LCOV - code coverage report
Current view: top level - mm - workingset.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 11 115 9.6 %
Date: 2023-08-24 13:40:31 Functions: 1 11 9.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Workingset detection
       4             :  *
       5             :  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
       6             :  */
       7             : 
       8             : #include <linux/memcontrol.h>
       9             : #include <linux/mm_inline.h>
      10             : #include <linux/writeback.h>
      11             : #include <linux/shmem_fs.h>
      12             : #include <linux/pagemap.h>
      13             : #include <linux/atomic.h>
      14             : #include <linux/module.h>
      15             : #include <linux/swap.h>
      16             : #include <linux/dax.h>
      17             : #include <linux/fs.h>
      18             : #include <linux/mm.h>
      19             : 
      20             : /*
      21             :  *              Double CLOCK lists
      22             :  *
      23             :  * Per node, two clock lists are maintained for file pages: the
      24             :  * inactive and the active list.  Freshly faulted pages start out at
      25             :  * the head of the inactive list and page reclaim scans pages from the
      26             :  * tail.  Pages that are accessed multiple times on the inactive list
      27             :  * are promoted to the active list, to protect them from reclaim,
      28             :  * whereas active pages are demoted to the inactive list when the
      29             :  * active list grows too big.
      30             :  *
      31             :  *   fault ------------------------+
      32             :  *                                 |
      33             :  *              +--------------+   |            +-------------+
      34             :  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
      35             :  *              +--------------+                +-------------+    |
      36             :  *                     |                                           |
      37             :  *                     +-------------- promotion ------------------+
      38             :  *
      39             :  *
      40             :  *              Access frequency and refault distance
      41             :  *
      42             :  * A workload is thrashing when its pages are frequently used but they
      43             :  * are evicted from the inactive list every time before another access
      44             :  * would have promoted them to the active list.
      45             :  *
      46             :  * In cases where the average access distance between thrashing pages
      47             :  * is bigger than the size of memory there is nothing that can be
      48             :  * done - the thrashing set could never fit into memory under any
      49             :  * circumstance.
      50             :  *
      51             :  * However, the average access distance could be bigger than the
      52             :  * inactive list, yet smaller than the size of memory.  In this case,
      53             :  * the set could fit into memory if it weren't for the currently
      54             :  * active pages - which may be used more, hopefully less frequently:
      55             :  *
      56             :  *      +-memory available to cache-+
      57             :  *      |                           |
      58             :  *      +-inactive------+-active----+
      59             :  *  a b | c d e f g h i | J K L M N |
      60             :  *      +---------------+-----------+
      61             :  *
      62             :  * It is prohibitively expensive to accurately track access frequency
      63             :  * of pages.  But a reasonable approximation can be made to measure
      64             :  * thrashing on the inactive list, after which refaulting pages can be
      65             :  * activated optimistically to compete with the existing active pages.
      66             :  *
      67             :  * Approximating inactive page access frequency - Observations:
      68             :  *
      69             :  * 1. When a page is accessed for the first time, it is added to the
      70             :  *    head of the inactive list, slides every existing inactive page
      71             :  *    towards the tail by one slot, and pushes the current tail page
      72             :  *    out of memory.
      73             :  *
      74             :  * 2. When a page is accessed for the second time, it is promoted to
      75             :  *    the active list, shrinking the inactive list by one slot.  This
      76             :  *    also slides all inactive pages that were faulted into the cache
      77             :  *    more recently than the activated page towards the tail of the
      78             :  *    inactive list.
      79             :  *
      80             :  * Thus:
      81             :  *
      82             :  * 1. The sum of evictions and activations between any two points in
      83             :  *    time indicate the minimum number of inactive pages accessed in
      84             :  *    between.
      85             :  *
      86             :  * 2. Moving one inactive page N page slots towards the tail of the
      87             :  *    list requires at least N inactive page accesses.
      88             :  *
      89             :  * Combining these:
      90             :  *
      91             :  * 1. When a page is finally evicted from memory, the number of
      92             :  *    inactive pages accessed while the page was in cache is at least
      93             :  *    the number of page slots on the inactive list.
      94             :  *
      95             :  * 2. In addition, measuring the sum of evictions and activations (E)
      96             :  *    at the time of a page's eviction, and comparing it to another
      97             :  *    reading (R) at the time the page faults back into memory tells
      98             :  *    the minimum number of accesses while the page was not cached.
      99             :  *    This is called the refault distance.
     100             :  *
     101             :  * Because the first access of the page was the fault and the second
     102             :  * access the refault, we combine the in-cache distance with the
     103             :  * out-of-cache distance to get the complete minimum access distance
     104             :  * of this page:
     105             :  *
     106             :  *      NR_inactive + (R - E)
     107             :  *
     108             :  * And knowing the minimum access distance of a page, we can easily
     109             :  * tell if the page would be able to stay in cache assuming all page
     110             :  * slots in the cache were available:
     111             :  *
     112             :  *   NR_inactive + (R - E) <= NR_inactive + NR_active
     113             :  *
     114             :  * If we have swap we should consider about NR_inactive_anon and
     115             :  * NR_active_anon, so for page cache and anonymous respectively:
     116             :  *
     117             :  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
     118             :  *   + NR_inactive_anon + NR_active_anon
     119             :  *
     120             :  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
     121             :  *   + NR_inactive_file + NR_active_file
     122             :  *
     123             :  * Which can be further simplified to:
     124             :  *
     125             :  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
     126             :  *
     127             :  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
     128             :  *
     129             :  * Put into words, the refault distance (out-of-cache) can be seen as
     130             :  * a deficit in inactive list space (in-cache).  If the inactive list
     131             :  * had (R - E) more page slots, the page would not have been evicted
     132             :  * in between accesses, but activated instead.  And on a full system,
     133             :  * the only thing eating into inactive list space is active pages.
     134             :  *
     135             :  *
     136             :  *              Refaulting inactive pages
     137             :  *
     138             :  * All that is known about the active list is that the pages have been
     139             :  * accessed more than once in the past.  This means that at any given
     140             :  * time there is actually a good chance that pages on the active list
     141             :  * are no longer in active use.
     142             :  *
     143             :  * So when a refault distance of (R - E) is observed and there are at
     144             :  * least (R - E) pages in the userspace workingset, the refaulting page
     145             :  * is activated optimistically in the hope that (R - E) pages are actually
     146             :  * used less frequently than the refaulting page - or even not used at
     147             :  * all anymore.
     148             :  *
     149             :  * That means if inactive cache is refaulting with a suitable refault
     150             :  * distance, we assume the cache workingset is transitioning and put
     151             :  * pressure on the current workingset.
     152             :  *
     153             :  * If this is wrong and demotion kicks in, the pages which are truly
     154             :  * used more frequently will be reactivated while the less frequently
     155             :  * used once will be evicted from memory.
     156             :  *
     157             :  * But if this is right, the stale pages will be pushed out of memory
     158             :  * and the used pages get to stay in cache.
     159             :  *
     160             :  *              Refaulting active pages
     161             :  *
     162             :  * If on the other hand the refaulting pages have recently been
     163             :  * deactivated, it means that the active list is no longer protecting
     164             :  * actively used cache from reclaim. The cache is NOT transitioning to
     165             :  * a different workingset; the existing workingset is thrashing in the
     166             :  * space allocated to the page cache.
     167             :  *
     168             :  *
     169             :  *              Implementation
     170             :  *
     171             :  * For each node's LRU lists, a counter for inactive evictions and
     172             :  * activations is maintained (node->nonresident_age).
     173             :  *
     174             :  * On eviction, a snapshot of this counter (along with some bits to
     175             :  * identify the node) is stored in the now empty page cache
     176             :  * slot of the evicted page.  This is called a shadow entry.
     177             :  *
     178             :  * On cache misses for which there are shadow entries, an eligible
     179             :  * refault distance will immediately activate the refaulting page.
     180             :  */
     181             : 
     182             : #define WORKINGSET_SHIFT 1
     183             : #define EVICTION_SHIFT  ((BITS_PER_LONG - BITS_PER_XA_VALUE) +  \
     184             :                          WORKINGSET_SHIFT + NODES_SHIFT + \
     185             :                          MEM_CGROUP_ID_SHIFT)
     186             : #define EVICTION_MASK   (~0UL >> EVICTION_SHIFT)
     187             : 
     188             : /*
     189             :  * Eviction timestamps need to be able to cover the full range of
     190             :  * actionable refaults. However, bits are tight in the xarray
     191             :  * entry, and after storing the identifier for the lruvec there might
     192             :  * not be enough left to represent every single actionable refault. In
     193             :  * that case, we have to sacrifice granularity for distance, and group
     194             :  * evictions into coarser buckets by shaving off lower timestamp bits.
     195             :  */
     196             : static unsigned int bucket_order __read_mostly;
     197             : 
     198           0 : static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
     199             :                          bool workingset)
     200             : {
     201           0 :         eviction &= EVICTION_MASK;
     202           0 :         eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
     203           0 :         eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
     204           0 :         eviction = (eviction << WORKINGSET_SHIFT) | workingset;
     205             : 
     206           0 :         return xa_mk_value(eviction);
     207             : }
     208             : 
     209             : static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
     210             :                           unsigned long *evictionp, bool *workingsetp)
     211             : {
     212           0 :         unsigned long entry = xa_to_value(shadow);
     213             :         int memcgid, nid;
     214             :         bool workingset;
     215             : 
     216           0 :         workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
     217           0 :         entry >>= WORKINGSET_SHIFT;
     218           0 :         nid = entry & ((1UL << NODES_SHIFT) - 1);
     219           0 :         entry >>= NODES_SHIFT;
     220           0 :         memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
     221           0 :         entry >>= MEM_CGROUP_ID_SHIFT;
     222             : 
     223           0 :         *memcgidp = memcgid;
     224           0 :         *pgdat = NODE_DATA(nid);
     225           0 :         *evictionp = entry;
     226           0 :         *workingsetp = workingset;
     227             : }
     228             : 
     229             : #ifdef CONFIG_LRU_GEN
     230             : 
     231             : static void *lru_gen_eviction(struct folio *folio)
     232             : {
     233             :         int hist;
     234             :         unsigned long token;
     235             :         unsigned long min_seq;
     236             :         struct lruvec *lruvec;
     237             :         struct lru_gen_folio *lrugen;
     238             :         int type = folio_is_file_lru(folio);
     239             :         int delta = folio_nr_pages(folio);
     240             :         int refs = folio_lru_refs(folio);
     241             :         int tier = lru_tier_from_refs(refs);
     242             :         struct mem_cgroup *memcg = folio_memcg(folio);
     243             :         struct pglist_data *pgdat = folio_pgdat(folio);
     244             : 
     245             :         BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
     246             : 
     247             :         lruvec = mem_cgroup_lruvec(memcg, pgdat);
     248             :         lrugen = &lruvec->lrugen;
     249             :         min_seq = READ_ONCE(lrugen->min_seq[type]);
     250             :         token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
     251             : 
     252             :         hist = lru_hist_from_seq(min_seq);
     253             :         atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
     254             : 
     255             :         return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
     256             : }
     257             : 
     258             : /*
     259             :  * Tests if the shadow entry is for a folio that was recently evicted.
     260             :  * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
     261             :  */
     262             : static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
     263             :                                 unsigned long *token, bool *workingset)
     264             : {
     265             :         int memcg_id;
     266             :         unsigned long min_seq;
     267             :         struct mem_cgroup *memcg;
     268             :         struct pglist_data *pgdat;
     269             : 
     270             :         unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
     271             : 
     272             :         memcg = mem_cgroup_from_id(memcg_id);
     273             :         *lruvec = mem_cgroup_lruvec(memcg, pgdat);
     274             : 
     275             :         min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
     276             :         return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
     277             : }
     278             : 
     279             : static void lru_gen_refault(struct folio *folio, void *shadow)
     280             : {
     281             :         bool recent;
     282             :         int hist, tier, refs;
     283             :         bool workingset;
     284             :         unsigned long token;
     285             :         struct lruvec *lruvec;
     286             :         struct lru_gen_folio *lrugen;
     287             :         int type = folio_is_file_lru(folio);
     288             :         int delta = folio_nr_pages(folio);
     289             : 
     290             :         rcu_read_lock();
     291             : 
     292             :         recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset);
     293             :         if (lruvec != folio_lruvec(folio))
     294             :                 goto unlock;
     295             : 
     296             :         mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
     297             : 
     298             :         if (!recent)
     299             :                 goto unlock;
     300             : 
     301             :         lrugen = &lruvec->lrugen;
     302             : 
     303             :         hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
     304             :         /* see the comment in folio_lru_refs() */
     305             :         refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
     306             :         tier = lru_tier_from_refs(refs);
     307             : 
     308             :         atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
     309             :         mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
     310             : 
     311             :         /*
     312             :          * Count the following two cases as stalls:
     313             :          * 1. For pages accessed through page tables, hotter pages pushed out
     314             :          *    hot pages which refaulted immediately.
     315             :          * 2. For pages accessed multiple times through file descriptors,
     316             :          *    numbers of accesses might have been out of the range.
     317             :          */
     318             :         if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
     319             :                 folio_set_workingset(folio);
     320             :                 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
     321             :         }
     322             : unlock:
     323             :         rcu_read_unlock();
     324             : }
     325             : 
     326             : #else /* !CONFIG_LRU_GEN */
     327             : 
     328             : static void *lru_gen_eviction(struct folio *folio)
     329             : {
     330             :         return NULL;
     331             : }
     332             : 
     333             : static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
     334             :                                 unsigned long *token, bool *workingset)
     335             : {
     336             :         return false;
     337             : }
     338             : 
     339             : static void lru_gen_refault(struct folio *folio, void *shadow)
     340             : {
     341             : }
     342             : 
     343             : #endif /* CONFIG_LRU_GEN */
     344             : 
     345             : /**
     346             :  * workingset_age_nonresident - age non-resident entries as LRU ages
     347             :  * @lruvec: the lruvec that was aged
     348             :  * @nr_pages: the number of pages to count
     349             :  *
     350             :  * As in-memory pages are aged, non-resident pages need to be aged as
     351             :  * well, in order for the refault distances later on to be comparable
     352             :  * to the in-memory dimensions. This function allows reclaim and LRU
     353             :  * operations to drive the non-resident aging along in parallel.
     354             :  */
     355           0 : void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
     356             : {
     357             :         /*
     358             :          * Reclaiming a cgroup means reclaiming all its children in a
     359             :          * round-robin fashion. That means that each cgroup has an LRU
     360             :          * order that is composed of the LRU orders of its child
     361             :          * cgroups; and every page has an LRU position not just in the
     362             :          * cgroup that owns it, but in all of that group's ancestors.
     363             :          *
     364             :          * So when the physical inactive list of a leaf cgroup ages,
     365             :          * the virtual inactive lists of all its parents, including
     366             :          * the root cgroup's, age as well.
     367             :          */
     368             :         do {
     369           0 :                 atomic_long_add(nr_pages, &lruvec->nonresident_age);
     370           0 :         } while ((lruvec = parent_lruvec(lruvec)));
     371           0 : }
     372             : 
     373             : /**
     374             :  * workingset_eviction - note the eviction of a folio from memory
     375             :  * @target_memcg: the cgroup that is causing the reclaim
     376             :  * @folio: the folio being evicted
     377             :  *
     378             :  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
     379             :  * of the evicted @folio so that a later refault can be detected.
     380             :  */
     381           0 : void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
     382             : {
     383           0 :         struct pglist_data *pgdat = folio_pgdat(folio);
     384             :         unsigned long eviction;
     385             :         struct lruvec *lruvec;
     386             :         int memcgid;
     387             : 
     388             :         /* Folio is fully exclusive and pins folio's memory cgroup pointer */
     389             :         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
     390             :         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
     391             :         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
     392             : 
     393             :         if (lru_gen_enabled())
     394             :                 return lru_gen_eviction(folio);
     395             : 
     396           0 :         lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
     397             :         /* XXX: target_memcg can be NULL, go through lruvec */
     398           0 :         memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
     399           0 :         eviction = atomic_long_read(&lruvec->nonresident_age);
     400           0 :         eviction >>= bucket_order;
     401           0 :         workingset_age_nonresident(lruvec, folio_nr_pages(folio));
     402           0 :         return pack_shadow(memcgid, pgdat, eviction,
     403           0 :                                 folio_test_workingset(folio));
     404             : }
     405             : 
     406             : /**
     407             :  * workingset_test_recent - tests if the shadow entry is for a folio that was
     408             :  * recently evicted. Also fills in @workingset with the value unpacked from
     409             :  * shadow.
     410             :  * @shadow: the shadow entry to be tested.
     411             :  * @file: whether the corresponding folio is from the file lru.
     412             :  * @workingset: where the workingset value unpacked from shadow should
     413             :  * be stored.
     414             :  *
     415             :  * Return: true if the shadow is for a recently evicted folio; false otherwise.
     416             :  */
     417           0 : bool workingset_test_recent(void *shadow, bool file, bool *workingset)
     418             : {
     419             :         struct mem_cgroup *eviction_memcg;
     420             :         struct lruvec *eviction_lruvec;
     421             :         unsigned long refault_distance;
     422             :         unsigned long workingset_size;
     423             :         unsigned long refault;
     424             :         int memcgid;
     425             :         struct pglist_data *pgdat;
     426             :         unsigned long eviction;
     427             : 
     428             :         if (lru_gen_enabled())
     429             :                 return lru_gen_test_recent(shadow, file, &eviction_lruvec, &eviction, workingset);
     430             : 
     431           0 :         unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
     432           0 :         eviction <<= bucket_order;
     433             : 
     434             :         /*
     435             :          * Look up the memcg associated with the stored ID. It might
     436             :          * have been deleted since the folio's eviction.
     437             :          *
     438             :          * Note that in rare events the ID could have been recycled
     439             :          * for a new cgroup that refaults a shared folio. This is
     440             :          * impossible to tell from the available data. However, this
     441             :          * should be a rare and limited disturbance, and activations
     442             :          * are always speculative anyway. Ultimately, it's the aging
     443             :          * algorithm's job to shake out the minimum access frequency
     444             :          * for the active cache.
     445             :          *
     446             :          * XXX: On !CONFIG_MEMCG, this will always return NULL; it
     447             :          * would be better if the root_mem_cgroup existed in all
     448             :          * configurations instead.
     449             :          */
     450           0 :         eviction_memcg = mem_cgroup_from_id(memcgid);
     451             :         if (!mem_cgroup_disabled() && !eviction_memcg)
     452             :                 return false;
     453             : 
     454           0 :         eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
     455           0 :         refault = atomic_long_read(&eviction_lruvec->nonresident_age);
     456             : 
     457             :         /*
     458             :          * Calculate the refault distance
     459             :          *
     460             :          * The unsigned subtraction here gives an accurate distance
     461             :          * across nonresident_age overflows in most cases. There is a
     462             :          * special case: usually, shadow entries have a short lifetime
     463             :          * and are either refaulted or reclaimed along with the inode
     464             :          * before they get too old.  But it is not impossible for the
     465             :          * nonresident_age to lap a shadow entry in the field, which
     466             :          * can then result in a false small refault distance, leading
     467             :          * to a false activation should this old entry actually
     468             :          * refault again.  However, earlier kernels used to deactivate
     469             :          * unconditionally with *every* reclaim invocation for the
     470             :          * longest time, so the occasional inappropriate activation
     471             :          * leading to pressure on the active list is not a problem.
     472             :          */
     473           0 :         refault_distance = (refault - eviction) & EVICTION_MASK;
     474             : 
     475             :         /*
     476             :          * Compare the distance to the existing workingset size. We
     477             :          * don't activate pages that couldn't stay resident even if
     478             :          * all the memory was available to the workingset. Whether
     479             :          * workingset competition needs to consider anon or not depends
     480             :          * on having free swap space.
     481             :          */
     482           0 :         workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
     483           0 :         if (!file) {
     484           0 :                 workingset_size += lruvec_page_state(eviction_lruvec,
     485             :                                                      NR_INACTIVE_FILE);
     486             :         }
     487           0 :         if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
     488           0 :                 workingset_size += lruvec_page_state(eviction_lruvec,
     489             :                                                      NR_ACTIVE_ANON);
     490           0 :                 if (file) {
     491           0 :                         workingset_size += lruvec_page_state(eviction_lruvec,
     492             :                                                      NR_INACTIVE_ANON);
     493             :                 }
     494             :         }
     495             : 
     496           0 :         return refault_distance <= workingset_size;
     497             : }
     498             : 
     499             : /**
     500             :  * workingset_refault - Evaluate the refault of a previously evicted folio.
     501             :  * @folio: The freshly allocated replacement folio.
     502             :  * @shadow: Shadow entry of the evicted folio.
     503             :  *
     504             :  * Calculates and evaluates the refault distance of the previously
     505             :  * evicted folio in the context of the node and the memcg whose memory
     506             :  * pressure caused the eviction.
     507             :  */
     508           0 : void workingset_refault(struct folio *folio, void *shadow)
     509             : {
     510           0 :         bool file = folio_is_file_lru(folio);
     511             :         struct pglist_data *pgdat;
     512             :         struct mem_cgroup *memcg;
     513             :         struct lruvec *lruvec;
     514             :         bool workingset;
     515             :         long nr;
     516             : 
     517             :         if (lru_gen_enabled()) {
     518             :                 lru_gen_refault(folio, shadow);
     519             :                 return;
     520             :         }
     521             : 
     522             :         /* Flush stats (and potentially sleep) before holding RCU read lock */
     523             :         mem_cgroup_flush_stats_ratelimited();
     524             : 
     525             :         rcu_read_lock();
     526             : 
     527             :         /*
     528             :          * The activation decision for this folio is made at the level
     529             :          * where the eviction occurred, as that is where the LRU order
     530             :          * during folio reclaim is being determined.
     531             :          *
     532             :          * However, the cgroup that will own the folio is the one that
     533             :          * is actually experiencing the refault event.
     534             :          */
     535           0 :         nr = folio_nr_pages(folio);
     536           0 :         memcg = folio_memcg(folio);
     537           0 :         pgdat = folio_pgdat(folio);
     538           0 :         lruvec = mem_cgroup_lruvec(memcg, pgdat);
     539             : 
     540           0 :         mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
     541             : 
     542           0 :         if (!workingset_test_recent(shadow, file, &workingset))
     543             :                 goto out;
     544             : 
     545           0 :         folio_set_active(folio);
     546           0 :         workingset_age_nonresident(lruvec, nr);
     547           0 :         mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
     548             : 
     549             :         /* Folio was active prior to eviction */
     550           0 :         if (workingset) {
     551           0 :                 folio_set_workingset(folio);
     552             :                 /*
     553             :                  * XXX: Move to folio_add_lru() when it supports new vs
     554             :                  * putback
     555             :                  */
     556           0 :                 lru_note_cost_refault(folio);
     557           0 :                 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
     558             :         }
     559             : out:
     560             :         rcu_read_unlock();
     561             : }
     562             : 
     563             : /**
     564             :  * workingset_activation - note a page activation
     565             :  * @folio: Folio that is being activated.
     566             :  */
     567           0 : void workingset_activation(struct folio *folio)
     568             : {
     569             :         struct mem_cgroup *memcg;
     570             : 
     571             :         rcu_read_lock();
     572             :         /*
     573             :          * Filter non-memcg pages here, e.g. unmap can call
     574             :          * mark_page_accessed() on VDSO pages.
     575             :          *
     576             :          * XXX: See workingset_refault() - this should return
     577             :          * root_mem_cgroup even for !CONFIG_MEMCG.
     578             :          */
     579           0 :         memcg = folio_memcg_rcu(folio);
     580             :         if (!mem_cgroup_disabled() && !memcg)
     581             :                 goto out;
     582           0 :         workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
     583             : out:
     584             :         rcu_read_unlock();
     585           0 : }
     586             : 
     587             : /*
     588             :  * Shadow entries reflect the share of the working set that does not
     589             :  * fit into memory, so their number depends on the access pattern of
     590             :  * the workload.  In most cases, they will refault or get reclaimed
     591             :  * along with the inode, but a (malicious) workload that streams
     592             :  * through files with a total size several times that of available
     593             :  * memory, while preventing the inodes from being reclaimed, can
     594             :  * create excessive amounts of shadow nodes.  To keep a lid on this,
     595             :  * track shadow nodes and reclaim them when they grow way past the
     596             :  * point where they would still be useful.
     597             :  */
     598             : 
     599             : struct list_lru shadow_nodes;
     600             : 
     601           0 : void workingset_update_node(struct xa_node *node)
     602             : {
     603             :         struct address_space *mapping;
     604             : 
     605             :         /*
     606             :          * Track non-empty nodes that contain only shadow entries;
     607             :          * unlink those that contain pages or are being freed.
     608             :          *
     609             :          * Avoid acquiring the list_lru lock when the nodes are
     610             :          * already where they should be. The list_empty() test is safe
     611             :          * as node->private_list is protected by the i_pages lock.
     612             :          */
     613           0 :         mapping = container_of(node->array, struct address_space, i_pages);
     614             :         lockdep_assert_held(&mapping->i_pages.xa_lock);
     615             : 
     616           0 :         if (node->count && node->count == node->nr_values) {
     617           0 :                 if (list_empty(&node->private_list)) {
     618           0 :                         list_lru_add(&shadow_nodes, &node->private_list);
     619             :                         __inc_lruvec_kmem_state(node, WORKINGSET_NODES);
     620             :                 }
     621             :         } else {
     622           0 :                 if (!list_empty(&node->private_list)) {
     623           0 :                         list_lru_del(&shadow_nodes, &node->private_list);
     624             :                         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     625             :                 }
     626             :         }
     627           0 : }
     628             : 
     629           0 : static unsigned long count_shadow_nodes(struct shrinker *shrinker,
     630             :                                         struct shrink_control *sc)
     631             : {
     632             :         unsigned long max_nodes;
     633             :         unsigned long nodes;
     634             :         unsigned long pages;
     635             : 
     636           0 :         nodes = list_lru_shrink_count(&shadow_nodes, sc);
     637           0 :         if (!nodes)
     638             :                 return SHRINK_EMPTY;
     639             : 
     640             :         /*
     641             :          * Approximate a reasonable limit for the nodes
     642             :          * containing shadow entries. We don't need to keep more
     643             :          * shadow entries than possible pages on the active list,
     644             :          * since refault distances bigger than that are dismissed.
     645             :          *
     646             :          * The size of the active list converges toward 100% of
     647             :          * overall page cache as memory grows, with only a tiny
     648             :          * inactive list. Assume the total cache size for that.
     649             :          *
     650             :          * Nodes might be sparsely populated, with only one shadow
     651             :          * entry in the extreme case. Obviously, we cannot keep one
     652             :          * node for every eligible shadow entry, so compromise on a
     653             :          * worst-case density of 1/8th. Below that, not all eligible
     654             :          * refaults can be detected anymore.
     655             :          *
     656             :          * On 64-bit with 7 xa_nodes per page and 64 slots
     657             :          * each, this will reclaim shadow entries when they consume
     658             :          * ~1.8% of available memory:
     659             :          *
     660             :          * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
     661             :          */
     662             : #ifdef CONFIG_MEMCG
     663             :         if (sc->memcg) {
     664             :                 struct lruvec *lruvec;
     665             :                 int i;
     666             : 
     667             :                 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
     668             :                 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
     669             :                         pages += lruvec_page_state_local(lruvec,
     670             :                                                          NR_LRU_BASE + i);
     671             :                 pages += lruvec_page_state_local(
     672             :                         lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
     673             :                 pages += lruvec_page_state_local(
     674             :                         lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
     675             :         } else
     676             : #endif
     677           0 :                 pages = node_present_pages(sc->nid);
     678             : 
     679           0 :         max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
     680             : 
     681           0 :         if (nodes <= max_nodes)
     682             :                 return 0;
     683           0 :         return nodes - max_nodes;
     684             : }
     685             : 
     686           0 : static enum lru_status shadow_lru_isolate(struct list_head *item,
     687             :                                           struct list_lru_one *lru,
     688             :                                           spinlock_t *lru_lock,
     689             :                                           void *arg) __must_hold(lru_lock)
     690             : {
     691           0 :         struct xa_node *node = container_of(item, struct xa_node, private_list);
     692             :         struct address_space *mapping;
     693             :         int ret;
     694             : 
     695             :         /*
     696             :          * Page cache insertions and deletions synchronously maintain
     697             :          * the shadow node LRU under the i_pages lock and the
     698             :          * lru_lock.  Because the page cache tree is emptied before
     699             :          * the inode can be destroyed, holding the lru_lock pins any
     700             :          * address_space that has nodes on the LRU.
     701             :          *
     702             :          * We can then safely transition to the i_pages lock to
     703             :          * pin only the address_space of the particular node we want
     704             :          * to reclaim, take the node off-LRU, and drop the lru_lock.
     705             :          */
     706             : 
     707           0 :         mapping = container_of(node->array, struct address_space, i_pages);
     708             : 
     709             :         /* Coming from the list, invert the lock order */
     710           0 :         if (!xa_trylock(&mapping->i_pages)) {
     711             :                 spin_unlock_irq(lru_lock);
     712             :                 ret = LRU_RETRY;
     713             :                 goto out;
     714             :         }
     715             : 
     716             :         /* For page cache we need to hold i_lock */
     717           0 :         if (mapping->host != NULL) {
     718           0 :                 if (!spin_trylock(&mapping->host->i_lock)) {
     719             :                         xa_unlock(&mapping->i_pages);
     720             :                         spin_unlock_irq(lru_lock);
     721             :                         ret = LRU_RETRY;
     722             :                         goto out;
     723             :                 }
     724             :         }
     725             : 
     726           0 :         list_lru_isolate(lru, item);
     727           0 :         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     728             : 
     729           0 :         spin_unlock(lru_lock);
     730             : 
     731             :         /*
     732             :          * The nodes should only contain one or more shadow entries,
     733             :          * no pages, so we expect to be able to remove them all and
     734             :          * delete and free the empty node afterwards.
     735             :          */
     736           0 :         if (WARN_ON_ONCE(!node->nr_values))
     737             :                 goto out_invalid;
     738           0 :         if (WARN_ON_ONCE(node->count != node->nr_values))
     739             :                 goto out_invalid;
     740           0 :         xa_delete_node(node, workingset_update_node);
     741             :         __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
     742             : 
     743             : out_invalid:
     744           0 :         xa_unlock_irq(&mapping->i_pages);
     745           0 :         if (mapping->host != NULL) {
     746           0 :                 if (mapping_shrinkable(mapping))
     747           0 :                         inode_add_lru(mapping->host);
     748           0 :                 spin_unlock(&mapping->host->i_lock);
     749             :         }
     750           0 :         ret = LRU_REMOVED_RETRY;
     751             : out:
     752           0 :         cond_resched();
     753           0 :         spin_lock_irq(lru_lock);
     754           0 :         return ret;
     755             : }
     756             : 
     757           0 : static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
     758             :                                        struct shrink_control *sc)
     759             : {
     760             :         /* list_lru lock nests inside the IRQ-safe i_pages lock */
     761           0 :         return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
     762             :                                         NULL);
     763             : }
     764             : 
     765             : static struct shrinker workingset_shadow_shrinker = {
     766             :         .count_objects = count_shadow_nodes,
     767             :         .scan_objects = scan_shadow_nodes,
     768             :         .seeks = 0, /* ->count reports only fully expendable nodes */
     769             :         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
     770             : };
     771             : 
     772             : /*
     773             :  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
     774             :  * i_pages lock.
     775             :  */
     776             : static struct lock_class_key shadow_nodes_key;
     777             : 
     778           1 : static int __init workingset_init(void)
     779             : {
     780             :         unsigned int timestamp_bits;
     781             :         unsigned int max_order;
     782             :         int ret;
     783             : 
     784             :         BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
     785             :         /*
     786             :          * Calculate the eviction bucket size to cover the longest
     787             :          * actionable refault distance, which is currently half of
     788             :          * memory (totalram_pages/2). However, memory hotplug may add
     789             :          * some more pages at runtime, so keep working with up to
     790             :          * double the initial memory by using totalram_pages as-is.
     791             :          */
     792           1 :         timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
     793           2 :         max_order = fls_long(totalram_pages() - 1);
     794           1 :         if (max_order > timestamp_bits)
     795           0 :                 bucket_order = max_order - timestamp_bits;
     796           1 :         pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
     797             :                timestamp_bits, max_order, bucket_order);
     798             : 
     799           1 :         ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
     800           1 :         if (ret)
     801             :                 goto err;
     802           1 :         ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
     803             :                               &workingset_shadow_shrinker);
     804           1 :         if (ret)
     805             :                 goto err_list_lru;
     806           1 :         register_shrinker_prepared(&workingset_shadow_shrinker);
     807           1 :         return 0;
     808             : err_list_lru:
     809           0 :         free_prealloced_shrinker(&workingset_shadow_shrinker);
     810             : err:
     811             :         return ret;
     812             : }
     813             : module_init(workingset_init);

Generated by: LCOV version 1.14