Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/vmstat.c
4 : *
5 : * Manages VM statistics
6 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 : *
8 : * zoned VM statistics
9 : * Copyright (C) 2006 Silicon Graphics, Inc.,
10 : * Christoph Lameter <christoph@lameter.com>
11 : * Copyright (C) 2008-2014 Christoph Lameter
12 : */
13 : #include <linux/fs.h>
14 : #include <linux/mm.h>
15 : #include <linux/err.h>
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/cpu.h>
19 : #include <linux/cpumask.h>
20 : #include <linux/vmstat.h>
21 : #include <linux/proc_fs.h>
22 : #include <linux/seq_file.h>
23 : #include <linux/debugfs.h>
24 : #include <linux/sched.h>
25 : #include <linux/math64.h>
26 : #include <linux/writeback.h>
27 : #include <linux/compaction.h>
28 : #include <linux/mm_inline.h>
29 : #include <linux/page_ext.h>
30 : #include <linux/page_owner.h>
31 : #include <linux/sched/isolation.h>
32 :
33 : #include "internal.h"
34 :
35 : #ifdef CONFIG_NUMA
36 : int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 :
38 : /* zero numa counters within a zone */
39 : static void zero_zone_numa_counters(struct zone *zone)
40 : {
41 : int item, cpu;
42 :
43 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 : atomic_long_set(&zone->vm_numa_event[item], 0);
45 : for_each_online_cpu(cpu) {
46 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 : = 0;
48 : }
49 : }
50 : }
51 :
52 : /* zero numa counters of all the populated zones */
53 : static void zero_zones_numa_counters(void)
54 : {
55 : struct zone *zone;
56 :
57 : for_each_populated_zone(zone)
58 : zero_zone_numa_counters(zone);
59 : }
60 :
61 : /* zero global numa counters */
62 : static void zero_global_numa_counters(void)
63 : {
64 : int item;
65 :
66 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 : atomic_long_set(&vm_numa_event[item], 0);
68 : }
69 :
70 : static void invalid_numa_statistics(void)
71 : {
72 : zero_zones_numa_counters();
73 : zero_global_numa_counters();
74 : }
75 :
76 : static DEFINE_MUTEX(vm_numa_stat_lock);
77 :
78 : int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 : void *buffer, size_t *length, loff_t *ppos)
80 : {
81 : int ret, oldval;
82 :
83 : mutex_lock(&vm_numa_stat_lock);
84 : if (write)
85 : oldval = sysctl_vm_numa_stat;
86 : ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 : if (ret || !write)
88 : goto out;
89 :
90 : if (oldval == sysctl_vm_numa_stat)
91 : goto out;
92 : else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 : static_branch_enable(&vm_numa_stat_key);
94 : pr_info("enable numa statistics\n");
95 : } else {
96 : static_branch_disable(&vm_numa_stat_key);
97 : invalid_numa_statistics();
98 : pr_info("disable numa statistics, and clear numa counters\n");
99 : }
100 :
101 : out:
102 : mutex_unlock(&vm_numa_stat_lock);
103 : return ret;
104 : }
105 : #endif
106 :
107 : #ifdef CONFIG_VM_EVENT_COUNTERS
108 : DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 : EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 :
111 0 : static void sum_vm_events(unsigned long *ret)
112 : {
113 : int cpu;
114 : int i;
115 :
116 0 : memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 :
118 0 : for_each_online_cpu(cpu) {
119 : struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 :
121 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 0 : ret[i] += this->event[i];
123 : }
124 0 : }
125 :
126 : /*
127 : * Accumulate the vm event counters across all CPUs.
128 : * The result is unavoidably approximate - it can change
129 : * during and after execution of this function.
130 : */
131 0 : void all_vm_events(unsigned long *ret)
132 : {
133 : cpus_read_lock();
134 0 : sum_vm_events(ret);
135 : cpus_read_unlock();
136 0 : }
137 : EXPORT_SYMBOL_GPL(all_vm_events);
138 :
139 : /*
140 : * Fold the foreign cpu events into our own.
141 : *
142 : * This is adding to the events on one processor
143 : * but keeps the global counts constant.
144 : */
145 0 : void vm_events_fold_cpu(int cpu)
146 : {
147 0 : struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 : int i;
149 :
150 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 0 : count_vm_events(i, fold_state->event[i]);
152 0 : fold_state->event[i] = 0;
153 : }
154 0 : }
155 :
156 : #endif /* CONFIG_VM_EVENT_COUNTERS */
157 :
158 : /*
159 : * Manage combined zone based / global counters
160 : *
161 : * vm_stat contains the global counters
162 : */
163 : atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 : atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 : atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 : EXPORT_SYMBOL(vm_zone_stat);
167 : EXPORT_SYMBOL(vm_node_stat);
168 :
169 : #ifdef CONFIG_NUMA
170 : static void fold_vm_zone_numa_events(struct zone *zone)
171 : {
172 : unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 : int cpu;
174 : enum numa_stat_item item;
175 :
176 : for_each_online_cpu(cpu) {
177 : struct per_cpu_zonestat *pzstats;
178 :
179 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 : zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 : }
183 :
184 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 : zone_numa_event_add(zone_numa_events[item], zone, item);
186 : }
187 :
188 : void fold_vm_numa_events(void)
189 : {
190 : struct zone *zone;
191 :
192 : for_each_populated_zone(zone)
193 : fold_vm_zone_numa_events(zone);
194 : }
195 : #endif
196 :
197 : #ifdef CONFIG_SMP
198 :
199 : int calculate_pressure_threshold(struct zone *zone)
200 : {
201 : int threshold;
202 : int watermark_distance;
203 :
204 : /*
205 : * As vmstats are not up to date, there is drift between the estimated
206 : * and real values. For high thresholds and a high number of CPUs, it
207 : * is possible for the min watermark to be breached while the estimated
208 : * value looks fine. The pressure threshold is a reduced value such
209 : * that even the maximum amount of drift will not accidentally breach
210 : * the min watermark
211 : */
212 : watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 : threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214 :
215 : /*
216 : * Maximum threshold is 125
217 : */
218 : threshold = min(125, threshold);
219 :
220 : return threshold;
221 : }
222 :
223 : int calculate_normal_threshold(struct zone *zone)
224 : {
225 : int threshold;
226 : int mem; /* memory in 128 MB units */
227 :
228 : /*
229 : * The threshold scales with the number of processors and the amount
230 : * of memory per zone. More memory means that we can defer updates for
231 : * longer, more processors could lead to more contention.
232 : * fls() is used to have a cheap way of logarithmic scaling.
233 : *
234 : * Some sample thresholds:
235 : *
236 : * Threshold Processors (fls) Zonesize fls(mem)+1
237 : * ------------------------------------------------------------------
238 : * 8 1 1 0.9-1 GB 4
239 : * 16 2 2 0.9-1 GB 4
240 : * 20 2 2 1-2 GB 5
241 : * 24 2 2 2-4 GB 6
242 : * 28 2 2 4-8 GB 7
243 : * 32 2 2 8-16 GB 8
244 : * 4 2 2 <128M 1
245 : * 30 4 3 2-4 GB 5
246 : * 48 4 3 8-16 GB 8
247 : * 32 8 4 1-2 GB 4
248 : * 32 8 4 0.9-1GB 4
249 : * 10 16 5 <128M 1
250 : * 40 16 5 900M 4
251 : * 70 64 7 2-4 GB 5
252 : * 84 64 7 4-8 GB 6
253 : * 108 512 9 4-8 GB 6
254 : * 125 1024 10 8-16 GB 8
255 : * 125 1024 10 16-32 GB 9
256 : */
257 :
258 : mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 :
260 : threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261 :
262 : /*
263 : * Maximum threshold is 125
264 : */
265 : threshold = min(125, threshold);
266 :
267 : return threshold;
268 : }
269 :
270 : /*
271 : * Refresh the thresholds for each zone.
272 : */
273 : void refresh_zone_stat_thresholds(void)
274 : {
275 : struct pglist_data *pgdat;
276 : struct zone *zone;
277 : int cpu;
278 : int threshold;
279 :
280 : /* Zero current pgdat thresholds */
281 : for_each_online_pgdat(pgdat) {
282 : for_each_online_cpu(cpu) {
283 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 : }
285 : }
286 :
287 : for_each_populated_zone(zone) {
288 : struct pglist_data *pgdat = zone->zone_pgdat;
289 : unsigned long max_drift, tolerate_drift;
290 :
291 : threshold = calculate_normal_threshold(zone);
292 :
293 : for_each_online_cpu(cpu) {
294 : int pgdat_threshold;
295 :
296 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 : = threshold;
298 :
299 : /* Base nodestat threshold on the largest populated zone. */
300 : pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 : = max(threshold, pgdat_threshold);
303 : }
304 :
305 : /*
306 : * Only set percpu_drift_mark if there is a danger that
307 : * NR_FREE_PAGES reports the low watermark is ok when in fact
308 : * the min watermark could be breached by an allocation
309 : */
310 : tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 : max_drift = num_online_cpus() * threshold;
312 : if (max_drift > tolerate_drift)
313 : zone->percpu_drift_mark = high_wmark_pages(zone) +
314 : max_drift;
315 : }
316 : }
317 :
318 : void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 : int (*calculate_pressure)(struct zone *))
320 : {
321 : struct zone *zone;
322 : int cpu;
323 : int threshold;
324 : int i;
325 :
326 : for (i = 0; i < pgdat->nr_zones; i++) {
327 : zone = &pgdat->node_zones[i];
328 : if (!zone->percpu_drift_mark)
329 : continue;
330 :
331 : threshold = (*calculate_pressure)(zone);
332 : for_each_online_cpu(cpu)
333 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 : = threshold;
335 : }
336 : }
337 :
338 : /*
339 : * For use when we know that interrupts are disabled,
340 : * or when we know that preemption is disabled and that
341 : * particular counter cannot be updated from interrupt context.
342 : */
343 : void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 : long delta)
345 : {
346 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 : s8 __percpu *p = pcp->vm_stat_diff + item;
348 : long x;
349 : long t;
350 :
351 : /*
352 : * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 : * atomicity is provided by IRQs being disabled -- either explicitly
354 : * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 : * CPU migrations and preemption potentially corrupts a counter so
356 : * disable preemption.
357 : */
358 : preempt_disable_nested();
359 :
360 : x = delta + __this_cpu_read(*p);
361 :
362 : t = __this_cpu_read(pcp->stat_threshold);
363 :
364 : if (unlikely(abs(x) > t)) {
365 : zone_page_state_add(x, zone, item);
366 : x = 0;
367 : }
368 : __this_cpu_write(*p, x);
369 :
370 : preempt_enable_nested();
371 : }
372 : EXPORT_SYMBOL(__mod_zone_page_state);
373 :
374 : void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 : long delta)
376 : {
377 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 : long x;
380 : long t;
381 :
382 : if (vmstat_item_in_bytes(item)) {
383 : /*
384 : * Only cgroups use subpage accounting right now; at
385 : * the global level, these items still change in
386 : * multiples of whole pages. Store them as pages
387 : * internally to keep the per-cpu counters compact.
388 : */
389 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 : delta >>= PAGE_SHIFT;
391 : }
392 :
393 : /* See __mod_node_page_state */
394 : preempt_disable_nested();
395 :
396 : x = delta + __this_cpu_read(*p);
397 :
398 : t = __this_cpu_read(pcp->stat_threshold);
399 :
400 : if (unlikely(abs(x) > t)) {
401 : node_page_state_add(x, pgdat, item);
402 : x = 0;
403 : }
404 : __this_cpu_write(*p, x);
405 :
406 : preempt_enable_nested();
407 : }
408 : EXPORT_SYMBOL(__mod_node_page_state);
409 :
410 : /*
411 : * Optimized increment and decrement functions.
412 : *
413 : * These are only for a single page and therefore can take a struct page *
414 : * argument instead of struct zone *. This allows the inclusion of the code
415 : * generated for page_zone(page) into the optimized functions.
416 : *
417 : * No overflow check is necessary and therefore the differential can be
418 : * incremented or decremented in place which may allow the compilers to
419 : * generate better code.
420 : * The increment or decrement is known and therefore one boundary check can
421 : * be omitted.
422 : *
423 : * NOTE: These functions are very performance sensitive. Change only
424 : * with care.
425 : *
426 : * Some processors have inc/dec instructions that are atomic vs an interrupt.
427 : * However, the code must first determine the differential location in a zone
428 : * based on the processor number and then inc/dec the counter. There is no
429 : * guarantee without disabling preemption that the processor will not change
430 : * in between and therefore the atomicity vs. interrupt cannot be exploited
431 : * in a useful way here.
432 : */
433 : void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434 : {
435 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 : s8 __percpu *p = pcp->vm_stat_diff + item;
437 : s8 v, t;
438 :
439 : /* See __mod_node_page_state */
440 : preempt_disable_nested();
441 :
442 : v = __this_cpu_inc_return(*p);
443 : t = __this_cpu_read(pcp->stat_threshold);
444 : if (unlikely(v > t)) {
445 : s8 overstep = t >> 1;
446 :
447 : zone_page_state_add(v + overstep, zone, item);
448 : __this_cpu_write(*p, -overstep);
449 : }
450 :
451 : preempt_enable_nested();
452 : }
453 :
454 : void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455 : {
456 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 : s8 v, t;
459 :
460 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461 :
462 : /* See __mod_node_page_state */
463 : preempt_disable_nested();
464 :
465 : v = __this_cpu_inc_return(*p);
466 : t = __this_cpu_read(pcp->stat_threshold);
467 : if (unlikely(v > t)) {
468 : s8 overstep = t >> 1;
469 :
470 : node_page_state_add(v + overstep, pgdat, item);
471 : __this_cpu_write(*p, -overstep);
472 : }
473 :
474 : preempt_enable_nested();
475 : }
476 :
477 : void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478 : {
479 : __inc_zone_state(page_zone(page), item);
480 : }
481 : EXPORT_SYMBOL(__inc_zone_page_state);
482 :
483 : void __inc_node_page_state(struct page *page, enum node_stat_item item)
484 : {
485 : __inc_node_state(page_pgdat(page), item);
486 : }
487 : EXPORT_SYMBOL(__inc_node_page_state);
488 :
489 : void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490 : {
491 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 : s8 __percpu *p = pcp->vm_stat_diff + item;
493 : s8 v, t;
494 :
495 : /* See __mod_node_page_state */
496 : preempt_disable_nested();
497 :
498 : v = __this_cpu_dec_return(*p);
499 : t = __this_cpu_read(pcp->stat_threshold);
500 : if (unlikely(v < - t)) {
501 : s8 overstep = t >> 1;
502 :
503 : zone_page_state_add(v - overstep, zone, item);
504 : __this_cpu_write(*p, overstep);
505 : }
506 :
507 : preempt_enable_nested();
508 : }
509 :
510 : void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511 : {
512 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 : s8 v, t;
515 :
516 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517 :
518 : /* See __mod_node_page_state */
519 : preempt_disable_nested();
520 :
521 : v = __this_cpu_dec_return(*p);
522 : t = __this_cpu_read(pcp->stat_threshold);
523 : if (unlikely(v < - t)) {
524 : s8 overstep = t >> 1;
525 :
526 : node_page_state_add(v - overstep, pgdat, item);
527 : __this_cpu_write(*p, overstep);
528 : }
529 :
530 : preempt_enable_nested();
531 : }
532 :
533 : void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534 : {
535 : __dec_zone_state(page_zone(page), item);
536 : }
537 : EXPORT_SYMBOL(__dec_zone_page_state);
538 :
539 : void __dec_node_page_state(struct page *page, enum node_stat_item item)
540 : {
541 : __dec_node_state(page_pgdat(page), item);
542 : }
543 : EXPORT_SYMBOL(__dec_node_page_state);
544 :
545 : #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546 : /*
547 : * If we have cmpxchg_local support then we do not need to incur the overhead
548 : * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549 : *
550 : * mod_state() modifies the zone counter state through atomic per cpu
551 : * operations.
552 : *
553 : * Overstep mode specifies how overstep should handled:
554 : * 0 No overstepping
555 : * 1 Overstepping half of threshold
556 : * -1 Overstepping minus half of threshold
557 : */
558 : static inline void mod_zone_state(struct zone *zone,
559 : enum zone_stat_item item, long delta, int overstep_mode)
560 : {
561 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 : s8 __percpu *p = pcp->vm_stat_diff + item;
563 : long o, n, t, z;
564 :
565 : do {
566 : z = 0; /* overflow to zone counters */
567 :
568 : /*
569 : * The fetching of the stat_threshold is racy. We may apply
570 : * a counter threshold to the wrong the cpu if we get
571 : * rescheduled while executing here. However, the next
572 : * counter update will apply the threshold again and
573 : * therefore bring the counter under the threshold again.
574 : *
575 : * Most of the time the thresholds are the same anyways
576 : * for all cpus in a zone.
577 : */
578 : t = this_cpu_read(pcp->stat_threshold);
579 :
580 : o = this_cpu_read(*p);
581 : n = delta + o;
582 :
583 : if (abs(n) > t) {
584 : int os = overstep_mode * (t >> 1) ;
585 :
586 : /* Overflow must be added to zone counters */
587 : z = n + os;
588 : n = -os;
589 : }
590 : } while (this_cpu_cmpxchg(*p, o, n) != o);
591 :
592 : if (z)
593 : zone_page_state_add(z, zone, item);
594 : }
595 :
596 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 : long delta)
598 : {
599 : mod_zone_state(zone, item, delta, 0);
600 : }
601 : EXPORT_SYMBOL(mod_zone_page_state);
602 :
603 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 : {
605 : mod_zone_state(page_zone(page), item, 1, 1);
606 : }
607 : EXPORT_SYMBOL(inc_zone_page_state);
608 :
609 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 : {
611 : mod_zone_state(page_zone(page), item, -1, -1);
612 : }
613 : EXPORT_SYMBOL(dec_zone_page_state);
614 :
615 : static inline void mod_node_state(struct pglist_data *pgdat,
616 : enum node_stat_item item, int delta, int overstep_mode)
617 : {
618 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 : long o, n, t, z;
621 :
622 : if (vmstat_item_in_bytes(item)) {
623 : /*
624 : * Only cgroups use subpage accounting right now; at
625 : * the global level, these items still change in
626 : * multiples of whole pages. Store them as pages
627 : * internally to keep the per-cpu counters compact.
628 : */
629 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
630 : delta >>= PAGE_SHIFT;
631 : }
632 :
633 : do {
634 : z = 0; /* overflow to node counters */
635 :
636 : /*
637 : * The fetching of the stat_threshold is racy. We may apply
638 : * a counter threshold to the wrong the cpu if we get
639 : * rescheduled while executing here. However, the next
640 : * counter update will apply the threshold again and
641 : * therefore bring the counter under the threshold again.
642 : *
643 : * Most of the time the thresholds are the same anyways
644 : * for all cpus in a node.
645 : */
646 : t = this_cpu_read(pcp->stat_threshold);
647 :
648 : o = this_cpu_read(*p);
649 : n = delta + o;
650 :
651 : if (abs(n) > t) {
652 : int os = overstep_mode * (t >> 1) ;
653 :
654 : /* Overflow must be added to node counters */
655 : z = n + os;
656 : n = -os;
657 : }
658 : } while (this_cpu_cmpxchg(*p, o, n) != o);
659 :
660 : if (z)
661 : node_page_state_add(z, pgdat, item);
662 : }
663 :
664 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
665 : long delta)
666 : {
667 : mod_node_state(pgdat, item, delta, 0);
668 : }
669 : EXPORT_SYMBOL(mod_node_page_state);
670 :
671 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
672 : {
673 : mod_node_state(pgdat, item, 1, 1);
674 : }
675 :
676 : void inc_node_page_state(struct page *page, enum node_stat_item item)
677 : {
678 : mod_node_state(page_pgdat(page), item, 1, 1);
679 : }
680 : EXPORT_SYMBOL(inc_node_page_state);
681 :
682 : void dec_node_page_state(struct page *page, enum node_stat_item item)
683 : {
684 : mod_node_state(page_pgdat(page), item, -1, -1);
685 : }
686 : EXPORT_SYMBOL(dec_node_page_state);
687 : #else
688 : /*
689 : * Use interrupt disable to serialize counter updates
690 : */
691 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
692 : long delta)
693 : {
694 : unsigned long flags;
695 :
696 : local_irq_save(flags);
697 : __mod_zone_page_state(zone, item, delta);
698 : local_irq_restore(flags);
699 : }
700 : EXPORT_SYMBOL(mod_zone_page_state);
701 :
702 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
703 : {
704 : unsigned long flags;
705 : struct zone *zone;
706 :
707 : zone = page_zone(page);
708 : local_irq_save(flags);
709 : __inc_zone_state(zone, item);
710 : local_irq_restore(flags);
711 : }
712 : EXPORT_SYMBOL(inc_zone_page_state);
713 :
714 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
715 : {
716 : unsigned long flags;
717 :
718 : local_irq_save(flags);
719 : __dec_zone_page_state(page, item);
720 : local_irq_restore(flags);
721 : }
722 : EXPORT_SYMBOL(dec_zone_page_state);
723 :
724 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
725 : {
726 : unsigned long flags;
727 :
728 : local_irq_save(flags);
729 : __inc_node_state(pgdat, item);
730 : local_irq_restore(flags);
731 : }
732 : EXPORT_SYMBOL(inc_node_state);
733 :
734 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
735 : long delta)
736 : {
737 : unsigned long flags;
738 :
739 : local_irq_save(flags);
740 : __mod_node_page_state(pgdat, item, delta);
741 : local_irq_restore(flags);
742 : }
743 : EXPORT_SYMBOL(mod_node_page_state);
744 :
745 : void inc_node_page_state(struct page *page, enum node_stat_item item)
746 : {
747 : unsigned long flags;
748 : struct pglist_data *pgdat;
749 :
750 : pgdat = page_pgdat(page);
751 : local_irq_save(flags);
752 : __inc_node_state(pgdat, item);
753 : local_irq_restore(flags);
754 : }
755 : EXPORT_SYMBOL(inc_node_page_state);
756 :
757 : void dec_node_page_state(struct page *page, enum node_stat_item item)
758 : {
759 : unsigned long flags;
760 :
761 : local_irq_save(flags);
762 : __dec_node_page_state(page, item);
763 : local_irq_restore(flags);
764 : }
765 : EXPORT_SYMBOL(dec_node_page_state);
766 : #endif
767 :
768 : /*
769 : * Fold a differential into the global counters.
770 : * Returns the number of counters updated.
771 : */
772 : static int fold_diff(int *zone_diff, int *node_diff)
773 : {
774 : int i;
775 : int changes = 0;
776 :
777 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 : if (zone_diff[i]) {
779 : atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
780 : changes++;
781 : }
782 :
783 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
784 : if (node_diff[i]) {
785 : atomic_long_add(node_diff[i], &vm_node_stat[i]);
786 : changes++;
787 : }
788 : return changes;
789 : }
790 :
791 : /*
792 : * Update the zone counters for the current cpu.
793 : *
794 : * Note that refresh_cpu_vm_stats strives to only access
795 : * node local memory. The per cpu pagesets on remote zones are placed
796 : * in the memory local to the processor using that pageset. So the
797 : * loop over all zones will access a series of cachelines local to
798 : * the processor.
799 : *
800 : * The call to zone_page_state_add updates the cachelines with the
801 : * statistics in the remote zone struct as well as the global cachelines
802 : * with the global counters. These could cause remote node cache line
803 : * bouncing and will have to be only done when necessary.
804 : *
805 : * The function returns the number of global counters updated.
806 : */
807 : static int refresh_cpu_vm_stats(bool do_pagesets)
808 : {
809 : struct pglist_data *pgdat;
810 : struct zone *zone;
811 : int i;
812 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
813 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
814 : int changes = 0;
815 :
816 : for_each_populated_zone(zone) {
817 : struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
818 : #ifdef CONFIG_NUMA
819 : struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820 : #endif
821 :
822 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 : int v;
824 :
825 : v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
826 : if (v) {
827 :
828 : atomic_long_add(v, &zone->vm_stat[i]);
829 : global_zone_diff[i] += v;
830 : #ifdef CONFIG_NUMA
831 : /* 3 seconds idle till flush */
832 : __this_cpu_write(pcp->expire, 3);
833 : #endif
834 : }
835 : }
836 : #ifdef CONFIG_NUMA
837 :
838 : if (do_pagesets) {
839 : cond_resched();
840 : /*
841 : * Deal with draining the remote pageset of this
842 : * processor
843 : *
844 : * Check if there are pages remaining in this pageset
845 : * if not then there is nothing to expire.
846 : */
847 : if (!__this_cpu_read(pcp->expire) ||
848 : !__this_cpu_read(pcp->count))
849 : continue;
850 :
851 : /*
852 : * We never drain zones local to this processor.
853 : */
854 : if (zone_to_nid(zone) == numa_node_id()) {
855 : __this_cpu_write(pcp->expire, 0);
856 : continue;
857 : }
858 :
859 : if (__this_cpu_dec_return(pcp->expire))
860 : continue;
861 :
862 : if (__this_cpu_read(pcp->count)) {
863 : drain_zone_pages(zone, this_cpu_ptr(pcp));
864 : changes++;
865 : }
866 : }
867 : #endif
868 : }
869 :
870 : for_each_online_pgdat(pgdat) {
871 : struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
872 :
873 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
874 : int v;
875 :
876 : v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
877 : if (v) {
878 : atomic_long_add(v, &pgdat->vm_stat[i]);
879 : global_node_diff[i] += v;
880 : }
881 : }
882 : }
883 :
884 : changes += fold_diff(global_zone_diff, global_node_diff);
885 : return changes;
886 : }
887 :
888 : /*
889 : * Fold the data for an offline cpu into the global array.
890 : * There cannot be any access by the offline cpu and therefore
891 : * synchronization is simplified.
892 : */
893 : void cpu_vm_stats_fold(int cpu)
894 : {
895 : struct pglist_data *pgdat;
896 : struct zone *zone;
897 : int i;
898 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
899 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
900 :
901 : for_each_populated_zone(zone) {
902 : struct per_cpu_zonestat *pzstats;
903 :
904 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
905 :
906 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
907 : if (pzstats->vm_stat_diff[i]) {
908 : int v;
909 :
910 : v = pzstats->vm_stat_diff[i];
911 : pzstats->vm_stat_diff[i] = 0;
912 : atomic_long_add(v, &zone->vm_stat[i]);
913 : global_zone_diff[i] += v;
914 : }
915 : }
916 : #ifdef CONFIG_NUMA
917 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
918 : if (pzstats->vm_numa_event[i]) {
919 : unsigned long v;
920 :
921 : v = pzstats->vm_numa_event[i];
922 : pzstats->vm_numa_event[i] = 0;
923 : zone_numa_event_add(v, zone, i);
924 : }
925 : }
926 : #endif
927 : }
928 :
929 : for_each_online_pgdat(pgdat) {
930 : struct per_cpu_nodestat *p;
931 :
932 : p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
933 :
934 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
935 : if (p->vm_node_stat_diff[i]) {
936 : int v;
937 :
938 : v = p->vm_node_stat_diff[i];
939 : p->vm_node_stat_diff[i] = 0;
940 : atomic_long_add(v, &pgdat->vm_stat[i]);
941 : global_node_diff[i] += v;
942 : }
943 : }
944 :
945 : fold_diff(global_zone_diff, global_node_diff);
946 : }
947 :
948 : /*
949 : * this is only called if !populated_zone(zone), which implies no other users of
950 : * pset->vm_stat_diff[] exist.
951 : */
952 : void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
953 : {
954 : unsigned long v;
955 : int i;
956 :
957 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
958 : if (pzstats->vm_stat_diff[i]) {
959 : v = pzstats->vm_stat_diff[i];
960 : pzstats->vm_stat_diff[i] = 0;
961 : zone_page_state_add(v, zone, i);
962 : }
963 : }
964 :
965 : #ifdef CONFIG_NUMA
966 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
967 : if (pzstats->vm_numa_event[i]) {
968 : v = pzstats->vm_numa_event[i];
969 : pzstats->vm_numa_event[i] = 0;
970 : zone_numa_event_add(v, zone, i);
971 : }
972 : }
973 : #endif
974 : }
975 : #endif
976 :
977 : #ifdef CONFIG_NUMA
978 : /*
979 : * Determine the per node value of a stat item. This function
980 : * is called frequently in a NUMA machine, so try to be as
981 : * frugal as possible.
982 : */
983 : unsigned long sum_zone_node_page_state(int node,
984 : enum zone_stat_item item)
985 : {
986 : struct zone *zones = NODE_DATA(node)->node_zones;
987 : int i;
988 : unsigned long count = 0;
989 :
990 : for (i = 0; i < MAX_NR_ZONES; i++)
991 : count += zone_page_state(zones + i, item);
992 :
993 : return count;
994 : }
995 :
996 : /* Determine the per node value of a numa stat item. */
997 : unsigned long sum_zone_numa_event_state(int node,
998 : enum numa_stat_item item)
999 : {
1000 : struct zone *zones = NODE_DATA(node)->node_zones;
1001 : unsigned long count = 0;
1002 : int i;
1003 :
1004 : for (i = 0; i < MAX_NR_ZONES; i++)
1005 : count += zone_numa_event_state(zones + i, item);
1006 :
1007 : return count;
1008 : }
1009 :
1010 : /*
1011 : * Determine the per node value of a stat item.
1012 : */
1013 : unsigned long node_page_state_pages(struct pglist_data *pgdat,
1014 : enum node_stat_item item)
1015 : {
1016 : long x = atomic_long_read(&pgdat->vm_stat[item]);
1017 : #ifdef CONFIG_SMP
1018 : if (x < 0)
1019 : x = 0;
1020 : #endif
1021 : return x;
1022 : }
1023 :
1024 : unsigned long node_page_state(struct pglist_data *pgdat,
1025 : enum node_stat_item item)
1026 : {
1027 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1028 :
1029 : return node_page_state_pages(pgdat, item);
1030 : }
1031 : #endif
1032 :
1033 : #ifdef CONFIG_COMPACTION
1034 :
1035 : struct contig_page_info {
1036 : unsigned long free_pages;
1037 : unsigned long free_blocks_total;
1038 : unsigned long free_blocks_suitable;
1039 : };
1040 :
1041 : /*
1042 : * Calculate the number of free pages in a zone, how many contiguous
1043 : * pages are free and how many are large enough to satisfy an allocation of
1044 : * the target size. Note that this function makes no attempt to estimate
1045 : * how many suitable free blocks there *might* be if MOVABLE pages were
1046 : * migrated. Calculating that is possible, but expensive and can be
1047 : * figured out from userspace
1048 : */
1049 : static void fill_contig_page_info(struct zone *zone,
1050 : unsigned int suitable_order,
1051 : struct contig_page_info *info)
1052 : {
1053 : unsigned int order;
1054 :
1055 0 : info->free_pages = 0;
1056 0 : info->free_blocks_total = 0;
1057 0 : info->free_blocks_suitable = 0;
1058 :
1059 0 : for (order = 0; order <= MAX_ORDER; order++) {
1060 : unsigned long blocks;
1061 :
1062 : /*
1063 : * Count number of free blocks.
1064 : *
1065 : * Access to nr_free is lockless as nr_free is used only for
1066 : * diagnostic purposes. Use data_race to avoid KCSAN warning.
1067 : */
1068 0 : blocks = data_race(zone->free_area[order].nr_free);
1069 0 : info->free_blocks_total += blocks;
1070 :
1071 : /* Count free base pages */
1072 0 : info->free_pages += blocks << order;
1073 :
1074 : /* Count the suitable free blocks */
1075 0 : if (order >= suitable_order)
1076 0 : info->free_blocks_suitable += blocks <<
1077 0 : (order - suitable_order);
1078 : }
1079 : }
1080 :
1081 : /*
1082 : * A fragmentation index only makes sense if an allocation of a requested
1083 : * size would fail. If that is true, the fragmentation index indicates
1084 : * whether external fragmentation or a lack of memory was the problem.
1085 : * The value can be used to determine if page reclaim or compaction
1086 : * should be used
1087 : */
1088 0 : static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089 : {
1090 0 : unsigned long requested = 1UL << order;
1091 :
1092 0 : if (WARN_ON_ONCE(order > MAX_ORDER))
1093 : return 0;
1094 :
1095 0 : if (!info->free_blocks_total)
1096 : return 0;
1097 :
1098 : /* Fragmentation index only makes sense when a request would fail */
1099 0 : if (info->free_blocks_suitable)
1100 : return -1000;
1101 :
1102 : /*
1103 : * Index is between 0 and 1 so return within 3 decimal places
1104 : *
1105 : * 0 => allocation would fail due to lack of memory
1106 : * 1 => allocation would fail due to fragmentation
1107 : */
1108 0 : return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109 : }
1110 :
1111 : /*
1112 : * Calculates external fragmentation within a zone wrt the given order.
1113 : * It is defined as the percentage of pages found in blocks of size
1114 : * less than 1 << order. It returns values in range [0, 100].
1115 : */
1116 0 : unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117 : {
1118 : struct contig_page_info info;
1119 :
1120 0 : fill_contig_page_info(zone, order, &info);
1121 0 : if (info.free_pages == 0)
1122 : return 0;
1123 :
1124 0 : return div_u64((info.free_pages -
1125 0 : (info.free_blocks_suitable << order)) * 100,
1126 : info.free_pages);
1127 : }
1128 :
1129 : /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 0 : int fragmentation_index(struct zone *zone, unsigned int order)
1131 : {
1132 : struct contig_page_info info;
1133 :
1134 0 : fill_contig_page_info(zone, order, &info);
1135 0 : return __fragmentation_index(order, &info);
1136 : }
1137 : #endif
1138 :
1139 : #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 : defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 : #ifdef CONFIG_ZONE_DMA
1142 : #define TEXT_FOR_DMA(xx) xx "_dma",
1143 : #else
1144 : #define TEXT_FOR_DMA(xx)
1145 : #endif
1146 :
1147 : #ifdef CONFIG_ZONE_DMA32
1148 : #define TEXT_FOR_DMA32(xx) xx "_dma32",
1149 : #else
1150 : #define TEXT_FOR_DMA32(xx)
1151 : #endif
1152 :
1153 : #ifdef CONFIG_HIGHMEM
1154 : #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155 : #else
1156 : #define TEXT_FOR_HIGHMEM(xx)
1157 : #endif
1158 :
1159 : #ifdef CONFIG_ZONE_DEVICE
1160 : #define TEXT_FOR_DEVICE(xx) xx "_device",
1161 : #else
1162 : #define TEXT_FOR_DEVICE(xx)
1163 : #endif
1164 :
1165 : #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 : TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1167 : TEXT_FOR_DEVICE(xx)
1168 :
1169 : const char * const vmstat_text[] = {
1170 : /* enum zone_stat_item counters */
1171 : "nr_free_pages",
1172 : "nr_zone_inactive_anon",
1173 : "nr_zone_active_anon",
1174 : "nr_zone_inactive_file",
1175 : "nr_zone_active_file",
1176 : "nr_zone_unevictable",
1177 : "nr_zone_write_pending",
1178 : "nr_mlock",
1179 : "nr_bounce",
1180 : #if IS_ENABLED(CONFIG_ZSMALLOC)
1181 : "nr_zspages",
1182 : #endif
1183 : "nr_free_cma",
1184 : #ifdef CONFIG_UNACCEPTED_MEMORY
1185 : "nr_unaccepted",
1186 : #endif
1187 :
1188 : /* enum numa_stat_item counters */
1189 : #ifdef CONFIG_NUMA
1190 : "numa_hit",
1191 : "numa_miss",
1192 : "numa_foreign",
1193 : "numa_interleave",
1194 : "numa_local",
1195 : "numa_other",
1196 : #endif
1197 :
1198 : /* enum node_stat_item counters */
1199 : "nr_inactive_anon",
1200 : "nr_active_anon",
1201 : "nr_inactive_file",
1202 : "nr_active_file",
1203 : "nr_unevictable",
1204 : "nr_slab_reclaimable",
1205 : "nr_slab_unreclaimable",
1206 : "nr_isolated_anon",
1207 : "nr_isolated_file",
1208 : "workingset_nodes",
1209 : "workingset_refault_anon",
1210 : "workingset_refault_file",
1211 : "workingset_activate_anon",
1212 : "workingset_activate_file",
1213 : "workingset_restore_anon",
1214 : "workingset_restore_file",
1215 : "workingset_nodereclaim",
1216 : "nr_anon_pages",
1217 : "nr_mapped",
1218 : "nr_file_pages",
1219 : "nr_dirty",
1220 : "nr_writeback",
1221 : "nr_writeback_temp",
1222 : "nr_shmem",
1223 : "nr_shmem_hugepages",
1224 : "nr_shmem_pmdmapped",
1225 : "nr_file_hugepages",
1226 : "nr_file_pmdmapped",
1227 : "nr_anon_transparent_hugepages",
1228 : "nr_vmscan_write",
1229 : "nr_vmscan_immediate_reclaim",
1230 : "nr_dirtied",
1231 : "nr_written",
1232 : "nr_throttled_written",
1233 : "nr_kernel_misc_reclaimable",
1234 : "nr_foll_pin_acquired",
1235 : "nr_foll_pin_released",
1236 : "nr_kernel_stack",
1237 : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1238 : "nr_shadow_call_stack",
1239 : #endif
1240 : "nr_page_table_pages",
1241 : "nr_sec_page_table_pages",
1242 : #ifdef CONFIG_SWAP
1243 : "nr_swapcached",
1244 : #endif
1245 : #ifdef CONFIG_NUMA_BALANCING
1246 : "pgpromote_success",
1247 : "pgpromote_candidate",
1248 : #endif
1249 :
1250 : /* enum writeback_stat_item counters */
1251 : "nr_dirty_threshold",
1252 : "nr_dirty_background_threshold",
1253 :
1254 : #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 : /* enum vm_event_item counters */
1256 : "pgpgin",
1257 : "pgpgout",
1258 : "pswpin",
1259 : "pswpout",
1260 :
1261 : TEXTS_FOR_ZONES("pgalloc")
1262 : TEXTS_FOR_ZONES("allocstall")
1263 : TEXTS_FOR_ZONES("pgskip")
1264 :
1265 : "pgfree",
1266 : "pgactivate",
1267 : "pgdeactivate",
1268 : "pglazyfree",
1269 :
1270 : "pgfault",
1271 : "pgmajfault",
1272 : "pglazyfreed",
1273 :
1274 : "pgrefill",
1275 : "pgreuse",
1276 : "pgsteal_kswapd",
1277 : "pgsteal_direct",
1278 : "pgsteal_khugepaged",
1279 : "pgdemote_kswapd",
1280 : "pgdemote_direct",
1281 : "pgdemote_khugepaged",
1282 : "pgscan_kswapd",
1283 : "pgscan_direct",
1284 : "pgscan_khugepaged",
1285 : "pgscan_direct_throttle",
1286 : "pgscan_anon",
1287 : "pgscan_file",
1288 : "pgsteal_anon",
1289 : "pgsteal_file",
1290 :
1291 : #ifdef CONFIG_NUMA
1292 : "zone_reclaim_failed",
1293 : #endif
1294 : "pginodesteal",
1295 : "slabs_scanned",
1296 : "kswapd_inodesteal",
1297 : "kswapd_low_wmark_hit_quickly",
1298 : "kswapd_high_wmark_hit_quickly",
1299 : "pageoutrun",
1300 :
1301 : "pgrotated",
1302 :
1303 : "drop_pagecache",
1304 : "drop_slab",
1305 : "oom_kill",
1306 :
1307 : #ifdef CONFIG_NUMA_BALANCING
1308 : "numa_pte_updates",
1309 : "numa_huge_pte_updates",
1310 : "numa_hint_faults",
1311 : "numa_hint_faults_local",
1312 : "numa_pages_migrated",
1313 : #endif
1314 : #ifdef CONFIG_MIGRATION
1315 : "pgmigrate_success",
1316 : "pgmigrate_fail",
1317 : "thp_migration_success",
1318 : "thp_migration_fail",
1319 : "thp_migration_split",
1320 : #endif
1321 : #ifdef CONFIG_COMPACTION
1322 : "compact_migrate_scanned",
1323 : "compact_free_scanned",
1324 : "compact_isolated",
1325 : "compact_stall",
1326 : "compact_fail",
1327 : "compact_success",
1328 : "compact_daemon_wake",
1329 : "compact_daemon_migrate_scanned",
1330 : "compact_daemon_free_scanned",
1331 : #endif
1332 :
1333 : #ifdef CONFIG_HUGETLB_PAGE
1334 : "htlb_buddy_alloc_success",
1335 : "htlb_buddy_alloc_fail",
1336 : #endif
1337 : #ifdef CONFIG_CMA
1338 : "cma_alloc_success",
1339 : "cma_alloc_fail",
1340 : #endif
1341 : "unevictable_pgs_culled",
1342 : "unevictable_pgs_scanned",
1343 : "unevictable_pgs_rescued",
1344 : "unevictable_pgs_mlocked",
1345 : "unevictable_pgs_munlocked",
1346 : "unevictable_pgs_cleared",
1347 : "unevictable_pgs_stranded",
1348 :
1349 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1350 : "thp_fault_alloc",
1351 : "thp_fault_fallback",
1352 : "thp_fault_fallback_charge",
1353 : "thp_collapse_alloc",
1354 : "thp_collapse_alloc_failed",
1355 : "thp_file_alloc",
1356 : "thp_file_fallback",
1357 : "thp_file_fallback_charge",
1358 : "thp_file_mapped",
1359 : "thp_split_page",
1360 : "thp_split_page_failed",
1361 : "thp_deferred_split_page",
1362 : "thp_split_pmd",
1363 : "thp_scan_exceed_none_pte",
1364 : "thp_scan_exceed_swap_pte",
1365 : "thp_scan_exceed_share_pte",
1366 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1367 : "thp_split_pud",
1368 : #endif
1369 : "thp_zero_page_alloc",
1370 : "thp_zero_page_alloc_failed",
1371 : "thp_swpout",
1372 : "thp_swpout_fallback",
1373 : #endif
1374 : #ifdef CONFIG_MEMORY_BALLOON
1375 : "balloon_inflate",
1376 : "balloon_deflate",
1377 : #ifdef CONFIG_BALLOON_COMPACTION
1378 : "balloon_migrate",
1379 : #endif
1380 : #endif /* CONFIG_MEMORY_BALLOON */
1381 : #ifdef CONFIG_DEBUG_TLBFLUSH
1382 : "nr_tlb_remote_flush",
1383 : "nr_tlb_remote_flush_received",
1384 : "nr_tlb_local_flush_all",
1385 : "nr_tlb_local_flush_one",
1386 : #endif /* CONFIG_DEBUG_TLBFLUSH */
1387 :
1388 : #ifdef CONFIG_SWAP
1389 : "swap_ra",
1390 : "swap_ra_hit",
1391 : #ifdef CONFIG_KSM
1392 : "ksm_swpin_copy",
1393 : #endif
1394 : #endif
1395 : #ifdef CONFIG_KSM
1396 : "cow_ksm",
1397 : #endif
1398 : #ifdef CONFIG_ZSWAP
1399 : "zswpin",
1400 : "zswpout",
1401 : #endif
1402 : #ifdef CONFIG_X86
1403 : "direct_map_level2_splits",
1404 : "direct_map_level3_splits",
1405 : #endif
1406 : #ifdef CONFIG_PER_VMA_LOCK_STATS
1407 : "vma_lock_success",
1408 : "vma_lock_abort",
1409 : "vma_lock_retry",
1410 : "vma_lock_miss",
1411 : #endif
1412 : #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1413 : };
1414 : #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1415 :
1416 : #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1417 : defined(CONFIG_PROC_FS)
1418 0 : static void *frag_start(struct seq_file *m, loff_t *pos)
1419 : {
1420 : pg_data_t *pgdat;
1421 0 : loff_t node = *pos;
1422 :
1423 0 : for (pgdat = first_online_pgdat();
1424 0 : pgdat && node;
1425 0 : pgdat = next_online_pgdat(pgdat))
1426 0 : --node;
1427 :
1428 0 : return pgdat;
1429 : }
1430 :
1431 0 : static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1432 : {
1433 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1434 :
1435 0 : (*pos)++;
1436 0 : return next_online_pgdat(pgdat);
1437 : }
1438 :
1439 0 : static void frag_stop(struct seq_file *m, void *arg)
1440 : {
1441 0 : }
1442 :
1443 : /*
1444 : * Walk zones in a node and print using a callback.
1445 : * If @assert_populated is true, only use callback for zones that are populated.
1446 : */
1447 0 : static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1448 : bool assert_populated, bool nolock,
1449 : void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1450 : {
1451 : struct zone *zone;
1452 0 : struct zone *node_zones = pgdat->node_zones;
1453 : unsigned long flags;
1454 :
1455 0 : for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1456 0 : if (assert_populated && !populated_zone(zone))
1457 0 : continue;
1458 :
1459 0 : if (!nolock)
1460 0 : spin_lock_irqsave(&zone->lock, flags);
1461 0 : print(m, pgdat, zone);
1462 0 : if (!nolock)
1463 0 : spin_unlock_irqrestore(&zone->lock, flags);
1464 : }
1465 0 : }
1466 : #endif
1467 :
1468 : #ifdef CONFIG_PROC_FS
1469 0 : static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1470 : struct zone *zone)
1471 : {
1472 : int order;
1473 :
1474 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1475 0 : for (order = 0; order <= MAX_ORDER; ++order)
1476 : /*
1477 : * Access to nr_free is lockless as nr_free is used only for
1478 : * printing purposes. Use data_race to avoid KCSAN warning.
1479 : */
1480 0 : seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1481 0 : seq_putc(m, '\n');
1482 0 : }
1483 :
1484 : /*
1485 : * This walks the free areas for each zone.
1486 : */
1487 0 : static int frag_show(struct seq_file *m, void *arg)
1488 : {
1489 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1490 0 : walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1491 0 : return 0;
1492 : }
1493 :
1494 0 : static void pagetypeinfo_showfree_print(struct seq_file *m,
1495 : pg_data_t *pgdat, struct zone *zone)
1496 : {
1497 : int order, mtype;
1498 :
1499 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1500 0 : seq_printf(m, "Node %4d, zone %8s, type %12s ",
1501 : pgdat->node_id,
1502 : zone->name,
1503 : migratetype_names[mtype]);
1504 0 : for (order = 0; order <= MAX_ORDER; ++order) {
1505 0 : unsigned long freecount = 0;
1506 : struct free_area *area;
1507 : struct list_head *curr;
1508 0 : bool overflow = false;
1509 :
1510 0 : area = &(zone->free_area[order]);
1511 :
1512 0 : list_for_each(curr, &area->free_list[mtype]) {
1513 : /*
1514 : * Cap the free_list iteration because it might
1515 : * be really large and we are under a spinlock
1516 : * so a long time spent here could trigger a
1517 : * hard lockup detector. Anyway this is a
1518 : * debugging tool so knowing there is a handful
1519 : * of pages of this order should be more than
1520 : * sufficient.
1521 : */
1522 0 : if (++freecount >= 100000) {
1523 : overflow = true;
1524 : break;
1525 : }
1526 : }
1527 0 : seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1528 0 : spin_unlock_irq(&zone->lock);
1529 0 : cond_resched();
1530 0 : spin_lock_irq(&zone->lock);
1531 : }
1532 0 : seq_putc(m, '\n');
1533 : }
1534 0 : }
1535 :
1536 : /* Print out the free pages at each order for each migatetype */
1537 0 : static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1538 : {
1539 : int order;
1540 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1541 :
1542 : /* Print header */
1543 0 : seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1544 0 : for (order = 0; order <= MAX_ORDER; ++order)
1545 0 : seq_printf(m, "%6d ", order);
1546 0 : seq_putc(m, '\n');
1547 :
1548 0 : walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1549 0 : }
1550 :
1551 0 : static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1552 : pg_data_t *pgdat, struct zone *zone)
1553 : {
1554 : int mtype;
1555 : unsigned long pfn;
1556 0 : unsigned long start_pfn = zone->zone_start_pfn;
1557 0 : unsigned long end_pfn = zone_end_pfn(zone);
1558 0 : unsigned long count[MIGRATE_TYPES] = { 0, };
1559 :
1560 0 : for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1561 : struct page *page;
1562 :
1563 0 : page = pfn_to_online_page(pfn);
1564 0 : if (!page)
1565 0 : continue;
1566 :
1567 0 : if (page_zone(page) != zone)
1568 0 : continue;
1569 :
1570 0 : mtype = get_pageblock_migratetype(page);
1571 :
1572 0 : if (mtype < MIGRATE_TYPES)
1573 0 : count[mtype]++;
1574 : }
1575 :
1576 : /* Print counts */
1577 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1578 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 0 : seq_printf(m, "%12lu ", count[mtype]);
1580 0 : seq_putc(m, '\n');
1581 0 : }
1582 :
1583 : /* Print out the number of pageblocks for each migratetype */
1584 0 : static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1585 : {
1586 : int mtype;
1587 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1588 :
1589 0 : seq_printf(m, "\n%-23s", "Number of blocks type ");
1590 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1591 0 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1592 0 : seq_putc(m, '\n');
1593 0 : walk_zones_in_node(m, pgdat, true, false,
1594 : pagetypeinfo_showblockcount_print);
1595 0 : }
1596 :
1597 : /*
1598 : * Print out the number of pageblocks for each migratetype that contain pages
1599 : * of other types. This gives an indication of how well fallbacks are being
1600 : * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1601 : * to determine what is going on
1602 : */
1603 : static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1604 : {
1605 : #ifdef CONFIG_PAGE_OWNER
1606 : int mtype;
1607 :
1608 : if (!static_branch_unlikely(&page_owner_inited))
1609 : return;
1610 :
1611 : drain_all_pages(NULL);
1612 :
1613 : seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1614 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1615 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1616 : seq_putc(m, '\n');
1617 :
1618 : walk_zones_in_node(m, pgdat, true, true,
1619 : pagetypeinfo_showmixedcount_print);
1620 : #endif /* CONFIG_PAGE_OWNER */
1621 : }
1622 :
1623 : /*
1624 : * This prints out statistics in relation to grouping pages by mobility.
1625 : * It is expensive to collect so do not constantly read the file.
1626 : */
1627 0 : static int pagetypeinfo_show(struct seq_file *m, void *arg)
1628 : {
1629 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1630 :
1631 : /* check memoryless node */
1632 0 : if (!node_state(pgdat->node_id, N_MEMORY))
1633 : return 0;
1634 :
1635 0 : seq_printf(m, "Page block order: %d\n", pageblock_order);
1636 0 : seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1637 0 : seq_putc(m, '\n');
1638 0 : pagetypeinfo_showfree(m, pgdat);
1639 0 : pagetypeinfo_showblockcount(m, pgdat);
1640 0 : pagetypeinfo_showmixedcount(m, pgdat);
1641 :
1642 0 : return 0;
1643 : }
1644 :
1645 : static const struct seq_operations fragmentation_op = {
1646 : .start = frag_start,
1647 : .next = frag_next,
1648 : .stop = frag_stop,
1649 : .show = frag_show,
1650 : };
1651 :
1652 : static const struct seq_operations pagetypeinfo_op = {
1653 : .start = frag_start,
1654 : .next = frag_next,
1655 : .stop = frag_stop,
1656 : .show = pagetypeinfo_show,
1657 : };
1658 :
1659 : static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1660 : {
1661 : int zid;
1662 :
1663 0 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 0 : struct zone *compare = &pgdat->node_zones[zid];
1665 :
1666 0 : if (populated_zone(compare))
1667 0 : return zone == compare;
1668 : }
1669 :
1670 : return false;
1671 : }
1672 :
1673 0 : static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1674 : struct zone *zone)
1675 : {
1676 : int i;
1677 0 : seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1678 0 : if (is_zone_first_populated(pgdat, zone)) {
1679 0 : seq_printf(m, "\n per-node stats");
1680 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1681 0 : unsigned long pages = node_page_state_pages(pgdat, i);
1682 :
1683 0 : if (vmstat_item_print_in_thp(i))
1684 : pages /= HPAGE_PMD_NR;
1685 0 : seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1686 : pages);
1687 : }
1688 : }
1689 0 : seq_printf(m,
1690 : "\n pages free %lu"
1691 : "\n boost %lu"
1692 : "\n min %lu"
1693 : "\n low %lu"
1694 : "\n high %lu"
1695 : "\n spanned %lu"
1696 : "\n present %lu"
1697 : "\n managed %lu"
1698 : "\n cma %lu",
1699 : zone_page_state(zone, NR_FREE_PAGES),
1700 : zone->watermark_boost,
1701 0 : min_wmark_pages(zone),
1702 0 : low_wmark_pages(zone),
1703 0 : high_wmark_pages(zone),
1704 : zone->spanned_pages,
1705 : zone->present_pages,
1706 : zone_managed_pages(zone),
1707 : zone_cma_pages(zone));
1708 :
1709 0 : seq_printf(m,
1710 : "\n protection: (%ld",
1711 : zone->lowmem_reserve[0]);
1712 0 : for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1713 0 : seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1714 0 : seq_putc(m, ')');
1715 :
1716 : /* If unpopulated, no other information is useful */
1717 0 : if (!populated_zone(zone)) {
1718 0 : seq_putc(m, '\n');
1719 0 : return;
1720 : }
1721 :
1722 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1723 0 : seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1724 : zone_page_state(zone, i));
1725 :
1726 : #ifdef CONFIG_NUMA
1727 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1728 : seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1729 : zone_numa_event_state(zone, i));
1730 : #endif
1731 :
1732 0 : seq_printf(m, "\n pagesets");
1733 0 : for_each_online_cpu(i) {
1734 : struct per_cpu_pages *pcp;
1735 : struct per_cpu_zonestat __maybe_unused *pzstats;
1736 :
1737 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1738 0 : seq_printf(m,
1739 : "\n cpu: %i"
1740 : "\n count: %i"
1741 : "\n high: %i"
1742 : "\n batch: %i",
1743 : i,
1744 : pcp->count,
1745 : pcp->high,
1746 : pcp->batch);
1747 : #ifdef CONFIG_SMP
1748 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1749 : seq_printf(m, "\n vm stats threshold: %d",
1750 : pzstats->stat_threshold);
1751 : #endif
1752 : }
1753 0 : seq_printf(m,
1754 : "\n node_unreclaimable: %u"
1755 : "\n start_pfn: %lu",
1756 0 : pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1757 : zone->zone_start_pfn);
1758 0 : seq_putc(m, '\n');
1759 : }
1760 :
1761 : /*
1762 : * Output information about zones in @pgdat. All zones are printed regardless
1763 : * of whether they are populated or not: lowmem_reserve_ratio operates on the
1764 : * set of all zones and userspace would not be aware of such zones if they are
1765 : * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1766 : */
1767 0 : static int zoneinfo_show(struct seq_file *m, void *arg)
1768 : {
1769 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1770 0 : walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1771 0 : return 0;
1772 : }
1773 :
1774 : static const struct seq_operations zoneinfo_op = {
1775 : .start = frag_start, /* iterate over all zones. The same as in
1776 : * fragmentation. */
1777 : .next = frag_next,
1778 : .stop = frag_stop,
1779 : .show = zoneinfo_show,
1780 : };
1781 :
1782 : #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1783 : NR_VM_NUMA_EVENT_ITEMS + \
1784 : NR_VM_NODE_STAT_ITEMS + \
1785 : NR_VM_WRITEBACK_STAT_ITEMS + \
1786 : (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1787 : NR_VM_EVENT_ITEMS : 0))
1788 :
1789 0 : static void *vmstat_start(struct seq_file *m, loff_t *pos)
1790 : {
1791 : unsigned long *v;
1792 : int i;
1793 :
1794 0 : if (*pos >= NR_VMSTAT_ITEMS)
1795 : return NULL;
1796 :
1797 : BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1798 : fold_vm_numa_events();
1799 0 : v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1800 0 : m->private = v;
1801 0 : if (!v)
1802 : return ERR_PTR(-ENOMEM);
1803 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1804 0 : v[i] = global_zone_page_state(i);
1805 : v += NR_VM_ZONE_STAT_ITEMS;
1806 :
1807 : #ifdef CONFIG_NUMA
1808 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1809 : v[i] = global_numa_event_state(i);
1810 : v += NR_VM_NUMA_EVENT_ITEMS;
1811 : #endif
1812 :
1813 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1814 0 : v[i] = global_node_page_state_pages(i);
1815 0 : if (vmstat_item_print_in_thp(i))
1816 : v[i] /= HPAGE_PMD_NR;
1817 : }
1818 0 : v += NR_VM_NODE_STAT_ITEMS;
1819 :
1820 0 : global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1821 : v + NR_DIRTY_THRESHOLD);
1822 0 : v += NR_VM_WRITEBACK_STAT_ITEMS;
1823 :
1824 : #ifdef CONFIG_VM_EVENT_COUNTERS
1825 0 : all_vm_events(v);
1826 0 : v[PGPGIN] /= 2; /* sectors -> kbytes */
1827 0 : v[PGPGOUT] /= 2;
1828 : #endif
1829 0 : return (unsigned long *)m->private + *pos;
1830 : }
1831 :
1832 0 : static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1833 : {
1834 0 : (*pos)++;
1835 0 : if (*pos >= NR_VMSTAT_ITEMS)
1836 : return NULL;
1837 0 : return (unsigned long *)m->private + *pos;
1838 : }
1839 :
1840 0 : static int vmstat_show(struct seq_file *m, void *arg)
1841 : {
1842 0 : unsigned long *l = arg;
1843 0 : unsigned long off = l - (unsigned long *)m->private;
1844 :
1845 0 : seq_puts(m, vmstat_text[off]);
1846 0 : seq_put_decimal_ull(m, " ", *l);
1847 0 : seq_putc(m, '\n');
1848 :
1849 0 : if (off == NR_VMSTAT_ITEMS - 1) {
1850 : /*
1851 : * We've come to the end - add any deprecated counters to avoid
1852 : * breaking userspace which might depend on them being present.
1853 : */
1854 0 : seq_puts(m, "nr_unstable 0\n");
1855 : }
1856 0 : return 0;
1857 : }
1858 :
1859 0 : static void vmstat_stop(struct seq_file *m, void *arg)
1860 : {
1861 0 : kfree(m->private);
1862 0 : m->private = NULL;
1863 0 : }
1864 :
1865 : static const struct seq_operations vmstat_op = {
1866 : .start = vmstat_start,
1867 : .next = vmstat_next,
1868 : .stop = vmstat_stop,
1869 : .show = vmstat_show,
1870 : };
1871 : #endif /* CONFIG_PROC_FS */
1872 :
1873 : #ifdef CONFIG_SMP
1874 : static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1875 : int sysctl_stat_interval __read_mostly = HZ;
1876 :
1877 : #ifdef CONFIG_PROC_FS
1878 : static void refresh_vm_stats(struct work_struct *work)
1879 : {
1880 : refresh_cpu_vm_stats(true);
1881 : }
1882 :
1883 : int vmstat_refresh(struct ctl_table *table, int write,
1884 : void *buffer, size_t *lenp, loff_t *ppos)
1885 : {
1886 : long val;
1887 : int err;
1888 : int i;
1889 :
1890 : /*
1891 : * The regular update, every sysctl_stat_interval, may come later
1892 : * than expected: leaving a significant amount in per_cpu buckets.
1893 : * This is particularly misleading when checking a quantity of HUGE
1894 : * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1895 : * which can equally be echo'ed to or cat'ted from (by root),
1896 : * can be used to update the stats just before reading them.
1897 : *
1898 : * Oh, and since global_zone_page_state() etc. are so careful to hide
1899 : * transiently negative values, report an error here if any of
1900 : * the stats is negative, so we know to go looking for imbalance.
1901 : */
1902 : err = schedule_on_each_cpu(refresh_vm_stats);
1903 : if (err)
1904 : return err;
1905 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1906 : /*
1907 : * Skip checking stats known to go negative occasionally.
1908 : */
1909 : switch (i) {
1910 : case NR_ZONE_WRITE_PENDING:
1911 : case NR_FREE_CMA_PAGES:
1912 : continue;
1913 : }
1914 : val = atomic_long_read(&vm_zone_stat[i]);
1915 : if (val < 0) {
1916 : pr_warn("%s: %s %ld\n",
1917 : __func__, zone_stat_name(i), val);
1918 : }
1919 : }
1920 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1921 : /*
1922 : * Skip checking stats known to go negative occasionally.
1923 : */
1924 : switch (i) {
1925 : case NR_WRITEBACK:
1926 : continue;
1927 : }
1928 : val = atomic_long_read(&vm_node_stat[i]);
1929 : if (val < 0) {
1930 : pr_warn("%s: %s %ld\n",
1931 : __func__, node_stat_name(i), val);
1932 : }
1933 : }
1934 : if (write)
1935 : *ppos += *lenp;
1936 : else
1937 : *lenp = 0;
1938 : return 0;
1939 : }
1940 : #endif /* CONFIG_PROC_FS */
1941 :
1942 : static void vmstat_update(struct work_struct *w)
1943 : {
1944 : if (refresh_cpu_vm_stats(true)) {
1945 : /*
1946 : * Counters were updated so we expect more updates
1947 : * to occur in the future. Keep on running the
1948 : * update worker thread.
1949 : */
1950 : queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1951 : this_cpu_ptr(&vmstat_work),
1952 : round_jiffies_relative(sysctl_stat_interval));
1953 : }
1954 : }
1955 :
1956 : /*
1957 : * Check if the diffs for a certain cpu indicate that
1958 : * an update is needed.
1959 : */
1960 : static bool need_update(int cpu)
1961 : {
1962 : pg_data_t *last_pgdat = NULL;
1963 : struct zone *zone;
1964 :
1965 : for_each_populated_zone(zone) {
1966 : struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1967 : struct per_cpu_nodestat *n;
1968 :
1969 : /*
1970 : * The fast way of checking if there are any vmstat diffs.
1971 : */
1972 : if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1973 : return true;
1974 :
1975 : if (last_pgdat == zone->zone_pgdat)
1976 : continue;
1977 : last_pgdat = zone->zone_pgdat;
1978 : n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1979 : if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1980 : return true;
1981 : }
1982 : return false;
1983 : }
1984 :
1985 : /*
1986 : * Switch off vmstat processing and then fold all the remaining differentials
1987 : * until the diffs stay at zero. The function is used by NOHZ and can only be
1988 : * invoked when tick processing is not active.
1989 : */
1990 : void quiet_vmstat(void)
1991 : {
1992 : if (system_state != SYSTEM_RUNNING)
1993 : return;
1994 :
1995 : if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1996 : return;
1997 :
1998 : if (!need_update(smp_processor_id()))
1999 : return;
2000 :
2001 : /*
2002 : * Just refresh counters and do not care about the pending delayed
2003 : * vmstat_update. It doesn't fire that often to matter and canceling
2004 : * it would be too expensive from this path.
2005 : * vmstat_shepherd will take care about that for us.
2006 : */
2007 : refresh_cpu_vm_stats(false);
2008 : }
2009 :
2010 : /*
2011 : * Shepherd worker thread that checks the
2012 : * differentials of processors that have their worker
2013 : * threads for vm statistics updates disabled because of
2014 : * inactivity.
2015 : */
2016 : static void vmstat_shepherd(struct work_struct *w);
2017 :
2018 : static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2019 :
2020 : static void vmstat_shepherd(struct work_struct *w)
2021 : {
2022 : int cpu;
2023 :
2024 : cpus_read_lock();
2025 : /* Check processors whose vmstat worker threads have been disabled */
2026 : for_each_online_cpu(cpu) {
2027 : struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2028 :
2029 : /*
2030 : * In kernel users of vmstat counters either require the precise value and
2031 : * they are using zone_page_state_snapshot interface or they can live with
2032 : * an imprecision as the regular flushing can happen at arbitrary time and
2033 : * cumulative error can grow (see calculate_normal_threshold).
2034 : *
2035 : * From that POV the regular flushing can be postponed for CPUs that have
2036 : * been isolated from the kernel interference without critical
2037 : * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2038 : * for all isolated CPUs to avoid interference with the isolated workload.
2039 : */
2040 : if (cpu_is_isolated(cpu))
2041 : continue;
2042 :
2043 : if (!delayed_work_pending(dw) && need_update(cpu))
2044 : queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2045 :
2046 : cond_resched();
2047 : }
2048 : cpus_read_unlock();
2049 :
2050 : schedule_delayed_work(&shepherd,
2051 : round_jiffies_relative(sysctl_stat_interval));
2052 : }
2053 :
2054 : static void __init start_shepherd_timer(void)
2055 : {
2056 : int cpu;
2057 :
2058 : for_each_possible_cpu(cpu)
2059 : INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2060 : vmstat_update);
2061 :
2062 : schedule_delayed_work(&shepherd,
2063 : round_jiffies_relative(sysctl_stat_interval));
2064 : }
2065 :
2066 : static void __init init_cpu_node_state(void)
2067 : {
2068 : int node;
2069 :
2070 : for_each_online_node(node) {
2071 : if (!cpumask_empty(cpumask_of_node(node)))
2072 : node_set_state(node, N_CPU);
2073 : }
2074 : }
2075 :
2076 : static int vmstat_cpu_online(unsigned int cpu)
2077 : {
2078 : refresh_zone_stat_thresholds();
2079 :
2080 : if (!node_state(cpu_to_node(cpu), N_CPU)) {
2081 : node_set_state(cpu_to_node(cpu), N_CPU);
2082 : }
2083 :
2084 : return 0;
2085 : }
2086 :
2087 : static int vmstat_cpu_down_prep(unsigned int cpu)
2088 : {
2089 : cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2090 : return 0;
2091 : }
2092 :
2093 : static int vmstat_cpu_dead(unsigned int cpu)
2094 : {
2095 : const struct cpumask *node_cpus;
2096 : int node;
2097 :
2098 : node = cpu_to_node(cpu);
2099 :
2100 : refresh_zone_stat_thresholds();
2101 : node_cpus = cpumask_of_node(node);
2102 : if (!cpumask_empty(node_cpus))
2103 : return 0;
2104 :
2105 : node_clear_state(node, N_CPU);
2106 :
2107 : return 0;
2108 : }
2109 :
2110 : #endif
2111 :
2112 : struct workqueue_struct *mm_percpu_wq;
2113 :
2114 1 : void __init init_mm_internals(void)
2115 : {
2116 : int ret __maybe_unused;
2117 :
2118 1 : mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2119 :
2120 : #ifdef CONFIG_SMP
2121 : ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2122 : NULL, vmstat_cpu_dead);
2123 : if (ret < 0)
2124 : pr_err("vmstat: failed to register 'dead' hotplug state\n");
2125 :
2126 : ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2127 : vmstat_cpu_online,
2128 : vmstat_cpu_down_prep);
2129 : if (ret < 0)
2130 : pr_err("vmstat: failed to register 'online' hotplug state\n");
2131 :
2132 : cpus_read_lock();
2133 : init_cpu_node_state();
2134 : cpus_read_unlock();
2135 :
2136 : start_shepherd_timer();
2137 : #endif
2138 : #ifdef CONFIG_PROC_FS
2139 1 : proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2140 1 : proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2141 1 : proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2142 1 : proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2143 : #endif
2144 1 : }
2145 :
2146 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2147 :
2148 : /*
2149 : * Return an index indicating how much of the available free memory is
2150 : * unusable for an allocation of the requested size.
2151 : */
2152 : static int unusable_free_index(unsigned int order,
2153 : struct contig_page_info *info)
2154 : {
2155 : /* No free memory is interpreted as all free memory is unusable */
2156 : if (info->free_pages == 0)
2157 : return 1000;
2158 :
2159 : /*
2160 : * Index should be a value between 0 and 1. Return a value to 3
2161 : * decimal places.
2162 : *
2163 : * 0 => no fragmentation
2164 : * 1 => high fragmentation
2165 : */
2166 : return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2167 :
2168 : }
2169 :
2170 : static void unusable_show_print(struct seq_file *m,
2171 : pg_data_t *pgdat, struct zone *zone)
2172 : {
2173 : unsigned int order;
2174 : int index;
2175 : struct contig_page_info info;
2176 :
2177 : seq_printf(m, "Node %d, zone %8s ",
2178 : pgdat->node_id,
2179 : zone->name);
2180 : for (order = 0; order <= MAX_ORDER; ++order) {
2181 : fill_contig_page_info(zone, order, &info);
2182 : index = unusable_free_index(order, &info);
2183 : seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2184 : }
2185 :
2186 : seq_putc(m, '\n');
2187 : }
2188 :
2189 : /*
2190 : * Display unusable free space index
2191 : *
2192 : * The unusable free space index measures how much of the available free
2193 : * memory cannot be used to satisfy an allocation of a given size and is a
2194 : * value between 0 and 1. The higher the value, the more of free memory is
2195 : * unusable and by implication, the worse the external fragmentation is. This
2196 : * can be expressed as a percentage by multiplying by 100.
2197 : */
2198 : static int unusable_show(struct seq_file *m, void *arg)
2199 : {
2200 : pg_data_t *pgdat = (pg_data_t *)arg;
2201 :
2202 : /* check memoryless node */
2203 : if (!node_state(pgdat->node_id, N_MEMORY))
2204 : return 0;
2205 :
2206 : walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2207 :
2208 : return 0;
2209 : }
2210 :
2211 : static const struct seq_operations unusable_sops = {
2212 : .start = frag_start,
2213 : .next = frag_next,
2214 : .stop = frag_stop,
2215 : .show = unusable_show,
2216 : };
2217 :
2218 : DEFINE_SEQ_ATTRIBUTE(unusable);
2219 :
2220 : static void extfrag_show_print(struct seq_file *m,
2221 : pg_data_t *pgdat, struct zone *zone)
2222 : {
2223 : unsigned int order;
2224 : int index;
2225 :
2226 : /* Alloc on stack as interrupts are disabled for zone walk */
2227 : struct contig_page_info info;
2228 :
2229 : seq_printf(m, "Node %d, zone %8s ",
2230 : pgdat->node_id,
2231 : zone->name);
2232 : for (order = 0; order <= MAX_ORDER; ++order) {
2233 : fill_contig_page_info(zone, order, &info);
2234 : index = __fragmentation_index(order, &info);
2235 : seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2236 : }
2237 :
2238 : seq_putc(m, '\n');
2239 : }
2240 :
2241 : /*
2242 : * Display fragmentation index for orders that allocations would fail for
2243 : */
2244 : static int extfrag_show(struct seq_file *m, void *arg)
2245 : {
2246 : pg_data_t *pgdat = (pg_data_t *)arg;
2247 :
2248 : walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2249 :
2250 : return 0;
2251 : }
2252 :
2253 : static const struct seq_operations extfrag_sops = {
2254 : .start = frag_start,
2255 : .next = frag_next,
2256 : .stop = frag_stop,
2257 : .show = extfrag_show,
2258 : };
2259 :
2260 : DEFINE_SEQ_ATTRIBUTE(extfrag);
2261 :
2262 : static int __init extfrag_debug_init(void)
2263 : {
2264 : struct dentry *extfrag_debug_root;
2265 :
2266 : extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2267 :
2268 : debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2269 : &unusable_fops);
2270 :
2271 : debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2272 : &extfrag_fops);
2273 :
2274 : return 0;
2275 : }
2276 :
2277 : module_init(extfrag_debug_init);
2278 : #endif
|