_end = va->va_end;
1757 :
1758 : /*
1759 : * Finally insert or merge lazily-freed area. It is
1760 : * detached and there is no need to "unlink" it from
1761 : * anything.
1762 : */
1763 0 : va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764 : &free_vmap_area_list);
1765 :
1766 0 : if (!va)
1767 0 : continue;
1768 :
1769 0 : if (is_vmalloc_or_module_addr((void *)orig_start))
1770 : kasan_release_vmalloc(orig_start, orig_end,
1771 : va->va_start, va->va_end);
1772 :
1773 0 : atomic_long_sub(nr, &vmap_lazy_nr);
1774 0 : num_purged_areas++;
1775 :
1776 0 : if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1777 0 : cond_resched_lock(&free_vmap_area_lock);
1778 : }
1779 : spin_unlock(&free_vmap_area_lock);
1780 :
1781 : out:
1782 0 : trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1783 0 : return num_purged_areas > 0;
1784 : }
1785 :
1786 : /*
1787 : * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1788 : */
1789 0 : static void reclaim_and_purge_vmap_areas(void)
1790 :
1791 : {
1792 0 : mutex_lock(&vmap_purge_lock);
1793 0 : purge_fragmented_blocks_allcpus();
1794 0 : __purge_vmap_area_lazy(ULONG_MAX, 0);
1795 0 : mutex_unlock(&vmap_purge_lock);
1796 0 : }
1797 :
1798 0 : static void drain_vmap_area_work(struct work_struct *work)
1799 : {
1800 : unsigned long nr_lazy;
1801 :
1802 : do {
1803 0 : mutex_lock(&vmap_purge_lock);
1804 0 : __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 0 : mutex_unlock(&vmap_purge_lock);
1806 :
1807 : /* Recheck if further work is required. */
1808 0 : nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 0 : } while (nr_lazy > lazy_max_pages());
1810 0 : }
1811 :
1812 : /*
1813 : * Free a vmap area, caller ensuring that the area has been unmapped,
1814 : * unlinked and flush_cache_vunmap had been called for the correct
1815 : * range previously.
1816 : */
1817 0 : static void free_vmap_area_noflush(struct vmap_area *va)
1818 : {
1819 0 : unsigned long nr_lazy_max = lazy_max_pages();
1820 0 : unsigned long va_start = va->va_start;
1821 : unsigned long nr_lazy;
1822 :
1823 0 : if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 : return;
1825 :
1826 0 : nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 : PAGE_SHIFT, &vmap_lazy_nr);
1828 :
1829 : /*
1830 : * Merge or place it to the purge tree/list.
1831 : */
1832 0 : spin_lock(&purge_vmap_area_lock);
1833 0 : merge_or_add_vmap_area(va,
1834 : &purge_vmap_area_root, &purge_vmap_area_list);
1835 0 : spin_unlock(&purge_vmap_area_lock);
1836 :
1837 0 : trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838 :
1839 : /* After this point, we may free va at any time */
1840 0 : if (unlikely(nr_lazy > nr_lazy_max))
1841 : schedule_work(&drain_vmap_work);
1842 : }
1843 :
1844 : /*
1845 : * Free and unmap a vmap area
1846 : */
1847 0 : static void free_unmap_vmap_area(struct vmap_area *va)
1848 : {
1849 0 : flush_cache_vunmap(va->va_start, va->va_end);
1850 0 : vunmap_range_noflush(va->va_start, va->va_end);
1851 : if (debug_pagealloc_enabled_static())
1852 : flush_tlb_kernel_range(va->va_start, va->va_end);
1853 :
1854 0 : free_vmap_area_noflush(va);
1855 0 : }
1856 :
1857 0 : struct vmap_area *find_vmap_area(unsigned long addr)
1858 : {
1859 : struct vmap_area *va;
1860 :
1861 16 : spin_lock(&vmap_area_lock);
1862 16 : va = __find_vmap_area(addr, &vmap_area_root);
1863 16 : spin_unlock(&vmap_area_lock);
1864 :
1865 0 : return va;
1866 : }
1867 :
1868 0 : static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 : {
1870 : struct vmap_area *va;
1871 :
1872 0 : spin_lock(&vmap_area_lock);
1873 0 : va = __find_vmap_area(addr, &vmap_area_root);
1874 0 : if (va)
1875 : unlink_va(va, &vmap_area_root);
1876 0 : spin_unlock(&vmap_area_lock);
1877 :
1878 0 : return va;
1879 : }
1880 :
1881 : /*** Per cpu kva allocator ***/
1882 :
1883 : /*
1884 : * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 : * room for at least 16 percpu vmap blocks per CPU.
1886 : */
1887 : /*
1888 : * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 : * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 : * instead (we just need a rough idea)
1891 : */
1892 : #if BITS_PER_LONG == 32
1893 : #define VMALLOC_SPACE (128UL*1024*1024)
1894 : #else
1895 : #define VMALLOC_SPACE (128UL*1024*1024*1024)
1896 : #endif
1897 :
1898 : #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899 : #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900 : #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901 : #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902 : #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903 : #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1904 : #define VMAP_BBMAP_BITS \
1905 : VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 : VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 : VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908 :
1909 : #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910 :
1911 : /*
1912 : * Purge threshold to prevent overeager purging of fragmented blocks for
1913 : * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1914 : */
1915 : #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
1916 :
1917 : #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1918 : #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1919 : #define VMAP_FLAGS_MASK 0x3
1920 :
1921 : struct vmap_block_queue {
1922 : spinlock_t lock;
1923 : struct list_head free;
1924 :
1925 : /*
1926 : * An xarray requires an extra memory dynamically to
1927 : * be allocated. If it is an issue, we can use rb-tree
1928 : * instead.
1929 : */
1930 : struct xarray vmap_blocks;
1931 : };
1932 :
1933 : struct vmap_block {
1934 : spinlock_t lock;
1935 : struct vmap_area *va;
1936 : unsigned long free, dirty;
1937 : DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1938 : unsigned long dirty_min, dirty_max; /*< dirty range */
1939 : struct list_head free_list;
1940 : struct rcu_head rcu_head;
1941 : struct list_head purge;
1942 : };
1943 :
1944 : /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1945 : static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1946 :
1947 : /*
1948 : * In order to fast access to any "vmap_block" associated with a
1949 : * specific address, we use a hash.
1950 : *
1951 : * A per-cpu vmap_block_queue is used in both ways, to serialize
1952 : * an access to free block chains among CPUs(alloc path) and it
1953 : * also acts as a vmap_block hash(alloc/free paths). It means we
1954 : * overload it, since we already have the per-cpu array which is
1955 : * used as a hash table. When used as a hash a 'cpu' passed to
1956 : * per_cpu() is not actually a CPU but rather a hash index.
1957 : *
1958 : * A hash function is addr_to_vb_xa() which hashes any address
1959 : * to a specific index(in a hash) it belongs to. This then uses a
1960 : * per_cpu() macro to access an array with generated index.
1961 : *
1962 : * An example:
1963 : *
1964 : * CPU_1 CPU_2 CPU_0
1965 : * | | |
1966 : * V V V
1967 : * 0 10 20 30 40 50 60
1968 : * |------|------|------|------|------|------|...<vmap address space>
1969 : * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1970 : *
1971 : * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1972 : * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1973 : *
1974 : * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1975 : * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1976 : *
1977 : * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1978 : * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1979 : *
1980 : * This technique almost always avoids lock contention on insert/remove,
1981 : * however xarray spinlocks protect against any contention that remains.
1982 : */
1983 : static struct xarray *
1984 : addr_to_vb_xa(unsigned long addr)
1985 : {
1986 0 : int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1987 :
1988 0 : return &per_cpu(vmap_block_queue, index).vmap_blocks;
1989 : }
1990 :
1991 : /*
1992 : * We should probably have a fallback mechanism to allocate virtual memory
1993 : * out of partially filled vmap blocks. However vmap block sizing should be
1994 : * fairly reasonable according to the vmalloc size, so it shouldn't be a
1995 : * big problem.
1996 : */
1997 :
1998 : static unsigned long addr_to_vb_idx(unsigned long addr)
1999 : {
2000 0 : addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2001 0 : addr /= VMAP_BLOCK_SIZE;
2002 : return addr;
2003 : }
2004 :
2005 0 : static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2006 : {
2007 : unsigned long addr;
2008 :
2009 0 : addr = va_start + (pages_off << PAGE_SHIFT);
2010 0 : BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2011 0 : return (void *)addr;
2012 : }
2013 :
2014 : /**
2015 : * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2016 : * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2017 : * @order: how many 2^order pages should be occupied in newly allocated block
2018 : * @gfp_mask: flags for the page level allocator
2019 : *
2020 : * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2021 : */
2022 0 : static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2023 : {
2024 : struct vmap_block_queue *vbq;
2025 : struct vmap_block *vb;
2026 : struct vmap_area *va;
2027 : struct xarray *xa;
2028 : unsigned long vb_idx;
2029 : int node, err;
2030 : void *vaddr;
2031 :
2032 0 : node = numa_node_id();
2033 :
2034 0 : vb = kmalloc_node(sizeof(struct vmap_block),
2035 : gfp_mask & GFP_RECLAIM_MASK, node);
2036 0 : if (unlikely(!vb))
2037 : return ERR_PTR(-ENOMEM);
2038 :
2039 0 : va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2040 0 : VMALLOC_START, VMALLOC_END,
2041 : node, gfp_mask,
2042 : VMAP_RAM|VMAP_BLOCK);
2043 0 : if (IS_ERR(va)) {
2044 0 : kfree(vb);
2045 0 : return ERR_CAST(va);
2046 : }
2047 :
2048 0 : vaddr = vmap_block_vaddr(va->va_start, 0);
2049 0 : spin_lock_init(&vb->lock);
2050 0 : vb->va = va;
2051 : /* At least something should be left free */
2052 0 : BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2053 0 : bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2054 0 : vb->free = VMAP_BBMAP_BITS - (1UL << order);
2055 0 : vb->dirty = 0;
2056 0 : vb->dirty_min = VMAP_BBMAP_BITS;
2057 0 : vb->dirty_max = 0;
2058 0 : bitmap_set(vb->used_map, 0, (1UL << order));
2059 0 : INIT_LIST_HEAD(&vb->free_list);
2060 :
2061 0 : xa = addr_to_vb_xa(va->va_start);
2062 0 : vb_idx = addr_to_vb_idx(va->va_start);
2063 0 : err = xa_insert(xa, vb_idx, vb, gfp_mask);
2064 0 : if (err) {
2065 0 : kfree(vb);
2066 0 : free_vmap_area(va);
2067 0 : return ERR_PTR(err);
2068 : }
2069 :
2070 0 : vbq = raw_cpu_ptr(&vmap_block_queue);
2071 0 : spin_lock(&vbq->lock);
2072 0 : list_add_tail_rcu(&vb->free_list, &vbq->free);
2073 0 : spin_unlock(&vbq->lock);
2074 :
2075 0 : return vaddr;
2076 : }
2077 :
2078 0 : static void free_vmap_block(struct vmap_block *vb)
2079 : {
2080 : struct vmap_block *tmp;
2081 : struct xarray *xa;
2082 :
2083 0 : xa = addr_to_vb_xa(vb->va->va_start);
2084 0 : tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2085 0 : BUG_ON(tmp != vb);
2086 :
2087 0 : spin_lock(&vmap_area_lock);
2088 0 : unlink_va(vb->va, &vmap_area_root);
2089 0 : spin_unlock(&vmap_area_lock);
2090 :
2091 0 : free_vmap_area_noflush(vb->va);
2092 0 : kfree_rcu(vb, rcu_head);
2093 0 : }
2094 :
2095 : static bool purge_fragmented_block(struct vmap_block *vb,
2096 : struct vmap_block_queue *vbq, struct list_head *purge_list,
2097 : bool force_purge)
2098 : {
2099 0 : if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2100 : vb->dirty == VMAP_BBMAP_BITS)
2101 : return false;
2102 :
2103 : /* Don't overeagerly purge usable blocks unless requested */
2104 0 : if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2105 : return false;
2106 :
2107 : /* prevent further allocs after releasing lock */
2108 0 : WRITE_ONCE(vb->free, 0);
2109 : /* prevent purging it again */
2110 0 : WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2111 0 : vb->dirty_min = 0;
2112 0 : vb->dirty_max = VMAP_BBMAP_BITS;
2113 0 : spin_lock(&vbq->lock);
2114 0 : list_del_rcu(&vb->free_list);
2115 0 : spin_unlock(&vbq->lock);
2116 0 : list_add_tail(&vb->purge, purge_list);
2117 : return true;
2118 : }
2119 :
2120 0 : static void free_purged_blocks(struct list_head *purge_list)
2121 : {
2122 : struct vmap_block *vb, *n_vb;
2123 :
2124 0 : list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2125 0 : list_del(&vb->purge);
2126 0 : free_vmap_block(vb);
2127 : }
2128 0 : }
2129 :
2130 0 : static void purge_fragmented_blocks(int cpu)
2131 : {
2132 0 : LIST_HEAD(purge);
2133 : struct vmap_block *vb;
2134 0 : struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2135 :
2136 : rcu_read_lock();
2137 0 : list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2138 0 : unsigned long free = READ_ONCE(vb->free);
2139 0 : unsigned long dirty = READ_ONCE(vb->dirty);
2140 :
2141 0 : if (free + dirty != VMAP_BBMAP_BITS ||
2142 : dirty == VMAP_BBMAP_BITS)
2143 0 : continue;
2144 :
2145 0 : spin_lock(&vb->lock);
2146 0 : purge_fragmented_block(vb, vbq, &purge, true);
2147 0 : spin_unlock(&vb->lock);
2148 : }
2149 : rcu_read_unlock();
2150 0 : free_purged_blocks(&purge);
2151 0 : }
2152 :
2153 : static void purge_fragmented_blocks_allcpus(void)
2154 : {
2155 : int cpu;
2156 :
2157 0 : for_each_possible_cpu(cpu)
2158 0 : purge_fragmented_blocks(cpu);
2159 : }
2160 :
2161 0 : static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2162 : {
2163 : struct vmap_block_queue *vbq;
2164 : struct vmap_block *vb;
2165 0 : void *vaddr = NULL;
2166 : unsigned int order;
2167 :
2168 0 : BUG_ON(offset_in_page(size));
2169 0 : BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2170 0 : if (WARN_ON(size == 0)) {
2171 : /*
2172 : * Allocating 0 bytes isn't what caller wants since
2173 : * get_order(0) returns funny result. Just warn and terminate
2174 : * early.
2175 : */
2176 : return NULL;
2177 : }
2178 0 : order = get_order(size);
2179 :
2180 : rcu_read_lock();
2181 0 : vbq = raw_cpu_ptr(&vmap_block_queue);
2182 0 : list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183 : unsigned long pages_off;
2184 :
2185 0 : if (READ_ONCE(vb->free) < (1UL << order))
2186 0 : continue;
2187 :
2188 0 : spin_lock(&vb->lock);
2189 0 : if (vb->free < (1UL << order)) {
2190 0 : spin_unlock(&vb->lock);
2191 0 : continue;
2192 : }
2193 :
2194 0 : pages_off = VMAP_BBMAP_BITS - vb->free;
2195 0 : vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2196 0 : WRITE_ONCE(vb->free, vb->free - (1UL << order));
2197 0 : bitmap_set(vb->used_map, pages_off, (1UL << order));
2198 0 : if (vb->free == 0) {
2199 0 : spin_lock(&vbq->lock);
2200 0 : list_del_rcu(&vb->free_list);
2201 0 : spin_unlock(&vbq->lock);
2202 : }
2203 :
2204 0 : spin_unlock(&vb->lock);
2205 : break;
2206 : }
2207 :
2208 : rcu_read_unlock();
2209 :
2210 : /* Allocate new block if nothing was found */
2211 0 : if (!vaddr)
2212 0 : vaddr = new_vmap_block(order, gfp_mask);
2213 :
2214 : return vaddr;
2215 : }
2216 :
2217 0 : static void vb_free(unsigned long addr, unsigned long size)
2218 : {
2219 : unsigned long offset;
2220 : unsigned int order;
2221 : struct vmap_block *vb;
2222 : struct xarray *xa;
2223 :
2224 0 : BUG_ON(offset_in_page(size));
2225 0 : BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2226 :
2227 0 : flush_cache_vunmap(addr, addr + size);
2228 :
2229 0 : order = get_order(size);
2230 0 : offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2231 :
2232 0 : xa = addr_to_vb_xa(addr);
2233 0 : vb = xa_load(xa, addr_to_vb_idx(addr));
2234 :
2235 0 : spin_lock(&vb->lock);
2236 0 : bitmap_clear(vb->used_map, offset, (1UL << order));
2237 0 : spin_unlock(&vb->lock);
2238 :
2239 0 : vunmap_range_noflush(addr, addr + size);
2240 :
2241 : if (debug_pagealloc_enabled_static())
2242 : flush_tlb_kernel_range(addr, addr + size);
2243 :
2244 0 : spin_lock(&vb->lock);
2245 :
2246 : /* Expand the not yet TLB flushed dirty range */
2247 0 : vb->dirty_min = min(vb->dirty_min, offset);
2248 0 : vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2249 :
2250 0 : WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2251 0 : if (vb->dirty == VMAP_BBMAP_BITS) {
2252 0 : BUG_ON(vb->free);
2253 0 : spin_unlock(&vb->lock);
2254 0 : free_vmap_block(vb);
2255 : } else
2256 0 : spin_unlock(&vb->lock);
2257 0 : }
2258 :
2259 0 : static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2260 : {
2261 0 : LIST_HEAD(purge_list);
2262 : int cpu;
2263 :
2264 0 : if (unlikely(!vmap_initialized))
2265 0 : return;
2266 :
2267 0 : mutex_lock(&vmap_purge_lock);
2268 :
2269 0 : for_each_possible_cpu(cpu) {
2270 0 : struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2271 : struct vmap_block *vb;
2272 : unsigned long idx;
2273 :
2274 : rcu_read_lock();
2275 0 : xa_for_each(&vbq->vmap_blocks, idx, vb) {
2276 0 : spin_lock(&vb->lock);
2277 :
2278 : /*
2279 : * Try to purge a fragmented block first. If it's
2280 : * not purgeable, check whether there is dirty
2281 : * space to be flushed.
2282 : */
2283 0 : if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2284 0 : vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2285 0 : unsigned long va_start = vb->va->va_start;
2286 : unsigned long s, e;
2287 :
2288 0 : s = va_start + (vb->dirty_min << PAGE_SHIFT);
2289 0 : e = va_start + (vb->dirty_max << PAGE_SHIFT);
2290 :
2291 0 : start = min(s, start);
2292 0 : end = max(e, end);
2293 :
2294 : /* Prevent that this is flushed again */
2295 0 : vb->dirty_min = VMAP_BBMAP_BITS;
2296 0 : vb->dirty_max = 0;
2297 :
2298 0 : flush = 1;
2299 : }
2300 0 : spin_unlock(&vb->lock);
2301 : }
2302 : rcu_read_unlock();
2303 : }
2304 0 : free_purged_blocks(&purge_list);
2305 :
2306 0 : if (!__purge_vmap_area_lazy(start, end) && flush)
2307 0 : flush_tlb_kernel_range(start, end);
2308 0 : mutex_unlock(&vmap_purge_lock);
2309 : }
2310 :
2311 : /**
2312 : * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2313 : *
2314 : * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2315 : * to amortize TLB flushing overheads. What this means is that any page you
2316 : * have now, may, in a former life, have been mapped into kernel virtual
2317 : * address by the vmap layer and so there might be some CPUs with TLB entries
2318 : * still referencing that page (additional to the regular 1:1 kernel mapping).
2319 : *
2320 : * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2321 : * be sure that none of the pages we have control over will have any aliases
2322 : * from the vmap layer.
2323 : */
2324 0 : void vm_unmap_aliases(void)
2325 : {
2326 0 : unsigned long start = ULONG_MAX, end = 0;
2327 0 : int flush = 0;
2328 :
2329 0 : _vm_unmap_aliases(start, end, flush);
2330 0 : }
2331 : EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2332 :
2333 : /**
2334 : * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2335 : * @mem: the pointer returned by vm_map_ram
2336 : * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2337 : */
2338 0 : void vm_unmap_ram(const void *mem, unsigned int count)
2339 : {
2340 0 : unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341 0 : unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2342 : struct vmap_area *va;
2343 :
2344 : might_sleep();
2345 0 : BUG_ON(!addr);
2346 0 : BUG_ON(addr < VMALLOC_START);
2347 0 : BUG_ON(addr > VMALLOC_END);
2348 0 : BUG_ON(!PAGE_ALIGNED(addr));
2349 :
2350 0 : kasan_poison_vmalloc(mem, size);
2351 :
2352 0 : if (likely(count <= VMAP_MAX_ALLOC)) {
2353 0 : debug_check_no_locks_freed(mem, size);
2354 0 : vb_free(addr, size);
2355 0 : return;
2356 : }
2357 :
2358 0 : va = find_unlink_vmap_area(addr);
2359 0 : if (WARN_ON_ONCE(!va))
2360 : return;
2361 :
2362 0 : debug_check_no_locks_freed((void *)va->va_start,
2363 0 : (va->va_end - va->va_start));
2364 0 : free_unmap_vmap_area(va);
2365 : }
2366 : EXPORT_SYMBOL(vm_unmap_ram);
2367 :
2368 : /**
2369 : * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2370 : * @pages: an array of pointers to the pages to be mapped
2371 : * @count: number of pages
2372 : * @node: prefer to allocate data structures on this node
2373 : *
2374 : * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2375 : * faster than vmap so it's good. But if you mix long-life and short-life
2376 : * objects with vm_map_ram(), it could consume lots of address space through
2377 : * fragmentation (especially on a 32bit machine). You could see failures in
2378 : * the end. Please use this function for short-lived objects.
2379 : *
2380 : * Returns: a pointer to the address that has been mapped, or %NULL on failure
2381 : */
2382 0 : void *vm_map_ram(struct page **pages, unsigned int count, int node)
2383 : {
2384 0 : unsigned long size = (unsigned long)count << PAGE_SHIFT;
2385 : unsigned long addr;
2386 : void *mem;
2387 :
2388 0 : if (likely(count <= VMAP_MAX_ALLOC)) {
2389 0 : mem = vb_alloc(size, GFP_KERNEL);
2390 0 : if (IS_ERR(mem))
2391 : return NULL;
2392 : addr = (unsigned long)mem;
2393 : } else {
2394 : struct vmap_area *va;
2395 0 : va = alloc_vmap_area(size, PAGE_SIZE,
2396 0 : VMALLOC_START, VMALLOC_END,
2397 : node, GFP_KERNEL, VMAP_RAM);
2398 0 : if (IS_ERR(va))
2399 : return NULL;
2400 :
2401 0 : addr = va->va_start;
2402 0 : mem = (void *)addr;
2403 : }
2404 :
2405 0 : if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2406 : pages, PAGE_SHIFT) < 0) {
2407 0 : vm_unmap_ram(mem, count);
2408 0 : return NULL;
2409 : }
2410 :
2411 : /*
2412 : * Mark the pages as accessible, now that they are mapped.
2413 : * With hardware tag-based KASAN, marking is skipped for
2414 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2415 : */
2416 : mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2417 :
2418 : return mem;
2419 : }
2420 : EXPORT_SYMBOL(vm_map_ram);
2421 :
2422 : static struct vm_struct *vmlist __initdata;
2423 :
2424 : static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2425 : {
2426 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2427 : return vm->page_order;
2428 : #else
2429 : return 0;
2430 : #endif
2431 : }
2432 :
2433 16 : static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2434 : {
2435 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2436 : vm->page_order = order;
2437 : #else
2438 16 : BUG_ON(order != 0);
2439 : #endif
2440 16 : }
2441 :
2442 : /**
2443 : * vm_area_add_early - add vmap area early during boot
2444 : * @vm: vm_struct to add
2445 : *
2446 : * This function is used to add fixed kernel vm area to vmlist before
2447 : * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2448 : * should contain proper values and the other fields should be zero.
2449 : *
2450 : * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2451 : */
2452 0 : void __init vm_area_add_early(struct vm_struct *vm)
2453 : {
2454 : struct vm_struct *tmp, **p;
2455 :
2456 0 : BUG_ON(vmap_initialized);
2457 0 : for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2458 0 : if (tmp->addr >= vm->addr) {
2459 0 : BUG_ON(tmp->addr < vm->addr + vm->size);
2460 : break;
2461 : } else
2462 0 : BUG_ON(tmp->addr + tmp->size > vm->addr);
2463 : }
2464 0 : vm->next = *p;
2465 0 : *p = vm;
2466 0 : }
2467 :
2468 : /**
2469 : * vm_area_register_early - register vmap area early during boot
2470 : * @vm: vm_struct to register
2471 : * @align: requested alignment
2472 : *
2473 : * This function is used to register kernel vm area before
2474 : * vmalloc_init() is called. @vm->size and @vm->flags should contain
2475 : * proper values on entry and other fields should be zero. On return,
2476 : * vm->addr contains the allocated address.
2477 : *
2478 : * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2479 : */
2480 0 : void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2481 : {
2482 0 : unsigned long addr = ALIGN(VMALLOC_START, align);
2483 : struct vm_struct *cur, **p;
2484 :
2485 0 : BUG_ON(vmap_initialized);
2486 :
2487 0 : for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2488 0 : if ((unsigned long)cur->addr - addr >= vm->size)
2489 : break;
2490 0 : addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2491 : }
2492 :
2493 0 : BUG_ON(addr > VMALLOC_END - vm->size);
2494 0 : vm->addr = (void *)addr;
2495 0 : vm->next = *p;
2496 0 : *p = vm;
2497 0 : kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2498 0 : }
2499 :
2500 1 : static void vmap_init_free_space(void)
2501 : {
2502 1 : unsigned long vmap_start = 1;
2503 1 : const unsigned long vmap_end = ULONG_MAX;
2504 : struct vmap_area *busy, *free;
2505 :
2506 : /*
2507 : * B F B B B F
2508 : * -|-----|.....|-----|-----|-----|.....|-
2509 : * | The KVA space |
2510 : * |<--------------------------------->|
2511 : */
2512 1 : list_for_each_entry(busy, &vmap_area_list, list) {
2513 0 : if (busy->va_start - vmap_start > 0) {
2514 0 : free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2515 0 : if (!WARN_ON_ONCE(!free)) {
2516 0 : free->va_start = vmap_start;
2517 0 : free->va_end = busy->va_start;
2518 :
2519 0 : insert_vmap_area_augment(free, NULL,
2520 : &free_vmap_area_root,
2521 : &free_vmap_area_list);
2522 : }
2523 : }
2524 :
2525 0 : vmap_start = busy->va_end;
2526 : }
2527 :
2528 1 : if (vmap_end - vmap_start > 0) {
2529 2 : free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2530 1 : if (!WARN_ON_ONCE(!free)) {
2531 1 : free->va_start = vmap_start;
2532 1 : free->va_end = vmap_end;
2533 :
2534 1 : insert_vmap_area_augment(free, NULL,
2535 : &free_vmap_area_root,
2536 : &free_vmap_area_list);
2537 : }
2538 : }
2539 1 : }
2540 :
2541 : static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2542 : struct vmap_area *va, unsigned long flags, const void *caller)
2543 : {
2544 16 : vm->flags = flags;
2545 16 : vm->addr = (void *)va->va_start;
2546 16 : vm->size = va->va_end - va->va_start;
2547 16 : vm->caller = caller;
2548 16 : va->vm = vm;
2549 : }
2550 :
2551 : static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2552 : unsigned long flags, const void *caller)
2553 : {
2554 16 : spin_lock(&vmap_area_lock);
2555 16 : setup_vmalloc_vm_locked(vm, va, flags, caller);
2556 16 : spin_unlock(&vmap_area_lock);
2557 : }
2558 :
2559 : static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2560 : {
2561 : /*
2562 : * Before removing VM_UNINITIALIZED,
2563 : * we should make sure that vm has proper values.
2564 : * Pair with smp_rmb() in show_numa_info().
2565 : */
2566 16 : smp_wmb();
2567 16 : vm->flags &= ~VM_UNINITIALIZED;
2568 : }
2569 :
2570 16 : static struct vm_struct *__get_vm_area_node(unsigned long size,
2571 : unsigned long align, unsigned long shift, unsigned long flags,
2572 : unsigned long start, unsigned long end, int node,
2573 : gfp_t gfp_mask, const void *caller)
2574 : {
2575 : struct vmap_area *va;
2576 : struct vm_struct *area;
2577 16 : unsigned long requested_size = size;
2578 :
2579 16 : BUG_ON(in_interrupt());
2580 16 : size = ALIGN(size, 1ul << shift);
2581 16 : if (unlikely(!size))
2582 : return NULL;
2583 :
2584 16 : if (flags & VM_IOREMAP)
2585 0 : align = 1ul << clamp_t(int, get_count_order_long(size),
2586 : PAGE_SHIFT, IOREMAP_MAX_ORDER);
2587 :
2588 16 : area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2589 16 : if (unlikely(!area))
2590 : return NULL;
2591 :
2592 16 : if (!(flags & VM_NO_GUARD))
2593 16 : size += PAGE_SIZE;
2594 :
2595 16 : va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2596 16 : if (IS_ERR(va)) {
2597 0 : kfree(area);
2598 0 : return NULL;
2599 : }
2600 :
2601 16 : setup_vmalloc_vm(area, va, flags, caller);
2602 :
2603 : /*
2604 : * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2605 : * best-effort approach, as they can be mapped outside of vmalloc code.
2606 : * For VM_ALLOC mappings, the pages are marked as accessible after
2607 : * getting mapped in __vmalloc_node_range().
2608 : * With hardware tag-based KASAN, marking is skipped for
2609 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2610 : */
2611 16 : if (!(flags & VM_ALLOC))
2612 : area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2613 : KASAN_VMALLOC_PROT_NORMAL);
2614 :
2615 : return area;
2616 : }
2617 :
2618 0 : struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2619 : unsigned long start, unsigned long end,
2620 : const void *caller)
2621 : {
2622 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2623 : NUMA_NO_NODE, GFP_KERNEL, caller);
2624 : }
2625 :
2626 : /**
2627 : * get_vm_area - reserve a contiguous kernel virtual area
2628 : * @size: size of the area
2629 : * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2630 : *
2631 : * Search an area of @size in the kernel virtual mapping area,
2632 : * and reserved it for out purposes. Returns the area descriptor
2633 : * on success or %NULL on failure.
2634 : *
2635 : * Return: the area descriptor on success or %NULL on failure.
2636 : */
2637 0 : struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2638 : {
2639 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2640 0 : VMALLOC_START, VMALLOC_END,
2641 : NUMA_NO_NODE, GFP_KERNEL,
2642 0 : __builtin_return_address(0));
2643 : }
2644 :
2645 0 : struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2646 : const void *caller)
2647 : {
2648 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2649 0 : VMALLOC_START, VMALLOC_END,
2650 : NUMA_NO_NODE, GFP_KERNEL, caller);
2651 : }
2652 :
2653 : /**
2654 : * find_vm_area - find a continuous kernel virtual area
2655 : * @addr: base address
2656 : *
2657 : * Search for the kernel VM area starting at @addr, and return it.
2658 : * It is up to the caller to do all required locking to keep the returned
2659 : * pointer valid.
2660 : *
2661 : * Return: the area descriptor on success or %NULL on failure.
2662 : */
2663 16 : struct vm_struct *find_vm_area(const void *addr)
2664 : {
2665 : struct vmap_area *va;
2666 :
2667 32 : va = find_vmap_area((unsigned long)addr);
2668 16 : if (!va)
2669 : return NULL;
2670 :
2671 16 : return va->vm;
2672 : }
2673 :
2674 : /**
2675 : * remove_vm_area - find and remove a continuous kernel virtual area
2676 : * @addr: base address
2677 : *
2678 : * Search for the kernel VM area starting at @addr, and remove it.
2679 : * This function returns the found VM area, but using it is NOT safe
2680 : * on SMP machines, except for its size or flags.
2681 : *
2682 : * Return: the area descriptor on success or %NULL on failure.
2683 : */
2684 0 : struct vm_struct *remove_vm_area(const void *addr)
2685 : {
2686 : struct vmap_area *va;
2687 : struct vm_struct *vm;
2688 :
2689 : might_sleep();
2690 :
2691 0 : if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2692 : addr))
2693 : return NULL;
2694 :
2695 0 : va = find_unlink_vmap_area((unsigned long)addr);
2696 0 : if (!va || !va->vm)
2697 : return NULL;
2698 0 : vm = va->vm;
2699 :
2700 0 : debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2701 0 : debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2702 0 : kasan_free_module_shadow(vm);
2703 0 : kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2704 :
2705 0 : free_unmap_vmap_area(va);
2706 0 : return vm;
2707 : }
2708 :
2709 0 : static inline void set_area_direct_map(const struct vm_struct *area,
2710 : int (*set_direct_map)(struct page *page))
2711 : {
2712 : int i;
2713 :
2714 : /* HUGE_VMALLOC passes small pages to set_direct_map */
2715 0 : for (i = 0; i < area->nr_pages; i++)
2716 0 : if (page_address(area->pages[i]))
2717 0 : set_direct_map(area->pages[i]);
2718 0 : }
2719 :
2720 : /*
2721 : * Flush the vm mapping and reset the direct map.
2722 : */
2723 0 : static void vm_reset_perms(struct vm_struct *area)
2724 : {
2725 0 : unsigned long start = ULONG_MAX, end = 0;
2726 0 : unsigned int page_order = vm_area_page_order(area);
2727 0 : int flush_dmap = 0;
2728 : int i;
2729 :
2730 : /*
2731 : * Find the start and end range of the direct mappings to make sure that
2732 : * the vm_unmap_aliases() flush includes the direct map.
2733 : */
2734 0 : for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2735 0 : unsigned long addr = (unsigned long)page_address(area->pages[i]);
2736 :
2737 0 : if (addr) {
2738 : unsigned long page_size;
2739 :
2740 0 : page_size = PAGE_SIZE << page_order;
2741 0 : start = min(addr, start);
2742 0 : end = max(addr + page_size, end);
2743 0 : flush_dmap = 1;
2744 : }
2745 : }
2746 :
2747 : /*
2748 : * Set direct map to something invalid so that it won't be cached if
2749 : * there are any accesses after the TLB flush, then flush the TLB and
2750 : * reset the direct map permissions to the default.
2751 : */
2752 0 : set_area_direct_map(area, set_direct_map_invalid_noflush);
2753 0 : _vm_unmap_aliases(start, end, flush_dmap);
2754 0 : set_area_direct_map(area, set_direct_map_default_noflush);
2755 0 : }
2756 :
2757 0 : static void delayed_vfree_work(struct work_struct *w)
2758 : {
2759 0 : struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2760 : struct llist_node *t, *llnode;
2761 :
2762 0 : llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2763 0 : vfree(llnode);
2764 0 : }
2765 :
2766 : /**
2767 : * vfree_atomic - release memory allocated by vmalloc()
2768 : * @addr: memory base address
2769 : *
2770 : * This one is just like vfree() but can be called in any atomic context
2771 : * except NMIs.
2772 : */
2773 0 : void vfree_atomic(const void *addr)
2774 : {
2775 0 : struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2776 :
2777 0 : BUG_ON(in_nmi());
2778 0 : kmemleak_free(addr);
2779 :
2780 : /*
2781 : * Use raw_cpu_ptr() because this can be called from preemptible
2782 : * context. Preemption is absolutely fine here, because the llist_add()
2783 : * implementation is lockless, so it works even if we are adding to
2784 : * another cpu's list. schedule_work() should be fine with this too.
2785 : */
2786 0 : if (addr && llist_add((struct llist_node *)addr, &p->list))
2787 0 : schedule_work(&p->wq);
2788 0 : }
2789 :
2790 : /**
2791 : * vfree - Release memory allocated by vmalloc()
2792 : * @addr: Memory base address
2793 : *
2794 : * Free the virtually continuous memory area starting at @addr, as obtained
2795 : * from one of the vmalloc() family of APIs. This will usually also free the
2796 : * physical memory underlying the virtual allocation, but that memory is
2797 : * reference counted, so it will not be freed until the last user goes away.
2798 : *
2799 : * If @addr is NULL, no operation is performed.
2800 : *
2801 : * Context:
2802 : * May sleep if called *not* from interrupt context.
2803 : * Must not be called in NMI context (strictly speaking, it could be
2804 : * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2805 : * conventions for vfree() arch-dependent would be a really bad idea).
2806 : */
2807 0 : void vfree(const void *addr)
2808 : {
2809 : struct vm_struct *vm;
2810 : int i;
2811 :
2812 0 : if (unlikely(in_interrupt())) {
2813 0 : vfree_atomic(addr);
2814 0 : return;
2815 : }
2816 :
2817 0 : BUG_ON(in_nmi());
2818 0 : kmemleak_free(addr);
2819 : might_sleep();
2820 :
2821 0 : if (!addr)
2822 : return;
2823 :
2824 0 : vm = remove_vm_area(addr);
2825 0 : if (unlikely(!vm)) {
2826 0 : WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2827 : addr);
2828 0 : return;
2829 : }
2830 :
2831 0 : if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2832 0 : vm_reset_perms(vm);
2833 0 : for (i = 0; i < vm->nr_pages; i++) {
2834 0 : struct page *page = vm->pages[i];
2835 :
2836 0 : BUG_ON(!page);
2837 0 : mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2838 : /*
2839 : * High-order allocs for huge vmallocs are split, so
2840 : * can be freed as an array of order-0 allocations
2841 : */
2842 0 : __free_page(page);
2843 0 : cond_resched();
2844 : }
2845 0 : atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2846 0 : kvfree(vm->pages);
2847 0 : kfree(vm);
2848 : }
2849 : EXPORT_SYMBOL(vfree);
2850 :
2851 : /**
2852 : * vunmap - release virtual mapping obtained by vmap()
2853 : * @addr: memory base address
2854 : *
2855 : * Free the virtually contiguous memory area starting at @addr,
2856 : * which was created from the page array passed to vmap().
2857 : *
2858 : * Must not be called in interrupt context.
2859 : */
2860 0 : void vunmap(const void *addr)
2861 : {
2862 : struct vm_struct *vm;
2863 :
2864 0 : BUG_ON(in_interrupt());
2865 : might_sleep();
2866 :
2867 0 : if (!addr)
2868 : return;
2869 0 : vm = remove_vm_area(addr);
2870 0 : if (unlikely(!vm)) {
2871 0 : WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2872 : addr);
2873 0 : return;
2874 : }
2875 0 : kfree(vm);
2876 : }
2877 : EXPORT_SYMBOL(vunmap);
2878 :
2879 : /**
2880 : * vmap - map an array of pages into virtually contiguous space
2881 : * @pages: array of page pointers
2882 : * @count: number of pages to map
2883 : * @flags: vm_area->flags
2884 : * @prot: page protection for the mapping
2885 : *
2886 : * Maps @count pages from @pages into contiguous kernel virtual space.
2887 : * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2888 : * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2889 : * are transferred from the caller to vmap(), and will be freed / dropped when
2890 : * vfree() is called on the return value.
2891 : *
2892 : * Return: the address of the area or %NULL on failure
2893 : */
2894 0 : void *vmap(struct page **pages, unsigned int count,
2895 : unsigned long flags, pgprot_t prot)
2896 : {
2897 : struct vm_struct *area;
2898 : unsigned long addr;
2899 : unsigned long size; /* In bytes */
2900 :
2901 : might_sleep();
2902 :
2903 0 : if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2904 : return NULL;
2905 :
2906 : /*
2907 : * Your top guard is someone else's bottom guard. Not having a top
2908 : * guard compromises someone else's mappings too.
2909 : */
2910 0 : if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2911 0 : flags &= ~VM_NO_GUARD;
2912 :
2913 0 : if (count > totalram_pages())
2914 : return NULL;
2915 :
2916 0 : size = (unsigned long)count << PAGE_SHIFT;
2917 0 : area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2918 0 : if (!area)
2919 : return NULL;
2920 :
2921 0 : addr = (unsigned long)area->addr;
2922 0 : if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2923 : pages, PAGE_SHIFT) < 0) {
2924 0 : vunmap(area->addr);
2925 0 : return NULL;
2926 : }
2927 :
2928 0 : if (flags & VM_MAP_PUT_PAGES) {
2929 0 : area->pages = pages;
2930 0 : area->nr_pages = count;
2931 : }
2932 0 : return area->addr;
2933 : }
2934 : EXPORT_SYMBOL(vmap);
2935 :
2936 : #ifdef CONFIG_VMAP_PFN
2937 : struct vmap_pfn_data {
2938 : unsigned long *pfns;
2939 : pgprot_t prot;
2940 : unsigned int idx;
2941 : };
2942 :
2943 : static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2944 : {
2945 : struct vmap_pfn_data *data = private;
2946 : unsigned long pfn = data->pfns[data->idx];
2947 : pte_t ptent;
2948 :
2949 : if (WARN_ON_ONCE(pfn_valid(pfn)))
2950 : return -EINVAL;
2951 :
2952 : ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2953 : set_pte_at(&init_mm, addr, pte, ptent);
2954 :
2955 : data->idx++;
2956 : return 0;
2957 : }
2958 :
2959 : /**
2960 : * vmap_pfn - map an array of PFNs into virtually contiguous space
2961 : * @pfns: array of PFNs
2962 : * @count: number of pages to map
2963 : * @prot: page protection for the mapping
2964 : *
2965 : * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2966 : * the start address of the mapping.
2967 : */
2968 : void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2969 : {
2970 : struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2971 : struct vm_struct *area;
2972 :
2973 : area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2974 : __builtin_return_address(0));
2975 : if (!area)
2976 : return NULL;
2977 : if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2978 : count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2979 : free_vm_area(area);
2980 : return NULL;
2981 : }
2982 : return area->addr;
2983 : }
2984 : EXPORT_SYMBOL_GPL(vmap_pfn);
2985 : #endif /* CONFIG_VMAP_PFN */
2986 :
2987 : static inline unsigned int
2988 16 : vm_area_alloc_pages(gfp_t gfp, int nid,
2989 : unsigned int order, unsigned int nr_pages, struct page **pages)
2990 : {
2991 16 : unsigned int nr_allocated = 0;
2992 16 : gfp_t alloc_gfp = gfp;
2993 16 : bool nofail = false;
2994 : struct page *page;
2995 : int i;
2996 :
2997 : /*
2998 : * For order-0 pages we make use of bulk allocator, if
2999 : * the page array is partly or not at all populated due
3000 : * to fails, fallback to a single page allocator that is
3001 : * more permissive.
3002 : */
3003 16 : if (!order) {
3004 : /* bulk allocator doesn't support nofail req. officially */
3005 16 : gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3006 :
3007 48 : while (nr_allocated < nr_pages) {
3008 : unsigned int nr, nr_pages_request;
3009 :
3010 : /*
3011 : * A maximum allowed request is hard-coded and is 100
3012 : * pages per call. That is done in order to prevent a
3013 : * long preemption off scenario in the bulk-allocator
3014 : * so the range is [1:100].
3015 : */
3016 16 : nr_pages_request = min(100U, nr_pages - nr_allocated);
3017 :
3018 : /* memory allocation should consider mempolicy, we can't
3019 : * wrongly use nearest node when nid == NUMA_NO_NODE,
3020 : * otherwise memory may be allocated in only one node,
3021 : * but mempolicy wants to alloc memory by interleaving.
3022 : */
3023 : if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3024 : nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3025 : nr_pages_request,
3026 : pages + nr_allocated);
3027 :
3028 : else
3029 32 : nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3030 : nr_pages_request,
3031 16 : pages + nr_allocated);
3032 :
3033 16 : nr_allocated += nr;
3034 16 : cond_resched();
3035 :
3036 : /*
3037 : * If zero or pages were obtained partly,
3038 : * fallback to a single page allocator.
3039 : */
3040 16 : if (nr != nr_pages_request)
3041 : break;
3042 : }
3043 0 : } else if (gfp & __GFP_NOFAIL) {
3044 : /*
3045 : * Higher order nofail allocations are really expensive and
3046 : * potentially dangerous (pre-mature OOM, disruptive reclaim
3047 : * and compaction etc.
3048 : */
3049 0 : alloc_gfp &= ~__GFP_NOFAIL;
3050 0 : nofail = true;
3051 : }
3052 :
3053 : /* High-order pages or fallback path if "bulk" fails. */
3054 16 : while (nr_allocated < nr_pages) {
3055 0 : if (fatal_signal_pending(current))
3056 : break;
3057 :
3058 0 : if (nid == NUMA_NO_NODE)
3059 0 : page = alloc_pages(alloc_gfp, order);
3060 : else
3061 0 : page = alloc_pages_node(nid, alloc_gfp, order);
3062 0 : if (unlikely(!page)) {
3063 0 : if (!nofail)
3064 : break;
3065 :
3066 : /* fall back to the zero order allocations */
3067 0 : alloc_gfp |= __GFP_NOFAIL;
3068 0 : order = 0;
3069 0 : continue;
3070 : }
3071 :
3072 : /*
3073 : * Higher order allocations must be able to be treated as
3074 : * indepdenent small pages by callers (as they can with
3075 : * small-page vmallocs). Some drivers do their own refcounting
3076 : * on vmalloc_to_page() pages, some use page->mapping,
3077 : * page->lru, etc.
3078 : */
3079 0 : if (order)
3080 0 : split_page(page, order);
3081 :
3082 : /*
3083 : * Careful, we allocate and map page-order pages, but
3084 : * tracking is done per PAGE_SIZE page so as to keep the
3085 : * vm_struct APIs independent of the physical/mapped size.
3086 : */
3087 0 : for (i = 0; i < (1U << order); i++)
3088 0 : pages[nr_allocated + i] = page + i;
3089 :
3090 0 : cond_resched();
3091 0 : nr_allocated += 1U << order;
3092 : }
3093 :
3094 16 : return nr_allocated;
3095 : }
3096 :
3097 16 : static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3098 : pgprot_t prot, unsigned int page_shift,
3099 : int node)
3100 : {
3101 16 : const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3102 16 : bool nofail = gfp_mask & __GFP_NOFAIL;
3103 16 : unsigned long addr = (unsigned long)area->addr;
3104 32 : unsigned long size = get_vm_area_size(area);
3105 : unsigned long array_size;
3106 16 : unsigned int nr_small_pages = size >> PAGE_SHIFT;
3107 : unsigned int page_order;
3108 : unsigned int flags;
3109 : int ret;
3110 :
3111 16 : array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3112 :
3113 16 : if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3114 16 : gfp_mask |= __GFP_HIGHMEM;
3115 :
3116 : /* Please note that the recursion is strictly bounded. */
3117 16 : if (array_size > PAGE_SIZE) {
3118 0 : area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3119 : area->caller);
3120 : } else {
3121 16 : area->pages = kmalloc_node(array_size, nested_gfp, node);
3122 : }
3123 :
3124 16 : if (!area->pages) {
3125 0 : warn_alloc(gfp_mask, NULL,
3126 : "vmalloc error: size %lu, failed to allocated page array size %lu",
3127 : nr_small_pages * PAGE_SIZE, array_size);
3128 0 : free_vm_area(area);
3129 0 : return NULL;
3130 : }
3131 :
3132 16 : set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3133 16 : page_order = vm_area_page_order(area);
3134 :
3135 16 : area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3136 : node, page_order, nr_small_pages, area->pages);
3137 :
3138 32 : atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3139 16 : if (gfp_mask & __GFP_ACCOUNT) {
3140 : int i;
3141 :
3142 0 : for (i = 0; i < area->nr_pages; i++)
3143 0 : mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3144 : }
3145 :
3146 : /*
3147 : * If not enough pages were obtained to accomplish an
3148 : * allocation request, free them via vfree() if any.
3149 : */
3150 16 : if (area->nr_pages != nr_small_pages) {
3151 : /*
3152 : * vm_area_alloc_pages() can fail due to insufficient memory but
3153 : * also:-
3154 : *
3155 : * - a pending fatal signal
3156 : * - insufficient huge page-order pages
3157 : *
3158 : * Since we always retry allocations at order-0 in the huge page
3159 : * case a warning for either is spurious.
3160 : */
3161 0 : if (!fatal_signal_pending(current) && page_order == 0)
3162 0 : warn_alloc(gfp_mask, NULL,
3163 : "vmalloc error: size %lu, failed to allocate pages",
3164 0 : area->nr_pages * PAGE_SIZE);
3165 : goto fail;
3166 : }
3167 :
3168 : /*
3169 : * page tables allocations ignore external gfp mask, enforce it
3170 : * by the scope API
3171 : */
3172 16 : if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3173 0 : flags = memalloc_nofs_save();
3174 16 : else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3175 0 : flags = memalloc_noio_save();
3176 :
3177 : do {
3178 16 : ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3179 : page_shift);
3180 16 : if (nofail && (ret < 0))
3181 0 : schedule_timeout_uninterruptible(1);
3182 16 : } while (nofail && (ret < 0));
3183 :
3184 16 : if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3185 : memalloc_nofs_restore(flags);
3186 16 : else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3187 : memalloc_noio_restore(flags);
3188 :
3189 16 : if (ret < 0) {
3190 0 : warn_alloc(gfp_mask, NULL,
3191 : "vmalloc error: size %lu, failed to map pages",
3192 0 : area->nr_pages * PAGE_SIZE);
3193 0 : goto fail;
3194 : }
3195 :
3196 16 : return area->addr;
3197 :
3198 : fail:
3199 0 : vfree(area->addr);
3200 0 : return NULL;
3201 : }
3202 :
3203 : /**
3204 : * __vmalloc_node_range - allocate virtually contiguous memory
3205 : * @size: allocation size
3206 : * @align: desired alignment
3207 : * @start: vm area range start
3208 : * @end: vm area range end
3209 : * @gfp_mask: flags for the page level allocator
3210 : * @prot: protection mask for the allocated pages
3211 : * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3212 : * @node: node to use for allocation or NUMA_NO_NODE
3213 : * @caller: caller's return address
3214 : *
3215 : * Allocate enough pages to cover @size from the page level
3216 : * allocator with @gfp_mask flags. Please note that the full set of gfp
3217 : * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3218 : * supported.
3219 : * Zone modifiers are not supported. From the reclaim modifiers
3220 : * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3221 : * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3222 : * __GFP_RETRY_MAYFAIL are not supported).
3223 : *
3224 : * __GFP_NOWARN can be used to suppress failures messages.
3225 : *
3226 : * Map them into contiguous kernel virtual space, using a pagetable
3227 : * protection of @prot.
3228 : *
3229 : * Return: the address of the area or %NULL on failure
3230 : */
3231 16 : void *__vmalloc_node_range(unsigned long size, unsigned long align,
3232 : unsigned long start, unsigned long end, gfp_t gfp_mask,
3233 : pgprot_t prot, unsigned long vm_flags, int node,
3234 : const void *caller)
3235 : {
3236 : struct vm_struct *area;
3237 : void *ret;
3238 16 : kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3239 16 : unsigned long real_size = size;
3240 16 : unsigned long real_align = align;
3241 16 : unsigned int shift = PAGE_SHIFT;
3242 :
3243 16 : if (WARN_ON_ONCE(!size))
3244 : return NULL;
3245 :
3246 32 : if ((size >> PAGE_SHIFT) > totalram_pages()) {
3247 0 : warn_alloc(gfp_mask, NULL,
3248 : "vmalloc error: size %lu, exceeds total pages",
3249 : real_size);
3250 0 : return NULL;
3251 : }
3252 :
3253 : if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3254 : unsigned long size_per_node;
3255 :
3256 : /*
3257 : * Try huge pages. Only try for PAGE_KERNEL allocations,
3258 : * others like modules don't yet expect huge pages in
3259 : * their allocations due to apply_to_page_range not
3260 : * supporting them.
3261 : */
3262 :
3263 : size_per_node = size;
3264 : if (node == NUMA_NO_NODE)
3265 : size_per_node /= num_online_nodes();
3266 : if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3267 : shift = PMD_SHIFT;
3268 : else
3269 : shift = arch_vmap_pte_supported_shift(size_per_node);
3270 :
3271 : align = max(real_align, 1UL << shift);
3272 : size = ALIGN(real_size, 1UL << shift);
3273 : }
3274 :
3275 : again:
3276 16 : area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3277 : VM_UNINITIALIZED | vm_flags, start, end, node,
3278 : gfp_mask, caller);
3279 16 : if (!area) {
3280 0 : bool nofail = gfp_mask & __GFP_NOFAIL;
3281 0 : warn_alloc(gfp_mask, NULL,
3282 : "vmalloc error: size %lu, vm_struct allocation failed%s",
3283 : real_size, (nofail) ? ". Retrying." : "");
3284 0 : if (nofail) {
3285 0 : schedule_timeout_uninterruptible(1);
3286 0 : goto again;
3287 : }
3288 : goto fail;
3289 : }
3290 :
3291 : /*
3292 : * Prepare arguments for __vmalloc_area_node() and
3293 : * kasan_unpoison_vmalloc().
3294 : */
3295 16 : if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3296 : if (kasan_hw_tags_enabled()) {
3297 : /*
3298 : * Modify protection bits to allow tagging.
3299 : * This must be done before mapping.
3300 : */
3301 : prot = arch_vmap_pgprot_tagged(prot);
3302 :
3303 : /*
3304 : * Skip page_alloc poisoning and zeroing for physical
3305 : * pages backing VM_ALLOC mapping. Memory is instead
3306 : * poisoned and zeroed by kasan_unpoison_vmalloc().
3307 : */
3308 : gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3309 : }
3310 :
3311 : /* Take note that the mapping is PAGE_KERNEL. */
3312 : kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3313 : }
3314 :
3315 : /* Allocate physical pages and map them into vmalloc space. */
3316 16 : ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3317 16 : if (!ret)
3318 : goto fail;
3319 :
3320 : /*
3321 : * Mark the pages as accessible, now that they are mapped.
3322 : * The condition for setting KASAN_VMALLOC_INIT should complement the
3323 : * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3324 : * to make sure that memory is initialized under the same conditions.
3325 : * Tag-based KASAN modes only assign tags to normal non-executable
3326 : * allocations, see __kasan_unpoison_vmalloc().
3327 : */
3328 16 : kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3329 32 : if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3330 : (gfp_mask & __GFP_SKIP_ZERO))
3331 : kasan_flags |= KASAN_VMALLOC_INIT;
3332 : /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3333 16 : area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3334 :
3335 : /*
3336 : * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3337 : * flag. It means that vm_struct is not fully initialized.
3338 : * Now, it is fully initialized, so remove this flag here.
3339 : */
3340 16 : clear_vm_uninitialized_flag(area);
3341 :
3342 16 : size = PAGE_ALIGN(size);
3343 : if (!(vm_flags & VM_DEFER_KMEMLEAK))
3344 16 : kmemleak_vmalloc(area, size, gfp_mask);
3345 :
3346 16 : return area->addr;
3347 :
3348 : fail:
3349 : if (shift > PAGE_SHIFT) {
3350 : shift = PAGE_SHIFT;
3351 : align = real_align;
3352 : size = real_size;
3353 : goto again;
3354 : }
3355 :
3356 : return NULL;
3357 : }
3358 :
3359 : /**
3360 : * __vmalloc_node - allocate virtually contiguous memory
3361 : * @size: allocation size
3362 : * @align: desired alignment
3363 : * @gfp_mask: flags for the page level allocator
3364 : * @node: node to use for allocation or NUMA_NO_NODE
3365 : * @caller: caller's return address
3366 : *
3367 : * Allocate enough pages to cover @size from the page level allocator with
3368 : * @gfp_mask flags. Map them into contiguous kernel virtual space.
3369 : *
3370 : * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3371 : * and __GFP_NOFAIL are not supported
3372 : *
3373 : * Any use of gfp flags outside of GFP_KERNEL should be consulted
3374 : * with mm people.
3375 : *
3376 : * Return: pointer to the allocated memory or %NULL on error
3377 : */
3378 0 : void *__vmalloc_node(unsigned long size, unsigned long align,
3379 : gfp_t gfp_mask, int node, const void *caller)
3380 : {
3381 0 : return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3382 0 : gfp_mask, PAGE_KERNEL, 0, node, caller);
3383 : }
3384 : /*
3385 : * This is only for performance analysis of vmalloc and stress purpose.
3386 : * It is required by vmalloc test module, therefore do not use it other
3387 : * than that.
3388 : */
3389 : #ifdef CONFIG_TEST_VMALLOC_MODULE
3390 : EXPORT_SYMBOL_GPL(__vmalloc_node);
3391 : #endif
3392 :
3393 0 : void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3394 : {
3395 0 : return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3396 0 : __builtin_return_address(0));
3397 : }
3398 : EXPORT_SYMBOL(__vmalloc);
3399 :
3400 : /**
3401 : * vmalloc - allocate virtually contiguous memory
3402 : * @size: allocation size
3403 : *
3404 : * Allocate enough pages to cover @size from the page level
3405 : * allocator and map them into contiguous kernel virtual space.
3406 : *
3407 : * For tight control over page level allocator and protection flags
3408 : * use __vmalloc() instead.
3409 : *
3410 : * Return: pointer to the allocated memory or %NULL on error
3411 : */
3412 0 : void *vmalloc(unsigned long size)
3413 : {
3414 0 : return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3415 0 : __builtin_return_address(0));
3416 : }
3417 : EXPORT_SYMBOL(vmalloc);
3418 :
3419 : /**
3420 : * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3421 : * @size: allocation size
3422 : * @gfp_mask: flags for the page level allocator
3423 : *
3424 : * Allocate enough pages to cover @size from the page level
3425 : * allocator and map them into contiguous kernel virtual space.
3426 : * If @size is greater than or equal to PMD_SIZE, allow using
3427 : * huge pages for the memory
3428 : *
3429 : * Return: pointer to the allocated memory or %NULL on error
3430 : */
3431 0 : void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3432 : {
3433 0 : return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3434 0 : gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3435 0 : NUMA_NO_NODE, __builtin_return_address(0));
3436 : }
3437 : EXPORT_SYMBOL_GPL(vmalloc_huge);
3438 :
3439 : /**
3440 : * vzalloc - allocate virtually contiguous memory with zero fill
3441 : * @size: allocation size
3442 : *
3443 : * Allocate enough pages to cover @size from the page level
3444 : * allocator and map them into contiguous kernel virtual space.
3445 : * The memory allocated is set to zero.
3446 : *
3447 : * For tight control over page level allocator and protection flags
3448 : * use __vmalloc() instead.
3449 : *
3450 : * Return: pointer to the allocated memory or %NULL on error
3451 : */
3452 0 : void *vzalloc(unsigned long size)
3453 : {
3454 0 : return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3455 0 : __builtin_return_address(0));
3456 : }
3457 : EXPORT_SYMBOL(vzalloc);
3458 :
3459 : /**
3460 : * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3461 : * @size: allocation size
3462 : *
3463 : * The resulting memory area is zeroed so it can be mapped to userspace
3464 : * without leaking data.
3465 : *
3466 : * Return: pointer to the allocated memory or %NULL on error
3467 : */
3468 0 : void *vmalloc_user(unsigned long size)
3469 : {
3470 0 : return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3471 0 : GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3472 : VM_USERMAP, NUMA_NO_NODE,
3473 0 : __builtin_return_address(0));
3474 : }
3475 : EXPORT_SYMBOL(vmalloc_user);
3476 :
3477 : /**
3478 : * vmalloc_node - allocate memory on a specific node
3479 : * @size: allocation size
3480 : * @node: numa node
3481 : *
3482 : * Allocate enough pages to cover @size from the page level
3483 : * allocator and map them into contiguous kernel virtual space.
3484 : *
3485 : * For tight control over page level allocator and protection flags
3486 : * use __vmalloc() instead.
3487 : *
3488 : * Return: pointer to the allocated memory or %NULL on error
3489 : */
3490 0 : void *vmalloc_node(unsigned long size, int node)
3491 : {
3492 0 : return __vmalloc_node(size, 1, GFP_KERNEL, node,
3493 0 : __builtin_return_address(0));
3494 : }
3495 : EXPORT_SYMBOL(vmalloc_node);
3496 :
3497 : /**
3498 : * vzalloc_node - allocate memory on a specific node with zero fill
3499 : * @size: allocation size
3500 : * @node: numa node
3501 : *
3502 : * Allocate enough pages to cover @size from the page level
3503 : * allocator and map them into contiguous kernel virtual space.
3504 : * The memory allocated is set to zero.
3505 : *
3506 : * Return: pointer to the allocated memory or %NULL on error
3507 : */
3508 0 : void *vzalloc_node(unsigned long size, int node)
3509 : {
3510 0 : return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3511 0 : __builtin_return_address(0));
3512 : }
3513 : EXPORT_SYMBOL(vzalloc_node);
3514 :
3515 : #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3516 : #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3517 : #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3518 : #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3519 : #else
3520 : /*
3521 : * 64b systems should always have either DMA or DMA32 zones. For others
3522 : * GFP_DMA32 should do the right thing and use the normal zone.
3523 : */
3524 : #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3525 : #endif
3526 :
3527 : /**
3528 : * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3529 : * @size: allocation size
3530 : *
3531 : * Allocate enough 32bit PA addressable pages to cover @size from the
3532 : * page level allocator and map them into contiguous kernel virtual space.
3533 : *
3534 : * Return: pointer to the allocated memory or %NULL on error
3535 : */
3536 0 : void *vmalloc_32(unsigned long size)
3537 : {
3538 0 : return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3539 0 : __builtin_return_address(0));
3540 : }
3541 : EXPORT_SYMBOL(vmalloc_32);
3542 :
3543 : /**
3544 : * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3545 : * @size: allocation size
3546 : *
3547 : * The resulting memory area is 32bit addressable and zeroed so it can be
3548 : * mapped to userspace without leaking data.
3549 : *
3550 : * Return: pointer to the allocated memory or %NULL on error
3551 : */
3552 0 : void *vmalloc_32_user(unsigned long size)
3553 : {
3554 0 : return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3555 0 : GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3556 : VM_USERMAP, NUMA_NO_NODE,
3557 0 : __builtin_return_address(0));
3558 : }
3559 : EXPORT_SYMBOL(vmalloc_32_user);
3560 :
3561 : /*
3562 : * Atomically zero bytes in the iterator.
3563 : *
3564 : * Returns the number of zeroed bytes.
3565 : */
3566 0 : static size_t zero_iter(struct iov_iter *iter, size_t count)
3567 : {
3568 0 : size_t remains = count;
3569 :
3570 0 : while (remains > 0) {
3571 : size_t num, copied;
3572 :
3573 0 : num = min_t(size_t, remains, PAGE_SIZE);
3574 0 : copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3575 0 : remains -= copied;
3576 :
3577 0 : if (copied < num)
3578 : break;
3579 : }
3580 :
3581 0 : return count - remains;
3582 : }
3583 :
3584 : /*
3585 : * small helper routine, copy contents to iter from addr.
3586 : * If the page is not present, fill zero.
3587 : *
3588 : * Returns the number of copied bytes.
3589 : */
3590 0 : static size_t aligned_vread_iter(struct iov_iter *iter,
3591 : const char *addr, size_t count)
3592 : {
3593 0 : size_t remains = count;
3594 : struct page *page;
3595 :
3596 0 : while (remains > 0) {
3597 : unsigned long offset, length;
3598 0 : size_t copied = 0;
3599 :
3600 0 : offset = offset_in_page(addr);
3601 0 : length = PAGE_SIZE - offset;
3602 0 : if (length > remains)
3603 0 : length = remains;
3604 0 : page = vmalloc_to_page(addr);
3605 : /*
3606 : * To do safe access to this _mapped_ area, we need lock. But
3607 : * adding lock here means that we need to add overhead of
3608 : * vmalloc()/vfree() calls for this _debug_ interface, rarely
3609 : * used. Instead of that, we'll use an local mapping via
3610 : * copy_page_to_iter_nofault() and accept a small overhead in
3611 : * this access function.
3612 : */
3613 0 : if (page)
3614 0 : copied = copy_page_to_iter_nofault(page, offset,
3615 : length, iter);
3616 : else
3617 0 : copied = zero_iter(iter, length);
3618 :
3619 0 : addr += copied;
3620 0 : remains -= copied;
3621 :
3622 0 : if (copied != length)
3623 : break;
3624 : }
3625 :
3626 0 : return count - remains;
3627 : }
3628 :
3629 : /*
3630 : * Read from a vm_map_ram region of memory.
3631 : *
3632 : * Returns the number of copied bytes.
3633 : */
3634 0 : static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3635 : size_t count, unsigned long flags)
3636 : {
3637 : char *start;
3638 : struct vmap_block *vb;
3639 : struct xarray *xa;
3640 : unsigned long offset;
3641 : unsigned int rs, re;
3642 : size_t remains, n;
3643 :
3644 : /*
3645 : * If it's area created by vm_map_ram() interface directly, but
3646 : * not further subdividing and delegating management to vmap_block,
3647 : * handle it here.
3648 : */
3649 0 : if (!(flags & VMAP_BLOCK))
3650 0 : return aligned_vread_iter(iter, addr, count);
3651 :
3652 0 : remains = count;
3653 :
3654 : /*
3655 : * Area is split into regions and tracked with vmap_block, read out
3656 : * each region and zero fill the hole between regions.
3657 : */
3658 0 : xa = addr_to_vb_xa((unsigned long) addr);
3659 0 : vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3660 0 : if (!vb)
3661 : goto finished_zero;
3662 :
3663 0 : spin_lock(&vb->lock);
3664 0 : if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3665 0 : spin_unlock(&vb->lock);
3666 : goto finished_zero;
3667 : }
3668 :
3669 0 : for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3670 : size_t copied;
3671 :
3672 0 : if (remains == 0)
3673 : goto finished;
3674 :
3675 0 : start = vmap_block_vaddr(vb->va->va_start, rs);
3676 :
3677 0 : if (addr < start) {
3678 0 : size_t to_zero = min_t(size_t, start - addr, remains);
3679 0 : size_t zeroed = zero_iter(iter, to_zero);
3680 :
3681 0 : addr += zeroed;
3682 0 : remains -= zeroed;
3683 :
3684 0 : if (remains == 0 || zeroed != to_zero)
3685 : goto finished;
3686 : }
3687 :
3688 : /*it could start reading from the middle of used region*/
3689 0 : offset = offset_in_page(addr);
3690 0 : n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3691 0 : if (n > remains)
3692 0 : n = remains;
3693 :
3694 0 : copied = aligned_vread_iter(iter, start + offset, n);
3695 :
3696 0 : addr += copied;
3697 0 : remains -= copied;
3698 :
3699 0 : if (copied != n)
3700 : goto finished;
3701 : }
3702 :
3703 0 : spin_unlock(&vb->lock);
3704 :
3705 : finished_zero:
3706 : /* zero-fill the left dirty or free regions */
3707 0 : return count - remains + zero_iter(iter, remains);
3708 : finished:
3709 : /* We couldn't copy/zero everything */
3710 0 : spin_unlock(&vb->lock);
3711 0 : return count - remains;
3712 : }
3713 :
3714 : /**
3715 : * vread_iter() - read vmalloc area in a safe way to an iterator.
3716 : * @iter: the iterator to which data should be written.
3717 : * @addr: vm address.
3718 : * @count: number of bytes to be read.
3719 : *
3720 : * This function checks that addr is a valid vmalloc'ed area, and
3721 : * copy data from that area to a given buffer. If the given memory range
3722 : * of [addr...addr+count) includes some valid address, data is copied to
3723 : * proper area of @buf. If there are memory holes, they'll be zero-filled.
3724 : * IOREMAP area is treated as memory hole and no copy is done.
3725 : *
3726 : * If [addr...addr+count) doesn't includes any intersects with alive
3727 : * vm_struct area, returns 0. @buf should be kernel's buffer.
3728 : *
3729 : * Note: In usual ops, vread() is never necessary because the caller
3730 : * should know vmalloc() area is valid and can use memcpy().
3731 : * This is for routines which have to access vmalloc area without
3732 : * any information, as /proc/kcore.
3733 : *
3734 : * Return: number of bytes for which addr and buf should be increased
3735 : * (same number as @count) or %0 if [addr...addr+count) doesn't
3736 : * include any intersection with valid vmalloc area
3737 : */
3738 0 : long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3739 : {
3740 : struct vmap_area *va;
3741 : struct vm_struct *vm;
3742 : char *vaddr;
3743 : size_t n, size, flags, remains;
3744 :
3745 0 : addr = kasan_reset_tag(addr);
3746 :
3747 : /* Don't allow overflow */
3748 0 : if ((unsigned long) addr + count < count)
3749 0 : count = -(unsigned long) addr;
3750 :
3751 0 : remains = count;
3752 :
3753 0 : spin_lock(&vmap_area_lock);
3754 0 : va = find_vmap_area_exceed_addr((unsigned long)addr);
3755 0 : if (!va)
3756 : goto finished_zero;
3757 :
3758 : /* no intersects with alive vmap_area */
3759 0 : if ((unsigned long)addr + remains <= va->va_start)
3760 : goto finished_zero;
3761 :
3762 0 : list_for_each_entry_from(va, &vmap_area_list, list) {
3763 : size_t copied;
3764 :
3765 0 : if (remains == 0)
3766 : goto finished;
3767 :
3768 0 : vm = va->vm;
3769 0 : flags = va->flags & VMAP_FLAGS_MASK;
3770 : /*
3771 : * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3772 : * be set together with VMAP_RAM.
3773 : */
3774 0 : WARN_ON(flags == VMAP_BLOCK);
3775 :
3776 0 : if (!vm && !flags)
3777 0 : continue;
3778 :
3779 0 : if (vm && (vm->flags & VM_UNINITIALIZED))
3780 0 : continue;
3781 :
3782 : /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3783 0 : smp_rmb();
3784 :
3785 0 : vaddr = (char *) va->va_start;
3786 0 : size = vm ? get_vm_area_size(vm) : va_size(va);
3787 :
3788 0 : if (addr >= vaddr + size)
3789 0 : continue;
3790 :
3791 0 : if (addr < vaddr) {
3792 0 : size_t to_zero = min_t(size_t, vaddr - addr, remains);
3793 0 : size_t zeroed = zero_iter(iter, to_zero);
3794 :
3795 0 : addr += zeroed;
3796 0 : remains -= zeroed;
3797 :
3798 0 : if (remains == 0 || zeroed != to_zero)
3799 : goto finished;
3800 : }
3801 :
3802 0 : n = vaddr + size - addr;
3803 0 : if (n > remains)
3804 0 : n = remains;
3805 :
3806 0 : if (flags & VMAP_RAM)
3807 0 : copied = vmap_ram_vread_iter(iter, addr, n, flags);
3808 0 : else if (!(vm->flags & VM_IOREMAP))
3809 0 : copied = aligned_vread_iter(iter, addr, n);
3810 : else /* IOREMAP area is treated as memory hole */
3811 0 : copied = zero_iter(iter, n);
3812 :
3813 0 : addr += copied;
3814 0 : remains -= copied;
3815 :
3816 0 : if (copied != n)
3817 : goto finished;
3818 : }
3819 :
3820 : finished_zero:
3821 0 : spin_unlock(&vmap_area_lock);
3822 : /* zero-fill memory holes */
3823 0 : return count - remains + zero_iter(iter, remains);
3824 : finished:
3825 : /* Nothing remains, or We couldn't copy/zero everything. */
3826 0 : spin_unlock(&vmap_area_lock);
3827 :
3828 0 : return count - remains;
3829 : }
3830 :
3831 : /**
3832 : * remap_vmalloc_range_partial - map vmalloc pages to userspace
3833 : * @vma: vma to cover
3834 : * @uaddr: target user address to start at
3835 : * @kaddr: virtual address of vmalloc kernel memory
3836 : * @pgoff: offset from @kaddr to start at
3837 : * @size: size of map area
3838 : *
3839 : * Returns: 0 for success, -Exxx on failure
3840 : *
3841 : * This function checks that @kaddr is a valid vmalloc'ed area,
3842 : * and that it is big enough to cover the range starting at
3843 : * @uaddr in @vma. Will return failure if that criteria isn't
3844 : * met.
3845 : *
3846 : * Similar to remap_pfn_range() (see mm/memory.c)
3847 : */
3848 0 : int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3849 : void *kaddr, unsigned long pgoff,
3850 : unsigned long size)
3851 : {
3852 : struct vm_struct *area;
3853 : unsigned long off;
3854 : unsigned long end_index;
3855 :
3856 0 : if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3857 : return -EINVAL;
3858 :
3859 0 : size = PAGE_ALIGN(size);
3860 :
3861 0 : if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3862 : return -EINVAL;
3863 :
3864 0 : area = find_vm_area(kaddr);
3865 0 : if (!area)
3866 : return -EINVAL;
3867 :
3868 0 : if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3869 : return -EINVAL;
3870 :
3871 0 : if (check_add_overflow(size, off, &end_index) ||
3872 : end_index > get_vm_area_size(area))
3873 : return -EINVAL;
3874 0 : kaddr += off;
3875 :
3876 : do {
3877 0 : struct page *page = vmalloc_to_page(kaddr);
3878 : int ret;
3879 :
3880 0 : ret = vm_insert_page(vma, uaddr, page);
3881 0 : if (ret)
3882 : return ret;
3883 :
3884 0 : uaddr += PAGE_SIZE;
3885 0 : kaddr += PAGE_SIZE;
3886 0 : size -= PAGE_SIZE;
3887 0 : } while (size > 0);
3888 :
3889 0 : vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3890 :
3891 0 : return 0;
3892 : }
3893 :
3894 : /**
3895 : * remap_vmalloc_range - map vmalloc pages to userspace
3896 : * @vma: vma to cover (map full range of vma)
3897 : * @addr: vmalloc memory
3898 : * @pgoff: number of pages into addr before first page to map
3899 : *
3900 : * Returns: 0 for success, -Exxx on failure
3901 : *
3902 : * This function checks that addr is a valid vmalloc'ed area, and
3903 : * that it is big enough to cover the vma. Will return failure if
3904 : * that criteria isn't met.
3905 : *
3906 : * Similar to remap_pfn_range() (see mm/memory.c)
3907 : */
3908 0 : int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3909 : unsigned long pgoff)
3910 : {
3911 0 : return remap_vmalloc_range_partial(vma, vma->vm_start,
3912 : addr, pgoff,
3913 0 : vma->vm_end - vma->vm_start);
3914 : }
3915 : EXPORT_SYMBOL(remap_vmalloc_range);
3916 :
3917 0 : void free_vm_area(struct vm_struct *area)
3918 : {
3919 : struct vm_struct *ret;
3920 0 : ret = remove_vm_area(area->addr);
3921 0 : BUG_ON(ret != area);
3922 0 : kfree(area);
3923 0 : }
3924 : EXPORT_SYMBOL_GPL(free_vm_area);
3925 :
3926 : #ifdef CONFIG_SMP
3927 : static struct vmap_area *node_to_va(struct rb_node *n)
3928 : {
3929 : return rb_entry_safe(n, struct vmap_area, rb_node);
3930 : }
3931 :
3932 : /**
3933 : * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3934 : * @addr: target address
3935 : *
3936 : * Returns: vmap_area if it is found. If there is no such area
3937 : * the first highest(reverse order) vmap_area is returned
3938 : * i.e. va->va_start < addr && va->va_end < addr or NULL
3939 : * if there are no any areas before @addr.
3940 : */
3941 : static struct vmap_area *
3942 : pvm_find_va_enclose_addr(unsigned long addr)
3943 : {
3944 : struct vmap_area *va, *tmp;
3945 : struct rb_node *n;
3946 :
3947 : n = free_vmap_area_root.rb_node;
3948 : va = NULL;
3949 :
3950 : while (n) {
3951 : tmp = rb_entry(n, struct vmap_area, rb_node);
3952 : if (tmp->va_start <= addr) {
3953 : va = tmp;
3954 : if (tmp->va_end >= addr)
3955 : break;
3956 :
3957 : n = n->rb_right;
3958 : } else {
3959 : n = n->rb_left;
3960 : }
3961 : }
3962 :
3963 : return va;
3964 : }
3965 :
3966 : /**
3967 : * pvm_determine_end_from_reverse - find the highest aligned address
3968 : * of free block below VMALLOC_END
3969 : * @va:
3970 : * in - the VA we start the search(reverse order);
3971 : * out - the VA with the highest aligned end address.
3972 : * @align: alignment for required highest address
3973 : *
3974 : * Returns: determined end address within vmap_area
3975 : */
3976 : static unsigned long
3977 : pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3978 : {
3979 : unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3980 : unsigned long addr;
3981 :
3982 : if (likely(*va)) {
3983 : list_for_each_entry_from_reverse((*va),
3984 : &free_vmap_area_list, list) {
3985 : addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3986 : if ((*va)->va_start < addr)
3987 : return addr;
3988 : }
3989 : }
3990 :
3991 : return 0;
3992 : }
3993 :
3994 : /**
3995 : * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3996 : * @offsets: array containing offset of each area
3997 : * @sizes: array containing size of each area
3998 : * @nr_vms: the number of areas to allocate
3999 : * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4000 : *
4001 : * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4002 : * vm_structs on success, %NULL on failure
4003 : *
4004 : * Percpu allocator wants to use congruent vm areas so that it can
4005 : * maintain the offsets among percpu areas. This function allocates
4006 : * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4007 : * be scattered pretty far, distance between two areas easily going up
4008 : * to gigabytes. To avoid interacting with regular vmallocs, these
4009 : * areas are allocated from top.
4010 : *
4011 : * Despite its complicated look, this allocator is rather simple. It
4012 : * does everything top-down and scans free blocks from the end looking
4013 : * for matching base. While scanning, if any of the areas do not fit the
4014 : * base address is pulled down to fit the area. Scanning is repeated till
4015 : * all the areas fit and then all necessary data structures are inserted
4016 : * and the result is returned.
4017 : */
4018 : struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4019 : const size_t *sizes, int nr_vms,
4020 : size_t align)
4021 : {
4022 : const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4023 : const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4024 : struct vmap_area **vas, *va;
4025 : struct vm_struct **vms;
4026 : int area, area2, last_area, term_area;
4027 : unsigned long base, start, size, end, last_end, orig_start, orig_end;
4028 : bool purged = false;
4029 :
4030 : /* verify parameters and allocate data structures */
4031 : BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4032 : for (last_area = 0, area = 0; area < nr_vms; area++) {
4033 : start = offsets[area];
4034 : end = start + sizes[area];
4035 :
4036 : /* is everything aligned properly? */
4037 : BUG_ON(!IS_ALIGNED(offsets[area], align));
4038 : BUG_ON(!IS_ALIGNED(sizes[area], align));
4039 :
4040 : /* detect the area with the highest address */
4041 : if (start > offsets[last_area])
4042 : last_area = area;
4043 :
4044 : for (area2 = area + 1; area2 < nr_vms; area2++) {
4045 : unsigned long start2 = offsets[area2];
4046 : unsigned long end2 = start2 + sizes[area2];
4047 :
4048 : BUG_ON(start2 < end && start < end2);
4049 : }
4050 : }
4051 : last_end = offsets[last_area] + sizes[last_area];
4052 :
4053 : if (vmalloc_end - vmalloc_start < last_end) {
4054 : WARN_ON(true);
4055 : return NULL;
4056 : }
4057 :
4058 : vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4059 : vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4060 : if (!vas || !vms)
4061 : goto err_free2;
4062 :
4063 : for (area = 0; area < nr_vms; area++) {
4064 : vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4065 : vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4066 : if (!vas[area] || !vms[area])
4067 : goto err_free;
4068 : }
4069 : retry:
4070 : spin_lock(&free_vmap_area_lock);
4071 :
4072 : /* start scanning - we scan from the top, begin with the last area */
4073 : area = term_area = last_area;
4074 : start = offsets[area];
4075 : end = start + sizes[area];
4076 :
4077 : va = pvm_find_va_enclose_addr(vmalloc_end);
4078 : base = pvm_determine_end_from_reverse(&va, align) - end;
4079 :
4080 : while (true) {
4081 : /*
4082 : * base might have underflowed, add last_end before
4083 : * comparing.
4084 : */
4085 : if (base + last_end < vmalloc_start + last_end)
4086 : goto overflow;
4087 :
4088 : /*
4089 : * Fitting base has not been found.
4090 : */
4091 : if (va == NULL)
4092 : goto overflow;
4093 :
4094 : /*
4095 : * If required width exceeds current VA block, move
4096 : * base downwards and then recheck.
4097 : */
4098 : if (base + end > va->va_end) {
4099 : base = pvm_determine_end_from_reverse(&va, align) - end;
4100 : term_area = area;
4101 : continue;
4102 : }
4103 :
4104 : /*
4105 : * If this VA does not fit, move base downwards and recheck.
4106 : */
4107 : if (base + start < va->va_start) {
4108 : va = node_to_va(rb_prev(&va->rb_node));
4109 : base = pvm_determine_end_from_reverse(&va, align) - end;
4110 : term_area = area;
4111 : continue;
4112 : }
4113 :
4114 : /*
4115 : * This area fits, move on to the previous one. If
4116 : * the previous one is the terminal one, we're done.
4117 : */
4118 : area = (area + nr_vms - 1) % nr_vms;
4119 : if (area == term_area)
4120 : break;
4121 :
4122 : start = offsets[area];
4123 : end = start + sizes[area];
4124 : va = pvm_find_va_enclose_addr(base + end);
4125 : }
4126 :
4127 : /* we've found a fitting base, insert all va's */
4128 : for (area = 0; area < nr_vms; area++) {
4129 : int ret;
4130 :
4131 : start = base + offsets[area];
4132 : size = sizes[area];
4133 :
4134 : va = pvm_find_va_enclose_addr(start);
4135 : if (WARN_ON_ONCE(va == NULL))
4136 : /* It is a BUG(), but trigger recovery instead. */
4137 : goto recovery;
4138 :
4139 : ret = adjust_va_to_fit_type(&free_vmap_area_root,
4140 : &free_vmap_area_list,
4141 : va, start, size);
4142 : if (WARN_ON_ONCE(unlikely(ret)))
4143 : /* It is a BUG(), but trigger recovery instead. */
4144 : goto recovery;
4145 :
4146 : /* Allocated area. */
4147 : va = vas[area];
4148 : va->va_start = start;
4149 : va->va_end = start + size;
4150 : }
4151 :
4152 : spin_unlock(&free_vmap_area_lock);
4153 :
4154 : /* populate the kasan shadow space */
4155 : for (area = 0; area < nr_vms; area++) {
4156 : if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4157 : goto err_free_shadow;
4158 : }
4159 :
4160 : /* insert all vm's */
4161 : spin_lock(&vmap_area_lock);
4162 : for (area = 0; area < nr_vms; area++) {
4163 : insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4164 :
4165 : setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4166 : pcpu_get_vm_areas);
4167 : }
4168 : spin_unlock(&vmap_area_lock);
4169 :
4170 : /*
4171 : * Mark allocated areas as accessible. Do it now as a best-effort
4172 : * approach, as they can be mapped outside of vmalloc code.
4173 : * With hardware tag-based KASAN, marking is skipped for
4174 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4175 : */
4176 : for (area = 0; area < nr_vms; area++)
4177 : vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4178 : vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4179 :
4180 : kfree(vas);
4181 : return vms;
4182 :
4183 : recovery:
4184 : /*
4185 : * Remove previously allocated areas. There is no
4186 : * need in removing these areas from the busy tree,
4187 : * because they are inserted only on the final step
4188 : * and when pcpu_get_vm_areas() is success.
4189 : */
4190 : while (area--) {
4191 : orig_start = vas[area]->va_start;
4192 : orig_end = vas[area]->va_end;
4193 : va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4194 : &free_vmap_area_list);
4195 : if (va)
4196 : kasan_release_vmalloc(orig_start, orig_end,
4197 : va->va_start, va->va_end);
4198 : vas[area] = NULL;
4199 : }
4200 :
4201 : overflow:
4202 : spin_unlock(&free_vmap_area_lock);
4203 : if (!purged) {
4204 : reclaim_and_purge_vmap_areas();
4205 : purged = true;
4206 :
4207 : /* Before "retry", check if we recover. */
4208 : for (area = 0; area < nr_vms; area++) {
4209 : if (vas[area])
4210 : continue;
4211 :
4212 : vas[area] = kmem_cache_zalloc(
4213 : vmap_area_cachep, GFP_KERNEL);
4214 : if (!vas[area])
4215 : goto err_free;
4216 : }
4217 :
4218 : goto retry;
4219 : }
4220 :
4221 : err_free:
4222 : for (area = 0; area < nr_vms; area++) {
4223 : if (vas[area])
4224 : kmem_cache_free(vmap_area_cachep, vas[area]);
4225 :
4226 : kfree(vms[area]);
4227 : }
4228 : err_free2:
4229 : kfree(vas);
4230 : kfree(vms);
4231 : return NULL;
4232 :
4233 : err_free_shadow:
4234 : spin_lock(&free_vmap_area_lock);
4235 : /*
4236 : * We release all the vmalloc shadows, even the ones for regions that
4237 : * hadn't been successfully added. This relies on kasan_release_vmalloc
4238 : * being able to tolerate this case.
4239 : */
4240 : for (area = 0; area < nr_vms; area++) {
4241 : orig_start = vas[area]->va_start;
4242 : orig_end = vas[area]->va_end;
4243 : va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4244 : &free_vmap_area_list);
4245 : if (va)
4246 : kasan_release_vmalloc(orig_start, orig_end,
4247 : va->va_start, va->va_end);
4248 : vas[area] = NULL;
4249 : kfree(vms[area]);
4250 : }
4251 : spin_unlock(&free_vmap_area_lock);
4252 : kfree(vas);
4253 : kfree(vms);
4254 : return NULL;
4255 : }
4256 :
4257 : /**
4258 : * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4259 : * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4260 : * @nr_vms: the number of allocated areas
4261 : *
4262 : * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4263 : */
4264 : void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4265 : {
4266 : int i;
4267 :
4268 : for (i = 0; i < nr_vms; i++)
4269 : free_vm_area(vms[i]);
4270 : kfree(vms);
4271 : }
4272 : #endif /* CONFIG_SMP */
4273 :
4274 : #ifdef CONFIG_PRINTK
4275 0 : bool vmalloc_dump_obj(void *object)
4276 : {
4277 : struct vm_struct *vm;
4278 0 : void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4279 :
4280 0 : vm = find_vm_area(objp);
4281 0 : if (!vm)
4282 : return false;
4283 0 : pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4284 : vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4285 0 : return true;
4286 : }
4287 : #endif
4288 :
4289 : #ifdef CONFIG_PROC_FS
4290 0 : static void *s_start(struct seq_file *m, loff_t *pos)
4291 : __acquires(&vmap_purge_lock)
4292 : __acquires(&vmap_area_lock)
4293 : {
4294 0 : mutex_lock(&vmap_purge_lock);
4295 0 : spin_lock(&vmap_area_lock);
4296 :
4297 0 : return seq_list_start(&vmap_area_list, *pos);
4298 : }
4299 :
4300 0 : static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4301 : {
4302 0 : return seq_list_next(p, &vmap_area_list, pos);
4303 : }
4304 :
4305 0 : static void s_stop(struct seq_file *m, void *p)
4306 : __releases(&vmap_area_lock)
4307 : __releases(&vmap_purge_lock)
4308 : {
4309 0 : spin_unlock(&vmap_area_lock);
4310 0 : mutex_unlock(&vmap_purge_lock);
4311 0 : }
4312 :
4313 : static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4314 : {
4315 : if (IS_ENABLED(CONFIG_NUMA)) {
4316 : unsigned int nr, *counters = m->private;
4317 : unsigned int step = 1U << vm_area_page_order(v);
4318 :
4319 : if (!counters)
4320 : return;
4321 :
4322 : if (v->flags & VM_UNINITIALIZED)
4323 : return;
4324 : /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4325 : smp_rmb();
4326 :
4327 : memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4328 :
4329 : for (nr = 0; nr < v->nr_pages; nr += step)
4330 : counters[page_to_nid(v->pages[nr])] += step;
4331 : for_each_node_state(nr, N_HIGH_MEMORY)
4332 : if (counters[nr])
4333 : seq_printf(m, " N%u=%u", nr, counters[nr]);
4334 : }
4335 : }
4336 :
4337 0 : static void show_purge_info(struct seq_file *m)
4338 : {
4339 : struct vmap_area *va;
4340 :
4341 0 : spin_lock(&purge_vmap_area_lock);
4342 0 : list_for_each_entry(va, &purge_vmap_area_list, list) {
4343 0 : seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4344 : (void *)va->va_start, (void *)va->va_end,
4345 0 : va->va_end - va->va_start);
4346 : }
4347 0 : spin_unlock(&purge_vmap_area_lock);
4348 0 : }
4349 :
4350 0 : static int s_show(struct seq_file *m, void *p)
4351 : {
4352 : struct vmap_area *va;
4353 : struct vm_struct *v;
4354 :
4355 0 : va = list_entry(p, struct vmap_area, list);
4356 :
4357 0 : if (!va->vm) {
4358 0 : if (va->flags & VMAP_RAM)
4359 0 : seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4360 : (void *)va->va_start, (void *)va->va_end,
4361 0 : va->va_end - va->va_start);
4362 :
4363 : goto final;
4364 : }
4365 :
4366 0 : v = va->vm;
4367 :
4368 0 : seq_printf(m, "0x%pK-0x%pK %7ld",
4369 0 : v->addr, v->addr + v->size, v->size);
4370 :
4371 0 : if (v->caller)
4372 0 : seq_printf(m, " %pS", v->caller);
4373 :
4374 0 : if (v->nr_pages)
4375 0 : seq_printf(m, " pages=%d", v->nr_pages);
4376 :
4377 0 : if (v->phys_addr)
4378 0 : seq_printf(m, " phys=%pa", &v->phys_addr);
4379 :
4380 0 : if (v->flags & VM_IOREMAP)
4381 0 : seq_puts(m, " ioremap");
4382 :
4383 0 : if (v->flags & VM_ALLOC)
4384 0 : seq_puts(m, " vmalloc");
4385 :
4386 0 : if (v->flags & VM_MAP)
4387 0 : seq_puts(m, " vmap");
4388 :
4389 0 : if (v->flags & VM_USERMAP)
4390 0 : seq_puts(m, " user");
4391 :
4392 0 : if (v->flags & VM_DMA_COHERENT)
4393 0 : seq_puts(m, " dma-coherent");
4394 :
4395 0 : if (is_vmalloc_addr(v->pages))
4396 0 : seq_puts(m, " vpages");
4397 :
4398 0 : show_numa_info(m, v);
4399 0 : seq_putc(m, '\n');
4400 :
4401 : /*
4402 : * As a final step, dump "unpurged" areas.
4403 : */
4404 : final:
4405 0 : if (list_is_last(&va->list, &vmap_area_list))
4406 0 : show_purge_info(m);
4407 :
4408 0 : return 0;
4409 : }
4410 :
4411 : static const struct seq_operations vmalloc_op = {
4412 : .start = s_start,
4413 : .next = s_next,
4414 : .stop = s_stop,
4415 : .show = s_show,
4416 : };
4417 :
4418 1 : static int __init proc_vmalloc_init(void)
4419 : {
4420 : if (IS_ENABLED(CONFIG_NUMA))
4421 : proc_create_seq_private("vmallocinfo", 0400, NULL,
4422 : &vmalloc_op,
4423 : nr_node_ids * sizeof(unsigned int), NULL);
4424 : else
4425 1 : proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4426 1 : return 0;
4427 : }
4428 : module_init(proc_vmalloc_init);
4429 :
4430 : #endif
4431 :
4432 1 : void __init vmalloc_init(void)
4433 : {
4434 : struct vmap_area *va;
4435 : struct vm_struct *tmp;
4436 : int i;
4437 :
4438 : /*
4439 : * Create the cache for vmap_area objects.
4440 : */
4441 1 : vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4442 :
4443 2 : for_each_possible_cpu(i) {
4444 : struct vmap_block_queue *vbq;
4445 : struct vfree_deferred *p;
4446 :
4447 1 : vbq = &per_cpu(vmap_block_queue, i);
4448 1 : spin_lock_init(&vbq->lock);
4449 2 : INIT_LIST_HEAD(&vbq->free);
4450 1 : p = &per_cpu(vfree_deferred, i);
4451 2 : init_llist_head(&p->list);
4452 2 : INIT_WORK(&p->wq, delayed_vfree_work);
4453 2 : xa_init(&vbq->vmap_blocks);
4454 : }
4455 :
4456 : /* Import existing vmlist entries. */
4457 1 : for (tmp = vmlist; tmp; tmp = tmp->next) {
4458 0 : va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4459 0 : if (WARN_ON_ONCE(!va))
4460 0 : continue;
4461 :
4462 0 : va->va_start = (unsigned long)tmp->addr;
4463 0 : va->va_end = va->va_start + tmp->size;
4464 0 : va->vm = tmp;
4465 0 : insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4466 : }
4467 :
4468 : /*
4469 : * Now we can initialize a free vmap space.
4470 : */
4471 1 : vmap_init_free_space();
4472 1 : vmap_initialized = true;
4473 1 : }
|